
Conan Documentation
Release 2.1.0

The Conan team

Jun 30, 2025

CONTENTS

1 Introduction 3
1.1 Open Source . 3
1.2 Decentralized package manager . 3
1.3 Binary management . 4
1.4 All platforms, all build systems and compilers . 5
1.5 Stable . 6
1.6 Community . 7
1.7 Navigating the documentation . 7

2 What’s new in Conan 2 9
2.1 Conan 2 migration guide . 9
2.2 New graph model . 9
2.3 New public Python API . 9
2.4 New build system integrations . 10
2.5 New custom user commands . 10
2.6 New CLI . 10
2.7 New deployers . 10
2.8 New package_id . 11
2.9 compatibility.py . 11
2.10 New lockfiles . 11
2.11 New configuration and environment management . 11
2.12 Multi-revision cache . 12
2.13 New extensions plugins . 12
2.14 Package immutability optimizations . 12
2.15 Package lists . 13
2.16 Metadata files . 13
2.17 Third party backup sources . 13

3 Install 15
3.1 Install with pip (recommended) . 15
3.2 Install with pipx . 16
3.3 Use a system installer or create a self-contained executable . 17
3.4 Install from source . 17

4 Tutorial 19
4.1 Consuming packages . 19
4.2 Creating packages . 46
4.3 Working with Conan repositories . 98
4.4 Developing packages locally . 102
4.5 Versioning . 117

i

4.6 Other important Conan features . 140

5 Devops guide 143
5.1 Using ConanCenter packages in production environments . 143
5.2 Backing up third-party sources with Conan . 146
5.3 Managing package metadata files . 150
5.4 Versioning . 157
5.5 Save and restore packages from/to the cache . 158

6 Integrations 161
6.1 CMake . 161
6.2 CLion . 162
6.3 Visual Studio . 168
6.4 Autotools . 168
6.5 Bazel . 169
6.6 Makefile . 169
6.7 Xcode . 170
6.8 Meson . 170
6.9 Android . 171
6.10 JFrog . 171

7 Examples 173
7.1 ConanFile methods examples . 173
7.2 Conan extensions examples . 184
7.3 Conan recipe tools examples . 193
7.4 Cross-building examples . 225
7.5 Configuration files examples . 242
7.6 Graph examples . 246
7.7 Developer tools and flows . 258
7.8 Conan commands examples . 259

8 Reference 265
8.1 Commands . 265
8.2 conanfile.py . 371
8.3 conanfile.txt . 442
8.4 Recipe tools . 444
8.5 Configuration files . 569
8.6 Extensions . 605
8.7 Environment variables . 631
8.8 The binary model . 633
8.9 Conan Server . 649

9 Knowledge 657
9.1 Cheat sheet . 657
9.2 Core guidelines . 658
9.3 FAQ . 660
9.4 Videos . 662

10 Changelog 663
10.1 2.1.0 (15-Feb-2024) . 663
10.2 2.0.17 (10-Jan-2024) . 665
10.3 2.0.16 (21-Dec-2023) . 666
10.4 2.0.15 (20-Dec-2023) . 666
10.5 2.0.14 (14-Nov-2023) . 667
10.6 2.0.13 (28-Sept-2023) . 669

ii

10.7 2.0.12 (26-Sept-2023) . 669
10.8 2.0.11 (18-Sept-2023) . 669
10.9 2.0.10 (29-Aug-2023) . 670
10.10 2.0.9 (19-Jul-2023) . 672
10.11 2.0.8 (13-Jul-2023) . 672
10.12 2.0.7 (21-Jun-2023) . 673
10.13 2.0.6 (26-May-2023) . 675
10.14 2.0.5 (18-May-2023) . 675
10.15 2.0.4 (11-Apr-2023) . 677
10.16 2.0.3 (03-Apr-2023) . 677
10.17 2.0.2 (15-Mar-2023) . 678
10.18 2.0.1 (03-Mar-2023) . 679
10.19 2.0.0 (22-Feb-2023) . 680
10.20 2.0.0-beta10 (16-Feb-2023) . 680
10.21 2.0.0-beta9 (31-Jan-2023) . 681
10.22 2.0.0-beta8 (12-Jan-2023) . 681
10.23 2.0.0-beta7 (22-Dec-2022) . 682
10.24 2.0.0-beta6 (02-Dec-2022) . 682
10.25 2.0.0-beta5 (11-Nov-2022) . 682
10.26 2.0.0-beta4 (11-Oct-2022) . 683
10.27 2.0.0-beta3 (12-Sept-2022) . 683
10.28 2.0.0-beta2 (27-Jul-2022) . 683
10.29 2.0.0-beta1 (20-Jun-2022) . 684

Index 685

iii

iv

Conan Documentation, Release 2.1.0

Welcome! This is the user documentation for Conan, an open source, decentralized C/C++ package manager that works
in all platforms and with all build systems and compilers. Other relevant resources:

• Conan home page. Entry point to the project, with links to docs, blog, social, downloads, release mailing list,
etc.

• Github project and issue tracker. The main support channel, file issues here for questions, bug reports and feature
requests.

Table of contents:

CONTENTS 1

https://conan.io
https://github.com/conan-io/conan

Conan Documentation, Release 2.1.0

2 CONTENTS

CHAPTER

ONE

INTRODUCTION

Conan is a dependency and package manager for C and C++ languages. It is free and open-source, works in all platforms
(Windows, Linux, OSX, FreeBSD, Solaris, etc.), and can be used to develop for all targets including embedded,
mobile (iOS, Android), and bare metal. It also integrates with all build systems like CMake, Visual Studio (MSBuild),
Makefiles, SCons, etc., including proprietary ones.

It is specifically designed and optimized for accelerating the development and Continuous Integration of C and C++
projects. With full binary management, it can create and reuse any number of different binaries (for different config-
urations like architectures, compiler versions, etc.) for any number of different versions of a package, using exactly
the same process in all platforms. As it is decentralized, it is easy to run your own server to host your own packages
and binaries privately, without needing to share them. The free JFrog Artifactory Community Edition (CE) is the
recommended Conan server to host your own packages privately under your control.

Conan is mature and stable, with a strong commitment to forward compatibility (non-breaking policy), and has a
complete team dedicated full time to its improvement and support. It is backed and used by a great community, from
open source contributors and package creators in ConanCenter to thousands of teams and companies using it.

1.1 Open Source

Conan is Free and Open Source, with a permissive MIT license. Check out the source code and issue tracking (for ques-
tions and support, reporting bugs and suggesting feature requests and improvements) at https://github.com/conan-io/
conan

1.2 Decentralized package manager

Conan is a decentralized package manager with a client-server architecture. This means that clients can fetch packages
from, as well as upload packages to, different servers (“remotes”), similar to the “git” push-pull model to/from git
remotes.

At a high level, the servers are just storing packages. They do not build nor create the packages. The packages are
created by the client, and if binaries are built from sources, that compilation is also done by the client application.

3

https://github.com/conan-io/conan
https://conan.io/downloads.html
https://conan.io/center
https://github.com/conan-io/conan
https://github.com/conan-io/conan

Conan Documentation, Release 2.1.0

The different applications in the image above are:

• The Conan client: this is a console/terminal command-line application, containing the heavy logic for package
creation and consumption. Conan client has a local cache for package storage, and so it allows you to fully create
and test packages offline. You can also work offline as long as no new packages are needed from remote servers.

• JFrog Artifactory Community Edition (CE) is the recommended Conan server to host your own packages pri-
vately under your control. It is a free community edition of JFrog Artifactory for Conan packages, including a
WebUI, multiple auth protocols (LDAP), Virtual and Remote repositories to create advanced topologies, a Rest
API, and generic repositories to host any artifact.

• The conan_server is a small server distributed together with the Conan client. It is a simple open-source imple-
mentation and provides basic functionality, but no WebUI or other advanced features.

• ConanCenter is a central public repository where the community contributes packages for popular open-source
libraries like Boost, Zlib, OpenSSL, Poco, etc.

1.3 Binary management

One of the most powerful features of Conan is that it can create and manage pre-compiled binaries for any possible
platform and configuration. By using pre-compiled binaries and avoiding repeated builds from source, it saves signifi-
cant time for developers and Continuous Integration servers, while also improving the reproducibility and traceability
of artifacts.

A package is defined by a “conanfile.py”. This is a file that defines the package’s dependencies, sources, how to build
the binaries from sources, etc. One package “conanfile.py” recipe can generate any arbitrary number of binaries, one
for each different platform and configuration: operating system, architecture, compiler, build type, etc. These binaries
can be created and uploaded to a server with the same commands in all platforms, having a single source of truth for
all packages and not requiring a different solution for every different operating system.

4 Chapter 1. Introduction

https://conan.io/downloads.html
https://conan.io/center

Conan Documentation, Release 2.1.0

Installation of packages from servers is also very efficient. Only the necessary binaries for the current platform and
configuration are downloaded, not all of them. If the compatible binary is not available, the package can be built from
sources in the client too.

1.4 All platforms, all build systems and compilers

Conan works on Windows, Linux (Ubuntu, Debian, RedHat, ArchLinux, Raspbian), OSX, FreeBSD, and SunOS, and,
as it is portable, it might work in any other platform that can run Python. It can target any existing platform: ranging
from bare metal to desktop, mobile, embedded, servers, and cross-building.

Conan works with any build system too. There are built-in integrations to support the most popular ones like CMake,
Visual Studio (MSBuild), Autotools and Makefiles, Meson, SCons, etc., but it is not a requirement to use any of them.
It is not even necessary that all packages use the same build system: each package can use their own build system, and
depend on other packages using different build systems. It is also possible to integrate with any build system, including
proprietary ones.

Likewise, Conan can manage any compiler and any version. There are default definitions for the most popular ones:
gcc, cl.exe, clang, apple-clang, intel, with different configurations of versions, runtimes, C++ standard library, etc. This
model is also extensible to any custom configuration.

1.4. All platforms, all build systems and compilers 5

Conan Documentation, Release 2.1.0

1.5 Stable

From Conan 2.0 and onwards, there is a commitment to stability, with the goal of not breaking user space while evolving
the tool and the platform. This means:

• Moving forward to following minor versions 2.1, 2.2, . . . , 2.X should never break existing recipes, packages or
command line flows

• If something is breaking, it will be considered a regression and reverted.

• Bug fixes will not be considered breaking, recipes and packages relying on the incorrect behavior of such bugs
will be considered already broken.

• Only documented features in https://docs.conan.io are considered part of the public interface of Conan. Private
implementation details, and everything not included in the documentation is subject to change.

• The compatibility is always considered forward. New APIs, tools, methods, helpers can be added in following
2.X versions. Recipes and packages created with these features will be backwards incompatible with earlier
Conan versions.

• Only the latest released patch (major.minor.patch) of every minor version is supported and stable.

There are some things that are not included in this commitment:

• Public repositories, like ConanCenter, assume the use of the latest version of the Conan client, and using an older
version may result in failure of packages and recipes created with a newer version of the client. It is recommended
to use your own private repository to store your own copy of the packages for production, or as a secondary
alternative, to use some locking mechanism to avoid possible disruption from packages in ConanCenter that are
updated and require latest Conan version.

• Configuration and automatic tools detection, like the detection of the default profile (conan profile detect)
can and will change at any time. Users are encouraged to define their configurations in their own profiles files
for repeatability. New versions of Conan might detect different default profiles.

• Builtin default implementation of extension points as plugins or hooks can also change with every release. Users
can provide their own ones for stability.

• Output of packages templates with conan new can update at any time to use latest features.

• The output streams stdout, stderr, i.e. the terminal output can change at any time. Do not parse the terminal
output for automation.

• Anything that is explicitly labeled as experimental or preview in the documentation, or in the Conan cli
output. Read the section below for a detailed definition of these labels.

• Anything that is labeled as deprecated in the documentation should not get new usages, as it will not get new
fixes and it will be removed in the next major version.

• Other tools and repositories outside of the Conan client

Conan needs Python>=3.6 to run. Conan will deprecate support for Python versions 1 year after those versions have
been declared End Of Life (EOL).

If you have any question regarding Conan updates, stability, or any clarification about this definition of stability, please
report in the documentation issue tracker: https://github.com/conan-io/docs.

6 Chapter 1. Introduction

https://docs.conan.io
https://github.com/conan-io/docs

Conan Documentation, Release 2.1.0

1.6 Community

Conan is being used in production by thousands of companies like TomTom, Audi, RTI, Continental, Plex, Electrolux
and Mercedes-Benz and many thousands of developers around the world.

But an essential part of Conan is that many of those users will contribute back, creating an amazing and helpful com-
munity:

• The https://github.com/conan-io/conan project has around 6.5K stars in Github and counts with contributions
from more than 300 different users (this is just the client tool).

• Many other users contribute recipes for ConanCenter via the https://github.com/conan-io/conan-center-index
repo, creating packages for popular Open Source libraries, contributing many thousands of Pull Requests per
year.

• More than two thousands Conan users hang around the CppLang Slack #conan channel, and help responding to
questions, discussing problems and approaches, making it one of the most active channels in the whole CppLang
slack.

• There is a Conan channel in #include<cpp> discord.

1.7 Navigating the documentation

This documentation has very different sections:

• The tutorial is an actual hands-on tutorial, with examples and real code, intended to be played sequentially from
beginning to end, running the exercises in your own computer. There is a “narrative” to this section and the
exercises might depend on some previous explanations and code - building on the previous example. This is the
recommended approach for learning Conan.

• The examples also contain hands-on, fully operational examples with code, aimed to explain some very specific
feature, tool or behavior. They do not have a conducting thread, they should be navigated by topic.

• The reference is the source of truth for the interfaces of every public command, class, method, helper, API and
configuration file that can be used. It is not designed to be read fully, but to check for individual items when
necessary.

• The knowledge base contains things like the FAQ, a very important section about general guidelines, good
practices and bad practices, videos from conference talks, etc.

Features in this documentation might be labeled as:

• experimental: This feature is released and can be used, but it is under active development and the interfaces,
APIs or behavior might change as a result of evolution, and this will not be considered breaking. If you are
interested in these features you are encouraged to try them and give feedback, because that is exactly what allows
to stabilize them.

• preview: When a feature is released in preview mode, this means it aims to be as final and stable as possible.
Users are encouraged to use them, and the maintainers team will try not to break them unless necessary. But if
necessary, they might change and break.

• deprecated: This feature should no longer be used, and it will be fully removed in next major release. Other
alternatives or approaches should be used instead of it, and if using it, migrating to the other alternatives should
be done as soon as possible. They will not be maintained or get fixes.

Everything else that is not labeled should be considered stable, and won’t be broken, unless something that is declared
a bugfix.

Have any questions? Please check out our FAQ section or .

1.6. Community 7

https://github.com/conan-io/conan
https://github.com/conan-io/conan-center-index
https://cppalliance.org/slack/
https://www.includecpp.org/discord/

Conan Documentation, Release 2.1.0

8 Chapter 1. Introduction

CHAPTER

TWO

WHAT’S NEW IN CONAN 2

Conan 2 comes with many exciting improvements based on the lessons learned in the last years with Conan 1.X. Also,
a lot of effort has been made to backport necessary things to Conan 1.X to make the upgrade easier: Recipes using
latest 1.X integrations will be compatible with Conan 2, and binaries for both versions will not collide and be able to
live in the same server repositories.

2.1 Conan 2 migration guide

If you are using Conan 1.X, please read the Conan 2 Migration guide , to start preparing your package recipes to 2.0 and
be aware of some changes while you still work in Conan 1.X. That guide summarizes the above mentioned backports
to make the upgrade easier.

2.2 New graph model

Conan 2 defines new requirement traits (headers, libs, build, run, test, package_id_mode, options, transitive_headers,
transitive_libs) and package types (static, shared, application, header-only) to better represent the relations that happen
with C and C++ binaries, like executables or shared libraries linking static libraries or shared libraries.

See also:
• https://www.youtube.com/watch?v=kKGglzm5ous

• https://github.com/conan-io/tribe/blob/main/design/026-requirements_traits.md

• https://github.com/conan-io/tribe/blob/main/design/027-package_types.md

2.3 New public Python API

A new modular Python API is made available, public and documented. This is a real API, with building blocks that
are already used to build the Conan built-in commands, but that will allow further extensions. There are subapis for
different functional groups, like api.list, api.search, api.remove, api.profile, api.graph, api.upload,
api.remotes, etc. that will allow to implement advanced user flows, functionality and automation.

See also:
• Python API reference

9

https://docs.conan.io/en/latest/conan_v2.html
https://www.youtube.com/watch?v=kKGglzm5ous
https://github.com/conan-io/tribe/blob/main/design/026-requirements_traits.md
https://github.com/conan-io/tribe/blob/main/design/027-package_types.md

Conan Documentation, Release 2.1.0

2.4 New build system integrations

Introduced in latest Conan 1.X, Conan 2 will use modern build system integrations like CMakeDeps and
CMakeToolchain that are fully transparent CMake integration (i.e. the consuming CMakeLists.txt doesn’t need
to be aware at all about Conan). These integrations can also achieve a better IDE integration, for example via CMakeP-
resets.json.

See also:
• Tools reference

2.5 New custom user commands

Conan 2 allows extending Conan with custom user commands, written in python that can be called as conan xxxx.
These commands can be shared and installed with conan config install, and have layers of commands and sub-
commands. The custom user commands use the new 2.0 public Python API to implement their functionality.

2.6 New CLI

Conan 2 has redesigned the CLI for better consistency, removing ambiguities, and improving the user experience.
The new CLI also sends all the information, warning, and error messages to stderr, while keeping the final result in
stdout, allowing multiple output formats like --format=html or --format=json and using redirects to create files
--format=json > myfile.json. The information provided by the CLI will be more structured and thorough so that
it can be used more easily for automation, especially in CI/CD systems.

See also:
• Commands reference

2.7 New deployers

Conan 2 implements “deployers”, which can be called in the command line as conan install
--deployer=mydeploy, typically to perform copy operations from the Conan cache to user folders. Such deploy-
ers can be built-in (“full_deploy” and “direct_deploy” are provided so far), or user-defined, which can be shared and
managed with conan config install. Deployers run before generators, and they can change the target folders. For
example, if the --deployer=full_deploy deployer runs before CMakeDeps, the files generated by CMakeDeps will
point to the local copy in the user folder done by the full_deploy deployer, and not to the Conan cache.

Deployers can be multi-configuration. Running conan install . --deployer=full_deploy repeatedly for dif-
ferent profiles, can achieve a fully self-contained project, including all the artifacts, binaries, and build files that is
completely independent of Conan and no longer require Conan at all to build.

10 Chapter 2. What’s new in Conan 2

Conan Documentation, Release 2.1.0

2.8 New package_id

Conan 2 defines a new, dynamic package_id that is a great improvement over the limitations of Conan 1.X. This
package_id will take into account the package types and types of requirements to implement a more meaningful
strategy, depending on the scenario. For example, it is well known that when an application myapp is linking a static
library mylib, any change in the binary of the static library mylib requires re-building the application myapp. So
Conan will default to a mode like full_mode that will generate a new myapp package_id, for every change in the
mylib recipe or binary. While a dependency between a static library mylib_a that is used by``mylib_b`` in general
does not imply that a change in mylib_b always needs a rebuild of mylib_a, and that relationship can default to a
minor_mode mode. In Conan 2, the one doing modifications to mylib_a can better express whether the consumer
mylib_b needs to rebuild or not, based on the version bump (patch version bump will not trigger a rebuild while a
minor version bump will trigger it)

Furthermore the default versioning scheme in Conan has been generalized to any number of digits and letters, as
opposed to the official “semver” that uses just 3 fields.

2.9 compatibility.py

Conan 2 features a new extension mechanism to define binary compatibility at a global level. A compatibility.py
file in the Conan cache will be used to define which fallbacks of binaries should be used in case there is some missing
binary for a given package. Conan will provide a default one to account for cppstd compatibility, and executables
compatibility, but this extension is fully configurable by the user (and can also be shared and managed with conan
config install)

2.10 New lockfiles

Lockfiles in Conan 2 have been greatly simplified and made way more flexible. Lockfiles are now modeled as lists of
sorted references, which allow one single lockfile being used for multiple configurations, merging lockfiles, applying
partially defined lockfiles, being strict or non-strict, adding user defined constraints to lockfiles, and much more.

See also:
• Tutorial introduction to lockfiles

• https://github.com/conan-io/tribe/blob/main/design/034-new_lockfiles.md

• Tutorial about versioning and lockfiles

2.11 New configuration and environment management

The new configuration system called [conf] in profiles and command line, and introduced experimentally in Conan
1.X, is now the major mechanism to configure and control Conan behavior. The idea is that the configuration system
is used to transmit information from Conan (a Conan profile) to Conan (A Conan recipe, or a Conan build system
integration like CMakeToolchain). This new configuration system can define strings, boolean, lists, being cleaner,
more structured and powerful than using environment variables. A better, more explicit environment management,
also introduced in Conan 1.X is now the way to pass information from Conan (profiles) to tools (like compilers, build
systems).

See also:
• Reference of enviroment tools

2.8. New package_id 11

https://github.com/conan-io/tribe/blob/main/design/034-new_lockfiles.md

Conan Documentation, Release 2.1.0

2.12 Multi-revision cache

The Conan cache has been completely redesigned to allow storing more than one revision at a time. It has also shortened
the paths, using hashes, removing the need to use short_paths in Windows. Note that the cache is still not concurrent,
so parallel jobs or tasks should use independent caches.

2.13 New extensions plugins

Several extension points, named “plugins” have been added, to provide advanced and typically orthogonal function-
ality to what the Conan recipes implement. These plugins can be shared, managed and installed via conan config
install

2.13.1 Profile checker

A new profile.py extension point is provided that can be used to perform operations on the profile after it has been
processed. A default implementation that checks that the given compiler version is capable of supporting the given
compiler cppstd is provided, but this is fully customizable by the user.

2.13.2 Command wrapper

A new cmd_wrapper.py extension provides a way to wrap any conanfile.py command (i.e., anything that runs
inside self.run() in a recipe), in a new command. This functionality can be useful for wrapping build commands in
build optimization tools as IncrediBuild or compile caches.

2.13.3 Package signing

A new sign.py extension has been added to implement signing and verifying of packages. As the awareness about
the importance of software supply chain security grows, it is becoming more important the capability of being able to
sign and verify software packages. This extension point will soon get a plugin implementation based on Sigstore.

2.14 Package immutability optimizations

The thorough use of revisions (already introduced in Conan 1.X as opt-in in https://docs.conan.io/en/latest/
versioning/revisions.html) in Conan 2, together with the declaration of artifacts immutability allows for improved
processes, downloading, installing and updated dependencies as well as uploading dependencies.

The revisions allow accurate traceability of artifacts, and thus allows better update flows. For example, it will be
easier to get different binaries for different configurations from different repositories, as long as they were created from
the same recipe revision.

The package transfers, uploads, downloads, will also be more efficient, based on revisions. As long as a given
revision exists on the server or in the cache, Conan will not transfer artifacts at all for that package.

12 Chapter 2. What’s new in Conan 2

https://docs.conan.io/en/latest/versioning/revisions.html
https://docs.conan.io/en/latest/versioning/revisions.html

Conan Documentation, Release 2.1.0

2.15 Package lists

Conan 2 allows bulk operations over several recipes and packages with teh “Package Lists” feature. This feature allows
to upload, download, remove and list several recipes and packages with one single command.

Package lists can also be created from a dependency graph resulting from a conan create or conan install com-
mand, so it is possible to upload to a server all packages that belong to a given dependency graph just chaining 2
commands.

See also:
• Read the example usages

• Package lists blog post

2.16 Metadata files

Conan 2 allows to store, upload, download, modify metadata files associated to recipes and packages. This feature can
be very useful to manage build logs, tests executable, test results, coverage data and many other different files needed
for traceability, compliance and business purposes.

See also:
• Metadata files blog post

2.17 Third party backup sources

When building packages for third parties with sources in the internet, those sources can be removed or changed. The
“backup sources” can automatically store a copy of those sources in your own server, so your builds are always fully
reproducible, no matter what happens to the original internet sources.

See also:
• the backup-sources blog post

2.15. Package lists 13

https://blog.conan.io/2023/06/28/Conan-bulk-package-operations.html
https://blog.conan.io/2023/10/24/Conan-launches-metadata-files.html
https://blog.conan.io/2023/10/03/backup-sources-feature.html

Conan Documentation, Release 2.1.0

14 Chapter 2. What’s new in Conan 2

CHAPTER

THREE

INSTALL

Conan can be installed in many Operating Systems. It has been extensively used and tested in Windows, Linux (different
distros), OSX, and is also actively used in FreeBSD and Solaris SunOS. There are also several additional operating
systems on which it has been reported to work.

There are different ways to install Conan:

1. The preferred and strongly recommended way to install Conan is from PyPI, the Python Package Index, using
the pip command.

2. Use a system installer, or create your own self-contained Conan executable, to not require Python in your system.

3. Running Conan from sources.

3.1 Install with pip (recommended)

To install latest Conan 2 version using pip, you need a Python >= 3.6 distribution installed on your machine. Modern
Python distros come with pip pre-installed. However, if necessary you can install pip by following the instructions in
pip docs.

Install Conan:

$ pip install conan

Important: Please READ carefully
• Make sure that your pip installation matches your Python (>= 3.6) version.

• In Linux, you may need sudo permissions to install Conan globally.

• We strongly recommend using virtualenvs (virtualenvwrapper works great) for everything related to Python.
(check https://virtualenvwrapper.readthedocs.io/en/stable/, or https://pypi.org/project/virtualenvwrapper-win/
in Windows) With Python 3, the built-in module venv can also be used instead (check https://docs.python.org/3/
library/venv.html). If not using a virtualenv it is possible that conan dependencies will conflict with previously
existing dependencies, especially if you are using Python for other purposes.

• In OSX, especially the latest versions that may have System Integrity Protection, pip may fail. Try using
virtualenvs, or install it to the Python user install directory with $ pip install --user conan.

• Some Linux distros, such as Linux Mint, require a restart (shell restart, or logout/system if not enough) after
installation, so Conan is found in the path.

15

https://pip.pypa.io/en/stable/installing/
https://virtualenvwrapper.readthedocs.io/en/stable/
https://pypi.org/project/virtualenvwrapper-win/
https://docs.python.org/3/library/venv.html
https://docs.python.org/3/library/venv.html

Conan Documentation, Release 2.1.0

3.1.1 Known installation issues with pip

When Conan is installed with pip install --user conan, a new directory is usually created for it. However, the
directory is not appended automatically to the PATH and the conan commands do not work. This can usually be solved
by restarting the session of the terminal or running the following command:

$ source ~/.profile

3.1.2 Update

If installed via pip, Conan version can be updated with:

$ pip install conan --upgrade # Might need sudo or --user

The upgrade shouldn’t affect the installed packages or cache information. If the cache becomes inconsistent somehow,
you may want to remove its content by deleting it (<userhome>/.conan2).

3.2 Install with pipx

In certain scenarios, attempting to install with pip may yield the following error:

error: externally-managed-environment

x This environment is externally managed
To install Python packages system-wide, try apt install
python3-xyz, where xyz is the package you are trying to
install.

...

This is because some modern Linux distributions have started marking their Python installations as “externally man-
aged”, which means that the system’s package manager is responsible for managing Python packages. Installing pack-
ages globally or even in the user space can interfere with system operations and potentially break system tools (check
PEP-668 for more detailed information).

For those cases, it’s recommended to use pipx to install Conan. pipx creates a virtual environment for each Python
application, ensuring that dependencies do not conflict. The advantage is that it isolates Conan and its dependencies
from the system Python and avoids potential conflicts with system packages while providing a clean environment for
Conan to run.

To install Conan with pipx:

1. Ensure pipx is installed on your system. If it isn’t, check the installation guidelines in the pipx documentation.
For Debian-based distributions, you can install pipx using the system package manager:

$ apt-get install pipx
$ pipx ensurepath

(Note: The package name might vary depending on the distribution)

2. Restart your terminal and then install Conan using pipx:

$ pipx install conan

3. Now you can use Conan as you typically would.

16 Chapter 3. Install

https://peps.python.org/pep-0668/
https://pypa.github.io/pipx/installation/

Conan Documentation, Release 2.1.0

3.3 Use a system installer or create a self-contained executable

There will be a number of existing installers in Conan downloads for OSX Brew, Debian, Windows, Linux Arch, that
will not require Python first.

We also distribute Conan binaries for Windows, Linux, and macOS in a compressed file that you can uncompress in
your system and run directly.

Warning: If you are using macOS, please be aware of the Gatekeeper feature that may quarantine the compressed
binaries if downloaded directly using a web browser. To avoid this issue, download them using a tool such as curl,
wget, or similar.

If there is no installer for your platform, you can create your own Conan executable, with the pyinstaller.py utility
in the repo. This process is able to create a self-contained Conan executable that contains all it needs, including the
Python interpreter, so it wouldn’t be necessary to have Python installed in the system.

You can do it with:

$ git clone https://github.com/conan-io/conan conan_src
$ cd conan_src
$ git checkout develop2 # or to the specific tag you want to
$ pip install -e .
$ python pyinstaller.py

It is important to install the dependencies and the project first with pip install -e . which configures the project
as “editable”, that is, to run from the current source folder. After creating the executable, it can be uninstalled with pip.

This has to run in the same platform that will be using the executable, pyinstaller does not cross-build. The resulting
executable can be just copied and put in the system PATH of the running machine to be able to run Conan.

3.4 Install from source

You can run Conan directly from source code. First, you need to install Python and pip.

Clone (or download and unzip) the git repository and install it.

Conan 2 is still in beta stage, so you must check the develop2 branch of the repository:

clone folder name matters, to avoid imports issues
$ git clone https://github.com/conan-io/conan.git conan_src
$ cd conan_src
$ git fetch --all
$ git checkout -b develop2 origin/develop2
$ python -m pip install -e .

And test your conan installation:

$ conan

You should see the Conan commands help.

3.3. Use a system installer or create a self-contained executable 17

https://conan.io/downloads
https://github.com/conan-io/conan/releases/latest

Conan Documentation, Release 2.1.0

18 Chapter 3. Install

CHAPTER

FOUR

TUTORIAL

The purpose of this section is to guide you through the most important Conan features with practical examples. From
using libraries already packaged by Conan, to how to package your libraries and store them in a remote server alongside
all the precompiled binaries.

4.1 Consuming packages

This section shows how to build your projects using Conan to manage your dependencies. We will begin with a basic
example of a C project that uses CMake and depends on the zlib library. This project will use a conanfile.txt file to
declare its dependencies.

We will also cover how you can not only use ‘regular’ libraries with Conan but also manage tools you may need to use
while building: like CMake, msys2, MinGW, etc.

Then, we will explain different Conan concepts like settings and options and how you can use them to build your
projects for different configurations like Debug, Release, with static or shared libraries, etc.

Also, we will explain how to transition from the conanfile.txt file we used in the first example to a more powerful
conanfile.py.

After that, we will introduce the concept of Conan build and host profiles and explain how you can use them to cross-
compile your application to different platforms.

Then, in the “Introduction to versioning” we will learn about using different versions, defining requirements with
version ranges, the concept of revisions and a brief introduction to lockfiles to achieve reproducibility of the dependency
graph.

4.1.1 Build a simple CMake project using Conan

Let’s get started with an example: We are going to create a string compressor application that uses one of the most
popular C++ libraries: Zlib.

We’ll use CMake as build system in this case but keep in mind that Conan works with any build system and is not
limited to using CMake. You can check more examples with other build systems in the Read More section.

Please, first clone the sources to recreate this project, you can find them in the examples2 repository in GitHub:

$ git clone https://github.com/conan-io/examples2.git
$ cd examples2/tutorial/consuming_packages/simple_cmake_project

We start from a very simple C language project with this structure:

19

https://zlib.net/
https://github.com/conan-io/examples2

Conan Documentation, Release 2.1.0

.
CMakeLists.txt
src

main.c

This project contains a basic CMakeLists.txt including the zlib dependency and the source code for the string compres-
sor program in main.c.

Let’s have a look at the main.c file:

Listing 1: main.c
#include <stdlib.h>
#include <stdio.h>
#include <string.h>

#include <zlib.h>

int main(void) {
char buffer_in [256] = {"Conan is a MIT-licensed, Open Source package manager for C␣

→˓and C++ development "
"for C and C++ development, allowing development teams to␣

→˓easily and efficiently "
"manage their packages and dependencies across platforms and␣

→˓build systems."};
char buffer_out [256] = {0};

z_stream defstream;
defstream.zalloc = Z_NULL;
defstream.zfree = Z_NULL;
defstream.opaque = Z_NULL;
defstream.avail_in = (uInt) strlen(buffer_in);
defstream.next_in = (Bytef *) buffer_in;
defstream.avail_out = (uInt) sizeof(buffer_out);
defstream.next_out = (Bytef *) buffer_out;

deflateInit(&defstream, Z_BEST_COMPRESSION);
deflate(&defstream, Z_FINISH);
deflateEnd(&defstream);

printf("Uncompressed size is: %lu\n", strlen(buffer_in));
printf("Compressed size is: %lu\n", strlen(buffer_out));

printf("ZLIB VERSION: %s\n", zlibVersion());

return EXIT_SUCCESS;
}

Also, the contents of CMakeLists.txt are:

Listing 2: CMakeLists.txt
cmake_minimum_required(VERSION 3.15)
project(compressor C)

(continues on next page)

20 Chapter 4. Tutorial

Conan Documentation, Release 2.1.0

(continued from previous page)

find_package(ZLIB REQUIRED)

add_executable(${PROJECT_NAME} src/main.c)
target_link_libraries(${PROJECT_NAME} ZLIB::ZLIB)

Our application relies on the Zlib library. Conan, by default, tries to install libraries from a remote server called
ConanCenter. You can search there for libraries and also check the available versions. In our case, after checking the
available versions for Zlib we choose to use one of the latest versions: zlib/1.2.11.

The easiest way to install the Zlib library and find it from our project with Conan is using a conanfile.txt file. Let’s
create one with the following content:

Listing 3: conanfile.txt
[requires]
zlib/1.2.11

[generators]
CMakeDeps
CMakeToolchain

As you can see we added two sections to this file with a syntax similar to an INI file.

• [requires] section is where we declare the libraries we want to use in the project, in this case, zlib/1.2.11.

• [generators] section tells Conan to generate the files that the compilers or build systems will use to find the
dependencies and build the project. In this case, as our project is based in CMake, we will use CMakeDeps to
generate information about where the Zlib library files are installed and CMakeToolchain to pass build informa-
tion to CMake using a CMake toolchain file.

Besides the conanfile.txt, we need a Conan profile to build our project. Conan profiles allow users to define a con-
figuration set for things like the compiler, build configuration, architecture, shared or static libraries, etc. Conan, by
default, will not try to detect a profile automatically, so we need to create one. To let Conan try to guess the profile,
based on the current operating system and installed tools, please run:

conan profile detect --force

This will detect the operating system, build architecture and compiler settings based on the environment. It will also
set the build configuration as Release by default. The generated profile will be stored in the Conan home folder with
name default and will be used by Conan in all commands by default unless another profile is specified via the command
line. An example of the output of this command for MacOS would be:

$ conan profile detect --force
Found apple-clang 14.0
apple-clang>=13, using the major as version
Detected profile:
[settings]
arch=x86_64
build_type=Release
compiler=apple-clang
compiler.cppstd=gnu17
compiler.libcxx=libc++
compiler.version=14
os=Macos

4.1. Consuming packages 21

https://conan.io/center/
https://conan.io/center/zlib

Conan Documentation, Release 2.1.0

Note: A note about the detected C++ standard by Conan
Conan will always set the default C++ standard as the one that the detected compiler version uses by default, except
for the case of macOS using apple-clang. In this case, for apple-clang>=11, it sets compiler.cppstd=gnu17. If you
want to use a different C++ standard, you can edit the default profile file directly. First, get the location of the default
profile using:

$ conan profile path default
/Users/user/.conan2/profiles/default

Then open and edit the file and set compiler.cppstd to the C++ standard you want to use.

Note: Using a compiler other than the auto-detected one
If you want to change a Conan profile to use a compiler different from the default one, you need to change the compiler
setting and also tell Conan explicitly where to find it using the tools.build:compiler_executables configuration.

We will use Conan to install Zlib and generate the files that CMake needs to find this library and build our project. We
will generate those files in the folder build. To do that, run:

$ conan install . --output-folder=build --build=missing

You will get something similar to this as the output of that command:

$ conan install . --output-folder=build --build=missing
...
-------- Computing dependency graph ----------
zlib/1.2.11: Not found in local cache, looking in remotes...
zlib/1.2.11: Checking remote: conancenter
zlib/1.2.11: Trying with 'conancenter'...
Downloading conanmanifest.txt
Downloading conanfile.py
Downloading conan_export.tgz
Decompressing conan_export.tgz
zlib/1.2.11: Downloaded recipe revision f1fadf0d3b196dc0332750354ad8ab7b
Graph root

conanfile.txt: /home/conan/examples2/tutorial/consuming_packages/simple_cmake_
→˓project/conanfile.txt
Requirements

zlib/1.2.11#f1fadf0d3b196dc0332750354ad8ab7b - Downloaded (conancenter)

-------- Computing necessary packages ----------
Requirements

zlib/1.2.11#f1fadf0d3b196dc0332750354ad8ab7b:cdc9a35e010a17fc90bb845108cf86cfcbce64bf
→˓#dd7bf2a1ab4eb5d1943598c09b616121 - Download (conancenter)

-------- Installing packages ----------

Installing (downloading, building) binaries...
zlib/1.2.11: Retrieving package cdc9a35e010a17fc90bb845108cf86cfcbce64bf from remote
→˓'conancenter'
Downloading conanmanifest.txt

(continues on next page)

22 Chapter 4. Tutorial

Conan Documentation, Release 2.1.0

(continued from previous page)

Downloading conaninfo.txt
Downloading conan_package.tgz
Decompressing conan_package.tgz
zlib/1.2.11: Package installed cdc9a35e010a17fc90bb845108cf86cfcbce64bf
zlib/1.2.11: Downloaded package revision dd7bf2a1ab4eb5d1943598c09b616121

-------- Finalizing install (deploy, generators) ----------
conanfile.txt: Generator 'CMakeToolchain' calling 'generate()'
conanfile.txt: Generator 'CMakeDeps' calling 'generate()'
conanfile.txt: Aggregating env generators

As you can see in the output, there are a couple of things that happened:

• Conan installed the Zlib library from the remote server, which should be the Conan Center server by default if
the library is available. This server stores both the Conan recipes, which are the files that define how libraries
must be built, and the binaries that can be reused so we don’t have to build from sources every time.

• Conan generated several files under the build folder. Those files were generated by both the CMakeToolchain
and CMakeDeps generators we set in the conanfile.txt. CMakeDeps generates files so that CMake finds the Zlib
library we have just downloaded. On the other side, CMakeToolchain generates a toolchain file for CMake so
that we can transparently build our project with CMake using the same settings that we detected for our default
profile.

Now we are ready to build and run our compressor app:

Listing 4: Windows

$ cd build
assuming Visual Studio 15 2017 is your VS version and that it matches your default␣
→˓profile
$ cmake .. -G "Visual Studio 15 2017" -DCMAKE_TOOLCHAIN_FILE="conan_toolchain.cmake"
$ cmake --build . --config Release
...
[100%] Built target compressor
$ Release\compressor.exe
Uncompressed size is: 233
Compressed size is: 147
ZLIB VERSION: 1.2.11

Listing 5: Linux, macOS

$ cd build
$ cmake .. -DCMAKE_TOOLCHAIN_FILE=conan_toolchain.cmake -DCMAKE_BUILD_TYPE=Release
$ cmake --build .
...
[100%] Built target compressor
$./compressor
Uncompressed size is: 233
Compressed size is: 147
ZLIB VERSION: 1.2.11

See also:
• Getting started with Autotools

4.1. Consuming packages 23

Conan Documentation, Release 2.1.0

• Getting started with Meson

• Getting started with Bazel

4.1.2 Using build tools as Conan packages

In the previous example, we built our CMake project and used Conan to install and locate the Zlib library. We used
the CMake already installed in our system to build our compressor binary. However, what happens if you want to build
your project with a specific CMake version, different from the one already installed system-wide? Conan can also
help you install these tools and use them to compile consumer projects or other Conan packages. In this case, you can
declare this dependency in Conan using a type of requirement named tool_requires. Let’s see an example of how
to add a tool_requires to our project and use a different CMake version to build it.

Please, first clone the sources to recreate this project. You can find them in the examples2 repository in GitHub:

$ git clone https://github.com/conan-io/examples2.git
$ cd examples2/tutorial/consuming_packages/tool_requires

The structure of the project is the same as the one of the previous example:

.
conanfile.txt
CMakeLists.txt
src

main.c

The main difference is the addition of the [tool_requires] section in the conanfile.txt file. In this section, we declare
that we want to build our application using CMake v3.22.6.

Listing 6: conanfile.txt
[requires]
zlib/1.2.11

[tool_requires]
cmake/3.22.6

[generators]
CMakeDeps
CMakeToolchain

Important: Please note that this conanfile.txt will install zlib/1.2.11 and cmake/3.22.6 separately. However, if Conan
does not find a binary for Zlib in Conan Center and it needs to be built from sources, a CMake installation must already
be present in your system, because the cmake/3.22.6 declared in your conanfile.txt only applies to your current
project, not all dependencies. If you want to use that cmake/3.22.6 to also build Zlib, when installing if necessary, you
may add the [tool_requires] section to the profile you are using. Please check the profile doc for more information.

We also added a message to the CMakeLists.txt to output the CMake version:

Listing 7: CMakeLists.txt
cmake_minimum_required(VERSION 3.15)
project(compressor C)

(continues on next page)

24 Chapter 4. Tutorial

https://github.com/conan-io/examples2

Conan Documentation, Release 2.1.0

(continued from previous page)

find_package(ZLIB REQUIRED)

message("Building with CMake version: ${CMAKE_VERSION}")

add_executable(${PROJECT_NAME} src/main.c)
target_link_libraries(${PROJECT_NAME} ZLIB::ZLIB)

Now, as in the previous example, we will use Conan to install Zlib and CMake 3.22.6 and generate the files to find
both of them. We will generate those files the folder build. To do that, just run:

$ conan install . --output-folder=build --build=missing

Note: Powershell users need to add --conf=tools.env.virtualenv:powershell=True to the previous com-
mand to generate .ps1 files instead of .bat files. To avoid the need to add this line every time, we recommend
configuring it in the [conf] section of your profile. For detailed information, please refer to the profiles section.

You can check the output:

-------- Computing dependency graph ----------
cmake/3.22.6: Not found in local cache, looking in remotes...
cmake/3.22.6: Checking remote: conancenter
cmake/3.22.6: Trying with 'conancenter'...
Downloading conanmanifest.txt
Downloading conanfile.py
cmake/3.22.6: Downloaded recipe revision 3e3d8f3a848b2a60afafbe7a0955085a
Graph root

conanfile.txt: /Users/user/Documents/developer/conan/examples2/tutorial/consuming_
→˓packages/tool_requires/conanfile.txt
Requirements

zlib/1.2.11#f1fadf0d3b196dc0332750354ad8ab7b - Cache
Build requirements

cmake/3.22.6#3e3d8f3a848b2a60afafbe7a0955085a - Downloaded (conancenter)

-------- Computing necessary packages ----------
Requirements

zlib/1.2.11#f1fadf0d3b196dc0332750354ad8ab7b:2a823fda5c9d8b4f682cb27c30caf4124c5726c8
→˓#48bc7191ec1ee467f1e951033d7d41b2 - Cache
Build requirements

cmake/3.22.6
→˓#3e3d8f3a848b2a60afafbe7a0955085a:f2f48d9745706caf77ea883a5855538256e7f2d4
→˓#6c519070f013da19afd56b52c465b596 - Download (conancenter)

-------- Installing packages ----------

Installing (downloading, building) binaries...
cmake/3.22.6: Retrieving package f2f48d9745706caf77ea883a5855538256e7f2d4 from remote
→˓'conancenter'
Downloading conanmanifest.txt
Downloading conaninfo.txt
Downloading conan_package.tgz

(continues on next page)

4.1. Consuming packages 25

Conan Documentation, Release 2.1.0

(continued from previous page)

Decompressing conan_package.tgz
cmake/3.22.6: Package installed f2f48d9745706caf77ea883a5855538256e7f2d4
cmake/3.22.6: Downloaded package revision 6c519070f013da19afd56b52c465b596
zlib/1.2.11: Already installed!

-------- Finalizing install (deploy, generators) ----------
conanfile.txt: Generator 'CMakeToolchain' calling 'generate()'
conanfile.txt: Generator 'CMakeDeps' calling 'generate()'
conanfile.txt: Aggregating env generators

Now, if you check the folder you will see that Conan generated a new file called conanbuild.sh/bat. This is the result
of automatically invoking a VirtualBuildEnv generator when we declared the tool_requires in the conanfile.txt.
This file sets some environment variables like a new PATH that we can use to inject to our environment the location of
CMake v3.22.6.

Activate the virtual environment, and run cmake --version to check that you have installed the new CMake version
in the path.

Listing 8: Windows

$ cd build
$ conanbuild.bat
conanbuild.ps1 if using Powershell

Listing 9: Linux, macOS

$ cd build
$ source conanbuild.sh
Capturing current environment in deactivate_conanbuildenv-release-x86_64.sh
Configuring environment variables

Run cmake and check the version:

$ cmake --version
cmake version 3.22.6
...

As you can see, after activating the environment, the CMake v3.22.6 binary folder was added to the path and is the
currently active version now. Now you can build your project as you previously did, but this time Conan will use CMake
3.22.6 to build it:

Listing 10: Windows

assuming Visual Studio 15 2017 is your VS version and that it matches your default␣
→˓profile
$ cmake .. -G "Visual Studio 15 2017" -DCMAKE_TOOLCHAIN_FILE=conan_toolchain.cmake
$ cmake --build . --config Release
...
Building with CMake version: 3.22.6
...
[100%] Built target compressor
$ Release\compressor.exe
Uncompressed size is: 233

(continues on next page)

26 Chapter 4. Tutorial

Conan Documentation, Release 2.1.0

(continued from previous page)

Compressed size is: 147
ZLIB VERSION: 1.2.11

Listing 11: Linux, macOS

$ cmake .. -DCMAKE_TOOLCHAIN_FILE=conan_toolchain.cmake -DCMAKE_BUILD_TYPE=Release
$ cmake --build .
...
Building with CMake version: 3.22.6
...
[100%] Built target compressor
$./compressor
Uncompressed size is: 233
Compressed size is: 147
ZLIB VERSION: 1.2.11

Note that when we activated the environment, a new file named deactivate_conanbuild.sh/bat was created in
the same folder. If you source this file you can restore the environment as it was before.

Listing 12: Windows

$ deactivate_conanbuild.bat

Listing 13: Linux, macOS

$ source deactivate_conanbuild.sh
Restoring environment

Run cmake and check the version, it will be the version that was installed previous to the environment activation:

$ cmake --version
cmake version 3.22.0
...

Note: Best practice
tool_requires and tool packages are intended for executable applications, like cmake or ninja. Do not use
tool_requires to depend on library or library-like dependencies.

See also:
• Using [system_tools] in your profiles.

• Creating recipes for tool_requires: packaging build tools.

• Using the same requirement as a requires and as a tool_requires

• Using MinGW as tool_requires

• Using tool_requires in profiles

• Using conf to set a toolchain from a tool requires

4.1. Consuming packages 27

Conan Documentation, Release 2.1.0

4.1.3 Building for multiple configurations: Release, Debug, Static and Shared

Please, first clone the sources to recreate this project. You can find them in the examples2 repository in GitHub:

$ git clone https://github.com/conan-io/examples2.git
$ cd examples2/tutorial/consuming_packages/different_configurations

So far, we built a simple CMake project that depended on the zlib library and learned about tool_requires, a special
type of requirements for build-tools like CMake. In both cases, we did not specify anywhere that we wanted to build
the application in Release or Debug mode, or if we wanted to link against static or shared libraries. That is because
Conan, if not instructed otherwise, will use a default configuration declared in the ‘default profile’. This default profile
was created in the first example when we run the conan profile detect command. Conan stores this file in the
/profiles folder, located in the Conan user home. You can check the contents of your default profile by running the
conan config home command to get the location of the Conan user home and then showing the contents of the
default profile in the /profiles folder:

$ conan config home
Current Conan home: /Users/tutorial_user/.conan2

output the file contents
$ cat /Users/tutorial_user/.conan2/profiles/default
[settings]
os=Macos
arch=x86_64
compiler=apple-clang
compiler.version=14.0
compiler.libcxx=libc++
compiler.cppstd=gnu11
build_type=Release
[options]
[tool_requires]
[env]

The default profile can also be checked with the command "conan profile show"

As you can see, the profile has different sections. The [settings] section is the one that has information about things
like the operating system, architecture, compiler, and build configuration.

When you call a Conan command setting the --profile argument, Conan will take all the information from the profile
and apply it to the packages you want to build or install. If you don’t specify that argument it’s equivalent to call it with
--profile=default. These two commands will behave the same:

$ conan install . --build=missing
$ conan install . --build=missing --profile=default

You can store different profiles and use them to build for different settings. For example, to use a build_type=Debug,
or adding a tool_requires to all the packages you build with that profile. We will create a debug profile to try
building with different configurations:

Listing 14: <conan home>/profiles/debug

[settings]
os=Macos
arch=x86_64
compiler=apple-clang

(continues on next page)

28 Chapter 4. Tutorial

https://github.com/conan-io/examples2

Conan Documentation, Release 2.1.0

(continued from previous page)

compiler.version=14.0
compiler.libcxx=libc++
compiler.cppstd=gnu11
build_type=Debug

Modifying settings: use Debug configuration for the application and its dependencies

Using profiles is not the only way to set the configuration you want to use. You can also override the profile settings
in the Conan command using the --settings argument. For example, you can build the project from the previous
examples in Debug configuration instead of Release.

Before building, please check that we modified the source code from the previous example to show the build configu-
ration the sources were built with:

#include <stdlib.h>
...

int main(void) {
...
#ifdef NDEBUG
printf("Release configuration!\n");
#else
printf("Debug configuration!\n");
#endif

return EXIT_SUCCESS;
}

Now let’s build our project for Debug configuration:

$ conan install . --output-folder=build --build=missing --settings=build_type=Debug

As we explained above, this is the equivalent of having debug profile and running these command using the
--profile=debug argument instead of the --settings=build_type=Debug argument.

This conan install command will check if we already have the required libraries in the local cache (Zlib) for Debug
configuration and obtain them if not. It will also set the build configuration in the conan_toolchain.cmake toolchain
that the CMakeToolchain generator creates so that when we build the application it’s built in Debug configuration. Now
build your project as you did in the previous examples and check in the output how it was built in Debug configuration:

Listing 15: Windows

assuming Visual Studio 15 2017 is your VS version and that it matches your default␣
→˓profile
$ cd build
$ cmake .. -G "Visual Studio 15 2017" -DCMAKE_TOOLCHAIN_FILE=conan_toolchain.cmake
$ cmake --build . --config Debug
$ Debug\compressor.exe
Uncompressed size is: 233
Compressed size is: 147
ZLIB VERSION: 1.2.11
Debug configuration!

4.1. Consuming packages 29

Conan Documentation, Release 2.1.0

Listing 16: Linux, macOS

$ cd build
$ cmake .. -DCMAKE_TOOLCHAIN_FILE=conan_toolchain.cmake -DCMAKE_BUILD_TYPE=Debug
$ cmake --build .
$./compressor
Uncompressed size is: 233
Compressed size is: 147
ZLIB VERSION: 1.2.11
Debug configuration!

Modifying options: linking the application dependencies as shared libraries

So far, we have been linking Zlib statically in our application. That’s because in the Zlib’s Conan package there’s an
attribute set to build in that mode by default. We can change from static to shared linking by setting the shared option
to True using the --options argument. To do so, please run:

$ conan install . --output-folder=build --build=missing --options=zlib/1.2.11:shared=True

Doing this, Conan will install the Zlib shared libraries, generate the files to build with them and, also the necessary
files to locate those dynamic libraries when running the application. Let’s build the application again after configuring
it to link Zlib as a shared library:

Listing 17: Windows

$ cd build
assuming Visual Studio 15 2017 is your VS version and that it matches your default␣
→˓profile
$ cmake .. -G "Visual Studio 15 2017" -DCMAKE_TOOLCHAIN_FILE=conan_toolchain.cmake
$ cmake --build . --config Release
...
[100%] Built target compressor

Listing 18: Linux, Macos

$ cd build
$ cmake .. -DCMAKE_TOOLCHAIN_FILE=conan_toolchain.cmake -DCMAKE_BUILD_TYPE=Release
$ cmake --build .
...
[100%] Built target compressor

Now, if you try to run the compiled executable you will see an error because the executable can’t find the shared libraries
for Zlib that we just installed.

Listing 19: Windows

$ Release\compressor.exe
(on a pop-up window) The code execution cannot proceed because zlib1.dll was not found.␣
→˓Reinstalling the program may fix this problem.
This error depends on the console being used and may not always pop up.
It could run correctly if the console gets the zlib dll from a different path.

30 Chapter 4. Tutorial

Conan Documentation, Release 2.1.0

Listing 20: Linux

$./compressor
./compressor: error while loading shared libraries: libz.so.1: cannot open shared object␣
→˓file: No such file or directory

Listing 21: Macos

$./compressor
./compressor: dyld[41259]: Library not loaded: @rpath/libz.1.dylib

This is because shared libraries (.dll in windows, .dylib in OSX and .so in Linux), are loaded at runtime. That means
that the application executable needs to know where are the required shared libraries when it runs. On Windows, the
dynamic linker will search in the same directory then in the PATH directories. On OSX, it will search in the directories
declared in DYLD_LIBRARY_PATH as on Linux will use the LD_LIBRARY_PATH.

Conan provides a mechanism to define those variables and make it possible, for executables, to find and load these
shared libraries. This mechanism is the VirtualRunEnv generator. If you check the output folder you will see that Co-
nan generated a new file called conanrun.sh/bat. This is the result of automatically invoking that VirtualRunEnv
generator when we activated the shared option when doing the conan install. This generated script will set the
PATH, LD_LIBRARY_PATH, DYLD_LIBRARY_PATH and DYLD_FRAMEWORK_PATH environment vari-
ables so that executables can find the shared libraries.

Activate the virtual environment, and run the executables again:

Listing 22: Windows

$ conanrun.bat
$ Release\compressor.exe
Uncompressed size is: 233
Compressed size is: 147
...

Listing 23: Linux, macOS

$ source conanrun.sh
$./compressor
Uncompressed size is: 233
Compressed size is: 147
...

Just as in the previous example with the VirtualBuildEnv generator, when we run the conanrun.sh/bat script a
deactivation script called deactivate_conanrun.sh/bat is created to restore the environment. Source or run it to
do so:

Listing 24: Windows

$ deactivate_conanrun.bat

4.1. Consuming packages 31

Conan Documentation, Release 2.1.0

Listing 25: Linux, macOS

$ source deactivate_conanrun.sh

Difference between settings and options

You may have noticed that for changing between Debug and Release configuration we used a Conan setting, but when
we set shared mode for our executable we used a Conan option. Please, note the difference between settings and
options:

• settings are typically a project-wide configuration defined by the client machine. Things like the operating
system, compiler or build configuration that will be common to several Conan packages and would not make
sense to define one default value for only one of them. For example, it doesn’t make sense for a Conan package
to declare “Visual Studio” as a default compiler because that is something defined by the end consumer, and
unlikely to make sense if they are working in Linux.

• options are intended for package-specific configuration that can be set to a default value in the recipe. For
example, one package can define that its default linkage is static, and this is the linkage that should be used if
consumers don’t specify otherwise.

Introducing the concept of Package ID

When consuming packages like Zlib with different settings and options, you might wonder how Conan determines
which binary to retrieve from the remote. The answer lies in the concept of the package_id.

The package_id is an identifier that Conan uses to determine the binary compatibility of packages. It is computed based
on several factors, including the package’s settings, options, and dependencies. When you modify any of these factors,
Conan computes a new package_id to reference the corresponding binary.

Here’s a breakdown of the process:

1. Determine Settings and Options: Conan first retrieves the user’s input settings and options. These can come
from the command line or profiles like –settings=build_type=Debug or –profile=debug.

2. Compute the Package ID: With the current values for settings, options, and dependencies, Conan computes a
hash. This hash serves as the package_id, representing the binary package’s unique identity.

3. Fetch the Binary: Conan then checks its cache or the specified remote for a binary package with the computed
package_id. If it finds a match, it retrieves that binary. If not, Conan can build the package from source or
indicate that the binary is missing.

In the context of our tutorial, when we consumed Zlib with different settings and options, Conan used the package_id
to ensure that it fetched the correct binary that matched our specified configuration.

See also:
• VirtualRunEnv reference

• Cross-compiling using –profile:build and –profile:host

• Conan packages binary compatibility: the package ID

• Installing configurations with conan config install

• VS Multi-config

• How settings and options influence the package id

• Using patterns for settings and options

32 Chapter 4. Tutorial

Conan Documentation, Release 2.1.0

4.1.4 Understanding the flexibility of using conanfile.py vs conanfile.txt

In the previous examples, we declared our dependencies (Zlib and CMake) in a conanfile.txt file. Let’s have a look at
that file:

Listing 26: conanfile.txt
[requires]
zlib/1.2.11

[tool_requires]
cmake/3.22.6

[generators]
CMakeDeps
CMakeToolchain

Using a conanfile.txt to build your projects using Conan it’s enough for simple cases, but if you need more flexibility you
should use a conanfile.py file where you can use Python code to make things such as adding requirements dynamically,
changing options depending on other options or setting options for your requirements. Let’s see an example on how to
migrate to a conanfile.py and use some of those features.

Please, first clone the sources to recreate this project. You can find them in the examples2 repository in GitHub:

$ git clone https://github.com/conan-io/examples2.git
$ cd examples2/tutorial/consuming_packages/conanfile_py

Check the contents of the folder and note that the contents are the same that in the previous examples but with a
conanfile.py instead of a conanfile.txt.

.
CMakeLists.txt
conanfile.py
src

main.c

Remember that in the previous examples the conanfile.txt had this information:

Listing 27: conanfile.txt
[requires]
zlib/1.2.11

[tool_requires]
cmake/3.22.6

[generators]
CMakeDeps
CMakeToolchain

We will translate that same information to a conanfile.py. This file is what is typically called a “Conan recipe”. It
can be used for consuming packages, like in this case, and also to create packages. For our current case, it will define
our requirements (both libraries and build tools) and logic to modify options and set how we want to consume those
packages. In the case of using this file to create packages, it can define (among other things) how to download the
package’s source code, how to build the binaries from those sources, how to package the binaries, and information for

4.1. Consuming packages 33

https://github.com/conan-io/examples2

Conan Documentation, Release 2.1.0

future consumers on how to consume the package. We will explain how to use Conan recipes to create packages in the
Creating Packages section later.

The equivalent of the conanfile.txt in form of Conan recipe could look like this:

Listing 28: conanfile.py
from conan import ConanFile

class CompressorRecipe(ConanFile):
settings = "os", "compiler", "build_type", "arch"
generators = "CMakeToolchain", "CMakeDeps"

def requirements(self):
self.requires("zlib/1.2.11")

def build_requirements(self):
self.tool_requires("cmake/3.22.6")

To create the Conan recipe we declared a new class that inherits from the ConanFile class. This class has different
class attributes and methods:

• settings this class attribute defines the project-wide variables, like the compiler, its version, or the OS itself that
may change when we build our project. This is related to how Conan manages binary compatibility as these
values will affect the value of the package ID for Conan packages. We will explain how Conan uses this value
to manage binary compatibility later.

• generators this class attribute specifies which Conan generators will be run when we call the conan install
command. In this case, we added CMakeToolchain and CMakeDeps as in the conanfile.txt.

• requirements() in this method we use the self.requires() method to declare the zlib/1.2.11 dependency.

• build_requirements() in this method we use the self.tool_requires() method to declare the cmake/3.22.6
dependency.

Note: It’s not strictly necessary to add the dependencies to the tools in build_requirements(), as in theory every-
thing within this method could be done in the requirements()method. However, build_requirements() provides
a dedicated place to define tool_requires and test_requires, which helps in keeping the structure organized and
clear. For more information, please check the requirements() and build_requirements() docs.

You can check that running the same commands as in the previous examples will lead to the same results as before.

Listing 29: Windows

$ conan install . --output-folder=build --build=missing
$ cd build
$ conanbuild.bat
assuming Visual Studio 15 2017 is your VS version and that it matches your default␣
→˓profile
$ cmake .. -G "Visual Studio 15 2017" -DCMAKE_TOOLCHAIN_FILE=conan_toolchain.cmake
$ cmake --build . --config Release
...
Building with CMake version: 3.22.6
...

(continues on next page)

34 Chapter 4. Tutorial

Conan Documentation, Release 2.1.0

(continued from previous page)

[100%] Built target compressor

$ Release\compressor.exe
Uncompressed size is: 233
Compressed size is: 147
ZLIB VERSION: 1.2.11
$ deactivate_conanbuild.bat

Listing 30: Linux, macOS

$ conan install . --output-folder build --build=missing
$ cd build
$ source conanbuild.sh
Capturing current environment in deactivate_conanbuildenv-release-x86_64.sh
Configuring environment variables
$ cmake .. -DCMAKE_TOOLCHAIN_FILE=conan_toolchain.cmake -DCMAKE_BUILD_TYPE=Release
$ cmake --build .
...
Building with CMake version: 3.22.6
...
[100%] Built target compressor

$./compressor
Uncompressed size is: 233
Compressed size is: 147
ZLIB VERSION: 1.2.11
$ source deactivate_conanbuild.sh

So far we have achieved the same functionality we had using a conanfile.txt, let’s see how we can take advantage of
the capabilities of the conanfile.py to define the project structure we want to follow and also to add some logic using
Conan settings and options.

Use the layout() method

In the previous examples, every time we executed a conan install command, we had to use the –output-folder argument
to define where we wanted to create the files that Conan generates. There’s a neater way to decide where we want
Conan to generate the files for the build system that will allow us to decide, for example, if we want different output
folders depending on the type of CMake generator we are using. You can define this directly in the conanfile.py inside
the layout() method and make it work for every platform without adding more changes.

Listing 31: conanfile.py
import os

from conan import ConanFile

class CompressorRecipe(ConanFile):
settings = "os", "compiler", "build_type", "arch"
generators = "CMakeToolchain", "CMakeDeps"

def requirements(self):
(continues on next page)

4.1. Consuming packages 35

Conan Documentation, Release 2.1.0

(continued from previous page)

self.requires("zlib/1.2.11")
if self.settings.os == "Windows":

self.requires("base64/0.4.0")

def build_requirements(self):
if self.settings.os != "Windows":

self.tool_requires("cmake/3.22.6")

def layout(self):
We make the assumption that if the compiler is msvc the
CMake generator is multi-config
multi = True if self.settings.get_safe("compiler") == "msvc" else False
if multi:

self.folders.generators = os.path.join("build", "generators")
self.folders.build = "build"

else:
self.folders.generators = os.path.join("build", str(self.settings.build_

→˓type), "generators")
self.folders.build = os.path.join("build", str(self.settings.build_type))

As you can see, we defined the self.folders.generators attribute in the layout() method. This is the folder where all the
auxiliary files generated by Conan (CMake toolchain and cmake dependencies files) will be placed.

Note that the definitions of the folders is different if it is a multi-config generator (like Visual Studio), or a single-config
generator (like Unix Makefiles). In the first case, the folder is the same irrespective of the build type, and the build
system will manage the different build types inside that folder. But single-config generators like Unix Makefiles, must
use a different folder for each different configuration (as a different build_type Release/Debug). In this case we added
a simple logic to consider multi-config if the compiler name is msvc.

Check that running the same commands as in the previous examples without the –output-folder argument will lead to
the same results as before:

Listing 32: Windows

$ conan install . --build=missing
$ cd build
$ generators\conanbuild.bat
assuming Visual Studio 15 2017 is your VS version and that it matches your default␣
→˓profile
$ cmake .. -G "Visual Studio 15 2017" -DCMAKE_TOOLCHAIN_FILE=generators\conan_toolchain.
→˓cmake
$ cmake --build . --config Release
...
Building with CMake version: 3.22.6
...
[100%] Built target compressor

$ Release\compressor.exe
Uncompressed size is: 233
Compressed size is: 147
ZLIB VERSION: 1.2.11
$ generators\deactivate_conanbuild.bat

36 Chapter 4. Tutorial

Conan Documentation, Release 2.1.0

Listing 33: Linux, macOS

$ conan install . --build=missing
$ cd build/Release
$ source ./generators/conanbuild.sh
Capturing current environment in deactivate_conanbuildenv-release-x86_64.sh
Configuring environment variables
$ cmake ../.. -DCMAKE_TOOLCHAIN_FILE=generators/conan_toolchain.cmake -DCMAKE_BUILD_
→˓TYPE=Release
$ cmake --build .
...
Building with CMake version: 3.22.6
...
[100%] Built target compressor

$./compressor
Uncompressed size is: 233
Compressed size is: 147
ZLIB VERSION: 1.2.11
$ source ./generators/deactivate_conanbuild.sh

There’s no need to always write this logic in the conanfile.py. There are some pre-defined layouts you can import and
directly use in your recipe. For example, for the CMake case, there’s a cmake_layout() already defined in Conan:

Listing 34: conanfile.py
from conan import ConanFile
from conan.tools.cmake import cmake_layout

class CompressorRecipe(ConanFile):
settings = "os", "compiler", "build_type", "arch"
generators = "CMakeToolchain", "CMakeDeps"

def requirements(self):
self.requires("zlib/1.2.11")

def build_requirements(self):
self.tool_requires("cmake/3.22.6")

def layout(self):
cmake_layout(self)

4.1. Consuming packages 37

Conan Documentation, Release 2.1.0

Use the validate() method to raise an error for non-supported configurations

The validate() method is evaluated when Conan loads the conanfile.py and you can use it to perform checks of the input
settings. If, for example, your project does not support armv8 architecture on macOS you can raise the ConanInvalid-
Configuration exception to make Conan return with a special error code. This will indicate that the configuration used
for settings or options is not supported.

Listing 35: conanfile.py
...
from conan.errors import ConanInvalidConfiguration

class CompressorRecipe(ConanFile):
...

def validate(self):
if self.settings.os == "Macos" and self.settings.arch == "armv8":

raise ConanInvalidConfiguration("ARM v8 not supported in Macos")

Conditional requirements using a conanfile.py

You could add some logic to the requirements() method to add or remove requirements conditionally. Imagine, for
example, that you want to add an additional dependency in Windows or that you want to use the system’s CMake
installation instead of using the Conan tool_requires:

Listing 36: conanfile.py
from conan import ConanFile

class CompressorRecipe(ConanFile):
Binary configuration
settings = "os", "compiler", "build_type", "arch"
generators = "CMakeToolchain", "CMakeDeps"

def requirements(self):
self.requires("zlib/1.2.11")

Add base64 dependency for Windows
if self.settings.os == "Windows":

self.requires("base64/0.4.0")

def build_requirements(self):
Use the system's CMake for Windows
if self.settings.os != "Windows":

self.tool_requires("cmake/3.22.6")

38 Chapter 4. Tutorial

Conan Documentation, Release 2.1.0

Use the generate() method to copy resources from packages

In some scenarios, Conan packages include files that are useful or even necessary for the consumption of the libraries
they package. These files can range from configuration files, assets, to specific files required for the project to build
or run correctly. Using the generate() method you can copy these files from the Conan cache to your project’s folder,
ensuring that all required resources are directly available for use.

Here’s an example that shows how to copy all resources from a dependency’s resdirs directory to an assets directory
within your project:

import os
from conan import ConanFile
from conan.tools.files import copy

class MyProject(ConanFile):

...

def generate(self):
Copy all resources from the dependency's resource directory
to the "assets" folder in the source directory of your project
dep = self.dependencies["dep_name"]
copy(self, "*", dep.cpp_info.resdirs[0], os.path.join(self.source_folder, "assets

→˓"))

Then, after the conan install step, all those resource files will be copied locally, allowing you to use them in your
project’s build process. For a complete example of how to import files from a package in the generate() method, you
can refer to the blog post about using the Dear ImGui library <https://blog.conan.io/2019/06/26/An-introduction-to-
the-Dear-ImGui-library.html>, which demonstrates how to import bindings for the library depending on the graphics
API.

Note: It’s important to clarify that copying libraries, whether static or shared, is not necessary. Conan is designed to
use the libraries from their locations in the Conan local cache using generators and environment tools without the need
to copy them to the local folder.

See also:
• Using “cmake_layout” + “CMakeToolchain” + “CMakePresets feature” to build your project.

• Understanding the Conan Package layout.

• Documentation for all conanfile.py available methods.

• Conditional generators in configure()

4.1. Consuming packages 39

Conan Documentation, Release 2.1.0

4.1.5 How to cross-compile your applications using Conan: host and build contexts

Please, first clone the sources to recreate this project. You can find them in the examples2 repository on GitHub:

$ git clone https://github.com/conan-io/examples2.git
$ cd examples2/tutorial/consuming_packages/cross_building

In the previous examples, we learned how to use a conanfile.py or conanfile.txt to build an application that compresses
strings using the Zlib and CMake Conan packages. Also, we explained that you can set information like the operating
system, compiler or build configuration in a file called the Conan profile. You can use that profile as an argument
(--profile) to invoke the conan install. We also explained that not specifying that profile is equivalent to using
the --profile=default argument.

For all those examples, we used the same platform for building and running the application. But, what if you want to
build the application on your machine running Ubuntu Linux and then run it on another platform like a Raspberry Pi?
Conan can model that case using two different profiles, one for the machine that builds the application (Ubuntu Linux)
and another for the machine that runs the application (Raspberry Pi). We will explain this “two profiles” approach in
the next section.

Conan two profiles model: build and host profiles

Even if you specify only one --profile argument when invoking Conan, Conan will internally use two profiles. One
for the machine that builds the binaries (called the build profile) and another for the machine that runs those binaries
(called the host profile). Calling this command:

$ conan install . --build=missing --profile=someprofile

Is equivalent to:

$ conan install . --build=missing --profile:host=someprofile --profile:build=default

As you can see we used two new arguments:

• profile:host: This is the profile that defines the platform where the built binaries will run. For our string
compressor application this profile would be the one applied for the Zlib library that will run in a Raspberry Pi.

• profile:build: This is the profile that defines the platform where the binaries will be built. For our string
compressor application, this profile would be the one used by the CMake tool that will compile it on the Ubuntu
Linux machine.

Note that when you just use one argument for the profile --profile is equivalent to --profile:host. If you don’t
specify the --profile:build argument, Conan will use the default profile internally.

So, if we want to build the compressor application in the Ubuntu Linux machine but run it in a Raspberry Pi, we should
use two different profiles. For the build machine we could use the default profile, that in our case looks like this:

Listing 37: <conan home>/profiles/default

[settings]
os=Linux
arch=x86_64
build_type=Release
compiler=gcc
compiler.cppstd=gnu14
compiler.libcxx=libstdc++11
compiler.version=9

40 Chapter 4. Tutorial

https://github.com/conan-io/examples2

Conan Documentation, Release 2.1.0

And the profile for the Raspberry Pi that is the host machine:

Listing 38: <local folder>/profiles/raspberry

[settings]
os=Linux
arch=armv7hf
compiler=gcc
build_type=Release
compiler.cppstd=gnu14
compiler.libcxx=libstdc++11
compiler.version=9
[buildenv]
CC=arm-linux-gnueabihf-gcc-9
CXX=arm-linux-gnueabihf-g++-9
LD=arm-linux-gnueabihf-ld

Important: Please, take into account that in order to build this example successfully, you should have installed a
toolchain that includes the compiler and all the tools to build the application for the proper architecture. In this case
the host machine is a Raspberry Pi 3 with armv7hf architecture operating system and we have the arm-linux-gnueabihf
toolchain installed in the Ubuntu machine.

If you have a look at the raspberry profile, there is a section named [buildenv]. This section is used to set the
environment variables that are needed to build the application. In this case we declare the CC, CXX and LD variables
pointing to the cross-build toolchain compilers and linker, respectively. Adding this section to the profile will invoke the
VirtualBuildEnv generator everytime we do a conan install. This generator will add that environment information
to the conanbuild.sh script that we will source before building with CMake so that it can use the cross-build toolchain.

Note: In some cases, you don’t have the toolchain available on the build platform. For those cases, you can use a
Conan package for the cross-compiler and add it to the [tool_requires] section of the profile. For an example of
cross-building using a toolchain package, please check this example.

Build and host contexts

Now that we have our two profiles prepared, let’s have a look at our conanfile.py:

Listing 39: conanfile.py
from conan import ConanFile
from conan.tools.cmake import cmake_layout

class CompressorRecipe(ConanFile):
settings = "os", "compiler", "build_type", "arch"
generators = "CMakeToolchain", "CMakeDeps"

def requirements(self):
self.requires("zlib/1.2.11")

def build_requirements(self):
self.tool_requires("cmake/3.22.6")

(continues on next page)

4.1. Consuming packages 41

Conan Documentation, Release 2.1.0

(continued from previous page)

def layout(self):
cmake_layout(self)

As you can see, this is practically the same conanfile.py we used in the previous example. We will require zlib/1.2.11
as a regular dependency and cmake/3.22.6 as a tool needed for building the application.

We will need the application to build for the Raspberry Pi with the cross-build toolchain and also link the zlib/1.2.11
library built for the same platform. On the other side, we need the cmake/3.22.6 binary to run in Ubuntu Linux. Conan
manages this internally in the dependency graph differentiating between what we call the “build context” and the “host
context”:

• The host context is populated with the root package (the one specified in the conan install or conan create
command) and all its requirements added via self.requires(). In this case, this includes the compressor
application and the zlib/1.2.11 dependency.

• The build context contains the tool requirements used in the build machine. This category typically includes all
the developer tools like CMake, compilers and linkers. In this case, this includes the cmake/3.22.6 tool.

These contexts define how Conan will manage each one of the dependencies. For example, as zlib/1.2.11 belongs to the
host context, the [buildenv] build environment we defined in the raspberry profile (profile host) will only apply to
the zlib/1.2.11 library when building and won’t affect anything that belongs to the build context like the cmake/3.22.6
dependency.

Now, let’s build the application. First, call conan install with the profiles for the build and host platforms. This
will install the zlib/1.2.11 dependency built for armv7hf architecture and a cmake/3.22.6 version that runs for 64-bit
architecture.

$ conan install . --build missing -pr:b=default -pr:h=./profiles/raspberry

Then, let’s call CMake to build the application. As we did in the previous example we have to activate the build envi-
ronment running source Release/generators/conanbuild.sh. That will set the environment variables needed
to locate the cross-build toolchain and build the application.

$ cd build
$ source Release/generators/conanbuild.sh
Capturing current environment in deactivate_conanbuildenv-release-armv7hf.sh
Configuring environment variables
$ cmake .. -DCMAKE_TOOLCHAIN_FILE=Release/generators/conan_toolchain.cmake -DCMAKE_BUILD_
→˓TYPE=Release
$ cmake --build .
...
-- Conan toolchain: C++ Standard 14 with extensions ON
-- The C compiler identification is GNU 9.4.0
-- Detecting C compiler ABI info
-- Detecting C compiler ABI info - done
-- Check for working C compiler: /usr/bin/arm-linux-gnueabihf-gcc-9 - skipped
-- Detecting C compile features
-- Detecting C compile features - done [100%] Built target compressor
...
$ source Release/generators/deactivate_conanbuild.sh

You could check that we built the application for the correct architecture by running the file Linux utility:

42 Chapter 4. Tutorial

Conan Documentation, Release 2.1.0

$ file compressor
compressor: ELF 32-bit LSB shared object, ARM, EABI5 version 1 (SYSV), dynamically
linked, interpreter /lib/ld-linux-armhf.so.3,
BuildID[sha1]=2a216076864a1b1f30211debf297ac37a9195196, for GNU/Linux 3.2.0, not
stripped

See also:
• Creating a Conan package for a toolchain

• Cross building to Android with the NDK

• VirtualBuildEnv reference

• Cross-build using a tool_requires

• How to require test frameworks like gtest: using test_requires

• Using Conan to build for iOS

4.1.6 Introduction to versioning

So far we have been using requires with fixed versions like requires = "zlib/1.2.12". But sometimes dependen-
cies evolve, new versions are released and consumers want to update to those versions as easy as possible.

It is always possible to edit the conanfiles and explicitly update the versions to the new ones, but there are mechanisms
in Conan to allow such updates without even modifying the recipes.

Version ranges

A requires can express a dependency to a certain range of versions for a given package, with the syntax pkgname/
[version-range-expression]. Let’s see an example, please, first clone the sources to recreate this project. You
can find them in the examples2 repository in GitHub:

$ git clone https://github.com/conan-io/examples2.git
$ cd examples2/tutorial/consuming_packages/versioning

We can see that we have there:

Listing 40: conanfile.py
from conan import ConanFile

class CompressorRecipe(ConanFile):
settings = "os", "compiler", "build_type", "arch"
generators = "CMakeToolchain", "CMakeDeps"

def requirements(self):
self.requires("zlib/[~1.2]")

That requires contains the expression zlib/[~1.2], which means “approximately” 1.2 version, that means, it can
resolve to any zlib/1.2.8, zlib/1.2.11 or zlib/1.2.12, but it will not resolve to something like zlib/1.3.0.
Among the available matching versions, a version range will always pick the latest one.

If we do a conan install, we would see something like:

4.1. Consuming packages 43

https://github.com/conan-io/examples2

Conan Documentation, Release 2.1.0

$ conan install .

Graph root
conanfile.py: .../conanfile.py

Requirements
zlib/1.2.12#87a7211557b6690ef5bf7fc599dd8349 - Downloaded

Resolved version ranges
zlib/[~1.2]: zlib/1.2.12

If we tried instead to use zlib/[<1.2.12], that means that we would like to use a version lower than 1.2.12, but that
one is excluded, so the latest one to satisfy the range would be zlib/1.2.11:

$ conan install .

Resolved version ranges
zlib/[<1.2.12]: zlib/1.2.11

The same applies to other type of requirements, like tool_requires. If we add now to the recipe:

Listing 41: conanfile.py
from conan import ConanFile

class CompressorRecipe(ConanFile):
settings = "os", "compiler", "build_type", "arch"
generators = "CMakeToolchain", "CMakeDeps"

def requirements(self):
self.requires("zlib/[~1.2]")

def build_requirements(self):
self.tool_requires("cmake/[>3.10]")

Then we would see it resolved to the latest available CMake package, with at least version 3.11:

$ conan install .
...
Graph root

conanfile.py: .../conanfile.py
Requirements

zlib/1.2.12#87a7211557b6690ef5bf7fc599dd8349 - Cache
Build requirements

cmake/3.22.6#f305019023c2db74d1001c5afa5cf362 - Downloaded
Resolved version ranges

cmake/[>3.10]: cmake/3.22.6
zlib/[~1.2]: zlib/1.2.12

44 Chapter 4. Tutorial

Conan Documentation, Release 2.1.0

Revisions

What happens when a package creator does some change to the package recipe or to the source code, but they don’t
bump the version to reflect those changes? Conan has an internal mechanism to keep track of those modifications,
and it is called the revisions.
The recipe revision is the hash that can be seen together with the package name and version in the form pkgname/
version#recipe_revision or pkgname/version@user/channel#recipe_revision. The recipe revision is a
hash of the contents of the recipe and the source code. So if something changes either in the recipe, its associated files
or in the source code that this recipe is packaging, it will create a new recipe revision.

You can list existing revisions with the conan list command:

$ conan list zlib/1.2.12#* -r=conancenter

conancenter
zlib
zlib/1.2.12
revisions
82202701ea360c0863f1db5008067122 (2022-03-29 15:47:45 UTC)
bd533fb124387a214816ab72c8d1df28 (2022-05-09 06:59:58 UTC)
3b9e037ae1c615d045a06c67d88491ae (2022-05-13 13:55:39 UTC)
...

Revisions always resolve to the latest (chronological order of creation or upload to the server) revision. Though it is
not a common practice, it is possible to explicitly pin a given recipe revision directly in the conanfile, like:

def requirements(self):
self.requires("zlib/1.2.12#87a7211557b6690ef5bf7fc599dd8349")

This mechanism can however be tedious to maintain and update when new revisions are created, so probably in the
general case, this shouldn’t be done.

Lockfiles

The usage of version ranges, and the possibility of creating new revisions of a given package without bumping the
version allows to do automatic faster and more convenient updates, without need to edit recipes.

But in some occasions, there is also a need to provide an immutable and reproducible set of dependencies. This process
is known as “locking”, and the mechanism to allow it is “lockfile” files. A lockfile is a file that contains a fixed list of
dependencies, specifying the exact version and exact revision. So, for example, a lockfile will never contain a version
range with an expression, but only pinned dependencies.

A lockfile can be seen as a snapshot of a given dependency graph at some point in time. Such snapshot must be
“realizable”, that is, it needs to be a state that can be actually reproduced from the conanfile recipes. And this lockfile
can be used at a later point in time to force that same state, even if there are new created package versions.

Let’s see lockfiles in action. First, let’s pin the dependency to zlib/1.2.11 in our example:

def requirements(self):
self.requires("zlib/1.2.11")

And let’s capture a lockfile:

conan lock create .

(continues on next page)

4.1. Consuming packages 45

Conan Documentation, Release 2.1.0

(continued from previous page)

-------- Computing dependency graph ----------
Graph root

conanfile.py: .../conanfile.py
Requirements

zlib/1.2.11#4524fcdd41f33e8df88ece6e755a5dcc - Cache

Generated lockfile: .../conan.lock

Let’s see what the lockfile conan.lock contains:

{
"version": "0.5",
"requires": [

"zlib/1.2.11#4524fcdd41f33e8df88ece6e755a5dcc%1650538915.154"
],
"build_requires": [],
"python_requires": []

}

Now, let’s restore the original requires version range:

def requirements(self):
self.requires("zlib/[~1.2]")

And run conan install ., which by default will find the conan.lock, and run the equivalent conan install .
--lockfile=conan.lock

conan install .

Graph root
conanfile.py: .../conanfile.py

Requirements
zlib/1.2.11#4524fcdd41f33e8df88ece6e755a5dcc - Cache

Note how the version range is no longer resolved, and it doesn’t get the zlib/1.2.12 dependency, even if it is the
allowed range zlib/[~1.2], because the conan.lock lockfile is forcing it to stay in zlib/1.2.11 and that exact
revision too.

See also:
• Introduction to Versioning

4.2 Creating packages

This section shows how to create Conan packages using a Conan recipe. We begin by creating a basic Conan recipe to
package a simple C++ library that you can scaffold using the conan new command. Then, we will explain the different
methods that you can define inside a Conan recipe and the things you can do inside them:

• Using the source() method to retrieve sources from external repositories and apply patches to those sources.

• Add requirements to your Conan packages inside the requirements() method.

• Use the generate() method to prepare the package build, and customize the toolchain.

46 Chapter 4. Tutorial

Conan Documentation, Release 2.1.0

• Configure settings and options in the configure() and config_options() methods and how they affect the
packages’ binary compatibility.

• Use the build() method to customize the build process and launch the tests for the library you are packaging.

• Select which files will be included in the Conan package using the package() method.

• Define the package information in the package_info() method so that consumers of this package can use it.

• Use a test_package to test that the Conan package can be consumed correctly.

After this walkthrough around some Conan recipe methods, we will explain some peculiarities of different types of
Conan packages like, for example, header-only libraries, packages for pre-built binaries, packaging tools for building
other packages or packaging your own applications.

4.2.1 Create your first Conan package

In previous sections, we consumed Conan packages (like the Zlib one), first using a conanfile.txt and then with a
conanfile.py. But a conanfile.py recipe file is not only meant to consume other packages, it can be used to create your
own packages as well. In this section, we explain how to create a simple Conan package with a conanfile.py recipe and
how to use Conan commands to build those packages from sources.

Important: This is a tutorial section. You are encouraged to execute these commands. For this concrete example,
you will need CMake installed in your path. It is not strictly required by Conan to create packages, you can use other
build systems (such as VS, Meson, Autotools, and even your own) to do that, without any dependency on CMake.

Use the conan new command to create a “Hello World” C++ library example project:

$ conan new cmake_lib -d name=hello -d version=1.0

This will create a Conan package project with the following structure.

.
CMakeLists.txt
conanfile.py
include

hello.h
src

hello.cpp
test_package

CMakeLists.txt
conanfile.py
src

example.cpp

The generated files are:

• conanfile.py: On the root folder, there is a conanfile.py which is the main recipe file, responsible for defining
how the package is built and consumed.

• CMakeLists.txt: A simple generic CMakeLists.txt, with nothing specific about Conan in it.

• src and include folders: the folders that contains the simple C++ “hello” library.

• test_package folder: contains an example application that will require and link with the created package. It is
not mandatory, but it is useful to check that our package is correctly created.

4.2. Creating packages 47

Conan Documentation, Release 2.1.0

Let’s have a look at the package recipe conanfile.py:

from conan import ConanFile
from conan.tools.cmake import CMakeToolchain, CMake, cmake_layout, CMakeDeps

class helloRecipe(ConanFile):
name = "hello"
version = "1.0"

Optional metadata
license = "<Put the package license here>"
author = "<Put your name here> <And your email here>"
url = "<Package recipe repository url here, for issues about the package>"
description = "<Description of hello package here>"
topics = ("<Put some tag here>", "<here>", "<and here>")

Binary configuration
settings = "os", "compiler", "build_type", "arch"
options = {"shared": [True, False], "fPIC": [True, False]}
default_options = {"shared": False, "fPIC": True}

Sources are located in the same place as this recipe, copy them to the recipe
exports_sources = "CMakeLists.txt", "src/*", "include/*"

def config_options(self):
if self.settings.os == "Windows":

del self.options.fPIC

def layout(self):
cmake_layout(self)

def generate(self):
deps = CMakeDeps(self)
deps.generate()
tc = CMakeToolchain(self)
tc.generate()

def build(self):
cmake = CMake(self)
cmake.configure()
cmake.build()

def package(self):
cmake = CMake(self)
cmake.install()

def package_info(self):
self.cpp_info.libs = ["hello"]

Let’s explain the different sections of the recipe briefly:

First, you can see the name and version of the Conan package defined:

• name: a string, with a minimum of 2 and a maximum of 100 lowercase characters that defines the package name.

48 Chapter 4. Tutorial

Conan Documentation, Release 2.1.0

It should start with alphanumeric or underscore and can contain alphanumeric, underscore, +, ., - characters.

• version: It is a string, and can take any value, matching the same constraints as the name attribute. In case the
version follows semantic versioning in the form X.Y.Z-pre1+build2, that value might be used for requiring
this package through version ranges instead of exact versions.

Then you can see, some attributes defining metadata. These are optional but recommended and define things like
a short description for the package, the author of the packaged library, the license, the url for the package
repository, and the topics that the package is related to.

After that, there is a section related with the binary configuration. This section defines the valid settings and options
for the package. As we explained in the consuming packages section:

• settings are project-wide configuration that cannot be defaulted in recipes. Things like the operating system,
compiler or build configuration that will be common to several Conan packages

• options are package-specific configuration and can be defaulted in recipes, in this case, we have the option of
creating the package as a shared or static library, being static the default.

After that, the exports_sources attribute is set to define which sources are part of the Conan package. These are the
sources for the library you want to package. In this case the sources for our “hello” library.

Then, several methods are declared:

• The config_options() method (together with the configure() one) allows fine-tuning the binary configu-
ration model, for example, in Windows, there is no fPIC option, so it can be removed.

• The layout() method declares the locations where we expect to find the source files and destinations for the
files generated during the build process. Example destination folders are those for the generated binaries and all
the files that the Conan generators create in the generate() method. In this case, as our project uses CMake as
the build system, we call to cmake_layout(). Calling this function will set the expected locations for a CMake
project.

• The generate() method prepares the build of the package from source. In this case, it could be simplified to
an attribute generators = "CMakeToolchain", but it is left to show this important method. In this case, the
execution of CMakeToolchain generate() method will create a conan_toolchain.cmake file that translates the
Conan settings and options to CMake syntax. The CMakeDeps generator is added for completitude, but it is
not strictly necessary until requires are added to the recipe.

• The build() method uses the CMake wrapper to call CMake commands, it is a thin layer that will manage to
pass in this case the -DCMAKE_TOOLCHAIN_FILE=conan_toolchain.cmake argument. It will configure the
project and build it from source.

• The package() method copies artifacts (headers, libs) from the build folder to the final package folder. It can be
done with bare “copy” commands, but in this case, it is leveraging the already existing CMake install functionality
(if the CMakeLists.txt didn’t implement it, it is easy to write an equivalent using the copy() tool in the package()
method.

• Finally, the package_info() method defines that consumers must link with a “hello” library when using this
package. Other information as include or lib paths can be defined as well. This information is used for files
created by generators (as CMakeDeps) to be used by consumers. This is generic information about the current
package, and is available to the consumers irrespective of the build system they are using and irrespective of the
build system we have used in the build() method

The test_package folder is not critical now for understanding how packages are created. The important bits are:

• test_package folder is different from unit or integration tests. These tests are “package” tests, and validate that
the package is properly created and that the package consumers will be able to link against it and reuse it.

• It is a small Conan project itself, it contains its conanfile.py, and its source code including build scripts, that
depends on the package being created, and builds and executes a small application that requires the library in the
package.

4.2. Creating packages 49

Conan Documentation, Release 2.1.0

• It doesn’t belong in the package. It only exists in the source repository, not in the package.

Let’s build the package from sources with the current default configuration, and then let the test_package folder test
the package:

$ conan create .

======== Exporting recipe to the cache ========
hello/1.0: Exporting package recipe
...
hello/1.0: Exported: hello/1.0#dcbfe21e5250264b26595d151796be70 (2024-03-04 17:52:39 UTC)

======== Installing packages ========
-------- Installing package hello/1.0 (1 of 1) --------
hello/1.0: Building from source
hello/1.0: Calling build()
...
hello/1.0: Package '9bdee485ef71c14ac5f8a657202632bdb8b4482b' built

======== Testing the package: Building ========
...
[50%] Building CXX object CMakeFiles/example.dir/src/example.cpp.o
[100%] Linking CXX executable example
[100%] Built target example

======== Testing the package: Executing test ========
hello/1.0 (test package): Running test()
hello/1.0 (test package): RUN: ./example
hello/1.0: Hello World Release!
hello/1.0: __x86_64__ defined
hello/1.0: __cplusplus199711
hello/1.0: __GNUC__4
hello/1.0: __GNUC_MINOR__2
hello/1.0: __clang_major__13
hello/1.0: __clang_minor__1
hello/1.0: __apple_build_version__13160021

...

If “Hello world Release!” is displayed, it worked. This is what has happened:

• The conanfile.py together with the contents of the src folder have been copied (exported, in Conan terms) to the
local Conan cache.

• A new build from source for the hello/1.0 package starts, calling the generate(), build() and package()
methods. This creates the binary package in the Conan cache.

• Conan then moves to the test_package folder and executes a conan install + conan build + test()method,
to check if the package was correctly created.

We can now validate that the recipe and the package binary are in the cache:

$ conan list hello
Local Cache:
hello
hello/1.0

The conan create command receives the same parameters as conan install, so you can pass to it the same settings

50 Chapter 4. Tutorial

Conan Documentation, Release 2.1.0

and options. If we execute the following lines, we will create new package binaries for Debug configuration or to build
the hello library as shared:

$ conan create . -s build_type=Debug
...
hello/1.0: Hello World Debug!

$ conan create . -o hello/1.0:shared=True
...
hello/1.0: Hello World Release!

These new package binaries will be also stored in the Conan cache, ready to be used by any project in this computer.
We can see them with:

list all the binaries built for the hello/1.0 package in the cache
$ conan list hello/1.0:*
Local Cache:
hello
hello/1.0
revisions
dcbfe21e5250264b26595d151796be70 (2024-03-04 17:52:39 UTC)
packages
6679492451b5d0750f14f9024fdbf84e19d2941b
info
settings
arch: x86_64
build_type: Release
compiler: apple-clang
compiler.cppstd: gnu11
compiler.libcxx: libc++
compiler.version: 14
os: Macos

options
fPIC: True
shared: True

b1d267f77ddd5d10d06d2ecf5a6bc433fbb7eeed
info
settings
arch: x86_64
build_type: Release
compiler: apple-clang
compiler.cppstd: gnu11
compiler.libcxx: libc++
compiler.version: 14
os: Macos

options
fPIC: True
shared: False

d15c4f81b5de757b13ca26b636246edff7bdbf24
info
settings:
arch: x86_64
build_type: Debug
compiler: apple-clang

(continues on next page)

4.2. Creating packages 51

Conan Documentation, Release 2.1.0

(continued from previous page)

compiler.cppstd: gnu11
compiler.libcxx: libc++
compiler.version: 14
os: Macos

options:
fPIC: True

Now that we have created a simple Conan package, we will explain each of the methods of the Conanfile in more detail.
You will learn how to modify those methods to achieve things like retrieving the sources from an external repository,
adding dependencies to our package, customising our toolchain and much more.

A note about the Conan cache

When you did the conan create command, the build of your package did not take place in your local folder but in
other folder inside the Conan cache. This cache is located in the user home folder under the .conan2 folder. Conan
will use the ~/.conan2 folder to store the built packages and also different configuration files. You already used the
conan list command to list the recipes and binaries stored in the local cache.

An important note: the Conan cache is private to the Conan client - modifying, adding, removing or changing files
inside the Conan cache is undefined behaviour likely to cause breakages.

See also:
• Create your first Conan package with Visual Studio/MSBuild.

• Create your first Conan package with Meson.

• Create your first Conan package with Autotools (only Linux).

• CMake built-in integrations reference.

• conan create command reference and Conan list command reference.

4.2.2 Handle sources in packages

In the previous tutorial section we created a Conan package for a “Hello World” C++ library. We used the
exports_sources attribute of the Conanfile to declare the location of the sources for the library. This method is
the simplest way to define the location of the source files when they are in the same folder as the Conanfile. However,
sometimes the source files are stored in a repository or a file in a remote server, and not in the same location as the
Conanfile. In this section, we will modify the recipe we created previously by adding a source() method and explain
how to:

• Retrieve the sources from a zip file stored in a remote repository.

• Retrieve the sources from a branch of a git repository.

Please, first clone the sources to recreate this project. You can find them in the examples2 repository on GitHub:

$ git clone https://github.com/conan-io/examples2.git
$ cd examples2/tutorial/creating_packages/handle_sources

The structure of the project is the same as the one in the previous example but without the library sources:

.
CMakeLists.txt
conanfile.py

(continues on next page)

52 Chapter 4. Tutorial

https://github.com/conan-io/examples2

Conan Documentation, Release 2.1.0

(continued from previous page)

test_package
CMakeLists.txt
conanfile.py
src

example.cpp

Sources from a zip file stored in a remote repository

Let’s have a look at the changes in the conanfile.py:

from conan import ConanFile
from conan.tools.cmake import CMakeToolchain, CMake, cmake_layout
from conan.tools.files import get

class helloRecipe(ConanFile):
name = "hello"
version = "1.0"

...

Binary configuration
settings = "os", "compiler", "build_type", "arch"
options = {"shared": [True, False], "fPIC": [True, False]}
default_options = {"shared": False, "fPIC": True}

def source(self):
Please, be aware that using the head of the branch instead of an immutable tag
or commit is a bad practice and not allowed by Conan
get(self, "https://github.com/conan-io/libhello/archive/refs/heads/main.zip",

strip_root=True)

def config_options(self):
if self.settings.os == "Windows":

del self.options.fPIC

def layout(self):
cmake_layout(self)

def generate(self):
tc = CMakeToolchain(self)
tc.generate()

def build(self):
cmake = CMake(self)
cmake.configure()
cmake.build()

def package(self):
cmake = CMake(self)
cmake.install()

(continues on next page)

4.2. Creating packages 53

Conan Documentation, Release 2.1.0

(continued from previous page)

def package_info(self):
self.cpp_info.libs = ["hello"]

As you can see, the recipe is the same but instead of declaring the exports_sources attribute as we did previously,
i.e.

exports_sources = "CMakeLists.txt", "src/*", "include/*"

we declare a source() method with this information:

def source(self):
Please, be aware that using the head of the branch instead of an immutable tag
or commit is strongly discouraged, unsupported by Conan and likely to cause issues
get(self, "https://github.com/conan-io/libhello/archive/refs/heads/main.zip",

strip_root=True)

We used the conan.tools.files.get() tool that will first download the zip file from the URL that we pass as an argument
and then unzip it. Note that we pass the strip_root=True argument so that if all the unzipped contents are in a single
folder, all the contents are moved to the parent folder (check the conan.tools.files.unzip() reference for more details).

Warning: It is expected that retrieving the sources in the future produces the same results. Using mutable source
origins, like a moving reference in git (e.g HEAD branch), or the URL to a file where the contents may change over
time, is strongly discouraged and not supported. Not following this practice will result in undefined behavior likely
to cause breakages

The contents of the zip file are the same as the sources we previously had beside the Conan recipe, so if you do a conan
create the results will be the same as before.

$ conan create .

...

-------- Installing packages ----------

Installing (downloading, building) binaries...
hello/1.0: Calling source() in /Users/user/.conan2/p/0fcb5ffd11025446/s/.
Downloading update_source.zip

hello/1.0: Unzipping 3.7KB
Unzipping 100 %
hello/1.0: Copying sources to build folder
hello/1.0: Building your package in /Users/user/.conan2/p/tmp/369786d0fb355069/b

...

-------- Testing the package: Running test() ----------
hello/1.0 (test package): Running test()
hello/1.0 (test package): RUN: ./example
hello/1.0: Hello World Release!
hello/1.0: __x86_64__ defined

(continues on next page)

54 Chapter 4. Tutorial

Conan Documentation, Release 2.1.0

(continued from previous page)

hello/1.0: __cplusplus199711
hello/1.0: __GNUC__4
hello/1.0: __GNUC_MINOR__2
hello/1.0: __clang_major__13
hello/1.0: __clang_minor__1
hello/1.0: __apple_build_version__13160021

Please, check the highlighted lines with the messages about the download and unzip operation.

Sources from a branch in a git repository

Now, let’s modify the source() method to bring the sources from a git repository instead of a zip file. We show just
the relevant parts:

...

from conan.tools.scm import Git

class helloRecipe(ConanFile):
name = "hello"
version = "1.0"

...

def source(self):
git = Git(self)
git.clone(url="https://github.com/conan-io/libhello.git", target=".")

...

Here, we use the conan.tools.scm.Git() tool. The Git class implements several methods to work with git repositories.
In this case, we call the clone method to clone the https://github.com/conan-io/libhello.git repository in the default
branch using the same folder for cloning the sources instead of a subfolder (passing the target="." argument).

Warning: As above, this is only a simple example. The source origin for Git() also has to be immutable, it
is necessary to checkout out an immutable tag or a specific commit to guarantee the correct behavior. Using the
HEAD of the repository is not allowed and can cause undefined behavior and breakages.

To checkout a commit or tag in the repository we use the checkout() method of the Git tool:

def source(self):
git = Git(self)
git.clone(url="https://github.com/conan-io/libhello.git", target=".")
git.checkout("<tag> or <commit hash>")

For more information about the Git class methods, please check the conan.tools.scm.Git() reference.

Note that it’s also possible to run other commands by invoking the self.run() method.

4.2. Creating packages 55

https://github.com/conan-io/libhello.git

Conan Documentation, Release 2.1.0

Using the conandata.yml file

We can write a file named conandata.yml in the same folder of the conanfile.py. This file will be automatically
exported and parsed by Conan and we can read that information from the recipe. This is handy for example to extract
the URLs of the external sources repositories, zip files etc. This is an example of conandata.yml:

sources:
"1.0":
url: "https://github.com/conan-io/libhello/archive/refs/heads/main.zip"
sha256: "7bc71c682895758a996ccf33b70b91611f51252832b01ef3b4675371510ee466"
strip_root: true

"1.1":
url: ...
sha256: ...

The recipe doesn’t need to be modified for each version of the code. We can pass all the keys of the specified ver-
sion (url, sha256, and strip_root) as arguments to the get function, that, in this case, allow us to verify that the
downloaded zip file has the correct sha256. So we could modify the source method to this:

def source(self):
get(self, **self.conan_data["sources"][self.version])
Similar to:
data = self.conan_data["sources"][self.version]
get(self, data["url"], sha256=data["sha256"], strip_root=data["strip_root"])

See also:
• Patching sources

• Capturing Git SCM source information instead of copying sources with exports_sources.

• source() method reference

4.2.3 Add dependencies to packages

In the previous tutorial section we created a Conan package for a “Hello World” C++ library. We used the co-
nan.tools.scm.Git() tool to retrieve the sources from a git repository. So far, the package does not have any dependency
on other Conan packages. Let’s explain how to add a dependency to our package in a very similar way to how we did
in the consuming packages section. We will add some fancy colour output to our “Hello World” library using the fmt
library.

Please, first clone the sources to recreate this project. You can find them in the examples2 repository on GitHub:

$ git clone https://github.com/conan-io/examples2.git
$ cd examples2/tutorial/creating_packages/add_requires

You will notice some changes in the conanfile.py file from the previous recipe. Let’s check the relevant parts:

...
from conan.tools.build import check_max_cppstd, check_min_cppstd
...

class helloRecipe(ConanFile):
name = "hello"
version = "1.0"

(continues on next page)

56 Chapter 4. Tutorial

https://conan.io/center/fmt
https://github.com/conan-io/examples2

Conan Documentation, Release 2.1.0

(continued from previous page)

...
generators = "CMakeDeps"
...

def validate(self):
check_min_cppstd(self, "11")
check_max_cppstd(self, "20")

def requirements(self):
self.requires("fmt/8.1.1")

def source(self):
git = Git(self)
git.clone(url="https://github.com/conan-io/libhello.git", target=".")
Please, be aware that using the head of the branch instead of an immutable tag
or commit is not a good practice in general
git.checkout("require_fmt")

• First, we set the generators class attribute to make Conan invoke the CMakeDeps generator. This was not
needed in the previous recipe as we did not have dependencies. CMakeDeps will generate all the config files
CMake needs to find the fmt library.

• Next, we use the requires() method to add the fmt dependency to our package.

• Also, check that we added an extra line in the source() method. We use the Git().checkout method to checkout
the source code in the require_fmt branch. This branch contains the changes in the source code to add colours
to the library messages, and also in the CMakeLists.txt to declare that we are using the fmt library.

• Finally, note we added the validate() method to the recipe. We already used this method in the consuming
packages section to raise an error for non-supported configurations. Here, we call the check_min_cppstd() and
check_max_cppstd() to check that we are using at least C++11 and at most C++20 standards in our settings.

You can check the new sources, using the fmt library in the require_fmt. You will see that the hello.cpp file adds colours
to the output messages:

#include <fmt/color.h>

#include "hello.h"

void hello(){
#ifdef NDEBUG
fmt::print(fg(fmt::color::crimson) | fmt::emphasis::bold, "hello/1.0: Hello World␣

→˓Release!\n");
#else
fmt::print(fg(fmt::color::crimson) | fmt::emphasis::bold, "hello/1.0: Hello World␣

→˓Debug!\n");
#endif
...

Let’s build the package from sources with the current default configuration, and then let the test_package folder test
the package. You should see the output messages with colour now:

4.2. Creating packages 57

https://conan.io/center/fmt
https://github.com/conan-io/libhello/tree/require_fmt
https://github.com/conan-io/libhello/tree/require_fmt
https://github.com/conan-io/libhello/blob/require_fmt/src/hello.cpp

Conan Documentation, Release 2.1.0

$ conan create . --build=missing
-------- Exporting the recipe ----------
...
-------- Testing the package: Running test() ----------
hello/1.0 (test package): Running test()
hello/1.0 (test package): RUN: ./example
hello/1.0: Hello World Release!
hello/1.0: __x86_64__ defined
hello/1.0: __cplusplus 201103
hello/1.0: __GNUC__ 4
hello/1.0: __GNUC_MINOR__ 2
hello/1.0: __clang_major__ 13
hello/1.0: __clang_minor__ 1
hello/1.0: __apple_build_version__ 13160021

See also:
• Reference for requirements() method.

• Introduction to versioning.

4.2.4 Preparing the build

In the previous tutorial section, we added the fmt requirement to our Conan package to provide colour output to our
“Hello World” C++ library. In this section, we focus on the generate() method of the recipe. The aim of this method
generating all the information that could be needed while running the build step. That means things like:

• Write files to be used in the build step, like scripts that inject environment variables, files to pass to the build
system, etc.

• Configuring the toolchain to provide extra information based on the settings and options or removing information
from the toolchain that Conan generates by default and may not apply for certain cases.

We explain how to use this method for a simple example based on the previous tutorial section. We add a with_fmt
option to the recipe, depending on the value we require the fmt library or not. We use the generate() method to modify
the toolchain so that it passes a variable to CMake so that we can conditionally add that library and use fmt or not in
the source code.

Please, first clone the sources to recreate this project. You can find them in the examples2 repository on GitHub:

$ git clone https://github.com/conan-io/examples2.git
$ cd examples2/tutorial/creating_packages/preparing_the_build

You will notice some changes in the conanfile.py file from the previous recipe. Let’s check the relevant parts:

...
from conan.tools.build import check_max_cppstd, check_min_cppstd
...

class helloRecipe(ConanFile):
name = "hello"
version = "1.0"

...
options = {"shared": [True, False],

(continues on next page)

58 Chapter 4. Tutorial

https://conan.io/center/fmt
https://github.com/conan-io/examples2

Conan Documentation, Release 2.1.0

(continued from previous page)

"fPIC": [True, False],
"with_fmt": [True, False]}

default_options = {"shared": False,
"fPIC": True,
"with_fmt": True}

...

def validate(self):
if self.options.with_fmt:

check_min_cppstd(self, "11")
check_max_cppstd(self, "14")

def source(self):
git = Git(self)
git.clone(url="https://github.com/conan-io/libhello.git", target=".")
Please, be aware that using the head of the branch instead of an immutable tag
or commit is not a good practice in general
git.checkout("optional_fmt")

def requirements(self):
if self.options.with_fmt:

self.requires("fmt/8.1.1")

def generate(self):
tc = CMakeToolchain(self)
if self.options.with_fmt:

tc.variables["WITH_FMT"] = True
tc.generate()

...

As you can see:

• We declare a new with_fmt option with the default value set to True

• Based on the value of the with_fmt option:

– We install or not the fmt/8.1.1 Conan package.

– We require or not a minimum and a maximum C++ standard as the fmt library requires at least C++11 and it
will not compile if we try to use a standard above C++14 (just an example, fmt can build with more modern
standards)

– We inject the WITH_FMT variable with the value True to the CMakeToolchain so that we can use it in the
CMakeLists.txt of the hello library to add the CMake fmt::fmt target conditionally.

• We are cloning another branch of the library. The optional_fmt branch contains some changes in the code. Let’s
see what changed on the CMake side:

Listing 42: CMakeLists.txt
cmake_minimum_required(VERSION 3.15)
project(hello CXX)

(continues on next page)

4.2. Creating packages 59

Conan Documentation, Release 2.1.0

(continued from previous page)

add_library(hello src/hello.cpp)
target_include_directories(hello PUBLIC include)
set_target_properties(hello PROPERTIES PUBLIC_HEADER "include/hello.h")

if (WITH_FMT)
find_package(fmt)
target_link_libraries(hello fmt::fmt)
target_compile_definitions(hello PRIVATE USING_FMT=1)

endif()

install(TARGETS hello)

As you can see, we use the WITH_FMT we injected in the CMakeToolchain. Depending on the value we will try to find
the fmt library and link our hello library with it. Also, check that we add the USING_FMT=1 compile definition that we
use in the source code depending on whether we choose to add support for fmt or not.

Listing 43: hello.cpp
#include <iostream>
#include "hello.h"

#if USING_FMT == 1
#include <fmt/color.h>
#endif

void hello(){
#if USING_FMT == 1

#ifdef NDEBUG
fmt::print(fg(fmt::color::crimson) | fmt::emphasis::bold, "hello/1.0: Hello␣

→˓World Release! (with color!)\n");
#else
fmt::print(fg(fmt::color::crimson) | fmt::emphasis::bold, "hello/1.0: Hello␣

→˓World Debug! (with color!)\n");
#endif

#else
#ifdef NDEBUG
std::cout << "hello/1.0: Hello World Release! (without color)" << std::endl;
#else
std::cout << "hello/1.0: Hello World Debug! (without color)" << std::endl;
#endif

#endif
}

Let’s build the package from sources first using with_fmt=True and then with_fmt=False. When test_package runs
it will show different messages depending on the value of the option.

$ conan create . --build=missing -o with_fmt=True
-------- Exporting the recipe ----------
...

-------- Testing the package: Running test() ----------
hello/1.0 (test package): Running test()
hello/1.0 (test package): RUN: ./example

(continues on next page)

60 Chapter 4. Tutorial

Conan Documentation, Release 2.1.0

(continued from previous page)

hello/1.0: Hello World Release! (with color!)

$ conan create . --build=missing -o with_fmt=False
-------- Exporting the recipe ----------
...

-------- Testing the package: Running test() ----------
hello/1.0 (test package): Running test()
hello/1.0 (test package): RUN: ./example
hello/1.0: Hello World Release! (without color)

This is just a simple example of how to use the generate() method to customize the toolchain based on the value of
one option, but there are lots of other things that you could do in the generate() method like:

• Create a complete custom toolchain based on your needs to use in your build.

• Access to certain information about the package dependencies, like:
– The configuration accessing the defined conf_info.

– Accessing the dependencies options.

– Import files from dependencies using the copy tool. You could also import the files create manifests
for the package, collecting all dependencies versions and licenses.

• Use the Environment tools to generate information for the system environment.

• Adding custom configurations besides Release and Debug, taking into account the settings, like ReleaseShared
or DebugShared.

See also:
• Use the generate() to import files from dependencies.

• More based on the examples mentioned above . . .

• generate() method reference

4.2.5 Configure settings and options in recipes

We already explained Conan settings and options and how to use them to build your projects for different configurations
like Debug, Release, with static or shared libraries, etc. In this section, we explain how to configure these settings and
options in the case that one of them does not apply to a Conan package. We will introduce briefly how Conan models
binary compatibility and how that relates to options and settings.

Please, first clone the sources to recreate this project. You can find them in the examples2 repository on GitHub:

$ git clone https://github.com/conan-io/examples2.git
$ cd examples2/tutorial/creating_packages/configure_options_settings

You will notice some changes in the conanfile.py file from the previous recipe. Let’s check the relevant parts:

class helloRecipe(ConanFile):
name = "hello"
version = "1.0"

...
(continues on next page)

4.2. Creating packages 61

https://github.com/conan-io/examples2

Conan Documentation, Release 2.1.0

(continued from previous page)

options = {"shared": [True, False],
"fPIC": [True, False],
"with_fmt": [True, False]}

default_options = {"shared": False,
"fPIC": True,
"with_fmt": True}

...

def config_options(self):
if self.settings.os == "Windows":

del self.options.fPIC

def configure(self):
if self.options.shared:

If os=Windows, fPIC will have been removed in config_options()
use rm_safe to avoid double delete errors
self.options.rm_safe("fPIC")

...

You can see that we added a configure() method to the recipe. Let’s explain what’s the objective of this method and
how it’s different from the config_options() method we already had defined in the recipe:

• configure(): use this method to configure which options or settings of the recipe are available. For example,
in this case, we delete the fPIC option, because it should only be True if we are building the library as shared
(in fact, some build systems will add this flag automatically when building a shared library).

• config_options(): This method is used to constrain the available options in a package before they take a
value. If a value is assigned to a setting or option that is deleted inside this method, Conan will raise an error.
In this case we are deleting the fPIC option in Windows because that option does not exist for that operating
system. Note that this method is executed before the configure() method.

Be aware that deleting an option using the config_options() method has a different result from using the
configure() method. Deleting the option in config_options() is like we never declared it in the recipe which
will raise an exception saying that the option does not exist. However, if we delete it in the configure() method we
can pass the option but it will have no effect. For example, if you try to pass a value to the fPIC option in Windows,
Conan will raise an error warning that the option does not exist:

62 Chapter 4. Tutorial

Conan Documentation, Release 2.1.0

Listing 44: Windows

$ conan create . --build=missing -o fPIC=True
...
-------- Computing dependency graph --------
ERROR: option 'fPIC' doesn't exist
Possible options are ['shared', 'with_fmt']

As you have noticed, the configure() and config_options() methods delete an option if certain conditions are
met. Let’s explain why we are doing this and the implications of removing that option. It is related to how Conan
identifies packages that are binary compatible with the configuration set in the profile. In the next section, we introduce
the concept of the Conan package ID.

Conan packages binary compatibility: the package ID

We used Conan in previous examples to build for different configurations like Debug and Release. Each time you create
the package for one of those configurations, Conan will build a new binary. Each of them is related to a generated
hash called the package ID. The package ID is just a way to convert a set of settings, options and information about
the requirements of the package to a unique identifier.

Let’s build our package for Release and Debug configurations and check the generated binaries package IDs.

$ conan create . --build=missing -s build_type=Release -tf="" # -tf="" will skip ng the␣
→˓test_package
...
[50%] Building CXX object CMakeFiles/hello.dir/src/hello.cpp.o
[100%] Linking CXX static library libhello.a
[100%] Built target hello
hello/1.0: Package '738feca714b7251063cc51448da0cf4811424e7c' built
hello/1.0: Build folder /Users/user/.conan2/p/tmp/7fe7f5af0ef27552/b/build/Release
hello/1.0: Generated conaninfo.txt
hello/1.0: Generating the package
hello/1.0: Temporary package folder /Users/user/.conan2/p/tmp/7fe7f5af0ef27552/p
hello/1.0: Calling package()
hello/1.0: CMake command: cmake --install "/Users/user/.conan2/p/tmp/7fe7f5af0ef27552/b/
→˓build/Release" --prefix "/Users/user/.conan2/p/tmp/7fe7f5af0ef27552/p"
hello/1.0: RUN: cmake --install "/Users/user/.conan2/p/tmp/7fe7f5af0ef27552/b/build/
→˓Release" --prefix "/Users/user/.conan2/p/tmp/7fe7f5af0ef27552/p"
-- Install configuration: "Release"
-- Installing: /Users/user/.conan2/p/tmp/7fe7f5af0ef27552/p/lib/libhello.a
-- Installing: /Users/user/.conan2/p/tmp/7fe7f5af0ef27552/p/include/hello.h
hello/1.0 package(): Packaged 1 '.h' file: hello.h
hello/1.0 package(): Packaged 1 '.a' file: libhello.a
hello/1.0: Package '738feca714b7251063cc51448da0cf4811424e7c' created
hello/1.0: Created package revision 3bd9faedc711cbb4fdf10b295268246e
hello/1.0: Full package reference: hello/1.0
→˓#e6b11fb0cb64e3777f8d62f4543cd6b3:738feca714b7251063cc51448da0cf4811424e7c
→˓#3bd9faedc711cbb4fdf10b295268246e
hello/1.0: Package folder /Users/user/.conan2/p/5c497cbb5421cbda/p

$ conan create . --build=missing -s build_type=Debug -tf="" # -tf="" will skip building␣
→˓the test_package
...

(continues on next page)

4.2. Creating packages 63

Conan Documentation, Release 2.1.0

(continued from previous page)

[50%] Building CXX object CMakeFiles/hello.dir/src/hello.cpp.o
[100%] Linking CXX static library libhello.a
[100%] Built target hello
hello/1.0: Package '3d27635e4dd04a258d180fe03cfa07ae1186a828' built
hello/1.0: Build folder /Users/user/.conan2/p/tmp/19a2e552db727a2b/b/build/Debug
hello/1.0: Generated conaninfo.txt
hello/1.0: Generating the package
hello/1.0: Temporary package folder /Users/user/.conan2/p/tmp/19a2e552db727a2b/p
hello/1.0: Calling package()
hello/1.0: CMake command: cmake --install "/Users/user/.conan2/p/tmp/19a2e552db727a2b/b/
→˓build/Debug" --prefix "/Users/user/.conan2/p/tmp/19a2e552db727a2b/p"
hello/1.0: RUN: cmake --install "/Users/user/.conan2/p/tmp/19a2e552db727a2b/b/build/Debug
→˓" --prefix "/Users/user/.conan2/p/tmp/19a2e552db727a2b/p"
-- Install configuration: "Debug"
-- Installing: /Users/user/.conan2/p/tmp/19a2e552db727a2b/p/lib/libhello.a
-- Installing: /Users/user/.conan2/p/tmp/19a2e552db727a2b/p/include/hello.h
hello/1.0 package(): Packaged 1 '.h' file: hello.h
hello/1.0 package(): Packaged 1 '.a' file: libhello.a
hello/1.0: Package '3d27635e4dd04a258d180fe03cfa07ae1186a828' created
hello/1.0: Created package revision 67b887a0805c2a535b58be404529c1fe
hello/1.0: Full package reference: hello/1.0
→˓#e6b11fb0cb64e3777f8d62f4543cd6b3:3d27635e4dd04a258d180fe03cfa07ae1186a828
→˓#67b887a0805c2a535b58be404529c1fe
hello/1.0: Package folder /Users/user/.conan2/p/c7796386fcad5369/p

As you can see Conan generated two package IDs:

• Package 738feca714b7251063cc51448da0cf4811424e7c for Release

• Package 3d27635e4dd04a258d180fe03cfa07ae1186a828 for Debug

These two package IDs are calculated by taking the set of settings, options and some information about the require-
ments (we will explain this later in the documentation) and calculating a hash with them. So, for example, in this
case, they are the result of the information depicted in the diagram below.

64 Chapter 4. Tutorial

Conan Documentation, Release 2.1.0

Those package IDs are different because the build_type is different. Now, when you want to install a package, Conan
will:

• Collect the settings and options applied, along with some information about the requirements and calculate the
hash for the corresponding package ID.

• If that package ID matches one of the packages stored in the local Conan cache Conan will use that. If not, and
we have any Conan remote configured, it will search for a package with that package ID in the remotes.

• If that calculated package ID does not exist in the local cache and remotes, Conan will fail with a “missing
binary” error message, or will try to build that package from sources (this depends on the value of the --build
argument). This build will generate a new package ID in the local cache.

These steps are simplified, there is far more to package ID calculation than what we explain here, recipes themselves
can even adjust their package ID calculations, we can have different recipe and package revisions besides package IDs
and there’s also a built-in mechanism in Conan that can be configured to declare that some packages with a certain
package ID are compatible with other.

Maybe you have now the intuition of why we delete settings or options in Conan recipes. If you do that, those values
will not be added to the computation of the package ID, so even if you define them, the resulting package ID will be the
same. You can check this behaviour, for example with the fPIC option that is deleted when we build with the option
shared=True. Regardless of the value you pass for the fPIC option the generated package ID will be the same for the
hello/1.0 binary:

$ conan create . --build=missing -o shared=True -o fPIC=True -tf=""
...
hello/1.0 package(): Packaged 1 '.h' file: hello.h
hello/1.0 package(): Packaged 1 '.dylib' file: libhello.dylib
hello/1.0: Package '2a899fd0da3125064bf9328b8db681cd82899d56' created
hello/1.0: Created package revision f0d1385f4f90ae465341c15740552d7e
hello/1.0: Full package reference: hello/1.0
→˓#e6b11fb0cb64e3777f8d62f4543cd6b3:2a899fd0da3125064bf9328b8db681cd82899d56
→˓#f0d1385f4f90ae465341c15740552d7e

(continues on next page)

4.2. Creating packages 65

Conan Documentation, Release 2.1.0

(continued from previous page)

hello/1.0: Package folder /Users/user/.conan2/p/8a55286c6595f662/p

$ conan create . --build=missing -o shared=True -o fPIC=False -tf=""
...
-------- Computing dependency graph --------
Graph root

virtual
Requirements

fmt/8.1.1#601209640bd378c906638a8de90070f7 - Cache
hello/1.0#e6b11fb0cb64e3777f8d62f4543cd6b3 - Cache

-------- Computing necessary packages --------
Requirements

fmt/8.1.1#601209640bd378c906638a8de90070f7:d1b3f3666400710fec06446a697f9eeddd1235aa
→˓#24a2edf207deeed4151bd87bca4af51c - Skip

hello/1.0#e6b11fb0cb64e3777f8d62f4543cd6b3:2a899fd0da3125064bf9328b8db681cd82899d56
→˓#f0d1385f4f90ae465341c15740552d7e - Cache

-------- Installing packages --------

-------- Installing (downloading, building) binaries... --------
hello/1.0: Already installed!

As you can see, the first run created the 2a899fd0da3125064bf9328b8db681cd82899d56 package,
and the second one, regardless of the different value of the fPIC option, said we already had the
2a899fd0da3125064bf9328b8db681cd82899d56 package installed.

C libraries

There are other typical cases where you want to delete certain settings. Imagine that you are packaging a C library.
When you build this library, there are settings like the compiler C++ standard (settings.compiler.cppstd) or the
standard library used (self.settings.compiler.libcxx) that won’t affect the resulting binary at all. Then it does
not make sense that they affect to the package ID computation, so a typical pattern is to delete them in the configure()
method:

def configure(self):
self.settings.rm_safe("compiler.cppstd")
self.settings.rm_safe("compiler.libcxx")

Please, note that deleting these settings in the configure() method will modify the package ID calculation but will
also affect how the toolchain, and the build system integrations work because the C++ settings do not exist.

66 Chapter 4. Tutorial

Conan Documentation, Release 2.1.0

Header-only libraries

A similar case happens with packages that package header-only libraries. In that case, there’s no binary code we
need to link with, but just some header files to add to our project. In this cases the package ID of the Conan package
should not be affected by settings or options. For that case, there’s a simplified way of declaring that the generated
package ID should not take into account settings, options or any information from the requirements, which is using the
self.info.clear() method inside another recipe method called package_id():

def package_id(self):
self.info.clear()

We will explain the package_id() method later and explain how you can customize the way the package ID for the
package is calculated. You can also check the Conanfile’s methods reference if you want to know how this method
works in more detail.

See also:
• Header-only packages.

• Check the binary compatibility compatibility.py extension.

• Conan package types.

• Setting package_id_mode for requirements.

• Read the binary model reference for a full view of the Conan binary model.

4.2.6 Build packages: the build() method

We already used a Conan recipe that has a build() method and learned how to use that to invoke a build system and
build our packages. In this tutorial, we will modify that method and explain how you can use it to do things like:

• Building and running tests

• Conditional patching of the source code

• Select the build system you want to use conditionally

Please, first clone the sources to recreate this project. You can find them in the examples2 repository on GitHub:

$ git clone https://github.com/conan-io/examples2.git
$ cd examples2/tutorial/creating_packages/build_method

Build and run tests for your project

You will notice some changes in the conanfile.py file from the previous recipe. Let’s check the relevant parts:

4.2. Creating packages 67

https://github.com/conan-io/examples2

Conan Documentation, Release 2.1.0

Changes introduced in the recipe

Listing 45: conanfile.py

class helloRecipe(ConanFile):
name = "hello"
version = "1.0"

...

def source(self):
git = Git(self)
git.clone(url="https://github.com/conan-io/libhello.git", target=".")
Please, be aware that using the head of the branch instead of an immutable tag
or commit is not a good practice in general
git.checkout("with_tests")

...

def requirements(self):
if self.options.with_fmt:

self.requires("fmt/8.1.1")
self.test_requires("gtest/1.11.0")

...

def generate(self):
tc = CMakeToolchain(self)
if self.options.with_fmt:

tc.variables["WITH_FMT"] = True
tc.generate()

def build(self):
cmake = CMake(self)
cmake.configure()
cmake.build()
if not self.conf.get("tools.build:skip_test", default=False):

test_folder = os.path.join("tests")
if self.settings.os == "Windows":

test_folder = os.path.join("tests", str(self.settings.build_type))
self.run(os.path.join(test_folder, "test_hello"))

...

• We added the gtest/1.11.0 requirement to the recipe as a test_requires(). It’s a type of requirement intended
for testing libraries like Catch2 or gtest.

• We use the tools.build:skip_test configuration (False by default), to tell CMake whether to build and run
the tests or not. A couple of things to bear in mind:

– If we set the tools.build:skip_test configuration to True Conan will automatically inject the
BUILD_TESTING variable to CMake set to OFF. You will see in the next section that we are using this
variable in our CMakeLists.txt to decide whether to build the tests or not.

– We use the tools.build:skip_test configuration in the build() method, after building the package

68 Chapter 4. Tutorial

Conan Documentation, Release 2.1.0

and tests, to decide if we want to run the tests or not.

– In this case we are using gtest for testing and we have to check if the build method is to run the tests or not.
This configuration also affects the execution of CMake.test() if you are using CTest and Meson.test()
for Meson.

Changes introduced in the library sources

First, please note that we are using another branch from the libhello library. This branch has two novelties on the library
side:

• We added a new function called compose_message() to the library sources so we can add some unit tests over
this function. This function is just creating an output message based on the arguments passed.

• As we mentioned in the previous section the CMakeLists.txt for the library uses the BUILD_TESTING CMake
variable that conditionally adds the tests directory.

Listing 46: CMakeLists.txt

cmake_minimum_required(VERSION 3.15)
project(hello CXX)

...

if (NOT BUILD_TESTING STREQUAL OFF)
add_subdirectory(tests)

endif()

...

The BUILD_TESTINGCMake variable is declared and set to OFF by Conan (if not already defined) whenever the tools.
build:skip_test configuration is set to value True. This variable is typically declared by CMake when you use
CTest but using the tools.build:skip_test configuration you can use it in your CMakeLists.txt even if you are
using another testing framework.

• We have a CMakeLists.txt in the tests folder using googletest for testing.

Listing 47: tests/CMakeLists.txt

cmake_minimum_required(VERSION 3.15)
project(PackageTest CXX)

find_package(GTest REQUIRED CONFIG)

add_executable(test_hello test.cpp)
target_link_libraries(test_hello GTest::gtest GTest::gtest_main hello)

With basic tests on the functionality of the compose_message() function:

Listing 48: tests/test.cpp

#include "../include/hello.h"
#include "gtest/gtest.h"

namespace {
(continues on next page)

4.2. Creating packages 69

https://github.com/conan-io/libhello/tree/with_tests
https://github.com/conan-io/libhello/blob/with_tests/src/hello.cpp#L9-L12
https://github.com/conan-io/libhello/blob/with_tests/CMakeLists.txt#L15-L17
https://cmake.org/cmake/help/latest/module/CTest.html
https://github.com/conan-io/libhello/blob/with_tests/tests/CMakeLists.txt
https://github.com/google/googletest

Conan Documentation, Release 2.1.0

(continued from previous page)

TEST(HelloTest, ComposeMessages) {
EXPECT_EQ(std::string("hello/1.0: Hello World Release! (with color!)\n"), compose_

→˓message("Release", "with color!"));
...
}

}

Now that we have gone through all the changes in the code, let’s try them out:

$ conan create . --build=missing -tf=""
...
[25%] Building CXX object CMakeFiles/hello.dir/src/hello.cpp.o
[50%] Linking CXX static library libhello.a
[50%] Built target hello
[75%] Building CXX object tests/CMakeFiles/test_hello.dir/test.cpp.o
[100%] Linking CXX executable test_hello
[100%] Built target test_hello
hello/1.0: RUN: ./tests/test_hello
Capturing current environment in /Users/user/.conan2/p/tmp/c51d80ef47661865/b/build/
→˓generators/deactivate_conanbuildenv-release-x86_64.sh
Configuring environment variables
Running main() from /Users/user/.conan2/p/tmp/3ad4c6873a47059c/b/googletest/src/gtest_
→˓main.cc
[==========] Running 1 test from 1 test suite.
[----------] Global test environment set-up.
[----------] 1 test from HelloTest
[RUN] HelloTest.ComposeMessages
[OK] HelloTest.ComposeMessages (0 ms)
[----------] 1 test from HelloTest (0 ms total)

[----------] Global test environment tear-down
[==========] 1 test from 1 test suite ran. (0 ms total)
[PASSED] 1 test.
hello/1.0: Package '82b6c0c858e739929f74f59c25c187b927d514f3' built
...

As you can see, the tests were built and run. Let’s use now the tools.build:skip_test configuration in the command
line to skip the test building and running:

$ conan create . -c tools.build:skip_test=True -tf="""
...
[50%] Building CXX object CMakeFiles/hello.dir/src/hello.cpp.o
[100%] Linking CXX static library libhello.a
[100%] Built target hello
hello/1.0: Package '82b6c0c858e739929f74f59c25c187b927d514f3' built
...

You can see now that only the library target was built and that no tests were built or run.

70 Chapter 4. Tutorial

Conan Documentation, Release 2.1.0

Conditionally patching the source code

If you need to patch the source code the recommended approach is to do that in the source() method. Sometimes,
if that patch depends on settings or options, you have to use the build() method to apply patches to the source code
before launching the build. There are several ways to do this in Conan. One of them would be using the replace_in_file
tool:

import os
from conan import ConanFile
from conan.tools.files import replace_in_file

class helloRecipe(ConanFile):
name = "hello"
version = "1.0"

Binary configuration
settings = "os", "compiler", "build_type", "arch"
options = {"shared": [True, False], "fPIC": [True, False]}
default_options = {"shared": False, "fPIC": True}

def build(self):
replace_in_file(self, os.path.join(self.source_folder, "src", "hello.cpp"),

"Hello World",
"Hello {} Friends".format("Shared" if self.options.shared else

→˓"Static"))

Please, note that patching in build() should be avoided if possible and only be done for very particular cases as it will
make more difficult to develop your packages locally (we will explain more about this in the local development flow
section later)

Conditionally select your build system

It’s not uncommon that some packages need one build system or another depending on the platform we are building
on. For example, the hello library could build in Windows using CMake and in Linux and MacOS using Autotools.
This can be easily handled in the build() method like this:

...

class helloRecipe(ConanFile):
name = "hello"
version = "1.0"

Binary configuration
settings = "os", "compiler", "build_type", "arch"
options = {"shared": [True, False], "fPIC": [True, False]}
default_options = {"shared": False, "fPIC": True}

...

def generate(self):
if self.settings.os == "Windows":

tc = CMakeToolchain(self)
(continues on next page)

4.2. Creating packages 71

Conan Documentation, Release 2.1.0

(continued from previous page)

tc.generate()
deps = CMakeDeps(self)
deps.generate()

else:
tc = AutotoolsToolchain(self)
tc.generate()
deps = PkgConfigDeps(self)
deps.generate()

...

def build(self):
if self.settings.os == "Windows":

cmake = CMake(self)
cmake.configure()
cmake.build()

else:
autotools = Autotools(self)
autotools.autoreconf()
autotools.configure()
autotools.make()

...

See also:
• Patching sources

4.2.7 Package files: the package() method

We already used the package() method in our hello package to invoke CMake’s install step. In this tutorial, we will
explain the use of the CMake.install() in more detail and also how to modify this method to do things like:

• Using conan.tools.files utilities to copy the generated artifacts from the build folder to the package folder

• Copying package licenses

• Manage how to package symlinks

Please, first clone the sources to recreate this project. You can find them in the examples2 repository on GitHub:

$ git clone https://github.com/conan-io/examples2.git
$ cd examples2/tutorial/creating_packages/package_method

72 Chapter 4. Tutorial

https://github.com/conan-io/examples2

Conan Documentation, Release 2.1.0

Using CMake install step in the package() method

This is the simplest choice when you have already defined in your CMakeLists.txt the functionality of extracting the
artifacts (headers, libraries, binaries) from the build and source folder to a predetermined place and maybe do some
post-processing of those artifacts. This will work without changes in your CMakeLists.txt because Conan will set the
CMAKE_INSTALL_PREFIX CMake variable to point to the recipe’s package_folder attribute. Then, just calling install()
in the CMakeLists.txt over the created target is enough for Conan to move the built artifacts to the correct location in
the Conan local cache.

Listing 49: CMakeLists.txt

cmake_minimum_required(VERSION 3.15)
project(hello CXX)

add_library(hello src/hello.cpp)
target_include_directories(hello PUBLIC include)
set_target_properties(hello PROPERTIES PUBLIC_HEADER "include/hello.h")

...

install(TARGETS hello)

Listing 50: conanfile.py

def package(self):
cmake = CMake(self)
cmake.install()

Let’s build our package again and pay attention to the lines regarding the packaging of files in the Conan local cache:

$ conan create . --build=missing -tf=""
...
hello/1.0: Build folder /Users/user/.conan2/p/tmp/b5857f2e70d1b2fd/b/build/Release
hello/1.0: Generated conaninfo.txt
hello/1.0: Generating the package
hello/1.0: Temporary package folder /Users/user/.conan2/p/tmp/b5857f2e70d1b2fd/p
hello/1.0: Calling package()
hello/1.0: CMake command: cmake --install "/Users/user/.conan2/p/tmp/b5857f2e70d1b2fd/b/
→˓build/Release" --prefix "/Users/user/.conan2/p/tmp/b5857f2e70d1b2fd/p"
hello/1.0: RUN: cmake --install "/Users/user/.conan2/p/tmp/b5857f2e70d1b2fd/b/build/
→˓Release" --prefix "/Users/user/.conan2/p/tmp/b5857f2e70d1b2fd/p"
-- Install configuration: "Release"
-- Installing: /Users/user/.conan2/p/tmp/b5857f2e70d1b2fd/p/lib/libhello.a
-- Installing: /Users/user/.conan2/p/tmp/b5857f2e70d1b2fd/p/include/hello.h
hello/1.0 package(): Packaged 1 '.h' file: hello.h
hello/1.0 package(): Packaged 1 '.a' file: libhello.a
hello/1.0: Package 'fd7c4113dad406f7d8211b3470c16627b54ff3af' created
hello/1.0: Created package revision bf7f5b9a3bb2c957742be4be216dfcbb
hello/1.0: Full package reference: hello/1.0
→˓#25e0b5c00ae41ef9fbfbbb1e5ac86e1e:fd7c4113dad406f7d8211b3470c16627b54ff3af
→˓#bf7f5b9a3bb2c957742be4be216dfcbb
hello/1.0: Package folder /Users/user/.conan2/p/47b4c4c61c8616e5/p

As you can see both the include and library files were copied to the package folder after calling to the cmake.

4.2. Creating packages 73

Conan Documentation, Release 2.1.0

install() method.

Use conan.tools.files.copy() in the package() method and packaging licenses

For the cases that you don’t want to rely on CMake’s install functionality or that you are using another build-system,
Conan provides the tools to copy the selected files to the package_folder. In this case, you can use the tools.files.copy
function to make that copy. We can replace the previous cmake.install() step with a custom copy of the files and
the result would be the same.

Note that we are also packaging the LICENSE file from the library sources in the licenses folder. This is a common
pattern in Conan packages and could also be added to the previous example using cmake.install() as the CMake-
Lists.txt will not copy this file to the package folder.

Listing 51: conanfile.py

def package(self):
copy(self, "LICENSE", src=self.source_folder, dst=os.path.join(self.package_folder,

→˓"licenses"))
copy(self, pattern="*.h", src=os.path.join(self.source_folder, "include"), dst=os.

→˓path.join(self.package_folder, "include"))
copy(self, pattern="*.a", src=self.build_folder, dst=os.path.join(self.package_

→˓folder, "lib"), keep_path=False)
copy(self, pattern="*.so", src=self.build_folder, dst=os.path.join(self.package_

→˓folder, "lib"), keep_path=False)
copy(self, pattern="*.lib", src=self.build_folder, dst=os.path.join(self.package_

→˓folder, "lib"), keep_path=False)
copy(self, pattern="*.dll", src=self.build_folder, dst=os.path.join(self.package_

→˓folder, "bin"), keep_path=False)
copy(self, pattern="*.dylib", src=self.build_folder, dst=os.path.join(self.package_

→˓folder, "lib"), keep_path=False)

Let’s build our package one more time and pay attention to the lines regarding the packaging of files in the Conan local
cache:

$ conan create . --build=missing -tf=""
...
hello/1.0: Build folder /Users/user/.conan2/p/tmp/222db0532bba7cbc/b/build/Release
hello/1.0: Generated conaninfo.txt
hello/1.0: Generating the package
hello/1.0: Temporary package folder /Users/user/.conan2/p/tmp/222db0532bba7cbc/p
hello/1.0: Calling package()
hello/1.0: Copied 1 file: LICENSE
hello/1.0: Copied 1 '.h' file: hello.h
hello/1.0: Copied 1 '.a' file: libhello.a
hello/1.0 package(): Packaged 1 file: LICENSE
hello/1.0 package(): Packaged 1 '.h' file: hello.h
hello/1.0 package(): Packaged 1 '.a' file: libhello.a
hello/1.0: Package 'fd7c4113dad406f7d8211b3470c16627b54ff3af' created
hello/1.0: Created package revision 50f91e204d09b64b24b29df3b87a2f3a
hello/1.0: Full package reference: hello/1.0
→˓#96ed9fb1f78bc96708b1abf4841523b0:fd7c4113dad406f7d8211b3470c16627b54ff3af
→˓#50f91e204d09b64b24b29df3b87a2f3a
hello/1.0: Package folder /Users/user/.conan2/p/21ec37b931782de8/p

74 Chapter 4. Tutorial

Conan Documentation, Release 2.1.0

Check how the include and library files are packaged. The LICENSE file is also copied as we explained above.

Managing symlinks in the package() method

Another thing you can do in the package method is managing how to package symlinks. Conan won’t manipulate
symlinks by default, so we provide several tools to convert absolute symlinks to relative ones and removing external or
broken symlinks.

Imagine that some of the files packaged in the latest example were symlinks that point to an absolute location inside
the Conan cache. Then, calling to conan.tools.files.symlinks.absolute_to_relative_symlinks() would
convert those absolute links into relative paths and make the package relocatable.

Listing 52: conanfile.py

from conan.tools.files.symlinks import absolute_to_relative_symlinks

def package(self):
copy(self, "LICENSE", src=self.source_folder, dst=os.path.join(self.package_folder,

→˓"licenses"))
copy(self, pattern="*.h", src=os.path.join(self.source_folder, "include"), dst=os.

→˓path.join(self.package_folder, "include"))
copy(self, pattern="*.a", src=self.build_folder, dst=os.path.join(self.package_

→˓folder, "lib"), keep_path=False)
...

absolute_to_relative_symlinks(self, self.package_folder)

See also:
• Package method reference

• package() method reference

4.2.8 Define information for consumers: the package_info() method

In the previous tutorial section, we explained how to store the headers and binaries of a library in a Conan package
using the package method. Consumers that depend on that package will reuse those files, but we have to provide some
additional information so that Conan can pass that to the build system and consumers can use the package.

For instance, in our example, we are building a static library named hello that will result in a libhello.a file in Linux and
macOS or a hello.lib file in Windows. Also, we are packaging a header file hello.h with the declaration of the library
functions. The Conan package ends up with the following structure in the Conan local cache:

.
include

hello.h
lib

libhello.a

Then, consumers that want to link against this library will need some information:

• The location of the include folder in the Conan local cache to search for the hello.h file.

• The name of the library file to link against it (libhello.a or hello.lib)

• The location of the lib folder in the Conan local cache to search for the library file.

4.2. Creating packages 75

Conan Documentation, Release 2.1.0

Conan provides an abstraction over all the information consumers may need in the cpp_info attribute of the ConanFile.
The information for this attribute must be set in the package_info() method. Let’s have a look at the package_info()
method of our hello/1.0 Conan package:

Listing 53: conanfile.py

...

class helloRecipe(ConanFile):
name = "hello"
version = "1.0"

...

def package_info(self):
self.cpp_info.libs = ["hello"]

We can see a couple of things:

• We are adding a hello library to the libs property of the cpp_info to tell consumers that they should link the
libraries from that list.

• We are not adding information about the lib or include folders where the library and headers files are packaged.
The cpp_info object provides the .includedirs and .libdirs properties to define those locations but Conan
sets their value as lib and include by default so it’s not needed to add those in this case. If you were copying the
package files to a different location then you have to set those explicitly. The declaration of the package_info
method in our Conan package would be equivalent to this one:

Listing 54: conanfile.py

...

class helloRecipe(ConanFile):
name = "hello"
version = "1.0"

...

def package_info(self):
self.cpp_info.libs = ["hello"]
conan sets libdirs = ["lib"] and includedirs = ["include"] by default
self.cpp_info.libdirs = ["lib"]
self.cpp_info.includedirs = ["include"]

Setting information in the package_info() method

Besides what we explained above about the information you can set in the package_info() method, there are some
typical use cases:

• Define information for consumers depending on settings or options

• Customizing certain information that generators provide to consumers, like the target names for CMake or the
generated files names for pkg-config for example

• Propagating configuration values to consumers

• Propagating environment information to consumers

76 Chapter 4. Tutorial

Conan Documentation, Release 2.1.0

• Define components for Conan packages that provide multiple libraries

Let’s see some of those in action. First, clone the project sources if you haven’t done so yet. You can find them in the
examples2 repository on GitHub:

$ git clone https://github.com/conan-io/examples2.git
$ cd examples2/tutorial/creating_packages/package_information

Define information for consumers depending on settings or options

For this section of the tutorial we introduced some changes in the library and recipe. Let’s check the relevant parts:

Changes introduced in the library sources

First, please note that we are using another branch from the libhello library. Let’s check the library’s CMakeLists.txt:

Listing 55: CMakeLists.txt

cmake_minimum_required(VERSION 3.15)
project(hello CXX)

...

add_library(hello src/hello.cpp)

if (BUILD_SHARED_LIBS)
set_target_properties(hello PROPERTIES OUTPUT_NAME hello-shared)

else()
set_target_properties(hello PROPERTIES OUTPUT_NAME hello-static)

endif()

...

As you can see, we are setting the output name for the library depending on whether we are building the library as static
(hello-static) or as shared (hello-shared). Now let’s see how to translate these changes to the Conan recipe.

Changes introduced in the recipe

To update our recipe according to the changes in the library’s CMakeLists.txt we have to conditionally set the library
name depending on the self.options.shared option in the package_info() method:

Listing 56: conanfile.py

class helloRecipe(ConanFile):
...

def source(self):
git = Git(self)
git.clone(url="https://github.com/conan-io/libhello.git", target=".")
Please, be aware that using the head of the branch instead of an immutable tag
or commit is not a good practice in general

(continues on next page)

4.2. Creating packages 77

https://github.com/conan-io/examples2
https://github.com/conan-io/libhello/tree/package_info

Conan Documentation, Release 2.1.0

(continued from previous page)

git.checkout("package_info")

...

def package_info(self):
if self.options.shared:

self.cpp_info.libs = ["hello-shared"]
else:

self.cpp_info.libs = ["hello-static"]

Now, let’s create the Conan package with shared=False (that’s the default so no need to set it explicitly) and check
that we are packaging the correct library (libhello-static.a or hello-static.lib) and that we are linking the correct library
in the test_package.

$ conan create . --build=missing
...
-- Install configuration: "Release"
-- Installing: /Users/user/.conan2/p/tmp/a311fcf8a63f3206/p/lib/libhello-static.a
-- Installing: /Users/user/.conan2/p/tmp/a311fcf8a63f3206/p/include/hello.h
hello/1.0 package(): Packaged 1 '.h' file: hello.h
hello/1.0 package(): Packaged 1 '.a' file: libhello-static.a
hello/1.0: Package 'fd7c4113dad406f7d8211b3470c16627b54ff3af' created
...
-- Build files have been written to: /Users/user/.conan2/p/tmp/a311fcf8a63f3206/b/build/
→˓Release
hello/1.0: CMake command: cmake --build "/Users/user/.conan2/p/tmp/a311fcf8a63f3206/b/
→˓build/Release" -- -j16
hello/1.0: RUN: cmake --build "/Users/user/.conan2/p/tmp/a311fcf8a63f3206/b/build/Release
→˓" -- -j16
[25%] Building CXX object CMakeFiles/hello.dir/src/hello.cpp.o
[50%] Linking CXX static library libhello-static.a
[50%] Built target hello
[75%] Building CXX object tests/CMakeFiles/test_hello.dir/test.cpp.o
[100%] Linking CXX executable test_hello
[100%] Built target test_hello
hello/1.0: RUN: tests/test_hello
...
[50%] Building CXX object CMakeFiles/example.dir/src/example.cpp.o
[100%] Linking CXX executable example
[100%] Built target example

-------- Testing the package: Running test() --------
hello/1.0 (test package): Running test()
hello/1.0 (test package): RUN: ./example
hello/1.0: Hello World Release! (with color!)

As you can see both the tests for the library and the Conan test_package linked against the libhello-static.a library
successfully.

78 Chapter 4. Tutorial

Conan Documentation, Release 2.1.0

Properties model: setting information for specific generators

The CppInfo object provides the set_property method to set information specific to each generator. For example,
in this tutorial, we use the CMakeDeps generator to generate the information that CMake needs to build a project that
requires our library. CMakeDeps, by default, will set a target name for the library using the same name as the Conan
package. If you have a look at that CMakeLists.txt from the test_package:

Listing 57: test_package CMakeLists.txt

cmake_minimum_required(VERSION 3.15)
project(PackageTest CXX)

find_package(hello CONFIG REQUIRED)

add_executable(example src/example.cpp)
target_link_libraries(example hello::hello)

You can see that we are linking with the target name hello::hello. Conan sets this target name by default, but we
can change it using the properties model. Let’s try to change it to the name hello::myhello. To do this, we have to
set the property cmake_target_name in the package_info method of our hello/1.0 Conan package:

Listing 58: conanfile.py

class helloRecipe(ConanFile):
...

def package_info(self):
if self.options.shared:

self.cpp_info.libs = ["hello-shared"]
else:

self.cpp_info.libs = ["hello-static"]

self.cpp_info.set_property("cmake_target_name", "hello::myhello")

Then, change the target name we are using in the CMakeLists.txt in the test_package folder to hello::myhello:

Listing 59: test_package CMakeLists.txt

cmake_minimum_required(VERSION 3.15)
project(PackageTest CXX)
...
target_link_libraries(example hello::myhello)

And re-create the package:

$ conan create . --build=missing
Exporting the recipe
hello/1.0: Exporting package recipe
hello/1.0: Using the exported files summary hash as the recipe revision:␣
→˓44d78a68b16b25c5e6d7e8884b8f58b8
hello/1.0: A new conanfile.py version was exported
hello/1.0: Folder: /Users/user/.conan2/p/a8cb81b31dc10d96/e
hello/1.0: Exported revision: 44d78a68b16b25c5e6d7e8884b8f58b8
...
-------- Testing the package: Building --------

(continues on next page)

4.2. Creating packages 79

Conan Documentation, Release 2.1.0

(continued from previous page)

hello/1.0 (test package): Calling build()
...
-- Detecting CXX compile features
-- Detecting CXX compile features - done
-- Conan: Target declared 'hello::myhello'
...
[100%] Linking CXX executable example
[100%] Built target example

-------- Testing the package: Running test() --------
hello/1.0 (test package): Running test()
hello/1.0 (test package): RUN: ./example
hello/1.0: Hello World Release! (with color!)

You can see how Conan now declares the hello::myhello instead of the default hello::hello and the test_package
builds successfully.

The target name is not the only property you can set in the CMakeDeps generator. For a complete list of properties that
affect the CMakeDeps generator behaviour, please check the reference.

Propagating environment or configuration information to consumers

You can provide environment information to consumers in the package_info(). To do so, you can use the ConanFile’s
runenv_info and buildenv_info properties:

• runenv_info Environment object that defines environment information that consumers that use the package
may need when running.

• buildenv_info Environment object that defines environment information that consumers that use the package
may need when building.

Please note that it’s not necessary to add cpp_info.bindirs to PATH or cpp_info.libdirs to LD_LIBRARY_PATH,
those are automatically added by the VirtualBuildEnv and VirtualRunEnv.

You can also define configuration values in the package_info() so that consumers can use that information. To do
this, set the conf_info property of the ConanFile.

To know more about this use case, please check the corresponding example.

Define components for Conan packages that provide multiple libraries

There are cases in which a Conan package may provide multiple libraries, for these cases you can set the separate
information for each of those libraries using the components attribute from the CppInfo object.

To know more about this use case, please check the components example in the examples section.

See also:
• Propagating environment and configuration information to consumers example

• Define components for Conan packages that provide multiple libraries example

• package_info() reference

80 Chapter 4. Tutorial

Conan Documentation, Release 2.1.0

4.2.9 Testing Conan packages

In all the previous sections of the tutorial, we used the test_package. It was invoked automatically at the end of the
conan create command after building our package verifying that the package is created correctly. Let’s explain the
test_package in more detail in this section:

Please, first clone the sources to recreate this project. You can find them in the examples2 repository on GitHub:

$ git clone https://github.com/conan-io/examples2.git
$ cd examples2/tutorial/creating_packages/testing_packages

Some important notes to have in mind about the test_package:

• The test_package folder is different from unit or integration tests. These tests are “package” tests, and validate
that the package is properly created, and that the package consumers will be able to link against it and reuse it.

• It is a small Conan project itself, it contains its own conanfile.py, and its source code including build scripts, that
depends on the package being created, and builds and execute a small application that requires the library in the
package.

• It doesn’t belong to the package. It only exist in the source repository, not in the package.

The test_package folder for our hello/1.0 Conan package has the following contents:

test_package
CMakeLists.txt
conanfile.py
src

example.cpp

Let’s have a look at the different files that are part of the test_package. First, example.cpp is just a minimal example of
how to use the libhello library that we are packaging:

Listing 60: test_package/src/example.cpp

#include "hello.h"

int main() {
hello();

}

Then the CMakeLists.txt file to tell CMake how to build the example:

Listing 61: test_package/CMakeLists.txt

cmake_minimum_required(VERSION 3.15)
project(PackageTest CXX)

find_package(hello CONFIG REQUIRED)

add_executable(example src/example.cpp)
target_link_libraries(example hello::hello)

Finally, the recipe for the test_package that consumes the hello/1.0 Conan package:

4.2. Creating packages 81

https://github.com/conan-io/examples2

Conan Documentation, Release 2.1.0

Listing 62: test_package/conanfile.py

import os

from conan import ConanFile
from conan.tools.cmake import CMake, cmake_layout
from conan.tools.build import can_run

class helloTestConan(ConanFile):
settings = "os", "compiler", "build_type", "arch"
generators = "CMakeDeps", "CMakeToolchain"

def requirements(self):
self.requires(self.tested_reference_str)

def build(self):
cmake = CMake(self)
cmake.configure()
cmake.build()

def layout(self):
cmake_layout(self)

def test(self):
if can_run(self):

cmd = os.path.join(self.cpp.build.bindir, "example")
self.run(cmd, env="conanrun")

Let’s go through the most relevant parts:

• We add the requirements in the requirements() method, but in this case we use the tested_reference_str
attribute that Conan sets to pass to the test_package. This is a convenience attribute to avoid hardcoding the
package name in the test_package so that we can reuse the same test_package for several versions of the same
Conan package. In our case, this variable will take the hello/1.0 value.

• We define a test() method. This method will only be invoked in the test_package recipes. It executes imme-
diately after build() is called, and it’s meant to run some executable or tests on binaries to prove the package
is correctly created. A couple of comments about the contents of our test() method:

– We are using the conan.tools.build.cross_building tool to check if we can run the built executable in our
platform. This tool will return the value of the tools.build.cross_building:can_run in case it’s set.
Otherwise it will return if we are cross-building or not. It’s an useful feature for the case your architecture
can run more than one target. For instance, Mac M1 machines can run both armv8 and x86_64.

– We run the example binary, that was generated in the self.cpp.build.bindir folder using the environ-
ment information that Conan put in the run environment. Conan will then invoke a launcher containing
the runtime environment information, anything that is necessary for the environment to run the compiled
executables and applications.

Now that we have gone through all the important bits of the code, let’s try our test_package. Although we already
learned that the test_package is invoked when we call to conan create, you can also just create the test_package if
you have already created the hello/1.0 package in the Conan cache. This is done with the conan test command:

$ conan test test_package hello/1.0
(continues on next page)

82 Chapter 4. Tutorial

Conan Documentation, Release 2.1.0

(continued from previous page)

...

-------- test_package: Computing necessary packages --------
Requirements

fmt/8.1.1#cd132b054cf999f31bd2fd2424053ddc:ff7a496f48fca9a88dc478962881e015f4a5b98f
→˓#1d9bb4c015de50bcb4a338c07229b3bc - Cache

hello/1.0#25e0b5c00ae41ef9fbfbbb1e5ac86e1e:fd7c4113dad406f7d8211b3470c16627b54ff3af
→˓#4ff3fd65a1d37b52436bf62ea6eaac04 - Cache
Test requirements

gtest/1.11.0
→˓#d136b3379fdb29bdfe31404b916b29e1:656efb9d626073d4ffa0dda2cc8178bc408b1bee
→˓#ee8cbd2bf32d1c89e553bdd9d5606127 - Skip

...

[50%] Building CXX object CMakeFiles/example.dir/src/example.cpp.o
[100%] Linking CXX executable example
[100%] Built target example

-------- Testing the package: Running test() --------
hello/1.0 (test package): Running test()
hello/1.0 (test package): RUN: ./example
hello/1.0: Hello World Release! (with color!)

As you can see in the output, our test_package builds successfully testing that the hello/1.0 Conan package can be
consumed with no problem.

See also:
• Test tool_requires packages

• . . .

4.2.10 Other types of packages

In the previous sections, we saw how to create a new recipe for a classic C++ library but there are other types of
packages rather than libraries.

In this section, we will review how to create a recipe for header-only libraries, how to package already built
libraries, and how to create recipes for tool requires and applications.

Header-only packages

In this section, we are going to learn how to create a recipe for a header-only library.

Please, first clone the sources to recreate this project. You can find them in the examples2 repository on GitHub:

$ git clone https://github.com/conan-io/examples2.git
$ cd examples2/tutorial/creating_packages/other_packages/header_only

A header-only library is composed only of header files. That means a consumer doesn’t link with any library but
includes headers, so we need only one binary configuration for a header-only library.

4.2. Creating packages 83

https://github.com/conan-io/examples2

Conan Documentation, Release 2.1.0

In the Create your first Conan package section, we learned about the settings, and how building the recipe applying
different build_type (Release/Debug) generates a new binary package.

As we only need one binary package, we don’t need to declare the settings attribute. This is a basic recipe for a header-
only recipe:

Listing 63: conanfile.py

from conan import ConanFile
from conan.tools.files import copy

class SumConan(ConanFile):
name = "sum"
version = "0.1"
No settings/options are necessary, this is header only
exports_sources = "include/*"
We can avoid copying the sources to the build folder in the cache
no_copy_source = True

def package(self):
This will also copy the "include" folder
copy(self, "*.h", self.source_folder, self.package_folder)

def package_info(self):
For header-only packages, libdirs and bindirs are not used
so it's necessary to set those as empty.
self.cpp_info.bindirs = []
self.cpp_info.libdirs = []

Please, note that we are setting cpp_info.bindirs and cpp_info.libdirs to [] because header-only libraries don’t
have compiled libraries or binaries, but they default to ["bin"], and ["lib"], then it is necessary to change it.

Also check that we are setting the no_copy_source attribute to True so that the source code will not be copied from the
source_folder to the build_folder. This is a typical optimization for header-only libraries to avoid extra copies.

Our header-only library is this simple function that sums two numbers:

Listing 64: include/sum.h

inline int sum(int a, int b){
return a + b;

}

The folder examples2/tutorial/creating_packages/other_packages/header_only in the cloned project contains a
test_package folder with an example of an application consuming the header-only library. So we can run a conan
create . command to build the package and test the package:

$ conan create .
...
[50%] Building CXX object CMakeFiles/example.dir/src/example.cpp.o
[100%] Linking CXX executable example
[100%] Built target example

-------- Testing the package: Running test() ----------
sum/0.1 (test package): Running test()

(continues on next page)

84 Chapter 4. Tutorial

Conan Documentation, Release 2.1.0

(continued from previous page)

sum/0.1 (test package): RUN: ./example
1 + 3 = 4

After running the conan create a new binary package is created for the header-only library, and we can see how the
test_package project can use it correctly.

We can list the binary packages created running this command:

$ conan list sum/0.1#:*
Local Cache:
sum

sum/0.1#8d9f1fb3655adcb348befcd8374c5292 (2022-12-22 17:33:45 UTC)
PID: da39a3ee5e6b4b0d3255bfef95601890afd80709 (2022-12-22 17:33:45 UTC)

No package info/revision was found.

We get one package with the package ID da39a3ee5e6b4b0d3255bfef95601890afd80709. Let’s see what happen
if we run the conan create but specifying -s build_type=Debug:

$ conan create . -s build_type=Debug
$ conan list sum/0.1#:*
Local Cache:
sum

sum/0.1#8d9f1fb3655adcb348befcd8374c5292 (2022-12-22 17:34:23 UTC)
PID: da39a3ee5e6b4b0d3255bfef95601890afd80709 (2022-12-22 17:34:23 UTC)

No package info/revision was found.

Even in the test_package executable is built for Debug, we get the same binary package for the header-only li-
brary. This is because we didn’t specify the settings attribute in the recipe, so the changes in the input settings (-s
build_type=Debug) do not affect the recipe and therefore the generated binary package is always the same.

Header-only library with tests

In the previous example, we saw why a recipe header-only library shouldn’t declare the settings attribute, but some-
times the recipe needs them to build some executable, for example, for testing the library. Nonetheless, the binary
package of the header-only library should still be unique, so we are going to review how to achieve that.

Please, first clone the sources to recreate this project. You can find them in the examples2 repository on GitHub:

$ git clone https://github.com/conan-io/examples2.git
$ cd examples2/tutorial/creating_packages/other_packages/header_only_gtest

We have the same header-only library that sums two numbers, but now we have this recipe:

import os
from conan import ConanFile
from conan.tools.files import copy
from conan.tools.cmake import cmake_layout, CMake

class SumConan(ConanFile):
name = "sum"
version = "0.1"
settings = "os", "arch", "compiler", "build_type"

(continues on next page)

4.2. Creating packages 85

https://github.com/conan-io/examples2

Conan Documentation, Release 2.1.0

(continued from previous page)

exports_sources = "include/*", "test/*"
no_copy_source = True
generators = "CMakeToolchain", "CMakeDeps"

def requirements(self):
self.test_requires("gtest/1.11.0")

def validate(self):
check_min_cppstd(self, 11)

def layout(self):
cmake_layout(self)

def build(self):
if not self.conf.get("tools.build:skip_test", default=False):

cmake = CMake(self)
cmake.configure(build_script_folder="test")
cmake.build()
self.run(os.path.join(self.cpp.build.bindir, "test_sum"))

def package(self):
This will also copy the "include" folder
copy(self, "*.h", self.source_folder, self.package_folder)

def package_info(self):
For header-only packages, libdirs and bindirs are not used
so it's necessary to set those as empty.
self.cpp_info.bindirs = []
self.cpp_info.libdirs = []

def package_id(self):
self.info.clear()

These are the changes introduced in the recipe:

• We are introducing a test_require to gtest/1.11.0. A test_require is similar to a regular requirement
but it is not propagated to the consumers and cannot conflict.

• gtest needs at least C++11 to build. So we introduced a validate() method calling check_min_cppstd.

• As we are building the gtest examples with CMake, we use the generators CMakeToolchain and CMakeDeps,
and we declared the cmake_layout() to have a known/standard directory structure.

• We have a build() method, building the tests, but only when the standard conf tools.build:skip_test is
not True. Use that conf as a standard way to enable/disable the testing. It is used by the helpers like CMake to
skip the cmake.test() in case we implement the tests in CMake.

• We have a package_id()method calling self.info.clear(). This is internally removing all the information
(settings, options, requirements) from the package_id calculation so we generate only one configuration for our
header-only library.

We can call conan create to build and test our package.

$ conan create . -s compiler.cppstd=14 --build missing
...

(continues on next page)

86 Chapter 4. Tutorial

Conan Documentation, Release 2.1.0

(continued from previous page)

Running main() from /Users/luism/.conan2/p/tmp/9bf83ef65d5ff0d6/b/googletest/
→˓src/gtest_main.cc
[==========] Running 1 test from 1 test suite.
[----------] Global test environment set-up.
[----------] 1 test from SumTest
[RUN] SumTest.BasicSum
[OK] SumTest.BasicSum (0 ms)
[----------] 1 test from SumTest (0 ms total)

[----------] Global test environment tear-down
[==========] 1 test from 1 test suite ran. (0 ms total)
[PASSED] 1 test.
sum/0.1: Package 'da39a3ee5e6b4b0d3255bfef95601890afd80709' built
...

We can run conan create again specifying a different compiler.cppstd and the built package would be the same:

$ conan create . -s compiler.cppstd=17
...
sum/0.1: RUN: ./test_sum
Running main() from /Users/luism/.conan2/p/tmp/9bf83ef65d5ff0d6/b/googletest/
→˓src/gtest_main.cc
[==========] Running 1 test from 1 test suite.
[----------] Global test environment set-up.
[----------] 1 test from SumTest
[RUN] SumTest.BasicSum
[OK] SumTest.BasicSum (0 ms)
[----------] 1 test from SumTest (0 ms total)

[----------] Global test environment tear-down
[==========] 1 test from 1 test suite ran. (0 ms total)
[PASSED] 1 test.
sum/0.1: Package 'da39a3ee5e6b4b0d3255bfef95601890afd80709' built

Note: Once we have the sum/0.1 binary package available (in a server, after a conan upload, or in the
local cache), we can install it even if we don’t specify input values for os, arch, . . . etc. This is a new
feature of Conan 2.X.

We could call conan install --require sum/0.1 with an empty profile and would get the binary
package from the server. But if we miss the binary and we need to build the package again, it will fail
because of the lack of settings.

4.2. Creating packages 87

Conan Documentation, Release 2.1.0

Package prebuilt binaries

There are specific scenarios in which it is necessary to create packages from existing binaries, for example from 3rd
parties or binaries previously built by another process or team that is not using Conan. Under these circumstances,
building from sources is not what you want.

You can package the local files in the following scenarios:

1. When you are developing your package locally and you want to quickly create a package with the built artifacts,
but as you don’t want to rebuild again (clean copy) your artifacts, you don’t want to call conan create. This
method will keep your local project build if you are using an IDE.

2. When you cannot build the packages from sources (when only pre-built binaries are available) and you have them
in a local directory.

3. Same as 2 but you have the precompiled libraries in a remote repository.

Locally building binaries

Use the conan new command to create a “Hello World” C++ library example project:

$ conan new cmake_lib -d name=hello -d version=1.0

This will create a Conan package project with the following structure.

.
CMakeLists.txt
conanfile.py
include

hello.h
src

hello.cpp
test_package

CMakeLists.txt
conanfile.py
src

example.cpp

We have a CMakeLists.txt file in the root, an src folder with the cpp files and, an include folder for the headers.

They also have a test_package/ folder to test that the exported package is working correctly.

Now, for every different configuration (different compilers, architectures, build_type. . .):

1. We call conan install to generate the conan_toolchain.cmake file and the CMakeUserPresets.json
that can be used in our IDE or calling CMake (only >= 3.23).

$ conan install . -s build_type=Release

2. We build our project calling CMake, our IDE, . . . etc:

Listing 65: Linux, macOS

$ mkdir -p build/Release
$ cd build/Release
$ cmake ../.. -DCMAKE_BUILD_TYPE=Release -DCMAKE_TOOLCHAIN_FILE=../Release/

(continues on next page)

88 Chapter 4. Tutorial

Conan Documentation, Release 2.1.0

(continued from previous page)

→˓generators/conan_toolchain.cmake
$ cmake --build .

Listing 66: Windows

$ mkdir -p build
$ cd build
$ cmake .. -DCMAKE_TOOLCHAIN_FILE=generators/conan_toolchain.cmake
$ cmake --build . --config Release

Note: As we are directly using our IDE or CMake to build the library, the build() method of the recipe is
never called and could be removed.

3. We call conan export-pkg to package the built artifacts.

$ cd ../..
$ conan export-pkg . -s build_type=Release
...
hello/0.1: Calling package()
hello/0.1 package(): Packaged 1 '.h' file: hello.h
hello/0.1 package(): Packaged 1 '.a' file: libhello.a
...
hello/0.1: Package '54a3ab9b777a90a13e500dd311d9cd70316e9d55' created

Let’s deep a bit more in the package method. The generated package() method is using cmake.install() to
copy the artifacts from our local folders to the Conan package.

There is an alternative and generic package() method that could be used for any build system:

def package(self):
local_include_folder = os.path.join(self.source_folder, self.cpp.source.

→˓includedirs[0])
local_lib_folder = os.path.join(self.build_folder, self.cpp.build.libdirs[0])
copy(self, "*.h", local_include_folder, os.path.join(self.package_folder,

→˓"include"), keep_path=False)
copy(self, "*.lib", local_lib_folder, os.path.join(self.package_folder, "lib"),␣

→˓keep_path=False)
copy(self, "*.a", local_lib_folder, os.path.join(self.package_folder, "lib"),␣

→˓keep_path=False)

This package() method is copying artifacts from the following directories that, thanks to the layout(), will
always point to the correct places:

• os.path.join(self.source_folder, self.cpp.source.includedirs[0]) will always point to our local include
folder.

• os.path.join(self.build_folder, self.cpp.build.libdirs[0]) will always point to the location of the libraries
when they are built, no matter if using a single-config CMake Generator or a multi-config one.

4. We can test the built package calling conan test:

$ conan test test_package/conanfile.py hello/0.1 -s build_type=Release

(continues on next page)

4.2. Creating packages 89

Conan Documentation, Release 2.1.0

(continued from previous page)

-------- Testing the package: Running test() ----------
hello/0.1 (test package): Running test()
hello/0.1 (test package): RUN: ./example
hello/0.1: Hello World Release!
hello/0.1: __x86_64__ defined
hello/0.1: __cplusplus199711
hello/0.1: __GNUC__4
hello/0.1: __GNUC_MINOR__2
hello/0.1: __clang_major__13
hello/0.1: __clang_minor__1
hello/0.1: __apple_build_version__13160021

Now you can try to generate a binary package for build_type=Debug running the same steps but changing the
build_type. You can repeat this process any number of times for different configurations.

Packaging already Pre-built Binaries

Please, first clone the sources to recreate this project. You can find them in the examples2 repository on GitHub:

$ git clone https://github.com/conan-io/examples2.git
$ cd examples2/tutorial/creating_packages/other_packages/prebuilt_binaries

This is an example of scenario 2 explained in the introduction. If you have a local folder containing the binaries for
different configurations you can package them using the following approach.

These are the files of our example, (be aware that the library files are only empty files so not valid libraries):

.
conanfile.py
vendor_hello_library

linux
armv8

include
hello.h

libhello.a
x86_64

include
hello.h

libhello.a
macos

armv8
include

hello.h
libhello.a

x86_64
include

hello.h
libhello.a

windows
armv8

hello.lib
include

(continues on next page)

90 Chapter 4. Tutorial

https://github.com/conan-io/examples2

Conan Documentation, Release 2.1.0

(continued from previous page)

hello.h
x86_64

hello.lib
include

hello.h

We have folders with os and subfolders with arch. This the recipe of our example:

import os
from conan import ConanFile
from conan.tools.files import copy

class helloRecipe(ConanFile):
name = "hello"
version = "0.1"
settings = "os", "arch"

def layout(self):
_os = str(self.settings.os).lower()
_arch = str(self.settings.arch).lower()
self.folders.build = os.path.join("vendor_hello_library", _os, _arch)
self.folders.source = self.folders.build
self.cpp.source.includedirs = ["include"]
self.cpp.build.libdirs = ["."]

def package(self):
local_include_folder = os.path.join(self.source_folder, self.cpp.source.

→˓includedirs[0])
local_lib_folder = os.path.join(self.build_folder, self.cpp.build.libdirs[0])
copy(self, "*.h", local_include_folder, os.path.join(self.package_folder,

→˓"include"), keep_path=False)
copy(self, "*.lib", local_lib_folder, os.path.join(self.package_folder, "lib"),␣

→˓keep_path=False)
copy(self, "*.a", local_lib_folder, os.path.join(self.package_folder, "lib"),␣

→˓keep_path=False)

def package_info(self):
self.cpp_info.libs = ["hello"]

• We are not building anything, so the build method is not useful here.

• We can keep the same packagemethod from the previous example because the location of the artifacts is declared
by the layout().

• Both the source folder (with headers) and the build folder (with libraries) are in the same location, in a path that
follows:

vendor_hello_library/{os}/{arch}

• The headers are in the include subfolder of the self.source_folder (we declare it in self.cpp.source.
includedirs).

• The libraries are in the root of the self.build_folder folder (we declare self.cpp.build.libdirs = [".
"]).

4.2. Creating packages 91

Conan Documentation, Release 2.1.0

• We removed the compiler and the build_type because we only have different libraries depending on the
operating system and the architecture (it might be a pure C library).

Now, for each different configuration we call conan export-pkg command, later we can list the binaries so we can
check we have one package for each precompiled library:

$ conan export-pkg . -s os="Linux" -s arch="x86_64"
$ conan export-pkg . -s os="Linux" -s arch="armv8"
$ conan export-pkg . -s os="Macos" -s arch="x86_64"
$ conan export-pkg . -s os="Macos" -s arch="armv8"
$ conan export-pkg . -s os="Windows" -s arch="x86_64"
$ conan export-pkg . -s os="Windows" -s arch="armv8"

$ conan list hello/0.1#:*
Local Cache:
hello
hello/0.1#9c7634dfe0369907f569c4e583f9bc50 (2022-12-22 17:36:39 UTC)
PID: 522dcea5982a3f8a5b624c16477e47195da2f84f (2022-12-22 17:36:36 UTC)
settings:
arch=x86_64
os=Windows

PID: 63fead0844576fc02943e16909f08fcdddd6f44b (2022-12-22 17:36:19 UTC)
settings:
arch=x86_64
os=Linux

PID: 82339cc4d6db7990c1830d274cd12e7c91ab18a1 (2022-12-22 17:36:28 UTC)
settings:
arch=x86_64
os=Macos

PID: a0cd51c51fe9010370187244af885b0efcc5b69b (2022-12-22 17:36:39 UTC)
settings:
arch=armv8
os=Windows

PID: c93719558cf197f1df5a7f1d071093e26f0e44a0 (2022-12-22 17:36:24 UTC)
settings:
arch=armv8
os=Linux

PID: dcf68e932572755309a5f69f3cee1bede410e907 (2022-12-22 17:36:32 UTC)
settings:
arch=armv8
os=Macos

In this example, we don’t have a test_package/ folder but you can provide one to test the packages like in the previous
example.

92 Chapter 4. Tutorial

Conan Documentation, Release 2.1.0

Downloading and Packaging Pre-built Binaries

This is an example of scenario 3 explained in the introduction. If we are not building the libraries we likely have them
somewhere in a remote repository. In this case, creating a complete Conan recipe, with the detailed retrieval of the
binaries could be the preferred method, because it is reproducible, and the original binaries might be traced.

Please, first clone the sources to recreate this project. You can find them in the examples2 repository on GitHub:

$ git clone https://github.com/conan-io/examples2.git
$ cd examples2/tutorial/creating_packages/other_packages/prebuilt_remote_binaries

Listing 67: conanfile.py

import os
from conan.tools.files import get, copy
from conan import ConanFile

class HelloConan(ConanFile):
name = "hello"
version = "0.1"
settings = "os", "arch"

def build(self):
base_url = "https://github.com/conan-io/libhello/releases/download/0.0.1/"

_os = {"Windows": "win", "Linux": "linux", "Macos": "macos"}.get(str(self.
→˓settings.os))

_arch = str(self.settings.arch).lower()
url = "{}/{}_{}.tgz".format(base_url, _os, _arch)
get(self, url)

def package(self):
copy(self, "*.h", self.build_folder, os.path.join(self.package_folder,

→˓"include"))
copy(self, "*.lib", self.build_folder, os.path.join(self.package_folder, "lib

→˓"))
copy(self, "*.a", self.build_folder, os.path.join(self.package_folder, "lib"))

def package_info(self):
self.cpp_info.libs = ["hello"]

Typically, pre-compiled binaries come for different configurations, so the only task that the build() method has to
implement is to map the settings to the different URLs.

We only need to call conan create with different settings to generate the needed packages:

$ conan create . -s os="Linux" -s arch="x86_64"
$ conan create . -s os="Linux" -s arch="armv8"
$ conan create . -s os="Macos" -s arch="x86_64"
$ conan create . -s os="Macos" -s arch="armv8"
$ conan create . -s os="Windows" -s arch="x86_64"
$ conan create . -s os="Windows" -s arch="armv8"

(continues on next page)

4.2. Creating packages 93

https://github.com/conan-io/examples2

Conan Documentation, Release 2.1.0

(continued from previous page)

$ conan list packages hello/0.1#:*
Local Cache:
hello
hello/0.1#d8e4debf31f0b7b5ec7ff910f76f1e2a (2022-12-22 17:38:35 UTC)
PID: 522dcea5982a3f8a5b624c16477e47195da2f84f (2022-12-22 17:38:33 UTC)
settings:
arch=x86_64
os=Windows

PID: 63fead0844576fc02943e16909f08fcdddd6f44b (2022-12-22 17:38:19 UTC)
settings:
arch=x86_64
os=Linux

PID: 82339cc4d6db7990c1830d274cd12e7c91ab18a1 (2022-12-22 17:38:27 UTC)
settings:
arch=x86_64
os=Macos

PID: a0cd51c51fe9010370187244af885b0efcc5b69b (2022-12-22 17:38:36 UTC)
settings:
arch=armv8
os=Windows

PID: c93719558cf197f1df5a7f1d071093e26f0e44a0 (2022-12-22 17:38:23 UTC)
settings:
arch=armv8
os=Linux

PID: dcf68e932572755309a5f69f3cee1bede410e907 (2022-12-22 17:38:30 UTC)
settings:
arch=armv8
os=Macos

It is recommended to include also a small consuming project in a test_package folder to verify the package is correctly
built, and then upload it to a Conan remote with conan upload.

The same building policies apply. Having a recipe fails if no Conan packages are created, and the --build argument is
not defined. A typical approach for this kind of package could be to define a build_policy="missing", especially if
the URLs are also under the team’s control. If they are external (on the internet), it could be better to create the packages
and store them on your own Conan repository, so that the builds do not rely on third-party URLs being available.

Tool requires packages

In the “Using build tools as Conan packages” section we learned how to use a tool require to build (or help building)
our project or Conan package. In this section we are going to learn how to create a recipe for a tool require.

Note: Best practice
tool_requires and tool packages are intended for executable applications, like cmake or ninja that can be used as
tool_requires("cmake/[>=3.25]") by other packages to put those executables in their path. They are not intended
for library-like dependencies (use requires for them), for test frameworks (use test_requires) or in general for
anything that belongs to the “host” context of the final application. Do not abuse tool_requires for other purposes.

Please, first clone the sources to recreate this project. You can find them in the examples2 repository on GitHub:

94 Chapter 4. Tutorial

https://github.com/conan-io/examples2

Conan Documentation, Release 2.1.0

$ git clone https://github.com/conan-io/examples2.git
$ cd examples2/tutorial/creating_packages/other_packages/tool_requires/tool

A simple tool require recipe

This is a recipe for a (fake) application that receiving a path returns 0 if the path is secure. We can check how the
following simple recipe covers most of the tool-require use-cases:

Listing 68: conanfile.py

import os
from conan import ConanFile
from conan.tools.cmake import CMakeToolchain, CMake, cmake_layout
from conan.tools.files import copy

class secure_scannerRecipe(ConanFile):
name = "secure_scanner"
version = "1.0"
package_type = "application"

Binary configuration
settings = "os", "compiler", "build_type", "arch"

Sources are located in the same place as this recipe, copy them to the recipe
exports_sources = "CMakeLists.txt", "src/*"

def layout(self):
cmake_layout(self)

def generate(self):
tc = CMakeToolchain(self)
tc.generate()

def build(self):
cmake = CMake(self)
cmake.configure()
cmake.build()

def package(self):
extension = ".exe" if self.settings_build.os == "Windows" else ""
copy(self, "*secure_scanner{}".format(extension),

self.build_folder, os.path.join(self.package_folder, "bin"), keep_
→˓path=False)

def package_info(self):
self.buildenv_info.define("MY_VAR", "23")

There are few relevant things in this recipe:

1. It declares package_type = "application", this is optional but convenient, it will indicate conan that the
current package doesn’t contain headers or libraries to be linked. The consumers will know that this package is
an application.

4.2. Creating packages 95

Conan Documentation, Release 2.1.0

2. The package() method is packaging the executable into the bin/ folder, that is declared by default as a bindir:
self.cpp_info.bindirs = ["bin"].

3. In the package_info() method, we are using self.buildenv_info to define a environment variable MY_VAR
that will also be available in the consumer.

Let’s create a binary package for the tool_require:

$ conan create .
...
secure_scanner/1.0: Calling package()
secure_scanner/1.0: Copied 1 file: secure_scanner
secure_scanner/1.0 package(): Packaged 1 file: secure_scanner
...
Security Scanner: The path 'mypath' is secure!

Let’s review the test_package/conanfile.py:

from conan import ConanFile

class secure_scannerTestConan(ConanFile):
settings = "os", "compiler", "build_type", "arch"

def build_requirements(self):
self.tool_requires(self.tested_reference_str)

def test(self):
extension = ".exe" if self.settings_build.os == "Windows" else ""
self.run("secure_scanner{} mypath".format(extension))

We are requiring the secure_scanner package as tool_require doing self.tool_requires(self.
tested_reference_str). In the test() method we are running the application, because it is available in the PATH.
In the next example we are going to see why the executables from a tool_require are available in the consumers.

So, let’s create a consumer recipe to test if we can run the secure_scanner application of the tool_require and read
the environment variable. Go to the examples2/tutorial/creating_packages/other_packages/tool_requires/consumer
folder:

Listing 69: conanfile.py

from conan import ConanFile

class MyConsumer(ConanFile):
name = "my_consumer"
version = "1.0"
settings = "os", "arch", "compiler", "build_type"
tool_requires = "secure_scanner/1.0"

def build(self):
extension = ".exe" if self.settings_build.os == "Windows" else ""
self.run("secure_scanner{} {}".format(extension, self.build_folder))
if self.settings_build.os != "Windows":

self.run("echo MY_VAR=$MY_VAR")
else:

self.run("set MY_VAR")

96 Chapter 4. Tutorial

Conan Documentation, Release 2.1.0

In this simple recipe we are declaring a tool_require to secure_scanner/1.0 and we are calling directly the
packaged application secure_scanner in the build() method, also printing the value of the MY_VAR env variable.

If we build the consumer:

$ conan build .

-------- Installing (downloading, building) binaries... --------
secure_scanner/1.0: Already installed!

-------- Finalizing install (deploy, generators) --------
...
conanfile.py (my_consumer/1.0): RUN: secure_scanner /Users/luism/workspace/examples2/
→˓tutorial/creating_packages/other_packages/tool_requires/consumer
...
Security Scanner: The path '/Users/luism/workspace/examples2/tutorial/creating_packages/
→˓other_packages/tool_requires/consumer' is secure!
...
MY_VAR=23

We can see that the executable returned 0 (because our folder is secure) and it printed Security Scanner: The
path is secure! message. It also printed the “23” value assigned to MY_VAR but, why are these automatically
available?

• The generators VirtualBuildEnv and VirtualRunEnv are automatically used.

• The VirtualRunEnv is reading the tool-requires and is creating a launcher like
conanbuildenv-release-x86_64.sh appending all cpp_info.bindirs to the PATH, all the cpp_info.
libdirs to the LD_LIBRARY_PATH environment variable and declaring each variable of self.buildenv_info.

• Every time conan executes the self.run, by default, activates the conanbuild.sh file before calling any com-
mand. The conanbuild.sh is including the conanbuildenv-release-x86_64.sh, so the application is in
the PATH and the enviornment variable “MYVAR” has the value declared in the tool-require.

Removing settings in package_id()

With the previous recipe, if we call conan create with different setting like different compiler versions, we will
get different binary packages with a different package ID. This might be convenient to, for example, keep better
traceability of our tools. In this case, the compatibility.py plugin can help to locate the best matching binary in case
Conan doesn’t find the binary for our specific compiler version.

But in some cases we might want to just generate a binary taking into account only the os, arch or at most adding the
build_type to know if the application is built for Debug or Release. We can add a package_id() method to remove
them:

Listing 70: conanfile.py

import os
from conan import ConanFile
from conan.tools.cmake import CMakeToolchain, CMake, cmake_layout
from conan.tools.files import copy

class secure_scannerRecipe(ConanFile):
name = "secure_scanner"

(continues on next page)

4.2. Creating packages 97

Conan Documentation, Release 2.1.0

(continued from previous page)

version = "1.0"
settings = "os", "compiler", "build_type", "arch"
...

def package_id(self):
del self.info.settings.compiler
del self.info.settings.build_type

So, if we call conan create with different build_type we will get exactly the same package_id.

$ conan create .
...
Package '82339cc4d6db7990c1830d274cd12e7c91ab18a1' created

$ conan create . -s build_type=Debug
...
Package '82339cc4d6db7990c1830d274cd12e7c91ab18a1' created

We got the same binary package_id. The second conan create . -s build_type=Debug created and overwrote
(created a newer package revision) of the previous Release binary, because they have the same package_id identifier. It
is typical to create only the Release one, and if for any reason managing both Debug and Release binaries is intended,
then the approach would be not removing the del self.info.settings.build_type

See also:
• – Using the same requirement as a requires and as a tool_requires

• Toolchains (compilers)

• Usage of runenv_info

• More info on settings_target

4.3 Working with Conan repositories

We already learned how to download and use packages from Conan Center that is the official repository for open source
Conan packages. We also learned how to create our own packages and store them in the Conan local cache for reusing
later. In this section we cover how you can use the Conan repositories to upload your recipes and binaries and store
them for later use on another machine, project, or for sharing purposes.

First we will cover how you can setup a Conan repository locally (you can skip this part if you already have a Conan
remote configured). Then we will explain how to upload packages to your own repositories and how to operate when
you have multiple Conan remotes configured. Finally, we will briefly cover how you can contribute to the Conan Center
central repository.

98 Chapter 4. Tutorial

https://conan.io/center

Conan Documentation, Release 2.1.0

4.3.1 Setting up a Conan remote

There are several options to set-up a Conan repository:

For private development:
• Artifactory Community Edition for C/C++: Artifactory Community Edition (CE) for C/C++ is a completely

free Artifactory server that implements both Conan and generic repositories. It is the recommended server for
companies and teams wanting to host their own private repository. It has a web UI, advanced authentication and
permissions, very good performance and scalability, a REST API, and can host generic artifacts (tarballs, zips,
etc). Check Artifactory Community Edition for C/C++ for more information.

• Conan server: Simple, free and open source, MIT licensed server that is part of the conan-io organization project.
Check Setting-up a Conan Server for more information.

Enterprise solutions:
• Artifactory Pro: Artifactory is the binary repository manager for all major packaging formats. It is the recom-

mended remote type for enterprise and professional package management. Check the Artifactory Documentation
for more information. For a comparison between Artifactory editions, check the Artifactory Comparison Matrix.

Artifactory Community Edition for C/C++

Artifactory Community Edition (CE) for C/C++ is the recommended server for development and hosting private pack-
ages for a team or company. It is completely free, and it features a WebUI, advanced authentication and permissions,
great performance and scalability, a REST API, a generic CLI tool and generic repositories to host any kind of source
or binary artifact.

This is a very brief introduction to Artifactory CE. For the complete Artifactory CE documentation, visit Artifactory
docs.

Running Artifactory CE

There are several ways to run Artifactory CE:

• Running from a Docker image:

$ docker run --name artifactory -d -p 8081:8081 -p 8082:8082 releases-docker.jfrog.io/
→˓jfrog/artifactory-cpp-ce:latest

• Download and run from zip file. The Download Page has a link for you to follow. When the file is unzipped,
launch Artifactory by double clicking the artifactory.bat on Windows or artifactory.sh script in the app/bin sub-
folder, depending on the OS. Artifactory comes with JDK bundled, please read Artifactory requirements.

Once Artifactory has started, navigate to the default URL http://localhost:8081, where the Web UI should be running.
The default user and password are admin:password.

4.3. Working with Conan repositories 99

https://github.com/conan-io
https://www.jfrog.com/confluence/display/JFROG/JFrog+Artifactory
https://www.jfrog.com/confluence/display/JFROG/Artifactory+Comparison+Matrix
https://jfrog.com/help/
https://jfrog.com/help/
https://conan.io/downloads.html
https://jfrog.com/help/r/jfrog-installation-setup-documentation/system-requirements

Conan Documentation, Release 2.1.0

Creating and Using a Conan Repo

Navigate to Administration -> Repositories -> Repositories, then click on the “Add Repositories” button and select
“Local Repository”. A dialog for selecting the package type will appear, select Conan, then type a “Repository Key”
(the name of the repository you are about to create), for example “conan-local” and click on “Create Local Repository”.
You can create multiple repositories to serve different flows, teams, or projects.

Now, let’s configure the Conan client to connect with the “conan-local” repository. First add the remote to the Conan
remote registry:

$ conan remote add artifactory http://localhost:8081/artifactory/api/conan/conan-local

Then configure the credentials for the remote:

$ conan remote login artifactory <user> -p <password>

From now, you can upload, download, search, etc. the remote repos similarly to the other repo types.

$ conan upload <package_name> -r=artifactory
$ conan search "*" -r=artifactory

Setting-up a Conan Server

Important: This server is mainly used for testing (though it might work fine for small teams). We recommend using
the free Artifactory Community Edition for C/C++ for private development or Artifactory Pro as Enterprise solution.

The Conan Server is a free and open source server that implements Conan remote repositories. It is a very simple
application, used for testing inside the Conan client and distributed as a separate pip package.

Install the Conan Server using pip:

100 Chapter 4. Tutorial

Conan Documentation, Release 2.1.0

$ pip install conan-server

Then you can run the server:

$ conan_server

Using config: /Users/user/.conan_server/server.conf
Storage: /Users/user/.conan_server/data
Public URL: http://localhost:9300/v2
PORT: 9300

Bottle v0.12.24 server starting up (using WSGIRefServer())...
Listening on http://0.0.0.0:9300/
Hit Ctrl-C to quit.

Note: On Windows, you may experience problems with the server if you run it under bash/msys. It is better to launch
it in a regular cmd window.

See also:
• Conan Server reference

4.3.2 Uploading Packages

In the previous section we learned how to set up a Conan repository. Now we will go through the process of uploading
both recipes and binaries to this remote and store them for later use on another machine, project, or for sharing purposes.

First, check if the remote you want to upload to is already in your current remote list:

$ conan remote list

You can search any remote in the same way you search your Conan local cache. Actually, many Conan commands can
specify a specific remote.

$ conan search "*" -r=my_local_server

Now, upload the package recipe and all the packages to your remote. In this example, we are using our
my_local_server remote, but you could use any other.

$ conan upload hello -r=my_local_server

Now try again to read the information from the remote. We refer to it as remote, even if it is running on your local
machine, as it could be running on another server in your LAN:

$ conan search hello -r=my_local_server

Now we can check if we can download and use them in a project. For that purpose, we first have to remove the local
copies, otherwise the remote packages will not be downloaded. Since we have just uploaded them, they are identical
to the local ones.

$ conan remove hello -c
$ conan list hello

4.3. Working with Conan repositories 101

Conan Documentation, Release 2.1.0

Now, to install the uploaded package from the Conan repository just do:

$ conan install --requires=hello/1.0 -r=my_local_server

You can check the package existence on your local computer again with:

$ conan list hello

See also:
• conan upload command reference

• conan remote command reference

• conan search command reference

4.3.3 Contributing to Conan Center

Contribution of packages to ConanCenter is done via pull requests to the Github repository in https://github.com/
conan-io/conan-center-index. The C3I (ConanCenter Continuous Integration) service will build binaries automatically
from those pull requests, and once merged, will upload them to ConanCenter package repository.

Read more about how to submit a pull request to conan-center-index source repository.

4.4 Developing packages locally

As we learned in previous sections of the tutorial, the most straightforward way to work when developing a Conan
package is to run a conan create. This means that every time it is run, Conan performs a series of costly operations
in the Conan cache, such as downloading, decompressing, copying sources, and building the entire library from scratch.
Sometimes, especially with large libraries, while we are developing the recipe, these operations cannot be performed
every time.

This section will first show the Conan local development flow, that is, working on packages in your local project
directory without having to export the contents of the package to the Conan cache first.

We will also cover how other packages can consume packages under development using the editable mode.

Finally, we will explain the Conan package layouts in depth, the key feature that makes it possible to work with Conan
packages in the Conan cache or locally without making any changes.

4.4.1 Package Development Flow

This section introduces the Conan local development flow, which allows you to work on packages in your local project
directory without having to export the contents of the package to the Conan cache first.

This local workflow encourages users to perform trial-and-error in a local sub-directory relative to their recipe, much
like how developers typically test building their projects with other build tools. The strategy is to test the conanfile.py
methods individually during this phase.

Let’s use this flow for the hello package we created in the previous section.

Please clone the sources to recreate this project. You can find them in the examples2.0 repository on GitHub:

$ git clone https://github.com/conan-io/examples2.git
$ cd examples2/tutorial/developing_packages/local_package_development_flow

102 Chapter 4. Tutorial

https://github.com/conan-io/conan-center-index
https://github.com/conan-io/conan-center-index
https://github.com/conan-io/conan-center-index/tree/master/docs/adding_packages
https://github.com/conan-io/examples2

Conan Documentation, Release 2.1.0

You can check the contents of the folder:

.
conanfile.py
test_package

CMakeLists.txt
conanfile.py
src

example.cpp

conan source

You will generally want to start with the conan source command. The strategy here is that you’re testing your source
method in isolation and downloading the files to a temporary sub-folder relative to the conanfile.py. This relative
folder is defined by the self.folders.source property in the layout() method. In this case, as we are using the pre-defined
cmake_layout we set the value with the src_folder argument.

Note: In this example we are packaging a third-party library from a remote repository. In the case you have your
sources beside your recipe in the same repository, running conan source will not be necessary for most of the cases.

Let’s have a look at the recipe’s source() and layout() method:

...

def source(self):
Please be aware that using the head of the branch instead of an immutable tag
or commit is not a good practice in general.
get(self, "https://github.com/conan-io/libhello/archive/refs/heads/main.zip",

strip_root=True)

def layout(self):
cmake_layout(self, src_folder="src")

...

Now run the conan source command and check the results:

$ conan source .
conanfile.py (hello/1.0): Calling source() in /Users/.../local_package_development_flow/
→˓src
Downloading main.zip
conanfile.py (hello/1.0): Unzipping 3.7KB
Unzipping 100%

You can see that a new src folder has appeared containing all the hello library sources.

.
conanfile.py
src

CMakeLists.txt
LICENSE
README.md

(continues on next page)

4.4. Developing packages locally 103

Conan Documentation, Release 2.1.0

(continued from previous page)

include
hello.h

src
hello.cpp

test_package
CMakeLists.txt
conanfile.py
src

example.cpp

Now it’s easy to check the sources and validate them. Once you’ve got your source method right and it contains the
files you expect, you can move on to testing the various attributes and methods related to downloading dependencies.

conan install

After running the conan source command, you can run the conan install command. This command will install all
the recipe requirements if needed and prepare all the files necessary for building by running the generate() method.

We can check all the parts from our recipe that are involved in this step:

...

class helloRecipe(ConanFile):

...

generators = "CMakeDeps"

...

def layout(self):
cmake_layout(self, src_folder="src")

def generate(self):
tc = CMakeToolchain(self)
tc.generate()

...

Now run the conan install command and check the results:

$ conan install .
...
-------- Finalizing install (deploy, generators) --------
conanfile.py (hello/1.0): Writing generators to ...
conanfile.py (hello/1.0): Generator 'CMakeDeps' calling 'generate()'
conanfile.py (hello/1.0): Calling generate()
...
conanfile.py (hello/1.0): Aggregating env generators

You can see that a new build folder appeared with all the files that Conan needs for building the library like a toolchain
for CMake and several environment configuration files.

104 Chapter 4. Tutorial

Conan Documentation, Release 2.1.0

.
build

Release
generators

CMakePresets.json
cmakedeps_macros.cmake
conan_toolchain.cmake
conanbuild.sh
conanbuildenv-release-x86_64.sh
conanrun.sh
conanrunenv-release-x86_64.sh
deactivate_conanbuild.sh
deactivate_conanrun.sh

conanfile.py
src

CMakeLists.txt
CMakeUserPresets.json
LICENSE
README.md
include

hello.h
src

hello.cpp
test_package

CMakeLists.txt
conanfile.py
src

example.cpp

Now that all the files necessary for building are generated, you can move on to testing the build() method.

conan build

Running the After conan build command will invoke the build() method:

...

class helloRecipe(ConanFile):

...

def build(self):
cmake = CMake(self)
cmake.configure()
cmake.build()

...

Let’s run conan build:

$ conan build .
...

(continues on next page)

4.4. Developing packages locally 105

Conan Documentation, Release 2.1.0

(continued from previous page)

-- Conan toolchain: C++ Standard 11 with extensions ON
-- Conan toolchain: Setting BUILD_SHARED_LIBS = OFF
-- Configuring done
-- Generating done
-- Build files have been ...
conanfile.py (hello/1.0): CMake command: cmake --build ...
conanfile.py (hello/1.0): RUN: cmake --build ...
[100%] Built target hello

For most of the recipes, the build() method should be very simple, and you can also invoke the build system directly,
without invoking Conan, as you have all the necessary files available for building. If you check the contents of the src
folder, you’ll find a CMakeUserPresets.json file that you can use to configure and build the conan-release preset. Let’s
try it:

$ cd src
$ cmake --preset conan-release
...
-- Configuring done
-- Generating done

$ cmake --build --preset conan-release
...
[100%] Built target hello

You can check that the results of invoking CMake directly are equivalent to the ones we got using the conan build
command.

Note: We use CMake presets in this example. This requires CMake >= 3.23 because the “include” from
CMakeUserPresets.json to CMakePresets.json is only supported since that version. If you prefer not to use
presets you can use something like:

cmake <path> -G <CMake generator> -DCMAKE_TOOLCHAIN_FILE=<path to
conan_toolchain.cmake> -DCMAKE_BUILD_TYPE=Release

Conan will show the exact CMake command everytime you run conan install in case you can’t use the presets
feature.

conan export-pkg

Now that we built the package binaries locally we can also package those artifacts in the Conan local cache using the
conan export-pkg command. Please note that this command will create the package in the Conan cache and test it
running the test_package after that.

$ conan export-pkg .
conanfile.py (hello/1.0) package(): Packaged 1 '.h' file: hello.h
conanfile.py (hello/1.0) package(): Packaged 1 '.a' file: libhello.a
conanfile.py (hello/1.0): Package 'b1d267f77ddd5d10d06d2ecf5a6bc433fbb7eeed' created
conanfile.py (hello/1.0): Created package revision f09ef573c22f3919ba26ee91ae444eaa
...
conanfile.py (hello/1.0): Package folder /Users/...

(continues on next page)

106 Chapter 4. Tutorial

Conan Documentation, Release 2.1.0

(continued from previous page)

conanfile.py (hello/1.0): Exported package binary
...
[50%] Building CXX object CMakeFiles/example.dir/src/example.cpp.o
[100%] Linking CXX executable example
[100%] Built target example

-------- Testing the package: Running test() --------
hello/1.0 (test package): Running test()
hello/1.0 (test package): RUN: ./example
hello/1.0: Hello World Release!
hello/1.0: __x86_64__ defined
hello/1.0: __cplusplus201103
hello/1.0: __GNUC__4
hello/1.0: __GNUC_MINOR__2
hello/1.0: __clang_major__14
hello/1.0: __apple_build_version__14000029

Now you can list the packages in the local cache and check that the hello/1.0 package was created.

$ conan list hello/1.0
Local Cache
hello

hello/1.0

See also:
• Reference for conan source, install, build, export-pkg and test commands.

• Packaging prebuilt binaries example

• When you are locally developing packages, at some poing you might need to step-into dependencies code while
debugging. Please read this example how to debug and step-into dependencies for more information about this
use case.

4.4.2 Packages in editable mode

The normal way of working with Conan packages is to run a conan create or conan export-pkg to store them in
the local cache, so that consumers use the packages stored in the cache. In some cases, when you want to consume
these packages while developing them, it can be tedious to run conan create each time you make changes to the
package. For those cases, you can put your package in editable mode, and consumers will be able to find the headers
and artifacts in your local working directory, eliminating the need for packaging.

Let’s see how we can put a package in editable mode and consume it from the local working directory.

Please, first of all, clone the sources to recreate this project. You can find them in the examples2 repository in GitHub:

$ git clone https://github.com/conan-io/examples2.git
$ cd examples2/tutorial/developing_packages/editable_packages

There are 2 folders inside this project:

.
hello

CMakeLists.txt
(continues on next page)

4.4. Developing packages locally 107

https://github.com/conan-io/examples2

Conan Documentation, Release 2.1.0

(continued from previous page)

conanfile.py
src

hello.cpp
say

CMakeLists.txt
conanfile.py
include

say.h
src

say.cpp

• A “say” folder containing a fully fledged package, with its conanfile.py and its source code.

• A “hello” folder containing a simple consumer project with a conanfile.py and its source code, which depends
on the say/1.0 requirement.

We will put say/1.0 in editable mode and show how the hello consumer can find say/1.0 headers and binaries in
its local working directory.

Put say/1.0 package in editable mode

To avoid creating the package say/1.0 in the cache for every change, we are going to put that package in editable
mode, creating a link from the reference in the cache to the local working directory:

$ conan editable add say
$ conan editable list
say/1.0

Path: /Users/.../examples2/tutorial/developing_packages/editable_packages/say/
→˓conanfile.py

From now on, every usage of say/1.0 by any other Conan package or project will be redirected to the /Users/.../
examples2/tutorial/developing_packages/editable_packages/say/conanfile.py user folder instead of
using the package from the Conan cache.

Note that the key of editable packages is a correct definition of the layout() of the package. Read the package layout()
section to learn more about this method.

In this example, the say conanfile.py recipe is using the predefined cmake_layout() which defines the typical
CMake project layout that can be different depending on the platform and generator used.

Now that the say/1.0 package is in editable mode, let’s build it locally:

Note: We use CMake presets in this example. This requires CMake >= 3.23 because the “include” from
CMakeUserPresets.json to CMakePresets.json is only supported since that version. If you prefer not to use
presets you can use something like:

cmake <path> -G <CMake generator> -DCMAKE_TOOLCHAIN_FILE=<path to
conan_toolchain.cmake> -DCMAKE_BUILD_TYPE=Release

Conan will show the exact CMake command everytime you run conan install in case you can’t use the presets
feature.

108 Chapter 4. Tutorial

Conan Documentation, Release 2.1.0

$ cd say

Windows: we will build 2 configurations to show multi-config
$ conan install . -s build_type=Release
$ conan install . -s build_type=Debug
$ cmake --preset conan-default
$ cmake --build --preset conan-release
$ cmake --build --preset conan-debug

Linux, MacOS: we will only build 1 configuration
$ conan install .
$ cmake --preset conan-release
$ cmake --build --preset conan-release

Using say/1.0 package in editable mode

Consuming a package in editable mode is transparent from the consumer perspective. In this case we can build the
hello application as usual:

$ cd ../hello

Windows: we will build 2 configurations to show multi-config
$ conan install . -s build_type=Release
$ conan install . -s build_type=Debug
$ cmake --preset conan-default
$ cmake --build --preset conan-release
$ cmake --build --preset conan-debug
$ build\Release\hello.exe
say/1.0: Hello World Release!
...
$ build\Debug\hello.exe
say/1.0: Hello World Debug!
...

Linux, MacOS: we will only build 1 configuration
$ conan install .
$ cmake --preset conan-release
$ cmake --build --preset conan-release
$./build/Release/hello
say/1.0: Hello World Release!

As you can see, hello can successfully find say/1.0 header and library files.

4.4. Developing packages locally 109

Conan Documentation, Release 2.1.0

Working with editable packages

Once the above steps have been completed, you can work with your build system or IDE without involving Conan and
make changes to the editable packages. The consumers will use those changes directly. Let’s see how this works by
making a change in the say source code:

$ cd ../say
Edit src/say.cpp and change the error message from "Hello" to "Bye"

Windows: we will build 2 configurations to show multi-config
$ cmake --build --preset conan-release
$ cmake --build --preset conan-debug

Linux, MacOS: we will only build 1 configuration
$ cmake --build --preset conan-release

And build and run the “hello” project:

$ cd ../hello

Windows
$ cd build
$ cmake --build --preset conan-release
$ cmake --build --preset conan-debug
$ Release\hello.exe
say/1.0: Bye World Release!
$ Debug\hello.exe
say/1.0: Bye World Debug!

Linux, MacOS
$ cmake --build --preset conan-release
$./hello
say/1.0: Bye World Release!

In this manner, you can develop both the say library and the hello application simultaneously without executing any
Conan command in between. If you have both open in your IDE, you can simply build one after the other.

Building editable dependencies

If there are many editable dependencies, it might be inconvenient to go one by one, building them in the right order. It
is possible to do an ordered build of the editable dependencies with the --build argument.

Let’s clean the previous local executables:

$ git clean -xdf

And using the build() method in the hello/conanfile.py recipe that we haven’t really used so far (because we
have been building directly calling cmake, not by calling conan build command), we can do such build with just:

$ conan build hello

Note that all we had to do to do a full build of this project is these two commands. Starting from scratch in a different
folder:

110 Chapter 4. Tutorial

Conan Documentation, Release 2.1.0

$ git clone https://github.com/conan-io/examples2.git
$ cd examples2/tutorial/developing_packages/editable_packages
$ conan editable add say
$ conan build hello --build=editable

Note that if we don’t pass the --build=editable to conan build hello, the binaries for say/0.1 that is in editable
mode won’t be available and it will fail. With the --build=editable, first a build of the say binaries is done locally
and incrementally, and then another incremental build of hello will be done. Everything will still happen locally,
with no packages built in the cache. If there are multiple editable dependencies, with nested transitive dependencies,
Conan will build them in the right order.

If editable packages have dependants in the Conan cache, it is possible to force the rebuild from source of the cache
dependants by using --build=editable --build=cascade. In general this should be avoided, and the recommen-
dation if it is needed to rebuild those dependencies is to put them in editable mode too.

Note that it is possible to build and test a package in editable with with its own test_package folder. If a package is
put in editable mode, and if it contains a test_package folder, the conan create command will still do a local
build of the current package.

Revert the editable mode

In order to revert the editable mode just remove the link using:

$ conan editable remove --refs=say/1.0

It will remove the link (the local directory won’t be affected) and all the packages consuming this requirement will get
it from the cache again.

Warning: Packages that are built while consuming an editable package in their upstreams can generate binaries and
packages that are incompatible with the released version of the editable package. Avoid uploading these packages
without re-creating them with the in-cache version of all the libraries.

4.4.3 Understanding the Conan Package layout

In the previous section, we introduced the concept of editable packages and mentioned that the reason they work out
of the box when put in editable mode is due to the current definition of the information in the layout() method. Let’s
examine this feature in more detail.

In this tutorial, we will continue working with the say/1.0 package and the hello/1.0 consumer used in the editable
packages tutorial.

Please, first of all, clone the sources to recreate this project. You can find them in the examples2 repository in GitHub:

$ git clone https://github.com/conan-io/examples2.git
$ cd examples2/tutorial/developing_packages/package_layout

Note: We use CMake presets in this example. This requires CMake >= 3.23 because the “include” from
CMakeUserPresets.json to CMakePresets.json is only supported since that version. If you prefer not to use
presets you can use something like:

cmake <path> -G <CMake generator> -DCMAKE_TOOLCHAIN_FILE=<path to
conan_toolchain.cmake> -DCMAKE_BUILD_TYPE=Release

4.4. Developing packages locally 111

https://github.com/conan-io/examples2

Conan Documentation, Release 2.1.0

Conan will show the exact CMake command everytime you run conan install in case you can’t use the presets
feature.

As you can see, the main folder structure is the same:

.
hello

CMakeLists.txt
conanfile.py
src

hello.cpp
say

CMakeLists.txt
conanfile.py
include

say.h
src

say.cpp

The main difference here is that we are not using the predefined cmake_layout() in the say/1.0 ConanFile, but instead,
we are declaring our own custom layout. Let’s see how we describe the information in the layout() method so that it
works both when we create the package in the Conan local cache and also when the package is in editable mode.

Listing 71: say/conanfile.py

import os
from conan import ConanFile
from conan.tools.cmake import CMake

class SayConan(ConanFile):
name = "say"
version = "1.0"

exports_sources = "CMakeLists.txt", "src/*", "include/*"

...

def layout(self):

define project folder structure

self.folders.source = "."
self.folders.build = os.path.join("build", str(self.settings.build_type))
self.folders.generators = os.path.join(self.folders.build, "generators")

cpp.package information is for consumers to find the package contents in the␣
→˓Conan cache

self.cpp.package.libs = ["say"]
self.cpp.package.includedirs = ["include"] # includedirs is already set to

→˓'include' by
default, but declared for completion

(continues on next page)

112 Chapter 4. Tutorial

Conan Documentation, Release 2.1.0

(continued from previous page)

self.cpp.package.libdirs = ["lib"] # libdirs is already set to 'lib' by
default, but declared for completion

cpp.source and cpp.build information is specifically designed for editable␣
→˓packages:

this information is relative to the source folder that is '.'
self.cpp.source.includedirs = ["include"] # maps to ./include

this information is relative to the build folder that is './build/<build_type>',
→˓ so it will

self.cpp.build.libdirs = ["."] # map to ./build/<build_type> for libdirs

def build(self):
cmake = CMake(self)
cmake.configure()
cmake.build()

Let’s review the layout() method. You can see that we are setting values for self.folders and self.cpp. Let’s
explain what these values do.

self.folders

Defines the structure of the say project for the source code and the folders where the files generated by Conan and the
built artifacts will be located. This structure is independent of whether the package is in editable mode or exported and
built in the Conan local cache. Let’s define the folder structure for the say package:

say
CMakeLists.txt
conanfile.py
include

say.h
src

say.cpp
build

Debug --> Built artifacts for Debug
generators --> Conan generated files for Debug config

Release --> Built artifacts for Release
generators --> Conan generated files for Release config

• As we have our CMakeLists.txt in the . folder, self.folders.source is set to ..

• We set self.folders.build to be ./build/Release or ./build/Debug depending on the build_type setting.
These are the folders where we want the built binaries to be located.

• The self.folders.generators folder is the location we set for all the files created by the Conan generators.
In this case, all the files generated by the CMakeToolchain generator will be stored there.

Note: Please note that the values above are for a single-configuration CMake generator. To support multi-configuration
generators, such as Visual Studio, you should make some changes to this layout. For a complete layout that supports
both single-config and multi-config, please check the cmake_layout() in the Conan documentation.

4.4. Developing packages locally 113

Conan Documentation, Release 2.1.0

self.cpp

This attribute is used to define where consumers will find the package contents (headers files, libraries, etc.) de-
pending on whether the package is in editable mode or not.

cpp.package

First, we set the information for cpp.package. This defines the contents of the package and its location relative to the
folder where the package is stored in the local cache. Please note that defining this information is equivalent to defining
self.cpp_info in the package_info() method. This is the information we defined:

• self.cpp.package.libs: we add the say library so that consumers know that they should link with it. This
is equivalent to declaring self.cpp_info.libs in the package_info() method.

• self.cpp.package.libdirs: we add the lib folder so that consumers know that they should search there
for the libraries. This is equivalent to declaring self.cpp_info.libdirs in the package_info() method.
Note that the default value for libdirs in both the cpp_info and cpp.package is ["lib"] so we could have
omitted that declaration.

• self.cpp.package.includedirs: we add the include folder so that consumers know that they should
search there for the library headers. This is equivalent to declaring self.cpp_info.includedirs in the
package_info() method. Note that the default value for includedirs in both the cpp_info and cpp.
package is ["include"] so we could have omitted that declaration.

To check how this information affects consumers we are going to do first do a conan create on the say package:

$ cd say
$ conan create . -s build_type=Release

When we call conan create, Conan moves the recipe and sources declared in the recipe to be exported to the local
Cache to a recipe folder and after that, it will create a separate package folder to build the binaries and store the actual
package contents. If you check in the [YOUR_CONAN_HOME]/p folder, you will find two new folders similar to these:

Tip: You could get the exact locations for this folders using the conan cache command or checking the output of
the conan create command.

<YOUR_CONAN_HOME>/p
sayb3ea744527a91 --> folder for sources

...

say830097e941e10 --> folder for building and storing the package binaries
b

build
Release

include
say.h

src
hello.cpp
say.cpp

p
include --> defined in cpp.package.includedirs

say.h
(continues on next page)

114 Chapter 4. Tutorial

Conan Documentation, Release 2.1.0

(continued from previous page)

lib --> defined in cpp.package.libdirs
libsay.a --> defined in self.cpp.package.libs

You can identify there the structure we defined in the layout() method. If you build the hello consumer project
now, it will search for all the headers and libraries of say in that folder inside the local Cache in the locations defined
by cpp.package:

$ cd ../hello
$ conan install . -s build_type=Release

Linux, MacOS
$ cmake --preset conan-release --log-level=VERBOSE
Windows
$ cmake --preset conan-default --log-level=VERBOSE

...
-- Conan: Target declared 'say::say'
-- Conan: Library say found <YOUR_CONAN_HOME>p/say8938ceae216fc/p/lib/libsay.a
-- Created target CONAN_LIB::say_say_RELEASE STATIC IMPORTED
-- Conan: Found: <YOUR_CONAN_HOME>p/p/say8938ceae216fc/p/lib/libsay.a
-- Configuring done
...

$ cmake --build --preset conan-release
[50%] Building CXX object CMakeFiles/hello.dir/src/hello.cpp.o
[100%] Linking CXX executable hello
[100%] Built target hello

cpp.source and cpp.build

We also defined cpp.source and cpp.build attributes in our recipe. These are only used when the package is in
editable mode and point to the locations that consumers will use to find headers and binaries. We defined:

• self.cpp.source.includedirs set to ["include"]. This location is relative to the self.folders.
source that we defined to .. In the case of editable packages, this location will be the local folder where we
have our project.

• self.cpp.build.libdirs set to ["."]. This location is relative to the self.folders.build that
we defined to ./build/<build_type>. In the case of editable packages, this location will point to <lo-
cal_folder>/build/<build_type>.

Note that other cpp.source and cpp.build definitions are also possible, with different meanings and purposes, for
example:

• self.cpp.source.libdirs and self.cpp.source.libs could be used if we had pre-compiled libraries in
the source repo, committed to git, for example. They are not a product of the build, but rather part of the sources.

• self.cpp.build.includedirs could be use for folders containing headers generated at build time, as it usu-
ally happens by some code generators that are fired by the build before starting to compile the project.

To check how this information affects consumers, we are going to first put the say package in editable mode and build
it locally.

4.4. Developing packages locally 115

Conan Documentation, Release 2.1.0

$ cd ../say
$ conan editable add . --name=say --version=1.0
$ conan install . -s build_type=Release
$ cmake --preset conan-release
$ cmake --build --preset conan-release

You can check the contents of the say project’s folder now, you can see that the output folders match the ones we defined
with self.folders:

.
CMakeLists.txt
CMakeUserPresets.json
build

Release --> defined in cpp.build.libdirs
...
generators

CMakePresets.json
...
deactivate_conanrun.sh

libsay.a --> no need to define
conanfile.py
include --> defined in cpp.source.includedirs

say.h
src

hello.cpp
say.cpp

Now that we have the say package in editable mode, if we build the hello consumer project, it will search for all the
headers and libraries of say in the folders defined by cpp.source and cpp.build:

$ cd ../hello
$ conan install . -s build_type=Release

Linux, MacOS
$ cmake --preset conan-release --log-level=VERBOSE
Windows
$ cmake --preset conan-default --log-level=VERBOSE

...
-- Conan: Target declared 'say::say'
-- Conan: Library say found <local_folder>/examples2/tutorial/developing_packages/
→˓package_layout/say/build/Release/libsay.a
-- Conan: Found: <local_folder>/examples2/tutorial/developing_packages/package_layout/
→˓say/build/Release/libsay.a
-- Configuring done
...

$ cmake --build --preset conan-release
[50%] Building CXX object CMakeFiles/hello.dir/src/hello.cpp.o
[100%] Linking CXX executable hello
[100%] Built target hello

$ conan editable remove --refs=say/1.0

116 Chapter 4. Tutorial

Conan Documentation, Release 2.1.0

Note: Please, note that we did not define self.cpp.build.libs = ["say"]. This is because the information set
in self.cpp.source and self.cpp.build will be merged with the information set in self.cpp.package so that
you only have to define things that change for the editable package. For the same reason, you could also omit setting
self.cpp.source.includedirs = ["include"] but we left it there to show the use of cpp.source.

See also:
• Define the layout() when you package third-party libraries

• Define the layout() when you have the conanfile in a subfolder

• Define the layout() when you want to handle multiple subprojects

4.5 Versioning

This section of the tutorial introduces several concepts about versioning of packages.

First, explicit version updates and how to define versions of packages is explained.

Then, it will be introduced how requires with version ranges can help to automate updating to the latest versions.

There are some situations when recipes or source code are changed, but the version of the package is not increased.
For those situations, Conan uses automatic revisions to be able to provide traceability and reproducibility of those
changes.

Lockfiles are a common mechanism in package managers to be able to reproduce the same dependency graph later in
time, even when new versions or revisions of dependencies are uploaded. Conan also provides lockfiles to be able to
guarantee this reproducibility.

Finally, when different branches of a dependency graph requires different versions of the same package, that is called
a “version conflict”. The tutorial will also introduce these errors and how to address them.

4.5.1 Versions

This section explains how different versions of a given package can be created, first starting with manually changing
the version attribute in the conanfile.py recipe, and then introducing the set_version() method as a mechanism
to automate the definition of the package version.

Note: This section uses very simple, empty recipes without building any code, so without build(), package(), etc.,
to illustrate the versioning with the simplest possible recipes, and allowing the examples to run easily and to be very
fast and simple. In real life, the recipes would be full-blown recipes as seen in previous sections of the tutorial, building
actual libraries and packages.

Let’s start with a very simple recipe:

Listing 72: conanfile.py

from conan import ConanFile

class pkgRecipe(ConanFile):
name = "pkg"
version = "1.0"

(continues on next page)

4.5. Versioning 117

Conan Documentation, Release 2.1.0

(continued from previous page)

The recipe would export files and package them, but not really
necessary for the purpose of this part of the tutorial
exports_sources = "include/*"
def package(self):
...

That we can create pkg/1.0 package with:

$ conan create .
...
pkg/1.0 .
...

$ conan list *
Local Cache
pkg

pkg/1.0

If we now did some changes to the source files of this library, this would be a new version, and we could change the
conanfile.py version to version = "1.1" and create the new pkg/1.1 version:

Make sure you modified conanfile.py to version=1.1
$ conan create .
...
pkg/1.1 .
...

$ conan list *
Local Cache
pkg

pkg/1.0
pkg/1.1

As we can see, now we see in our cache both pkg/1.0 and pkg/1.1. The Conan cache can store any number of
different versions and configurations for the same pkg package.

Automating versions

Instead of manually changing the version in conanfile.py, it is possible to automate it with 2 different approaches.

First it is possible to provide the version directly in the command line. In the example above, we could remove the
version attribute from the recipe and do:

Make sure you removed the version attribute in conanfile.py
$ conan create . --version=1.2
...
pkg/1.2 .
...

$ conan list *
Local Cache

(continues on next page)

118 Chapter 4. Tutorial

Conan Documentation, Release 2.1.0

(continued from previous page)

pkg
pkg/1.0
pkg/1.1
pkg/1.2

The other possibility is to use the set_version()method to define the version dynamically, for example, if the version
already exists in the source code or in a text file, or it should be deduced from the git version.

Let’s assume that we have a version.txt file in the repo, that contains just the version string 1.3. Then, this can be
done:

Listing 73: conanfile.py

from conan import ConanFile
from conan.tools.files import load

class pkgRecipe(ConanFile):
name = "pkg"

def set_version(self):
self.version = load(self, "version.txt")

No need to specify the version in CLI arg or in recipe attribute
$ conan create .
...
pkg/1.3 .
...

$ conan list *
Local Cache
pkg

pkg/1.0
pkg/1.1
pkg/1.2
pkg/1.3

It is also possible to combine the command line version definition, falling back to reading from file if the command
line argument is not provided with the following syntax:

Listing 74: conanfile.py

def set_version(self):
if self.version is already defined from CLI --version arg, it will
not load version.txt
self.version = self.version or load(self, "version.txt")

This will create the "1.4" version even if the version.txt file contains "1.3"
$ conan create . --version=1.4
...
pkg/1.4 .
...

(continues on next page)

4.5. Versioning 119

Conan Documentation, Release 2.1.0

(continued from previous page)

$ conan list *
Local Cache
pkg

pkg/1.0
pkg/1.1
pkg/1.2
pkg/1.3
pkg/1.4

Likewise, it is possible to obtain the version from a Git tag:

Listing 75: conanfile.py

from conan import ConanFile
from conan.tools.scm import Git

class pkgRecipe(ConanFile):
name = "pkg"

def set_version(self):
git = Git(self)
tag = git.run("describe --tags")
self.version = tag

assuming this is a git repo, and it was tagged to 1.5
$ git init .
$ git add .
$ git commit -m "initial commit"
$ git tag 1.5
$ conan create .

...
pkg/1.5 .
...

$ conan list *
Local Cache
pkg

pkg/1.0
pkg/1.1
pkg/1.2
pkg/1.3
pkg/1.4
pkg/1.5

Note: Best practices
• We could try to use something like the branch name or the commit as the version number. However this might

have some disadvantages, for example, when this package is being required, it will need a explicit requires =
"pkg/commit" in every other package recipe requiring this one, and it might be difficult to update consumers
consistently, and to know if a newer or older dependency is being used.

120 Chapter 4. Tutorial

Conan Documentation, Release 2.1.0

Requiring the new versions

When a new package version is created, if other package recipes requiring this one contain a explicit requires, pinning
the exact version like:

Listing 76: app/conanfile.py

from conan import ConanFile

class AppRecipe(ConanFile):
name = "app"
version = "1.0"
requires = "pkg/1.0"

Then, installing or creating the app recipe will keep requiring and using the pkg/1.0 version and not the newer ones.
To start using the new pkg versions, it is necessary to explicitly update the requires like:

Listing 77: app/conanfile.py

from conan import ConanFile

class AppRecipe(ConanFile):
name = "app"
version = "1.0"
requires = "pkg/1.5"

This process, while it achieves very good reproducibility and traceability, can be a bit tedious if we are managing a large
dependency graph and we want to move forward to use the latest dependencies versions faster and with less manual
intervention. To automate this, the version-ranges explained in the next section can be used.

4.5.2 Version ranges

In the previous section, we ended with several versions of the pkg package. Let’s remove them and create the following
simple project:

Listing 78: pkg/conanfile.py

from conan import ConanFile

class pkgRecipe(ConanFile):
name = "pkg"

Listing 79: app/conanfile.py

from conan import ConanFile

class appRecipe(ConanFile):
name = "app"
requires = "pkg/1.0"

Let’s create pkg/1.0 and install app, to see it requires pkg/1.0:

$ conan remove "pkg*" -c
$ conan create pkg --version=1.0

(continues on next page)

4.5. Versioning 121

Conan Documentation, Release 2.1.0

(continued from previous page)

... pkg/1.0 ...
$ conan install app
...
Requirements

pkg/1.0

Then, if we create a new version of pkg/1.1, it will not automatically be used by app:

$ conan create pkg --version=1.1
... pkg/1.0 ...
Note how this still uses the previous 1.0 version
$ conan install app
...
Requirements

pkg/1.0

So we could modify app conanfile to explicitly use the new pkg/1.1 version, but instead of that, let’s use the following
version-range expression (introduced by the [expression] brackets):

Listing 80: app/conanfile.py

from conan import ConanFile

class appRecipe(ConanFile):
name = "app"
requires = "pkg/[>=1.0 <2.0]"

When we now install the dependencies of app, it will automatically use the latest version in the range, even if we create
a new one, without needing to modify the app conanfile:

this will now use the newer 1.1
$ conan install app
...
Requirements

pkg/1.1

$ conan create pkg --version=1.2
... pkg/1.2 ...
Now it will automatically use the newest 1.2
$ conan install app
...
Requirements

pkg/1.2

This holds as long as the newer version lies within the defined range, if we create a pkg/2.0 version, app will not use
it:

$ conan create pkg --version=2.0
... pkg/2.0 ...
Conan will use the latest in the range
$ conan install app
...
Requirements

(continues on next page)

122 Chapter 4. Tutorial

Conan Documentation, Release 2.1.0

(continued from previous page)

pkg/1.2

When using version ranges, versions in the cache are preferred over remote ones, so if you have a local pkg/1.2
package, it will be used instead of the remote one, even if the remote one is newer. To ensure you use the latest
available one, you can use the --update argument in the install/create command.

Version ranges can be defined in several places:

• In conanfile.py recipes requires, tool_requires, test_requires, python_requires

• In conanfile.txt files in [requires], [tool_requires], [test_requires] sections

• In command line arguments like --requires= and --tool_requires.

• In profiles [tool_requires] section

Semantic versioning

The semantic versioning specification or semver, specifies that packages should be versioned using always 3 dot-
separated digits like MAJOR.MINOR.PATCH, with very specific meanings for each digit.

Conan extends the semver specification to any number of digits, and also allows to include lowercase letters in it. This
was done because during 1.X a lot of experience and feedback from users was gathered, and it became evident than in
C++ the versioning scheme is often more complex, and users were demanding more flexibility, allowing versions like
1.2.3.a.8 if necessary.

Conan versions non-digit identifiers follow the same rules as package names, they can only contain lowercase letters.
This is to avoid 1.2.3-Beta to be a different version than 1.2.3-beta which can be problematic, even a security
risk.

The ordering of versions when necessary (for example to decide which is the latest version in a version range) is done by
comparing individually each dot-separated entity in the version, from left to right. Digits will be compared numerically,
so 2 < 11, and entries containing letters will be compared alphabetically (even if they also contain some numbers).

Similarly to the semver specification, Conan can manage prereleases and builds in the form:
VERSION-prerelease+build. Conan will also order pre-releases and builds according to the same rules, and
each one of them can also contain an arbitrary number of items, like 1.2.3-pre.1.2.1+build.45.a. Note that the
semver standard does not apply any ordering to builds, but Conan does, with the same logic that is used to order the
main version and the pre-releases.

Important: Note that the ordering of pre-releases can be confusing at times. A pre-release happens earlier in time
than the release it is qualifying. So 1.1-alpha.1 is older than 1.1, not newer.

Range expressions

Range expressions can have comparison operators for the lower and higher bounds, separated with a space. Also,
lower bounds and upper bounds in isolation are permitted, though they are generally not recommended under normal
versioning schemes, specially the lower bound only. requires = "pkg/[>=1.0 <2.0]" will include versions like
1.0, 1.2.3 and 1.9, but will not include 0.3, 2.0 or 2.1 versions.

The tilde ~ operator can be used to define an “approximately” equal version range. requires = "pkg/[~1]" will
include versions 1.3 and 1.8.1, but will exclude versions like 0.8 or 2.0. Likewise requires = "pkg/[~2.5]" will
include 2.5.0 and 2.5.3, but exclude 2.1, 2.7, 2.8.

4.5. Versioning 123

https://semver.org/

Conan Documentation, Release 2.1.0

The caret ^ operator is very similar to the tilde, but allowing variability over the last defined digit. requires =
"pkg/[^1.2]" will include 1.2.1, 1.3 and 1.51, but will exclude 1.0, 2, 2.0.

It is also possible to apply multiple conditions with the OR operator, like requires = "pkg/[>1 <2.0 || ^3.2]"
but this kind of complex expressions is not recommended in practice and should only be used in very extreme cases.

Finally, note that pre-releases are not resolved by default. The way to include them in the range is to explicitly enable
them with either the include_prerelease option (requires = "pkg/[>1 <2, include_prerelease]"), or via
the core.version_ranges:resolve_prereleases=True configuration. In this example, 1.0-pre.1 and 1.5.1-pre1
will be included, but 2.0-pre1 would be excluded.

Note: While it is possible to hardcode the include_prerelease in the requires version range, it is not recom-
mended generally. Pre-releases should be opt-in, and controlled by the user, who decides if they want to use pre-releases.
Also, note that the include_prereleases receives no argument, hence it’s not possible to deactivate prereleases with
include_prerelease=False.

For more information about valid range expressions go to Requires reference

4.5.3 Revisions

This sections introduces how doing modifications to a given recipe or source code without explicitly creating new
versions, will still internally track those changes with a mechanism called revisions.

Creating different revisions

Let’s start with a basic “hello” package:

$ mkdir hello && cd hello
$ conan remove hello* -c # clean possible existing ones
$ conan new cmake_lib -d name=hello -d version=1.0
$ conan create .
hello/1.0: Hello World Release!
...

We can now list the existing recipe revisions in the cache:

$ conan list hello/1.0#*
Local Cache
hello
hello/1.0
revisions
2475ece651f666f42c155623228c75d2 (2023-01-31 23:08:08 UTC)

If we now edit the src/hello.cpp file, to change the output message from “Hello” to “Bye”

Listing 81: hello/src/hello.cpp

void hello(){

#ifdef NDEBUG
std::cout << "hello/1.0: Bye World Release!\n";
...

124 Chapter 4. Tutorial

Conan Documentation, Release 2.1.0

So if we create the package again, without changing the version hello/1.0, we will get a new output:

$ conan create .
hello/1.0: Bye World Release!
...

But even if the version is the same, internally a new revision 2b547b7f20f5541c16d0b5cbcf207502 has been cre-
ated.

$ conan list hello/1.0#*
Local Cache
hello
hello/1.0
revisions
2475ece651f666f42c155623228c75d2 (2023-01-31 23:08:08 UTC)
2b547b7f20f5541c16d0b5cbcf207502 (2023-01-31 23:08:25 UTC)

This recipe revision is the hash of the contents of the recipe, including the conanfile.py, and the exported sources
(src/main.cpp, CMakeLists.txt, etc., that is, all files exported in the recipe).

We can now edit the conanfile.py, to define the licence value:

Listing 82: hello/conanfile.py

class helloRecipe(ConanFile):
name = "hello"
version = "1.0"

Optional metadata
license = "MIT"
...

So if we create the package again, the output will be the same, but we will also get a new revision, as the conanfile.py
changed:

$ conan create .
hello/1.0: Bye World Release!
...
$ conan list hello/1.0#*
Local Cache
hello
hello/1.0
revisions
2475ece651f666f42c155623228c75d2 (2023-01-31 23:08:08 UTC)
2b547b7f20f5541c16d0b5cbcf207502 (2023-01-31 23:08:25 UTC)
1d674b4349d2b1ea06aa6419f5f99dd9 (2023-01-31 23:08:34 UTC)

Important: The recipe revision is the hash of the contents. It can be changed to be the Git commit hash with
revision_mode = "scm". But in any case it is critical that every revision represents an immutable source, including
the recipe and the source code:

• If the sources are managed with exports_sources, then they will be automatically be part of the hash

• If the sources are retrieved from a external location, like a downloaded tarball or a git clone, that should guarantee
uniqueness, by forcing the checkout of a unique immutable tag, or a commit. Moving targets like branch names
or HEAD would be broken, as revisions are considered immutable.

4.5. Versioning 125

Conan Documentation, Release 2.1.0

Any change in source code or in recipe should always imply a new revision.

Warning: Line Endings Issue
Git, by default, will checkout files on Windows systems using CRLF line endings. This results in different files
compared to Linux systems where files will use LF line endings. Since the files are different, the Conan recipe
revision computed on Windows will differ from the revisions on other platforms like Linux. Please, check more
about this issue and how to solve it in the FAQ dedicated section.

Using revisions

The recipe revisions are resolved by default to the latest revision for every given version. In the case above, we could
have a chat/1.0 package that consumes the above hello/1.0 package:

$ cd ..
$ mkdir chat && cd chat
$ conan new cmake_lib -d name=chat -d version=1.0 -d requires=hello/1.0
$ conan create .
...
Requirements
chat/1.0#17b45a168519b8e0ed178d822b7ad8c8 - Cache
hello/1.0#1d674b4349d2b1ea06aa6419f5f99dd9 - Cache
...
hello/1.0: Bye World Release!
chat/1.0: Hello World Release!

We can see that by default, it is resolving to the latest revision 1d674b4349d2b1ea06aa6419f5f99dd9, so we also
see the hello/1.0: Bye World modified message.

It is possible to explicitly depend on a given revision in the recipes, so it is possible to modify the chat/1.0 recipe to
define it requires the first created revision:

126 Chapter 4. Tutorial

Conan Documentation, Release 2.1.0

Listing 83: chat/conanfile.py

def requirements(self):
self.requires("hello/1.0#2475ece651f666f42c155623228c75d2")

So creating chat will now force the first revision:

$ conan create .
...
Requirements
chat/1.0#12f87e1b8a881da6b19cc7f229e16c76 - Cache
hello/1.0#2475ece651f666f42c155623228c75d2 - Cache
...
hello/1.0: Hello World Release!
chat/1.0: Hello World Release!

Uploading revisions

The upload command will upload only the latest revision by default:

upload latest revision only, all package binaries
$ conan upload hello/1.0 -c -r=myremote

If for some reason we want to upload all existing revisions, it is possible with:

upload all revisions, all binaries for each revision
$ conan upload hello/1.0#* -c -r=myremote

In the server side, the latest uploaded revision becomes the latest one, and the one that will be resolved by default. For
this reason, the above command uploads the different revisions in order (from older revision to latest revision), so the
relative order of revisions is respected in the server side.

Note that if another machine decides to upload a revision that was created some time ago, it will still become the latest
in the server side, because it is created in the server side with that time.

Package revisions

Package binaries when created also compute the hash of their contents, forming the package revision. But they are very
different in nature to recipe revisions. Recipe revisions are naturally expected, every change in source code or in the
recipe would cause a new recipe revision. But package binaries shouldn’t have more than one package revision, because
binaries variability would be already encoded in a unique package_id. Put in other words, if the recipe revision is
the same (exact same input recipe and source code) and the package_id is the same (exact same configuration profile,
settings, etc.), then that binary should be built only once.

As C and C++ build are not deterministic, it is possible that subsequents builds of the same package, without modifying
anything will be creating new package revisions:

Build again 2 times the latest
$ conan create .
$ conan create .

In some OSs like Windows, this build will not be reproducible, and the resulting artifacts will have different checksums,
resulting in new package revisions:

4.5. Versioning 127

Conan Documentation, Release 2.1.0

$ conan list hello/1.0:*#*
Local Cache
hello
hello/1.0
revisions
1d674b4349d2b1ea06aa6419f5f99dd9 (2023-02-01 00:03:29 UTC)
packages
2401fa1d188d289bb25c37cfa3317e13e377a351
revisions
8b8c3deef5ef47a8009d4afaebfe952e (2023-01-31 23:08:40 UTC)
8e8d380347e6d067240c4c00132d42b1 (2023-02-01 00:03:12 UTC)
c347faaedc1e7e3282d3bfed31700019 (2023-02-01 00:03:35 UTC)

info
settings
arch: x86_64
build_type: Release
...

By default, the package revision will also be resolved to the latest one. However, it is not possible to pin a package
revision explicitly in recipes, recipes can only require down to the recipe revision as we defined above.

Warning: Best practices
Having more than 1 package revision for any given recipe revision + package_id is a smell or a potential bad
practice. It means that something was rebuilt when it was not necessary, wasting computing and storage resources.
There are ways to avoid doing it, like conan create . --build=missing:hello* will only build that package
binary if it doesn’t exist already (or running conan graph info can also return information of what needs to be
built.)

4.5.4 Lockfiles

Lockfiles are a mechanism to achieve reproducible dependencies, even when new versions or revisions of those depen-
dencies are created. Let’s see it with a practical example, start cloning the examples2 repository:

$ git clone https://github.com/conan-io/examples2.git
$ cd examples2/tutorial/versioning/lockfiles/intro

In this folder we have a small project, consisting in 3 packages: a matrix package, emulating some mathematical
library, an engine package emulating some game engine, and a sound32 package, emulating a sound library for some
32bits systems. These packages are actually most empty, they do not build any code, but they are good to learn the
concepts of lockfiles.

128 Chapter 4. Tutorial

https://github.com/conan-io/examples2

Conan Documentation, Release 2.1.0

engine/1.0

matrix/1.0 sound32/1.0

if arch==x86

We will start by creating the first matrix/1.0 version:

$ conan create matrix --version=1.0

Now we can check in the engine folder its recipe:

class Engine(ConanFile):
name = "engine"
settings = "arch"

def requirements(self):
self.requires("matrix/[>=1.0 <2.0]")
if self.settings.arch == "x86":

self.requires("sound32/[>=1.0 <2.0]")

Lets move to the engine folder and install its dependencies:

$ cd engine
$ conan install .
...
Requirements

matrix/1.0#905c3f0babc520684c84127378fefdd0 - Cache
Resolved version ranges

matrix/[>=1.0 <2.0]: matrix/1.0

As the matrix/1.0 version is in the valid range, it is resolved and used. But if someone creates a new matrix/1.1
or 1.X version, it would also be automatically used, because it is also in the valid range. To avoid this, we will capture
a “snapshot” of the current dependencies creating a conan.lock lockfile:

$ conan lock create .
$ cat conan.lock
{

(continues on next page)

4.5. Versioning 129

Conan Documentation, Release 2.1.0

(continued from previous page)

"version": "0.5",
"requires": [

"matrix/1.0#905c3f0babc520684c84127378fefdd0%1675278126.0552447"
],
"build_requires": [],
"python_requires": []

}

We can see how the created conan.lock lockfile contains the matrix/1.0 version and its revision. But sound32/1.0
is not in the lockfile, because for the default configuration profile (not x86), this sound32 is not a dependency.

Now, a new matrix/1.1 version is created:

$ cd ..
$ conan create matrix --version=1.1
$ cd engine

And see what happens when we issue a new conan install command for the engine:

$ conan install .
equivalent to conan install . --lockfile=conan.lock
...
Requirements

matrix/1.0#905c3f0babc520684c84127378fefdd0 - Cache

As we can see, the new matrix/1.1 was not used, even if it is in the valid range! This happens because by default
the --lockfile=conan.lock will be used if the conan.lock file is found. The locked matrix/1.0 version and
revision will be used to resolve the range, and the matrix/1.1 will be ignored.

Likewise, it is possible to issue other Conan commands, and if the conan.lock is there, it will be used:

$ conan graph info . --filter=requires # --lockfile=conan.lock is implicit
display info for matrix/1.0
$ conan create . --version=1.0 # --lockfile=conan.lock is implicit
creates the engine/1.0 package, using matrix/1.0 as dependency

If using a lockfile is intended, like in CI, it is better that the argument --lockfile=conan.lock explicit.

Multi-configuration lockfiles

We saw above that the engine has a conditional dependency to the sound32 package, in case the architecture is x86.
That also means that such sound32 package version was not captured in the above lockfile.

Lets create the sound32/1.0 package first, then try to install engine:

$ cd ..
$ conan create sound32 --version=1.0
$ cd engine
$ conan install . -s arch=x86 # FAILS!
ERROR: Requirement 'sound32/[>=1.0 <2.0]' not in lockfile

This happens because the conan.lock lockfile doesn’t contain a locked version for sound32. By default lockfiles
are strict, if we are locking dependencies, a matching version inside the lockfile must be found. We can relax this
assumption with the --lockfile-partial argument:

130 Chapter 4. Tutorial

Conan Documentation, Release 2.1.0

$ conan install . -s arch=x86 --lockfile-partial
...
Requirements

matrix/1.0#905c3f0babc520684c84127378fefdd0 - Cache
sound32/1.0#83d4b7bf607b3b60a6546f8b58b5cdd7 - Cache

Resolved version ranges
sound32/[>=1.0 <2.0]: sound32/1.0

This will manage to partially lock to matrix/1.0, and resolve sound32 version range as usual. But we can do better,
we can extend our lockfile to also lock sound32/1.0 version, to avoid possible disruptions caused by new sound32
unexpected versions:

$ conan lock create . -s arch=x86
$ cat conan.lock
{

"version": "0.5",
"requires": [

"sound32/1.0#83d4b7bf607b3b60a6546f8b58b5cdd7%1675278904.0791488",
"matrix/1.0#905c3f0babc520684c84127378fefdd0%1675278900.0103245"

],
"build_requires": [],
"python_requires": []

}

Now, both matrix/1.0 and sound32/1.0 are locked inside our conan.lock lockfile. It is possible to use this lock-
file for both configurations (64bits, and x86 architectures), having versions in a lockfile that are not used for a given
configuration is not an issue, as long as the necessary dependencies for that configuration find a matching version in it.

Important: Lockfiles contains sorted lists of requirements, ordered by versions and revisions, so latest versions and
revisions are the ones that are prioritized when resolving against a lockfile. A lockfile can contain two or more different
versions of the same package, just because different version ranges require them. The sorting will provide the right
logic so each range resolves to each valid versions.

If a version in the lockfile doesn’t fit in a valid range, it will not be used. It is not possible for lockfiles to force
a dependency that goes against what conanfile requires define, as they are “snapshots” of an existing/realizable
dependency graph, but cannot define an “impossible” dependency graph.

Evolving lockfiles

Even if lockfiles enforce and constraint the versions that can be resolved for a graph, it doesn’t mean that lockfiles cannot
evolve. Actually, controlled evolution of lockfiles is paramount to important processes like Continuous Integration,
when the effect of one change in the graph wants to be tested in isolation of other possible concurrent changes.

In this section we will introduce some of the basic functionality of lockfiles that allows such evolution.

First, if we would like now to introduce and test the new matrix/1.1 version in our engine, without necessarily
pulling many other dependencies that could have got new versions too, we could manually add matrix/1.1 to the
lockfile:

$ Running: conan lock add --requires=matrix/1.1
$ cat conan.lock
{

(continues on next page)

4.5. Versioning 131

Conan Documentation, Release 2.1.0

(continued from previous page)

"version": "0.5",
"requires": [

"sound32/1.0#83d4b7bf607b3b60a6546f8b58b5cdd7%1675278904.0791488",
"matrix/1.1",
"matrix/1.0#905c3f0babc520684c84127378fefdd0%1675278900.0103245"

],
"build_requires": [],
"python_requires": []

}

To be clear: manually adding with conan lock add is not necessarily a recommended flow, it is possible to automate
the task with other approaches, that will be explained later. This is just an introduction to the principles and concepts.

The important idea is that now we got 2 versions of matrix in the lockfile, and matrix/1.1 is before matrix/1.0,
so for the range matrix/[>=1.0 <2.0], the first one (matrix/1.1) would be prioritized. That means that when now
the new lockfile is used, it will resolve to matrix/1.1 version (even if a matrix/1.2 or higher version existed in the
system):

$ conan install . -s arch=x86 --lockfile-out=conan.lock
Requirements

matrix/1.1#905c3f0babc520684c84127378fefdd0 - Cache
sound32/1.0#83d4b7bf607b3b60a6546f8b58b5cdd7 - Cache

$ cat conan.lock
{

"version": "0.5",
"requires": [

"sound32/1.0#83d4b7bf607b3b60a6546f8b58b5cdd7%1675278904.0791488",
"matrix/1.1#905c3f0babc520684c84127378fefdd0%1675278901.7527816",
"matrix/1.0#905c3f0babc520684c84127378fefdd0%1675278900.0103245"

],
"build_requires": [],
"python_requires": []

}

Note that now matrix/1.1 was resolved, and it also got its revision stored in the lockfile (because
--lockfile-out=conan.lock was passed as argument).

It is true that the former matrix/1.0 version was not used. As said above, having old versions in the lockfile that
are not used is not harmful. However, if we want to prune the unused versions and revisions, we could use the
--lockfile-clean for that purpose:

$ conan install . -s arch=x86 --lockfile-out=conan.lock --lockfile-clean
...
Requirements

matrix/1.1#905c3f0babc520684c84127378fefdd0 - Cache
sound32/1.0#83d4b7bf607b3b60a6546f8b58b5cdd7 - Cache

...
$ cat conan.lock
{

"version": "0.5",
"requires": [

"sound32/1.0#83d4b7bf607b3b60a6546f8b58b5cdd7%1675278904.0791488",
"matrix/1.1#905c3f0babc520684c84127378fefdd0%1675278901.7527816"

(continues on next page)

132 Chapter 4. Tutorial

Conan Documentation, Release 2.1.0

(continued from previous page)

],
"build_requires": [],
"python_requires": []

}

It is relevant to note that the -lockfile-clean could remove locked versions in given configurations. For example,
if instead of the above, the x86_64 architecture is used, the --lockfile-clean will prune the “unused” sound32,
because in that configuration is not used. It is possible to evaluate new lockfiles for every different configuration, and
then merge them:

$ conan lock create . --lockfile-out=64.lock --lockfile-clean
$ conan lock create . -s arch=x86 --lockfile-out=32.lock --lockfile-clean
$ cat 64.lock
{

"version": "0.5",
"requires": [

"matrix/1.1#905c3f0babc520684c84127378fefdd0%1675294635.6049662"
],
"build_requires": [],
"python_requires": []

}
$ cat 32.lock
{

"version": "0.5",
"requires": [

"sound32/1.0#83d4b7bf607b3b60a6546f8b58b5cdd7%1675294637.9775107",
"matrix/1.1#905c3f0babc520684c84127378fefdd0%1675294635.6049662"

],
"build_requires": [],
"python_requires": []

}
$ conan lock merge --lockfile=32.lock --lockfile=64.lock --lockfile-out=conan.lock
$ cat conan.lock
{

"version": "0.5",
"requires": [

"sound32/1.0#83d4b7bf607b3b60a6546f8b58b5cdd7%1675294637.9775107",
"matrix/1.1#905c3f0babc520684c84127378fefdd0%1675294635.6049662"

],
"build_requires": [],
"python_requires": []

}

This multiple-clean + merge operation is not something that developers should do, only CI scripts, and for some ad-
vanced CI flows that will be explained later.

See also:
• Continuous Integrations links.

4.5. Versioning 133

Conan Documentation, Release 2.1.0

4.5.5 Dependencies conflicts

In a dependency graph, when different packages depends on different versions of the same package, this is called a
dependency version conflict. It is relatively easy to produce one. Let’s see it with a practical example, start cloning the
examples2 repository:

$ git clone https://github.com/conan-io/examples2.git
$ cd examples2/tutorial/versioning/conflicts/versions

In this folder we have a small project, consisting in several packages: matrix (a math library), engine/1.0 video
game engine that depends on matrix/1.0, intro/1.0, a package implementing the intro credits and functionality for
the videogame that depends on matrix/1.1 and finally the game recipe that depends simultaneously on engine/1.0
and intro/1.0. All these packages are actually empty, but they are enough to produce the conflicts.

game/1.0

engine/1.0 intro/1.0

matrix/1.0 matrix/1.1

Let’s create the dependencies:

$ conan create matrix --version=1.0
$ conan create matrix --version=1.1 # note this is 1.1!
$ conan create engine --version=1.0 # depends on matrix/1.0
$ conan create intro --version=1.0 # depends on matrix/1.1

And when we try to install game, we will get the error:

$ conan install game
Requirements

engine/1.0#0fe4e6890766f7b8e21f764f0049aec7 - Cache
intro/1.0#d639998c2e55cf36d261ab319801c322 - Cache

(continues on next page)

134 Chapter 4. Tutorial

https://github.com/conan-io/examples2

Conan Documentation, Release 2.1.0

(continued from previous page)

matrix/1.0#905c3f0babc520684c84127378fefdd0 - Cache
Graph error

Version conflict: intro/1.0->matrix/1.1, game/1.0->matrix/1.0.
ERROR: Version conflict: intro/1.0->matrix/1.1, game/1.0->matrix/1.0.

This is a version conflict, and Conan will not decide automatically how to resolve the conflict, but the user should
explicitly resolve such conflict.

Resolving conflicts

Of course, the most direct and straightforward way to solve such a conflict is going to the dependencies conanfile.py
and upgrading their requirements() so they point now to the same version. However this might not be practical in
some cases, or it might be even impossible to fix the dependencies conanfiles.

For that case, it should be the consuming conanfile.py the one that can resolve the conflict (in this case, game) by
explicitly defining which version of the dependency should be used, with the following syntax:

Listing 84: game/conanfile.py

class Game(ConanFile):
name = "game"
version = "1.0"

def requirements(self):
self.requires("engine/1.0")
self.requires("intro/1.0")
self.requires("matrix/1.1", override=True)

This is called an override. The game package do not directly depend on matrix, this requires declaration will not
introduce such a a direct dependency. But the matrix/1.1 version will be propagated upstream in the dependency
graph, overriding the requires of packages that do depend on any matrix version, forcing the consistency of the
graph, as all upstream packages will now depend on matrix/1.1:

$ conan install game
...
Requirements

engine/1.0#0fe4e6890766f7b8e21f764f0049aec7 - Cache
intro/1.0#d639998c2e55cf36d261ab319801c322 - Cache
matrix/1.1#905c3f0babc520684c84127378fefdd0 - Cache

4.5. Versioning 135

Conan Documentation, Release 2.1.0

game/1.0

engine/1.0 intro/1.0

matrix/1.1 matrix/1.0

Note: In this case, a new binary for engine/1.0 was not necessary, but in some situations the above could fail with a
engine/1.0 “binary missing error”. Because previously engine/1.0 binaries were built against matrix/1.0. If the
package_id rules and configuration define that engine should be rebuilt when minor versions of the dependencies
change, then it will be necessary to build a new binary for engine/1.0 that builds and links against the new matrix/
1.1 dependency.

What happens if game had a direct dependency to matrix/1.2? Lets create the version:

$ conan create matrix --version=1.2

Now lets modify game/conanfile.py to introduce this as a direct dependency:

136 Chapter 4. Tutorial

Conan Documentation, Release 2.1.0

Listing 85: game/conanfile.py

class Game(ConanFile):
name = "game"
version = "1.0"

def requirements(self):
self.requires("engine/1.0")
self.requires("intro/1.0")
self.requires("matrix/1.2")

game/1.0

engine/1.0 intro/1.0

matrix/1.2matrix/1.0 matrix/1.1

So installing it will raise a conflict error again:

$ conan install game
...
ERROR: Version conflict: engine/1.0->matrix/1.0, game/1.0->matrix/1.2.

As this time, we want to respect the direct dependency between game and matrix, we will define the force=True
requirement trait, to indicate that this dependency version will also be forcing the overrides upstream:

Listing 86: game/conanfile.py

class Game(ConanFile):
name = "game"
version = "1.0"

(continues on next page)

4.5. Versioning 137

Conan Documentation, Release 2.1.0

(continued from previous page)

def requirements(self):
self.requires("engine/1.0")
self.requires("intro/1.0")
self.requires("matrix/1.2", force=True)

And that will now solve again the conflict (as commented above, note that in real applications this could mean that
binaries for engine/1.0 and intro/1.0would be missing, and need to be built to link against the new forced matrix/
1.2 version):

$ conan install game
Requirements

engine/1.0#0fe4e6890766f7b8e21f764f0049aec7 - Cache
intro/1.0#d639998c2e55cf36d261ab319801c322 - Cache
matrix/1.2#905c3f0babc520684c84127378fefdd0 - Cache

game/1.0

engine/1.0

matrix/1.2

intro/1.0

matrix/1.0 matrix/1.1

Note: Best practices
Resolving version conflicts by overrides/forces should in general be the exception and avoided when possible, applied as
a temporary workaround. The real solution is to move forward the dependencies requires so they naturally converge
to the same versions of upstream dependencies.

138 Chapter 4. Tutorial

Conan Documentation, Release 2.1.0

Overriding options

It is possible that when there are diamond structures in a dependency graph, like the one seen above, different recipes
might be defining different values for the upstream options. In this case, this is not directly causing a conflict, but
instead the first value to be defined is the one that will be prioritized and will prevail.

In the above example, if matrix/1.0 can be both a static and a shared library, and engine decides to define that it
should be a static library (not really necessary, because that is already the default):

Listing 87: engine/conanfile.py

class Engine(ConanFile):
name = "engine"
version = "1.0"
Not strictly necessary because this is already the matrix default
default_options = {"matrix*:shared": False}

And also intro recipe would do the same, but instead define that it wants a shared library, and adds a validate()
method, because for some reason the intro package can only be built against shared libraries and otherwise crashes:

Listing 88: intro/conanfile.py

class Intro(ConanFile):
name = "intro"
version = "1.0"
default_options = {"matrix*:shared": True}

def requirements(self):
self.requires("matrix/1.0")

def validate(self):
if not self.dependencies["matrix"].options.shared:

raise ConanInvalidConfiguration("Intro package doesn't work with static␣
→˓matrix library")

Then, this will cause an error, because as the first one to define the option value is engine (it is declared first in the
game conanfile requirements() method). In the examples2 repository, go to the “options” folder, and create the
different packages:

$ cd ../options
$ conan create matrix
$ conan create matrix -o matrix/*:shared=True
$ conan create engine
$ conan create intro
$ conan install game # FAILS!
...
-------- Installing (downloading, building) binaries... --------
ERROR: There are invalid packages (packages that cannot exist for this configuration):
intro/1.0: Invalid: Intro package doesn't work with static matrix library

Following the same principle, the downstream consumer recipe, in this case game conanfile.py can define the options
values, and those will be prioritized:

4.5. Versioning 139

Conan Documentation, Release 2.1.0

Listing 89: game/conanfile.py

class Game(ConanFile):
name = "game"
version = "1.0"
default_options = {"matrix*:shared": True}

def requirements(self):
self.requires("engine/1.0")
self.requires("intro/1.0")

And that will force now matrix being a shared library, no matter if engine defined shared=False, because the
downstream consumers always have priority over the upstream dependencies.

$ conan install game
...
-------- Installing (downloading, building) binaries... --------
matrix/1.0: Already installed!
matrix/1.0: I am a shared-library library!!!
engine/1.0: Already installed!
intro/1.0: Already installed!

Note: Best practices
As a general rule, avoid modifying or defining values for dependencies options in consumers conanfile.py. The
declared options defaults should be good for the majority of cases, and variations from those defaults can be defined
better in profiles better.

4.6 Other important Conan features

4.6.1 python_requires

It is possible to reuse code from other recipes using the python_requires feature.

If you maintain many recipes for different packages that share some common logic and you don’t want to repeat the
code in every recipe, you can put that common code in a Conan conanfile.py, upload it to your server, and have
other recipe conanfiles do a python_requires = "mypythoncode/version" to depend on it and reuse it.

4.6.2 Packages lists

It is possible to manage a list of packages, recipes and binaries together with the “packages-list” feature. Several
commands like upload, download, and remove allow receiving a list of packages file as an input, and they can do
their operations over that list. A typical use case is to “upload to the server the packages that have been built in the last
conan create”, which can be done with:

$ conan create . --format=json > build.json
$ conan list --graph=build.json --graph-binaries=build --format=json > pkglist.json
$ conan upload --list=pkglist.json -r=myremote -c

See the examples in this section.

140 Chapter 4. Tutorial

Conan Documentation, Release 2.1.0

4.6.3 Removing unused packages from the cache

Warning: The least recently used feature is in preview. See the Conan stability section for more information.

The Conan cache does not implement any automatic expiration policy, so its size will be always increasing unless
packages are removed or the cache is removed from time to time. It is possible to remove recipes and packages that
haven’t been used recently, while keeping those that have been used in a given time period (Least Recently Used LRU
policy). This can be done with the --lru argument to conan remove and conan list commands:

remove all binaries (but not recipes) not used in the last 4 weeks
$ conan remove "*:*" --lru=4w -c
remove all recipes that have not been used in the last 4 weeks (with their binaries)
$ conan remove "*" --lru=4w -c

Note that the LRU time follows the rules of the remove command. If we are removing recipes with a "*" pattern, only
the LRU times for recipes will be checked. If a recipe has been recently used, it will keep all the binaries, and if the
recipe has not been recently used, it will remove itself and all its binaries. If we use a "*:*" pattern, it will check for
binaries only, and remove those unused, but always leaving the recipe.

Using conan list first (take into account that conan list do not default to list all revisions, as opposed to remove,
so it is necessary to explicit the #* to select all revisions if that is the intention) it is possible to create a list of least
recently used packages:

List all unused (last 4 weeks) recipe revisions
$ conan list "*#*" --lru=4w --format=json > old.json
Remove those recipe revisions (and their binaries)
$ conan remove --list=old.json -c

See commands help conan remove and conan list.

4.6. Other important Conan features 141

Conan Documentation, Release 2.1.0

142 Chapter 4. Tutorial

CHAPTER

FIVE

DEVOPS GUIDE

The previous tutorial section was aimed at users in general and developers.

This section is intended for DevOps users, build and CI engineers, administrators, and architects adopting, designing
and implementing Conan in production in their teams and organizations. If you plan to use Conan in production in
your project, team, or organization, this section contains the necessary information.

5.1 Using ConanCenter packages in production environments

ConanCenter is a fantastic resource that contains reference implementations of recipes for over 1500 libraries and
applications contributed by the community. As such, it is a great knowledge base on how to create and build Conan
packages for open source dependencies.

ConanCenter also builds and provides binary packages for a wide range of configurations: multiple operating systems
(Windows, Linux, macOS), compilers, compiler versions, and library variants (shared, static). On top of this, for a lot
of libraries community contributors ensure that recipes are compatible for additional operating systems (Android, iOS,
FreeBSD, QNX) and CPU architectures. The recipes in Conan Center are the greatest example of Conan’s universality
promise.

Unlike other package managers or repositories, ConanCenter does not maintain a fixed snapshot of versions. On the
contrary, for a given library (e.g. OpenCV), multiple versions are actively maintained at the same time. This gives
users greater control of which versions to use, rather than having to remain fixed to an older version, or pushing them
to always be on the latest version.

In order to support this ecosystem, ConanCenter recipes are updated very frequently. Recipes themselves may be
updated to support a new platform, bug fixes, or to require newer versions of their dependencies. On the other hand,
each user of ConanCenter may have a different combination of versions in their requirements. This means that given
the same input list of requirements, Conan may resolve the graph differently at different points in time - resolving to
different recipe revisions, versions, or packages. This is similar to the default behavior of package managers in other
languages (pip/PyPi, npm, cargo, etc). In production environments where reproducibility is important, it is therefore
discouraged to depend directly on Conan Center in an unconstrained manner.

The following guidelines contain a series of recommendations to ensure repeatability, reliability, compliance and, where
applicable, control to enable customization. As a summary, it is highly recommended to follow these approaches when
using packages from ConanCenter:

• Lock the versions and revisions you depend on using lockfiles

• Host your own copy ConanCenter recipes and package binaries in a server under your control

143

Conan Documentation, Release 2.1.0

5.1.1 Repeatability and reproducibility

As mentioned earlier - given a set of requirements, changes in ConanCenter can cause the Conan dependency solver
to resolve different graphs over time. This does not only apply to the actual versions of libraries (e.g. opencv/4.5.0
instead opencv/4.2.1) - but also the recipes themselves. That is, there may exist multiple revisions of the opencv/
4.5.0 recipe, which can have side effects for consumers. Changes in recipes typically address a problem (bugfixes),
target functionality (e.g. adding a conditional option, support for a new platform), or change versions of dependencies.

In order to ensure repeatability, the use of lockfiles on the consumer side is greatly encouraged: please check the lockfile
docs for more information.

Lockfiles ensure that Conan will resolve the same graph in a repeatable and consistent manner - thus making sure the
same versions are used across multiple systems (CI, developers, etc).

Lockfiles are also used in other package managers like Python pip, Rust Cargo, npm - these recommendations are in
line with the practices of these other technologies.

Additionally, it is highly recommended to host your recipes and packages in your own server (see below). Both of these
approaches help you achieve having control on when upstream changes from ConanCenter are propagated across your
team and systems.

5.1.2 Service reliability

Consuming recipes and packages from the ConanCenter remote can be impacted during periods of downtime (scheduled
or otherwise). While every effort is made to ensure that the ConanCenter is always available, and unscheduled downtime
is rare and treated with urgency - this can impact users that depend on ConanCenter directly. Additionally, when
building recipes from source, this requires retrieving the source packages (typically zip or tar files) from remote servers
outside of the control of ConanCenter. Occasionally, these too can suffer from unscheduled downtime.

In enterprise production environments with strong uptime is required, it is strongly recommended to host recipes and
binary packages in a server under your control.

• Read more: creating and hosting your own Conan Center binaries

This can also protect against transient network issues, and issues caused by transfer of binary data from external sources.
These recommendations also apply when consuming packages from external sources in any package manager.

5.1.3 Compliance and security

Some industries such as finance, robotics and embedded, have stronger requirements around change management, open
source licenses and reproducibility. For example, changes in recipes could result in a new version being resolved for
a dependency, in a way that the license for that version has changed and needs to be validated and audited by your
organization. In some industries like medical or automotive, you may be required to ensure all your dependencies can
be built from source in a repeatable way, and thus using binaries provided by Conan Center may not be advisable. In
these instances, we recommend building your own binary packages from source:

• Read more: creating and hosting your own Conan Center binaries

144 Chapter 5. Devops guide

Conan Documentation, Release 2.1.0

5.1.4 Control and customization

It is very common for users of dependencies to require custom changes to external libraries - typically to support specific
platform configurations not considered by either ConanCenter or the original library authors, backport bug fixes, etc.
Some of these changes may not be suitable to be merged in ConanCenter, and it may not happen until this has been
reviewed and validated by ConanCenter maintainers. For this reason, if you need tight control over the changes in
recipes, it is highly recommended to host not only a Conan remote, but your own fork of the conan-center-index recipe
repository.

• Read more: creating and hosting your own Conan Center binaries

The following subsections describe in more details the above strategies:

Creating and hosting your own ConanCenter binaries

Hosting your own copy of the packages you need in your server could be done by just downloading binaries from
ConanCenter and then uploading them to your own server. However, it is much better to fully own the complete supply
chain and create the binaries in your own CI systems. So the recommended flow to use ConanCenter packages in
production would be:

• Create a fork of the ConanCenter Github repository: https://github.com/conan-io/conan-center-index

• Create a list of the packages and versions you need for your projects. This list can be added to the fork too, and
maintained there (packages can be added and removed with PRs when the teams need them).

• Create a script that first conan export all the packages in your list, then conan create --build=missing
them. Do not add user/channel to these packages, it is way simpler to use them as zlib/1.2.13 without
user-channel. The user/channel part would be mostly recommended for your own proprietary packages, but
not for open source ConanCenter packages.

• Upload your build packages to your own server, that you use in production, instead of ConanCenter.

This is the basic flow idea. We will be adding examples and tools to further automate this flow as soon as possible.

This flow is relatively straightforward, and has many advantages that mitigate the risks described before:

• No central repository outage can affect your builds.

• No changes in the central repository can break your projects, you are in full control when and how those changes
are updated in your packages (as explained below).

• You can customize, adapt, fix and perfectly control what versions are used, and release fixes in minutes, not
weeks. You can apply customizations that wouldn’t be accepted in the central repository.

• You fully control the binaries supply chain, from the source (recipes) to the binaries, eliminating in practice the
majority of potential supply chain attacks of central repositories.

Updating from upstream

Updating from the upstream conan-center-indexGithub repo is still possible, and it can be done in a fully controlled
way:

• Merge the latest changes in the upstream main fork of conan-center-index into your fork.

• You can check and audit those changes if you want to, analyzing the diffs (some automation that trims the diffs
of recipes that you don’t use could be useful)

• Firing the above process will efficiently rebuild the new binaries that are needed. If your recipes are not affected
by changes, the process will avoid rebuilding binaries (thanks to --build=missing).

5.1. Using ConanCenter packages in production environments 145

https://github.com/conan-io/conan-center-index

Conan Documentation, Release 2.1.0

• You can upload the packages to a secondary “test” server repository. Then test your project against that test
server, to check that your project is not broken by the new ConanCenter packages.

• Once you verify that everything is good with the new packages, you can copy them from the secondary “test”
repository to your main production repository to start using them.

5.2 Backing up third-party sources with Conan

For recipes and build scripts for open source, publicly available libraries, it is common practice to download the sources
from a canonical source, like Github releases, or project download web pages. Keeping a record of the origin of these
files is useful for traceability purposes, however, it is often not guaranteed that the files will be available in the long
term, and a user in the future building the same recipe from source may encounter a problem. Conan can thus be
configured to transparently retrieve sources from a configured mirror, without modifying the recipes or conandata.yml.
Additionally, these sources can be transparently uploaded alongside the packages via conan upload.

The sources backup feature is intended for storing the downloaded recipe sources in a file server in your own infrastruc-
ture, allowing future reproducibility of your builds even in the case where the original download URLs are no longer
accessible.

The backup is triggered for calls to the download and get methods when a sha256 file signature is provided.

5.2.1 Configuration overview

This feature is controlled by a few global.conf items:

• core.sources:download_cache: Local path to store the sources backups to. If not set, the default Conan
home cache path will be used.

• core.sources:download_urls: Ordered list of URLs that Conan will try to download the sources from,
where origin represents the original URL passed to get/download from conandata.yml. This allows to control
the fetch order, either ["origin", "https://your.backup/remote/"] to look into and fetch from your
backup remote only if and when the original source is not present, or ["https://your.backup/remote/",
"origin"] to prefer your backup server ahead of the recipes’ canonical links. Being a list, multiple remotes are
also possible. ["origin"] by default

• core.sources:upload_url: URL of the remote to upload the backups to when calling conan upload, which
might or might not be different from any of the URLs defined for download. Empty by default

• core.sources:exclude_urls: List of origins to skip backing up. If the URL passed to get/download starts
with any of the origins included in this list, the source won’t be uploaded to the backup remote when calling
conan upload. Empty by default

5.2.2 Usage

Let’s overview how the feature works by providing an example usage from beginning to end:

In summary, it looks something like:

• A remote backup repository is set up. This should allow PUT and GET HTTP methods to modify and fetch its
contents. If access credentials are desired (which is strongly recommended for uploading permissions), you can
use the source_credentials.json feature. See below if you are in need for configuring your own.

• The remote’s URL can then be set in core.sources:download_urls and core.sources:upload_url.

• In your recipe’s source() method, ensure the relevant get/download calls supply the sha256 signature of the
downloaded files.

146 Chapter 5. Devops guide

Conan Documentation, Release 2.1.0

• Set core.sources:download_cache in your global.conf file if a custom location is desired, else the default
cache folder will be used

• Run Conan normally, creating packages etc.

• Once some sources have been locally downloaded, the folder pointed to by
core.sources:download_cache will contain, for each downloaded file:

– A blob file (no extensions) with the name of the sha256 signature provided in get/download.

– A .json file which will also have the name of the sha256 signature, that will contain information
about which references and which mirrors this blob belongs to.

• Calling conan upload will now optionally upload the backups for the matching references if core.
sources:upload_url is set.

Note: See below for a guide on how to configure your own backup server

Setting up the necessary configs

The global.conf file should contain the core.sources:download_urls

Listing 1: global.conf

core.sources:download_urls=["https://myteam.myorg.com/artifactory/backup-sources/",
→˓"origin"]

You might want to add extra confs based on your use case, as described in the beginning of this document.

Note: The recommended approach for dealing with the configuration of CI workers and developers in your organization
is to install the configs using the conan config install command on a repository. Read more here

Run Conan as normal

With the above steps completed, Conan can now be used as normal, and for every downloaded source, Conan
will first look into the folder indicated in core.sources:download_cache, and if not found there, will tra-
verse core.sources:download_urls until it find the file or fails, and store a local copy in the same core.
sources:download_cache location.

When the backup is fetched from the the backup remote, a message like what follows will be shown to the user:

Listing 2: The client will now print information regarding from which
remote it was capable of downloading the sources

$ conan create . --version=1.3

...

======== Installing packages ========
zlib/1.3: Calling source() in /Users/ruben/.conan2/p/zlib0f4e45286ecd1/s/src
zlib/1.3: Sources for ['https://zlib.net/fossils/zlib-1.3.tar.gz', 'https://github.com/
→˓madler/zlib/releases/download/v1.3/zlib-1.3.tar.gz']

found in remote backup https://myteam.myorg.com/artifactory/backup-sources
(continues on next page)

5.2. Backing up third-party sources with Conan 147

Conan Documentation, Release 2.1.0

(continued from previous page)

-------- Installing package zlib/1.3 (1 of 1) --------

...

If we now again try to run this, we’ll find that no download is performed and the locally stored version of the files is
used.

Upload the packages

Once a package has been created as shown above, when a call to conan upload zlib/1.3 -c is performed to upload
the resulting binary to your Conan repository, it will also upload the source backups for that same reference to your
backups remote if configured to do so, and future source downloads of this recipe will use the newly updated contents
when necessary.

Note: See the packages list feature for a way to only upload the packages that have been built

In case there’s a need to upload backups for sources not linked to any package, or for packages that are already on the
remote and would therefore be skipped during upload, the conan cache backup-upload command can be used to
address this scenario.

Creating the backup repository

You can also set up your own remote backup repository instead of relying on an already available one. While an
Artifactory generic repository (available for free with Artifactory CE) is recommend for this purpose, any simple
server that allows PUT and GET HTTP methods to modify and fetch its contents is sufficient.

Read the following section for instructions on how to create a generic Artifactory backup repo and how to give it public
read permissions, while keeping write access only for authorized agents

Creating an Artifactory backup repo for your sources

For the backup repository, we’ll create a generic Artifactory repo using the free Community Edition version.

For this, in the repositories section of the administration tab, we’ll create a new generic repository, and in this example
we’ll imaginatively give it the name of backup-sources.

The URL of the remote should now be added to the global.conf file’s core.sources:upload_url conf

Listing 3: global.conf

core.sources:upload_url=https://myteam.myorg.com/artifactory/backup-sources/

Next, as we want this to be a public read repo, we’ll allow anonymous read access to our repo. See the official Artifactory
documentation for a step-by-step guide on how to create one.

Now, to be able to upload contents, we’ll also create a new user from the User Management section, called backup
uploader, and from the Access Tokens section, we’ll generate a reference token associated with the user

148 Chapter 5. Devops guide

https://jfrog.com/help/r/how-to-grant-an-anonymous-user-access-to-specific-repositories/artifactory-how-to-grant-an-anonymous-user-access-to-specific-repositories
https://jfrog.com/help/r/how-to-grant-an-anonymous-user-access-to-specific-repositories/artifactory-how-to-grant-an-anonymous-user-access-to-specific-repositories

Conan Documentation, Release 2.1.0

The generated token should now live in the source_credentials.json file:

5.2. Backing up third-party sources with Conan 149

Conan Documentation, Release 2.1.0

Listing 4: source_credentials.json

{
"credentials": [

{
"url": "https://myteam.myorg.com/artifactory/backup-sources/",
"token": "cmVmdGtu1234567890abcdefghijklmnopqrstuvwxyz"

}
]

}

And last but not least, from the Permissions section we’ll give the user manage access to the new repository (which
will automatically give it every other permission available, feel free to modify them according to your needs)

With this, access to our remote backup is now configured to allow anonymous read but authenticated upload.

5.3 Managing package metadata files

Warning: This feature is experimental and subject to breaking changes. See the Conan stability section for more
information.

A Conan package is typically composed by several C and C++ artifacts, headers, compiled libraries and executables.
But there are other files that might not be necessary for the normal consumption of such a package, but which could be
very important for compliance, technical or business reasons, for example:

• Full build logs

• The tests executables

150 Chapter 5. Devops guide

Conan Documentation, Release 2.1.0

• The tests results from running the test suite

• Debugging artifacts like heavy .pdb files

• Coverage, sanitizers, or other source or binary analysis tools results

• Context and metadata about the build, exact machine, environment, author, CI data

• Other compliance and security related files

There are several important reasons to store and track these files like regulations, compliance, security, reproducibility
and traceability. The problem with these files is that they can be large/heavy, if we store them inside the package (just
copying the artifacts in the package() method), this will make the packages much larger, and it will affect the speed
of downloading, unzipping and using packages in general. And this typically happens a lot of times, both in developer
machines but also in CI, and it can have an impact on the developer experience and infrastructure costs. Furthermore,
packages are immutable, that is, once a package has been created, it shouldn’t be modified. This might be a problem if
we want to add extra metadata files after the package has been created, or even after the package has been uploaded.

The metadata files feature allows to create, upload, append and store metadata associated to packages in an integrated
and unified way, while avoiding the impact on developers and CI speed and costs, because metadata files are not
downloaded and unzipped by default when packages are used.

It is important to highlight that there are two types of metadata:

• Recipe metadata, associated to the conanfile.py recipe, the metadata should be common to all binaries created
from this recipe (package name, version and recipe revision). This metadata will probably be less common, but
for example results of some scanning of the source code, that would be common for all configurations and builds,
can be recipe metadata.

• Package binary metadata, associated to the package binary for a given specific configuration and represented by
a package_id. Build logs, tests reports, etc, that are specific to a binary configuration will be package metadata.

5.3.1 Creating metadata in recipes

Recipes can directly define metadata in their methods. A common use case would be to store logs. Using the self.
recipe_metadata_folder and self.package_metadata_folder, the recipe can store files in those locations.

import os
from conan import ConanFile
from conan.tools.files import save, copy

class Pkg(ConanFile):
name = "pkg"
version = "0.1"

def layout(self):
Or something else, like the "cmake_layout(self)" built-in layout
self.folders.build = "mybuild"
self.folders.generators = "mybuild/generators"

def export(self):
logs that might be generated in the recipe folder at "export" time.
these would be associated with the recipe repo and original source of the recipe␣

→˓repo
copy(self, "*.log", src=self.recipe_folder,

dst=os.path.join(self.recipe_metadata_folder, "logs"))

(continues on next page)

5.3. Managing package metadata files 151

Conan Documentation, Release 2.1.0

(continued from previous page)

def source(self):
logs originated in the source() step, for example downloading files, patches or␣

→˓other stuff
save(self, os.path.join(self.recipe_metadata_folder, "logs", "src.log"), "srclog!!

→˓")

def build(self):
logs originated at build() step, the most common ones
save(self, "mylogs.txt", "some logs!!!")
copy(self, "mylogs.txt", src=self.build_folder,

dst=os.path.join(self.package_metadata_folder, "logs"))

Note that “recipe” methods (those that are common for all binaries, like export() and source()) should use
self.recipe_metadata_folder, while “package” specific methods (build(), package()) should use the self.
package_metadata_folder.

Doing a conan create over this recipe, will create “metadata” folders in the Conan cache. We can have a look at
those folders with:

$ conan create .
$ conan cache path pkg/0.1 --folder=metadata
folder containing the recipe metadata
$ conan cache path pkg/0.1:package_id --folder=metadata
folder containing the specific "package_id" binary metadata

It is also possible to use the “local flow” commands and get local “metadata” folders. If we want to do this, it is very
recommended to use a layout() method like above to avoid cluttering the current folder. Then the local commands
will allow to test and debug the functionality:

$ conan source .
check local metadata/logs/src.log file
$ conan build .
check local mybuild/metadata/logs/mylogs.txt file

NOTE: This metadata is not valid for the conan export-pkg flow. If you want to use the export-pkg flow you
might want to check the “Adding metadata” section below.

5.3.2 Creating metadata with hooks

If there is some common metadata accross recipes, it is possible to capture it without modifying the recipes, using
hooks. Let’s say that we have a simpler recipe:

import os
from conan import ConanFile
from conan.tools.files import save, copy

class Pkg(ConanFile):
name = "pkg"
version = "0.1"
no_copy_source = True

def layout(self):
(continues on next page)

152 Chapter 5. Devops guide

Conan Documentation, Release 2.1.0

(continued from previous page)

self.folders.build = "mybuild"
self.folders.generators = "mybuild/generators"

def source(self):
save(self, "logs/src.log", "srclog!!")

def build(self):
save(self, "logs/mylogs.txt", "some logs!!!")

As we can see, this is not using the metadata folders at all. Let’s define now the following hooks:

import os
from conan.tools.files import copy

def post_export(conanfile):
conanfile.output.info("post_export")
copy(conanfile, "*.log", src=conanfile.recipe_folder,

dst=os.path.join(conanfile.recipe_metadata_folder, "logs"))

def post_source(conanfile):
conanfile.output.info("post_source")
copy(conanfile, "*", src=os.path.join(conanfile.source_folder, "logs"),

dst=os.path.join(conanfile.recipe_metadata_folder, "logs"))

def post_build(conanfile):
conanfile.output.info("post_build")
copy(conanfile, "*", src=os.path.join(conanfile.build_folder, "logs"),

dst=os.path.join(conanfile.package_metadata_folder, "logs"))

The usage of these hooks will have a very similar effect to the in-recipe approach: the metadata files will be created in
the cache when conan create executes, and also locally for the conan source and conan build local flow.

5.3.3 Adding metadata with commands

Metadata files can be added or modified after the package has been created. To achieve this, using the conan cache
path command will return the folders to do that operation, so copying, creating or modifying files in that location will
achieve this.

$ conan create . --name=pkg --version=0.1
$ conan cache path pkg/0.1 --folder=metadata
folder to put the metadata, initially empty if we didn't use hooks
and the recipe didn't store any metadata. We can copy and put files
in the folder
$ conan cache path pkg/0.1:package_id --folder=metadata
same as above, for the package metadata, we can copy and put files in
the returned folder

This metadata is added locally, in the Conan cache. If you want to update the server metadata, uploading it from the
cache is necessary.

5.3. Managing package metadata files 153

Conan Documentation, Release 2.1.0

5.3.4 Uploading metadata

So far the metadata has been created locally, stored in the Conan cache. Uploading the metadata to the server is
integrated with the existing conan upload command:

$ conan upload "*" -c -r=default
Uploads recipes, packages and metadata to the "default" remote
...
pkg/0.1: Recipe metadata: 1 files
pkg/0.1:da39a3ee5e6b4b0d3255bfef95601890afd80709: Package metadata: 1 files

By default, conan upload will upload recipes and packages metadata when a recipe or a package is uploaded to the
server. But there are some situations that Conan will completely avoid this upload, if it detects that the revisions do
already exist in the server, it will not upload the recipes or the packages. If the metadata has been locally modified or
added new files, we can force the upload explicitly with:

We added some metadata to the packages in the cache
But those packages already exist in the server
$ conan upload "*" -c -r=default --metadata="*"
...
pkg/0.1: Recipe metadata: 1 files
pkg/0.1:da39a3ee5e6b4b0d3255bfef95601890afd80709: Package metadata: 1 files

The --metadata argument allows to specify the metadata files that we are uploading. If we structure them in folders,
we could specify --metadata="logs*" to upload only the logs metadata, but not other possible ones like test
metadata.

Upload only the logs metadata of the zlib/1.2.13 binaries
This will upload the logs even if zlib/1.2.13 is already in the server
$ conan upload "zlib/1.2.13:*" -r=remote -c --metadata="logs/*"
Multiple patterns are allowed:
$ conan upload "*" -r=remote -c --metadata="logs/*" --metadata="tests/*"

Sometimes it might be useful to upload packages without uploading the metadata, even if the metadata cache folders
contain files. To ignore uploading the metadata, use an empty argument as metadata pattern:

Upload only the packages, not the metadata
$ conan upload "*" -r=remote -c --metadata=""

The case of mixing --metadata="" with --metadata="*" is not allowed, and it will raise an error.

Invalid command, it will raise an error
$ conan upload "*" -r=remote -c --metadata="" --metadata="logs/*"
ERROR: Empty string and patterns can not be mixed for metadata.

154 Chapter 5. Devops guide

Conan Documentation, Release 2.1.0

5.3.5 Downloading metadata

As described above, metadata is not downloaded by default. When packages are downloaded with a conan install
or conan create fetching dependencies from the servers, the metadata from those servers will not be downloaded.

The way to recover the metadata from the server is to explicitly specify it with the conan download command:

Get the metadata of the "pkg/0.1" package
$ conan download pkg/0.1 -r=default --metadata="*"
...
$ conan cache path pkg/0.1 --folder=metadata
Inspect the recipe metadata in the returned folder
$ conan cache path pkg/0.1:package_id --folder=metadata
Inspect the package metadata for binary "package_id"

The retrieval of the metadata is done with download per-package. If we want to download the metadata for a whole
dependency graph, it is necessary to use “package-lists”:

$ conan install . --format=json -r=remote > graph.json
$ conan list --graph=graph.json --format=json > pkglist.json
the list will contain the "remote" origin of downloaded packages
$ conan download --list=pkglist.json --metadata="*" -r=remote

Note that the “package-list” will only contain associated to the “remote” origin the packages that were downloaded.
If they were previously in the cache, then, they will not be listed under the “remote” origin and the metadata will not
be downloaded. If you want to collect the dependencies metadata, recall to download it when the package is installed
from the server. There are other possibilities, like a custom command that can automatically collect and download
dependencies metadata from the servers.

5.3.6 Removing metadata

At the moment it is not possible to remove metadata from the server side using Conan, as the metadata are “additive”,
it is possible to add new data, but not to remove it (otherwise it would not be possible to add new metadata without
downloading first all the previous metadata, and that can be quite inefficient and more error prone, specially sensitive
to possible race conditions).

The recommendation to remove metatada from the server side would be to use the tools, web interface or APIs that the
server might provide.

Note:
Best practices

• Metadata shouldn’t be necessary for using packages. It should be possible to consume recipes and packages
without downloading their metadata. If metadata is mandatory for a package to be used, then it is not metadata
and should be packaged as headers and binaries.

• Metadata reading access should not be a frequent operation, or something that developers have to do. Metadata
read is intended for excepcional cases, when some build logs need to be recovered for compliance, or some test
executables might be needed for debugging or re-checking a crash.

• Conan does not do any compression or decompression of the metadata files. If there are a lot of metadata files,
consider zipping them yourself, otherwise the upload of those many files can take a lot of time. If you need to
handle different types of metadata (logs, tests, reports), zipping the files under each category might be better to
be able to filter with the --metadata=xxx argument.

5.3. Managing package metadata files 155

Conan Documentation, Release 2.1.0

5.3.7 test_package as metadata

This is an illustrative example of usage of metadata, storing the full test_package folder as metadata to later recover
it and execute it. Note that this is not necessarily intended for production.

Let’s start with a hook that automatically stores as recipe metadata the test_package folder

import os
from conan.tools.files import copy

def post_export(conanfile):
conanfile.output.info("Storing test_package")
folder = os.path.join(conanfile.recipe_folder, "test_package")
copy(conanfile, "*", src=folder,

dst=os.path.join(conanfile.recipe_metadata_folder, "test_package"))

Note that this hook doesn’t take into account that test_package can be dirty with tons of temporary build objects (it
should be cleaned before being added to metadata), and it doesn’t check that test_package might not exist at all and
crash.

When a package is created and uploaded, it will upload to the server the recipe metadata containing the test_package:

$ conan create ...
$ conan upload "*" -c -r=default # uploads metadata
...
pkg/0.1: Recipe metadata: 1 files

Let’s remove the local copy, and assume that the package is installed, but the metadata is not:

$ conan remove "*" -c # lets remove the local packages
$ conan install --requires=pkg/0.1 -r=default # this will not download metadata

If at this stage the installed package is failing in our application, we could recover the test_package, downloading it,
and copying it to our current folder:

$ conan download pkg/0.1 -r=default --metadata="test_package*"
$ conan cache path pkg/0.1 --folder=metadata
copy the test_package folder from the cache, to the current folder
like `cp -R ...`

Execute the test_package
$ conan test metadata/test_package pkg/0.1
pkg/0.1 (test package): Running test()

See also:
• TODO: Examples how to collect the metadata of a complete dependency graph with some custom deployer or

command

This is an experimental feature. We are looking forward to hearing your feedback, use cases and needs, to keep
improving this feature. Please report it in Github issues

156 Chapter 5. Devops guide

https://github.com/conan-io/conan/issues

Conan Documentation, Release 2.1.0

5.4 Versioning

This section deals with different versioning topics:

5.4.1 Handling version ranges and pre-releases

When developing a package and using version ranges for defining our dependencies, there might come a time when
a new version of a dependency gets a new pre-release version that we would like to test before it’s released to have a
change to validate the new version ahead of time.

At first glance, it could be expected that the new version matches our range if it intersect it, but as described in the
version ranges tutorial, by default Conan does not match pre-release versions to ranges that don’t specify it. Conan
provides the global.conf core.version_ranges:resolve_prereleases, which when set to True, enables pre-
release matching in version ranges. This avoids having to modify and export the recipes of your dependency graph,
which would become unfeasible for large ones.

This conf has the added benefit of affecting the whole dependency graph, so that if any of our dependencies also define
a requirement to our library of interest, the new version will also be picked up by it.

Let’s see this in action. Imagine we have the following (summarized) dependency graph, in which we depend on
libpng and libmysqlclient, both of which depend on zlib via the [>1.2 <2] version range:

app

libpng/1.6.40 libmysqlclient/8.1.0

zlib/1.2.13

[>1.2 <2] [>1.2 <2]

If zlib/1.3-pre is now published, using it is as easy as modifying your global.conf file and adding
the line core.version_ranges:resolve_prereleases=True (or adding the --core-conf core.
version_ranges:resolve_prereleases=True CLI argument to your command invocations), after which,
running conan create will now output the expected prerelease version of zlib being used:

...

======== Computing dependency graph ========
(continues on next page)

5.4. Versioning 157

Conan Documentation, Release 2.1.0

(continued from previous page)

Graph root
cli

Requirements
libmysqlclient/8.1.0#493d36bd9641e15993479706dea3c341 - Cache
libpng/1.6.40#2ba025f1324ff820cf68c9e9c94b7772 - Cache
lz4/1.9.4#b572cad582ca4d39c0fccb5185fbb691 - Cache
openssl/3.1.2#f2eb8e67d3f5513e8a9b5e3b62d87ea1 - Cache
zlib/1.3-pre#f2eb8e6ve24ff825bca32bea494b77dd - Cache
zstd/1.5.5#54d99a44717a7ff82e9d37f9b6ff415c - Cache

Build requirements
cmake/3.27.1#de7930d308bf5edde100f2b1624841d9 - Cache

Resolved version ranges
cmake/[>=3.18 <4]: cmake/3.27.1
openssl/[>=1.1 <4]: openssl/3.1.2
zlib/[>1.2 <2]: zlib/1.3-pre

...

Now our package can be tested and validated against this new version, and the conf be afterwards removed once the
testing is over to go back to the usual Conan behaviour.

5.5 Save and restore packages from/to the cache

Warning: This feature is experimental and subject to breaking changes. See the Conan stability section for more
information.

With the conan cache save and conan cache restore commands, it is possible to create a .tgz from one or several
packages from a Conan cache and later restore those packages into another Conan cache. There are some scenarios
this can be useful:

• In Continuous Integration, specially if doing distributed builds, it might be very convenient to be able to move
temporary packages recently built. Most CI systems have the capability of transferring files between jobs for this
purpose. The Conan cache is not concurrent, sometimes for paralllel jobs different caches have to be used.

• For air-gapped setups, in which packages can only be transferred via client side.

• Developers directly sharing some packages with other developers for testing or inspection.

The process of saving the packages is using the conan cache save command. It can use a pattern, like the conan
list command, but it can also accept a package-list, like other commands like remove, upload, download. For
example:

$ conan cache save "pkg/*:*"
Saving pkg/1.0: p/pkg1df6df1a3b33c
Saving pkg/1.0:9a4eb3c8701508aa9458b1a73d0633783ecc2270: p/b/pkgd573962ec2c90/p
Saving pkg/1.0:9a4eb3c8701508aa9458b1a73d0633783ecc2270 metadata: p/b/pkgd573962ec2c90/p
...
creates conan_cache_save.tgz

The conan_cache_save.tgz file contains the packages named pkg (any version), the last recipe revision, and the
last package revision of all the package binaries. The name of the file can be changed with the optional --file=xxxx
argument. Some important considerations:

158 Chapter 5. Devops guide

Conan Documentation, Release 2.1.0

• The command saves the contents of the cache “recipe” folders, containing the subfolders “export”, “ex-
port_sources”, “download”, “source” and recipe “metadata”.

• The command saves the contents of the “package” and the package “metadata” folders, but not the binary “build”
or “download”, that are considered temporary folders.

• If the user doesn’t want any of those folders to be saved, they can be cleaned before saving them with conan
cache clean command

• The command saves the cache files and artifacts as well as the metadata (revisions, package_id) to be able to
restore those packages in another cache. But it doesn’t save any other cache state like settings.yml, global.
conf, remotes, etc. If the saved packages require any other specific configuration, it should be managed with
conan config install.

We can move this conan_cache_save.tgz file to another Conan cache and restore it as:

$ conan cache restore conan_cache_save.tgz
Restore: pkg/1.0 in p/pkg1df6df1a3b33c
Restore: pkg/1.0:9a4eb3c8701508aa9458b1a73d0633783ecc2270 in p/b/pkg773791b8c97aa/p
Restore: pkg/1.0:9a4eb3c8701508aa9458b1a73d0633783ecc2270 metadata in p/b/
→˓pkg773791b8c97aa/d/metadata
...

The restore process will overwrite existing packages if they already exist in the cache.

Note: Best practices
• Saving and restoring packages is not a substitute for proper storage (upload) of packages in a Conan server

repository. It is only intended as a transitory mechanism, in CI systems, to save an air-gap, etc., but not as a
long-term storage and retrieval.

• Saving and restoring packages is not a substitute for proper backup of server repositories. The recommended
way to implement long term backup of Conan packages is using some server side backup strategy.

• The storage format and serialization is not guaranteed at this moment to be future-proof and stable. It is expected
to work in the same Conan version, but future Conan versions might break the storage format created with
previous versions. (this is aligned with the above recommendation to not use it as a backup strategy)

5.5. Save and restore packages from/to the cache 159

Conan Documentation, Release 2.1.0

160 Chapter 5. Devops guide

CHAPTER

SIX

INTEGRATIONS

Conan provides seamless integration with several platforms, build systems, and IDEs. Conan brings off-the-shelf
support for some of the most important operating systems, including Windows, Linux, macOS, Android, and iOS.
Some of the most important build systems supported by Conan include CMake, MSBuild, Meson, Autotools and Make.
In addition to build systems, Conan also provides integration with popular IDEs, such as Visual Studio and Xcode.

6.1 CMake

Conan provides different tools to integrate with CMake in a transparent way. Using these tools, the consuming
CMakeLists.txt file does not need to be aware of Conan at all. The CMake tools also provide better IDE integration
via cmake-presets.

To learn how to integrate Conan with your current CMake project you can follow the Conan tutorial that uses CMake
along all the sections.

Please also check the reference for the CMakeDeps, CMakeToolchain, and CMake tools:

• CMakeDeps: responsible for generating the CMake config files for all the required dependencies of a package.

• CMakeToolchain: generates all the information needed for CMake to build the packages according to the infor-
mation passed to Conan about things like the operating system, the compiler to use, architecture, etc. It will also
generate cmake-presets files for easy integration with some IDEs that support this CMake feature off-the-shelf.

• CMake build helper is the tool used by Conan to run CMake and will pass all the arguments that CMake needs
to build successfully, such as the toolchain file, build type file, and all the CMake definitions set in the recipe.

See also:
• Check the Building your project using CMakePresets example

• Reference for CMakeDeps, CMakeToolchain and CMake build helper

• Conan tutorial

161

Conan Documentation, Release 2.1.0

6.2 CLion

6.2.1 Introduction

There’s a plugin available in the JetBrains Marketplace that’s compatible with CLion versions higher than 2022.3.
With this plugin, you can browse Conan packages available in Conan Center, add them to your project, and install them
directly from the CLion IDE interface.

This plugin utilizes cmake-conan, a CMake dependency provider for Conan. It injects conan_provider.cmake using
the CMAKE_PROJECT_TOP_LEVEL_INCLUDES definition. This dependency provider translates the CMake configuration
to Conan. For instance, if you select a Debug profile in CLion, Conan will install and use the packages for Debug.

Bear in mind that cmake-conan activates the Conan integration every time CMake calls find_package(). This means
that no library will be installed until the CMake configure step runs. At that point, Conan will attempt to install the
required libraries and build them if necessary.

Also, note that dependency providers are a relatively new feature in CMake. Therefore, you will need CMake version
>= 3.24 and Conan >= 2.0.5.

6.2.2 Installing the plugin

To install the new Conan CLion plugin, navigate to the JetBrains marketplace. Open CLion, go to Settings > Plugins,
then select the Marketplace tab. Search for the Conan plugin and click on the Install button.

162 Chapter 6. Integrations

https://plugins.jetbrains.com/plugin/11956-conan
https://conan.io/center
https://github.com/conan-io/cmake-conan/tree/develop2
https://cmake.org/cmake/help/latest/guide/using-dependencies/index.html#dependency-providers

Conan Documentation, Release 2.1.0

After restarting CLion, a new “Conan” tool tab will appear at the bottom of the IDE.

6.2.3 Configuring the plugin

Open a CMake project or create a new one in CLion. Then, go to the “Conan” tool tab at the bottom of the IDE. The
only enabled action in the toolbar of the plugin will be the one with the “wheel” (configuration) symbol. Click on it.

6.2. CLion 163

Conan Documentation, Release 2.1.0

The first thing you should do is configure the Conan client executable that will be used. You can point to a specific
installation in an arbitrary location on your system, or you can select “Use Conan installed in the system” to use the
system-level installation.

164 Chapter 6. Integrations

Conan Documentation, Release 2.1.0

Several options are marked as default. Let’s review them:

• You’ll see checkboxes indicating which configurations Conan should manage. In our case, since we only have
the Debug configuration, it’s the only one checked. Below that, “Automatically add Conan support for all con-
figurations” is checked by default. This means you don’t need to manually add Conan support to new build
configurations; the plugin will do it automatically.

• There’s also a checkbox allowing Conan to modify the default CLion settings and run CMake sequentially instead
of in parallel. This is necessary because the Conan cache isn’t concurrent yet in Conan 2.

If you’re using the Conan plugin, you typically wouldn’t uncheck these options. After setting your preferences, click
the OK button to finalize the configuration.

Note: At this point, CLion will run the configure step for CMake automatically. Since the plugin sets up the
conan.cmake dependency provider, a warning will appear in the CMake output. This warning indicates that we
haven’t added a find_package() to our CMakeLists.txt yet. This warning will disappear once we add the necessary
find_package() calls to the CMakeLists.txt file.

After the initial configuration, you’ll notice that the list of libraries is enabled. The “update” and “inspect” buttons are
also active. We’ll explain these in detail later.

6.2. CLion 165

Conan Documentation, Release 2.1.0

6.2.4 Using the plugin

With the plugin configured, you can browse available libraries and install them from CLion. For example, if you want
to use libcurl to download an image from the Internet, navigate to the library list and search for libcurl. Information on
how to add it to CMake will be displayed, along with a “Use in project” button. Select the version you want and click
the button.

If you click on the “eye” (inspect) icon, you’ll see all the libraries added to the project (assuming you added more than
one). This view includes basic target information for CMake and the necessary code snippets to integrate them into
CMake.

166 Chapter 6. Integrations

https://curl.se/libcurl/

Conan Documentation, Release 2.1.0

Conan stores information about the used packages in a conandata.yml file in your project folder. This file is read by a
conanfile.py, which is also created during this process. You can customize these files for advanced plugin usage, but
ensure you read the information in the corresponding files to do this correctly. Modify your CMakeLists.txt according
to the instructions, which should look something like this:

cmake_minimum_required(VERSION 3.15) project(project_name) set(CMAKE_CXX_STANDARD 17)
find_package(CURL) add_executable(project_name main.cpp)
target_link_libraries(project_name CURL::libcurl)

After reloading the CMake project, you should see Conan installing the libraries in the CMake output tab.

See also:
• For more details, check the entry in the Conan blog about the plugin.

6.2. CLion 167

https://blog.conan.io/introducing-new-conan-clion-plugin/

Conan Documentation, Release 2.1.0

6.3 Visual Studio

Conan provides several tools to help manage your projects using Microsoft Visual Studio. These tools can be imported
from conan.tools.microsoft and allow for native integration with Microsoft Visual Studio, without the need to
use CMake and instead directly using Visual Studio solutions, projects, and property files. The most relevant tools are:

• MSBuildDeps: the dependency information generator for Microsoft MSBuild build system. It will generate
multiple xxxx.props properties files, one per dependency of a package, to be used by consumers using MSBuild
or Visual Studio, just by adding the generated properties files to the solution and projects.

• MSBuildToolchain: the toolchain generator for MSBuild. It will generate MSBuild properties files that can be
added to the Visual Studio solution projects. This generator translates the current package configuration, settings,
and options, into MSBuild properties files syntax.

• MSBuild build helper is a wrapper around the command line invocation of MSBuild. It will abstract
the calls like msbuild "MyProject.sln" /p:Configuration=<conf> /p:Platform=<platform> into
Python method calls.

For the full list of tools under conan.tools.microsoft please check the reference section.

See also:
• Reference for MSBuildDeps, MSBuildToolchain and MSBuild.

6.4 Autotools

Conan provides different tools to help manage your projects using Autotools. They can be imported from conan.
tools.gnu. The most relevant tools are:

• AutotoolsDeps: the dependencies generator for Autotools, which generates shell scripts containing environment
variable definitions that the Autotools build system can understand.

• AutotoolsToolchain: the toolchain generator for Autotools, which generates shell scripts containing environment
variable definitions that the Autotools build system can understand.

• Autotools build helper, a wrapper around the command line invocation of autotools that abstracts calls like ./con-
figure or make into Python method calls.

168 Chapter 6. Integrations

Conan Documentation, Release 2.1.0

• PkgConfigDeps: the dependencies generator for pkg-config which generates pkg-config files for all the required
dependencies of a package.

For the full list of tools under conan.tools.gnu please check the reference section.

See also:
• Reference for AutotoolsDeps, AutotoolsToolchain, Autotools and PkgConfigDeps.

6.5 Bazel

Conan provides different tools to help manage your projects using Bazel. They can be imported from conan.tools.
google. The most relevant tools are:

• BazelDeps: the dependencies generator for Bazel, which generates a [DEPENDENCY]/BUILD.bazel file for
each dependency and a dependencies.bzl file containing a Bazel function to load all those ones. That function
must be loaded by your WORKSPACE file.

• BazelToolchain: the toolchain generator for Bazel, which generates a conan_bzl.rc file that contains a build
configuration conan-config to inject all the parameters into the bazel build command.

• Bazel: the Bazel build helper. It’s simply a wrapper around the command line invocation of Bazel.

See also:
• Reference for BazelDeps.

• Reference for BazelToolchain.

• Reference for Bazel.

• Build a simple Bazel project using Conan

6.6 Makefile

Conan provides different tools to help manage your projects using Make. They can be imported from conan.tools.
gnu. Besides the most popular variant, GNU Make, Conan also supports other variants like BSD Make. The most
relevant tools are:

6.5. Bazel 169

Conan Documentation, Release 2.1.0

• MakeDeps: the dependencies generator for Make, which generates a Makefile containing definitions that the
Make build tool can understand.

Currently, there is no MakeToolchain generator, it should be added in the future.

For the full list of tools under conan.tools.gnu please check the reference section.

See also:
• Reference for MakeDeps.

6.7 Xcode

Conan provides different tools to integrate with Xcode IDE, providing all the necessary information about the depen-
dencies, build options and also to build projects created with Xcode in recipes. They can be imported from conan.
tools.apple. The most relevant tools are:

Please also check the reference for the CMakeDeps, CMakeToolchain, and CMake tools:

• XcodeDeps: the dependency information generator for Xcode. It will generate multiple .xcconfig configuration
files, that can be used by consumers using xcodebuild in the command line or adding them to the Xcode IDE.

• XcodeToolchain: the toolchain generator for Xcode. It will generate .xcconfig configuration files that can be
added to Xcode projects. This generator translates the current package configuration, settings, and options, into
Xcode .xcconfig files syntax.

• XcodeBuild build helper is a wrapper around the command line invocation of Xcode. It will abstract the calls
like xcodebuild -project app.xcodeproj -configuration <config> -arch <arch> ...

For the full list of tools under conan.tools.apple please check the reference section.

See also:
• Reference for XcodeDeps, XcodeToolchain and XcodeBuild build helper

6.8 Meson

Conan provides different tools to help manage your projects using Meson. They can be imported from conan.tools.
meson. The most relevant tools are:

• MesonToolchain: generates the .ini files for Meson with the definitions of all the Meson properties related to the
Conan options and settings for the current package, platform, etc. MesonToolchain normally works together with
PkgConfigDeps to manage all the dependencies.

• Meson build helper, a wrapper around the command line invocation of Meson.

See also:

170 Chapter 6. Integrations

Conan Documentation, Release 2.1.0

• Reference for MesonToolchain and Meson.

• Build a simple Meson project using Conan example

Build a simple Meson project using Conan

6.9 Android

Conan provides support for cross-building for Android, and it’s easy to integrate with Android Studio. Please check
these examples for more information on how to build your binaries for Android:

• Cross building to Android with the NDK

• Integrating Conan in Android Studio

6.10 JFrog

6.10.1 Artifactory Build Info

Warning: The support of Artifactory Build Info via extension commands is not covered by the Conan stability
commitment.

The Artifactory build info is a recollection of the metadata of a build. This json-formatted file includes all the details
about the build broken down into segments like version history, artifacts, project modules, dependencies, and everything
that was required to create the build.

Build infos are identified with a build name and a build number, similar to how many CI services identify the builds.
They are conveniently stored in Artifactory to keep track of the build metadata to later perform different operations.

Conan does not offer built-in support for the build info format. However, we have developed some custom commands
at at the extensions repository using the feature, that provides support to create and manage the build info files.

6.9. Android 171

https://www.buildinfo.org/
https://github.com/conan-io/conan-extensions

Conan Documentation, Release 2.1.0

How to install the build info extension commands

Using the dedicated repository for Conan extensions https://github.com/conan-io/conan-extensions, it is as easy as:

$ conan config install https://github.com/conan-io/conan-extensions.git -sf=extensions/
→˓commands/art -tf=extensions/commands/art

Generating a Build Info

A Build Info can be generated from a create or install command:

$ conan create . --format json -s build_type=Release > create_release.json

Then upload the created package to your repository:

$ conan upload ... -c -r ...

Now, using the JSON output from the create/install commands, a build info file can be generated:

$ conan art:build-info create create_release.json mybuildname_release 1 <repo> --server␣
→˓my_artifactory --with-dependencies > mybuildname_release.json

And then uploaded to Artifactory:

$ conan art:build-info upload mybuildname_aggregated.json --server my_artifactory

For more reference, see the full example at https://github.com/conan-io/conan-extensions/tree/main/extensions/
commands/art#how-to-manage-build-infos-in-artifactory

See also:
• JFrog Artifactory has a dedicated API to manage build infos that has been integrated into the custom commands

for Artifactory.

• Check the conan art:build-info documentation for reference: https://github.com/conan-io/
conan-extensions/blob/main/extensions/commands/art/readme_build_info.md

Warning: Even though there is a plugin for the Visual Studio IDE, it is not recommended to use it right now
because it has not been updated for the 2.0 version yet. However, we intend to resume working on this plugin and
enhance its functionality soon after Conan 2.0 is released.

172 Chapter 6. Integrations

https://github.com/conan-io/conan-extensions
https://github.com/conan-io/conan-extensions/tree/main/extensions/commands/art#how-to-manage-build-infos-in-artifactory
https://github.com/conan-io/conan-extensions/tree/main/extensions/commands/art#how-to-manage-build-infos-in-artifactory
https://jfrog.com/help/r/jfrog-rest-apis/build-info
https://github.com/conan-io/conan-extensions/blob/main/extensions/commands/art/readme_build_info.md
https://github.com/conan-io/conan-extensions/blob/main/extensions/commands/art/readme_build_info.md

CHAPTER

SEVEN

EXAMPLES

7.1 ConanFile methods examples

7.1.1 ConanFile package_info() examples

Propagating environment or configuration information to consumers

TBD

Define components for Conan packages that provide multiple libraries

At the section of the tutorial about the package_info() method, we learned how to define information in a package
for consumers, such as library names or include and library folders. In the tutorial, we created a package with only
one library that consumers linked to. However, in some cases, libraries provide their functionalities separated into
different components. These components can be consumed independently, and in some cases, they may require other
components from the same library or others. For example, consider a library like OpenSSL that provides libcrypto and
libssl, where libssl depends on libcrypto.

Conan provides a way to abstract this information using the components attribute of the CppInfo object to define the
information for each separate component of a Conan package. Consumers can also select specific components to link
against but not the rest of the package.

Let’s take a game-engine library as an example, which provides several components such as algorithms, ai, rendering,
and network. Both ai and rendering depend on the algorithms component.

Please, first clone the sources to recreate this project. You can find them in the examples2 repository in GitHub:

$ git clone https://github.com/conan-io/examples2.git
$ cd examples2/examples/conanfile/package_info/components

You can check the contents of the project:

.
CMakeLists.txt
conanfile.py
include

ai.h
algorithms.h
network.h
rendering.h

src
(continues on next page)

173

https://github.com/conan-io/examples2

Conan Documentation, Release 2.1.0

algorithms

ai rendering

network

Fig. 1: components of the game-engine package

(continued from previous page)

ai.cpp
algorithms.cpp
network.cpp
rendering.cpp

test_package
CMakeLists.txt
CMakeUserPresets.json
conanfile.py
src

example.cpp

As you can see, there are sources for each of the components and a CMakeLists.txt file to build them. We also have a
test_package that we are going to use to test the consumption of the separate components.

First, let’s have a look at package_info() method in the conanfile.py and how we declared the information for each
component that we want to provide to the consumers of the game-engine package:

...

def package_info(self):
self.cpp_info.components["algorithms"].libs = ["algorithms"]
self.cpp_info.components["algorithms"].set_property("cmake_target_name", "algorithms

→˓")

self.cpp_info.components["network"].libs = ["network"]
self.cpp_info.components["network"].set_property("cmake_target_name", "network")

self.cpp_info.components["ai"].libs = ["ai"]
self.cpp_info.components["ai"].requires = ["algorithms"]
self.cpp_info.components["ai"].set_property("cmake_target_name", "ai")

self.cpp_info.components["rendering"].libs = ["rendering"]
self.cpp_info.components["rendering"].requires = ["algorithms"]

(continues on next page)

174 Chapter 7. Examples

Conan Documentation, Release 2.1.0

(continued from previous page)

self.cpp_info.components["rendering"].set_property("cmake_target_name", "rendering")

There are a couple of relevant things:

• We declare the libraries generated by each of the components by setting information in the cpp_info.
components attribute. You can set the same information for each of the components as you would for the self.
cpp_info object. The cpp_info for components has some defaults defined, just like it does for self.cpp_info.
For example, the cpp_info.components object provides the .includedirs and .libdirs properties to de-
fine those locations, but Conan sets their value as ["lib"] and ["include"] by default, so it’s not necessary
to add them in this case.

• We are also declaring the components’ dependencies using the .requires attribute. With this attribute, you can
declare requirements at the component level, not only for components in the same recipe but also for components
from other packages that are declared as requires of the Conan package.

• We are changing the default target names for the components using the properties model. By default, Conan sets
a target name for components like <package_name::component_name>, but for this tutorial we will set the
component target names just with the component names omitting the ::.

You can have a look at the consumer part by checking the test_package folder. First the conanfile.py:

...

def generate(self):
deps = CMakeDeps(self)
deps.check_components_exist = True
deps.generate()

You can see that we are setting the check_components_exist property for CMakeDeps. This is not needed, just to show
how you can do if you want your consumers to fail if the component does not exist. So, the CMakeLists.txt could look
like this:

cmake_minimum_required(VERSION 3.15)
project(PackageTest CXX)

find_package(game-engine REQUIRED COMPONENTS algorithms network ai rendering)

add_executable(example src/example.cpp)

target_link_libraries(example algorithms
network
ai
rendering)

And the find_package() call would fail if any of the components targets do not exist.

Let’s run the example:

$ conan create .
...
game-engine/1.0: RUN: cmake --build "/Users/barbarian/.conan2/p/t/game-d6e361d329116/b/
→˓build/Release" -- -j16
[12%] Building CXX object CMakeFiles/algorithms.dir/src/algorithms.cpp.o
[25%] Building CXX object CMakeFiles/network.dir/src/network.cpp.o
[37%] Linking CXX static library libnetwork.a

(continues on next page)

7.1. ConanFile methods examples 175

Conan Documentation, Release 2.1.0

(continued from previous page)

[50%] Linking CXX static library libalgorithms.a
[50%] Built target network
[50%] Built target algorithms
[62%] Building CXX object CMakeFiles/ai.dir/src/ai.cpp.o
[75%] Building CXX object CMakeFiles/rendering.dir/src/rendering.cpp.o
[87%] Linking CXX static library libai.a
[100%] Linking CXX static library librendering.a
[100%] Built target ai
[100%] Built target rendering
...

======== Launching test_package ========

...
-- Conan: Component target declared 'algorithms'
-- Conan: Component target declared 'network'
-- Conan: Component target declared 'ai'
-- Conan: Component target declared 'rendering'
...
[50%] Building CXX object CMakeFiles/example.dir/src/example.cpp.o
[100%] Linking CXX executable example
[100%] Built target example

======== Testing the package: Executing test ========
game-engine/1.0 (test package): Running test()
game-engine/1.0 (test package): RUN: ./example
I am the algorithms component!
I am the network component!
I am the ai component!

> I am the algorithms component!
I am the rendering component!

> I am the algorithms component!

You could check that requiring a component that does not exist will raise an error. Add the nonexistent component to
the find_package() call:

cmake_minimum_required(VERSION 3.15)
project(PackageTest CXX)

find_package(game-engine REQUIRED COMPONENTS nonexistent algorithms network ai rendering)

add_executable(example src/example.cpp)

target_link_libraries(example algorithms
network
ai
rendering)

And test the package again:

$ conan test test_package game-engine/1.0
(continues on next page)

176 Chapter 7. Examples

Conan Documentation, Release 2.1.0

(continued from previous page)

...

Conan: Component 'nonexistent' NOT found in package 'game-engine'
Call Stack (most recent call first):
CMakeLists.txt:4 (find_package)

-- Configuring incomplete, errors occurred!

...

ERROR: game-engine/1.0 (test package): Error in build() method, line 22
cmake.configure()
ConanException: Error 1 while executing

See also:
If you want to use recipes defining components in editable mode, check the example in Using components and
editable packages.

7.1.2 ConanFile layout() examples

Declaring the layout when the Conanfile is inside a subfolder

Please, first clone the sources to recreate this project. You can find them in the examples2 repository in GitHub:

$ git clone https://github.com/conan-io/examples2.git
$ cd examples2/examples/conanfile/layout/conanfile_in_subfolder

If we have a project intended to package the code that is in the same repo as the conanfile.py, but the conanfile.py
is not in the root of the project:

.
CMakeLists.txt
conan

conanfile.py
include

say.h
src

say.cpp

The conanfile.py would look like this:

import os
from conan import ConanFile
from conan.tools.files import load, copy
from conan.tools.cmake import CMake

class PkgSay(ConanFile):
name = "say"
version = "1.0"

(continues on next page)

7.1. ConanFile methods examples 177

https://github.com/conan-io/examples2

Conan Documentation, Release 2.1.0

(continued from previous page)

settings = "os", "compiler", "build_type", "arch"
generators = "CMakeToolchain"

def layout(self):
The root of the project is one level above
self.folders.root = ".."
The source of the project (the root CMakeLists.txt) is the source folder
self.folders.source = "."
self.folders.build = "build"

def export_sources(self):
The path of the CMakeLists.txt and sources we want to export are one level␣

→˓above
folder = os.path.join(self.recipe_folder, "..")
copy(self, "*.txt", folder, self.export_sources_folder)
copy(self, "src/*.cpp", folder, self.export_sources_folder)
copy(self, "include/*.h", folder, self.export_sources_folder)

def source(self):
Check that we can see that the CMakeLists.txt is inside the source folder
cmake_file = load(self, "CMakeLists.txt")

def build(self):
Check that the build() method can also access the CMakeLists.txt in the source␣

→˓folder
path = os.path.join(self.source_folder, "CMakeLists.txt")
cmake_file = load(self, path)

cmake = CMake(self)
cmake.configure()
cmake.build()

def package(self):
cmake = CMake(self)
cmake.install()

You can try and create the say package:

$ cd conan
$ conan create .

See also:
• layout method

• how the package layout works.

178 Chapter 7. Examples

Conan Documentation, Release 2.1.0

Declaring the layout when creating packages for third-party libraries

Please, first clone the sources to recreate this project. You can find them in the examples2 repository in GitHub:

$ git clone https://github.com/conan-io/examples2.git
$ cd examples2/examples/conanfile/layout/third_party_libraries

If we have this project, intended to create a package for a third-party library whose code is located externally:

.
conanfile.py
patches

mypatch

The conanfile.py would look like this:

...

class Pkg(ConanFile):
name = "hello"
version = "1.0"
exports_sources = "patches*"

...

def layout(self):
cmake_layout(self, src_folder="src")
if you are declaring your own layout, just declare:
self.folders.source = "src"

def source(self):
we are inside a "src" subfolder, as defined by layout
the downloaded soures will be inside the "src" subfolder
get(self, "https://github.com/conan-io/libhello/archive/refs/heads/main.zip",

strip_root=True)
Please, be aware that using the head of the branch instead of an immutable tag
or commit is not a good practice in general as the branch may change the␣

→˓contents

patching, replacing, happens here
patch(self, patch_file=os.path.join(self.export_sources_folder, "patches/mypatch

→˓"))

def build(self):
If necessary, the build() method also has access to the export_sources_folder
for example if patching happens in build() instead of source()
#patch(self, patch_file=os.path.join(self.export_sources_folder, "patches/mypatch

→˓"))
cmake = CMake(self)
cmake.configure()
cmake.build()
...

We can see that the ConanFile.export_sources_folder attribute can provide access to the root folder of the
sources:

7.1. ConanFile methods examples 179

https://github.com/conan-io/examples2

Conan Documentation, Release 2.1.0

• Locally it will be the folder where the conanfile.py lives

• In the cache it will be the “source” folder, that will contain a copy of CMakeLists.txt and patches, while the
“source/src” folder will contain the actual downloaded sources.

We can check that everything runs fine now:

$ conan create .
...
Downloading main.zip
hello/1.0: Unzipping 3.7KB
Unzipping 100 %
...
[50%] Building CXX object CMakeFiles/hello.dir/src/hello.cpp.o
[100%] Linking CXX static library libhello.a
[100%] Built target hello
...
$ conan list hello/1.0
Local Cache
hello

hello/1.0

See also:
• Read more about the layout method and how the package layout works.

Declaring the layout when we have multiple subprojects

Please, first clone the sources to recreate this project. You can find them in the examples2 repository in GitHub:

$ git clone https://github.com/conan-io/examples2.git
$ cd examples2/examples/conanfile/layout/multiple_subprojects

Let’s say that we have a project that contains two subprojects: hello and bye, that need to access some information that
is at their same level (sibling folders). Each subproject would be a Conan package. The structure could be something
similar to this:

.
bye

CMakeLists.txt
bye.cpp # contains an #include "../common/myheader.h"
conanfile.py # contains include(../common/myutils.cmake)

common
myheader.h
myutils.cmake

hello
CMakeLists.txt # contains include(../common/myutils.cmake)
conanfile.py
hello.cpp # contains an #include "../common/myheader.h"

Both hello and bye subprojects needs to use some of the files located inside the common folder (that might be used and
shared by other subprojects too), and it references them by their relative location. Note that common is not intended to
be a Conan package. It is just some common code that will be copied into the different subproject packages.

We can use the self.folders.root = ".." layout specifier to locate the root of the project, then use the self.
folders.subproject = "subprojectfolder" to relocate back most of the layout to the current subproject folder,

180 Chapter 7. Examples

https://github.com/conan-io/examples2

Conan Documentation, Release 2.1.0

as it would be the one containing the build scripts, sources code, etc., so other helpers like cmake_layout() keep
working. Let’s see how the conanfile.py of hello could look like:

Listing 1: ./hello/conanfile.py

import os
from conan import ConanFile
from conan.tools.cmake import cmake_layout, CMake
from conan.tools.files import copy

class hello(ConanFile):
name = "hello"
version = "1.0"

settings = "os", "compiler", "build_type", "arch"
generators = "CMakeToolchain"

def layout(self):
self.folders.root = ".."
self.folders.subproject = "hello"
cmake_layout(self)

def export_sources(self):
source_folder = os.path.join(self.recipe_folder, "..")
copy(self, "hello/conanfile.py", source_folder, self.export_sources_folder)
copy(self, "hello/CMakeLists.txt", source_folder, self.export_sources_folder)
copy(self, "hello/hello.cpp", source_folder, self.export_sources_folder)
copy(self, "common*", source_folder, self.export_sources_folder)

def build(self):
cmake = CMake(self)
cmake.configure()
cmake.build()
self.run(os.path.join(self.cpp.build.bindirs[0], "hello"))

Let’s build hello and check that it’s building correctly, using the contents of the common folder.

$ conan install hello
$ conan build hello
...
[100%] Built target hello
conanfile.py (hello/1.0): RUN: ./hello
hello WORLD

You can also run a conan create and check that it works fine too:

$ conan create hello
...
[100%] Built target hello
conanfile.py (hello/1.0): RUN: ./hello
hello WORLD

Note: Note the importance of the export_sources() method, which is able to maintain the same relative layout of

7.1. ConanFile methods examples 181

Conan Documentation, Release 2.1.0

the hello and common folders, both in the local developer flow in the current folder, but also when those sources are
copied to the Conan cache, to be built there with conan create or conan install --build=hello. This is one
of the design principles of the layout(), the relative location of things must be consistent in the user folder and in the
cache.

See also:
• Read more about the layout method and how the package layout works.

Using components and editable packages

It is possible to define components in the layout() method, to support the case of editable packages. That is,
if we want to put a package in editable mode, and that package defines components, it is necessary to define the
components layout correctly in the layout() method. Let’s see it in a real example.

Please, first clone the sources to recreate this project. You can find them in the examples2 repository in GitHub:

$ git clone https://github.com/conan-io/examples2.git
$ cd examples2/examples/conanfile/layout/editable_components

There we find a greetings subfolder and package, that contains 2 libraries, the hello library and the bye library.
Each one is modeled as a component inside the package recipe:

Listing 2: greetings/conanfile.py

class GreetingsConan(ConanFile):
name = "greetings"
version = "0.1"
settings = "os", "compiler", "build_type", "arch"
generators = "CMakeDeps", "CMakeToolchain"
exports_sources = "src/*"

def build(self):
cmake = CMake(self)
cmake.configure()
cmake.build()

def layout(self):
cmake_layout(self, src_folder="src")
This "includedirs" starts in the source folder, which is "src"
So the components include dirs is the "src" folder (includes are
intended to be included as ``#include "hello/hello.h"``)
self.cpp.source.components["hello"].includedirs = ["."]
self.cpp.source.components["bye"].includedirs = ["."]
compiled libraries "libdirs" will be inside the "build" folder, depending
on the platform they will be in "build/Release" or directly in "build" folder
bt = "." if self.settings.os != "Windows" else str(self.settings.build_type)
self.cpp.build.components["hello"].libdirs = [bt]
self.cpp.build.components["bye"].libdirs = [bt]

def package(self):
copy(self, "*.h", src=self.source_folder,

dst=join(self.package_folder, "include"))
copy(self, "*.lib", src=self.build_folder,

(continues on next page)

182 Chapter 7. Examples

https://github.com/conan-io/examples2

Conan Documentation, Release 2.1.0

(continued from previous page)

dst=join(self.package_folder, "lib"), keep_path=False)
copy(self, "*.a", src=self.build_folder,

dst=join(self.package_folder, "lib"), keep_path=False)

def package_info(self):
self.cpp_info.components["hello"].libs = ["hello"]
self.cpp_info.components["bye"].libs = ["bye"]

self.cpp_info.set_property("cmake_file_name", "MYG")
self.cpp_info.set_property("cmake_target_name", "MyGreetings::MyGreetings")
self.cpp_info.components["hello"].set_property("cmake_target_name",

→˓"MyGreetings::MyHello")
self.cpp_info.components["bye"].set_property("cmake_target_name",

→˓"MyGreetings::MyBye")

While the location of the hello and bye libraries in the final package is in the final lib folder, then nothing special is
needed in the package_info() method, beyond the definition of the components. In this case, the customization of
the CMake generated filenames and targets is also included, but it is not necessary for this example.

The important part is the layout() definition. Besides the common cmake_layout, it is necessary to de-
fine the location of the components headers (self.cpp.source as they are source code) and the location of
the locally built libraries. As the location of the libraries depends on the platform, the final self.cpp.build.
components["component"].libdirs depends on the platform.

With this recipe we can put the package in editable mode and locally build it with:

$ conan editable add greetings
$ conan build greetings
we might want to also build the debug config

In the app folder we have a package recipe to build 2 executables, that link with the greeting package components.
The app/conanfile.py recipe there is simple, the build() method builds and runs both example and example2
executables that are built with CMakeLists.txt:

Note the MYG file name, not matching the package name,
because the recipe defined "cmake_file_name"
find_package(MYG)

add_executable(example example.cpp)
Note the MyGreetings::MyGreetings target name, not matching the package name,
because the recipe defined "cmake_target_name"
"example" is linking with the whole package, both "hello" and "bye" components
target_link_libraries(example MyGreetings::MyGreetings)

add_executable(example2 example2.cpp)
"example2" is only using and linking "hello" component, but not "bye"
target_link_libraries(example2 MyGreetings::MyHello)

$ conan build app
hello: Release!
bye: Release!

If you now go to the bye.cpp source file and modify the output message, then build greetings and app locally, the
final output message for the “bye” component library should change:

7.1. ConanFile methods examples 183

Conan Documentation, Release 2.1.0

$ conan build greetings
$ conan build app
hello: Release!
adios: Release!

7.2 Conan extensions examples

Note: Check the conan-extensions repository, which hosts useful extensions ready to use or to take inspiration from
for your custom ones

7.2.1 Custom commands

Custom command: Clean old recipe and package revisions

Note: This is mostly an example command. The built-in conan remove *#!latest syntax, meaning “all revisions
but the latest” would probably be enough for this use case, without needing this custom command.

Please, first clone the sources to recreate this project. You can find them in the examples2 repository in GitHub:

$ git clone https://github.com/conan-io/examples2.git
$ cd examples2/examples/extensions/commands/clean

In this example we are going to see how to create/use a custom command: conan clean. It removes every recipe and
its package revisions from the local cache or the remotes, except the latest package revision from the latest recipe one.

Note: To understand better this example, it is highly recommended to read previously the Custom commands reference.

Locate the command

Copy the command file cmd_clean.py into your [YOUR_CONAN_HOME]/extensions/commands/ folder (create it if
it’s not there). If you don’t know where [YOUR_CONAN_HOME] is located, you can run conan config home to check
it.

Run it

Now, you should be able to see the new command in your command prompt:

$ conan -h
...
Custom commands
clean Deletes (from local cache or remotes) all recipe and package revisions but␣
→˓the

latest package revision from the latest recipe revision.
(continues on next page)

184 Chapter 7. Examples

https://github.com/conan-io/conan-extensions
https://github.com/conan-io/examples2

Conan Documentation, Release 2.1.0

(continued from previous page)

$ conan clean -h
usage: conan clean [-h] [-r REMOTE] [--force]

Deletes (from local cache or remotes) all recipe and package revisions but
the latest package revision from the latest recipe revision.

optional arguments:
-h, --help show this help message and exit
-r REMOTE, --remote REMOTE

Will remove from the specified remote
--force Remove without requesting a confirmation

Finally, if you execute conan clean:

$ conan clean
Do you want to remove all the recipes revisions and their packages ones, except the␣
→˓latest package revision from the latest recipe one? (yes/no): yes
other/1.0
Removed package revision: other/1.0
→˓#31da245c3399e4124e39bd4f77b5261f:da39a3ee5e6b4b0d3255bfef95601890afd80709
→˓#a16985deb2e1aa73a8480faad22b722c [Local cache]
Removed recipe revision: other/1.0#721995a35b1a8d840ce634ea1ac71161 and all its package␣
→˓revisions [Local cache]
hello/1.0
Removed package revision: hello/1.0
→˓#9a77cdcff3a539b5b077dd811b2ae3b0:da39a3ee5e6b4b0d3255bfef95601890afd80709
→˓#cee90a74944125e7e9b4f74210bfec3f [Local cache]
Removed package revision: hello/1.0
→˓#9a77cdcff3a539b5b077dd811b2ae3b0:da39a3ee5e6b4b0d3255bfef95601890afd80709
→˓#7cddd50952de9935d6c3b5b676a34c48 [Local cache]
libcxx/0.1

Nothing should happen if you run it again:

$ conan clean
Do you want to remove all the recipes revisions and their packages ones, except the␣
→˓latest package revision from the latest recipe one? (yes/no): yes
other/1.0
hello/1.0
libcxx/0.1

Code tour

The conan clean command has the following code:

Listing 3: cmd_clean.py

from conan.api.conan_api import ConanAPI
from conan.api.output import ConanOutput, Color
from conan.cli.command import OnceArgument, conan_command

(continues on next page)

7.2. Conan extensions examples 185

Conan Documentation, Release 2.1.0

(continued from previous page)

from conans.client.userio import UserInput

recipe_color = Color.BRIGHT_BLUE
removed_color = Color.BRIGHT_YELLOW

@conan_command(group="Custom commands")
def clean(conan_api: ConanAPI, parser, *args):

"""
Deletes (from local cache or remotes) all recipe and package revisions but
the latest package revision from the latest recipe revision.
"""
parser.add_argument('-r', '--remote', action=OnceArgument,

help='Will remove from the specified remote')
parser.add_argument('--force', default=False, action='store_true',

help='Remove without requesting a confirmation')
args = parser.parse_args(*args)

def confirmation(message):
return args.force or ui.request_boolean(message)

ui = UserInput(non_interactive=False)
out = ConanOutput()
remote = conan_api.remotes.get(args.remote) if args.remote else None
output_remote = remote or "Local cache"

Getting all the recipes
recipes = conan_api.search.recipes("*/*", remote=remote)
if recipes and not confirmation("Do you want to remove all the recipes revisions and␣

→˓their packages ones, "
"except the latest package revision from the latest␣

→˓recipe one?"):
return

for recipe in recipes:
out.writeln(f"{str(recipe)}", fg=recipe_color)
all_rrevs = conan_api.list.recipe_revisions(recipe, remote=remote)
latest_rrev = all_rrevs[0] if all_rrevs else None
for rrev in all_rrevs:

if rrev != latest_rrev:
conan_api.remove.recipe(rrev, remote=remote)
out.writeln(f"Removed recipe revision: {rrev.repr_notime()} "

f"and all its package revisions [{output_remote}]",␣
→˓fg=removed_color)

else:
packages = conan_api.list.packages_configurations(rrev, remote=remote)
for package_ref in packages:

all_prevs = conan_api.list.package_revisions(package_ref,␣
→˓remote=remote)

latest_prev = all_prevs[0] if all_prevs else None
for prev in all_prevs:
if prev != latest_prev:

(continues on next page)

186 Chapter 7. Examples

Conan Documentation, Release 2.1.0

(continued from previous page)

conan_api.remove.package(prev, remote=remote)
out.writeln(f"Removed package revision: {prev.repr_notime()} [

→˓{output_remote}]", fg=removed_color)

Let’s analyze the most important parts.

parser

The parser param is an instance of the Python command-line parsing argparse.ArgumentParser, so if you want
to know more about its API, visit its official website.

User input and user output

Important classes to manage user input and user output:

ui = UserInput(non_interactive=False)
out = ConanOutput()

• UserInput(non_interactive): class to manage user inputs. In this example we’re us-
ing ui.request_boolean("Do you want to proceed?"), so it’ll be automatically translated
to Do you want to proceed? (yes/no): in the command prompt. Note: you can use
UserInput(non_interactive=conan_api.config.get("core:non_interactive")) too.

• ConanOutput(): class to manage user outputs. In this example, we’re using only out.writeln(message,
fg=None, bg=None) where fg is the font foreground, and bg is the font background. Apart from that, you have
some predefined methods like out.info(), out.success(), out.error(), etc.

Conan public API

Warning: This feature is experimental and subject to breaking changes. See the Conan stability section for more
information.

The most important part of this example is the usage of the Conan API via conan_api parameter. These are some
examples which are being used in this custom command:

conan_api.remotes.get(args.remote)
conan_api.search.recipes("*/*", remote=remote)
conan_api.list.recipe_revisions(recipe, remote=remote)
conan_api.remove.recipe(rrev, remote=remote)
conan_api.list.packages_configurations(rrev, remote=remote)
conan_api.list.package_revisions(package_ref, remote=remote)
conan_api.remove.package(prev, remote=remote)

• conan_api.remotes.get(...): [RemotesAPI] Returns a RemoteRegistry given the remote name.

• conan_api.search.recipes(...): [SearchAPI] Returns a list with all the recipes matching the given pat-
tern.

• conan_api.list.recipe_revisions(...): [ListAPI] Returns a list with all the recipe revisions given a
recipe reference.

7.2. Conan extensions examples 187

https://docs.python.org/3/library/argparse.html

Conan Documentation, Release 2.1.0

• conan_api.list.packages_configurations(...): [ListAPI]Returns the list of different configurations
(package_id’s) for a recipe revision.

• conan_api.list.package_revisions(...): [ListAPI] Returns the list of package revisions for a given
recipe revision.

• conan_api.remove.recipe(...): [RemoveAPI] Removes the given recipe revision.

• conan_api.remove.package(...): [RemoveAPI] Removes the given package revision.

Besides that, it deserves especial attention these lines:

all_rrevs = conan_api.list.recipe_revisions(recipe, remote=remote)
latest_rrev = all_rrevs[0] if all_rrevs else None

...

packages = conan_api.list.packages_configurations(rrev, remote=remote)

...

all_prevs = conan_api.list.package_revisions(package_ref, remote=remote)
latest_prev = all_prevs[0] if all_prevs else None

Basically, these API calls are returning a list of recipe revisions and package ones respectively, but we’re saving the
first element as the latest one because these calls are getting an ordered list always.

If you want to know more about the Conan API, visit the ConanAPI section

7.2.2 Builtin deployers

Creating a Conan-agnostic deploy of dependencies for developer use

With the full_deploy deployer it is possible to create a Conan-agnostic copy of dependencies that can be used by
developers without even having Conan installed in their computers.

The common and recommended flow for most cases is using Conan packages directly from the Conan cache:

188 Chapter 7. Examples

Conan Documentation, Release 2.1.0

However, in some situations, it might be useful to be able to deploy a copy of the dependencies into a user folder, so
the dependencies can be located there instead of in the Conan cache. This is possible using the Conan deployers.

Let’s see it with an example. All the source code is in the examples2.0 Github repository

$ git clone https://github.com/conan-io/examples2.git
$ cd examples2/examples/extensions/deployers/development_deploy

In the folder we can find the following conanfile.txt:

[requires]
zlib/1.2.13

[tool_requires]
cmake/3.25.3

[generators]
CMakeDeps
CMakeToolchain

[layout]
cmake_layout

The folder also contains a standard CMakeLists.txt and a main.cpp source file that can create an executable that
links with zlib library.

We can install the Debug and Release dependencies, and deploy a local copy of the packages with:

$ conan install . --deployer=full_deploy --build=missing
$ conan install . --deployer=full_deploy -s build_type=Debug --build=missing

This will create the following folders:

7.2. Conan extensions examples 189

https://github.com/conan-io/examples2

Conan Documentation, Release 2.1.0

src
build

generators
| ZLibConfig.cmake

full_deploy
build

cmake
3.25.3

x86_64
bin

host
zlib

1.2.13
Debug

x86_64
include
lib

Release
x86_64

include
lib

(Note that you could use the --deployer-folder argument to change the base folder output path for the deployer)

This folder is fully self-contained. It contains both the necessary tools (like cmake executable), the headers and com-
piled libraries of zlib and the necessary files like ZLibConfig.cmake in the build/generators folder, that point
to the binaries inside full_deploy with a relative path.

The Conan cache can be removed, and even Conan uninstalled, then the folder could be moved elsewhere in the com-

190 Chapter 7. Examples

Conan Documentation, Release 2.1.0

puter or copied to another computer, assuming it has the same configuration of OS, compiler, etc.

$ cd ..
$ cp -R development_deploy /some/other/place
$ cd /some/other/place

And the files could be used by developers as:

Listing 4: Windows

$ cd build
Activate the environment to use CMake 3.25
$ generators\conanbuild.bat
$ cmake --version
cmake version 3.25.3
Configure, should match the settings used at install
$ cmake .. -G \"Visual Studio 17 2022\" -DCMAKE_TOOLCHAIN_FILE=generators/conan_
→˓toolchain.cmake
$ cmake --build . --config Release
$ Release\compressor.exe
ZLIB VERSION: 1.2.13

The environment scripts in Linux and OSX are not relocatable, because they contain absolute paths and the sh shell
does not have any way to provide access to the current script directory for sourced files.

This shouldn’t be a big blocker, as a “search and replace” with sed in the generators folder can fix it:

Listing 5: Linux

$ cd build/Release/generators
Fix folders in Linux
$ sed -i 's,{old_folder},{new_folder},g' *
Fix folders in MacOS
$ sed -i '' 's,{old_folder},{new_folder},g' *
$ source conanbuild.sh
$ cd ..
$ cmake --version
cmake version 3.25.3
$ cmake ../.. -DCMAKE_TOOLCHAIN_FILE=generators/conan_toolchain.cmake -DCMAKE_BUILD_
→˓TYPE=Release
$ cmake --build .
$./compressor
ZLIB VERSION: 1.2.13

Note: Best practices
The fact that this flow is possible doesn’t mean that it is recommended for the majority of cases. It has some limitations:

• It is less efficient, requiring an extra copy of dependencies

• Only CMakeDeps and CMakeToolchain are relocatable at this moment. For other build system integrations,
please create a ticket in Github

• Linux and OSX shell scripts are not relocatable and require a manual sed

• The binary variability is limited to Release/Debug. The generated files are exclusively for the current configura-
tion, changing any other setting (os, compiler, architecture) will require a different deploy

7.2. Conan extensions examples 191

https://stackoverflow.com/questions/29832037/how-to-get-script-directory-in-posix-sh/29835459#29835459

Conan Documentation, Release 2.1.0

In the general case, normal usage of the cache is recommended. This “relocatable development deployment” could be
useful for distributing final products that looks like an SDK, to consumers of a project not using Conan.

7.2.3 Custom deployers

Copy sources from all your dependencies

Please, first clone the sources to recreate this project. You can find them in the examples2 repository in GitHub:

$ git clone https://github.com/conan-io/examples2.git
$ cd examples2/examples/extensions/deployers/sources

In this example we are going to see how to create and use a custom deployer. This deployer copies all the source files
from your dependencies and puts them into a specific output folder

Note: To better understand this example, it is highly recommended to have previously read the Deployers reference.

Locate the deployer

In this case, the deployer is located in the same directory as our example conanfile, but as shown in Deployers reference,
Conan will look for the specified deployer in a few extra places in order, namely:

1. Absolute paths

2. Relative to cwd

3. In the [CONAN_HOME]/extensions/deployers folder

4. Built-in deployers

Run it

For our example, we have a simple recipe that lists both zlib and mcap as requirements. With the help of the tools.
build:download_source=True conf, we can force the invocation of its source() method, which will ensure that
sources are available even if no build needs to be carried out.

Now, you should be able to use the new deployer in both conan install and conan graph commands for any given
recipe:

$ conan graph info . -c tools.build:download_source=True --deployer=sources_deploy

Inspecting the command output we can see that it copied the sources of our direct dependencies zlib and mcap, plus
the sources of our transitive dependencies, zstd and lz4 to a dependencies_sources folder. After this is done,
extra preprocessing could be done to accomplish more specific needs.

Note that you can pass the --deployer-folder argument to change the base folder output path for the deployer.

192 Chapter 7. Examples

https://github.com/conan-io/examples2

Conan Documentation, Release 2.1.0

Code tour

The source_deploy.py file has the following code:

Listing 6: sources_deploy.py
from conan.tools.files import copy
import os

def deploy(graph, output_folder, **kwargs):
Note the kwargs argument is mandatory to be robust against future changes.
for name, dep in graph.root.conanfile.dependencies.items():

if dep.folders is None or dep.folders.source_folder is None:
raise ConanException(f"Sources missing for {name} dependency.\n"

"This deployer needs the sources of every dependency␣
→˓present to work, either building from source, "

"or by using the 'tools.build:download_source' conf.")
copy(graph.root.conanfile, "*", dep.folders.source_folder, os.path.join(output_

→˓folder, "dependency_sources", str(dep)))

deploy()

The deploy() method is called by Conan, and gets both a dependency graph and an output folder path as argu-
ments. It iterates all the dependencies of our recipe and copies every source file to their respective folders under
dependencies_sources using conan.tools.copy.

Note: If you’re using this deployer as an example for your own, remember that tools.
build:download_source=True is necessary so that dep.folders.source_folder is defined for the de-
pendencies. Without the conf, said variable will not be defined for those dependencies that do not need to be built
from sources nor in those commands that do not require building, such as conan graph.

Note: If your custom deployer needs access to the full dependency graph, including those libraries that might be
skipped, use the tools.graph:skip_binaries=False conf. This is useful for collecting, for example, all the li-
censes in your graph.

7.3 Conan recipe tools examples

7.3.1 CMake

CMakeToolchain: Building your project using CMakePresets

In this example we are going to see how to use CMakeToolchain, predefined layouts like cmake_layout and the
CMakePresets CMake feature.

Let’s create a basic project based on the template cmake_exe as an example of a C++ project:

7.3. Conan recipe tools examples 193

Conan Documentation, Release 2.1.0

$ conan new -d name=foo -d version=1.0 cmake_exe

Generating the toolchain

The recipe from our project declares the generator “CMakeToolchain”.

We can call conan install to install both Release and Debug configurations. Conan will generate a
conan_toolchain.cmake at the corresponding generators folder:

$ conan install .
$ conan install . -s build_type=Debug

Building the project using CMakePresets

A CMakeUserPresets.json file is generated in the same folder of your CMakeLists.txt file, so you can use the
--preset argument from cmake >= 3.23 or use an IDE that supports it.

The CMakeUserPresets.json is including the CMakePresets.json files located at the corresponding generators
folder.

The CMakePresets.json contain information about the conan_toolchain.cmake location and even the binaryDir
set with the output directory.

Note: We use CMake presets in this example. This requires CMake >= 3.23 because the “include” from
CMakeUserPresets.json to CMakePresets.json is only supported since that version. If you prefer not to use
presets you can use something like:

cmake <path> -G <CMake generator> -DCMAKE_TOOLCHAIN_FILE=<path to
conan_toolchain.cmake> -DCMAKE_BUILD_TYPE=Release

Conan will show the exact CMake command everytime you run conan install in case you can’t use the presets
feature.

If you are using a multi-configuration generator:

$ cmake --preset conan-default
$ cmake --build --preset conan-debug
$ build\Debug\foo.exe
foo/1.0: Hello World Release!

$ cmake --build --preset conan-release
$ build\Release\foo.exe
foo/1.0: Hello World Release!

If you are using a single-configuration generator:

$ cmake --preset conan-debug
$ cmake --build --preset conan-debug
$./build/Debug/foo
foo/1.0: Hello World Debug!

(continues on next page)

194 Chapter 7. Examples

Conan Documentation, Release 2.1.0

(continued from previous page)

$ cmake --preset conan-release
$ cmake --build --preset conan-release
$./build/Release/foo
foo/1.0: Hello World Release!

Note that we didn’t need to create the build/Release or build/Debug folders, as we did in the tutorial. The output
directory is declared by the cmake_layout() and automatically managed by the CMake Presets feature.

This behavior is also managed automatically by Conan (with CMake >= 3.15) when you build a package in the Conan
cache (with conan create command). The CMake >= 3.23 is not required.

Read More:

• cmake_layout() reference

• Conanfile layout() method reference

• Package layout tutorial tutorial

• Understanding Conan package layouts

CMakeToolchain: Extending your CMakePresets with Conan generated ones

In this example we are going to see how to extend your own CMakePresets to include Conan generated ones.

Note: We use CMake presets in this example. This requires CMake >= 3.23 because the “include” from
CMakeUserPresets.json to CMakePresets.json is only supported since that version. If you prefer not to use
presets you can use something like:

cmake <path> -G <CMake generator> -DCMAKE_TOOLCHAIN_FILE=<path to
conan_toolchain.cmake> -DCMAKE_BUILD_TYPE=Release

Conan will show the exact CMake command everytime you run conan install in case you can’t use the presets
feature.

Please, first clone the sources to recreate this project. You can find them in the examples2 repository in GitHub:

$ git clone https://github.com/conan-io/examples2.git
$ cd examples2/examples/tools/cmake/cmake_toolchain/extend_own_cmake_presets

Please open the conanfile.py and check how it sets tc.user_presets_path = 'ConanPresets.json'. By modi-
fying this attribute of CMakeToolchain, you can change the default filename of the generated preset.

def generate(self):
tc = CMakeToolchain(self)
tc.user_presets_path = 'ConanPresets.json'
tc.generate()
...

Now you can provide your own CMakePresets.json, besides the CMakeLists.txt:

7.3. Conan recipe tools examples 195

https://github.com/conan-io/examples2

Conan Documentation, Release 2.1.0

Listing 7: CMakePresets.json

{
"version": 4,
"include": ["./ConanPresets.json"],
"configurePresets": [

{
"name": "default",
"displayName": "multi config",
"inherits": "conan-default"

},
{

"name": "release",
"displayName": "release single config",
"inherits": "conan-release"

},
{

"name": "debug",
"displayName": "debug single config",
"inherits": "conan-debug"

}
],
"buildPresets": [

{
"name": "multi-release",
"configurePreset": "default",
"configuration": "Release",
"inherits": "conan-release"

},
{

"name": "multi-debug",
"configurePreset": "default",
"configuration": "Debug",
"inherits": "conan-debug"

},
{

"name": "release",
"configurePreset": "release",
"configuration": "Release",
"inherits": "conan-release"

},
{

"name": "debug",
"configurePreset": "debug",
"configuration": "Debug",
"inherits": "conan-debug"

}
]
}

Note how the "include": ["./ConanPresets.json"], and that every preset inherits a Conan generated one.

We can now install for both Release and Debug (and other configurations also, with the help of build_folder_vars
if we want):

196 Chapter 7. Examples

Conan Documentation, Release 2.1.0

$ conan install .
$ conan install . -s build_type=Debug

And build and run our application, by using our own presets that extend the Conan generated ones:

Linux (single-config, 2 configure, 2 builds)
$ cmake --preset debug
$ cmake --build --preset debug
$./build/Debug/foo
> Hello World Debug!

$ cmake --preset release
$ cmake --build --preset release
$./build/Release/foo
> Hello World Release!

Windows VS (Multi-config, 1 configure 2 builds)
$ cmake --preset default

$ cmake --build --preset multi-debug
$ build\\Debug\\foo
> Hello World Debug!

$ cmake --build --preset multi-release
$ build\\Release\\foo
> Hello World Release!

CMakeToolchain: Inject arbitrary CMake variables into dependencies

You can find the sources to recreate this project in the examples2 repository in GitHub:

$ git clone https://github.com/conan-io/examples2.git
$ cd examples2/examples/tools/cmake/cmake_toolchain/user_toolchain_profile

In the general case, Conan package recipes provide the necessary abstractions via settings, confs, and options to control
different aspects of the build. Many recipes define options to activate or deactivate features, optional dependencies,
or binary characteristics. Configurations like tools.build:cxxflags can be used to inject arbitrary C++ compile
flags.

In some exceptional cases, it might be desired to inject CMake variables directly into dependencies doing CMake
builds. This is possible when these dependencies use the CMakeToolchain integration. Let’s check it in this simple
example.

If we have the following package recipe, with a simple conanfile.py and a CMakeLists.txt printing a variable:

Listing 8: conanfile.py

from conan import ConanFile
from conan.tools.cmake import CMake

class AppConan(ConanFile):
name = "foo"
version = "1.0"

(continues on next page)

7.3. Conan recipe tools examples 197

https://github.com/conan-io/examples2

Conan Documentation, Release 2.1.0

(continued from previous page)

settings = "os", "compiler", "build_type", "arch"
exports_sources = "CMakeLists.txt"

generators = "CMakeToolchain"

def build(self):
cmake = CMake(self)
cmake.configure()
cmake.build()

Listing 9: CMakeLists.txt

cmake_minimum_required(VERSION 3.15)
project(foo LANGUAGES NONE)
message(STATUS "MYVAR1 ${MY_USER_VAR1}!!")

We can define a profile file and a myvars.cmake file (both in the same folder) like the following:

Listing 10: myprofile

include(default)
[conf]
tools.cmake.cmaketoolchain:user_toolchain+={{profile_dir}}/myvars.cmake

Note the {{profile_dir}} is a jinja template expression that evaluates to the current profile folder, allowing to
compute the necessary path to myvars.cmake file. The tools.cmake.cmaketoolchain:user_toolchain is a list
of files to inject to the generated conan_toolchain.cmake, so the += operator is used to append to it.

The myvars.cmake can define as many variables as we want:

Listing 11: myvars.cmake

set(MY_USER_VAR1 "MYVALUE1")

Applying this profile, we can see that the package CMake build effectively uses the variable provided in the external
myvars.cmake file:

$ conan create . -pr=myprofile
...
-- MY_USER_VAR1 MYVALUE1

Note that using user_toolchain while defining values for confs like tools.cmake.
cmaketoolchain:system_name is supported.

The tools.cmake.cmaketoolchain:user_toolchain conf value might also be passed in the command line -c
argument, but the location of the myvars.cmake needs to be absolute to be found, as jinja replacement doesn’t happen
in the command line.

198 Chapter 7. Examples

Conan Documentation, Release 2.1.0

CMakeToolchain: Using xxx-config.cmake files inside packages

Conan relies in the general case in the package_info() abstraction to allow packages built with any build system to
be usable from any other package built with any other build system. In the CMake case, Conan relies on the CMakeDeps
generator to generate xxxx-config.cmake files for every dependency, even if those dependencies didn’t generate one
or aren’t built with CMake at all.

ConanCenter users this abstraction, not packaging the xxx-config.cmake files, and using the information in
package_info(). This is very important to provide as build-system agnostic as possible packages and be fair with
different build systems, vendors and users. For example, there are many Conan users happily using native MSBuild
(VS) projects without any CMake at all. If ConanCenter packages were only built using the in-package config.cmake
files, this wouldn’t be possible.

But the fact that ConanCenter does that, doesn’t mean that this is not possible or mandatory. It is perfectly possible to
use the in-packages xxx-config.cmake files, dropping the usage of CMakeDeps generator.

You can find the sources to recreate this example in the examples2 repository in GitHub:

$ git clone https://github.com/conan-io/examples2.git
$ cd examples2/examples/tools/cmake/pkg_config_files

If we have a look to the conanfile.py:

class pkgRecipe(ConanFile):
name = "pkg"
version = "0.1"
...

def package_info(self):
No information provided, only the in-package .cmake is used here
Other build systems or CMake via CMakeDeps will fail
self.cpp_info.builddirs = ["pkg/cmake"]
self.cpp_info.set_property("cmake_find_mode", "none")

This is a very typical recipe, the main difference is the package_info() method. Three important things to notice:

• It doesn’t define fields like self.cpp_info.libs = ["mypkg"]. Conan will not be propagating this infor-
mation to the consumer, the only place this information will be is inside the in-package xxx-config.cmake
file

• Just in case there are some users still instantiating CMakeDeps, it is disabling the client side generation of the
xxx-config.cmake file with set_property("cmake_find_mode", "none")

• It is defining that it will contain the build scripts (like the xxx-config.cmake package) inside that folder, to be
located by consumers.

So the responsibility of defining the package details has been transferred to the CMakeLists.txt that contains:

add_library(mylib src/pkg.cpp) # Use a different name than the package, to make sure

set_target_properties(mylib PROPERTIES PUBLIC_HEADER "include/pkg.h")
target_include_directories(mylib PUBLIC

$<BUILD_INTERFACE:${PROJECT_SOURCE_DIR}/include>
$<INSTALL_INTERFACE:${CMAKE_INSTALL_INCLUDEDIR}>

)

Use non default mypkgConfig name
(continues on next page)

7.3. Conan recipe tools examples 199

https://github.com/conan-io/examples2

Conan Documentation, Release 2.1.0

(continued from previous page)

install(TARGETS mylib EXPORT mypkgConfig)
export(TARGETS mylib

NAMESPACE mypkg:: # to simulate a different name and see it works
FILE "${CMAKE_CURRENT_BINARY_DIR}/mypkgConfig.cmake"

)
install(EXPORT mypkgConfig

DESTINATION "${CMAKE_INSTALL_PREFIX}/pkg/cmake"
NAMESPACE mypkg::

)

With that information, when conan create is executed:

• The build() method will build the package

• The package() method will call cmake install, which will create the mypkgConfig.cmake file

• It will be created in the package folder pkg/cmake/mypkgConfig.cmake file

• It will contain enough information for the headers, and it will create a mypkg::mylib target.

Note that the details of the config filename, the namespace and the target are also not known by Conan, so this is also
something that the consumer build scripts should know.

This is enough to have a package with an internal mypkgConfig.cmake file that can be used by consumers. In this
example code, the consumer is just the test_package/conanfile.py, but exactly the same wouldn apply to any
arbitrary consumer.

The consumer conanfile.py doesn’t need to use CMakeDeps at all, only generators = "CMakeToolchain". Note
that the CMakeToolchain generator is still necessary, because the mypkgConfig.cmake needs to be found inside the
Conan cache. The CMakeToolchain generated conan_toolchain.cmake file contains these paths defined.

The consumer CMakeLists.txt would be standard:

find_package(mypkg CONFIG REQUIRED)

add_executable(example src/example.cpp)
target_link_libraries(example mypkg::mylib)

You can verify it works with:

$ conan create .

======== Testing the package: Executing test ========
pkg/0.1 (test package): Running test()
pkg/0.1 (test package): RUN: Release\example
pkg/0.1: Hello World Release!
pkg/0.1: _M_X64 defined
pkg/0.1: MSVC runtime: MultiThreadedDLL
pkg/0.1: _MSC_VER1939
pkg/0.1: _MSVC_LANG201402
pkg/0.1: __cplusplus199711
pkg/0.1 test_package

200 Chapter 7. Examples

Conan Documentation, Release 2.1.0

Important considerations

The presented approach has one limitation, it doesn’t work for multi-configuration IDEs. Implementing this approach
won’t allow developers to directly switch from IDEs like Visual Studio from Release to Debug and viceversa, and it
will require a conan install to change. It is not an issue at all for single-config setups, but for VS developers it
can be a bit inconvenient. The team is working on the VS plugin that might help to mitigate this. The reason is a
CMake limitation, find_package() can only find one configuration, and with CMakeDeps being dropped here, there
is nothing that Conan can do to avoid this limitation.

It is important to know that it is also the package author and the package CMakeLists.txt responsibility to correctly
manage transitivity to other dependencies, and this is not trivial in some cases. There are risks that if not done correctly
the in-package xxx-config.cmake file can locate its transitive dependencies elsewhere, like in the system, but not in
the transtive Conan package dependencies.

Finally, recall that these packages won’t be usable by other build systems rather than CMake.

7.3.2 File interaction

Patching sources

In this example we are going to see how to patch the source code. This is necessary sometimes, specially when you are
creating a package for a third party library. A patch might be required in the build system scripts or even in the source
code of the library if you want, for example, to apply a security patch.

Please, first clone the sources to recreate this project. You can find them in the examples2 repository on GitHub:

$ git clone https://github.com/conan-io/examples2.git
$ cd examples/tools/files/patches

Patching using ‘replace_in_file’

The simplest way to patch a file is using the replace_in_file tool in your recipe. It searches in a file the specified
string and replaces it with another string.

in source() method

The source() method is called only once for all the configurations (different calls to conan create for different set-
tings/options) so you should patch only in the source() method if the changes are common for all the configurations.

Look at the source() method at the conanfile.py:

import os
from conan import ConanFile
from conan.tools.cmake import CMakeToolchain, CMake, cmake_layout
from conan.tools.files import get, replace_in_file

class helloRecipe(ConanFile):
name = "hello"
version = "1.0"

Binary configuration
(continues on next page)

7.3. Conan recipe tools examples 201

https://github.com/conan-io/examples2

Conan Documentation, Release 2.1.0

(continued from previous page)

settings = "os", "compiler", "build_type", "arch"
options = {"shared": [True, False], "fPIC": [True, False]}
default_options = {"shared": False, "fPIC": True}

def source(self):
get(self, "https://github.com/conan-io/libhello/archive/refs/heads/main.zip",␣

→˓strip_root=True)
replace_in_file(self, os.path.join(self.source_folder, "src", "hello.cpp"),

→˓"Hello World", "Hello Friends!")

...

We are replacing the "Hello World" string with “Hello Friends!”. We can run conan create . and verify that if
the replace was done:

$ conan create .
...
-------- Testing the package: Running test() --------
hello/1.0: Hello Friends! Release!
...

in build() method

In this case, we need to apply a different patch depending on the configuration (self.settings, self.options. . .), so it has
to be done in the build() method. Let’s modify the recipe to introduce a change that depends on the self.options.
shared:

class helloRecipe(ConanFile):

...

def source(self):
get(self, "https://github.com/conan-io/libhello/archive/refs/heads/main.zip",␣

→˓strip_root=True)

def build(self):
replace_in_file(self, os.path.join(self.source_folder, "src", "hello.cpp"),

"Hello World",
"Hello {} Friends!".format("Shared" if self.options.shared else

→˓"Static"))
cmake = CMake(self)
cmake.configure()
cmake.build()

...

If we call conan create with different option.shared we can check the output:

$ conan create .
...
hello/1.0: Hello Static Friends! Release!

(continues on next page)

202 Chapter 7. Examples

Conan Documentation, Release 2.1.0

(continued from previous page)

...

$ conan create . -o shared=True
...
hello/1.0: Hello Shared Friends! Debug!
...

Patching using “patch” tool

If you have a patch file (diff between two versions of a file), you can use the conan.tools.files.patch tool to apply
it. The rules about where to apply the patch (source() or build() methods) are the same.

We have this patch file, where we are changing again the message to say “Hello Patched World Release!”:

--- a/src/hello.cpp
+++ b/src/hello.cpp
@@ -3,9 +3,9 @@

void hello(){
#ifdef NDEBUG

- std::cout << "hello/1.0: Hello World Release!\n";
+ std::cout << "hello/1.0: Hello Patched World Release!\n";

#else
- std::cout << "hello/1.0: Hello World Debug!\n";
+ std::cout << "hello/1.0: Hello Patched World Debug!\n";

#endif

// ARCHITECTURES

Edit the conanfile.py to:

1. Import the patch tool.

2. Add exports_sources to the patch file so we have it available in the cache.

3. Call the patch tool.

import os
from conan import ConanFile
from conan.tools.cmake import CMakeToolchain, CMake, cmake_layout
from conan.tools.files import get, replace_in_file, patch

class helloRecipe(ConanFile):
name = "hello"
version = "1.0"

Binary configuration
settings = "os", "compiler", "build_type", "arch"
options = {"shared": [True, False], "fPIC": [True, False]}
default_options = {"shared": False, "fPIC": True}
exports_sources = "*.patch"

(continues on next page)

7.3. Conan recipe tools examples 203

Conan Documentation, Release 2.1.0

(continued from previous page)

def source(self):
get(self, "https://github.com/conan-io/libhello/archive/refs/heads/main.zip",␣

→˓strip_root=True)
patch_file = os.path.join(self.export_sources_folder, "hello_patched.patch")
patch(self, patch_file=patch_file)

...

We can run “conan create” and see that the patch worked:

$ conan create .
...
-------- Testing the package: Running test() --------
hello/1.0: Hello Patched World Release!
...

We can also use the conandata.yml introduced in the tutorial so we can declare the patches to apply for each version:

patches:
"1.0":
- patch_file: "hello_patched.patch"

And there are the changes we introduce in the source() method:

.. code-block:: python

def source(self):
get(self, "https://github.com/conan-io/libhello/archive/refs/heads/main.zip",␣

→˓strip_root=True)
patches = self.conan_data["patches"][self.version]
for p in patches:

patch_file = os.path.join(self.export_sources_folder, p["patch_file"])
patch(self, patch_file=patch_file)

Check patch for more details.

If we run the conan create, the patch is also applied:

$ conan create .
...
-------- Testing the package: Running test() --------
hello/1.0: Hello Patched World Release!
...

204 Chapter 7. Examples

Conan Documentation, Release 2.1.0

Patching using “apply_conandata_patches” tool

The example above works but it is a bit complex. If you follow the same yml structure (check the ap-
ply_conandata_patches to see the full supported yml) you only need to call apply_conandata_patches:

from conan import ConanFile
from conan.tools.cmake import CMakeToolchain, CMake, cmake_layout
from conan.tools.files import get, apply_conandata_patches

class helloRecipe(ConanFile):
name = "hello"
version = "1.0"

...

def source(self):
get(self, "https://github.com/conan-io/libhello/archive/refs/heads/main.zip",␣

→˓strip_root=True)
apply_conandata_patches(self)

Let’s check if the patch is also applied:

$ conan create .
...
-------- Testing the package: Running test() --------
hello/1.0: Hello Patched World Release!
...

7.3.3 Meson

Build a simple Meson project using Conan

In this example, we are going to create a string compressor application that uses one of the most popular C++ libraries:
Zlib.

Note: This example is based on the main Build a simple CMake project using Conan tutorial. So we highly recommend
reading it before trying out this one.

We’ll use Meson as build system and pkg-config as helper tool in this case, so you should get them installed before
going forward with this example.

Please, first clone the sources to recreate this project. You can find them in the examples2 repository in GitHub:

$ git clone https://github.com/conan-io/examples2.git
$ cd examples2/examples/tools/meson/mesontoolchain/simple_meson_project

We start from a very simple C language project with this structure:

.
meson.build

(continues on next page)

7.3. Conan recipe tools examples 205

https://zlib.net/
https://github.com/conan-io/examples2

Conan Documentation, Release 2.1.0

(continued from previous page)

src
main.c

This project contains a basic meson.build including the zlib dependency and the source code for the string compressor
program in main.c.

Let’s have a look at the main.c file:

Listing 12: main.c
#include <stdlib.h>
#include <stdio.h>
#include <string.h>

#include <zlib.h>

int main(void) {
char buffer_in [256] = {"Conan is a MIT-licensed, Open Source package manager for C␣

→˓and C++ development "
"for C and C++ development, allowing development teams to␣

→˓easily and efficiently "
"manage their packages and dependencies across platforms and␣

→˓build systems."};
char buffer_out [256] = {0};

z_stream defstream;
defstream.zalloc = Z_NULL;
defstream.zfree = Z_NULL;
defstream.opaque = Z_NULL;
defstream.avail_in = (uInt) strlen(buffer_in);
defstream.next_in = (Bytef *) buffer_in;
defstream.avail_out = (uInt) sizeof(buffer_out);
defstream.next_out = (Bytef *) buffer_out;

deflateInit(&defstream, Z_BEST_COMPRESSION);
deflate(&defstream, Z_FINISH);
deflateEnd(&defstream);

printf("Uncompressed size is: %lu\n", strlen(buffer_in));
printf("Compressed size is: %lu\n", strlen(buffer_out));

printf("ZLIB VERSION: %s\n", zlibVersion());

return EXIT_SUCCESS;
}

Also, the contents of meson.build are:

206 Chapter 7. Examples

Conan Documentation, Release 2.1.0

Listing 13: meson.build
project('tutorial', 'c')
zlib = dependency('zlib', version : '1.2.11')
executable('compressor', 'src/main.c', dependencies: zlib)

Let’s create a conanfile.txt with the following content to install Zlib:

Listing 14: conanfile.txt
[requires]
zlib/1.2.11

[generators]
PkgConfigDeps
MesonToolchain

In this case, we will use PkgConfigDeps to generate information about where the Zlib library files are installed thanks
to the *.pc files and MesonToolchain to pass build information to Meson using a conan_meson_[native|cross].ini file
that describes the native/cross compilation environment, which in this case is a conan_meson_native.ini one.

We will use Conan to install Zlib and generate the files that Meson needs to find this library and build our project. We
will generate those files in the folder build. To do that, run:

$ conan install . --output-folder=build --build=missing

Now we are ready to build and run our compressor app:

Listing 15: Windows

$ cd build
$ meson setup --native-file conan_meson_native.ini .. meson-src
$ meson compile -C meson-src
$ meson-src\compressor.exe
Uncompressed size is: 233
Compressed size is: 147
ZLIB VERSION: 1.2.11

7.3. Conan recipe tools examples 207

Conan Documentation, Release 2.1.0

Listing 16: Linux, macOS

$ cd build
$ meson setup --native-file conan_meson_native.ini .. meson-src
$ meson compile -C meson-src
$./meson-src/compressor
Uncompressed size is: 233
Compressed size is: 147
ZLIB VERSION: 1.2.11

Create your first Conan package with Meson

In the Create your first Conan package tutorial CMake was used as the build system. If you haven’t read that section,
read it first to familiarize yourself with the conanfile.py and test_package concepts, then come back to read about
the specifics of the Meson package creation.

Use the conan new command to create a “Hello World” C++ library example project:

$ conan new meson_lib -d name=hello -d version=1.0

This will create a Conan package project with the following structure.

conanfile.py
meson.build
hello.vcxproj
src

hello.h
hello.cpp

test_package
conanfile.py
meson.build
src

example.cpp

The structure and files are very similar to the previous CMake example:

• conanfile.py: On the root folder, there is a conanfile.py which is the main recipe file, responsible for defining
how the package is built and consumed.

• meson.build: A Meson build script. This script doesn’t need to contain anything Conan-specific, it is completely
agnostic of Conan, because the integration is transparent.

• src folder: the folder that contains the simple C++ “hello” library.

• test_package folder: contains an example application that will require and link with the created package. In this
case the test_package also contains a meson.build, but it is possible to have the test_package using other
build system as CMake if desired. It is not mandatory that the test_package is using the same build system as the
package.

Let’s have a look at the package recipe conanfile.py (only the relevant new parts):

exports_sources = "meson.build", "src/*"

def layout(self):
basic_layout(self)

(continues on next page)

208 Chapter 7. Examples

Conan Documentation, Release 2.1.0

(continued from previous page)

def generate(self):
tc = MesonToolchain(self)
tc.generate()

def build(self):
meson = Meson(self)
meson.configure()
meson.build()

def package(self):
meson = Meson(self)
meson.install()

Let’s explain the different sections of the recipe briefly:

• The layout() defines a basic_layout(), this is less flexible than a CMake one, so it doesn’t allow any
parametrization.

• The generate() method calls MesonToolchain that can generate conan_meson_native.ini and
conan_meson_cross.ini Meson toolchain files for cross builds. If the project had dependencies with Co-
nan requires, it should add PkgConfigDeps too

• The build() method uses the Meson() helper to drive the build

• The package() method uses the Meson install functionality to define and copy to the package folder the final
artifacts.

The test_package folder also contains a meson.build file that declares a dependency to the tested package, and links
an application, to verify the package was correctly created and contains that library:

Listing 17: test_package/meson.build

project('Testhello', 'cpp')
hello = dependency('hello', version : '>=0.1')
executable('example', 'src/example.cpp', dependencies: hello)

Note the test_package/conanfile.py contains also a generators = "PkgConfigDeps",
"MesonToolchain", because the test_package has the “hello” package as dependency, and PkgConfigDeps is
necessary to locate it.

Note: This example assumes Meson, Ninja and PkgConfig are installed in the system, which might not always be the
case. If they are not, you can create a profile myprofile with:

include(default)

[tool_requires]
meson/[*]
pkgconf/[*]

We added Meson and pkg-config as tool requirements to the profile. By executing conan create . -pr=myprofile,
those tools will be installed and made available during the package’s build process.

Let’s build the package from sources with the current default configuration, and then let the test_package folder test
the package:

7.3. Conan recipe tools examples 209

Conan Documentation, Release 2.1.0

$ conan create .

...
======== Testing the package: Executing test ========
hello/1.0 (test package): Running test()
hello/1.0 (test package): RUN: .\example
hello/1.0: Hello World Release!
hello/1.0: _M_X64 defined
hello/1.0: MSVC runtime: MultiThreadedDLL
hello/1.0: _MSC_VER1939
hello/1.0: _MSVC_LANG201402
hello/1.0: __cplusplus201402

hello/1.0 test_package

We can now validate that the recipe and the package binary are in the cache:

$ conan list hello/1.0:*
Local Cache:
hello
hello/1.0
revisions
856c535669f78da11502a119b7d8a6c9 (2024-03-04 17:52:39 UTC)
packages
c13a22a41ecd72caf9e556f68b406569547e0861
info
settings
arch: x86_64
build_type: Release
compiler: msvc
compiler.cppstd: 14
compiler.runtime: dynamic
compiler.runtime_type: Release
compiler.version: 193
os: Windows

See also:
• Meson built-in integrations reference.

• PkgConfigDeps built-in integrations reference.

7.3.4 Bazel

Build a simple Bazel project using Conan

In this example, we are going to create a Hello World program that uses one of the most popular C++ libraries: fmt.

Note: This example is based on the main Build a simple CMake project using Conan tutorial. So we highly recommend
reading it before trying out this one.

We’ll use Bazel as the build system and helper tool in this case, so you should get it installed before going forward with
this example. See how to install Bazel.

210 Chapter 7. Examples

https://fmt.dev/latest/index.html/
https://bazel.build/install

Conan Documentation, Release 2.1.0

Please, first clone the sources to recreate this project. You can find them in the examples2 repository in GitHub:

$ git clone https://github.com/conan-io/examples2.git
$ cd examples2/examples/tools/google/bazeltoolchain/string_formatter

We start from a very simple C++ language project with this structure:

.
WORKSPACE
conanfile.txt
main

BUILD
demo.cpp

This project contains a WORKSPACE file loading the Conan dependencies (in this case only fmt) and a main/BUILD
file which defines the demo bazel target and it’s in charge of using fmt to build a simple Hello World program.

Let’s have a look at each file’s content:

Listing 18: main/demo.cpp
#include <cstdlib>
#include <fmt/core.h>

int main() {
fmt::print("{} - The C++ Package Manager!\n", "Conan");
return EXIT_SUCCESS;

}

Listing 19: WORKSPACE
load("@//conan:dependencies.bzl", "load_conan_dependencies")
load_conan_dependencies()

Listing 20: main/BUILD
load("@rules_cc//cc:defs.bzl", "cc_binary")

cc_binary(
name = "demo",
srcs = ["demo.cpp"],
deps = [

"@fmt//:fmt"
],

)

Listing 21: conanfile.txt
[requires]
fmt/10.1.1

[generators]
BazelDeps
BazelToolchain

(continues on next page)

7.3. Conan recipe tools examples 211

https://github.com/conan-io/examples2

Conan Documentation, Release 2.1.0

(continued from previous page)

[layout]
bazel_layout

Conan uses the BazelToolchain to generate a conan_bzl.rc file which defines the conan-config bazel-build con-
figuration. This file and the configuration are passed as parameters to the bazel build command. Apart from that,
Conan uses the BazelDeps generator to create all the bazel files ([DEP]/BUILD.bazel and dependencies.bzl) which de-
fine all the dependencies as public bazel targets. The WORKSPACE above is already ready to load the dependencies.bzl
which will tell the main/BUILD all the information about the @fmt//:fmt bazel target.

As the first step, we should install all the dependencies listed in the conanfile.txt. The command conan install
does not only install the fmt package, it also builds it from sources in case your profile does not match with a pre-built
binary in your remotes. Furthermore, it will save all the files created by the generators listed in the conanfile.txt
in a folder named conan/ (default folder defined by the bazel_layout).

$ conan install . --build=missing
...
======== Finalizing install (deploy, generators) ========
conanfile.txt: Writing generators to /Users/franchuti/develop/examples2/examples/tools/
→˓google/bazeltoolchain/string_formatter/conan
conanfile.txt: Generator 'BazelDeps' calling 'generate()'
conanfile.txt: Generator 'BazelToolchain' calling 'generate()'
conanfile.txt: Generating aggregated env files
conanfile.txt: Generated aggregated env files: ['conanbuild.sh', 'conanrun.sh']
Install finished successfully

Now we are ready to build and run our application:

$ bazel --bazelrc=./conan/conan_bzl.rc build --config=conan-config //main:demo
Starting local Bazel server and connecting to it...
INFO: Analyzed target //main:demo (38 packages loaded, 272 targets configured).
INFO: Found 1 target...
INFO: From Linking main/demo:
ld: warning: ignoring duplicate libraries: '-lc++'
Target //main:demo up-to-date:
bazel-bin/main/demo

INFO: Elapsed time: 60.180s, Critical Path: 7.68s
INFO: 6 processes: 4 internal, 2 darwin-sandbox.
INFO: Build completed successfully, 6 total actions

$./bazel-bin/main/demo
Conan - The C++ Package Manager!

212 Chapter 7. Examples

Conan Documentation, Release 2.1.0

7.3.5 Autotools

Build a simple Autotools project with Conan dependencies

Warning: This example will only work for Linux and OSX environments and does not support Windows directly,
including msys2/cygwin subsystems. However, Windows Subsystem for Linux (WSL) should work since it provides
a Linux environment. While Conan offers win_bash = True for some level of support in Windows environments
with Autotools, it’s not applicable in this tutorial.

In this example, we are going to create a string formatter application that uses one of the most popular C++ libraries:
fmt.

We’ll use Autotools as build system and pkg-config as a helper tool in this case, so you should get them installed on
Linux and Mac before going forward with this example.

Please, first clone the sources to recreate this project. You can find them in the examples2 repository on GitHub:

git clone https://github.com/conan-io/examples2.git
cd examples2/examples/tools/autotools/autotoolstoolchain/string_formatter

We start with a very simple C++ language project with the following structure:

.
configure.ac
Makefile.am
conanfile.txt
src

main.cpp

This project contains a basic configure.ac <https://www.gnu.org/software/autoconf/manual/autoconf-
2.60/html_node/Writing-configure_002eac.html>_ including the fmt pkg-config dependency and the source
code for the string formatter program in main.cpp.

Let’s have a look at the main.cpp file, it only prints a simple message but uses fmt::print method for it.

Listing 22: main.cpp
#include <cstdlib>
#include <fmt/core.h>

int main() {
fmt::print("{} - The C++ Package Manager!\n", "Conan");
return EXIT_SUCCESS;

}

The configure.ac file checks for a C++ compiler using the AC_PROG_CXX macro and also checks for the fmt.pc
pkg-config module using the PKG_CHECK_MODULES macro.

Listing 23: configure.ac
AC_INIT([stringformatter], [0.1.0])
AM_INIT_AUTOMAKE([1.10 -Wall no-define foreign])
AC_CONFIG_SRCDIR([src/main.cpp])
AC_CONFIG_FILES([Makefile])

(continues on next page)

7.3. Conan recipe tools examples 213

https://fmt.dev/latest/index.html/
https://www.gnu.org/software/automake/manual/html_node/Autotools-Introduction.html
https://www.freedesktop.org/wiki/Software/pkg-config/
https://github.com/conan-io/examples2

Conan Documentation, Release 2.1.0

(continued from previous page)

PKG_CHECK_MODULES([fmt], [fmt])
AC_PROG_CXX
AC_OUTPUT

The Makefile.am specifies that string_formatter is the expected executable and that it should be linked to the fmt
library.

Listing 24: Makefile.am
AUTOMAKE_OPTIONS = subdir-objects
ACLOCAL_AMFLAGS = ${ACLOCAL_FLAGS}

bin_PROGRAMS = string_formatter
string_formatter_SOURCES = src/main.cpp
string_formatter_CPPFLAGS = $(fmt_CFLAGS)
string_formatter_LDADD = $(fmt_LIBS)

The conanfile.txt looks simple as it just installs the fmt package and uses two generators to build our project.

Listing 25: conanfile.txt
[requires]
fmt/9.1.0

[generators]
AutotoolsToolchain
PkgConfigDeps

In this case, we will use PkgConfigDeps to generate information about where the fmt library files are installed thanks
to the *.pc files and AutotoolsToolchain to pass build information to autotools using a conanbuild[.sh|.bat] file that
describes the compilation environment.

We will use Conan to install fmt library, generate a toolchain for Autotools, and, .pc files for find fmt by pkg-config.

Building on Linux and macOS

First, we should install some requirements. On Linux you need to have automake , pkgconf and make packages
installed, their packages names should vary according to the Linux distribution, but essentially, it should include all
tools (aclocal, automake, autoconf and make) that you will need to build the following example.

For this example, we will not consider a specific Conan profile, but fmt is highly compatible with many different
configurations. So it should work mostly with versions of GCC and Clang compiler.

As the first step, we should install all dependencies listed in the conanfile.txt. The command :ref: conan in-
stall<reference_commands_install> will not only install the fmt package, but also build it from sources in case your
profile does not match with a pre-built binary in your remotes. Plus, it will provide these generators listed in the
conanfile.txt

conan install . --build=missing

After running conan install command, we should have new files present in the string_formatter folder:

string_formatter
Makefile.am

(continues on next page)

214 Chapter 7. Examples

Conan Documentation, Release 2.1.0

(continued from previous page)

conanautotoolstoolchain.sh
conanbuild.conf
conanbuild.sh
conanbuildenv-release-armv8.sh
conanfile.txt
conanrun.sh
conanrunenv-release-armv8.sh
configure.ac
deactivate_conanbuild.sh
deactivate_conanrun.sh
fmt-_fmt.pc
fmt.pc
run_example.sh
src

main.cpp

These files are the result of those generators listed in the conanfile.txt. Once all files needed to build the example
are generated and fmt is installed, now we can load the script conanbuild.sh.

source conanbuild.sh

The conanbuild.sh is a default file generated by the VirtualBuildEnv and helps us to load other script files, so we don’t
need to execute more manual steps to load each generator file. It will load conanautotoolstoolchain.sh, generated
by AutotoolsToolchain, which defines environment variables according to our Conan profile, used when running conan
install command. Those environment variables configured are related to the compiler and autotools, like CFLAGS,
CPPFLAGS, LDFLAGS, and PKG_CONFIG_PATH.

As the next step, we can configure the project by running the following commands in sequence:

aclocal
automake --add-missing
autoconf
./configure

The aclocal command will read the file configure.ac and generate a new file named aclocal.m4, which contains
macros needed by the automake. As the second step, the automake command will read the Makefile.am, and will
generate the file Makefile.in. So the command autoconf will use those files and generate the configure file. Once
we run configure, all environment variables will be consumed. The fmt.pc will be loaded at this step too, as
autotools uses the custom PKG_CONFIG_PATH to find it.

Then, finally, we can build the project to generate the string formatter application. Now we run the make command,
which will consume the Makefile generated by autotools.

make

The make command will read the Makefile and invoke the compiler, then, build the main.cpp, generating the exe-
cutable string_formatter in the same folder.

./string_formatter
Conan - The C++ Package Manager!

The final output is the result of a new application, printing a message with the help of fmt library, and built by
Autotools.

7.3. Conan recipe tools examples 215

https://www.gnu.org/software/automake/manual/html_node/aclocal-Invocation.html
https://www.gnu.org/software/automake/manual/automake.html
https://www.gnu.org/software/autoconf/

Conan Documentation, Release 2.1.0

Create your first Conan package with Autotools

Warning: This example will only work for Linux and OSX environments and does not support Windows directly,
including msys2/cygwin subsystems. However, Windows Subsystem for Linux (WSL) should work since it provides
a Linux environment. While Conan offers win_bash = True for some level of support in Windows environments
with Autotools, it’s not applicable in this tutorial.

In the Create your first Conan package tutorial CMake was used as the build system. If you haven’t read that section,
read it first to familiarize yourself with the conanfile.py and test_package concepts, then come back to read about
the specifics of the Autotools package creation.

Use the conan new command to create a “Hello World” C++ library example project:

$ conan new autotools_lib -d name=hello -d version=0.1

This will create a Conan package project with the following structure.

conanfile.py
configure.ac
Makefile.am
src

hello.h
hello.cpp
Makefile.am

test_package
conanfile.py
configure.ac
mainc.pp
Makefile.am

The structure and files are very similar to the previous CMake example:

• conanfile.py: On the root folder, there is a conanfile.py which is the main recipe file, responsible for defining
how the package is built and consumed.

• configure.ac: An autotools configuration script, that contains the necessary macros and references the
Makefiles it needs to configure.

• Makefile.am: A Makefile configuration file, defining only SUBDIRS = src

• src folder: the folder that contains the simple C++ “hello” library.

• src/Makefile.am: Makefile configuration file containing the library definition and source files like
libhello_la_SOURCES = hello.cpp hello.h

• test_package folder: contains an example application that will require and link with the created package. In this
case the test_package also contains an autotools project, but it is possible to have the test_package using
other build system as CMake if desired. It is not mandatory that the test_package is using the same build system
as the package.

Let’s have a look at the package recipe conanfile.py (only the relevant new parts):

exports_sources = "configure.ac", "Makefile.am", "src/*"

def layout(self):
basic_layout(self)

(continues on next page)

216 Chapter 7. Examples

Conan Documentation, Release 2.1.0

(continued from previous page)

def generate(self):
at_toolchain = AutotoolsToolchain(self)
at_toolchain.generate()

def build(self):
autotools = Autotools(self)
autotools.autoreconf()
autotools.configure()
autotools.make()

def package(self):
autotools = Autotools(self)
autotools.install()
fix_apple_shared_install_name(self)

Let’s explain the different sections of the recipe briefly:

• The layout() defines a basic_layout(), this is less flexible than a CMake one, so it doesn’t allow any
parametrization.

• The generate() method calls AutotoolsToolchain that can generate a conanautotoolstoolchain envi-
ronment script defining environment variables like CXXFLAGS or LDFLAGS that will be used by the Makefiles
to map the Conan input settings into compile flags. If the project had dependencies with Conan requires, it
should add PkgConfigDeps too

• The build() method uses the Autotools() helper to drive the build, calling the different configure and build
steps.

• The package() method uses the Autotools install functionality to define and copy to the package folder the
final artifacts. Note the template also includes a call to fix_apple_shared_install_name() that uses OSX
install_name_tool utility to set @rpath``to fix the ``LC_ID_DYLIB and LC_LOAD_DYLIB fields on Apple
dylibs, because it is very unusual that autotools project will manage to do this (CMake can do it) .

Let’s build the package from sources with the current default configuration, and then let the test_package folder test
the package:

$ conan create .

...
======== Testing the package: Executing test ========
hello/0.1 (test package): Running test()
hello/0.1 (test package): RUN: ./main
hello/0.1: Hello World Release!
hello/0.1: __x86_64__ defined
hello/0.1: _GLIBCXX_USE_CXX11_ABI 1
hello/0.1: __cplusplus201703
hello/0.1: __GNUC__11
hello/0.1: __GNUC_MINOR__1

hello/0.1 test_package

We can now validate that the recipe and the package binary are in the cache:

$ conan list hello/1.0:*
Local Cache:

(continues on next page)

7.3. Conan recipe tools examples 217

Conan Documentation, Release 2.1.0

(continued from previous page)

hello
hello/1.0
revisions
5b151b3f08144bf25131266eb306ddff (2024-03-06 12:03:52 UTC)
packages
8631cf963dbbb4d7a378a64a6fd1dc57558bc2fe
info
settings
arch: x86_64
build_type: Release
compiler: gcc
compiler.cppstd: gnu17
compiler.libcxx: libstdc++11
compiler.version: 11
os: Linux

options
fPIC: True
shared: False

See also:
• GNU built-in integrations reference.

7.3.6 Capturing Git scm information

There are 2 main strategies to handle source code in recipes:

• Third-party code: When the conanfile.py recipe is packaging third party code, like an open source library,
it is typically better to use the source() method to download or clone the sources of that library. This is the
approach followed by the conan-center-index repository for ConanCenter.

• Your own code: When the conanfile.py recipe is packaging your own code, it is typically better to have the
conanfile.py in the same repository as the sources. Then, there are 2 alternatives for achieving reproducibility:

– Using the exports_sources (or export_source() method) to capture a copy of the sources together
with the recipe in the Conan package. This is very simple and pragmatic and would be recommended for
the majority of cases.

– For cases when it is not possible to store the sources beside the Conan recipe, for example when the package
is to be consumed for someone that shouldn’t have access to the source code at all, then the current scm
capture method would be the way.

In the scm capture method, instead of capturing a copy of the code itself, the “coordinates” for that code are captured
instead, in the Git case, the url of the repository and the commit. If the recipe needs to build from source, it will use
that information to get a clone, and if the user who tries that is not authorized, the process will fail. They will still be
able to use the pre-compiled binaries that we distribute, but not build from source or have access to the code.

Let’s see how it works with an example. Please, first clone the sources to recreate this project. You can find them in
the examples2 repository on GitHub:

$ git clone https://github.com/conan-io/examples2.git
$ cd examples2/examples/tools/scm/git/capture_scm

There we will find a small “hello” project, containing this conanfile.py:

218 Chapter 7. Examples

https://github.com/conan-io/examples2

Conan Documentation, Release 2.1.0

from conan import ConanFile
from conan.tools.cmake import CMake, cmake_layout
from conan.tools.scm import Git

class helloRecipe(ConanFile):
name = "hello"
version = "0.1"

Binary configuration
settings = "os", "compiler", "build_type", "arch"
options = {"shared": [True, False], "fPIC": [True, False]}
default_options = {"shared": False, "fPIC": True}
generators = "CMakeDeps", "CMakeToolchain"

def export(self):
git = Git(self, self.recipe_folder)
save the url and commit in conandata.yml
git.coordinates_to_conandata()

def source(self):
we recover the saved url and commit from conandata.yml and use them to get␣

→˓sources
git = Git(self)
git.checkout_from_conandata_coordinates()

...

We need this code to be in its own Git repository, to see how it works in the real case, so please create a folder outside
of the examples2 repository, and copy the contents of the current folder there, then:

$ mkdir /home/myuser/myfolder # or equivalent in other OS
$ cp -R . /home/myuser/myfolder # or equivalent in other OS
$ cd /home/myuser/myfolder # or equivalent in other OS

Initialize the git repo
$ git init .
$ git add .
$ git commit . -m wip
Finally create the package
$ conan create .
...
======== Exporting recipe to the cache ========
hello/0.1: Exporting package recipe: /myfolder/conanfile.py
hello/0.1: Calling export()
hello/0.1: RUN: git status . --short --no-branch --untracked-files
hello/0.1: RUN: git rev-list HEAD -n 1 --full-history -- "."
hello/0.1: RUN: git remote -v
hello/0.1: RUN: git branch -r --contains cb7815a58529130b49da952362ce8b28117dee53
hello/0.1: RUN: git fetch origin --dry-run --depth=1␣
→˓cb7815a58529130b49da952362ce8b28117dee53
hello/0.1: WARN: Current commit cb7815a58529130b49da952362ce8b28117dee53 doesn't exist␣
→˓in remote origin

(continues on next page)

7.3. Conan recipe tools examples 219

Conan Documentation, Release 2.1.0

(continued from previous page)

This revision will not be buildable in other computer
hello/0.1: RUN: git rev-parse --show-toplevel
hello/0.1: Copied 1 '.py' file: conanfile.py
hello/0.1: Copied 1 '.yml' file: conandata.yml
hello/0.1: Exported to cache folder: /.conan2/p/hello237d6f9f65bba/e
...
======== Installing packages ========
hello/0.1: Calling source() in /.conan2/p/hello237d6f9f65bba/s
hello/0.1: Cloning git repo
hello/0.1: RUN: git clone "<hidden>" "."
hello/0.1: Checkout: cb7815a58529130b49da952362ce8b28117dee53
hello/0.1: RUN: git checkout cb7815a58529130b49da952362ce8b28117dee53

Let’s explain step by step what is happening:

• When the recipe is exported to the Conan cache, the export() method executes, git.
coordinates_to_conandata(), which stores the Git URL and commit in the conandata.yml file by
internally calling git.get_url_and_commit(). See the Git reference for more information about these
methods.

• This obtains the URL of the repo pointing to the local <local-path>/capture_scm and the commit
8e8764c40bebabbe3ec57f9a0816a2c8e691f559

• It warns that this information will not be enough to re-build from source this recipe once the package is uploaded
to the server and is tried to be built from source in other computer, which will not contain the path pointed by
<local-path>/capture_scm. This is expected, as the repository that we created doesn’t have any remote
defined. If our local clone had a remote defined and that remote contained the commit that we are building, the
scm_url would point to the remote repository instead, making the build from source fully reproducible.

• The export()method stores the url and commit information in the conandata.yml for future reproducibility.

• When the package needs to be built from sources and it calls the source() method, it recovers the information
from the conandata.yml file inside the git.checkout_from_conandata_coordinates() method, which
internally calls git.clone()with it to retrieve the sources. In this case, it will be cloning from the local checkout
in <local-path>/capture_scm, but if it had a remote defined, it will clone from it.

Warning: To achieve reproducibility, it is very important for this scm capture technique that the current check-
out is not dirty If it was dirty, it would be impossible to guarantee future reproducibility of the build, so git.
get_url_and_commit() can raise errors, and require to commit changes. If more than 1 commit is necessary, it
would be recommended to squash those commits before pushing changes to upstream repositories.

If we do now a second conan create ., as the repo is dirty we would get:

$ conan create .
hello/0.1: Calling export()
ERROR: hello/0.1: Error in export() method, line 19

scm_url, scm_commit = git.get_url_and_commit()
ConanException: Repo is dirty, cannot capture url and commit: .../capture_scm

This could be solved by cleaning the repo with git clean -xdf, or by adding a .gitignore file to the repo with the
following contents (which might be a good practice anyway for source control):

220 Chapter 7. Examples

Conan Documentation, Release 2.1.0

Listing 26: .gitignore

test_package/build
test_package/CMakeUserPresets.json

Credentials management

In the example above, credentials were not necessary, because our local repo didn’t require them. But in real world
scenarios, the credentials can be required.

The first important bit is that git.get_url_and_commit() will capture the url of the origin remote. This url must
not encode tokens, users or passwords, for several reasons. First because that will make the process not repeatable, and
different builds, different users would get different urls, and consequently different recipe revisions. The url should
always be the same. The recommended approach is to manage the credentials in an orthogonal way, for example using
ssh keys. The provided example contains a Github action that does this:

Listing 27: .github/workflows/hello-demo.yml

name: Build "hello" package capturing SCM in Github actions
run-name: ${{ github.actor }} checking hello-ci Git scm capture
on: [push]
jobs:
Build:

runs-on: ubuntu-latest
steps:
- name: Check out repository code

uses: actions/checkout@v3
with:
ssh-key: ${{ secrets.SSH_PRIVATE_KEY }}

- uses: actions/setup-python@v4
with:
python-version: '3.10'

- uses: webfactory/ssh-agent@v0.7.0
with:
ssh-private-key: ${{ secrets.SSH_PRIVATE_KEY }}

- run: pip install conan
- run: conan profile detect
- run: conan create .

This hello-demo.yml takes care of the following:

• The checkout actions/checkout@v3 action receives the ssh-key to checkout as git@ instead of https

• The webfactory/ssh-agent@v0.7.0 action takes care that the ssh key is also activated during the execution
of the following tasks, not only during the checkout.

• It is necessary to setup the SSH_PRIVATE_KEY secret in the Github interface, as well as the deploy key for the
repo (with the private and public parts of the ssh-key)

In this way, it is possible to keep completely separated the authentication and credentials from the recipe functionality,
without any risk to leaking credentials.

Note: Best practices

7.3. Conan recipe tools examples 221

Conan Documentation, Release 2.1.0

• Do not use an authentication mechanism that encodes information in the urls. This is risky, can easily disclose
credentials in logs. It is recommended to use system mechanisms like ssh keys.

• Doing conan create is not recommended for local development, but instead running conan install and
building locally, to avoid too many unnecessary commits. Only when everything works locally, it is time to start
checking the conan create flow.

7.3.7 MSBuild

Create your first Conan package with Visual Studio/MSBuild

In the Create your first Conan package tutorial CMake was used as the build system. If you haven’t read that section,
read it first to familiarize yourself with the conanfile.py and test_package concepts, then come back to read about
the specifics of the Visual Studio package creation.

Use the conan new command to create a “Hello World” C++ library example project:

$ conan new msbuild_lib -d name=hello -d version=1.0

This will create a Conan package project with the following structure.

.
conanfile.py
hello.sln
hello.vcxproj
include

hello.h
src

hello.cpp
test_package

conanfile.py
test_hello.sln
test_hello.vcxproj
src

test_hello.cpp

The structure and files are very similar to the previous CMake example:

• conanfile.py: On the root folder, there is a conanfile.py which is the main recipe file, responsible for defining
how the package is built and consumed.

• hello.sln: A Visual Studio solution file that can be opened with the IDE.

• hello.vcxproj: A Visual Studio C/C++ project, part of the solution above.

• src and include folders: the folders that contains the simple C++ “hello” library.

• test_package folder: contains an example application that will require and link with the created package. In
this case the test_package also contains a Visual Studio solution and project, but it is possible to have the
test_package using other build system as CMake if desired. It is not mandatory that the test_package is using
the same build system as the package.

Let’s have a look at the package recipe conanfile.py (only the relevant new parts):

222 Chapter 7. Examples

Conan Documentation, Release 2.1.0

Sources are located in the same place as this recipe, copy them to the recipe
exports_sources = "hello.sln", "hello.vcxproj", "src/*", "include/*"

def layout(self):
vs_layout(self)

def generate(self):
tc = MSBuildToolchain(self)
tc.generate()

def build(self):
msbuild = MSBuild(self)
msbuild.build("hello.sln")

def package(self):
copy(self, "*.h", os.path.join(self.source_folder, "include"),

dst=os.path.join(self.package_folder, "include"))
copy(self, "*.lib", src=self.build_folder, dst=os.path.join(self.package_folder, "lib

→˓"),
keep_path=False)

Let’s explain the different sections of the recipe briefly:

• Note there are no options like the shared option in this recipe. The current project always builds a static
library, so it is not optional.

• The layout() defines a typical VS layout, this is less flexible than a CMake one, so it doesn’t allow any
parametrization.

• The generate()method calls MSBuildToolchain to generate a conantoolchain.props file, that the project
must add to its properties. If the project had dependencies with Conan requires, it should add MSBuildDeps
too and add the relevant generated files property sheets.

• The build() method uses the MSBuild() helper to drive the build of the solution

• As the project doesn’t have any “install” functionality in the build scripts, the package() method can manually
define which files must be copied.

The hello.vcxproj project file adds the generated property sheets like conantoolchain.props to the project, so
the build can receive the Conan input settings and act accordingly.

Listing 28: hello.vcxproj

<ImportGroup Label="PropertySheets">
<Import Project="conan\conantoolchain.props" />

</ImportGroup>

If the project had dependencies, it should add the dependencies generated .props files too.

The test_package folder also contains a test_hello.vcxproj file, that includes both the toolchain and the depen-
dencies property sheets:

Listing 29: test_package/test_hello.vcxproj

<ImportGroup Label="PropertySheets">
<Import Project="conan\conantoolchain.props" />

(continues on next page)

7.3. Conan recipe tools examples 223

Conan Documentation, Release 2.1.0

(continued from previous page)

<Import Project="conan\conandeps.props" />
</ImportGroup>

Note the test_package/conanfile.py contains also a generators="MSBuildDeps".

Let’s build the package from sources with the current default configuration, and then let the test_package folder test
the package:

$ conan create .

...
======== Testing the package: Executing test ========
hello/1.0 (test package): Running test()
hello/1.0 (test package): RUN: x64\Release\test_hello
hello/1.0: Hello World Release!
hello/1.0: _M_X64 defined
hello/1.0: MSVC runtime: MultiThreadedDLL
hello/1.0: _MSC_VER1939
hello/1.0: _MSVC_LANG201402
hello/1.0: __cplusplus199711

hello/1.0 test_package

We can now validate that the recipe and the package binary are in the cache:

$ conan list hello/1.0:*
Local Cache:
hello
hello/1.0
revisions
856c535669f78da11502a119b7d8a6c9 (2024-03-04 17:52:39 UTC)
packages
c13a22a41ecd72caf9e556f68b406569547e0861
info
settings
arch: x86_64
build_type: Release
compiler: msvc
compiler.cppstd: 14
compiler.runtime: dynamic
compiler.runtime_type: Release
compiler.version: 193
os: Windows

See also:
• MSBuild built-in integrations reference.

224 Chapter 7. Examples

Conan Documentation, Release 2.1.0

7.4 Cross-building examples

7.4.1 Creating a Conan package for a toolchain

After learning how to create recipes for tool requires that package applications, we are going to show an example on
how to create a recipe that packages a precompiled toolchain or compiler for building other packages.

In the “How to cross-compile your applications using Conan: host and build contexts” tutorial section, we discussed
the basics of cross-compiling applications using Conan with a focus on the “build” and “host” contexts. We learned
how to configure Conan to use different profiles for the build machine and the target host machine, enabling us to
cross-compile applications for platforms like Raspberry Pi from an Ubuntu Linux machine.

However, in that section, we assumed the existence of a cross-compiling toolchain or compiler as part of the build
environment, set up through Conan profiles. Now, we will take a step further by demonstrating how to create a Conan
package for such a toolchain. This package can then be used as a tool_require in other Conan recipes, simplifying the
process of setting up the environment for cross-compilation.

Please, first clone the sources to recreate this project. You can find them in the examples2 repository on GitHub:

$ git clone https://github.com/conan-io/examples2.git
$ cd examples2/examples/cross_build/toolchain_packages/toolchain

Here, you will find a Conan recipe (and the test_package) to package an ARM toolchain for cross-compiling to Linux
ARM for both 32 and 64 bits. To simplify a bit, we are assuming that we can just cross-build from Linux x86_64 to
Linux ARM, both 32 and 64 bits.

.
conanfile.py
test_package

CMakeLists.txt
conanfile.py
test_package.cpp

Let’s check the recipe and go through the most relevant parts:

Listing 30: conanfile.py

import os
from conan import ConanFile
from conan.tools.files import get, copy, download
from conan.errors import ConanInvalidConfiguration
from conan.tools.scm import Version

class ArmToolchainPackage(ConanFile):
name = "arm-toolchain"
version = "13.2"
...
settings = "os", "arch"
package_type = "application"

def _archs32(self):
return ["armv6", "armv7", "armv7hf"]

def _archs64(self):
return ["armv8", "armv8.3"]

(continues on next page)

7.4. Cross-building examples 225

https://github.com/conan-io/examples2

Conan Documentation, Release 2.1.0

(continued from previous page)

def _get_toolchain(self, target_arch):
if target_arch in self._archs32():

return ("arm-none-linux-gnueabihf",
"df0f4927a67d1fd366ff81e40bd8c385a9324fbdde60437a512d106215f257b3")

else:
return ("aarch64-none-linux-gnu",

"12fcdf13a7430655229b20438a49e8566e26551ba08759922cdaf4695b0d4e23")

def validate(self):
if self.settings.arch != "x86_64" or self.settings.os != "Linux":

raise ConanInvalidConfiguration(f"This toolchain is not compatible with
→˓{self.settings.os}-{self.settings.arch}. "

"It can only run on Linux-x86_64.")

valid_archs = self._archs32() + self._archs64()
if self.settings_target.os != "Linux" or self.settings_target.arch not in valid_

→˓archs:
raise ConanInvalidConfiguration(f"This toolchain only supports building for␣

→˓Linux-{valid_archs.join(',')}. "
f"{self.settings_target.os}-{self.settings_

→˓target.arch} is not supported.")

if self.settings_target.compiler != "gcc":
raise ConanInvalidConfiguration(f"The compiler is set to '{self.settings_

→˓target.compiler}', but this "
"toolchain only supports building with gcc.")

if Version(self.settings_target.compiler.version) >= Version("14") or␣
→˓Version(self.settings_target.compiler.version) < Version("13"):

raise ConanInvalidConfiguration(f"Invalid gcc version '{self.settings_target.
→˓compiler.version}'. "

"Only 13.X versions are supported for␣
→˓the compiler.")

def source(self):
download(self, "https://developer.arm.com/GetEula?Id=37988a7c-c40e-4b78-9fd1-

→˓62c20b507aa8", "LICENSE", verify=False)

def build(self):
toolchain, sha = self._get_toolchain(self.settings_target.arch)
get(self, f"https://developer.arm.com/-/media/Files/downloads/gnu/13.2.rel1/

→˓binrel/arm-gnu-toolchain-13.2.rel1-x86_64-{toolchain}.tar.xz",
sha256=sha, strip_root=True)

def package_id(self):
self.info.settings_target = self.settings_target
We only want the ``arch`` setting
self.info.settings_target.rm_safe("os")
self.info.settings_target.rm_safe("compiler")
self.info.settings_target.rm_safe("build_type")

(continues on next page)

226 Chapter 7. Examples

Conan Documentation, Release 2.1.0

(continued from previous page)

def package(self):
toolchain, _ = self._get_toolchain(self.settings_target.arch)
dirs_to_copy = [toolchain, "bin", "include", "lib", "libexec"]
for dir_name in dirs_to_copy:

copy(self, pattern=f"{dir_name}/*", src=self.build_folder, dst=self.package_
→˓folder, keep_path=True)

copy(self, "LICENSE", src=self.build_folder, dst=os.path.join(self.package_
→˓folder, "licenses"), keep_path=False)

def package_info(self):
toolchain, _ = self._get_toolchain(self.settings_target.arch)
self.cpp_info.bindirs.append(os.path.join(self.package_folder, toolchain, "bin"))

self.conf_info.define("tools.build:compiler_executables", {
"c": f"{toolchain}-gcc",
"cpp": f"{toolchain}-g++",
"asm": f"{toolchain}-as"

})

Validating the toolchain package: settings, settings_build and settings_target

As you may recall, the validate() method is used to indicate that a package is not compatible with certain configurations.
As mentioned earlier, we are limiting the usage of this package to a Linux x86_64 platform for cross-compiling to a
Linux ARM target, supporting both 32-bit and 64-bit architectures. Let’s check how we incorporate this information
into the validate() method and discuss the various types of settings involved:

Validating the build platform

...

settings = "os", "arch"

...

def validate(self):

if self.settings.arch != "x86_64" or self.settings.os != "Linux":
raise ConanInvalidConfiguration(f"This toolchain is not compatible with {self.

→˓settings.os}-{self.settings.arch}. "
"It can only run on Linux-x86_64.")

...

First, it’s important to acknowledge that only the os and arch settings are declared. These settings represent the
machine that will compile the package for the toolchain, so we only need to verify that they correspond to Linux and
x86_64, as these are the platforms for which the toolchain binaries are intended.

It is important to note that for this package, which is to be used as a tool_requires, these settings do not relate to
the host profile but to the build profile. This distinction is recognized by Conan when creating the package with the
--build-require argument. This will make the settings and the settings_build to be equal within the context
of package creation.

Validating the target platform

7.4. Cross-building examples 227

Conan Documentation, Release 2.1.0

In scenarios involving cross-compilation, validations regarding the target platform, where the executable generated
by the toolchain’s compilers will run, must refer to the settings_target. These settings come from the informa-
tion in the host profile. For instance, if compiling for a Raspberry Pi, that will be the information stored in the
settings_target. Again, Conan is aware that settings_target should be populated with the host profile infor-
mation due to the use of the --build-require flag during package creation.

def validate(self):
...

valid_archs = self._archs32() + self._archs64()
if self.settings_target.os != "Linux" or self.settings_target.arch not in valid_

→˓archs:
raise ConanInvalidConfiguration(f"This toolchain only supports building for␣

→˓Linux-{valid_archs.join(',')}. "
f"{self.settings_target.os}-{self.settings_target.

→˓arch} is not supported.")

if self.settings_target.compiler != "gcc":
raise ConanInvalidConfiguration(f"The compiler is set to '{self.settings_target.

→˓compiler}', but this "
"toolchain only supports building with gcc.")

if Version(self.settings_target.compiler.version) >= Version("14") or Version(self.
→˓settings_target.compiler.version) < Version("13"):

raise ConanInvalidConfiguration(f"Invalid gcc version '{self.settings_target.
→˓compiler.version}'. "

"Only 13.X versions are supported for the␣
→˓compiler.")

As you can see, several verifications are made to ensure the validity of the operating system and architectures for the
resulting binaries’ execution environment. Additionally, it verifies that the compiler’s name and version align with the
expectations for the host context.

Here, the diagram shows both profiles and which settings are picked for the arm-toolchain recipe that is in the build
context.

228 Chapter 7. Examples

Conan Documentation, Release 2.1.0

build context

build profile host profile

arm-toolchain/13.2settings settings_target

[settings]
arch=x86_64
build_type=Release
compiler=gcc
compiler.cppstd=gnu14
compiler.version=7
os=Linux

[settings]
arch=armv8
build_type=Release
compiler=gcc
compiler.cppstd=gnu14
compiler.version=13
os=Linux

Downloading the binaries for the toolchain and packaging it

...

def _archs32(self):
return ["armv6", "armv7", "armv7hf"]

def _archs64(self):
return ["armv8", "armv8.3"]

def _get_toolchain(self, target_arch):
if target_arch in self._archs32():

return ("arm-none-linux-gnueabihf",
"df0f4927a67d1fd366ff81e40bd8c385a9324fbdde60437a512d106215f257b3")

else:
return ("aarch64-none-linux-gnu",

"12fcdf13a7430655229b20438a49e8566e26551ba08759922cdaf4695b0d4e23")

def source(self):
download(self, "https://developer.arm.com/GetEula?Id=37988a7c-c40e-4b78-9fd1-

→˓62c20b507aa8", "LICENSE", verify=False)

def build(self):
toolchain, sha = self._get_toolchain(self.settings_target.arch)
get(self, f"https://developer.arm.com/-/media/Files/downloads/gnu/13.2.rel1/binrel/

→˓arm-gnu-toolchain-13.2.rel1-x86_64-{toolchain}.tar.xz",
sha256=sha, strip_root=True)

def package(self):
(continues on next page)

7.4. Cross-building examples 229

Conan Documentation, Release 2.1.0

(continued from previous page)

toolchain, _ = self._get_toolchain(self.settings_target.arch)
dirs_to_copy = [toolchain, "bin", "include", "lib", "libexec"]
for dir_name in dirs_to_copy:

copy(self, pattern=f"{dir_name}/*", src=self.build_folder, dst=self.package_
→˓folder, keep_path=True)

copy(self, "LICENSE", src=self.build_folder, dst=os.path.join(self.package_folder,
→˓"licenses"), keep_path=False)

...

The source() method is used to download the recipe license, as it’s found on the ARM toolchains’ download page.
However, this is the only action performed there. The actual toolchain binaries are fetched in the build() method.
This approach is necessary because the toolchain package is designed to support both 32-bit and 64-bit architectures,
requiring us to download two distinct sets of toolchain binaries. Which binary the package ends up with depends on the
settings_target architecture. This conditional downloading process can’t happen in the source() method, as it caches
the downloaded contents.

The package() method doesn’t have anything out of the ordinary; it simply copies the downloaded files into the package
folder, license included.

Adding settings_target to the Package ID information

In recipes designed for cross-compiling scenarios, particularly those involving toolchains that target specific architec-
tures or operating systems, and the binary package can be different based on the target platform we may need to modify
the package_id() to ensure that Conan correctly identifies and differentiates between binaries based on the target
platform they are intended for.

In this case, we extend the package_id() method to include settings_target, which encapsulates the target plat-
form’s configuration (in this case if it’s 32 or 64 bit):

def package_id(self):
Assign settings_target to the package ID to differentiate binaries by target␣

→˓platform.
self.info.settings_target = self.settings_target

We only want the ``arch`` setting
self.info.settings_target.rm_safe("os")
self.info.settings_target.rm_safe("compiler")
self.info.settings_target.rm_safe("build_type")

By specifying self.info.settings_target = self.settings_target, we explicitly instruct Conan to consider
the target platform’s settings when generating the package ID. In this case we remove os, compiler and build_type
settings as changing them will not be relevant for selecting the toolchain we will use for building and leave only the
arch setting that will be used to decide if want to produce binaries for 32 or 64 bits.

230 Chapter 7. Examples

Conan Documentation, Release 2.1.0

Define information for consumers

In the package_info() method we define all the information that consumers need to have available when using the
toolchain:

def package_info(self):
toolchain, _ = self._get_toolchain(self.settings_target.arch)
self.cpp_info.bindirs.append(os.path.join(self.package_folder, toolchain, "bin"))

self.conf_info.define("tools.build:compiler_executables", {
"c": f"{toolchain}-gcc",
"cpp": f"{toolchain}-g++",
"asm": f"{toolchain}-as"

})

In this case, we need to define the following information:

• Add directories containing toolchain tools that may be required during compilation. The toolchain we download
will store its tools in both bin and <toolchain_triplet>/bin. Since self.cpp_info.bindirs defaults to
bin, we only need to add the directory specific to the triplet. Note that it’s not necessary to define environment
information to add these directories to the PATH, as Conan will manage this through the VirtualRunEnv.

• We define the tools.build:compiler_executables configuration. This configuration will be considered in
several generators, like CMakeToolchain, MesonToolchain, or AutotoolsToolchain, to direct to the appropriate
compiler binaries.

Testing the Conan toolchain package

We also added a simple test_package to test the toolchain:

Listing 31: test_package/conanfile.py

import os
from io import StringIO

from conan import ConanFile
from conan.tools.cmake import CMake, cmake_layout

class TestPackageConan(ConanFile):
settings = "os", "arch", "compiler", "build_type"
generators = "CMakeToolchain", "VirtualBuildEnv"

def build_requirements(self):
self.tool_requires(self.tested_reference_str)

def layout(self):
cmake_layout(self)

def build(self):
cmake = CMake(self)
cmake.configure()
cmake.build()

(continues on next page)

7.4. Cross-building examples 231

Conan Documentation, Release 2.1.0

(continued from previous page)

def test(self):
if self.settings.arch in ["armv6", "armv7", "armv7hf"]:

toolchain = "arm-none-linux-gnueabihf"
else:

toolchain = "aarch64-none-linux-gnu"
self.run(f"{toolchain}-gcc --version")
test_file = os.path.join(self.cpp.build.bindirs[0], "test_package")
stdout = StringIO()
self.run(f"file {test_file}", stdout=stdout)
if toolchain == "aarch64-none-linux-gnu":

assert "ELF 64-bit" in stdout.getvalue()
else:

assert "ELF 32-bit" in stdout.getvalue()

This test package ensures that the toolchain is functional, building a minimal hello world program and that binaries
produced with it are correctly targeted for the specified architecture.

Cross-build an application using the toolchain

Having detailed the toolchain recipe, it’s time to proceed with package creation:

$ conan create . -pr:b=default -pr:h=../profiles/raspberry-64 --build-require

======== Exporting recipe to the cache ========
...
======== Input profiles ========
Profile host:
[settings]
arch=armv8
build_type=Release
compiler=gcc
compiler.cppstd=gnu14
compiler.libcxx=libstdc++11
compiler.version=13
os=Linux

Profile build:
[settings]
arch=x86_64
build_type=Release
compiler=gcc
compiler.cppstd=gnu14
compiler.libcxx=libstdc++11
compiler.version=7
os=Linux
...
======== Testing the package: Executing test ========
arm-toolchain/13.2 (test package): Running test()
arm-toolchain/13.2 (test package): RUN: aarch64-none-linux-gnu-gcc --version
aarch64-none-linux-gnu-gcc (Arm GNU Toolchain 13.2.rel1 (Build arm-13.7)) 13.2.1 20231009
Copyright (C) 2023 Free Software Foundation, Inc.
...

232 Chapter 7. Examples

Conan Documentation, Release 2.1.0

We employ two profiles for the build and host contexts, but the most important detail is the use of the –build-require
argument. This informs Conan that the package is intended as a build requirement, situating it within the build context.
Consequently, settings match those from the build profile, while settings_target aligns with the host profile’s settings.

With the toolchain package prepared, we proceed to build an actual application. This will be the same application
previously cross-compiled in the How to cross-compile your applications using Conan: host and build contexts section.
However, this time, we incorporate the toolchain package as a dependency within the host profile. This ensures the
toolchain is used to build the application and all its dependencies

$ cd .. && cd consumer
$ conan install . -pr:b=default -pr:h=../profiles/raspberry-64 -pr:h=../profiles/arm-
→˓toolchain --build missing
$ cmake --preset conan-release
$ cmake --build --preset conan-release
$ file ./build/Release/compressor
compressor: ELF 64-bit LSB executable, ARM aarch64, version 1 (SYSV), dynamically
linked, interpreter /lib/ld-linux-aarch64.so.1, for GNU/Linux 3.7.0, with debug_info,
not stripped

We composed the already existing profile with another profile called arm-toolchain that just has the tool_requires
added:

[tool_requires]
arm-toolchain/13.2

During this procedure, the zlib dependency will also be compiled for ARM 64-bit architecture if it hasn’t already been.
Additionally, it’s important to verify the architecture of the resulting executable, confirming its alignment with the
targeted 64-bit architecture.

See also:
• More info on settings_target

• Cross-compile your applications using Conan

7.4.2 Cross building to Android with the NDK

In this example, we are going to see how to cross-build a Conan package to Android.

First of all, download the Android NDK from the download page and unzip it. In MacOS you can also install it with
brew install android-ndk.

Then go to the profiles folder in the conan config home directory (check it running conan config home) and create
a file named android with the following contents:

include(default)

[settings]
os=Android
os.api_level=21
arch=armv8
compiler=clang
compiler.version=12
compiler.libcxx=c++_static
compiler.cppstd=14

(continues on next page)

7.4. Cross-building examples 233

https://developer.android.com/ndk/downloads

Conan Documentation, Release 2.1.0

(continued from previous page)

[conf]
tools.android:ndk_path=/usr/local/share/android-ndk

You might need to modify:

• compiler.version: Check the NDK documentation or find a bin folder containing the compiler executables
like x86_64-linux-android31-clang. In a Macos installation it is found in the NDK path + toolchains/
llvm/prebuilt/darwin-x86_64/bin. Run ./x86_64-linux-android31-clang --version to check the
running clang version and adjust the profile.

• compiler.libcxx: The supported values are c++_static and c++_shared.

• compiler.cppstd: The C++ standard version, adjust as your needs.

• os.api_level: You can check here the usage of each Android Version/API level and choose the one that fits
better with your requirements. This is typically a balance between new features and more compatible applications.

• arch: There are several architectures supported by Android: x86, x86_64, armv7, and armv8.

• tools.android:ndk_path conf: Write the location of the unzipped NDK.

If you are in Windows, it is necessary to have a make-like build system like MinGW-Make or Ninja. We can provision
for Ninja directly in our profile with [tool_requires]:

...
[conf]
tools.android:ndk_path=C:\ws\android\android-ndk-r23b # Use your path here
tools.cmake.cmaketoolchain:generator=Ninja

[tool_requires]
ninja/[*]

Use the conan new command to create a “Hello World” C++ library example project:

$ conan new cmake_lib -d name=hello -d version=1.0

Then we can specify the android profile and our hello library will be built for Android:

$ conan create . --profile android

[50%] Building CXX object CMakeFiles/hello.dir/src/hello.cpp.o
[100%] Linking CXX static library libhello.a
[100%] Built target hello
...
[50%] Building CXX object CMakeFiles/example.dir/src/example.cpp.o
[100%] Linking CXX executable example
[100%] Built target example

Both the library and the test_package executable are built for Android, so we cannot use them in our local computer.

Unless you have access to a root Android device, running the test application or using the built library is not possible
directly so it is more common to build an Android application that uses the hello library.

See also:
• Check the example Integrating Conan in Android Studio to know how to use your c++ libraries in a native Android

application.

• Check the tutorial How to cross-compile your applications using Conan.

234 Chapter 7. Examples

https://apilevels.com/

Conan Documentation, Release 2.1.0

7.4.3 Integrating Conan in Android Studio

At the Cross building to Android with the NDK we learned how to build a package for Android using the NDK. In
this example we are going to learn how to do it with the Android Studio and how to use the libraries in a real Android
application.

Creating a new project

First of all, download and install the Android Studio IDE.

Then create a new project selecting Native C++ from the templates.

In the next wizard window, select a name for your application, for example MyConanApplication, you can leave the
“Minimum SDK” with the suggested value (21 in our case), but remember the value as we are using it later in the
Conan profile at os.api_level`

Select a “C++ Standard” in the next window, again, remember the choice as later we should use the same in the profile
at compiler.cppstd.

In the project generated with the wizard we have a folder cpp with a native-lib.cpp. We are going to modify that
file to use zlib and print a message with the used zlib version. Copy only the highlighted lines, it is important to
keep the function name.

Listing 32: native-lib.cpp

#include <jni.h>
#include <string>
#include "zlib.h"

extern "C" JNIEXPORT jstring JNICALL
Java_com_example_myconanapp_MainActivity_stringFromJNI(

JNIEnv* env,
jobject /* this */) {

std::string hello = "Hello from C++, zlib version: ";
hello.append(zlibVersion());
return env->NewStringUTF(hello.c_str());

}

Now we are going to learn how to introduce a requirement to the zlib library and how to prepare our project.

Introducing dependencies with Conan

conanfile.txt

We need to provide the zlib package with Conan. Create a file conanfile.txt in the cpp folder:

Listing 33: conanfile.txt

[requires]
zlib/1.2.12

[generators]
CMakeToolchain
CMakeDeps

(continues on next page)

7.4. Cross-building examples 235

https://developer.android.com/studio

Conan Documentation, Release 2.1.0

(continued from previous page)

[layout]
cmake_layout

build.gradle

We are going to automate calling conan install before building the Android project, so the requires are prepared,
open the build.gradle file in the My_Conan_App.app (Find it in the Gradle Scripts section of the Android project
view). Paste the task conanInstall contents after the plugins and before the android elements:

Listing 34: build.gradle

plugins {
...
}

task conanInstall {
def conanExecutable = "conan" // define the path to your conan installation
def buildDir = new File("app/build")
buildDir.mkdirs()
["Debug", "Release"].each { String build_type ->

["armv7", "armv8", "x86", "x86_64"].each { String arch ->
def cmd = conanExecutable + " install " +

"../src/main/cpp --profile android -s build_type="+ build_type +" -
→˓s arch=" + arch +

" --build missing -c tools.cmake.cmake_layout:build_folder_vars=[
→˓'settings.arch']"

print(">> ${cmd} \n")

def sout = new StringBuilder(), serr = new StringBuilder()
def proc = cmd.execute(null, buildDir)
proc.consumeProcessOutput(sout, serr)
proc.waitFor()
println "$sout $serr"
if (proc.exitValue() != 0) {

throw new Exception("out> $sout err> $serr" + "\nCommand: ${cmd}")
}

}
}

}

android {
compileSdk 32

defaultConfig {

...

The conanInstall task is calling conan install for Debug/Release and for each architecture we want to build, you
can adjust these values to match your requirements.

236 Chapter 7. Examples

Conan Documentation, Release 2.1.0

If we focus on the conan install task we can see:

1. We are passing a --profile android, so we need to create the proile. Go to the profiles folder in the
conan config home directory (check it running conan config home) and create a file named android with the
following contents:

include(default)

[settings]
os=Android
os.api_level=21
compiler=clang
compiler.version=12
compiler.libcxx=c++_static
compiler.cppstd=14

[conf]
tools.android:ndk_path=/Users/luism/Library/Android/sdk/ndk/21.4.7075529/

You might need to modify:

• tools.android:ndk_path conf: The location of the NDK provided by Android Studio. You should be
able to see the path to the NDK if you open the cpp/includes folder in your IDE.

• compiler.version: Check the NDK documentation or find a bin folder containing the compiler exe-
cutables like x86_64-linux-android31-clang. In a Macos installation it is found in the NDK path
+ toolchains/llvm/prebuilt/darwin-x86_64/bin. Run ./x86_64-linux-android31-clang
--version to check the running clang version and adjust the profile.

• compiler.libcxx: The supported values are c++_static and c++_shared.

• compiler.cppstd: The C++ standard version, this should be the value you selected in the Wizard.

• os.api_level: Use the same value you selected in the Wizard.

2. We are passing -c tools.cmake.cmake_layout:build_folder_vars=['settings.arch'], thanks to
that, Conan will create a different folder for the specified settings.arch so we can have all the configura-
tions available at the same time.

To make Conan work we need to pass CMake a custom toolchain. We can do it introducing a single line in the same
file, in the android/defaultConfig/externalNativeBuild/cmake element:

Listing 35: build.gradle

android {
compileSdk 32

defaultConfig {
applicationId "com.example.myconanapp"
minSdk 21
targetSdk 21
versionCode 1
versionName "1.0"

testInstrumentationRunner "androidx.test.runner.AndroidJUnitRunner"
externalNativeBuild {

cmake {
cppFlags '-v'

(continues on next page)

7.4. Cross-building examples 237

Conan Documentation, Release 2.1.0

(continued from previous page)

arguments("-DCMAKE_TOOLCHAIN_FILE=conan_android_toolchain.cmake")
}

}

conan_android_toolchain.cmake

Create a file called conan_android_toolchain.cmake in the cpp folder, that file will be responsible of including the
right toolchain depending on the ANDROID_ABI variable that indicates the build configuration that the IDE is currently
running:

Listing 36: conan_android_toolchain.cmake

During multiple stages of CMake configuration, the toolchain file is processed and␣
→˓command-line
variables may not be always available. The script exits prematurely if essential␣
→˓variables are absent.

if (NOT ANDROID_ABI OR NOT CMAKE_BUILD_TYPE)
return()

endif()
if(${ANDROID_ABI} STREQUAL "x86_64")

include("${CMAKE_CURRENT_LIST_DIR}/build/x86_64/${CMAKE_BUILD_TYPE}/generators/
→˓conan_toolchain.cmake")
elseif(${ANDROID_ABI} STREQUAL "x86")

include("${CMAKE_CURRENT_LIST_DIR}/build/x86/${CMAKE_BUILD_TYPE}/generators/conan_
→˓toolchain.cmake")
elseif(${ANDROID_ABI} STREQUAL "arm64-v8a")

include("${CMAKE_CURRENT_LIST_DIR}/build/armv8/${CMAKE_BUILD_TYPE}/generators/conan_
→˓toolchain.cmake")
elseif(${ANDROID_ABI} STREQUAL "armeabi-v7a")

include("${CMAKE_CURRENT_LIST_DIR}/build/armv7/${CMAKE_BUILD_TYPE}/generators/conan_
→˓toolchain.cmake")
else()

message(FATAL "Not supported configuration")
endif()

CMakeLists.txt

Finally, we need to modify the CMakeLists.txt to link with the zlib library:

Listing 37: CMakeLists.txt

cmake_minimum_required(VERSION 3.18.1)
project("myconanapp")
add_library(myconanapp SHARED native-lib.cpp)

find_library(log-lib log)

find_package(ZLIB CONFIG)
(continues on next page)

238 Chapter 7. Examples

Conan Documentation, Release 2.1.0

(continued from previous page)

target_link_libraries(myconanapp ${log-lib} ZLIB::ZLIB)

Building the application

If we build our project we can see that conan install is called multiple times building the different configurations of
zlib.

Then if we run the application in a Virtual Device or in a real device pairing it with the QR code we can see:

7.4. Cross-building examples 239

Conan Documentation, Release 2.1.0

Once we have our project configured, it is very easy to change our dependencies and keep developing the application,
for example, we can edit the conanfile.txt file and change the zlib to the version 1.12.2:

[requires]
zlib/1.2.12

[generators]
CMakeToolchain

(continues on next page)

240 Chapter 7. Examples

Conan Documentation, Release 2.1.0

(continued from previous page)

CMakeDeps

[layout]
cmake_layout

If we click build and then run the application, we will see that the zlib dependency has been updated:

7.4. Cross-building examples 241

Conan Documentation, Release 2.1.0

7.5 Configuration files examples

7.5.1 Customize your settings: create your settings_user.yml

Please, first clone the sources to recreate this project. You can find them in the examples2 repository in GitHub:

$ git clone https://github.com/conan-io/examples2.git
$ cd examples2/examples/config_files/settings_user

In this example we are going to see how to customize your settings without overwriting the original settings.yml file.

Note: To understand better this example, it is highly recommended to read previously the reference about settings.yml.

Locate the settings_user.yml

First of all, let’s have a look at the proposed source/settings_user.yml:

Listing 38: settings_user.yml
os:

webOS:
sdk_version: [null, "7.0.0", "6.0.1", "6.0.0"]

arch: ["cortexa15t2hf"]
compiler:

gcc:
version: ["13.0-rc"]

As you can see, we don’t have to rewrite all the settings because they will be merged with the already defined in
settings.yml.
Then, what are we adding through that settings_user.yml file?

• New OS: webOS, and its sub-setting: sdk_version.

• New arch available: cortexa15t2hf.

• New gcc version: 13.0-rc.

Now, it’s time to copy the file source/settings_user.yml into your [CONAN_HOME]/ folder:

$ conan config install sources/settings_user.yml
Copying file settings_user.yml to /Users/myuser/.conan2/.

Use your new settings

After having copied the settings_user.yml, you should be able to use them for your recipes. Add this simple one
into your local folder:

Listing 39: conanfile.py
from conan import ConanFile

class PkgConan(ConanFile):
(continues on next page)

242 Chapter 7. Examples

https://github.com/conan-io/examples2

Conan Documentation, Release 2.1.0

(continued from previous page)

name = "pkg"
version = "1.0"
settings = "os", "compiler", "build_type", "arch"

Then, create several Conan packages (not binaries, as it does not have any source file for sure) to see that it’s working
correctly:

Listing 40: Using the new OS and its sub-setting
$ conan create . -s os=webOS -s os.sdk_version=7.0.0
...
Profile host:
[settings]
arch=x86_64
build_type=Release
compiler=apple-clang
compiler.cppstd=gnu98
compiler.libcxx=libc++
compiler.version=12.0
os=webOS
os.sdk_version=7.0.0

Profile build:
[settings]
arch=x86_64
build_type=Release
compiler=apple-clang
compiler.cppstd=gnu98
compiler.libcxx=libc++
compiler.version=12.0
os=Macos
...
-------- Installing (downloading, building) binaries... --------
pkg/1.0: Copying sources to build folder
pkg/1.0: Building your package in /Users/myuser/.conan2/p/t/pkg929d53a5f06b1/b
pkg/1.0: Aggregating env generators
pkg/1.0: Package 'a0d37d10fdb83a0414d7f4a1fb73da2c210211c6' built
pkg/1.0: Build folder /Users/myuser/.conan2/p/t/pkg929d53a5f06b1/b
pkg/1.0: Generated conaninfo.txt
pkg/1.0: Generating the package
pkg/1.0: Temporary package folder /Users/myuser/.conan2/p/t/pkg929d53a5f06b1/p
pkg/1.0 package(): WARN: No files in this package!
pkg/1.0: Package 'a0d37d10fdb83a0414d7f4a1fb73da2c210211c6' created
pkg/1.0: Created package revision 6a947a7b5669d6fde1a35ce5ff987fc6
pkg/1.0: Full package reference: pkg/1.0
→˓#637fc1c7080faaa7e2cdccde1bcde118:a0d37d10fdb83a0414d7f4a1fb73da2c210211c6
→˓#6a947a7b5669d6fde1a35ce5ff987fc6
pkg/1.0: Package folder /Users/myuser/.conan2/p/pkgb3950b1043542/p

Listing 41: Using new gcc compiler version
$ conan create . -s compiler=gcc -s compiler.version=13.0-rc -s compiler.

(continues on next page)

7.5. Configuration files examples 243

Conan Documentation, Release 2.1.0

(continued from previous page)

→˓libcxx=libstdc++11
...
Profile host:
[settings]
arch=x86_64
build_type=Release
compiler=gcc
compiler.libcxx=libstdc++11
compiler.version=13.0-rc
os=Macos

Profile build:
[settings]
arch=x86_64
build_type=Release
compiler=apple-clang
compiler.cppstd=gnu98
compiler.libcxx=libc++
compiler.version=12.0
os=Macos
...
-------- Installing (downloading, building) binaries... --------
pkg/1.0: Copying sources to build folder
pkg/1.0: Building your package in /Users/myuser/.conan2/p/t/pkg918904bbca9dc/b
pkg/1.0: Aggregating env generators
pkg/1.0: Package '44a4588d3fe63ccc6e7480565d35be38d405718e' built
pkg/1.0: Build folder /Users/myuser/.conan2/p/t/pkg918904bbca9dc/b
pkg/1.0: Generated conaninfo.txt
pkg/1.0: Generating the package
pkg/1.0: Temporary package folder /Users/myuser/.conan2/p/t/pkg918904bbca9dc/p
pkg/1.0 package(): WARN: No files in this package!
pkg/1.0: Package '44a4588d3fe63ccc6e7480565d35be38d405718e' created
pkg/1.0: Created package revision d913ec060e71cc56b10768afb9620094
pkg/1.0: Full package reference: pkg/1.0
→˓#637fc1c7080faaa7e2cdccde1bcde118:44a4588d3fe63ccc6e7480565d35be38d405718e
→˓#d913ec060e71cc56b10768afb9620094
pkg/1.0: Package folder /Users/myuser/.conan2/p/pkg789b624c93fc0/p

Listing 42: Using the new OS and the new architecture
$ conan create . -s os=webOS -s arch=cortexa15t2hf
...
Profile host:
[settings]
arch=cortexa15t2hf
build_type=Release
compiler=apple-clang
compiler.cppstd=gnu98
compiler.libcxx=libc++
compiler.version=12.0
os=webOS

(continues on next page)

244 Chapter 7. Examples

Conan Documentation, Release 2.1.0

(continued from previous page)

Profile build:
[settings]
arch=x86_64
build_type=Release
compiler=apple-clang
compiler.cppstd=gnu98
compiler.libcxx=libc++
compiler.version=12.0
os=Macos
...
-------- Installing (downloading, building) binaries... --------
pkg/1.0: Copying sources to build folder
pkg/1.0: Building your package in /Users/myuser/.conan2/p/t/pkgde9b63a6bed0a/b
pkg/1.0: Aggregating env generators
pkg/1.0: Package '19cf3cb5842b18dc78e5b0c574c1e71e7b0e17fc' built
pkg/1.0: Build folder /Users/myuser/.conan2/p/t/pkgde9b63a6bed0a/b
pkg/1.0: Generated conaninfo.txt
pkg/1.0: Generating the package
pkg/1.0: Temporary package folder /Users/myuser/.conan2/p/t/pkgde9b63a6bed0a/p
pkg/1.0 package(): WARN: No files in this package!
pkg/1.0: Package '19cf3cb5842b18dc78e5b0c574c1e71e7b0e17fc' created
pkg/1.0: Created package revision f5739d5a25b3757254dead01b30d3af0
pkg/1.0: Full package reference: pkg/1.0
→˓#637fc1c7080faaa7e2cdccde1bcde118:19cf3cb5842b18dc78e5b0c574c1e71e7b0e17fc
→˓#f5739d5a25b3757254dead01b30d3af0
pkg/1.0: Package folder /Users/myuser/.conan2/p/pkgd154182aac59e/p

As you could observe, each command has created a different package. That was completely right because we were
using different settings for each one. If you want to see all the packages created, you can use the conan list command:

Listing 43: List all the pkg/1.0’s packages

$ conan list pkg/1.0:*
Local Cache
pkg
pkg/1.0
revisions
637fc1c7080faaa7e2cdccde1bcde118 (2023-02-16 06:42:10 UTC)
packages
19cf3cb5842b18dc78e5b0c574c1e71e7b0e17fc
info
settings
arch: cortexa15t2hf
build_type: Release
compiler: apple-clang
compiler.cppstd: gnu98
compiler.libcxx: libc++
compiler.version: 12.0
os: webOS

44a4588d3fe63ccc6e7480565d35be38d405718e
info
settings

(continues on next page)

7.5. Configuration files examples 245

Conan Documentation, Release 2.1.0

(continued from previous page)

arch: x86_64
build_type: Release
compiler: gcc
compiler.libcxx: libstdc++11
compiler.version: 13.0-rc
os: Macos

a0d37d10fdb83a0414d7f4a1fb73da2c210211c6
info
settings
arch: x86_64
build_type: Release
compiler: apple-clang
compiler.cppstd: gnu98
compiler.libcxx: libc++
compiler.version: 12.0
os: webOS
os.sdk_version: 7.0.0

Try any other custom setting!

See also:
• profiles.

• Conan packages binary compatibility: the package ID

7.6 Graph examples

This section contains examples about different types of advanced graphs, using different types of requires and
tool_requires, advanced usage of requirement traits, etc.

7.6.1 Use a CMake macro packaged in a dependency

When a package recipe wants to provide a CMake functionality via a macro, it can be done as follows. Let’s say that
we have a pkg recipe, that will “export” and “package” a Macros.cmake file that contains a pkg_macro() CMake
macro:

Listing 44: pkg/conanfile.py

from conan import ConanFile
from conan.tools.files import copy

class Pkg(ConanFile):
name = "pkg"
version = "0.1"
package_type = "static-library"
Exporting, as part of the sources
exports_sources = "*.cmake"

def package(self):
Make sure the Macros.cmake is packaged

(continues on next page)

246 Chapter 7. Examples

Conan Documentation, Release 2.1.0

(continued from previous page)

copy(self, "*.cmake", src=self.source_folder, dst=self.package_folder)

def package_info(self):
We need to define that there are "build-directories", in this case
the current package root folder, containing build files and scripts
self.cpp_info.builddirs = ["."]

Listing 45: pkg/Macros.cmake

function(pkg_macro)
message(STATUS "PKG MACRO WORKING!!!")

endfunction()

When this package is created (cd pkg && conan create .), it can be consumed by other package recipes, for ex-
ample this application:

Listing 46: app/conanfile.py

from conan import ConanFile
from conan.tools.cmake import CMake

class App(ConanFile):
package_type = "application"
generators = "CMakeToolchain"
settings = "os", "compiler", "arch", "build_type"
requires = "pkg/0.1"

def build(self):
cmake = CMake(self)
cmake.configure()
cmake.build()

That has this CMakeLists.txt:

7.6. Graph examples 247

Conan Documentation, Release 2.1.0

Listing 47: app/CMakeLists.txt

cmake_minimum_required(VERSION 3.15)
project(App LANGUAGES NONE)

include(Macros) # include the file with the macro (note no .cmake extension)
pkg_macro() # call the macro

So when we run a local build, we will see how the file is included and the macro called:

$ cd app
$ conan build .
PKG MACRO WORKING!!!

7.6.2 Use cmake modules inside a tool_requires transparently

When we want to reuse some .cmake scripts that are inside another Conan package there are several possible different
scenarios, like if the .cmake scripts are inside a regular requires or a tool_requires.

Also, it is possible to want 2 different approaches:

• The consumer of the scripts can do a explicit include(MyScript) in their CMakeLists.txt. This approach is
nicely explicit and simpler to setup, just define self.cpp_info.builddirs in the recipe, and consumers with
CMakeToolchain will automatically be able to do the include() and use the functionality. See the example
here

• The consumer wants to have the dependency cmake modules automatically loaded when the find_package()
is executed. This current example implements this case.

Let’s say that we have a package, intended to be used as a tool_require, with the following recipe:

Listing 48: myfunctions/conanfile.py

import os
from conan import ConanFile
from conan.tools.files import copy

class Conan(ConanFile):
name = "myfunctions"
version = "1.0"
exports_sources = ["*.cmake"]

def package(self):
copy(self, "*.cmake", self.source_folder, self.package_folder)

def package_info(self):
self.cpp_info.set_property("cmake_build_modules", ["myfunction.cmake"])

And a myfunction.cmake file in:

248 Chapter 7. Examples

Conan Documentation, Release 2.1.0

Listing 49: myfunctions/myfunction.cmake

function(myfunction)
message("Hello myfunction!!!!")

endfunction()

We can do a cd myfunctions && conan create . which will create the myfunctions/1.0 package containing
the cmake script.

Then, a consumer package will look like:

Listing 50: consumer/conanfile.py

from conan import ConanFile
from conan.tools.cmake import CMake, CMakeDeps, CMakeToolchain

class Conan(ConanFile):
settings = "os", "compiler", "build_type", "arch"
tool_requires = "myfunctions/1.0"

def generate(self):
tc = CMakeToolchain(self)
tc.generate()

deps = CMakeDeps(self)
By default 'myfunctions-config.cmake' is not created for tool_requires
we need to explicitly activate it
deps.build_context_activated = ["myfunctions"]
and we need to tell to automatically load 'myfunctions' modules
deps.build_context_build_modules = ["myfunctions"]
deps.generate()

def build(self):
cmake = CMake(self)
cmake.configure()

And a CMakeLists.txt like:

Listing 51: consumer/CMakeLists.txt

cmake_minimum_required(VERSION 3.0)
project(test)
find_package(myfunctions CONFIG REQUIRED)
myfunction()

Then, the consumer will be able to automatically call the myfunction() from the dependency module:

$ conan build .
...
Hello myfunction!!!!

If for some reason the consumer wants to force the usage from the tool_requires() as a CMake
module, the consumer could do deps.set_property("myfunctions", "cmake_find_mode", "module",
build_context=True), and then find_package(myfunctions MODULE REQUIRED) will work.

7.6. Graph examples 249

Conan Documentation, Release 2.1.0

7.6.3 Depending on different versions of the same tool-require

Note: This is an advanced use case. It shouldn’t be necessary in the vast majority of cases.

In the general case, trying to do something like this:

def build_requirements(self):
self.tool_requires("gcc/1.0")
self.tool_requires("gcc/2.0")

Will generate a “conflict”, showing an error like Duplicated requirement. This is correct in most situations, when
it is obvious that it is not possible to use 2 versions of the same compiler to build the current package.

However there are some exceptional situations when something like that is desired. Let’s recreate the potential scenario.
Please, first clone the sources to recreate this project. You can find them in the examples2 repository on GitHub:

git clone https://github.com/conan-io/examples2.git
cd examples2/examples/graph/tool_requires/different_versions

There we have a gcc fake recipe with:

class Pkg(ConanFile):
name = "gcc"

def package(self):
echo = f"@echo off\necho MYGCC={self.version}!!"
save(self, os.path.join(self.package_folder, "bin", f"mygcc{self.version}.bat"),␣

→˓echo)
save(self, os.path.join(self.package_folder, "bin", f"mygcc{self.version}.sh"),␣

→˓echo)
os.chmod(os.path.join(self.package_folder, "bin", f"mygcc{self.version}.sh"),␣

→˓0o777)

This is not an actual compiler, it fakes it with a shell or bat script that prints MYGCC=current-version when executed.
Note the binary itself is called mygcc1.0 and mygcc2.0, that is, it contains the version in the executable name itself.

We can create 2 different versions for gcc/1.0 and gcc/2.0 with:

$ conan create gcc --version=1.0
$ conan create gcc --version=2.0

Now, in the wine folder there is a conanfile.py like this:

class Pkg(ConanFile):
name = "wine"
version = "1.0"

def build_requirements(self):
If we specify "run=False" they no longer conflict
self.tool_requires("gcc/1.0", run=False)
self.tool_requires("gcc/2.0", run=False)

def generate(self):
It is possible to individually reference each one

(continues on next page)

250 Chapter 7. Examples

https://github.com/conan-io/examples2

Conan Documentation, Release 2.1.0

(continued from previous page)

gcc1 = self.dependencies.build["gcc/1.0"]
assert gcc1.ref.version == "1.0"
gcc2 = self.dependencies.build["gcc/2.0"]
assert gcc2.ref.version == "2.0"

def build(self):
ext = "bat" if platform.system() == "Windows" else "sh"
self.run(f"mygcc1.0.{ext}")
self.run(f"mygcc2.0.{ext}")

The first important point is the build_requirements() method, that does a tool_requires() to both versions, but
defining run=False. This is very important: we are telling Conan that we actually don’t need to run anything from
those packages. As tool_requires are not visible, they don’t define headers or libraries, there is nothing that makes
Conan identify those 2 tool_requires as conflicting. So the dependency graph can be constructed without errors,
and the wine/1.0 package will contain 2 different tool-requires to both gcc/1.0 and gcc/2.0.

Of course, it is not true that we won’t run anything from those tool_requires, but now Conan is not aware of it, and
it is completely the responsibility of the user to manage it.

Warning: Using run=False makes the tool_requires() completely invisible, that means that profile
[tool_requires]will not be able to override its version, but it would create an extra tool-require dependency with
the version injected from the profile. You might want to exclude specific packages with something like !wine/*:
gcc/3.0.

The recipe has still access in the generate() method to each different tool_require version, just by providing the
full reference like self.dependencies.build["gcc/1.0"].

Finally, the most important part is that the usage of those tools is completely the responsibility of the user. The bin
folder of both tool_requires containing the executables will be in the path thanks to the VirtualBuildEnv gen-
erator that by default updates the PATH env-var. In this case the executables are different like mygcc1.0.sh```and
``mygcc2.0.sh, so it is not an issue, and each one will be found inside its package.

But if the executable file was exactly the same like gcc.exe, then it would be necessary to obtain the full folder
(typically in the generate() method) with something like self.dependencies.build["gcc/1.0"].cpp_info.
bindir and use the full path to disambiguate.

Let’s see it working. If we execute:

$ conan create wine
...
wine/1.0: RUN: mygcc1.0.bat
MYGCC=1.0!!

wine/1.0: RUN: mygcc2.0.bat
MYGCC=2.0!!

7.6. Graph examples 251

Conan Documentation, Release 2.1.0

7.6.4 Depending on same version of a tool-require with different options

Note: This is an advanced use case. It shouldn’t be necessary in the vast majority of cases.

In the general case, trying to do something like this:

def build_requirements(self):
self.tool_requires("gcc/1.0")
self.tool_requires("gcc/1.0")

Will generate a “conflict”, showing an error like Duplicated requirement.

However there are some exceptional situations that we could need to depend on the same tool_requires version,
but using different binaries of that tool_requires. This can be achieved by passing different options to those
tool_requires. Please, first clone the sources to recreate this project. You can find them in the examples2 repository
on GitHub:

git clone https://github.com/conan-io/examples2.git
cd examples2/examples/graph/tool_requires/different_options

There we have a gcc fake recipe with:

class Pkg(ConanFile):
name = "gcc"
version = "1.0"
options = {"myoption": [1, 2]}

def package(self):
This fake compiler will print something different based on the option
echo = f"@echo off\necho MYGCC={self.options.myoption}!!"
save(self, os.path.join(self.package_folder, "bin", f"mygcc{self.options.

→˓myoption}.bat"), echo)
save(self, os.path.join(self.package_folder, "bin", f"mygcc{self.options.

→˓myoption}.sh"), echo)
os.chmod(os.path.join(self.package_folder, "bin", f"mygcc{self.options.myoption}.

→˓sh"), 0o777)

This is not an actual compiler, it fakes it with a shell or bat script that prints MYGCC=current-option when executed.
Note the binary itself is called mygcc1 and mygcc2, that is, it contains the option in the executable name itself.

We can create 2 different binaries for gcc/1.0 with:

$ conan create gcc -o myoption=1
$ conan create gcc -o myoption=2

Now, in the wine folder there is a conanfile.py like this:

class Pkg(ConanFile):
name = "wine"
version = "1.0"

def build_requirements(self):
self.tool_requires("gcc/1.0", run=False, options={"myoption": 1})
self.tool_requires("gcc/1.0", run=False, options={"myoption": 2})

(continues on next page)

252 Chapter 7. Examples

https://github.com/conan-io/examples2

Conan Documentation, Release 2.1.0

(continued from previous page)

def generate(self):
gcc1 = self.dependencies.build.get("gcc", options={"myoption": 1})
assert gcc1.options.myoption == "1"
gcc2 = self.dependencies.build.get("gcc", options={"myoption": 2})
assert gcc2.options.myoption == "2"

def build(self):
ext = "bat" if platform.system() == "Windows" else "sh"
self.run(f"mygcc1.{ext}")
self.run(f"mygcc2.{ext}")

The first important point is the build_requirements() method, that does a tool_requires() to both binaries, but
defining run=False and options={"myoption": value} traits. This is very important: we are telling Conan
that we actually don’t need to run anything from those packages. As tool_requires are not visible, they don’t
define headers or libraries and they define different options, there is nothing that makes Conan identify those 2
tool_requires as conflicting. So the dependency graph can be constructed without errors, and the wine/1.0 package
will contain 2 different tool-requires to both gcc/1.0 with myoption=1 and with myoption=2.

Of course, it is not true that we won’t run anything from those tool_requires, but now Conan is not aware of it, and
it is completely the responsibility of the user to manage it.

Warning: Using run=False makes the tool_requires() completely invisible, that means that profile
[tool_requires]will not be able to override its version, but it would create an extra tool-require dependency with
the version injected from the profile. You might want to exclude specific packages with something like !wine/*:
gcc/3.0.

The recipe still has access in the generate()method to each different tool_require version, just by providing the op-
tions values for the dependency that we want self.dependencies.build.get("gcc", options={"myoption":
1}).

Finally, the most important part is that the usage of those tools is completely the responsibility of the user. The bin
folder of both tool_requires containing the executables will be in the path thanks to the VirtualBuildEnv gen-
erator that by default updates the PATH env-var. In this case the executables are different like mygcc1.sh```and
``mygcc2.sh, so it is not an issue, and each one will be found inside its package.

But if the executable file was exactly the same like gcc.exe, then it would be necessary to obtain the full
folder (typically in the generate() method) with something like self.dependencies.build.get("gcc",
options={"myoption": 1}).cpp_info.bindir and use the full path to disambiguate.

Let’s see it working. If we execute:

$ conan create wine
...
wine/1.0: RUN: mygcc1.bat
MYGCC=1!!

wine/1.0: RUN: mygcc2.bat
MYGCC=2!!

7.6. Graph examples 253

Conan Documentation, Release 2.1.0

7.6.5 Using the same requirement as a requires and as a tool_requires

There are libraries which could behave as a library and as a tool requirement, e.g., protobuf Those libraries normally
contains headers/sources of the library itself, and, perhaps, some extra tools (compilers, shell scripts, etc.). Both parts
are used in different contexts, let’s think of this scenario using protobuf for instance:

• I want to create a library which includes a compiled protobuf message. The protobuf compiler (build context)
needs to be invoked at build time, and the library with the compiled .pb.cc file needs to be linked against the
protobuf library (host context).

Given that, we should be able to use protobuf in build/host context in the same Conan recipe. Basically, your package
recipe should look like:

def requirements(self):
self.requires("protobuf/3.18.1")

def build_requirements(self):
self.tool_requires("protobuf/<host_version>")

Note: The protobuf/<host_version> expression ensures that the same version of the library is used in both
contexts. You can read more about it here.

This is the way to proceed with any other library used in both contexts. Nonetheless, let’s see a detailed example to see
how the example looks like.

Please, first clone the sources to recreate this project. You can find them in the examples2 repository on GitHub:

git clone https://github.com/conan-io/examples2.git
cd examples2/examples/graph/tool_requires/using_protobuf/myaddresser

The structure of the project is the following:

./
conanfile.py
CMakeLists.txt
addressbook.proto
apple-arch-armv8
apple-arch-x86_64
src

myaddresser.cpp
include

myaddresser.h
test_package

conanfile.py
CMakeLists.txt
src

example.cpp

The conanfile.py looks like:

Listing 52: ./conanfile.py

from conan import ConanFile
from conan.tools.cmake import CMake, cmake_layout

(continues on next page)

254 Chapter 7. Examples

https://github.com/conan-io/conan-center-index/tree/master/recipes/protobuf
https://github.com/conan-io/examples2

Conan Documentation, Release 2.1.0

(continued from previous page)

class myaddresserRecipe(ConanFile):
name = "myaddresser"
version = "1.0"
package_type = "library"
settings = "os", "compiler", "build_type", "arch"
options = {"shared": [True, False], "fPIC": [True, False]}
default_options = {"shared": False, "fPIC": True}
generators = "CMakeDeps", "CMakeToolchain"
Sources are located in the same place as this recipe, copy them to the recipe
exports_sources = "CMakeLists.txt", "src/*", "include/*", "addressbook.proto"

def config_options(self):
if self.settings.os == "Windows":

self.options.rm_safe("fPIC")

def configure(self):
if self.options.shared:

self.options.rm_safe("fPIC")

def requirements(self):
self.requires("protobuf/3.18.1")

def build_requirements(self):
self.tool_requires("protobuf/<host_version>")

def layout(self):
cmake_layout(self)

def build(self):
cmake = CMake(self)
cmake.configure()
cmake.build()

def package(self):
cmake = CMake(self)
cmake.install()

def package_info(self):
self.cpp_info.libs = ["myaddresser"]
self.cpp_info.requires = ["protobuf::libprotobuf"]

As you can see, we’re using protobuf at the same time but in different contexts.

The CMakeLists.txt shows how this example uses protobuf compiler and library:

Listing 53: ./CMakeLists.txt

cmake_minimum_required(VERSION 3.15)
project(myaddresser LANGUAGES CXX)

find_package(protobuf CONFIG REQUIRED)
(continues on next page)

7.6. Graph examples 255

Conan Documentation, Release 2.1.0

(continued from previous page)

protobuf_generate_cpp(PROTO_SRCS PROTO_HDRS addressbook.proto)

add_library(myaddresser src/myaddresser.cpp ${PROTO_SRCS})
target_include_directories(myaddresser PUBLIC include)

target_include_directories(myaddresser PUBLIC
$<BUILD_INTERFACE:${CMAKE_CURRENT_SOURCE_DIR}/include>
$<BUILD_INTERFACE:${CMAKE_CURRENT_BINARY_DIR}>
$<INSTALL_INTERFACE:include>

)

target_link_libraries(myaddresser PUBLIC protobuf::libprotobuf)

set_target_properties(myaddresser PROPERTIES PUBLIC_HEADER "include/myaddresser.h;$
→˓{PROTO_HDRS}")
install(TARGETS myaddresser)

Where the library itself defines a simple myaddresser.cpp which uses the generated addressbook.pb.h header:

Listing 54: ./src/myaddresser.cpp

#include <iostream>
#include <fstream>
#include <string>
#include "addressbook.pb.h"
#include "myaddresser.h"

void myaddresser(){
// Testing header generated by protobuf
GOOGLE_PROTOBUF_VERIFY_VERSION;

tutorial::AddressBook address_book;
auto * person = address_book.add_people();
person->set_id(1337);
std::cout << "myaddresser(): created a person with id 1337\n";
// Optional: Delete all global objects allocated by libprotobuf.
google::protobuf::ShutdownProtobufLibrary();

}

Finally, the test_package example simply calls the myaddresser() function to check that everything works correctly:

Listing 55: ./test_package/src/example.cpp

#include <iostream>
#include <fstream>
#include <string>
#include "myaddresser.h"

int main(int argc, char* argv[]) {
myaddresser();
return 0;

(continues on next page)

256 Chapter 7. Examples

Conan Documentation, Release 2.1.0

(continued from previous page)

}

So, let’s see if it works fine:

$ conan create . --build missing
...

Requirements
myaddresser/1.0

→˓#71305099cc4dc0b08bb532d4f9196ac1:c4e35584cc696eb5dd8370a2a6d920fb2a156438 - Build
protobuf/3.18.1

→˓#ac69396cd9fbb796b5b1fc16473ca354:e60fa1e7fc3000cc7be2a50a507800815e3f45e0
→˓#0af7d905b0df3225a3a56243841e041b - Cache

zlib/1.2.13#13c96f538b52e1600c40b88994de240f:d0599452a426a161e02a297c6e0c5070f99b4909
→˓#69b9ece1cce8bc302b69159b4d437acd - Cache
Build requirements

protobuf/3.18.1
→˓#ac69396cd9fbb796b5b1fc16473ca354:e60fa1e7fc3000cc7be2a50a507800815e3f45e0
→˓#0af7d905b0df3225a3a56243841e041b - Cache
...

-- Install configuration: "Release"
-- Installing: /Users/myuser/.conan2/p/b/myser03f790a5a5533/p/lib/libmyaddresser.a
-- Installing: /Users/myuser/.conan2/p/b/myser03f790a5a5533/p/include/myaddresser.h
-- Installing: /Users/myuser/.conan2/p/b/myser03f790a5a5533/p/include/addressbook.pb.h

myaddresser/1.0: package(): Packaged 2 '.h' files: myaddresser.h, addressbook.pb.h
myaddresser/1.0: package(): Packaged 1 '.a' file: libmyaddresser.a
....

======== Testing the package: Executing test ========
myaddresser/1.0 (test package): Running test()
myaddresser/1.0 (test package): RUN: ./example
myaddresser(): created a person with id 1337

After seeing it’s running OK, let’s try to use cross-building. Notice that this part is based on MacOS Intel systems, and
cross-compiling for MacOS ARM ones, but you could use your own profiles depending on your needs for sure.

Warning: MacOS system is required to run this part of the example.

$ conan create . --build missing -pr:b apple-arch-x86_64 -pr:h apple-arch-armv8
...

-- Install configuration: "Release"
-- Installing: /Users/myuser/.conan2/p/b/myser03f790a5a5533/p/lib/libmyaddresser.a
-- Installing: /Users/myuser/.conan2/p/b/myser03f790a5a5533/p/include/myaddresser.h
-- Installing: /Users/myuser/.conan2/p/b/myser03f790a5a5533/p/include/addressbook.pb.h

myaddresser/1.0: package(): Packaged 2 '.h' files: myaddresser.h, addressbook.pb.h
myaddresser/1.0: package(): Packaged 1 '.a' file: libmyaddresser.a
....

(continues on next page)

7.6. Graph examples 257

Conan Documentation, Release 2.1.0

(continued from previous page)

======== Testing the package: Executing test ========
myaddresser/1.0 (test package): Running test()

Now, we cannot see the example running because of the host architecture. If we want to check that the example
executable is built for the correct one:

$ file test_package/build/apple-clang-13.0-armv8-gnu17-release/example
test_package/build/apple-clang-13.0-armv8-gnu17-release/example: Mach-O 64-bit␣
→˓executable arm64

Everything works as expected, and the executable was built for 64-bit executable arm64 architectures.

7.7 Developer tools and flows

7.7.1 Debugging and stepping into dependencies

Sometimes, when developing and debugging your own code, it could be useful to be able to step-into the dependencies
source code too. There are a couple of things to take into account:

• Recipes and packages from ConanCenter do not package always all the debug artifacts necessary to debug. For
example in Windows, the *.pdb files are not packaged, because they are very heavy, and in practice barely used.
It is possible to have your own packages to package the PDB files if you want, but that still won’t solve the next
point.

• Debug artifacts are often not relocatable, that means that such artifacts can only be used in the location they
were built from sources. But packages that are uploaded to a server and downloaded to a different machine can
put those artifacts in a different folder. Then, the debug artifacts might not correctly locate the source code, the
symbols, etc.

Building from source

The recommended approach for debugging dependencies is building them from source in the local cache. This approach
should work out of the box for most recipes, including ConanCenter recipes.

We can reuse the code from the very first example in the tutorial for this use case. Please, first clone the sources to
recreate this project. You can find them in the examples2 repository in GitHub:

$ git clone https://github.com/conan-io/examples2.git
$ cd examples2/tutorial/consuming_packages/simple_cmake_project

Then, lets make sure the dependency is built from source:

$ conan install . -s build_type=Debug --build="zlib/*"
...
Install finished successfully

Assuming that we have CMake>=3.23, we can use the presets (otherwise, please use the -DCMAKE_TOOLCHAIN_FILE
arguments):

$ cmake . --preset conan-default

This will create our project, that we can start building and debugging.

258 Chapter 7. Examples

https://github.com/conan-io/examples2

Conan Documentation, Release 2.1.0

Step into a dependency with Visual Studio

Once the project is created, in Visual Studio, we can double-click on the compressor.sln file, or open the file from
the open Visual Studio IDE.

Once the project is open, the first step is building it, making sure the Debug configuration is the active one, going to
Build -> Build Solution will do it. Then we can define compressor as the “Startup project” in project view.

Going to the compressor/main.c source file, we can introduce a breakpoint in some line there:

Listing 56: main.c

int main(void) {
...

// add a breakpoint in deflateInit line in your IDE
deflateInit(&defstream, Z_BEST_COMPRESSION);
deflate(&defstream, Z_FINISH);

Clicking on the Debug -> Start Debugging (or F5), the program will start debugging and stop at the
deflateInit() line. Clicking on the Debug -> Step Into, the IDE should be able to navigate to the deflate.c
source code. If we check this file, its path will be inside the Conan cache, like C:\Users\<myuser>\.conan2\p\b\
zlib4f7275ba0a71f\b\src\deflate.c

Listing 57: deflate.c

int ZEXPORT deflateInit_(strm, level, version, stream_size)
z_streamp strm;
int level;
const char *version;
int stream_size;
{

return deflateInit2_(strm, level, Z_DEFLATED, MAX_WBITS, DEF_MEM_LEVEL,
Z_DEFAULT_STRATEGY, version, stream_size);

/* To do: ignore strm->next_in if we use it as window */
}

See also:
• Modifying the dependency source code while debugging is not possible with this approach. If that is the intended

flow, the recommended approach is to use editable package.

7.8 Conan commands examples

7.8.1 Using packages-lists

Warning: This feature is experimental and subject to breaking changes. See the Conan stability section for more
information.

Packages lists are a powerful and convenient Conan feature that allows to automate and concatenate different Conan
commands. Let’s see some common use cases:

7.8. Conan commands examples 259

Conan Documentation, Release 2.1.0

Listing packages and downloading them

A first simple use case could be listing some recipes and/or binaries in a server, and then downloading them.

We can do any conan list, for example, to list all zlib versions above 1.2.11, the latest recipe revision, all Windows
binaries for that latest recipe revision, and finally the latest package revision for every binary. Note that if we want to
actually download something later, it is necessary to specify the latest package revision, otherwise only the recipes
will be downloaded.

$ conan list "zlib/[>1.2.11]#latest:*#latest" -p os=Windows --format=json -r=conancenter␣
→˓> pkglist.json

The output of the command is sent in json format to the file pkglist.json that looks like:

Listing 58: pkglist.json (simplified)

"conancenter": {
"zlib/1.2.12": {

"revisions": {
"b1fd071d8a2234a488b3ff74a3526f81": {

"timestamp": 1667396813.987,
"packages": {

"ae9eaf478e918e6470fe64a4d8d4d9552b0b3606": {
"revisions": {

"19808a47de859c2408ffcf8e5df1fdaf": {
}

},
"info": {

"settings": {
"arch": "x86_64",
"os": "Windows"

}
}

}
}

}
},

"zlib/1.2.13": {
}

}

The first level in the pkglist.json is the “origin” remote or “Local Cache” if the list happens in the cache. In this
case, as we listed the packages in conancenter remote, that will be the origin.

We can now do a download of these recipes and binaries with a single conan download invocation:

$ conan download --list=pkglist.json -r=conancenter
Download the recipes and binaries in pkglist.json
And displays a report of the downloaded things

260 Chapter 7. Examples

Conan Documentation, Release 2.1.0

Downloading from one remote and uploading to a different remote

Let’s say that we create a new package list from the packages downloaded in the previous step:

$ conan download --list=pkglist.json -r=conancenter --format=json > downloaded.json
Download the recipes and binaries in pkglist.json
And stores the result in "downloaded.json"

The resulting downloaded.json will be almost the same as the pkglist.json file, but in this case, the “origin” of
those packages is the "Local Cache" (as the downloaded packages will be in the cache):

Listing 59: downloaded.json (simplified)

"Local Cache": {
"zlib/1.2.12": {

"revisions": {
}

}
}

That means that we can now upload this same set of recipes and binaries to a different remote:

$ conan upload --list=downloaded.json -r=myremote -c
Upload those artifacts to the same remote

Note: Best practices
This would be a slow mechanism to run promotions between different server repositories. Servers like Artifactory pro-
vide ways to directly copy packages from one repository to another without using a client, that are orders of magnitude
faster because of file deduplication, so that would be the recommended approach. The presented approach in this sec-
tion might be used for air-gapped environments and other situations in which it is not possible to do a server-to-server
copy.

Building and uploading packages

One of the most interesting flows is the one when some packages are being built in the local cache, with a conan
create or conan install --build=xxx command. Typically, we would like to upload the locally built packages
to the server, so they don’t have to be re-built again by others. But we might want to upload only the built binaries, but
not all others transitive dependencies, or other packages that we had previously in our local cache.

It is possible to compute a package list from the output of a conan install, conan create and conan graph info
commands. Then, that package list can be used for the upload. Step by step:

First let’s say that we have our own package mypkg/0.1 and we create it:

$ conan new cmake_lib -d name=mypkg -d version=0.1
$ conan create . --format=json > create.json

This will create a json representation of the graph, with information of what packages have been built "binary":
"Build":

7.8. Conan commands examples 261

Conan Documentation, Release 2.1.0

Listing 60: create.json (simplified)

{
"graph": {

"nodes": {
"0": {

"ref": "conanfile",
"id": "0",
"recipe": "Cli",
"context": "host",
"test": false

},
"1": {

"ref": "mypkg/0.1#f57cc9a1824f47af2f52df0dbdd440f6",
"id": "1",
"recipe": "Cache",
"package_id": "2401fa1d188d289bb25c37cfa3317e13e377a351",
"prev": "75f44d989175c05bc4be2399edc63091",
"build_id": null,
"binary": "Build"

}
}

}

We can compute a package list from this file, and then upload those artifacts to the server with:

$ conan list --graph=create.json --graph-binaries=build --format=json > pkglist.json
Create a pkglist.json with the known list of recipes and binaries built from sources
$ conan upload --list=pkglist.json -r=myremote -c

Removing packages lists

It is also possible to first conan list and create a list of things to remove, and then remove them:

Removes everything from the cache
$ conan list *#* --format=json > pkglist.json
$ conan remove --list=pkglist.json -c

Note that in this case, the default patterns are different in list and remove, because of the destructive nature of conan
remove:

• When a recipe is passed to remove like conan remove zlib/1.2.13, it will remove the recipe of zlib/1.
2.13 and all of its binaries, because the binaries cannot live without the recipe.

• When a package_id is passed, like conan remove zlib/1.2.13:package_id, then that specific
package_id will be removed, but the recipe will not

Then the pattern to remove everything will be different if we call directly conan remove or if we call first conan
list, for example:

Removes everything from the cache
$ conan remove *
OR via list, we need to explicitly include all revisions

(continues on next page)

262 Chapter 7. Examples

Conan Documentation, Release 2.1.0

(continued from previous page)

$ conan list *#* --format=json > pkglist.json
$ conan remove --list=pkglist.json -c

Removes only the binaries from the cache (leave recipes)
$ conan remove *:*
OR via list, we need to explicitly include all revisions
$ conan list *#*:* --format=json > pkglist.json
$ conan remove --list=pkglist.json -c

For more information see the Reference commands section

7.8. Conan commands examples 263

Conan Documentation, Release 2.1.0

264 Chapter 7. Examples

CHAPTER

EIGHT

REFERENCE

8.1 Commands

This section describe the Conan built-in commands, like conan install or conan search.

It is also possible to create user custom commands, visit custom commands reference and these custom command
examples

Consumer commands:

8.1.1 conan cache

Perform file operations in the local cache (of recipes and/or packages).

conan cache path

$ conan cache path -h
usage: conan cache path [-h] [-f FORMAT] [-v [V]] [-cc CORE_CONF]

[--folder {export_source,source,build,metadata}]
reference

Show the path to the Conan cache for a given reference.

positional arguments:
reference Recipe reference or Package reference

options:
-h, --help show this help message and exit
-f FORMAT, --format FORMAT

Select the output format: json
-v [V] Level of detail of the output. Valid options from less

verbose to more verbose: -vquiet, -verror, -vwarning,
-vnotice, -vstatus, -v or -vverbose, -vv or -vdebug,
-vvv or -vtrace

-cc CORE_CONF, --core-conf CORE_CONF
Global configuration for Conan

--folder {export_source,source,build,metadata}
Path to show. The 'build' requires a package
reference. If the argument is not passed, it shows

(continues on next page)

265

Conan Documentation, Release 2.1.0

(continued from previous page)

'exports' path for recipe references and 'package'
folder for package references.

The conan cache path returns the path in the cache of a given reference. Depending on the reference, it could return
the path of a recipe, or the path to a package binary.

Let’s say that we have created a package in our current cache with:

$ conan new cmake_lib -d name=pkg -d version=0.1
$ conan create .
...
Requirements

pkg/0.1#cdc0d9d0e8f554d3df2388c535137d77 - Cache

Requirements
pkg/0.1#cdc0d9d0e8f554d3df2388c535137d77:2401fa1d188d289bb25c37cfa3317e13e377a351 -␣

→˓Build

And now we are interested in obtaining the path where our pkg/0.1 recipe conanfile.py has been exported:

$ conan cache path pkg/0.1
<path to conan cache>/p/5cb229164ec1d245/e

$ ls <path to conan cache>/p/5cb229164ec1d245/e
conanfile.py conanmanifest.txt

By default, if the recipe revision is not specified, it means the “latest” revision in the cache. This can also be made
explicit by the literal #latest, and also any recipe revision can be explicitly defined, these commands are equivalent
to the above:

$ conan cache path pkg/0.1#latest
<path to conan cache>/p/5cb229164ec1d245/e

The recipe revision might be different in your case.
Check the "conan create" output to get yours
$ conan cache path pkg/0.1#cdc0d9d0e8f554d3df2388c535137d77
<path to conan cache>/p/5cb229164ec1d245/e

Together with the recipe folder, there are a two other folders that are common to all the binaries produced with this
recipe: the “export_source” folder and the “source” folder. Both can be obtained with:

$ conan cache path pkg/0.1 --folder=export_source
<path to conan cache>/p/5cb229164ec1d245/es

$ ls <path to conan cache>/p/5cb229164ec1d245/es
CMakeLists.txt include/ src/

$ conan cache path pkg/0.1 --folder=source
<path to conan cache>/p/5cb229164ec1d245/s

$ ls <path to conan cache>/p/5cb229164ec1d245/s
CMakeLists.txt include/ src/

In this case the contents of the “source” folder are identical to the ones of the “export_source” folder because the recipe

266 Chapter 8. Reference

Conan Documentation, Release 2.1.0

did not implement any source()method that could retrieve code or do any other operation over the code, like applying
patches.

The recipe revision by default will be #latest, this follows the same rules as above.

Note that these two folders will not exist if the package has not been built from source, like when a precompiled binary
is retrieve from a server.

It is also possible to obtain the folders of the binary packages providing the package_id:

Your package_id might be different, it depends on the platform
Check the "conan create" output to obtain yours
$ conan cache path pkg/0.1:2401fa1d188d289bb25c37cfa3317e13e377a351
<path to conan cache>/p/1cae77d6250c23b7/p

$ ls <path to conan cache>/p/1cae77d6250c23b7/p
conaninfo.txt conanmanifest.txt include/ lib/

As above, by default it will resolve to the “latest” recipe revision and package revision. The command above is equal
to explicitly defining #latest or the exact revisions. All the commands below are equivalent to the above one:

$ conan cache path pkg/0.1#latest:2401fa1d188d289bb25c37cfa3317e13e377a351
<path to conan cache>/p/1cae77d6250c23b7/p

$ conan cache path pkg/0.1#latest:2401fa1d188d289bb25c37cfa3317e13e377a351#latest
<path to conan cache>/p/1cae77d6250c23b7/p

$ conan cache path pkg/0.1
→˓#cdc0d9d0e8f554d3df2388c535137d77:2401fa1d188d289bb25c37cfa3317e13e377a351
<path to conan cache>/p/1cae77d6250c23b7/p

It is possible to access the “build” folder with all the temporary build artifacts:

$ conan cache path pkg/0.1:2401fa1d188d289bb25c37cfa3317e13e377a351 --folder=build
<path to conan cache>/p/1cae77d6250c23b7/b

ls -al <path to conan cache>/p/1cae77d6250c23b7/b
build/ CMakeLists.txt CMakeUserPresets.json conaninfo.txt include/ src/

Again, the “build” folder will only exist if the package was built from source.

Note: Best practices
• This conan cache path command is intended for eventual inspection of the cache, but the cache package

storage must be considered read-only. Do not modify, change, remove or add files from the cache.

• If you are using this command to obtain the path to artifacts and then copying them, consider the usage of a
deployer instead. In the general case, extracting artifacts from the cache manually is discouraged.

• Developers can use the conan list ... --format=compact to get the full references in a compact way that
can be copied and pasted into the conan cache path command

8.1. Commands 267

Conan Documentation, Release 2.1.0

conan cache clean

$ conan cache clean -h
usage: conan cache clean [-h] [-v [V]] [-cc CORE_CONF] [-s] [-b] [-d] [-t]

[-p PACKAGE_QUERY]
[pattern]

Remove non-critical folders from the cache, like source, build and/or download
(.tgz store) ones.

positional arguments:
pattern Selection pattern for references to clean

options:
-h, --help show this help message and exit
-v [V] Level of detail of the output. Valid options from less

verbose to more verbose: -vquiet, -verror, -vwarning,
-vnotice, -vstatus, -v or -vverbose, -vv or -vdebug,
-vvv or -vtrace

-cc CORE_CONF, --core-conf CORE_CONF
Global configuration for Conan

-s, --source Clean source folders
-b, --build Clean build folders
-d, --download Clean download and metadata folders
-t, --temp Clean temporary folders
-p PACKAGE_QUERY, --package-query PACKAGE_QUERY

Remove only the packages matching a specific query,
e.g., os=Windows AND (arch=x86 OR compiler=gcc)

This command will remove all temporary folders, along with the source, build and download folder that Conan generates
in its execution. It will do so for every matching reference passed in pattern, unless a specific flag is supplied, in which
case only the specified folders will be removed.

Examples:
• Remove all non-critical files:

$ conan cache clean "*"

• Remove all temporary files:

$ conan cache clean "*" --temp

• Remove the download folders for the zlib recipe:

$ conan cache clean "zlib*" --download

• Remove everything but the download folder for the zlib recipe:

$ conan cache clean "*" --source --build --temp

268 Chapter 8. Reference

Conan Documentation, Release 2.1.0

conan cache check-integrity

$ conan cache check-integrity -h
usage: conan cache check-integrity [-h] [-v [V]] [-cc CORE_CONF]

[-p PACKAGE_QUERY]
pattern

Check the integrity of the local cache for the given references

positional arguments:
pattern Selection pattern for references to check integrity

for

options:
-h, --help show this help message and exit
-v [V] Level of detail of the output. Valid options from less

verbose to more verbose: -vquiet, -verror, -vwarning,
-vnotice, -vstatus, -v or -vverbose, -vv or -vdebug,
-vvv or -vtrace

-cc CORE_CONF, --core-conf CORE_CONF
Global configuration for Conan

-p PACKAGE_QUERY, --package-query PACKAGE_QUERY
Only the packages matching a specific query, e.g.,
os=Windows AND (arch=x86 OR compiler=gcc)

The conan cache check-integrity command checks the integrity of Conan packages in the local cache. This
means that it will throw an error if any file included in the conanmanifest.txt is missing or does not match the
declared checksum in that file.

For example, to verify the integrity of the whole Conan local cache, do:

$ conan cache check-integrity "*"
mypkg/1.0: Integrity checked: ok
mypkg/1.0:454923cd42d0da27b9b1294ebc3e4ecc84020747: Integrity checked: ok
mypkg/1.0:454923cd42d0da27b9b1294ebc3e4ecc84020747: Integrity checked: ok
zlib/1.2.11: Integrity checked: ok
zlib/1.2.11:6fe7fa69f760aee504e0be85c12b2327c716f9e7: Integrity checked: ok

conan cache backup-upload

$ conan cache backup-upload -h
Migration: Successfully updated settings.yml
Migration: Successfully updated profile.py
usage: conan cache backup-upload [-h] [-v [V]] [-cc CORE_CONF]

Upload all the source backups present in the cache

options:
-h, --help show this help message and exit
-v [V] Level of detail of the output. Valid options from less

verbose to more verbose: -vquiet, -verror, -vwarning,
-vnotice, -vstatus, -v or -vverbose, -vv or -vdebug,

(continues on next page)

8.1. Commands 269

Conan Documentation, Release 2.1.0

(continued from previous page)

-vvv or -vtrace
-cc CORE_CONF, --core-conf CORE_CONF

Global configuration for Conan

The conan cache backup-upload will upload all source backups present in the local cache to the backup server,
(excluding those which have been fetched from the excluded urls listed in the core.sources:exclude_urls conf),
regardless of which package they belong to, if any.

conan cache save

$ conan cache save -h
usage: conan cache save [-h] [-f FORMAT] [-v [V]] [-cc CORE_CONF] [-l LIST]

[--file FILE]
[pattern]

Get the artifacts from a package list and archive them

positional arguments:
pattern A pattern in the form

'pkg/version#revision:package_id#revision', e.g:
zlib/1.2.13:* means all binaries for zlib/1.2.13. If
revision is not specified, it is assumed latest one.

options:
-h, --help show this help message and exit
-f FORMAT, --format FORMAT

Select the output format: json
-v [V] Level of detail of the output. Valid options from less

verbose to more verbose: -vquiet, -verror, -vwarning,
-vnotice, -vstatus, -v or -vverbose, -vv or -vdebug,
-vvv or -vtrace

-cc CORE_CONF, --core-conf CORE_CONF
Global configuration for Conan

-l LIST, --list LIST Package list of packages to save
--file FILE Save to this tgz file

Read more in Save and restore packages from/to the cache.

conan cache restore

$ conan cache restore -h
Migration: Successfully updated settings.yml
usage: conan cache restore [-h] [-f FORMAT] [-v [V]] [-cc CORE_CONF] file

Put the artifacts from an archive into the cache

positional arguments:
file Path to archive to restore

options:
(continues on next page)

270 Chapter 8. Reference

Conan Documentation, Release 2.1.0

(continued from previous page)

-h, --help show this help message and exit
-f FORMAT, --format FORMAT

Select the output format: json
-v [V] Level of detail of the output. Valid options from less

verbose to more verbose: -vquiet, -verror, -vwarning,
-vnotice, -vstatus, -v or -vverbose, -vv or -vdebug,
-vvv or -vtrace

-cc CORE_CONF, --core-conf CORE_CONF
Global configuration for Conan

Read more in Save and restore packages from/to the cache.

8.1.2 conan config

Manage the Conan configuration in the Conan home.

conan config home

$ conan config home -h
Migration: Successfully updated settings.yml
usage: conan config home [-h] [-v [V]] [-cc CORE_CONF]

Show the Conan home folder.

options:
-h, --help show this help message and exit
-v [V] Level of detail of the output. Valid options from less

verbose to more verbose: -vquiet, -verror, -vwarning,
-vnotice, -vstatus, -v or -vverbose, -vv or -vdebug,
-vvv or -vtrace

-cc CORE_CONF, --core-conf CORE_CONF
Global configuration for Conan

The conan config home command returns the path of the Conan home folder.

$ conan config home

/home/user/.conan2

conan config install

$ conan config install -h
Migration: Successfully updated settings.yml
usage: conan config install [-h] [-v [V]] [-cc CORE_CONF]

[--verify-ssl [VERIFY_SSL] | --insecure]
[-t {git,dir,file,url}] [-a ARGS]
[-sf SOURCE_FOLDER] [-tf TARGET_FOLDER]
item

(continues on next page)

8.1. Commands 271

Conan Documentation, Release 2.1.0

(continued from previous page)

Install the configuration (remotes, profiles, conf), from git, http or a
folder, into the Conan home folder.

positional arguments:
item git repository, local file or folder or zip file

(local or http) where the configuration is stored

options:
-h, --help show this help message and exit
-v [V] Level of detail of the output. Valid options from less

verbose to more verbose: -vquiet, -verror, -vwarning,
-vnotice, -vstatus, -v or -vverbose, -vv or -vdebug,
-vvv or -vtrace

-cc CORE_CONF, --core-conf CORE_CONF
Global configuration for Conan

--verify-ssl [VERIFY_SSL]
Verify SSL connection when downloading file

--insecure Allow insecure server connections when using SSL.
Equivalent to --verify-ssl=False

-t {git,dir,file,url}, --type {git,dir,file,url}
Type of remote config

-a ARGS, --args ARGS String with extra arguments for "git clone"
-sf SOURCE_FOLDER, --source-folder SOURCE_FOLDER

Install files only from a source subfolder from the
specified origin

-tf TARGET_FOLDER, --target-folder TARGET_FOLDER
Install to that path in the conan cache

The conan config install command is intended to install in the current home a common shared Conan configu-
ration, like the definitions of remotes, profiles, settings, hooks, extensions, etc.

The command can use as source any of the following:

• A URL pointing to a zip archive containing the configuration files

• A git repository containing the files

• A local folder

• Just one file

Files in the current Conan home will be replaced by the ones from the installation source. All the configuration files
can be shared and installed this way:

• remotes.json for the definition of remotes

• Any custom profile files inside a profiles subfolder

• Custom settings.yml

• Custom global.conf

• All the extensions, including plugins, hooks.

• Custom user commands.

This command reads a .conanignore file which, if present, filters which files and folders are copied over to the user’s
Conan home folder. This file uses fnmatch patterns to match over the folder contents, excluding those entries that match
from the config installation. See conan-io/command-extensions’s .conanignore for an example of such a file.

272 Chapter 8. Reference

https://docs.python.org/3/library/fnmatch.html
https://github.com/conan-io/command-extensions/blob/main/.conanignore

Conan Documentation, Release 2.1.0

Examples:
• Install the configuration from a URL:

$ conan config install http://url/to/some/config.zip

• Install the configuration from a URL, but only getting the files inside a origin folder inside the zip file, and putting
them inside a target folder in the local cache:

$ conan config install http://url/to/some/config.zip -sf=origin -tf=target

• Install configuration from 2 different zip files from 2 different urls, using different source and target folders for
each one, then update all:

$ conan config install http://url/to/some/config.zip -sf=origin -tf=target
$ conan config install http://url/to/some/config.zip -sf=origin2 -tf=target2
$ conan config install http://other/url/to/other.zip -sf=hooks -tf=hooks

• Install the configuration from a Git repository with submodules:

$ conan config install http://github.com/user/conan_config/.git --args "--recursive"

You can also force the git download by using --type git (in case it is not deduced from the URL automatically):

$ conan config install http://github.com/user/conan_config/.git --type git

• Install from a URL skipping SSL verification:

$ conan config install http://url/to/some/config.zip --verify-ssl=False

This will disable the SSL check of the certificate.

• Install a specific file from a local path:

$ conan config install my_settings/settings.yml

• Install the configuration from a local path:

$ conan config install /path/to/some/config.zip

conan config list

$ conan config list -h
Migration: Successfully updated settings.yml
usage: conan config list [-h] [-f FORMAT] [-v [V]] [-cc CORE_CONF]

Show all the Conan available configurations: core and tools.

options:
-h, --help show this help message and exit
-f FORMAT, --format FORMAT

Select the output format: json
-v [V] Level of detail of the output. Valid options from less

verbose to more verbose: -vquiet, -verror, -vwarning,
(continues on next page)

8.1. Commands 273

Conan Documentation, Release 2.1.0

(continued from previous page)

-vnotice, -vstatus, -v or -vverbose, -vv or -vdebug,
-vvv or -vtrace

-cc CORE_CONF, --core-conf CORE_CONF
Global configuration for Conan

Displays all the Conan built-in configurations. There are 2 groups:

• core.xxxx: These can only be defined in global.conf and are used by Conan internally

• tools.xxxx: These can be defined both in global.conf and profiles, and will be used by recipes and tools
used within recipes, like CMakeToolchain

$ conan config list
Migration: Successfully updated settings.yml
core.cache:storage_path: Absolute path where the packages and database are stored
core.download:download_cache: Define path to a file download cache
core.download:parallel: Number of concurrent threads to download packages
core.download:retry: Number of retries in case of failure when downloading from Conan␣
→˓server
core.download:retry_wait: Seconds to wait between download attempts from Conan server
core.gzip:compresslevel: The Gzip compression level for Conan artifacts (default=9)
core.net.http:cacert_path: Path containing a custom Cacert file
core.net.http:clean_system_proxy: If defined, the proxies system env-vars will be␣
→˓discarded
core.net.http:client_cert: Path or tuple of files containing a client cert (and key)
core.net.http:max_retries: Maximum number of connection retries (requests library)
core.net.http:no_proxy_match: List of urls to skip from proxies configuration
core.net.http:proxies: Dictionary containing the proxy configuration
core.net.http:timeout: Number of seconds without response to timeout (requests library)
core.package_id:default_build_mode: By default, 'None'
core.package_id:default_embed_mode: By default, 'full_mode'
core.package_id:default_non_embed_mode: By default, 'minor_mode'
core.package_id:default_python_mode: By default, 'minor_mode'
core.package_id:default_unknown_mode: By default, 'semver_mode'
core.scm:excluded: List of excluded patterns for builtin git dirty checks
core.sources:download_cache: Folder to store the sources backup
core.sources:download_urls: List of URLs to download backup sources from
core.sources:exclude_urls: URLs which will not be backed up
core.sources:upload_url: Remote URL to upload backup sources to
core.upload:parallel: Number of concurrent threads to upload packages
core.upload:retry: Number of retries in case of failure when uploading to Conan server
core.upload:retry_wait: Seconds to wait between upload attempts to Conan server
core.version_ranges:resolve_prereleases: Whether version ranges can resolve to pre-
→˓releases or not
core:allow_uppercase_pkg_names: Temporarily (will be removed in 2.X) allow uppercase␣
→˓names
core:default_build_profile: Defines the default build profile ('default' by default)
core:default_profile: Defines the default host profile ('default' by default)
core:non_interactive: Disable interactive user input, raises error if input necessary
core:required_conan_version: Raise if current version does not match the defined range.
core:skip_warnings: Do not show warnings matching any of the patterns in this list.␣
→˓Current warning tags are 'network', 'deprecated'
core:warnings_as_errors: Treat warnings matching any of the patterns in this list as␣

(continues on next page)

274 Chapter 8. Reference

Conan Documentation, Release 2.1.0

(continued from previous page)

→˓errors and then raise an exception. Current warning tags are 'network', 'deprecated'
tools.android:cmake_legacy_toolchain: Define to explicitly pass ANDROID_USE_LEGACY_
→˓TOOLCHAIN_FILE in CMake toolchain
tools.android:ndk_path: Argument for the CMAKE_ANDROID_NDK
tools.apple:enable_arc: (boolean) Enable/Disable ARC Apple Clang flags
tools.apple:enable_bitcode: (boolean) Enable/Disable Bitcode Apple Clang flags
tools.apple:enable_visibility: (boolean) Enable/Disable Visibility Apple Clang flags
tools.apple:sdk_path: Path to the SDK to be used
tools.build.cross_building:can_run: (boolean) Indicates whether is possible to run a non-
→˓native app on the same architecture. It's used by 'can_run' tool
tools.build.cross_building:cross_build: (boolean) Decides whether cross-building or not␣
→˓regardless of arch/OS settings. Used by 'cross_building' tool
tools.build:cflags: List of extra C flags used by different toolchains like␣
→˓CMakeToolchain, AutotoolsToolchain and MesonToolchain
tools.build:compiler_executables: Defines a Python dict-like with the compilers path to␣
→˓be used. Allowed keys {'c', 'cpp', 'cuda', 'objc', 'objcxx', 'rc', 'fortran', 'asm',
→˓'hip', 'ispc'}
tools.build:cxxflags: List of extra CXX flags used by different toolchains like␣
→˓CMakeToolchain, AutotoolsToolchain and MesonToolchain
tools.build:defines: List of extra definition flags used by different toolchains like␣
→˓CMakeToolchain and AutotoolsToolchain
tools.build:download_source: Force download of sources for every package
tools.build:exelinkflags: List of extra flags used by CMakeToolchain for CMAKE_EXE_
→˓LINKER_FLAGS_INIT variable
tools.build:jobs: Default compile jobs number -jX Ninja, Make, /MP VS (default: max CPUs)
tools.build:linker_scripts: List of linker script files to pass to the linker used by␣
→˓different toolchains like CMakeToolchain, AutotoolsToolchain, and MesonToolchain
tools.build:sharedlinkflags: List of extra flags used by CMakeToolchain for CMAKE_SHARED_
→˓LINKER_FLAGS_INIT variable
tools.build:skip_test: Do not execute CMake.test() and Meson.test() when enabled
tools.build:sysroot: Pass the --sysroot=<tools.build:sysroot> flag if available. (None␣
→˓by default)
tools.build:verbosity: Verbosity of build systems if set. Possible values are 'quiet'␣
→˓and 'verbose'
tools.cmake.cmake_layout:build_folder_vars: Settings and Options that will produce a␣
→˓different build folder and different CMake presets names
tools.cmake.cmaketoolchain:find_package_prefer_config: Argument for the CMAKE_FIND_
→˓PACKAGE_PREFER_CONFIG
tools.cmake.cmaketoolchain:generator: User defined CMake generator to use instead of␣
→˓default
tools.cmake.cmaketoolchain:presets_environment: String to define wether to add or not␣
→˓the environment section to the CMake presets. Empty by default, will generate the␣
→˓environment section in CMakePresets. Can take values: 'disabled'.
tools.cmake.cmaketoolchain:system_name: Define CMAKE_SYSTEM_NAME in CMakeToolchain
tools.cmake.cmaketoolchain:system_processor: Define CMAKE_SYSTEM_PROCESSOR in␣
→˓CMakeToolchain
tools.cmake.cmaketoolchain:system_version: Define CMAKE_SYSTEM_VERSION in CMakeToolchain
tools.cmake.cmaketoolchain:toolchain_file: Use other existing file rather than conan_
→˓toolchain.cmake one
tools.cmake.cmaketoolchain:toolset_arch: Toolset architecture to be used as part of␣
→˓CMAKE_GENERATOR_TOOLSET in CMakeToolchain
tools.cmake.cmaketoolchain:toolset_cuda: (Experimental) Path to a CUDA toolset to use,␣

(continues on next page)

8.1. Commands 275

Conan Documentation, Release 2.1.0

(continued from previous page)

→˓or version if installed at the system level
tools.cmake.cmaketoolchain:user_toolchain: Inject existing user toolchains at the␣
→˓beginning of conan_toolchain.cmake
tools.cmake:cmake_program: Path to CMake executable
tools.cmake:install_strip: Add --strip to cmake.install()
tools.compilation:verbosity: Verbosity of compilation tools if set. Possible values are
→˓'quiet' and 'verbose'
tools.deployer:symlinks: Set to False to disable deployers copying symlinks
tools.env.virtualenv:powershell: If it is set to True it will generate powershell␣
→˓launchers if os=Windows
tools.files.download:retry: Number of retries in case of failure when downloading
tools.files.download:retry_wait: Seconds to wait between download attempts
tools.files.download:verify: If set, overrides recipes on whether to perform SSL␣
→˓verification for their downloaded files. Only recommended to be set while testing
tools.gnu:define_libcxx11_abi: Force definition of GLIBCXX_USE_CXX11_ABI=1 for␣
→˓libstdc++11
tools.gnu:host_triplet: Custom host triplet to pass to Autotools scripts
tools.gnu:make_program: Indicate path to make program
tools.gnu:pkg_config: Path to pkg-config executable used by PkgConfig build helper
tools.google.bazel:bazelrc_path: List of paths to bazelrc files to be used as 'bazel --
→˓bazelrc=rcpath1 ... build'
tools.google.bazel:configs: List of Bazel configurations to be used as 'bazel build --
→˓config=config1 ...'
tools.graph:skip_binaries: Allow the graph to skip binaries not needed in the current␣
→˓configuration (True by default)
tools.info.package_id:confs: List of existing configuration to be part of the package ID
tools.intel:installation_path: Defines the Intel oneAPI installation root path
tools.intel:setvars_args: Custom arguments to be passed onto the setvars.sh|bat script␣
→˓from Intel oneAPI
tools.meson.mesontoolchain:backend: Any Meson backend: ninja, vs, vs2010, vs2012, vs2013,
→˓ vs2015, vs2017, vs2019, xcode
tools.meson.mesontoolchain:extra_machine_files: List of paths for any additional native/
→˓cross file references to be appended to the existing Conan ones
tools.microsoft.bash:active: If Conan is already running inside bash terminal in Windows
tools.microsoft.bash:path: The path to the shell to run when conanfile.win_bash==True
tools.microsoft.bash:subsystem: The subsystem to be used when conanfile.win_bash==True.␣
→˓Possible values: msys2, msys, cygwin, wsl, sfu
tools.microsoft.msbuild:installation_path: VS install path, to avoid auto-detect via␣
→˓vswhere, like C:/Program Files (x86)/Microsoft Visual Studio/2019/Community. Use empty␣
→˓string to disable
tools.microsoft.msbuild:max_cpu_count: Argument for the /m when running msvc to build␣
→˓parallel projects
tools.microsoft.msbuild:vs_version: Defines the IDE version (15, 16, 17) when using the␣
→˓msvc compiler. Necessary if compiler.version specifies a toolset that is not the IDE␣
→˓default
tools.microsoft.msbuilddeps:exclude_code_analysis: Suppress MSBuild code analysis for␣
→˓patterns
tools.microsoft.msbuildtoolchain:compile_options: Dictionary with MSBuild compiler␣
→˓options
tools.microsoft:winsdk_version: Use this winsdk_version in vcvars
tools.system.package_manager:mode: Mode for package_manager tools: 'check', 'report',
→˓'report-installed' or 'install'

(continues on next page)

276 Chapter 8. Reference

Conan Documentation, Release 2.1.0

(continued from previous page)

tools.system.package_manager:sudo: Use 'sudo' when invoking the package manager tools in␣
→˓Linux (False by default)
tools.system.package_manager:sudo_askpass: Use the '-A' argument if using sudo in Linux␣
→˓to invoke the system package manager (False by default)
tools.system.package_manager:tool: Default package manager tool: 'apk', 'apt-get', 'yum',
→˓ 'dnf', 'brew', 'pacman', 'choco', 'zypper', 'pkg' or 'pkgutil'

See also:
• Conan configuration files

conan config show

$ conan config show -h
Migration: Successfully updated settings.yml
usage: conan config show [-h] [-f FORMAT] [-v [V]] [-cc CORE_CONF] pattern

Get the value of the specified conf

positional arguments:
pattern Conf item(s) pattern for which to query their value

options:
-h, --help show this help message and exit
-f FORMAT, --format FORMAT

Select the output format: json
-v [V] Level of detail of the output. Valid options from less

verbose to more verbose: -vquiet, -verror, -vwarning,
-vnotice, -vstatus, -v or -vverbose, -vv or -vdebug,
-vvv or -vtrace

-cc CORE_CONF, --core-conf CORE_CONF
Global configuration for Conan

Shows the values of the conf items that match the given pattern.

For a global.conf consisting of

tools.build:jobs=42
tools.files.download:retry_wait=10
tools.files.download:retry=7
core.net.http:timeout=30
core.net.http:max_retries=5
zlib*/:tools.files.download:retry_wait=100
zlib*/:tools.files.download:retry=5

You can get all the values:

$ conan config show "*"

core.net.http:max_retries: 5
core.net.http:timeout: 30
tools.files.download:retry: 7

(continues on next page)

8.1. Commands 277

Conan Documentation, Release 2.1.0

(continued from previous page)

tools.files.download:retry_wait: 10
tools.build:jobs: 42
zlib*/:tools.files.download:retry: 5
zlib*/:tools.files.download:retry_wait: 100

Or just those referring to the tools.files section:

$ conan config show "*tools.files*"

tools.files.download:retry: 7
tools.files.download:retry_wait: 10
zlib*/:tools.files.download:retry: 5
zlib*/:tools.files.download:retry_wait: 100

Notice the first * in the pattern. This will match all the package patterns. Removing it will make the command only
show global confs:

$ conan config show "tools.files*"

tools.files.download:retry: 7
tools.files.download:retry_wait: 10

8.1.3 conan graph

The conan graph command contains several subcommands that return information of a dependency graph without
needing to download the package binaries.

conan graph info

$ conan graph info -h
Migration: Successfully updated settings.yml
usage: conan graph info [-h] [-f FORMAT] [-v [V]] [-cc CORE_CONF]

[--name NAME] [--version VERSION] [--user USER]
[--channel CHANNEL] [--requires REQUIRES]
[--tool-requires TOOL_REQUIRES] [-b BUILD]
[-r REMOTE | -nr] [-u [UPDATE]] [-pr PROFILE]
[-pr:b PROFILE_BUILD] [-pr:h PROFILE_HOST]
[-pr:a PROFILE_ALL] [-o OPTIONS] [-o:b OPTIONS_BUILD]
[-o:h OPTIONS_HOST] [-o:a OPTIONS_ALL] [-s SETTINGS]
[-s:b SETTINGS_BUILD] [-s:h SETTINGS_HOST]
[-s:a SETTINGS_ALL] [-c CONF] [-c:b CONF_BUILD]
[-c:h CONF_HOST] [-c:a CONF_ALL] [-l LOCKFILE]
[--lockfile-partial] [--lockfile-out LOCKFILE_OUT]
[--lockfile-clean]
[--lockfile-overrides LOCKFILE_OVERRIDES]
[--check-updates] [--filter FILTER]
[--package-filter PACKAGE_FILTER] [-d DEPLOYER]
[-df DEPLOYER_FOLDER] [--build-require]
[path]

(continues on next page)

278 Chapter 8. Reference

Conan Documentation, Release 2.1.0

(continued from previous page)

Compute the dependency graph and show information about it.

positional arguments:
path Path to a folder containing a recipe (conanfile.py or

conanfile.txt) or to a recipe file. e.g.,
./my_project/conanfile.txt.

options:
-h, --help show this help message and exit
-f FORMAT, --format FORMAT

Select the output format: html, json, dot
-v [V] Level of detail of the output. Valid options from less

verbose to more verbose: -vquiet, -verror, -vwarning,
-vnotice, -vstatus, -v or -vverbose, -vv or -vdebug,
-vvv or -vtrace

-cc CORE_CONF, --core-conf CORE_CONF
Global configuration for Conan

--name NAME Provide a package name if not specified in conanfile
--version VERSION Provide a package version if not specified in

conanfile
--user USER Provide a user if not specified in conanfile
--channel CHANNEL Provide a channel if not specified in conanfile
--requires REQUIRES Directly provide requires instead of a conanfile
--tool-requires TOOL_REQUIRES

Directly provide tool-requires instead of a conanfile
-b BUILD, --build BUILD

Optional, specify which packages to build from source.
Combining multiple '--build' options on one command
line is allowed. Possible values: --build="*" Force
build from source for all packages. --build=never
Disallow build for all packages, use binary packages
or fail if a binary package is not found, it cannot be
combined with other '--build' options. --build=missing
Build packages from source whose binary package is not
found. --build=cascade Build packages from source that
have at least one dependency being built from source.
--build=[pattern] Build packages from source whose
package reference matches the pattern. The pattern
uses 'fnmatch' style wildcards. --build=~[pattern]
Excluded packages, which will not be built from the
source, whose package reference matches the pattern.
The pattern uses 'fnmatch' style wildcards.
--build=missing:[pattern] Build from source if a
compatible binary does not exist, only for packages
matching pattern.

-r REMOTE, --remote REMOTE
Look in the specified remote or remotes server

-nr, --no-remote Do not use remote, resolve exclusively in the cache
-u [UPDATE], --update [UPDATE]

Will install newer versions and/or revisions in the
local cache for the given reference, or all in case no
argument is supplied. When using version ranges, it

(continues on next page)

8.1. Commands 279

Conan Documentation, Release 2.1.0

(continued from previous page)

will install the latest version that satisfies the
range. Also, if using revisions, it will update to the
latest revision for the resolved version range.

-pr PROFILE, --profile PROFILE
Apply the specified profile. By default, or if
specifying -pr:h (--profile:host), it applies to the
host context. Use -pr:b (--profile:build) to specify
the build context, or -pr:a (--profile:all) to specify
both contexts at once

-pr:b PROFILE_BUILD, --profile:build PROFILE_BUILD
-pr:h PROFILE_HOST, --profile:host PROFILE_HOST
-pr:a PROFILE_ALL, --profile:all PROFILE_ALL
-o OPTIONS, --options OPTIONS

Apply the specified options. By default, or if
specifying -o:h (--options:host), it applies to the
host context. Use -o:b (--options:build) to specify
the build context, or -o:a (--options:all) to specify
both contexts at once. Example: -o pkg:with_qt=true

-o:b OPTIONS_BUILD, --options:build OPTIONS_BUILD
-o:h OPTIONS_HOST, --options:host OPTIONS_HOST
-o:a OPTIONS_ALL, --options:all OPTIONS_ALL
-s SETTINGS, --settings SETTINGS

Apply the specified settings. By default, or if
specifying -s:h (--settings:host), it applies to the
host context. Use -s:b (--settings:build) to specify
the build context, or -s:a (--settings:all) to specify
both contexts at once. Example: -s compiler=gcc

-s:b SETTINGS_BUILD, --settings:build SETTINGS_BUILD
-s:h SETTINGS_HOST, --settings:host SETTINGS_HOST
-s:a SETTINGS_ALL, --settings:all SETTINGS_ALL
-c CONF, --conf CONF Apply the specified conf. By default, or if specifying

-c:h (--conf:host), it applies to the host context.
Use -c:b (--conf:build) to specify the build context,
or -c:a (--conf:all) to specify both contexts at once.
Example: -c tools.cmake.cmaketoolchain:generator=Xcode

-c:b CONF_BUILD, --conf:build CONF_BUILD
-c:h CONF_HOST, --conf:host CONF_HOST
-c:a CONF_ALL, --conf:all CONF_ALL
-l LOCKFILE, --lockfile LOCKFILE

Path to a lockfile. Use --lockfile="" to avoid
automatic use of existing 'conan.lock' file

--lockfile-partial Do not raise an error if some dependency is not found
in lockfile

--lockfile-out LOCKFILE_OUT
Filename of the updated lockfile

--lockfile-clean Remove unused entries from the lockfile
--lockfile-overrides LOCKFILE_OVERRIDES

Overwrite lockfile overrides
--check-updates Check if there are recipe updates
--filter FILTER Show only the specified fields
--package-filter PACKAGE_FILTER

Print information only for packages that match the

(continues on next page)

280 Chapter 8. Reference

Conan Documentation, Release 2.1.0

(continued from previous page)

patterns
-d DEPLOYER, --deployer DEPLOYER

Deploy using the provided deployer to the output
folder

-df DEPLOYER_FOLDER, --deployer-folder DEPLOYER_FOLDER
Deployer output folder, base build folder by default
if not set

--build-require Whether the provided reference is a build-require

The conan graph info command shows information about the dependency graph for the recipe specified in path.

Examples:

$ conan graph info .
$ conan graph info myproject_folder
$ conan graph info myproject_folder/conanfile.py
$ conan graph info --requires=hello/1.0@user/channel

The output will look like:

$ conan graph info --require=binutils/2.38 -r=conancenter

...

======== Basic graph information ========
conanfile:
ref: conanfile
id: 0
recipe: Cli
package_id: None
prev: None
build_id: None
binary: None
invalid_build: False
info_invalid: None
revision_mode: hash
package_type: unknown
settings:
os: Macos
arch: armv8
compiler: apple-clang
compiler.cppstd: gnu17
compiler.libcxx: libc++
compiler.version: 14
build_type: Release

options:
system_requires:
recipe_folder: None
source_folder: None
build_folder: None
generators_folder: None
package_folder: None
cpp_info:

(continues on next page)

8.1. Commands 281

Conan Documentation, Release 2.1.0

(continued from previous page)

root:
includedirs: ['include']
srcdirs: None
libdirs: ['lib']
resdirs: None
bindirs: ['bin']
builddirs: None
frameworkdirs: None
system_libs: None
frameworks: None
libs: None
defines: None
cflags: None
cxxflags: None
sharedlinkflags: None
exelinkflags: None
objects: None
sysroot: None
requires: None
properties: None

label: cli
context: host
test: False
requires:
1: binutils/2.38#0dc90586530d3e194d01d17cb70d9461

binutils/2.38#0dc90586530d3e194d01d17cb70d9461:
ref: binutils/2.38#0dc90586530d3e194d01d17cb70d9461
id: 1
recipe: Downloaded
package_id: 5350e016ee8d04f418b50b7be75f5d8be9d79547
prev: None
build_id: None
binary: Invalid
invalid_build: False
info_invalid: cci does not support building binutils for Macos since binutils is␣

→˓degraded there (no as/ld + armv8 does not build)
url: https://github.com/conan-io/conan-center-index/
license: GPL-2.0-or-later
description: The GNU Binutils are a collection of binary tools.
topics: ('gnu', 'ld', 'linker', 'as', 'assembler', 'objcopy', 'objdump')
homepage: https://www.gnu.org/software/binutils
revision_mode: hash
package_type: application
settings:
os: Macos
arch: armv8
compiler: apple-clang
compiler.version: 14
build_type: Release

options:
multilib: True
prefix: aarch64-apple-darwin-

(continues on next page)

282 Chapter 8. Reference

Conan Documentation, Release 2.1.0

(continued from previous page)

target_arch: armv8
target_os: Macos
target_triplet: aarch64-apple-darwin
with_libquadmath: True

system_requires:
recipe_folder: /Users/barbarian/.conan2/p/binut53bd9b3ee9490/e
source_folder: None
build_folder: None
generators_folder: None
package_folder: None
cpp_info:
root:
includedirs: ['include']
srcdirs: None
libdirs: ['lib']
resdirs: None
bindirs: ['bin']
builddirs: None
frameworkdirs: None
system_libs: None
frameworks: None
libs: None
defines: None
cflags: None
cxxflags: None
sharedlinkflags: None
exelinkflags: None
objects: None
sysroot: None
requires: None
properties: None

label: binutils/2.38
context: host
test: False
requires:
2: zlib/1.2.13#416618fa04d433c6bd94279ed2e93638

zlib/1.2.13#416618fa04d433c6bd94279ed2e93638:
ref: zlib/1.2.13#416618fa04d433c6bd94279ed2e93638
id: 2
recipe: Cache
package_id: 76f7d863f21b130b4e6527af3b1d430f7f8edbea
prev: 866f53e31e2d9b04d49d0bb18606e88e
build_id: None
binary: Skip
invalid_build: False
info_invalid: None
url: https://github.com/conan-io/conan-center-index
license: Zlib
description: A Massively Spiffy Yet Delicately Unobtrusive Compression Library (Also␣

→˓Free, Not to Mention Unencumbered by Patents)
topics: ('zlib', 'compression')
homepage: https://zlib.net

(continues on next page)

8.1. Commands 283

Conan Documentation, Release 2.1.0

(continued from previous page)

revision_mode: hash
package_type: static-library
settings:
os: Macos
arch: armv8
compiler: apple-clang
compiler.version: 14
build_type: Release

options:
fPIC: True
shared: False

system_requires:
recipe_folder: /Users/barbarian/.conan2/p/zlibbcf9063fcc882/e
source_folder: None
build_folder: None
generators_folder: None
package_folder: None
cpp_info:
root:
includedirs: ['include']
srcdirs: None
libdirs: ['lib']
resdirs: None
bindirs: ['bin']
builddirs: None
frameworkdirs: None
system_libs: None
frameworks: None
libs: None
defines: None
cflags: None
cxxflags: None
sharedlinkflags: None
exelinkflags: None
objects: None
sysroot: None
requires: None
properties: None

label: zlib/1.2.13
context: host
test: False
requires:

conan graph info builds the complete dependency graph, like conan install does. The main difference is that it
doesn’t try to install or build the binaries, but the package recipes will be retrieved from remotes if necessary.

It is very important to note that the conan graph info command outputs the dependency graph for a given configura-
tion (settings, options), as the dependency graph can be different for different configurations. This means that the input
to the conan graph info command is the same as conan install, the configuration can be specified directly with
settings and options, or using profiles,and querying the graph of a specific recipe is possible by using the --requires
flag as shown above.

You can additionally filter the output, both by filtering by fields (--filter) and by package (--filter-package).
For example, to get the options of zlib, the following command could be run:

284 Chapter 8. Reference

Conan Documentation, Release 2.1.0

$ conan graph info --require=binutils/2.38 -r=conancenter --filter=options --package-
→˓filter="zlib*"

...

======== Basic graph information ========
zlib/1.2.13#13c96f538b52e1600c40b88994de240f:
ref: zlib/1.2.13#13c96f538b52e1600c40b88994de240f
options:
fPIC: True
shared: False

You can generate a graph of your dependencies in json, dot or html formats:

Now, let’s try the dot format for instance:

Listing 1: binutils/2.38 graph info to DOT
$ conan graph info --require=binutils/2.38 -r=conancenter --format=dot > graph.dot

Which generates the following file:

Listing 2: graph.dot
digraph {

"cli" -> "binutils/2.38"
"binutils/2.38" -> "zlib/1.2.13"

}

cli

binutils/2.38

zlib/1.2.13

Note: If using format=html, the generated html contains links to a third-party resource, the vis.js library with 2
files: vis.min.js, vis.min.css. By default they are retrieved from Cloudfare. However, for environments without internet

8.1. Commands 285

Conan Documentation, Release 2.1.0

connection, you’ll need to create a template for the file and place it in CONAN_HOME/templates/graph.html. to
point to a local version of these files:

• vis.min.js: “https://cdnjs.cloudflare.com/ajax/libs/vis/4.18.1/vis.min.js”

• vis.min.css: “https://cdnjs.cloudflare.com/ajax/libs/vis/4.18.1/vis.min.css”

You can use the template found in cli/formatters/graph/info_graph.html as a basis for your own.

See also:
• Check the JSON format output for this command.

conan graph build-order

$ conan graph build-order -h
Migration: Successfully updated settings.yml
usage: conan graph build-order [-h] [-f FORMAT] [-v [V]] [-cc CORE_CONF]

[--name NAME] [--version VERSION] [--user USER]
[--channel CHANNEL] [--requires REQUIRES]
[--tool-requires TOOL_REQUIRES] [-b BUILD]
[-r REMOTE | -nr] [-u [UPDATE]] [-pr PROFILE]
[-pr:b PROFILE_BUILD] [-pr:h PROFILE_HOST]
[-pr:a PROFILE_ALL] [-o OPTIONS]
[-o:b OPTIONS_BUILD] [-o:h OPTIONS_HOST]
[-o:a OPTIONS_ALL] [-s SETTINGS]
[-s:b SETTINGS_BUILD] [-s:h SETTINGS_HOST]
[-s:a SETTINGS_ALL] [-c CONF] [-c:b CONF_BUILD]
[-c:h CONF_HOST] [-c:a CONF_ALL] [-l LOCKFILE]
[--lockfile-partial]
[--lockfile-out LOCKFILE_OUT]
[--lockfile-clean]
[--lockfile-overrides LOCKFILE_OVERRIDES]
[--order-by {recipe,configuration}] [--reduce]
[path]

Compute the build order of a dependency graph.

positional arguments:
path Path to a folder containing a recipe (conanfile.py or

conanfile.txt) or to a recipe file. e.g.,
./my_project/conanfile.txt.

options:
-h, --help show this help message and exit
-f FORMAT, --format FORMAT

Select the output format: json
-v [V] Level of detail of the output. Valid options from less

verbose to more verbose: -vquiet, -verror, -vwarning,
-vnotice, -vstatus, -v or -vverbose, -vv or -vdebug,
-vvv or -vtrace

-cc CORE_CONF, --core-conf CORE_CONF
Global configuration for Conan

--name NAME Provide a package name if not specified in conanfile
(continues on next page)

286 Chapter 8. Reference

https://cdnjs.cloudflare.com/ajax/libs/vis/4.18.1/vis.min.js
https://cdnjs.cloudflare.com/ajax/libs/vis/4.18.1/vis.min.css

Conan Documentation, Release 2.1.0

(continued from previous page)

--version VERSION Provide a package version if not specified in
conanfile

--user USER Provide a user if not specified in conanfile
--channel CHANNEL Provide a channel if not specified in conanfile
--requires REQUIRES Directly provide requires instead of a conanfile
--tool-requires TOOL_REQUIRES

Directly provide tool-requires instead of a conanfile
-b BUILD, --build BUILD

Optional, specify which packages to build from source.
Combining multiple '--build' options on one command
line is allowed. Possible values: --build="*" Force
build from source for all packages. --build=never
Disallow build for all packages, use binary packages
or fail if a binary package is not found, it cannot be
combined with other '--build' options. --build=missing
Build packages from source whose binary package is not
found. --build=cascade Build packages from source that
have at least one dependency being built from source.
--build=[pattern] Build packages from source whose
package reference matches the pattern. The pattern
uses 'fnmatch' style wildcards. --build=~[pattern]
Excluded packages, which will not be built from the
source, whose package reference matches the pattern.
The pattern uses 'fnmatch' style wildcards.
--build=missing:[pattern] Build from source if a
compatible binary does not exist, only for packages
matching pattern.

-r REMOTE, --remote REMOTE
Look in the specified remote or remotes server

-nr, --no-remote Do not use remote, resolve exclusively in the cache
-u [UPDATE], --update [UPDATE]

Will install newer versions and/or revisions in the
local cache for the given reference, or all in case no
argument is supplied. When using version ranges, it
will install the latest version that satisfies the
range. Also, if using revisions, it will update to the
latest revision for the resolved version range.

-pr PROFILE, --profile PROFILE
Apply the specified profile. By default, or if
specifying -pr:h (--profile:host), it applies to the
host context. Use -pr:b (--profile:build) to specify
the build context, or -pr:a (--profile:all) to specify
both contexts at once

-pr:b PROFILE_BUILD, --profile:build PROFILE_BUILD
-pr:h PROFILE_HOST, --profile:host PROFILE_HOST
-pr:a PROFILE_ALL, --profile:all PROFILE_ALL
-o OPTIONS, --options OPTIONS

Apply the specified options. By default, or if
specifying -o:h (--options:host), it applies to the
host context. Use -o:b (--options:build) to specify
the build context, or -o:a (--options:all) to specify
both contexts at once. Example: -o pkg:with_qt=true

(continues on next page)

8.1. Commands 287

Conan Documentation, Release 2.1.0

(continued from previous page)

-o:b OPTIONS_BUILD, --options:build OPTIONS_BUILD
-o:h OPTIONS_HOST, --options:host OPTIONS_HOST
-o:a OPTIONS_ALL, --options:all OPTIONS_ALL
-s SETTINGS, --settings SETTINGS

Apply the specified settings. By default, or if
specifying -s:h (--settings:host), it applies to the
host context. Use -s:b (--settings:build) to specify
the build context, or -s:a (--settings:all) to specify
both contexts at once. Example: -s compiler=gcc

-s:b SETTINGS_BUILD, --settings:build SETTINGS_BUILD
-s:h SETTINGS_HOST, --settings:host SETTINGS_HOST
-s:a SETTINGS_ALL, --settings:all SETTINGS_ALL
-c CONF, --conf CONF Apply the specified conf. By default, or if specifying

-c:h (--conf:host), it applies to the host context.
Use -c:b (--conf:build) to specify the build context,
or -c:a (--conf:all) to specify both contexts at once.
Example: -c tools.cmake.cmaketoolchain:generator=Xcode

-c:b CONF_BUILD, --conf:build CONF_BUILD
-c:h CONF_HOST, --conf:host CONF_HOST
-c:a CONF_ALL, --conf:all CONF_ALL
-l LOCKFILE, --lockfile LOCKFILE

Path to a lockfile. Use --lockfile="" to avoid
automatic use of existing 'conan.lock' file

--lockfile-partial Do not raise an error if some dependency is not found
in lockfile

--lockfile-out LOCKFILE_OUT
Filename of the updated lockfile

--lockfile-clean Remove unused entries from the lockfile
--lockfile-overrides LOCKFILE_OVERRIDES

Overwrite lockfile overrides
--order-by {recipe,configuration}

Select how to order the output, "recipe" by default if
not set.

--reduce Reduce the build order, output only those to build.
Use this only if the result will not be merged later
with other build-order

The conan graph build-order command computes the build order of the dependency graph for the recipe specified
in path or in --requires/--tool-requires.

There are 2 important arguments that affect how this build order is computed:

• The --order-by argument can take 2 values recipe and configuration, depending how we want to structure
and parallelize our CI.

• The --reduce argument will strip all packages in the order that doesn’t need to be built from source.

By default, the conan graph build-order will return the order for the full dependency graph, and it will annotate
in each element what needs to be done, for example "binary": "Cache" if the binary is already in the Conan Cache
and doesnt need to be built from source, and "binary": "Build", if it needs to be built from source. Having
the full order is necessary if we want to conan graph build-order-merge several build-orders into a single one
later, because having the full information allows to preserve the relative order that would otherwise be lost and broken.
Consequently, the --reduce argument should only be used when we are directly going to use the result to do the build,
but not if we plan to later do a merge of the resulting build-order with other ones.

288 Chapter 8. Reference

Conan Documentation, Release 2.1.0

Let’s consider installing libpng and wanting to see the build order for this requirement ordered by recipe:

Warning: Please be aware that starting with Conan 2.1.0, using the –order-by argument is recommended, and its
absence is deprecated. This argument will be removed in the near future. It is maintained for backward compat-
ibility. Note that the JSON output will differ if you use the –order-by argument, changing from a simple list to a
dictionary with extended information.

$ conan graph build-order --requires=libpng/1.5.30 --format=json --order-by=recipe
...
======== Computing the build order ========
{

"order_by": "recipe",
"reduced": false,
"order": [

[
{

"ref": "zlib/1.3#06023034579559bb64357db3a53f88a4",
"depends": [],
"packages": [

[
{

"package_id": "d62dff20d86436b9c58ddc0162499d197be9de1e",
"prev": "54b9c3efd9ddd25eb6a8cbf01860b499",
"context": "host",
"binary": "Cache",
"options": [],
"filenames": [],
"depends": [],
"overrides": {},
"build_args": null

}
]

]
}

],
[

{
"ref": "libpng/1.5.30#ed8593b3f837c6c9aa766f231c917a5b",
"depends": [

"zlib/1.3#06023034579559bb64357db3a53f88a4"
],
"packages": [

[
{

"package_id": "60778dfa43503cdcda3636d15124c19bf6546ae3",
"prev": "ad092d2e4aebcd9d48a5b1f3fd51ba9a",
"context": "host",
"binary": "Download",
"options": [],
"filenames": [],
"depends": [],
"overrides": {},

(continues on next page)

8.1. Commands 289

Conan Documentation, Release 2.1.0

(continued from previous page)

"build_args": null
}

]
]

}
]

]
}

Firstly, we can see the zlib package, as libpng depends on it. The output is sorted by recipes as we passed with the
–order-by argument; however, we might prefer to see it sorted by configurations instead. For that purpouse use the
–order-by argument with value configuration.

$ conan graph build-order --requires=libpng/1.5.30 --format=json --order-by=configuration
...
======== Computing the build order ========
{

"order_by": "configuration",
"reduced": false,
"order": [

[
{

"ref": "zlib/1.3#06023034579559bb64357db3a53f88a4",
"pref": "zlib/1.3

→˓#06023034579559bb64357db3a53f88a4:d62dff20d86436b9c58ddc0162499d197be9de1e
→˓#54b9c3efd9ddd25eb6a8cbf01860b499",

"package_id": "d62dff20d86436b9c58ddc0162499d197be9de1e",
"prev": "54b9c3efd9ddd25eb6a8cbf01860b499",
"context": "host",
"binary": "Cache",
"options": [],
"filenames": [],
"depends": [],
"overrides": {},
"build_args": null

}
],
[

{
"ref": "libpng/1.5.30#ed8593b3f837c6c9aa766f231c917a5b",
"pref": "libpng/1.5.30

→˓#ed8593b3f837c6c9aa766f231c917a5b:60778dfa43503cdcda3636d15124c19bf6546ae3
→˓#ad092d2e4aebcd9d48a5b1f3fd51ba9a",

"package_id": "60778dfa43503cdcda3636d15124c19bf6546ae3",
"prev": "ad092d2e4aebcd9d48a5b1f3fd51ba9a",
"context": "host",
"binary": "Download",
"options": [],
"filenames": [],
"depends": [

"zlib/1.3
→˓#06023034579559bb64357db3a53f88a4:d62dff20d86436b9c58ddc0162499d197be9de1e

(continues on next page)

290 Chapter 8. Reference

Conan Documentation, Release 2.1.0

(continued from previous page)

→˓#54b9c3efd9ddd25eb6a8cbf01860b499"
],
"overrides": {},
"build_args": null

}
]

]
}

If we now apply the --reduce:

$ conan graph build-order --requires=libpng/1.5.30 --reduce --format=json --order-
→˓by=configuration
...
======== Computing the build order ========
{

"order_by": "configuration",
"reduced": false,
"order": []

}

As there are no binaries to build here, all binaries already exist. If we explicitly force to build some, the result would
be only those that are going to be built:

$ conan graph build-order --requires=libpng/1.5.30 --build="libpng/*" --reduce --
→˓format=json --order-by=configuration
...
======== Computing the build order ========
{

"order_by": "configuration",
"reduced": false,
"order": [

[
{

"ref": "libpng/1.5.30#ed8593b3f837c6c9aa766f231c917a5b",
"pref": "libpng/1.5.30

→˓#ed8593b3f837c6c9aa766f231c917a5b:60778dfa43503cdcda3636d15124c19bf6546ae3
→˓#ad092d2e4aebcd9d48a5b1f3fd51ba9a",

"package_id": "60778dfa43503cdcda3636d15124c19bf6546ae3",
"prev": null,
"context": "host",
"binary": "Build",
"options": [],
"filenames": [],
"depends": [],
"overrides": {},
"build_args": "--require=libpng/1.5.30 --build=libpng/1.5.30"

}
]

]
}

Then it will contain exclusively the binary=Build nodes, but not the rest. Note that it will also provide a build_args

8.1. Commands 291

Conan Documentation, Release 2.1.0

field with the arguments needed for a conan install <args> to fire the build of this package in the CI agent.

conan graph build-order-merge

$ conan graph build-order-merge -h
Migration: Successfully updated settings.yml
usage: conan graph build-order-merge [-h] [-f FORMAT] [-v [V]] [-cc CORE_CONF]

[--file [FILE]] [--reduce]

Merge more than 1 build-order file.

options:
-h, --help show this help message and exit
-f FORMAT, --format FORMAT

Select the output format: json
-v [V] Level of detail of the output. Valid options from less

verbose to more verbose: -vquiet, -verror, -vwarning,
-vnotice, -vstatus, -v or -vverbose, -vv or -vdebug,
-vvv or -vtrace

-cc CORE_CONF, --core-conf CORE_CONF
Global configuration for Conan

--file [FILE] Files to be merged
--reduce Reduce the build order, output only those to build.

Use this only if the result will not be merged later
with other build-order

As described in the conan graph build-order command, there are 2 types of order recipe and configuration.
Only build-orders of the same type can be merged together, otherwise the command will return an error.

Note that only build-orders that haven’t been reduced with --reduce can be merged.

The result of merging the different input files can be also reduced with the conan graph build-order-merge
--reduce argument, and the behavior will be the same, leave only the elements that need to be built from source.

conan graph explain

$ conan graph explain -h
WARN: Downgrading cache from Conan 2.2.3 to 2.1.0
usage: conan graph explain [-h] [-f FORMAT] [-v [V]] [-cc CORE_CONF]

[--name NAME] [--version VERSION] [--user USER]
[--channel CHANNEL] [--requires REQUIRES]
[--tool-requires TOOL_REQUIRES] [-b BUILD]
[-r REMOTE | -nr] [-u [UPDATE]] [-pr PROFILE]
[-pr:b PROFILE_BUILD] [-pr:h PROFILE_HOST]
[-pr:a PROFILE_ALL] [-o OPTIONS]
[-o:b OPTIONS_BUILD] [-o:h OPTIONS_HOST]
[-o:a OPTIONS_ALL] [-s SETTINGS]
[-s:b SETTINGS_BUILD] [-s:h SETTINGS_HOST]
[-s:a SETTINGS_ALL] [-c CONF] [-c:b CONF_BUILD]
[-c:h CONF_HOST] [-c:a CONF_ALL] [-l LOCKFILE]
[--lockfile-partial] [--lockfile-out LOCKFILE_OUT]
[--lockfile-clean]

(continues on next page)

292 Chapter 8. Reference

Conan Documentation, Release 2.1.0

(continued from previous page)

[--lockfile-overrides LOCKFILE_OVERRIDES]
[--check-updates] [--build-require]
[--missing [MISSING]]
[path]

Explain what is wrong with the dependency graph, like report missing binaries
closest alternatives, trying to explain why the existing binaries do not match

positional arguments:
path Path to a folder containing a recipe (conanfile.py or

conanfile.txt) or to a recipe file. e.g.,
./my_project/conanfile.txt.

options:
-h, --help show this help message and exit
-f FORMAT, --format FORMAT

Select the output format: json
-v [V] Level of detail of the output. Valid options from less

verbose to more verbose: -vquiet, -verror, -vwarning,
-vnotice, -vstatus, -v or -vverbose, -vv or -vdebug,
-vvv or -vtrace

-cc CORE_CONF, --core-conf CORE_CONF
Global configuration for Conan

--name NAME Provide a package name if not specified in conanfile
--version VERSION Provide a package version if not specified in

conanfile
--user USER Provide a user if not specified in conanfile
--channel CHANNEL Provide a channel if not specified in conanfile
--requires REQUIRES Directly provide requires instead of a conanfile
--tool-requires TOOL_REQUIRES

Directly provide tool-requires instead of a conanfile
-b BUILD, --build BUILD

Optional, specify which packages to build from source.
Combining multiple '--build' options on one command
line is allowed. Possible values: --build="*" Force
build from source for all packages. --build=never
Disallow build for all packages, use binary packages
or fail if a binary package is not found, it cannot be
combined with other '--build' options. --build=missing
Build packages from source whose binary package is not
found. --build=cascade Build packages from source that
have at least one dependency being built from source.
--build=[pattern] Build packages from source whose
package reference matches the pattern. The pattern
uses 'fnmatch' style wildcards. --build=~[pattern]
Excluded packages, which will not be built from the
source, whose package reference matches the pattern.
The pattern uses 'fnmatch' style wildcards.
--build=missing:[pattern] Build from source if a
compatible binary does not exist, only for packages
matching pattern.

-r REMOTE, --remote REMOTE

(continues on next page)

8.1. Commands 293

Conan Documentation, Release 2.1.0

(continued from previous page)

Look in the specified remote or remotes server
-nr, --no-remote Do not use remote, resolve exclusively in the cache
-u [UPDATE], --update [UPDATE]

Will install newer versions and/or revisions in the
local cache for the given reference, or all in case no
argument is supplied. When using version ranges, it
will install the latest version that satisfies the
range. Also, if using revisions, it will update to the
latest revision for the resolved version range.

-pr PROFILE, --profile PROFILE
Apply the specified profile. By default, or if
specifying -pr:h (--profile:host), it applies to the
host context. Use -pr:b (--profile:build) to specify
the build context, or -pr:a (--profile:all) to specify
both contexts at once

-pr:b PROFILE_BUILD, --profile:build PROFILE_BUILD
-pr:h PROFILE_HOST, --profile:host PROFILE_HOST
-pr:a PROFILE_ALL, --profile:all PROFILE_ALL
-o OPTIONS, --options OPTIONS

Apply the specified options. By default, or if
specifying -o:h (--options:host), it applies to the
host context. Use -o:b (--options:build) to specify
the build context, or -o:a (--options:all) to specify
both contexts at once. Example: -o pkg:with_qt=true

-o:b OPTIONS_BUILD, --options:build OPTIONS_BUILD
-o:h OPTIONS_HOST, --options:host OPTIONS_HOST
-o:a OPTIONS_ALL, --options:all OPTIONS_ALL
-s SETTINGS, --settings SETTINGS

Apply the specified settings. By default, or if
specifying -s:h (--settings:host), it applies to the
host context. Use -s:b (--settings:build) to specify
the build context, or -s:a (--settings:all) to specify
both contexts at once. Example: -s compiler=gcc

-s:b SETTINGS_BUILD, --settings:build SETTINGS_BUILD
-s:h SETTINGS_HOST, --settings:host SETTINGS_HOST
-s:a SETTINGS_ALL, --settings:all SETTINGS_ALL
-c CONF, --conf CONF Apply the specified conf. By default, or if specifying

-c:h (--conf:host), it applies to the host context.
Use -c:b (--conf:build) to specify the build context,
or -c:a (--conf:all) to specify both contexts at once.
Example: -c tools.cmake.cmaketoolchain:generator=Xcode

-c:b CONF_BUILD, --conf:build CONF_BUILD
-c:h CONF_HOST, --conf:host CONF_HOST
-c:a CONF_ALL, --conf:all CONF_ALL
-l LOCKFILE, --lockfile LOCKFILE

Path to a lockfile. Use --lockfile="" to avoid
automatic use of existing 'conan.lock' file

--lockfile-partial Do not raise an error if some dependency is not found
in lockfile

--lockfile-out LOCKFILE_OUT
Filename of the updated lockfile

--lockfile-clean Remove unused entries from the lockfile

(continues on next page)

294 Chapter 8. Reference

Conan Documentation, Release 2.1.0

(continued from previous page)

--lockfile-overrides LOCKFILE_OVERRIDES
Overwrite lockfile overrides

--check-updates Check if there are recipe updates
--build-require Whether the provided reference is a build-require
--missing [MISSING] A pattern in the form

'pkg/version#revision:package_id#revision', e.g:
zlib/1.2.13:* means all binaries for zlib/1.2.13. If
revision is not specified, it is assumed latest one.

The conan graph explain tries to give a more detailed explanation for a package that might be missing with the
configuration provided and show the differences between the expected binary package and the available ones. It helps
to understand what is missing from the package requested, whether it is different options, different settings or different
dependencies.

Example:

Imagine that we want to install the lib/1.0.0 that depends on dep/2.0.0 but we don’t have a binary yet, as the latest CI
run only generated a binary for lib/1.0.0 using the previous version of dep. When we try to install the refere lib/1.0.0 it
says:

$ conan install --requires=lib/1.0.0
...
ERROR: Missing prebuilt package for 'lib/1.0.0'

Now we can try to find a explanation for this:

$ conan graph explain --requires=lib/1.0.0
requires: dep/1.Y.Z
diff
dependencies
expected: dep/2.Y.Z
existing: dep/1.Y.Z
explanation: This binary has same settings and options, but different dependencies

In the same way, it can report when a package has a different option value and the output is also available in JSON
format:

$conan graph explain --requires=lib/1.0.0 -o shared=True --format=json
...
{

"closest_binaries": {
"lib/1.0.0": {

"revisions": {
"dc0e384f0551386cd76dc29cc964c95e": {

"timestamp": 1692672717.68,
"packages": {

"b647c43bfefae3f830561ca202b6cfd935b56205": {
"info": {

"settings": {
"arch": "x86_64",
"build_type": "Release",
"compiler": "gcc",
"compiler.version": "11",
"os": "Linux"

(continues on next page)

8.1. Commands 295

Conan Documentation, Release 2.1.0

(continued from previous page)

},
"options": {

"shared": "False"
}

},
"diff": {

"platform": {},
"options": {

"expected": [
"shared=True"

],
"existing": [

"shared=False"
]

},
"settings": {},
"dependencies": {},
"explanation": "This binary was built with same settings␣

→˓but different options."
},
"remote": "conancenter"

}
}

}
}

}
}

}

8.1.4 conan inspect

Warning: This feature is experimental and subject to breaking changes. See the Conan stability section for more
information.

$ conan inspect -h
Migration: Successfully updated settings.yml
usage: conan inspect [-h] [-v [V]] [-cc CORE_CONF] [-f FORMAT]

[-r REMOTE | -nr] [-l LOCKFILE] [--lockfile-partial]
path

Inspect a conanfile.py to return its public fields.

positional arguments:
path Path to a folder containing a recipe (conanfile.py)

options:
-h, --help show this help message and exit
-v [V] Level of detail of the output. Valid options from less

verbose to more verbose: -vquiet, -verror, -vwarning,
(continues on next page)

296 Chapter 8. Reference

Conan Documentation, Release 2.1.0

(continued from previous page)

-vnotice, -vstatus, -v or -vverbose, -vv or -vdebug,
-vvv or -vtrace

-cc CORE_CONF, --core-conf CORE_CONF
Global configuration for Conan

-f FORMAT, --format FORMAT
Select the output format: json

-r REMOTE, --remote REMOTE
Remote names. Accepts wildcards ('*' means all the
remotes available)

-nr, --no-remote Do not use remote, resolve exclusively in the cache
-l LOCKFILE, --lockfile LOCKFILE

Path to a lockfile. Use --lockfile="" to avoid
automatic use of existing 'conan.lock' file

--lockfile-partial Do not raise an error if some dependency is not found
in lockfile

The conan inspect command shows the public attributes of any recipe (conanfile.py) as follows:

$ conan inspect .
default_options:

shared: False
fPIC: True
neon: True
msa: True
sse: True
vsx: True
api_prefix:

description: libpng is the official PNG file format reference library.
generators: []
homepage: http://www.libpng.org
label:
license: libpng-2.0
name: libpng
options:

api_prefix:
fPIC: True
msa: True
neon: True
shared: False
sse: True
vsx: True

options_definitions:
shared: ['True', 'False']
fPIC: ['True', 'False']
neon: ['True', 'check', 'False']
msa: ['True', 'False']
sse: ['True', 'False']
vsx: ['True', 'False']
api_prefix: ['ANY']

package_type: None
requires: []
revision_mode: hash

(continues on next page)

8.1. Commands 297

Conan Documentation, Release 2.1.0

(continued from previous page)

settings: ['os', 'arch', 'compiler', 'build_type']
topics: ['png', 'graphics', 'image']
url: https://github.com/conan-io/conan-center-index

conan inspect evaluates recipe methods such as set_name() and set_version(), and is capable of resolving
python_requires dependencies (which can be locked with the --lockfile argument), so its base methods will also
be properly executed.

Note: The --remote argument is used only for fetching remote python_requires in cases where they are needed,
not to inspect recipes from a remote. Use conan graph info for such cases.

The conan inspect ... --format=json returns a JSON output format in stdout (which can be redirected to a
file) with the following structure:

$ conan inspect . --format=json
{

"name": "libpng",
"url": "https://github.com/conan-io/conan-center-index",
"license": "libpng-2.0",
"description": "libpng is the official PNG file format reference library.",
"homepage": "http://www.libpng.org",
"revision_mode": "hash",
"default_options": {

"shared": false,
"fPIC": true,
"neon": true,
"msa": true,
"sse": true,
"vsx": true,
"api_prefix": ""

},
"topics": [

"png",
"graphics",
"image"

],
"package_type": "None",
"settings": [

"os",
"arch",
"compiler",
"build_type"

],
"options": {

"api_prefix": "",
"fPIC": "True",
"msa": "True",
"neon": "True",
"shared": "False",
"sse": "True",
"vsx": "True"

(continues on next page)

298 Chapter 8. Reference

Conan Documentation, Release 2.1.0

(continued from previous page)

},
"options_definitions": {

"shared": [
"True",
"False"

],
"fPIC": [

"True",
"False"

],
"neon": [

"True",
"check",
"False"

],
"msa": [

"True",
"False"

],
"sse": [

"True",
"False"

],
"vsx": [

"True",
"False"

],
"api_prefix": [

"ANY"
]

},
"generators": [],
"requires": [],
"source_folder": null,
"build_folder": null,
"generators_folder": null,
"package_folder": null,
"label": ""

}

Note: conan inspect does not list any requirements listed in the requirements() method, only those present in
the requires attribute will be shown.

8.1. Commands 299

Conan Documentation, Release 2.1.0

8.1.5 conan install

$ conan install -h
Migration: Successfully updated settings.yml
usage: conan install [-h] [-v [V]] [-cc CORE_CONF] [-f FORMAT] [--name NAME]

[--version VERSION] [--user USER] [--channel CHANNEL]
[--requires REQUIRES] [--tool-requires TOOL_REQUIRES]
[-b BUILD] [-r REMOTE | -nr] [-u [UPDATE]] [-pr PROFILE]
[-pr:b PROFILE_BUILD] [-pr:h PROFILE_HOST]
[-pr:a PROFILE_ALL] [-o OPTIONS] [-o:b OPTIONS_BUILD]
[-o:h OPTIONS_HOST] [-o:a OPTIONS_ALL] [-s SETTINGS]
[-s:b SETTINGS_BUILD] [-s:h SETTINGS_HOST]
[-s:a SETTINGS_ALL] [-c CONF] [-c:b CONF_BUILD]
[-c:h CONF_HOST] [-c:a CONF_ALL] [-l LOCKFILE]
[--lockfile-partial] [--lockfile-out LOCKFILE_OUT]
[--lockfile-clean]
[--lockfile-overrides LOCKFILE_OVERRIDES] [-g GENERATOR]
[-of OUTPUT_FOLDER] [-d DEPLOYER]
[--deployer-folder DEPLOYER_FOLDER]
[--deployer-package DEPLOYER_PACKAGE] [--build-require]
[path]

Install the requirements specified in a recipe (conanfile.py or conanfile.txt).

It can also be used to install packages without a conanfile, using the
--requires and --tool-requires arguments.

If any requirement is not found in the local cache, it will iterate the remotes
looking for it. When the full dependency graph is computed, and all dependencies
recipes have been found, it will look for binary packages matching the current settings.
If no binary package is found for some or several dependencies, it will error,
unless the '--build' argument is used to build it from source.

After installation of packages, the generators and deployers will be called.

positional arguments:
path Path to a folder containing a recipe (conanfile.py or

conanfile.txt) or to a recipe file. e.g.,
./my_project/conanfile.txt.

options:
-h, --help show this help message and exit
-v [V] Level of detail of the output. Valid options from less

verbose to more verbose: -vquiet, -verror, -vwarning,
-vnotice, -vstatus, -v or -vverbose, -vv or -vdebug,
-vvv or -vtrace

-cc CORE_CONF, --core-conf CORE_CONF
Global configuration for Conan

-f FORMAT, --format FORMAT
Select the output format: json

--name NAME Provide a package name if not specified in conanfile
--version VERSION Provide a package version if not specified in

conanfile
(continues on next page)

300 Chapter 8. Reference

Conan Documentation, Release 2.1.0

(continued from previous page)

--user USER Provide a user if not specified in conanfile
--channel CHANNEL Provide a channel if not specified in conanfile
--requires REQUIRES Directly provide requires instead of a conanfile
--tool-requires TOOL_REQUIRES

Directly provide tool-requires instead of a conanfile
-b BUILD, --build BUILD

Optional, specify which packages to build from source.
Combining multiple '--build' options on one command
line is allowed. Possible values: --build="*" Force
build from source for all packages. --build=never
Disallow build for all packages, use binary packages
or fail if a binary package is not found, it cannot be
combined with other '--build' options. --build=missing
Build packages from source whose binary package is not
found. --build=cascade Build packages from source that
have at least one dependency being built from source.
--build=[pattern] Build packages from source whose
package reference matches the pattern. The pattern
uses 'fnmatch' style wildcards. --build=~[pattern]
Excluded packages, which will not be built from the
source, whose package reference matches the pattern.
The pattern uses 'fnmatch' style wildcards.
--build=missing:[pattern] Build from source if a
compatible binary does not exist, only for packages
matching pattern.

-r REMOTE, --remote REMOTE
Look in the specified remote or remotes server

-nr, --no-remote Do not use remote, resolve exclusively in the cache
-u [UPDATE], --update [UPDATE]

Will install newer versions and/or revisions in the
local cache for the given reference, or all in case no
argument is supplied. When using version ranges, it
will install the latest version that satisfies the
range. Also, if using revisions, it will update to the
latest revision for the resolved version range.

-pr PROFILE, --profile PROFILE
Apply the specified profile. By default, or if
specifying -pr:h (--profile:host), it applies to the
host context. Use -pr:b (--profile:build) to specify
the build context, or -pr:a (--profile:all) to specify
both contexts at once

-pr:b PROFILE_BUILD, --profile:build PROFILE_BUILD
-pr:h PROFILE_HOST, --profile:host PROFILE_HOST
-pr:a PROFILE_ALL, --profile:all PROFILE_ALL
-o OPTIONS, --options OPTIONS

Apply the specified options. By default, or if
specifying -o:h (--options:host), it applies to the
host context. Use -o:b (--options:build) to specify
the build context, or -o:a (--options:all) to specify
both contexts at once. Example: -o pkg:with_qt=true

-o:b OPTIONS_BUILD, --options:build OPTIONS_BUILD
-o:h OPTIONS_HOST, --options:host OPTIONS_HOST

(continues on next page)

8.1. Commands 301

Conan Documentation, Release 2.1.0

(continued from previous page)

-o:a OPTIONS_ALL, --options:all OPTIONS_ALL
-s SETTINGS, --settings SETTINGS

Apply the specified settings. By default, or if
specifying -s:h (--settings:host), it applies to the
host context. Use -s:b (--settings:build) to specify
the build context, or -s:a (--settings:all) to specify
both contexts at once. Example: -s compiler=gcc

-s:b SETTINGS_BUILD, --settings:build SETTINGS_BUILD
-s:h SETTINGS_HOST, --settings:host SETTINGS_HOST
-s:a SETTINGS_ALL, --settings:all SETTINGS_ALL
-c CONF, --conf CONF Apply the specified conf. By default, or if specifying

-c:h (--conf:host), it applies to the host context.
Use -c:b (--conf:build) to specify the build context,
or -c:a (--conf:all) to specify both contexts at once.
Example: -c tools.cmake.cmaketoolchain:generator=Xcode

-c:b CONF_BUILD, --conf:build CONF_BUILD
-c:h CONF_HOST, --conf:host CONF_HOST
-c:a CONF_ALL, --conf:all CONF_ALL
-l LOCKFILE, --lockfile LOCKFILE

Path to a lockfile. Use --lockfile="" to avoid
automatic use of existing 'conan.lock' file

--lockfile-partial Do not raise an error if some dependency is not found
in lockfile

--lockfile-out LOCKFILE_OUT
Filename of the updated lockfile

--lockfile-clean Remove unused entries from the lockfile
--lockfile-overrides LOCKFILE_OVERRIDES

Overwrite lockfile overrides
-g GENERATOR, --generator GENERATOR

Generators to use
-of OUTPUT_FOLDER, --output-folder OUTPUT_FOLDER

The root output folder for generated and build files
-d DEPLOYER, --deployer DEPLOYER

Deploy using the provided deployer to the output
folder

--deployer-folder DEPLOYER_FOLDER
Deployer output folder, base build folder by default
if not set

--deployer-package DEPLOYER_PACKAGE
Execute the deploy() method of the packages matching
the provided patterns

--build-require Whether the provided path is a build-require

The conan install command is one of the main Conan commands, and it is used to resolve and install dependencies.

This command does the following:

• Compute the whole dependency graph, for the current configuration defined by settings, options, profiles and
configuration. It resolves version ranges, transitive dependencies, conditional requirements, etc, to build the
dependency graph.

• Evaluate the existence of binaries for every package in the graph, whether or not there are precompiled binaries
to download, or if they should be built from sources (as directed by the --build argument). If binaries are
missing, it will not recompute the dependency graph to try to fallback to previous versions that contain binaries

302 Chapter 8. Reference

Conan Documentation, Release 2.1.0

for that configuration. If a certain dependency version is desired, it should be explicitly required.

• Download precompiled binaries, or build binaries from sources in the local cache, in the right order for the
dependency graph.

• Create the necessary files as requested by the “generators”, so build systems and other tools can locate the locally
installed dependencies

• Optionally, execute the desired deployers.

See also:
• Check the JSON format output for this command.

Conanfile path or –requires

The conan install command can use 2 different origins for information. The first one is using a local conanfile.py
or conanfile.txt, containing definitions of the dependencies and generators to be used.

$ conan install . # there is a conanfile.txt or a conanfile.py in the cwd
$ conan install conanfile.py # also works, direct reference file
$ conan install myconan.txt # explicit custom name
$ conan install myfolder # there is a conanfile in "myfolder" folder

Even if it is possible to use a custom name, in the general case, it is recommended to use the default conanfile.py
name, located in the repository root, so users can do a straightforward git clone ... `` + ``conan install .

The other possibility is to not have a conanfile at all, and define the requirements to be installed directly in the
command line:

Install the zlib/1.2.13 library
$ conan install --requires=zlib/1.2.13
Install the zlib/1.2.13 and bzip2/1.0.8 libraries
$ conan install --requires=zlib/1.2.13 --requires=bzip2/1.0.8
Install the cmake/3.23.5 and ninja/1.11.0 tools
$ conan install --tool-requires=cmake/3.23.5 --tool-requires=ninja/1.11.0
Install the zlib/1.2.13 library and ninja/1.11.0 tool
$ conan install --requires=zlib/1.2.13 --tool-requires=ninja/1.11.0

In the general case, it is recommended to use a conanfile instead of defining things in the command line.

Profiles, Settings, Options, Conf

There are several arguments that are used to define the effective profiles that will be used, both for the “build” and
“host” contexts.

By default the arguments refer to the “host” context, so --settings:host, -s:h is totally equivalent to
--settings, -s. Also, by default, the conan install command will use the default profile both for the “build”
and “host” context. That means that if a profile with the “default” name has not been created, it will error.

Multiple definitions of profiles can be passed as arguments, and they will compound from left to right (right has the
highest priority)

The values of myprofile3 will have higher priority
$ conan install . -pr=myprofile1 -pr=myprofile2 -pr=myprofile3

8.1. Commands 303

Conan Documentation, Release 2.1.0

If values for any of settings, options and conf are provided in the command line, they create a profile that is
composed with the other provided -pr (or the “default” one if not specified) profiles, with higher priority, not matter
what the order of arguments is.

the final "host" profile will always be build_type=Debug, even if "myprofile"
says "build_type=Release"
$ conan install . -pr=myprofile -s build_type=Debug

Generators and deployers

The -g argument allows to define in the command line the different built-in generators to be used:

$ conan install --requires=zlib/1.2.13 -g CMakeDeps -g CMakeToolchain

Note that in the general case, the recommended approach is to have the generators defined in the conanfile, and
only for the --requires use case, it would be more necessary as command line argument.

Generators are intended to create files for the build systems to locate the dependencies, while the deployers main
use case is to copy files from the Conan cache to user space, and performing any other custom operations over the
dependency graph, like collecting licenses, generating reports, deploying binaries to the system, etc. The syntax for
deployers is:

does a full copy of the dependencies binaries to the current user folder
$ conan install . --deployer=full_deploy

There are 2 built-in deployers:

• full_deploy does a complete copy of the dependencies binaries in the local folder, with a minimal folder
structure to avoid conflicts between files and artifacts of different packages

• direct_deploy does a copy of only the immediate direct dependencies, but does not include the transitive
dependencies.

Some generators might have the capability of redefining the target “package folder”. That means that if some other
generator like CMakeDeps is used that is pointing to the packages, it will be pointing to the local deployed copy, and not
to the original packages in the Conan cache. See the full example in Creating a Conan-agnostic deploy of dependencies
for developer use.

It is also possible, and it is a powerful extension point, to write custom user deployers. Read more about custom
deployers in Deployers.

It is possible to also invoke the package recipes deploy() method with the --deployer-package:

Execute deploy() method of every recipe that defines it
$ conan install --requires=pkg/0.1 --deployer-package=*
Execute deploy() method only for "pkg" (any version) recipes
$ conan install --requires=pkg/0.1 --deployer-package=pkg/*

The --deployer-package argument is a pattern and accept multiple values, all package references matching any of
the defined patterns will execute its deploy() method. The --deployer-folder argument will also affect the output
location of this deployment. See the deploy() method.

If multiple deployed packages deploy to the same location, it is their responsibility to not mutually overwrite their
binaries if they have the same filenames. For example if multiple packages deploy() a file called “License.txt”, each
recipe is responsible for creating an intermediate folder with the package name and/or version that makes it unique, so
other recipes deploy() method do not overwrite previously deployed “License.txt” files.

304 Chapter 8. Reference

Conan Documentation, Release 2.1.0

Name, version, user, channel

The conan install command provides optional arguments for --name, --version, --user, --channel.
These arguments might not be necessary in the majority of cases. Never for conanfile.txt and for conanfile.py
only in the case that they are not defined in the recipe:

from conan import ConanFile
from conan.tools.scm import Version

class Pkg(ConanFile):
name = "mypkg"

def requirements(self):
if Version(self.version) >= "3.23":

self.requires("...")

If we don't specify ``--version``, it will be None and it will fail
$ conan install . --version=3.24

Lockfiles

The conan install command has several arguments to load and produce lockfiles. By default, if a conan.lock file
is located beside the recipe or in the current working directory if no path is provided, will be used as an input lockfile.

Lockfiles are strict by default, that means that if there is some requires and it cannot find a matching locked reference
in the lockfile, it will error and stop. For cases where it is expected that the lockfile will not be complete, as there might
be new dependencies, the --lockfile-partial argument can be used.

By default, conan install will not generate an output lockfile, but if the --lockfile-out argument is provided,
pointing to a filename, like --lockfile-out=result.lock, then a lockfile will be generated from the current de-
pendency graph. If --lockfile-clean argument is provided, all versions and revisions not used in the current
dependency graph will be dropped from the resulting lockfile.

Let’s say that we already have a conan.lock input lockfile, but we just added a new requires = "newpkg/1.0" to
a new dependency. We could resolve the dependencies, locking all the previously locked versions, while allowing to
resolve the new one, which was not previously present in the lockfile, and store it in a new location, or overwrite the
existing lockfile:

--lockfile=conan.lock is the default, not necessary
$ conan install . --lockfile=conan.lock --lockfile-partial --lockfile-out=conan.lock

Also, it is likely that the majority of lockfile operations are better managed by the conan lock command.

See also:
• Lockfiles.

• Read the tutorial about the local package development flow.

8.1. Commands 305

Conan Documentation, Release 2.1.0

Update

The conan install command has an --update argument that will force the re-evaluation of the selected items of
the dependency graph, allowing for the update of the dependencies to the latest version if using version ranges, or to
the latest revision of the same version, when those versions are not locked in the given lockfile. Passing --update will
check every package in the dependency graph, but it is also possible to pass a package name to the --update argument
(it can be added to the command more than once with different names), to only update those packages, which avoids
the re-evaluation of the whole graph.

$ conan install . --update # Update all packages in the graph
$ conan install . --update=openssl # Update only the openssl package
$ conan install . --update=openssl --update=boost # Update both openssl and boost␣
→˓packages

8.1.6 conan list

$ conan list -h
WARN: Downgrading cache from Conan 2.2.3 to 2.1.0
usage: conan list [-h] [-v [V]] [-cc CORE_CONF] [-f FORMAT] [-p PACKAGE_QUERY]

[-r REMOTE] [-c] [-g GRAPH] [-gb GRAPH_BINARIES]
[-gr GRAPH_RECIPES] [--lru LRU]
[pattern]

List existing recipes, revisions, or packages in the cache (by default) or the remotes.

positional arguments:
pattern A pattern in the form

'pkg/version#revision:package_id#revision', e.g:
zlib/1.2.13:* means all binaries for zlib/1.2.13. If
revision is not specified, it is assumed latest one.

options:
-h, --help show this help message and exit
-v [V] Level of detail of the output. Valid options from less

verbose to more verbose: -vquiet, -verror, -vwarning,
-vnotice, -vstatus, -v or -vverbose, -vv or -vdebug,
-vvv or -vtrace

-cc CORE_CONF, --core-conf CORE_CONF
Global configuration for Conan

-f FORMAT, --format FORMAT
Select the output format: json, html, compact

-p PACKAGE_QUERY, --package-query PACKAGE_QUERY
List only the packages matching a specific query, e.g,
os=Windows AND (arch=x86 OR compiler=gcc)

-r REMOTE, --remote REMOTE
Remote names. Accepts wildcards ('*' means all the
remotes available)

-c, --cache Search in the local cache
-g GRAPH, --graph GRAPH

Graph json file
-gb GRAPH_BINARIES, --graph-binaries GRAPH_BINARIES

Which binaries are listed
(continues on next page)

306 Chapter 8. Reference

Conan Documentation, Release 2.1.0

(continued from previous page)

-gr GRAPH_RECIPES, --graph-recipes GRAPH_RECIPES
Which recipes are listed

--lru LRU List recipes and binaries that have not been recently
used. Use a time limit like --lru=5d (days) or
--lru=4w (weeks), h (hours), m(minutes)

The conan list command can list recipes and packages from the local cache, from the specified remotes or from
both. This command uses a reference pattern as input. The structure of this pattern is based on a complete Conan
reference that looks like:

name/version@user/channel#rrev:pkgid#prev

This pattern supports using * as wildcard as well as #latest to specify the latest revision (though that might not be
necessary in most cases, by default Conan will be listing the latest revisions).

Using it you can list:

• Recipe references (name/version@user/channel).

• Recipe revisions (name/version@user/channel#rrev).

• Package IDs and their configurations (name/version@user/channel#rrev:pkgids).

• Package revisions (name/version@user/channel#rrev:pkgids#prev).

Warning: The json output of the conan list --format=json is in preview. See the Conan stability section
for more information.

Let’s see some examples on how to use this pattern:

Listing recipe references

Listing 3: list all references on local cache

Make sure to quote the argument
$ conan list "*"
Local Cache
hello
hello/2.26.1@mycompany/testing
hello/2.20.2@mycompany/testing
hello/1.0.4@mycompany/testing
hello/2.3.2@mycompany/stable
hello/1.0.4@mycompany/stable

string-view-lite
string-view-lite/1.6.0

zlib
zlib/1.2.11

Listing 4: list all versions of a reference

$ conan list zlib
Local Cache
zlib

(continues on next page)

8.1. Commands 307

Conan Documentation, Release 2.1.0

(continued from previous page)

zlib/1.2.11
zlib/1.2.12

As we commented, you can also use the * wildcard inside the reference you want to search.

Listing 5: list all versions of a reference, equivalent to the previous one

Make sure to quote the argument
$ conan list "zlib/*"
Local Cache
zlib
zlib/1.2.11
zlib/1.2.12

You can also use version ranges in the version field to define the versions you want:

Listing 6: list version ranges

Make sure to quote the argument
$ conan list "zlib/[<1.2.12]" -r=conancenter
Local Cache
zlib
zlib/1.2.11

$ conan list "zlib/[>1.2.11]" -r=conancenter
Local Cache
zlib
zlib/1.2.12
zlib/1.2.13

Use the pattern for searching only references matching a specific channel:

Listing 7: list references with ‘stable’ channel

$ conan list "*/*@*/stable"
Local Cache
hello
hello/2.3.2@mycompany/stable
hello/1.0.4@mycompany/stable

Use the ...@ pattern for searching only references that don’t have user and channel:

308 Chapter 8. Reference

Conan Documentation, Release 2.1.0

Listing 8: list references without user and channel

$ conan list "*/*@"
Local Cache
string-view-lite
string-view-lite/1.6.0

zlib
zlib/1.2.11

Listing recipe revisions

The shortest way of listing the latest recipe revision for a recipe is using the name/version@user/channel as the
pattern:

Listing 9: list latest recipe revision

$ conan list zlib/1.2.11
Local Cache
zlib
zlib/1.2.11
revisions
ffa77daf83a57094149707928bdce823 (2022-11-02 13:46:53 UTC)

This is equivalent to specify explicitly that you want to list the latest recipe revision using the #latest placeholder:

Listing 10: list latest recipe revision

$ conan list zlib/1.2.11#latest
Local Cache
zlib
zlib/1.2.11
revisions
ffa77daf83a57094149707928bdce823 (2022-11-02 13:46:53 UTC)

To list all recipe revisions use the * wildcard:

8.1. Commands 309

Conan Documentation, Release 2.1.0

Listing 11: list all recipe revisions

$ conan list "zlib/1.2.11#*""
Local Cache
zlib
zlib/1.2.11
revisions
ffa77daf83a57094149707928bdce823 (2022-11-02 13:46:53 UTC)
8b23adc7acd6f1d6e220338a78e3a19e (2022-10-19 09:19:10 UTC)
ce3665ce19f82598aa0f7ac0b71ee966 (2022-10-14 11:42:21 UTC)
31ee767cb2828e539c42913a471e821a (2022-10-12 05:49:39 UTC)
d77ee68739fcbe5bf37b8a4690eea6ea (2022-08-05 17:17:30 UTC)

Listing package IDs

The shortest way of listing all the package IDs belonging to the latest recipe revision is using name/version@user/
channel:* as the pattern:

Listing 12: list all package IDs for latest recipe revision

Make sure to quote the argument
$ conan list "zlib/1.2.11:*"
Local Cache
zlib
zlib/1.2.11
revisions
d77ee68739fcbe5bf37b8a4690eea6ea (2022-08-05 17:17:30 UTC)
packages
d0599452a426a161e02a297c6e0c5070f99b4909
info
settings
arch: x86_64
build_type: Release
compiler: apple-clang
compiler.version: 12.0
os: Macos

options
fPIC: True
shared: False

ebec3dc6d7f6b907b3ada0c3d3cdc83613a2b715
info
settings
arch: x86_64
build_type: Release
compiler: gcc
compiler.version: 11
os: Linux

options
fPIC: True
shared: False

310 Chapter 8. Reference

Conan Documentation, Release 2.1.0

Note: Here the #latest for the recipe revision is implicit, i.e., that pattern is equivalent to zlib/1.2.11#latest:*

To list all the package IDs for all the recipe revisions use the * wildcard in the revision # part:

Listing 13: list all the package IDs for all the recipe revisions

Make sure to quote the argument
$ conan list "zlib/1.2.11#*:*"
zlib

zlib/1.2.11
revisions
d77ee68739fcbe5bf37b8a4690eea6ea (2022-08-05 17:17:30 UTC)
packages
d0599452a426a161e02a297c6e0c5070f99b4909
info
settings
arch: x86_64
build_type: Release
compiler: apple-clang
compiler.version: 12.0
os: Macos

options
fPIC: True
shared: False

e4e1703f72ed07c15d73a555ec3a2fa1 (2022-07-04 21:21:45 UTC)
packages
d0599452a426a161e02a297c6e0c5070f99b4909
info
settings
arch: x86_64
build_type: Release
compiler: apple-clang
compiler.version: 12.0
os: Macos

options
fPIC: True
shared: False

Listing package revisions

The shortest way of listing the latest package revision for a specific recipe revision and package ID is using the pattern
name/version@user/channel#rrev:pkgid

Listing 14: list latest package revision for a specific recipe revision and
package ID

$ conan list zlib/1.2.11
→˓#8b23adc7acd6f1d6e220338a78e3a19e:fdb823f07bc228621617c6397210a5c6c4c8807b
Local Cache
zlib
zlib/1.2.11

(continues on next page)

8.1. Commands 311

Conan Documentation, Release 2.1.0

(continued from previous page)

revisions
8b23adc7acd6f1d6e220338a78e3a19e (2022-08-05 17:17:30 UTC)
packages
fdb823f07bc228621617c6397210a5c6c4c8807b
revisions
4834a9b0d050d7cf58c3ab391fe32e25 (2022-11-18 12:33:31 UTC)

To list all the package revisions for for the latest recipe revision:

Listing 15: list all the package revisions for all package-ids the latest
recipe revision

Make sure to quote the argument
$ conan list "zlib/1.2.11:*#*"
Local Cache
zlib
zlib/1.2.11
revisions
6a6451bbfcb0e591333827e9784d7dfa (2022-12-29 11:51:39 UTC)
packages
b1d267f77ddd5d10d06d2ecf5a6bc433fbb7eeed
revisions
67bb089d9d968cbc4ef69e657a03de84 (2022-12-29 11:47:36 UTC)
5e196dbea832f1efee1e70e058a7eead (2022-12-29 11:47:26 UTC)
26475a416fa5b61cb962041623748d73 (2022-12-29 11:02:14 UTC)

d15c4f81b5de757b13ca26b636246edff7bdbf24
revisions
a2eb7f4c8f2243b6e80ec9e7ee0e1b25 (2022-12-29 11:51:40 UTC)

Note: Here the #latest for the recipe revision is implicit, i.e., that pattern is equivalent to zlib/1.2.
11#latest:*#*

Listing graph artifacts

When the conan list --graph=<graph.json> graph json file is provided, the command will list the bi-
naries in it. By default, it will list all recipes and binaries included in the dependency graph. But the
--graph-recipes=<recipe-mode> and --graph-binaries=<binary-mode> allow specifying what artifacts have
to be listed in the final result, some examples:

• conan list --graph=graph.json --graph-binaries=build list exclusively the recipes and binaries that
have been built from sources

• conan list --graph=graph.json --graph-recipes=* list exclusively the recipes, all recipes, but no bi-
naries

• conan list --graph=graph.json --graph-binaries=download list exclusively the binaries that have
been downloaded in the last conan create or conan install

312 Chapter 8. Reference

Conan Documentation, Release 2.1.0

List json output format

Note: Best practices
The text output in the terminal should never be parsed or relied on for automation, and it is intended for human reading
only. For any automation, the recommended way is using the formatted output as json

The conan list ... --format=json will return a json output in stdout (which can be redirected to a file) with
the following structure:

Make sure to quote the argument
$ conan list "zlib/1.2.11:*#*" --format=json
{
"Local Cache": {
"zli/1.0.0": {
"revisions": {
"b58eeddfe2fd25ac3a105f72836b3360": {
"timestamp": "2023-01-10 16:30:27 UTC",
"packages": {
"9a4eb3c8701508aa9458b1a73d0633783ecc2270": {
"revisions": {
"d9b1e9044ee265092e81db7028ae10e0": {
"timestamp": "2023-01-10 22:45:49 UTC"

}
},
"info": {
"settings": {

"os": "Linux"
}

}
},
"ebec3dc6d7f6b907b3ada0c3d3cdc83613a2b715": {
"revisions": {
"d9b1e9044ee265092e81db7028ae10e0": {
"timestamp": "2023-01-10 22:45:49 UTC"

}
},
"info": {
"settings": {
"os": "Windows"

}
}

}
}

}
}

}
}

}

8.1. Commands 313

Conan Documentation, Release 2.1.0

List html output format

The conan list ... --format=html will return a html output in stdout (which can be redirected to a file) with
the following structure:

$ conan list "zlib/1.2.13#*:*#*" --format=html -c > list.html

Here is the rendered generated HTML.

List compact output format

For developers, it can be convenient to use the --format=compact output, because it allows to copy and paste full
references into other commands (like for example conan cache path):

$ conan list "zlib/1.2.13:*" -r=conancenter --format=compact
conancenter
zlib/1.2.13
zlib/1.2.13#97d5730b529b4224045fe7090592d4c1%1692672717.68 (2023-08-22 02:51:57 UTC)
zlib/1.2.13

→˓#97d5730b529b4224045fe7090592d4c1:d62dff20d86436b9c58ddc0162499d197be9de1e
settings: Macos, x86_64, Release, apple-clang, 13
options(diff): fPIC=True, shared=False

zlib/1.2.13
→˓#97d5730b529b4224045fe7090592d4c1:abe5e2b04ea92ce2ee91bc9834317dbe66628206

(continues on next page)

314 Chapter 8. Reference

Conan Documentation, Release 2.1.0

(continued from previous page)

settings: Linux, x86_64, Release, gcc, 11
options(diff): shared=True

zlib/1.2.13
→˓#97d5730b529b4224045fe7090592d4c1:ae9eaf478e918e6470fe64a4d8d4d9552b0b3606

settings: Windows, x86_64, Release, msvc, dynamic, Release, 192
options(diff): shared=True

...

The --format=compact will show the list of values for settings, and it will only show the differences (“diff”) for
options, that is, it will compute the common denominator of options for all displayed packages, and will print only
those values that deviate from that common denominator.

8.1.7 conan lock

The conan lock command contains several subcommands. In addition to these commands, most of the Conan com-
mands that compute a graph, like create, install, graph, can both receive lockfiles as input and produce lockfiles
as output.

conan lock add

$ conan lock add -h
WARN: Downgrading cache from Conan 2.2.3 to 2.1.0
usage: conan lock add [-h] [-v [V]] [-cc CORE_CONF] [--requires REQUIRES]

[--build-requires BUILD_REQUIRES]
[--python-requires PYTHON_REQUIRES]
[--lockfile-out LOCKFILE_OUT] [--lockfile LOCKFILE]

Add requires, build-requires or python-requires to an existing or new
lockfile. The resulting lockfile will be ordered, newer versions/revisions
first. References can be supplied with and without revisions like "--
requires=pkg/version", but they must be package references, including at least
the version, and they cannot contain a version range.

options:
-h, --help show this help message and exit
-v [V] Level of detail of the output. Valid options from less

verbose to more verbose: -vquiet, -verror, -vwarning,
-vnotice, -vstatus, -v or -vverbose, -vv or -vdebug,
-vvv or -vtrace

-cc CORE_CONF, --core-conf CORE_CONF
Global configuration for Conan

--requires REQUIRES Add references to lockfile.
--build-requires BUILD_REQUIRES

Add build-requires to lockfile
--python-requires PYTHON_REQUIRES

Add python-requires to lockfile
--lockfile-out LOCKFILE_OUT

Filename of the created lockfile
--lockfile LOCKFILE Filename of the input lockfile

8.1. Commands 315

Conan Documentation, Release 2.1.0

The conan lock add command is able to add a package version to an existing or new lockfile requires,
build_requires or python_requires.

For example, the following is able to create a lockfile (by default, named conan.lock):

$ conan lock add --requires=pkg/1.1 --build-requires=tool/2.2 --python-requires=mypytool/
→˓3.3
Generated lockfile: ...conan.lock

$cat conan.lock
{

"version": "0.5",
"requires": [

"pkg/1.1"
],
"build_requires": [

"tool/2.2"
],
"python_requires": [

"mypytool/3.3"
]

}

The conan lock add command also allows to provide an existing lockfile as an input, and it will add the arguments
to the existing lockfile, maintaining the package versions sorted:

$ conan lock add --build-requires=tool/2.3 --lockfile=conan.lock
Using lockfile: '.../conan.lock'
Generated lockfile: .../conan.lock

$ cat conan.lock
{

"version": "0.5",
"requires": [

"pkg/1.1"
],
"build_requires": [

"tool/2.3",
"tool/2.2"

],
"python_requires": [

"mypytool/3.3"
]

}

The conan lock add command does not perform any checking on the lockfile, the packages, the existence of pack-
ages, the existence of package versions, or the existence of those packages in a given dependency graph, it is a basic
manipulation of the json information. When that lockfile is applied to resolve a dependency graph, it is possible that
the added versions do not exist, or do not resolve for the conanfile.py recipes defined version ranges.

Moreover, the list of versions is still sorted. Adding an older version like tool/2.1 to the previous lockfile won’t
make that version being used automatically if the recipes contain the version range tool/[>=2.0 <3], because the
tool/2.2 version is listed there and the range will resolve to it, not to the older tool/2.1.

Note that a lockfile created with conan lock add can be incomplete and not contain all necessary locked versions
that a full dependency graph would need. For those cases, recall that the --lockfile-partial argument can be

316 Chapter 8. Reference

Conan Documentation, Release 2.1.0

applied. Note also that if a conan.lock file exist in the current folder, Conan commands like conan install will
automatically use it. Please have a look to the lockfiles tutorial.

If explicitly adding revisions, please recall that the revisions are timestamp sorted. If more than one revision exists
in the lockfile, it is mandatory to provide the timestamps of those revisions, so the sorting makes sense, which can be
done with:

$ conan lock add --requires=pkg/1.1#revision%timestamp

Warning:
• It is forbidden to manually manipulate a Conan lockfile, changing the strict sorting of references, and that

could result in any arbitrary undefined behavior.

• Recall that it is not possible to conan lock add a version range. The version might be not fully complete
(like not providing the revision), but it must be an exact version.

Note: Best practices
This command will not be necessary in many situations. The existing conan install, conan create, conan lock,
conan export, conan graph commands can directly update or produce new lockfiles with the new information of
the packages they are creating, and those new or updated lockfiles can be used to continue with the processing.

conan lock create

$ conan lock create -h
Migration: Successfully updated settings.yml
usage: conan lock create [-h] [-v [V]] [-cc CORE_CONF] [--name NAME]

[--version VERSION] [--user USER] [--channel CHANNEL]
[--requires REQUIRES] [--tool-requires TOOL_REQUIRES]
[-b BUILD] [-r REMOTE | -nr] [-u [UPDATE]]
[-pr PROFILE] [-pr:b PROFILE_BUILD]
[-pr:h PROFILE_HOST] [-pr:a PROFILE_ALL] [-o OPTIONS]
[-o:b OPTIONS_BUILD] [-o:h OPTIONS_HOST]
[-o:a OPTIONS_ALL] [-s SETTINGS]
[-s:b SETTINGS_BUILD] [-s:h SETTINGS_HOST]
[-s:a SETTINGS_ALL] [-c CONF] [-c:b CONF_BUILD]
[-c:h CONF_HOST] [-c:a CONF_ALL] [-l LOCKFILE]
[--lockfile-partial] [--lockfile-out LOCKFILE_OUT]
[--lockfile-clean]
[--lockfile-overrides LOCKFILE_OVERRIDES]
[--build-require]
[path]

Create a lockfile from a conanfile or a reference.

positional arguments:
path Path to a folder containing a recipe (conanfile.py or

conanfile.txt) or to a recipe file. e.g.,
./my_project/conanfile.txt.

(continues on next page)

8.1. Commands 317

Conan Documentation, Release 2.1.0

(continued from previous page)

options:
-h, --help show this help message and exit
-v [V] Level of detail of the output. Valid options from less

verbose to more verbose: -vquiet, -verror, -vwarning,
-vnotice, -vstatus, -v or -vverbose, -vv or -vdebug,
-vvv or -vtrace

-cc CORE_CONF, --core-conf CORE_CONF
Global configuration for Conan

--name NAME Provide a package name if not specified in conanfile
--version VERSION Provide a package version if not specified in

conanfile
--user USER Provide a user if not specified in conanfile
--channel CHANNEL Provide a channel if not specified in conanfile
--requires REQUIRES Directly provide requires instead of a conanfile
--tool-requires TOOL_REQUIRES

Directly provide tool-requires instead of a conanfile
-b BUILD, --build BUILD

Optional, specify which packages to build from source.
Combining multiple '--build' options on one command
line is allowed. Possible values: --build="*" Force
build from source for all packages. --build=never
Disallow build for all packages, use binary packages
or fail if a binary package is not found, it cannot be
combined with other '--build' options. --build=missing
Build packages from source whose binary package is not
found. --build=cascade Build packages from source that
have at least one dependency being built from source.
--build=[pattern] Build packages from source whose
package reference matches the pattern. The pattern
uses 'fnmatch' style wildcards. --build=~[pattern]
Excluded packages, which will not be built from the
source, whose package reference matches the pattern.
The pattern uses 'fnmatch' style wildcards.
--build=missing:[pattern] Build from source if a
compatible binary does not exist, only for packages
matching pattern.

-r REMOTE, --remote REMOTE
Look in the specified remote or remotes server

-nr, --no-remote Do not use remote, resolve exclusively in the cache
-u [UPDATE], --update [UPDATE]

Will install newer versions and/or revisions in the
local cache for the given reference, or all in case no
argument is supplied. When using version ranges, it
will install the latest version that satisfies the
range. Also, if using revisions, it will update to the
latest revision for the resolved version range.

-pr PROFILE, --profile PROFILE
Apply the specified profile. By default, or if
specifying -pr:h (--profile:host), it applies to the
host context. Use -pr:b (--profile:build) to specify
the build context, or -pr:a (--profile:all) to specify
both contexts at once

(continues on next page)

318 Chapter 8. Reference

Conan Documentation, Release 2.1.0

(continued from previous page)

-pr:b PROFILE_BUILD, --profile:build PROFILE_BUILD
-pr:h PROFILE_HOST, --profile:host PROFILE_HOST
-pr:a PROFILE_ALL, --profile:all PROFILE_ALL
-o OPTIONS, --options OPTIONS

Apply the specified options. By default, or if
specifying -o:h (--options:host), it applies to the
host context. Use -o:b (--options:build) to specify
the build context, or -o:a (--options:all) to specify
both contexts at once. Example: -o pkg:with_qt=true

-o:b OPTIONS_BUILD, --options:build OPTIONS_BUILD
-o:h OPTIONS_HOST, --options:host OPTIONS_HOST
-o:a OPTIONS_ALL, --options:all OPTIONS_ALL
-s SETTINGS, --settings SETTINGS

Apply the specified settings. By default, or if
specifying -s:h (--settings:host), it applies to the
host context. Use -s:b (--settings:build) to specify
the build context, or -s:a (--settings:all) to specify
both contexts at once. Example: -s compiler=gcc

-s:b SETTINGS_BUILD, --settings:build SETTINGS_BUILD
-s:h SETTINGS_HOST, --settings:host SETTINGS_HOST
-s:a SETTINGS_ALL, --settings:all SETTINGS_ALL
-c CONF, --conf CONF Apply the specified conf. By default, or if specifying

-c:h (--conf:host), it applies to the host context.
Use -c:b (--conf:build) to specify the build context,
or -c:a (--conf:all) to specify both contexts at once.
Example: -c tools.cmake.cmaketoolchain:generator=Xcode

-c:b CONF_BUILD, --conf:build CONF_BUILD
-c:h CONF_HOST, --conf:host CONF_HOST
-c:a CONF_ALL, --conf:all CONF_ALL
-l LOCKFILE, --lockfile LOCKFILE

Path to a lockfile. Use --lockfile="" to avoid
automatic use of existing 'conan.lock' file

--lockfile-partial Do not raise an error if some dependency is not found
in lockfile

--lockfile-out LOCKFILE_OUT
Filename of the updated lockfile

--lockfile-clean Remove unused entries from the lockfile
--lockfile-overrides LOCKFILE_OVERRIDES

Overwrite lockfile overrides
--build-require Whether the provided reference is a build-require

The conan lock create command creates a lockfile for the recipe or reference specified in path or --requires.
This command will compute the dependency graph, evaluate which binaries do exist or need to be built, but it will not
try to install or build from source those binaries. In that regard, it is equivalent to the conan graph info command.
Most of the arguments accepted by this command are the same as conan graph info (and conan install, conan
create), because the conan lock create creates or update a lockfile for a given configuration.

A lockfile can be created from scratch, computing a new dependency graph from a local conanfile, or from requires,
for example for this conanfile.txt:

8.1. Commands 319

Conan Documentation, Release 2.1.0

Listing 16: conanfile.txt

[requires]
fmt/9.0.0

[tool_requires]
cmake/3.23.5

We can run:

$ conan lock create .

$ cat conan.lock
{

"version": "0.5",
"requires": [

"fmt/9.0.0#ca4ae2047ef0ccd7d2210d8d91bd0e02%1675126491.773"
],
"build_requires": [

"cmake/3.23.5#5f184bc602682bcea668356d75e7563b%1676913225.027"
],
"python_requires": []

}

conan lock create accepts a --lockfile input lockfile (if a conan.lock default one is found, it will be automati-
cally used), and then it will add new information in the --lockfile-out (by default, also conan.lock). For example
if we change the above conanfile.txt, removing the tool_requires, updating fmt to 9.1.0 and adding a new
dependency to zlib/1.2.13:

Listing 17: conanfile.txt

[requires]
fmt/9.1.0
zlib/1.2.13

[tool_requires]

We will see how conan lock create extends the existing lockfile with the new configuration, but it doesn’t remove
unused versions or packages from it:

$ conan lock create . # will use the existing conan.lock as base, and rewrite it
use --lockfile and --lockfile-out to change that behavior

$ cat conan.lock
{
"version": "0.5",
"requires": [

"zlib/1.2.13#13c96f538b52e1600c40b88994de240f%1667396813.733",
"fmt/9.1.0#e747928f85b03f48aaf227ff897d9634%1675126490.952",
"fmt/9.0.0#ca4ae2047ef0ccd7d2210d8d91bd0e02%1675126491.773"

],
"build_requires": [

"cmake/3.23.5#5f184bc602682bcea668356d75e7563b%1676913225.027"
(continues on next page)

320 Chapter 8. Reference

Conan Documentation, Release 2.1.0

(continued from previous page)

],
"python_requires": []

}

This behavior is very important to be able to capture multiple different configurations (Linux/Windows, shared/static,
Debug/Release, etc) that might have different dependency graphs. See the lockfiles tutorial, to read more about lockfiles
for multiple configurations.

If we want to trim unused versions and packages we can force it with the --lockfile-clean argument:

$ conan lock create . --lockfile-clean
will use the existing conan.lock as base, and rewrite it, cleaning unused versions
$ cat conan.lock
{

"version": "0.5",
"requires": [

"zlib/1.2.13#13c96f538b52e1600c40b88994de240f%1667396813.733",
"fmt/9.1.0#e747928f85b03f48aaf227ff897d9634%1675126490.952"

],
"build_requires": [],
"python_requires": []

}

See also:
The lockfiles tutorial section has more examples and hands on explanations of lockfiles.

conan lock merge

$ conan lock merge -h
Migration: Successfully updated settings.yml
usage: conan lock merge [-h] [-v [V]] [-cc CORE_CONF] [--lockfile LOCKFILE]

[--lockfile-out LOCKFILE_OUT]

Merge 2 or more lockfiles.

options:
-h, --help show this help message and exit
-v [V] Level of detail of the output. Valid options from less

verbose to more verbose: -vquiet, -verror, -vwarning,
-vnotice, -vstatus, -v or -vverbose, -vv or -vdebug,
-vvv or -vtrace

-cc CORE_CONF, --core-conf CORE_CONF
Global configuration for Conan

--lockfile LOCKFILE Path to lockfile to be merged
--lockfile-out LOCKFILE_OUT

Filename of the created lockfile

The conan lock merge command takes 2 or more lockfiles and aggregate them, producing one final lockfile. For
example, if we have 2 lockfiles lock1.lock and lock2.lock, we can merge both in a final conan.lock one:

8.1. Commands 321

Conan Documentation, Release 2.1.0

we have 2 lockfiles lock1.lock and lock2.lock
$ conan lock add --requires=pkg/1.1 --lockfile-out=lock1.lock
$ cat lock1.lock
{

"version": "0.5",
"requires": [

"pkg/1.1",
],
"build_requires": [],
"python_requires": []

}

$ conan lock add --requires=other/2.1 --build-requires=tool/3.2 --lockfile-out=lock2.lock
$ cat lock2.lock
{

"version": "0.5",
"requires": [

"other/2.1"
],
"build_requires": [

"tool/3.2"
],
"python_requires": []

}

we can merge both
$ conan lock merge --lockfile=lock1.lock --lockfile=lock2.lock
$ cat conan.lock
{

"version": "0.5",
"requires": [

"pkg/1.1",
"other/2.1"

],
"build_requires": [

"tool/3.2"
],
"python_requires": []

}

Similar to the conan lock add command, the conan lock merge:

• Does keep strict sorting of the lists of versions

• It does not perform any kind of validation if the packages or versions exist or not, or if they belong to a given
dependency graph

• It is a basic processing of the json files, aggregating them.

• It doesn’t guarantee that the lockfile will be complete, might require --lockfile-partial if not

• Recipe revisions, if defined, must contain the timestamp to be sorted correctly.

322 Chapter 8. Reference

Conan Documentation, Release 2.1.0

Warning:
• It is forbidden to manually manipulate a Conan lockfile, changing the strict sorting of references, and that

could result in any arbitrary undefined behavior.

• Recall that it is not possible to conan lock add a version range. The version might be not fully complete
(like not providing the revision), but it must be an exact version.

See also:
To better understand conan lock merge, it is recommended to first understand lockfiles in general, visit the lockfiles
tutorial for a practical introduction to lockfiles.

This conan lock merge command can be useful to consolidate in a single lockfile when for some reasons there
are several lockfiles that have diverged. A use case would be to create a multi-configuration lockfile that contains all
necessary locked versions for all OSs (Linux, Windows, etc), even if there are conditional dependencies in the graph
for the different OSs. At some point when testing a new dependency version, for example, pkg/3.4 new version,
when previously pkg/3.3 was already in the graph, we might want to have such a new lockfile cleaning the previous
pkg/3.3. If we apply the --lockfile-clean argument that will remove the non-used versions in the lockfile, but
that will also remove the OS-dependant dependencies. So something like this could be done: lets say that we have
this lockfile (simplified, removed revisions for simplicity) as the result of testing a new pkgb/0.2 version for our main
product app1/0.1:

Listing 18: app.lock

{
"version": "0.5",
"requires": [

"pkgb/0.2",
"pkgb/0.1",
"pkgawin/0.1",
"pkganix/0.1",
"app1/0.1"

]
}

The pkgawin and pkganix are dependencies that exist exclusively in Windows and Linux respectively. Everything
looks good, pkgb/0.2 new version works fine with our app, and we want to clean the unused things from the lockfile:

$ conan lock create --requires=app1/0.1 --lockfile=app.lock --lockfile-out=win.lock -s␣
→˓os=Windows --lockfile-clean
Note how both pkgb/0.1 and pkganix are gone
$ cat win.lock
{
"version": "0.5",
"requires": [

"pkgb/0.2",
"pkgawin/0.1",
"app1/0.1"

]
}
$ conan lock create --requires=app1/0.1 --lockfile=app.lock --lockfile-out=nix.lock -s␣
→˓os=Linux --lockfile-clean
Note how both pkgb/0.1 and pkgawin are gone

(continues on next page)

8.1. Commands 323

Conan Documentation, Release 2.1.0

(continued from previous page)

$ cat win.lock
{
"version": "0.5",
"requires": [

"pkgb/0.2",
"pkganix/0.1",
"app1/0.1"

]
}
Finally, merge the 2 clean lockfiles, for keeping just 1 for next iteration

$ conan lock merge --lockfile=win.lock --lockfile=nix.lock --lockfile-out=final.lock
$ cat final.lock
{
"version": "0.5",
"requires": [

"pkgb/0.2",
"pkgawin/0.1",
"pkganix/0.1",
"app1/0.1"

]
}

conan lock remove

$ conan lock remove -h
Migration: Successfully updated settings.yml
usage: conan lock remove [-h] [-v [V]] [-cc CORE_CONF] [--requires REQUIRES]

[--build-requires BUILD_REQUIRES]
[--python-requires PYTHON_REQUIRES]
[--lockfile-out LOCKFILE_OUT] [--lockfile LOCKFILE]

Remove requires, build-requires or python-requires from an existing or new
lockfile. References can be supplied with and without revisions like "--
requires=pkg/version",

options:
-h, --help show this help message and exit
-v [V] Level of detail of the output. Valid options from less

verbose to more verbose: -vquiet, -verror, -vwarning,
-vnotice, -vstatus, -v or -vverbose, -vv or -vdebug,
-vvv or -vtrace

-cc CORE_CONF, --core-conf CORE_CONF
Global configuration for Conan

--requires REQUIRES Remove references to lockfile.
--build-requires BUILD_REQUIRES

Remove build-requires from lockfile
--python-requires PYTHON_REQUIRES

Remove python-requires from lockfile
--lockfile-out LOCKFILE_OUT

Filename of the created lockfile
--lockfile LOCKFILE Filename of the input lockfile

324 Chapter 8. Reference

Conan Documentation, Release 2.1.0

The conan lock remove command is able to remove requires, build_requires or python_requires items
from an existing lockfile.

For example, if we have the following conan.lock:

$ cat conan.lock
{

"version": "0.5",
"requires": [

"math/1.0#85d927a4a067a531b1a9c7619522c015%1702683583.3411012",
"engine/1.0#fd2b006646a54397c16a1478ac4111ac%1702683583.3544693"

],
"build_requires": [

"cmake/1.0#85d927a4a067a531b1a9c7619522c015%1702683583.3411012",
"ninja/1.0#fd2b006646a54397c16a1478ac4111ac%1702683583.3544693"

],
"python_requires": [

"mytool/1.0#85d927a4a067a531b1a9c7619522c015%1702683583.3411012",
"othertool/1.0#fd2b006646a54397c16a1478ac4111ac%1702683583.3544693"

]
}

The conan lock remove command:

$ conan lock remove --requires="math/*" --build-requires=cmake/1.0 --python-requires=
→˓"*tool/*"

Will result in the following conan.lock:

$ cat conan.lock
{

"version": "0.5",
"requires": [

"engine/1.0#fd2b006646a54397c16a1478ac4111ac%1702683583.3544693"
],
"build_requires": [

"ninja/1.0#fd2b006646a54397c16a1478ac4111ac%1702683583.3544693"
],
"python_requires": [
]

}

It is possible to specify different patterns:

• Remove by version-ranges with expressions like --requires="math/[>=1.0 <2]", and also

• Remove a specific revision: --requires=math/1.0#revision

• Remove locked dependencies for a given “team” user --requires=*/*@team*

The conan lock remove can be useful for:

• In combination with conan lock add, it can be used to force the downgrade of a locked version to an older
one. As conan lock add always adds and sorts the order, resulting in newer versions with high priority, it is
not possible to force going back to an older version with just add. But first using conan lock remove, then
conan lock add, it is possible to do so.

8.1. Commands 325

Conan Documentation, Release 2.1.0

• conan lock remove can unlock certain dependencies, resulting in an incomplete lockfile, that can be used with
--lockfile-partial to resolve to the latest available versions for the unlocked dependencies, while keeping
locked the rest.

• conan lock add: Manually add items to a lockfile

• conan lock remove: Manually remove items from a lockfile

• conan lock create: Evaluates a dependency graph and save a lockfile

• conan lock merge: Merge several existing lockfiles into one.

$ conan lock -h
usage: conan lock [-h] [-v [V]] [-cc CORE_CONF] {add,create,merge,remove} ...

Create or manage lockfiles.

positional arguments:
{add,create,merge,remove}

sub-command help
add Add requires, build-requires or python-requires to an

existing or new lockfile. The resulting lockfile will
be ordered, newer versions/revisions first. References
can be supplied with and without revisions like "--
requires=pkg/version", but they must be package
references, including at least the version, and they
cannot contain a version range.

create Create a lockfile from a conanfile or a reference.
merge Merge 2 or more lockfiles.
remove Remove requires, build-requires or python-requires

from an existing or new lockfile. References can be
supplied with and without revisions like "--
requires=pkg/version",

options:
-h, --help show this help message and exit
-v [V] Level of detail of the output. Valid options from less

verbose to more verbose: -vquiet, -verror, -vwarning,
-vnotice, -vstatus, -v or -vverbose, -vv or -vdebug,
-vvv or -vtrace

-cc CORE_CONF, --core-conf CORE_CONF
Global configuration for Conan

326 Chapter 8. Reference

Conan Documentation, Release 2.1.0

8.1.8 conan profile

Manage profiles

conan profile detect

$ conan profile detect -h
Migration: Successfully updated settings.yml
usage: conan profile detect [-h] [-v [V]] [-cc CORE_CONF] [--name NAME] [-f]

Generate a profile using auto-detected values.

options:
-h, --help show this help message and exit
-v [V] Level of detail of the output. Valid options from less

verbose to more verbose: -vquiet, -verror, -vwarning,
-vnotice, -vstatus, -v or -vverbose, -vv or -vdebug,
-vvv or -vtrace

-cc CORE_CONF, --core-conf CORE_CONF
Global configuration for Conan

--name NAME Profile name, 'default' if not specified
-f, --force Overwrite if exists

Warning: The output of conan profile detect is not stable. It can change at any time in future Conan
releases to adapt to latest tools, latest versions, or other changes in the environment. See the Conan stability section
for more information.

You can create a new auto-detected profile for your configuration using:

Listing 19: auto-detected profile

$ conan profile detect
Found apple-clang 14.0
apple-clang>=13, using the major as version
Detected profile:
[settings]
arch=x86_64
build_type=Release
compiler=apple-clang
compiler.cppstd=gnu17
compiler.libcxx=libc++
compiler.version=14
os=Macos

WARN: This profile is a guess of your environment, please check it.
WARN: Defaulted to cppstd='gnu17' for apple-clang.
WARN: The output of this command is not guaranteed to be stable and can change in future␣
→˓Conan versions.
WARN: Use your own profile files for stability.
Saving detected profile to /Users/barbarians/.conan2/profiles/default

Be aware that if the profile already exists you have to use --force to overwrite it. Otherwise it will fail

8.1. Commands 327

Conan Documentation, Release 2.1.0

Listing 20: force overwriting already existing default profile

$ conan profile detect
ERROR: Profile '/Users/carlosz/.conan2/profiles/default' already exists
$ conan profile detect --force
Found apple-clang 14.0
...
Saving detected profile to /Users/carlosz/.conan2/profiles/default

Note: Best practices It is not recommended to use conan profile detect in production. To guarantee repro-
ducibility, it is recommended to define your own profiles, store them in a git repo or in a zip in a server, and distribute it
to your team and CI machines with conan config install, together with other configuration like custom settings,
custom remotes definition, etc.

conan profile list

$ conan profile list -h
WARN: Downgrading cache from Conan 2.2.3 to 2.1.0
usage: conan profile list [-h] [-f FORMAT] [-v [V]] [-cc CORE_CONF]

List all profiles in the cache.

options:
-h, --help show this help message and exit
-f FORMAT, --format FORMAT

Select the output format: json
-v [V] Level of detail of the output. Valid options from less

verbose to more verbose: -vquiet, -verror, -vwarning,
-vnotice, -vstatus, -v or -vverbose, -vv or -vdebug,
-vvv or -vtrace

-cc CORE_CONF, --core-conf CORE_CONF
Global configuration for Conan

328 Chapter 8. Reference

Conan Documentation, Release 2.1.0

Listing 21: force overwriting already existing default profile

$ conan profile list
Profiles found in the cache:
default
ios_base
ios_simulator
clang_15

conan profile path

$ conan
WARN: Downgrading cache from Conan 2.2.3 to 2.1.0

Consumer commands
cache Perform file operations in the local cache (of recipes and/or packages).
config Manage the Conan configuration in the Conan home.
graph Compute a dependency graph, without installing or building the binaries.
inspect Inspect a conanfile.py to return its public fields.
install Install the requirements specified in a recipe (conanfile.py or conanfile.
→˓txt).
list List existing recipes, revisions, or packages in the cache (by default) or the

remotes.
lock Create or manage lockfiles.
profile Manage profiles.
remote Manage the remote list and the users authenticated on them.
remove Remove recipes or packages from local cache or a remote.
search Search for package recipes in all the remotes (by default), or a remote.
version Give information about the Conan client version.

Creator commands
build Install dependencies and call the build() method.
create Create a package.
download Download (without installing) a single conan package from a remote server.
editable Allow working with a package that resides in user folder.
export Export a recipe to the Conan package cache.
export-pkg Create a package directly from pre-compiled binaries.
new Create a new example recipe and source files from a template.
source Call the source() method.
test Test a package from a test_package folder.
upload Upload packages to a remote.

Type "conan <command> -h" for help

Use to get the profile location in your [CONAN_HOME] folder:

$ conan profile path default
/Users/barbarians/.conan2/profiles/default

8.1. Commands 329

Conan Documentation, Release 2.1.0

conan profile show

$ conan profile show -h
Migration: Successfully updated settings.yml
usage: conan profile show [-h] [-f FORMAT] [-v [V]] [-cc CORE_CONF]

[-pr PROFILE] [-pr:b PROFILE_BUILD]
[-pr:h PROFILE_HOST] [-pr:a PROFILE_ALL]
[-o OPTIONS] [-o:b OPTIONS_BUILD]
[-o:h OPTIONS_HOST] [-o:a OPTIONS_ALL] [-s SETTINGS]
[-s:b SETTINGS_BUILD] [-s:h SETTINGS_HOST]
[-s:a SETTINGS_ALL] [-c CONF] [-c:b CONF_BUILD]
[-c:h CONF_HOST] [-c:a CONF_ALL]

Show aggregated profiles from the passed arguments.

options:
-h, --help show this help message and exit
-f FORMAT, --format FORMAT

Select the output format: json
-v [V] Level of detail of the output. Valid options from less

verbose to more verbose: -vquiet, -verror, -vwarning,
-vnotice, -vstatus, -v or -vverbose, -vv or -vdebug,
-vvv or -vtrace

-cc CORE_CONF, --core-conf CORE_CONF
Global configuration for Conan

-pr PROFILE, --profile PROFILE
Apply the specified profile. By default, or if
specifying -pr:h (--profile:host), it applies to the
host context. Use -pr:b (--profile:build) to specify
the build context, or -pr:a (--profile:all) to specify
both contexts at once

-pr:b PROFILE_BUILD, --profile:build PROFILE_BUILD
-pr:h PROFILE_HOST, --profile:host PROFILE_HOST
-pr:a PROFILE_ALL, --profile:all PROFILE_ALL
-o OPTIONS, --options OPTIONS

Apply the specified options. By default, or if
specifying -o:h (--options:host), it applies to the
host context. Use -o:b (--options:build) to specify
the build context, or -o:a (--options:all) to specify
both contexts at once. Example: -o pkg:with_qt=true

-o:b OPTIONS_BUILD, --options:build OPTIONS_BUILD
-o:h OPTIONS_HOST, --options:host OPTIONS_HOST
-o:a OPTIONS_ALL, --options:all OPTIONS_ALL
-s SETTINGS, --settings SETTINGS

Apply the specified settings. By default, or if
specifying -s:h (--settings:host), it applies to the
host context. Use -s:b (--settings:build) to specify
the build context, or -s:a (--settings:all) to specify
both contexts at once. Example: -s compiler=gcc

-s:b SETTINGS_BUILD, --settings:build SETTINGS_BUILD
-s:h SETTINGS_HOST, --settings:host SETTINGS_HOST
-s:a SETTINGS_ALL, --settings:all SETTINGS_ALL
-c CONF, --conf CONF Apply the specified conf. By default, or if specifying

(continues on next page)

330 Chapter 8. Reference

Conan Documentation, Release 2.1.0

(continued from previous page)

-c:h (--conf:host), it applies to the host context.
Use -c:b (--conf:build) to specify the build context,
or -c:a (--conf:all) to specify both contexts at once.
Example: -c tools.cmake.cmaketoolchain:generator=Xcode

-c:b CONF_BUILD, --conf:build CONF_BUILD
-c:h CONF_HOST, --conf:host CONF_HOST
-c:a CONF_ALL, --conf:all CONF_ALL

Use conan profile show to compute the resulting build and host profiles from the command line arguments. For
example, combining different options and settings with the default profile or with any other profile using the pr:b or
pr:h arguments:

$ conan profile show -s:h build_type=Debug -o:h shared=False
Host profile:
[settings]
arch=x86_64
build_type=Debug
compiler=apple-clang
compiler.cppstd=gnu17
compiler.libcxx=libc++
compiler.version=14
os=Macos
[options]
shared=False
[conf]

Build profile:
[settings]
arch=x86_64
build_type=Release
compiler=apple-clang
compiler.cppstd=gnu17
compiler.libcxx=libc++
compiler.version=14
os=Macos
[conf]

It’s also useful to show the result of the evaluation of jinja2 templates in the profiles. For example, a profile like this:

Listing 22: myprofile

[settings]
os = {{ {"Darwin": "Macos"}.get(platform.system(), platform.system()) }}

Check the evaluated profile:

$ conan profile show -pr:h=myprofile
Host profile:
[settings]
os=Macos
[conf]
...

8.1. Commands 331

Conan Documentation, Release 2.1.0

The command can also output a json with the results:

$ conan profile show --format=json

{
"host": {

"settings": {
"arch": "armv8",
"build_type": "Release",
"compiler": "apple-clang",
"compiler.cppstd": "gnu17",
"compiler.libcxx": "libc++",
"compiler.version": "15",
"os": "Macos"

},
"package_settings": {},
"options": {},
"tool_requires": {},
"conf": {},
"build_env": ""

},
"build": {

"settings": {
"arch": "armv8",
"build_type": "Release",
"compiler": "apple-clang",
"compiler.cppstd": "gnu17",
"compiler.libcxx": "libc++",
"compiler.version": "15",
"os": "Macos"

},
"package_settings": {},
"options": {},
"tool_requires": {},
"conf": {},
"build_env": ""

}
}

See also:
• Read more about profiles

8.1.9 conan remove

$ conan remove -h
WARN: Downgrading cache from Conan 2.2.3 to 2.1.0
usage: conan remove [-h] [-v [V]] [-cc CORE_CONF] [-f FORMAT] [-c]

[-p PACKAGE_QUERY] [-r REMOTE] [-l LIST] [--lru LRU]
[--dry-run]
[pattern]

Remove recipes or packages from local cache or a remote.
(continues on next page)

332 Chapter 8. Reference

Conan Documentation, Release 2.1.0

(continued from previous page)

- If no remote is specified (-r), the removal will be done in the local conan cache.
- If a recipe reference is specified, it will remove the recipe and all the packages,␣
→˓unless -p
is specified, in that case, only the packages matching the specified query (and not␣

→˓the recipe)
will be removed.

- If a package reference is specified, it will remove only the package.

positional arguments:
pattern A pattern in the form

'pkg/version#revision:package_id#revision', e.g:
zlib/1.2.13:* means all binaries for zlib/1.2.13. If
revision is not specified, it is assumed latest one.

options:
-h, --help show this help message and exit
-v [V] Level of detail of the output. Valid options from less

verbose to more verbose: -vquiet, -verror, -vwarning,
-vnotice, -vstatus, -v or -vverbose, -vv or -vdebug,
-vvv or -vtrace

-cc CORE_CONF, --core-conf CORE_CONF
Global configuration for Conan

-f FORMAT, --format FORMAT
Select the output format: json

-c, --confirm Remove without requesting a confirmation
-p PACKAGE_QUERY, --package-query PACKAGE_QUERY

Remove all packages (empty) or provide a query:
os=Windows AND (arch=x86 OR compiler=gcc)

-r REMOTE, --remote REMOTE
Will remove from the specified remote

-l LIST, --list LIST Package list file
--lru LRU Remove recipes and binaries that have not been

recently used. Use a time limit like --lru=5d (days)
or --lru=4w (weeks), h (hours), m(minutes)

--dry-run Do not remove any items, only print those which would
be removed

The conan remove command removes recipes and packages from the local cache or from a specified remote. De-
pending on the patterns specified as argument, it is possible to remove a complete package, or just remove the binaries,
leaving still the recipe available. You can also use the keyword !latest in the revision part of the pattern to avoid
removing the latest recipe or package revision of a certain Conan package.

Use --dry-run to avoid performing actual deletions, and instead get a list of the elements that would have been
removed.

It has 2 possible and mutually exclusive inputs:

• The conan remove <pattern> pattern-based matching of recipes.

• The conan remove --list=<pkglist> that will remove the artifacts specified in the pkglist json file

There are other commands like conan list (see the patterns documentation there conan list), conan upload and
conan download, that take the same patterns.

To remove recipes and their associated package binaries from the local cache:

8.1. Commands 333

Conan Documentation, Release 2.1.0

$ conan remove "*"
Removes everything from the cache

$ conan remove "zlib/*""
Remove all possible versions of zlib, including all recipes, revisions and packages

$ conan remove zlib/1.2.11
Remove zlib/1.2.11, all its revisions and package binaries. Leave other zlib versions

$ conan remove "zlib/[<1.2.13]"
Remove zlib/1.2.11 and zlib/1.2.12, all its revisions and package binaries.

$ conan remove zlib/1.2.11#latest
Remove zlib/1.2.11, only its latest recipe revision and binaries of that revision
Leave the other zlib/1.2.11 revisions intact

$ conan remove zlib/1.2.11#!latest
Remove all the recipe revisions from zlib/1.2.11 but the latest one
Leave the latest zlib/1.2.11 revision intact

$ conan remove zlib/1.2.11#<revision>
Remove zlib/1.2.11, only its exact <revision> and binaries of that revision
Leave the other zlib/1.2.11 revisions intact

To remove only package binaries, but leaving the recipes, it is necessary to specify the pattern including the : separator
of the package_id:

$ conan remove "zlib/1.2.11:*"
Removes all the zlib/1.2.11 package binaries from all the recipe revisions

$ conan remove "zlib/*:*"
Removes all the binaries from all the recipe revisions from all zlib versions

$ conan remove "zlib/1.2.11#latest:*"
Removes all the zlib/1.2.11 package binaries only from the latest zlib/1.2.11 recipe␣
→˓revision

$ conan remove "zlib/1.2.11#!latest:*"
Removes all the zlib/1.2.11 package binaries from all the recipe revisions but the␣
→˓latest one

$ conan remove zlib/1.2.11:<package_id>
Removes the package binary <package_id> from all the zlib/1.2.11 recipe revisions

$ conan remove zlib/1.2.11:#latest<package_id>#latest
Removes only the latest package revision of the binary identified with <package_id>
from the latest recipe revision of zlib/1.2.11
WARNING: Recall that having more than 1 package revision is a smell and shouldn't␣
→˓happen
in normal situations

Note that you can filter which packages will be removed using the --package-query argument:

334 Chapter 8. Reference

Conan Documentation, Release 2.1.0

$ conan remove zlib/1.2.11:* -p compiler=clang
Removes all the zlib/1.2.11 packages built with Clang compiler

You can query packages by both their settings and options, including custom ones. To query for options you need to
explicitly add the options. prefix, so that -p options.shared=False will work but -p shared=False won’t.

All the above commands, by default, operate in the Conan cache. To remove artifacts from a server, use the
-r=myremote argument:

$ conan remove zlib/1.2.11:* -r=myremote
Removes all the zlib/1.2.11 package binaries from all the recipe revisions in
the remote <myremote>

8.1.10 conan remote

Use this command to add, edit and remove Conan repositories from the Conan remote registry and also manage authen-
tication to those remotes. For more information on how to work with Conan repositories, please check the dedicated
section.

$ conan remote -h
WARN: Downgrading cache from Conan 2.2.3 to 2.1.0
usage: conan remote [-h] [-v [V]] [-cc CORE_CONF]

{add,auth,disable,enable,list,list-users,login,logout,remove,rename,
→˓set-user,update}

...

Manage the remote list and the users authenticated on them.

positional arguments:
{add,auth,disable,enable,list,list-users,login,logout,remove,rename,set-user,update}

sub-command help
add Add a remote.
auth Authenticate in the defined remotes
disable Disable all the remotes matching a pattern.
enable Enable all the remotes matching a pattern.
list List current remotes.
list-users List the users logged into all the remotes.
login Login into the specified remotes matching a pattern.
logout Clear the existing credentials for the specified

remotes matching a pattern.
remove Remove remotes.
rename Rename a remote.
set-user Associate a username with a remote matching a pattern

without performing the authentication.
update Update a remote.

options:
-h, --help show this help message and exit
-v [V] Level of detail of the output. Valid options from less

verbose to more verbose: -vquiet, -verror, -vwarning,
-vnotice, -vstatus, -v or -vverbose, -vv or -vdebug,
-vvv or -vtrace

(continues on next page)

8.1. Commands 335

Conan Documentation, Release 2.1.0

(continued from previous page)

-cc CORE_CONF, --core-conf CORE_CONF
Global configuration for Conan

conan remote add

$ conan remote add -h
WARN: Downgrading cache from Conan 2.2.3 to 2.1.0
usage: conan remote add [-h] [-v [V]] [-cc CORE_CONF] [--insecure]

[--index INDEX] [-f] [-ap ALLOWED_PACKAGES]
name url

Add a remote.

positional arguments:
name Name of the remote to add
url Url of the remote

options:
-h, --help show this help message and exit
-v [V] Level of detail of the output. Valid options from less

verbose to more verbose: -vquiet, -verror, -vwarning,
-vnotice, -vstatus, -v or -vverbose, -vv or -vdebug,
-vvv or -vtrace

-cc CORE_CONF, --core-conf CORE_CONF
Global configuration for Conan

--insecure Allow insecure server connections when using SSL
--index INDEX Insert the remote at a specific position in the remote

list
-f, --force Force the definition of the remote even if duplicated
-ap ALLOWED_PACKAGES, --allowed-packages ALLOWED_PACKAGES

Add recipe reference pattern to the list of allowed
packages for this remote

conan remote auth

$ conan remote auth -h
WARN: Downgrading cache from Conan 2.2.3 to 2.1.0
usage: conan remote auth [-h] [-f FORMAT] [-v [V]] [-cc CORE_CONF]

[--with-user]
remote

Authenticate in the defined remotes

positional arguments:
remote Pattern or name of the remote/s to authenticate

against. The pattern uses 'fnmatch' style wildcards.

options:
-h, --help show this help message and exit

(continues on next page)

336 Chapter 8. Reference

Conan Documentation, Release 2.1.0

(continued from previous page)

-f FORMAT, --format FORMAT
Select the output format: json

-v [V] Level of detail of the output. Valid options from less
verbose to more verbose: -vquiet, -verror, -vwarning,
-vnotice, -vstatus, -v or -vverbose, -vv or -vdebug,
-vvv or -vtrace

-cc CORE_CONF, --core-conf CORE_CONF
Global configuration for Conan

--with-user Only try to auth in those remotes that already have a
username or a CONAN_LOGIN_ env-var defined

conan remote disable

$ conan remote disable -h
WARN: Downgrading cache from Conan 2.2.3 to 2.1.0
usage: conan remote disable [-h] [-f FORMAT] [-v [V]] [-cc CORE_CONF] remote

Disable all the remotes matching a pattern.

positional arguments:
remote Pattern of the remote/s to disable. The pattern uses

'fnmatch' style wildcards.

options:
-h, --help show this help message and exit
-f FORMAT, --format FORMAT

Select the output format: json
-v [V] Level of detail of the output. Valid options from less

verbose to more verbose: -vquiet, -verror, -vwarning,
-vnotice, -vstatus, -v or -vverbose, -vv or -vdebug,
-vvv or -vtrace

-cc CORE_CONF, --core-conf CORE_CONF
Global configuration for Conan

conan remote enable

$ conan remote enable -h
WARN: Downgrading cache from Conan 2.2.3 to 2.1.0
usage: conan remote enable [-h] [-f FORMAT] [-v [V]] [-cc CORE_CONF] remote

Enable all the remotes matching a pattern.

positional arguments:
remote Pattern of the remote/s to enable. The pattern uses

'fnmatch' style wildcards.

options:
-h, --help show this help message and exit
-f FORMAT, --format FORMAT

(continues on next page)

8.1. Commands 337

Conan Documentation, Release 2.1.0

(continued from previous page)

Select the output format: json
-v [V] Level of detail of the output. Valid options from less

verbose to more verbose: -vquiet, -verror, -vwarning,
-vnotice, -vstatus, -v or -vverbose, -vv or -vdebug,
-vvv or -vtrace

-cc CORE_CONF, --core-conf CORE_CONF
Global configuration for Conan

conan remote list

$ conan remote list -h
WARN: Downgrading cache from Conan 2.2.3 to 2.1.0
usage: conan remote list [-h] [-f FORMAT] [-v [V]] [-cc CORE_CONF]

List current remotes.

options:
-h, --help show this help message and exit
-f FORMAT, --format FORMAT

Select the output format: json
-v [V] Level of detail of the output. Valid options from less

verbose to more verbose: -vquiet, -verror, -vwarning,
-vnotice, -vstatus, -v or -vverbose, -vv or -vdebug,
-vvv or -vtrace

-cc CORE_CONF, --core-conf CORE_CONF
Global configuration for Conan

conan remote list-users

$ conan remote list-users -h
WARN: Downgrading cache from Conan 2.2.3 to 2.1.0
usage: conan remote list-users [-h] [-f FORMAT] [-v [V]] [-cc CORE_CONF]

List the users logged into all the remotes.

options:
-h, --help show this help message and exit
-f FORMAT, --format FORMAT

Select the output format: json
-v [V] Level of detail of the output. Valid options from less

verbose to more verbose: -vquiet, -verror, -vwarning,
-vnotice, -vstatus, -v or -vverbose, -vv or -vdebug,
-vvv or -vtrace

-cc CORE_CONF, --core-conf CORE_CONF
Global configuration for Conan

338 Chapter 8. Reference

Conan Documentation, Release 2.1.0

conan remote login

$ conan remote login -h
WARN: Downgrading cache from Conan 2.2.3 to 2.1.0
usage: conan remote login [-h] [-f FORMAT] [-v [V]] [-cc CORE_CONF]

[-p [PASSWORD]]
remote [username]

Login into the specified remotes matching a pattern.

positional arguments:
remote Pattern or name of the remote to login into. The

pattern uses 'fnmatch' style wildcards.
username Username

options:
-h, --help show this help message and exit
-f FORMAT, --format FORMAT

Select the output format: json
-v [V] Level of detail of the output. Valid options from less

verbose to more verbose: -vquiet, -verror, -vwarning,
-vnotice, -vstatus, -v or -vverbose, -vv or -vdebug,
-vvv or -vtrace

-cc CORE_CONF, --core-conf CORE_CONF
Global configuration for Conan

-p [PASSWORD], --password [PASSWORD]
User password. Use double quotes if password with
spacing, and escape quotes if existing. If empty, the
password is requested interactively (not exposed)

conan remote logout

$ conan remote logout -h
WARN: Downgrading cache from Conan 2.2.3 to 2.1.0
usage: conan remote logout [-h] [-f FORMAT] [-v [V]] [-cc CORE_CONF] remote

Clear the existing credentials for the specified remotes matching a pattern.

positional arguments:
remote Pattern or name of the remote to logout. The pattern

uses 'fnmatch' style wildcards.

options:
-h, --help show this help message and exit
-f FORMAT, --format FORMAT

Select the output format: json
-v [V] Level of detail of the output. Valid options from less

verbose to more verbose: -vquiet, -verror, -vwarning,
-vnotice, -vstatus, -v or -vverbose, -vv or -vdebug,
-vvv or -vtrace

-cc CORE_CONF, --core-conf CORE_CONF
Global configuration for Conan

8.1. Commands 339

Conan Documentation, Release 2.1.0

conan remote remove

$ conan remote remove -h
WARN: Downgrading cache from Conan 2.2.3 to 2.1.0
usage: conan remote remove [-h] [-v [V]] [-cc CORE_CONF] remote

Remove remotes.

positional arguments:
remote Name of the remote to remove. Accepts 'fnmatch' style

wildcards.

options:
-h, --help show this help message and exit
-v [V] Level of detail of the output. Valid options from less

verbose to more verbose: -vquiet, -verror, -vwarning,
-vnotice, -vstatus, -v or -vverbose, -vv or -vdebug,
-vvv or -vtrace

-cc CORE_CONF, --core-conf CORE_CONF
Global configuration for Conan

conan remote rename

$ conan remote rename -h
WARN: Downgrading cache from Conan 2.2.3 to 2.1.0
usage: conan remote rename [-h] [-v [V]] [-cc CORE_CONF] remote new_name

Rename a remote.

positional arguments:
remote Current name of the remote
new_name New name for the remote

options:
-h, --help show this help message and exit
-v [V] Level of detail of the output. Valid options from less

verbose to more verbose: -vquiet, -verror, -vwarning,
-vnotice, -vstatus, -v or -vverbose, -vv or -vdebug,
-vvv or -vtrace

-cc CORE_CONF, --core-conf CORE_CONF
Global configuration for Conan

340 Chapter 8. Reference

Conan Documentation, Release 2.1.0

conan remote set-user

$ conan remote set-user -h
WARN: Downgrading cache from Conan 2.2.3 to 2.1.0
usage: conan remote set-user [-h] [-f FORMAT] [-v [V]] [-cc CORE_CONF]

remote username

Associate a username with a remote matching a pattern without performing the
authentication.

positional arguments:
remote Pattern or name of the remote. The pattern uses

'fnmatch' style wildcards.
username Username

options:
-h, --help show this help message and exit
-f FORMAT, --format FORMAT

Select the output format: json
-v [V] Level of detail of the output. Valid options from less

verbose to more verbose: -vquiet, -verror, -vwarning,
-vnotice, -vstatus, -v or -vverbose, -vv or -vdebug,
-vvv or -vtrace

-cc CORE_CONF, --core-conf CORE_CONF
Global configuration for Conan

conan remote update

$ conan remote update -h
WARN: Downgrading cache from Conan 2.2.3 to 2.1.0
usage: conan remote update [-h] [-v [V]] [-cc CORE_CONF] [--url URL]

[--secure] [--insecure] [--index INDEX]
[-ap ALLOWED_PACKAGES]
remote

Update a remote.

positional arguments:
remote Name of the remote to update

options:
-h, --help show this help message and exit
-v [V] Level of detail of the output. Valid options from less

verbose to more verbose: -vquiet, -verror, -vwarning,
-vnotice, -vstatus, -v or -vverbose, -vv or -vdebug,
-vvv or -vtrace

-cc CORE_CONF, --core-conf CORE_CONF
Global configuration for Conan

--url URL New url for the remote
--secure Don't allow insecure server connections when using SSL
--insecure Allow insecure server connections when using SSL

(continues on next page)

8.1. Commands 341

Conan Documentation, Release 2.1.0

(continued from previous page)

--index INDEX Insert the remote at a specific position in the remote
list

-ap ALLOWED_PACKAGES, --allowed-packages ALLOWED_PACKAGES
Add recipe reference pattern to the list of allowed
packages for this remote

See also:
• Uploading packages tutorial

• Working with Conan repositories

• Upload Conan packages to remotes using conan upload command

8.1.11 conan search

Search existing recipes in remotes. This command is equivalent to conan list <query> -r=*, and is provided for
simpler UX.

$ conan search -h
WARN: Downgrading cache from Conan 2.2.3 to 2.1.0
usage: conan search [-h] [-v [V]] [-cc CORE_CONF] [-f FORMAT] [-r REMOTE]

reference

Search for package recipes in all the remotes (by default), or a remote.

positional arguments:
reference Recipe reference to search for. It can contain * as

wildcard at any reference field.

options:
-h, --help show this help message and exit
-v [V] Level of detail of the output. Valid options from less

verbose to more verbose: -vquiet, -verror, -vwarning,
-vnotice, -vstatus, -v or -vverbose, -vv or -vdebug,
-vvv or -vtrace

-cc CORE_CONF, --core-conf CORE_CONF
Global configuration for Conan

-f FORMAT, --format FORMAT
Select the output format: json

-r REMOTE, --remote REMOTE
Remote names. Accepts wildcards. If not specified it
searches in all the remotes

$ conan search zlib
conancenter
zlib
zlib/1.2.8
zlib/1.2.11
zlib/1.2.12
zlib/1.2.13

(continues on next page)

342 Chapter 8. Reference

Conan Documentation, Release 2.1.0

(continued from previous page)

$ conan search zlib -r=conancenter
conancenter
zlib
zlib/1.2.8
zlib/1.2.11
zlib/1.2.12
zlib/1.2.13

$ conan search zlib/1.2.1* -r=conancenter
conancenter
zlib
zlib/1.2.11
zlib/1.2.12
zlib/1.2.13

$ conan search zlib/1.2.1* -r=conancenter --format=json
{

"conancenter": {
"zlib/1.2.11": {},
"zlib/1.2.12": {},
"zlib/1.2.13": {}

}
}

8.1.12 conan version

Warning: This feature is experimental and subject to breaking changes. See the Conan stability section for more
information.

$ conan version -h
WARN: Downgrading cache from Conan 2.2.3 to 2.1.0
usage: conan version [-h] [-v [V]] [-cc CORE_CONF] [-f FORMAT]

Give information about the Conan client version.

options:
-h, --help show this help message and exit
-v [V] Level of detail of the output. Valid options from less

verbose to more verbose: -vquiet, -verror, -vwarning,
-vnotice, -vstatus, -v or -vverbose, -vv or -vdebug,
-vvv or -vtrace

-cc CORE_CONF, --core-conf CORE_CONF
Global configuration for Conan

-f FORMAT, --format FORMAT
Select the output format: json

The conan version command shows the conan version as well the python version from the system:

8.1. Commands 343

Conan Documentation, Release 2.1.0

$ conan version
version: 2.0.6
python
version: 3.10.4
sys_version: 3.10.4 (main, May 17 2022, 10:53:07) [Clang 13.1.6 (clang-1316.0.21.2.3)]

The conan version --format=json returns a JSON output format in stdout (which can be redirected to a file)
with the following structure:

$ conan version --format=json
{

"version": "2.0.6",
"python": {

"version": "3.10.4",
"sys_version": "3.10.4 (main, May 17 2022, 10:53:07) [Clang 13.1.6 (clang-1316.0.

→˓21.2.3)]"
}

}

• conan cache: Return the path of recipes and packages in the cache

• conan config: Manage Conan configuration (remotes, settings, plugins, etc)

• conan graph: Obtain information about the dependency graph without fetching binaries

• conan inspect: Inspect a conanfile.py to return the public fields

• conan install: Install dependencies

• conan list: List recipes, revisions and packages in the local cache or in remotes

• conan lock: Create and manage lockfiles

• conan profile: Display and manage profile files

• conan remove: Remove packages from the local cache or from remotes

• conan remote: Add, remove, login/logout and manage remote server

• conan search: Search packages matching a name

• conan version: Give information about the Conan client version

Creator commands:

8.1.13 conan build

$ conan build -h
/home/jenkins/workspace/Conan-Docs-Publish/sources_folder/2.1/conan_sources/conan/tools/
→˓microsoft/visual.py:175: SyntaxWarning: invalid escape sequence '\$'
conan_vcvars_ps1 = f"{CONAN_VCVARS}.ps1"

WARN: Downgrading cache from Conan 2.5.0 to 2.1.0
WARN: Applying downgrade migration 2.4_1-migrate.py
Migration: Successfully updated cppstd_compat.py
usage: conan build [-h] [-v [V]] [-cc CORE_CONF] [-f FORMAT] [--name NAME]

[--version VERSION] [--user USER] [--channel CHANNEL]
[-g GENERATOR] [-of OUTPUT_FOLDER] [-d DEPLOYER]
[--deployer-folder DEPLOYER_FOLDER] [--build-require]

(continues on next page)

344 Chapter 8. Reference

Conan Documentation, Release 2.1.0

(continued from previous page)

[-b BUILD] [-r REMOTE | -nr] [-u [UPDATE]] [-pr PROFILE]
[-pr:b PROFILE_BUILD] [-pr:h PROFILE_HOST]
[-pr:a PROFILE_ALL] [-o OPTIONS] [-o:b OPTIONS_BUILD]
[-o:h OPTIONS_HOST] [-o:a OPTIONS_ALL] [-s SETTINGS]
[-s:b SETTINGS_BUILD] [-s:h SETTINGS_HOST]
[-s:a SETTINGS_ALL] [-c CONF] [-c:b CONF_BUILD]
[-c:h CONF_HOST] [-c:a CONF_ALL] [-l LOCKFILE]
[--lockfile-partial] [--lockfile-out LOCKFILE_OUT]
[--lockfile-clean]
[--lockfile-overrides LOCKFILE_OVERRIDES]
path

Install dependencies and call the build() method.

positional arguments:
path Path to a python-based recipe file or a folder

containing a conanfile.py recipe. conanfile.txt cannot
be used with conan build.

options:
-h, --help show this help message and exit
-v [V] Level of detail of the output. Valid options from less

verbose to more verbose: -vquiet, -verror, -vwarning,
-vnotice, -vstatus, -v or -vverbose, -vv or -vdebug,
-vvv or -vtrace

-cc CORE_CONF, --core-conf CORE_CONF
Global configuration for Conan

-f FORMAT, --format FORMAT
Select the output format: json

--name NAME Provide a package name if not specified in conanfile
--version VERSION Provide a package version if not specified in

conanfile
--user USER Provide a user if not specified in conanfile
--channel CHANNEL Provide a channel if not specified in conanfile
-g GENERATOR, --generator GENERATOR

Generators to use
-of OUTPUT_FOLDER, --output-folder OUTPUT_FOLDER

The root output folder for generated and build files
-d DEPLOYER, --deployer DEPLOYER

Deploy using the provided deployer to the output
folder

--deployer-folder DEPLOYER_FOLDER
Deployer output folder, base build folder by default
if not set

--build-require Whether the provided path is a build-require
-b BUILD, --build BUILD

Optional, specify which packages to build from source.
Combining multiple '--build' options on one command
line is allowed. Possible values: --build="*" Force
build from source for all packages. --build=never
Disallow build for all packages, use binary packages
or fail if a binary package is not found, it cannot be

(continues on next page)

8.1. Commands 345

Conan Documentation, Release 2.1.0

(continued from previous page)

combined with other '--build' options. --build=missing
Build packages from source whose binary package is not
found. --build=cascade Build packages from source that
have at least one dependency being built from source.
--build=[pattern] Build packages from source whose
package reference matches the pattern. The pattern
uses 'fnmatch' style wildcards. --build=~[pattern]
Excluded packages, which will not be built from the
source, whose package reference matches the pattern.
The pattern uses 'fnmatch' style wildcards.
--build=missing:[pattern] Build from source if a
compatible binary does not exist, only for packages
matching pattern.

-r REMOTE, --remote REMOTE
Look in the specified remote or remotes server

-nr, --no-remote Do not use remote, resolve exclusively in the cache
-u [UPDATE], --update [UPDATE]

Will install newer versions and/or revisions in the
local cache for the given reference, or all in case no
argument is supplied. When using version ranges, it
will install the latest version that satisfies the
range. Also, if using revisions, it will update to the
latest revision for the resolved version range.

-pr PROFILE, --profile PROFILE
Apply the specified profile. By default, or if
specifying -pr:h (--profile:host), it applies to the
host context. Use -pr:b (--profile:build) to specify
the build context, or -pr:a (--profile:all) to specify
both contexts at once

-pr:b PROFILE_BUILD, --profile:build PROFILE_BUILD
-pr:h PROFILE_HOST, --profile:host PROFILE_HOST
-pr:a PROFILE_ALL, --profile:all PROFILE_ALL
-o OPTIONS, --options OPTIONS

Apply the specified options. By default, or if
specifying -o:h (--options:host), it applies to the
host context. Use -o:b (--options:build) to specify
the build context, or -o:a (--options:all) to specify
both contexts at once. Example: -o pkg:with_qt=true

-o:b OPTIONS_BUILD, --options:build OPTIONS_BUILD
-o:h OPTIONS_HOST, --options:host OPTIONS_HOST
-o:a OPTIONS_ALL, --options:all OPTIONS_ALL
-s SETTINGS, --settings SETTINGS

Apply the specified settings. By default, or if
specifying -s:h (--settings:host), it applies to the
host context. Use -s:b (--settings:build) to specify
the build context, or -s:a (--settings:all) to specify
both contexts at once. Example: -s compiler=gcc

-s:b SETTINGS_BUILD, --settings:build SETTINGS_BUILD
-s:h SETTINGS_HOST, --settings:host SETTINGS_HOST
-s:a SETTINGS_ALL, --settings:all SETTINGS_ALL
-c CONF, --conf CONF Apply the specified conf. By default, or if specifying

-c:h (--conf:host), it applies to the host context.

(continues on next page)

346 Chapter 8. Reference

Conan Documentation, Release 2.1.0

(continued from previous page)

Use -c:b (--conf:build) to specify the build context,
or -c:a (--conf:all) to specify both contexts at once.
Example: -c tools.cmake.cmaketoolchain:generator=Xcode

-c:b CONF_BUILD, --conf:build CONF_BUILD
-c:h CONF_HOST, --conf:host CONF_HOST
-c:a CONF_ALL, --conf:all CONF_ALL
-l LOCKFILE, --lockfile LOCKFILE

Path to a lockfile. Use --lockfile="" to avoid
automatic use of existing 'conan.lock' file

--lockfile-partial Do not raise an error if some dependency is not found
in lockfile

--lockfile-out LOCKFILE_OUT
Filename of the updated lockfile

--lockfile-clean Remove unused entries from the lockfile
--lockfile-overrides LOCKFILE_OVERRIDES

Overwrite lockfile overrides

The conan build command installs the recipe specified in path and calls its build() method.

See also:
• Read the tutorial about the local package development flow.

8.1.14 conan create

$ conan create -h
Migration: Successfully updated settings.yml
usage: conan create [-h] [-v [V]] [-cc CORE_CONF] [-f FORMAT] [--name NAME]

[--version VERSION] [--user USER] [--channel CHANNEL]
[-l LOCKFILE] [--lockfile-partial]
[--lockfile-out LOCKFILE_OUT] [--lockfile-clean]
[--lockfile-overrides LOCKFILE_OVERRIDES] [-b BUILD]
[-r REMOTE | -nr] [-u [UPDATE]] [-pr PROFILE]
[-pr:b PROFILE_BUILD] [-pr:h PROFILE_HOST]
[-pr:a PROFILE_ALL] [-o OPTIONS] [-o:b OPTIONS_BUILD]
[-o:h OPTIONS_HOST] [-o:a OPTIONS_ALL] [-s SETTINGS]
[-s:b SETTINGS_BUILD] [-s:h SETTINGS_HOST]
[-s:a SETTINGS_ALL] [-c CONF] [-c:b CONF_BUILD]
[-c:h CONF_HOST] [-c:a CONF_ALL] [--build-require]
[-tf TEST_FOLDER] [-bt BUILD_TEST]
path

Create a package.

positional arguments:
path Path to a folder containing a recipe (conanfile.py)

options:
-h, --help show this help message and exit
-v [V] Level of detail of the output. Valid options from less

verbose to more verbose: -vquiet, -verror, -vwarning,
-vnotice, -vstatus, -v or -vverbose, -vv or -vdebug,

(continues on next page)

8.1. Commands 347

Conan Documentation, Release 2.1.0

(continued from previous page)

-vvv or -vtrace
-cc CORE_CONF, --core-conf CORE_CONF

Global configuration for Conan
-f FORMAT, --format FORMAT

Select the output format: json
--name NAME Provide a package name if not specified in conanfile
--version VERSION Provide a package version if not specified in

conanfile
--user USER Provide a user if not specified in conanfile
--channel CHANNEL Provide a channel if not specified in conanfile
-l LOCKFILE, --lockfile LOCKFILE

Path to a lockfile. Use --lockfile="" to avoid
automatic use of existing 'conan.lock' file

--lockfile-partial Do not raise an error if some dependency is not found
in lockfile

--lockfile-out LOCKFILE_OUT
Filename of the updated lockfile

--lockfile-clean Remove unused entries from the lockfile
--lockfile-overrides LOCKFILE_OVERRIDES

Overwrite lockfile overrides
-b BUILD, --build BUILD

Optional, specify which packages to build from source.
Combining multiple '--build' options on one command
line is allowed. Possible values: --build="*" Force
build from source for all packages. --build=never
Disallow build for all packages, use binary packages
or fail if a binary package is not found, it cannot be
combined with other '--build' options. --build=missing
Build packages from source whose binary package is not
found. --build=cascade Build packages from source that
have at least one dependency being built from source.
--build=[pattern] Build packages from source whose
package reference matches the pattern. The pattern
uses 'fnmatch' style wildcards. --build=~[pattern]
Excluded packages, which will not be built from the
source, whose package reference matches the pattern.
The pattern uses 'fnmatch' style wildcards.
--build=missing:[pattern] Build from source if a
compatible binary does not exist, only for packages
matching pattern.

-r REMOTE, --remote REMOTE
Look in the specified remote or remotes server

-nr, --no-remote Do not use remote, resolve exclusively in the cache
-u [UPDATE], --update [UPDATE]

Will install newer versions and/or revisions in the
local cache for the given reference, or all in case no
argument is supplied. When using version ranges, it
will install the latest version that satisfies the
range. Also, if using revisions, it will update to the
latest revision for the resolved version range.

-pr PROFILE, --profile PROFILE
Apply the specified profile. By default, or if

(continues on next page)

348 Chapter 8. Reference

Conan Documentation, Release 2.1.0

(continued from previous page)

specifying -pr:h (--profile:host), it applies to the
host context. Use -pr:b (--profile:build) to specify
the build context, or -pr:a (--profile:all) to specify
both contexts at once

-pr:b PROFILE_BUILD, --profile:build PROFILE_BUILD
-pr:h PROFILE_HOST, --profile:host PROFILE_HOST
-pr:a PROFILE_ALL, --profile:all PROFILE_ALL
-o OPTIONS, --options OPTIONS

Apply the specified options. By default, or if
specifying -o:h (--options:host), it applies to the
host context. Use -o:b (--options:build) to specify
the build context, or -o:a (--options:all) to specify
both contexts at once. Example: -o pkg:with_qt=true

-o:b OPTIONS_BUILD, --options:build OPTIONS_BUILD
-o:h OPTIONS_HOST, --options:host OPTIONS_HOST
-o:a OPTIONS_ALL, --options:all OPTIONS_ALL
-s SETTINGS, --settings SETTINGS

Apply the specified settings. By default, or if
specifying -s:h (--settings:host), it applies to the
host context. Use -s:b (--settings:build) to specify
the build context, or -s:a (--settings:all) to specify
both contexts at once. Example: -s compiler=gcc

-s:b SETTINGS_BUILD, --settings:build SETTINGS_BUILD
-s:h SETTINGS_HOST, --settings:host SETTINGS_HOST
-s:a SETTINGS_ALL, --settings:all SETTINGS_ALL
-c CONF, --conf CONF Apply the specified conf. By default, or if specifying

-c:h (--conf:host), it applies to the host context.
Use -c:b (--conf:build) to specify the build context,
or -c:a (--conf:all) to specify both contexts at once.
Example: -c tools.cmake.cmaketoolchain:generator=Xcode

-c:b CONF_BUILD, --conf:build CONF_BUILD
-c:h CONF_HOST, --conf:host CONF_HOST
-c:a CONF_ALL, --conf:all CONF_ALL
--build-require Whether the package being created is a build-require

(to be used as tool_requires() by other packages)
-tf TEST_FOLDER, --test-folder TEST_FOLDER

Alternative test folder name. By default it is
"test_package". Use "" to skip the test stage

-bt BUILD_TEST, --build-test BUILD_TEST
Same as '--build' but only for the test_package
requires. By default if not specified it will take the
'--build' value if specified

The conan create command creates a package from the recipe specified in path.

This command will first export the recipe to the local cache and then build and create the package. If a test_package
folder (you can change the folder name with the -tf argument) is found, the command will run the consumer project
to ensure that the package has been created correctly. Check testing Conan packages section to know more about how
to test your Conan packages.

Tip: Sometimes you want to skip/disable the test stage. In that case you can skip/disable the test package stage by
passing an empty value as the -tf argument:

8.1. Commands 349

Conan Documentation, Release 2.1.0

$ conan create . --test-folder=

Using conan create with build requirements

The --build-require argument allows to create the package using the configuration and settings of the “build”
context, as it was a build_require. This feature allows to create packages in a way that is consistent with the way
they will be used later.

$ conan create . --name=cmake --version=3.23.1 --build-require

Conan create output

The conan create ... --format=json creates a json output containing the full dependency graph information.
This json is the same as the one created with conan graph info (see the graph info json format) with extended
information about the binaries, like a more complete cpp_info field. This resulting json is the dependency graph of the
package recipe being created, excluding all the test_package and other possible dependencies of the test_package/
conanfile.py. These dependencies only exist in the test_package functionality, and as such, are not part of the
“main” product or package. If you are interested in capturing the dependency graph including the test_package
(most likely not necessary in most cases), then you can do it running the conan test command separately.

The same happens for lockfiles created with --lockfile-out argument. The lockfile will only contain the created
package and its transitive dependencies versions, but it will not contain the test_package or the transitive dependen-
cies of the test_package/conanfile.py. It is possible to capture a lockfile which includes those with the conan
test command (though again, this might not be really necessary)

Note: Best practice
In general, having test_package/conanfile.py with dependencies other than the tested one should be avoided.
The test_package functionality should serve as a simple check to ensure the package is correctly created. Adding
extra dependencies to test_package might indicate that the check is not straightforward or that its functionality is
being misused. If, for any reason, your test_package has additional dependencies, you can control their build using
the --build-test argument.

See also:
• Read more about creating packages in the dedicated tutorial

8.1.15 conan download

$ conan download -h
WARN: Downgrading cache from Conan 2.2.3 to 2.1.0
usage: conan download [-h] [-v [V]] [-cc CORE_CONF] [-f FORMAT]

[--only-recipe] [-p PACKAGE_QUERY] -r REMOTE
[-m METADATA] [-l LIST]
[pattern]

Download (without installing) a single conan package from a remote server.

It downloads just the package, but not its transitive dependencies, and it will not call
(continues on next page)

350 Chapter 8. Reference

Conan Documentation, Release 2.1.0

(continued from previous page)

any generate, generators or deployers.
It can download multiple packages if patterns are used, and also works with
queries over the package binaries.

positional arguments:
pattern A pattern in the form

'pkg/version#revision:package_id#revision', e.g:
zlib/1.2.13:* means all binaries for zlib/1.2.13. If
revision is not specified, it is assumed latest one.

options:
-h, --help show this help message and exit
-v [V] Level of detail of the output. Valid options from less

verbose to more verbose: -vquiet, -verror, -vwarning,
-vnotice, -vstatus, -v or -vverbose, -vv or -vdebug,
-vvv or -vtrace

-cc CORE_CONF, --core-conf CORE_CONF
Global configuration for Conan

-f FORMAT, --format FORMAT
Select the output format: json

--only-recipe Download only the recipe/s, not the binary packages.
-p PACKAGE_QUERY, --package-query PACKAGE_QUERY

Only download packages matching a specific query. e.g:
os=Windows AND (arch=x86 OR compiler=gcc)

-r REMOTE, --remote REMOTE
Download from this specific remote

-m METADATA, --metadata METADATA
Download the metadata matching the pattern, even if
the package is already in the cache and not downloaded

-l LIST, --list LIST Package list file

Downloads recipe and binaries to the local cache from the specified remote.

Note: Please, be aware that conan download unlike conan install, will not download any of the transitive de-
pendencies of the downloaded package.

The conan download command can download packages to 1 server repository specified by the -r=myremote argu-
ment.

It has 2 possible and mutually exclusive inputs:

• The conan download <pattern> pattern-based matching of recipes, with a pattern similar to the conan list
<pattern>.

• The conan download --list=<pkglist> that will upload the artifacts specified in the pkglist json file

You can use patterns to download specific references just like in other commands like conan list (see the patterns
documentation there conan list) or conan upload:

download latest revision and packages for all openssl versions in foo remote
$ conan download "openssl/*" -r foo

Note: conan download will download only the latest revision by default. If you want to download more revisions

8.1. Commands 351

Conan Documentation, Release 2.1.0

other than the latest one you can use wildcards in the revisions part of the reference pattern argument

You may also just download recipes (in this case selecting all the revisions in the pattern, not just the latest one):

download all recipe revisions for zlib/1.2.13
$ conan download "zlib/1.2.13#*" -r foo --only-recipe

If you just want to download the packages belonging to a specific setting, use the --package-query argument:

$ conan download "zlib/1.2.13#*" -r foo --package-query="os=Linux and arch=x86"

If the --format=json formatter is specified, the result will be a “PackageList”, compatible with other Conan com-
mands, for example the conan upload command, so it is possible to concatenate a download + upload, using the
generated json file. See the Packages Lists examples.

Downloading metadata

The metadata files of the recipes and packages are not downloaded by default. It is possible to explicitly retrieve them
with the conan download --metadata=xxx argument. The main arguments are the same as above, and Conan will
download the specified packages, or skip them if they are already in the cache:

$ conan download pkg/0.1 -r=default --metadata="*"
will download pgkg/0.1 recipe with all the recipe metadata
And also all package binaries (latest package revision)
with all the binaries metadata

If only one or several metadata folders or sets of files are desired, it can also be specified:

$ conan download pkg/0.1 -r=default --metadata="logs/*" --metadata="tests/*"
Will download only the logs and tests metadata, but not other potential metadata files

For more information see the metadata section.

8.1.16 conan editable

Allow working with a package that resides in user folder.

conan editable add

$ conan editable add -h
Migration: Successfully updated settings.yml
usage: conan editable add [-h] [-v [V]] [-cc CORE_CONF] [--name NAME]

[--version VERSION] [--user USER]
[--channel CHANNEL] [-of OUTPUT_FOLDER]
[-r REMOTE | -nr]
path

Define the given <path> location as the package <reference>, so when this
package is required, it is used from this <path> location instead of the
cache.

(continues on next page)

352 Chapter 8. Reference

Conan Documentation, Release 2.1.0

(continued from previous page)

positional arguments:
path Path to the package folder in the user workspace

options:
-h, --help show this help message and exit
-v [V] Level of detail of the output. Valid options from less

verbose to more verbose: -vquiet, -verror, -vwarning,
-vnotice, -vstatus, -v or -vverbose, -vv or -vdebug,
-vvv or -vtrace

-cc CORE_CONF, --core-conf CORE_CONF
Global configuration for Conan

--name NAME Provide a package name if not specified in conanfile
--version VERSION Provide a package version if not specified in

conanfile
--user USER Provide a user if not specified in conanfile
--channel CHANNEL Provide a channel if not specified in conanfile
-of OUTPUT_FOLDER, --output-folder OUTPUT_FOLDER

The root output folder for generated and build files
-r REMOTE, --remote REMOTE

Look in the specified remote or remotes server
-nr, --no-remote Do not use remote, resolve exclusively in the cache

conan editable remove

$ conan editable remove -h
WARN: Downgrading cache from Conan 2.2.3 to 2.1.0
usage: conan editable remove [-h] [-v [V]] [-cc CORE_CONF] [-r REFS] [path]

Remove the "editable" mode for this reference.

positional arguments:
path Path to a folder containing a recipe (conanfile.py or

conanfile.txt) or to a recipe file. e.g.,
./my_project/conanfile.txt.

options:
-h, --help show this help message and exit
-v [V] Level of detail of the output. Valid options from less

verbose to more verbose: -vquiet, -verror, -vwarning,
-vnotice, -vstatus, -v or -vverbose, -vv or -vdebug,
-vvv or -vtrace

-cc CORE_CONF, --core-conf CORE_CONF
Global configuration for Conan

-r REFS, --refs REFS Directly provide reference patterns

8.1. Commands 353

Conan Documentation, Release 2.1.0

conan editable list

$ conan editable list -h
Migration: Successfully updated settings.yml
usage: conan editable list [-h] [-f FORMAT] [-v [V]] [-cc CORE_CONF]

List all the packages in editable mode.

options:
-h, --help show this help message and exit
-f FORMAT, --format FORMAT

Select the output format: json
-v [V] Level of detail of the output. Valid options from less

verbose to more verbose: -vquiet, -verror, -vwarning,
-vnotice, -vstatus, -v or -vverbose, -vv or -vdebug,
-vvv or -vtrace

-cc CORE_CONF, --core-conf CORE_CONF
Global configuration for Conan

See also:
• Read the tutorial about editable packages editable package.

8.1.17 conan export

$ conan export -h
WARN: Downgrading cache from Conan 2.2.3 to 2.1.0
usage: conan export [-h] [-v [V]] [-cc CORE_CONF] [-f FORMAT] [--name NAME]

[--version VERSION] [--user USER] [--channel CHANNEL]
[-r REMOTE | -nr] [-l LOCKFILE]
[--lockfile-out LOCKFILE_OUT] [--lockfile-partial]
[--build-require]
path

Export a recipe to the Conan package cache.

positional arguments:
path Path to a folder containing a recipe (conanfile.py)

options:
-h, --help show this help message and exit
-v [V] Level of detail of the output. Valid options from less

verbose to more verbose: -vquiet, -verror, -vwarning,
-vnotice, -vstatus, -v or -vverbose, -vv or -vdebug,
-vvv or -vtrace

-cc CORE_CONF, --core-conf CORE_CONF
Global configuration for Conan

-f FORMAT, --format FORMAT
Select the output format: json, pkglist

--name NAME Provide a package name if not specified in conanfile
--version VERSION Provide a package version if not specified in

conanfile
(continues on next page)

354 Chapter 8. Reference

Conan Documentation, Release 2.1.0

(continued from previous page)

--user USER Provide a user if not specified in conanfile
--channel CHANNEL Provide a channel if not specified in conanfile
-r REMOTE, --remote REMOTE

Look in the specified remote or remotes server
-nr, --no-remote Do not use remote, resolve exclusively in the cache
-l LOCKFILE, --lockfile LOCKFILE

Path to a lockfile.
--lockfile-out LOCKFILE_OUT

Filename of the updated lockfile
--lockfile-partial Do not raise an error if some dependency is not found

in lockfile
--build-require Whether the provided reference is a build-require

The conan export command exports the recipe specified in path to the Conan package cache.

Output Formats

The conan export command accepts two types of formats for the --format argument:

• json: Creates a JSON file containing the information of the exported recipe reference.

• pkglist: Generates a JSON file in the pkglist format, which can be utilized as input for various commands such
as upload, download, and remove.

8.1.18 conan export-pkg

$ conan export-pkg -h
Migration: Successfully updated settings.yml
usage: conan export-pkg [-h] [-v [V]] [-cc CORE_CONF] [-f FORMAT]

[-of OUTPUT_FOLDER] [--build-require]
[-tf TEST_FOLDER] [-sb] [-r REMOTE | -nr]
[--name NAME] [--version VERSION] [--user USER]
[--channel CHANNEL] [-l LOCKFILE] [--lockfile-partial]
[--lockfile-out LOCKFILE_OUT] [--lockfile-clean]
[--lockfile-overrides LOCKFILE_OVERRIDES]
[-pr PROFILE] [-pr:b PROFILE_BUILD]
[-pr:h PROFILE_HOST] [-pr:a PROFILE_ALL] [-o OPTIONS]
[-o:b OPTIONS_BUILD] [-o:h OPTIONS_HOST]
[-o:a OPTIONS_ALL] [-s SETTINGS] [-s:b SETTINGS_BUILD]
[-s:h SETTINGS_HOST] [-s:a SETTINGS_ALL] [-c CONF]
[-c:b CONF_BUILD] [-c:h CONF_HOST] [-c:a CONF_ALL]
path

Create a package directly from pre-compiled binaries.

positional arguments:
path Path to a folder containing a recipe (conanfile.py)

options:
-h, --help show this help message and exit
-v [V] Level of detail of the output. Valid options from less

(continues on next page)

8.1. Commands 355

Conan Documentation, Release 2.1.0

(continued from previous page)

verbose to more verbose: -vquiet, -verror, -vwarning,
-vnotice, -vstatus, -v or -vverbose, -vv or -vdebug,
-vvv or -vtrace

-cc CORE_CONF, --core-conf CORE_CONF
Global configuration for Conan

-f FORMAT, --format FORMAT
Select the output format: json

-of OUTPUT_FOLDER, --output-folder OUTPUT_FOLDER
The root output folder for generated and build files

--build-require Whether the provided reference is a build-require
-tf TEST_FOLDER, --test-folder TEST_FOLDER

Alternative test folder name. By default it is
"test_package". Use "" to skip the test stage

-sb, --skip-binaries Skip installing dependencies binaries
-r REMOTE, --remote REMOTE

Look in the specified remote or remotes server
-nr, --no-remote Do not use remote, resolve exclusively in the cache
--name NAME Provide a package name if not specified in conanfile
--version VERSION Provide a package version if not specified in

conanfile
--user USER Provide a user if not specified in conanfile
--channel CHANNEL Provide a channel if not specified in conanfile
-l LOCKFILE, --lockfile LOCKFILE

Path to a lockfile. Use --lockfile="" to avoid
automatic use of existing 'conan.lock' file

--lockfile-partial Do not raise an error if some dependency is not found
in lockfile

--lockfile-out LOCKFILE_OUT
Filename of the updated lockfile

--lockfile-clean Remove unused entries from the lockfile
--lockfile-overrides LOCKFILE_OVERRIDES

Overwrite lockfile overrides
-pr PROFILE, --profile PROFILE

Apply the specified profile. By default, or if
specifying -pr:h (--profile:host), it applies to the
host context. Use -pr:b (--profile:build) to specify
the build context, or -pr:a (--profile:all) to specify
both contexts at once

-pr:b PROFILE_BUILD, --profile:build PROFILE_BUILD
-pr:h PROFILE_HOST, --profile:host PROFILE_HOST
-pr:a PROFILE_ALL, --profile:all PROFILE_ALL
-o OPTIONS, --options OPTIONS

Apply the specified options. By default, or if
specifying -o:h (--options:host), it applies to the
host context. Use -o:b (--options:build) to specify
the build context, or -o:a (--options:all) to specify
both contexts at once. Example: -o pkg:with_qt=true

-o:b OPTIONS_BUILD, --options:build OPTIONS_BUILD
-o:h OPTIONS_HOST, --options:host OPTIONS_HOST
-o:a OPTIONS_ALL, --options:all OPTIONS_ALL
-s SETTINGS, --settings SETTINGS

Apply the specified settings. By default, or if

(continues on next page)

356 Chapter 8. Reference

Conan Documentation, Release 2.1.0

(continued from previous page)

specifying -s:h (--settings:host), it applies to the
host context. Use -s:b (--settings:build) to specify
the build context, or -s:a (--settings:all) to specify
both contexts at once. Example: -s compiler=gcc

-s:b SETTINGS_BUILD, --settings:build SETTINGS_BUILD
-s:h SETTINGS_HOST, --settings:host SETTINGS_HOST
-s:a SETTINGS_ALL, --settings:all SETTINGS_ALL
-c CONF, --conf CONF Apply the specified conf. By default, or if specifying

-c:h (--conf:host), it applies to the host context.
Use -c:b (--conf:build) to specify the build context,
or -c:a (--conf:all) to specify both contexts at once.
Example: -c tools.cmake.cmaketoolchain:generator=Xcode

-c:b CONF_BUILD, --conf:build CONF_BUILD
-c:h CONF_HOST, --conf:host CONF_HOST
-c:a CONF_ALL, --conf:all CONF_ALL

The conan export-pkg command creates a package binary directly from pre-compiled binaries in a user folder. This
command can be useful in different cases:

• When creating a package for some closed source or pre-compiled binaries provided by a vendor. In this case, it
is not necessary that the conanfile.py recipe contains a build() method, and providing the package() and
package_info()method are enough to package those pre-compiled binaries. In this case the build_policy =
"never" could make sense to indicate it is not possible to conan install --build=this_pkg, as it doesn’t
know how to build from sources when it is a dependency.

• When testing some recipe locally in the local development flow, it can be used to quickly put the locally built
binaries in the cache to make them available to other packages for testing, without needing to go through a full
conan create that would be slower.

In general, it is expected that when conan export-pkg executes, the possible Conan dependencies that were necessary
to build this package had already been installed via conan install, so it is not necessary to download dependencies at
export-pkg time. But if for some reason this is not the case, the command defines --remote and --no-remote argu-
ments, similar to other commands, as well as the --skip-binaries optimization that could save some time installing
dependencies binaries if they are not strictly necessary for the current export-pkg. But this is the responsibility of
the user, as it is possible that such binaries are actually necessary, for example, if a tool_requires = "cmake/x.y"
is used and the package() method implements a cmake.install() call, this will definitely need the binaries for the
dependencies installed in the current machine to execute.

See also:
• Check the JSON format output for this command.

• Read the tutorial about the local package development flow.

8.1.19 conan new

Create a new recipe (with a conanfile.py and other associated files) from either a predefined or a user-defined template.

8.1. Commands 357

Conan Documentation, Release 2.1.0

conan new

$ conan new -h
Migration: Successfully updated settings.yml
usage: conan new [-h] [-v [V]] [-cc CORE_CONF] [-d DEFINE] [-f] template

Create a new example recipe and source files from a template.

positional arguments:
template Template name, either a predefined built-in or a user-

provided one. Available built-in templates: basic,
cmake_lib, cmake_exe, meson_lib, meson_exe,
msbuild_lib, msbuild_exe, bazel_lib, bazel_exe,
autotools_lib, autotools_exe. E.g. 'conan new
cmake_lib -d name=hello -d version=0.1'. You can
define your own templates too by inputting an absolute
path as your template, or a path relative to your
conan home folder.

options:
-h, --help show this help message and exit
-v [V] Level of detail of the output. Valid options from less

verbose to more verbose: -vquiet, -verror, -vwarning,
-vnotice, -vstatus, -v or -vverbose, -vv or -vdebug,
-vvv or -vtrace

-cc CORE_CONF, --core-conf CORE_CONF
Global configuration for Conan

-d DEFINE, --define DEFINE
Define a template argument as key=value, e.g., -d
name=mypkg

-f, --force Overwrite file if it already exists

The conan new command creates a new recipe in the current working directory, plus extra example files such as
CMakeLists.txt or the test_package folder (as necessary), to either be used as a basis for your own project or aiding in
the debugging process.

Note that each template has some required and some [optional] user-defined variables used to customize the resulting
files.

The available templates are:

• basic: Creates a simple recipe with some example code and helpful comments, and is a good starting point to
avoid writing boilerplate code.

Its variables are: [name], [version], [description], [requires1, requires2, . . .], [tool_requires1, tool_requires2, . . .]

• alias: Creates the minimal recipe needed to define an alias to a target recipe

Its variables are: name, [version], target

• cmake_lib: Creates a cmake library target that defines a function called name, which will print some information
about the compilation environment to stdout. You can add requirements to this template in the form of

conan new cmake_lib -d name=ai -d version=1.0 -d requires=math/3.14 -d
requires=magic/0.0

This will add requirements for both math/3.14 and magic/0.0 to the requirements() method, will add the nec-
essary find_package``s in CMake, and add a call to ``math() and magic() inside the generated

358 Chapter 8. Reference

Conan Documentation, Release 2.1.0

ai() function.

Its variables are: name, version, [requires1, requires2, . . .], [tool_requires1, tool_requires2, . . .]

• cmake_exe: Creates a cmake executable target that defines a function called name, which will print some in-
formation about the compilation environment to stdout. You can add requirements to this template in the form
of

conan new cmake_exe -d name=game -d version=1.0 -d requires=math/3.14 -d
requires=ai/1.0

This will add requirements for both math/3.14 and ai/1.0 to the requirements() method, will add the neces-
sary find_package``s in CMake, and add a call to ``math() and ai() inside the generated game()
function.

Its variables are: name, version, [requires1, requires2, . . .], [tool_requires1, tool_requires2, . . .]

• autotools_lib: Creates an Autotools library.

Its variables are: name, version

• autotools_exe: Creates an Autotools executable

Its variables are: name, version

• bazel_lib: Bazel integration BazelDeps, BazelToolchain, Bazel is experimental. Creates a Bazel library.

Its variables are: name, version

• bazel_exe: Bazel integration BazelDeps, BazelToolchain, Bazel is experimental. Creates a Bazel executable

Its variables are: name, version

• meson_lib: Creates a Meson library.

Its variables are: name, version

• meson_exe: Creates a Meson executable

Its variables are: name, version

• msbuild_lib: Creates a MSBuild library.

Its variables are: name, version

• msbuild_exe: Creates a MSBuild executable

Its variables are: name, version

Warning: The output of the predefined built-in templates is not stable. It might change in future releases to adapt
to the latest tools or good practices.

Examples

$ conan new basic

Generates a basic conanfile.py that does not implement any custom functionality

$ conan new basic -d name=mygame -d requires=math/1.0 -d requires=ai/1.3

Generates a conanfile.py for mygame that depends on the packages math/1.0 and ai/1.3

8.1. Commands 359

Conan Documentation, Release 2.1.0

$ conan new cmake_exe -d name=game -d version=1.0 -d requires=math/3.14 -d requires=ai/1.
→˓0

Generates the necessary files for a CMake executable target. This will add requirements for both math/3.14 and ai/
1.0 to the requirements() method, will add the necessary find_package in CMake, and add a call to math() and
ai() inside the generated game() function.

Custom templates

There’s also the possibility of creating your templates. Templates in the Conan home should be located in the
templates/command/new folder, and each template should have a folder named like the template one. If we cre-
ate the templates/command/new/mytemplate folder, the command will be called with the following:

$ conan new mytemplate

As with other files in the Conan home, you can manage these templates with conan config install <url>, putting
them in a git repo or an http server and sharing them with your team. It is also possible to use templates from any
folder, just passing the full path to the template in the conan new <full_path>, but in general it is more convenient
to manage them in the Conan home.

The folder can contain as many files as desired. Both the filenames and the contents of the files can be templatized
using Jinja2 syntax. The command -d/--define arguments will define the key=value inputs to the templates.

The file contents will be like (Jinja2 syntax):

File "templates/command/new/mytemplate/conanfile.py"
from conan import ConanFile

class Conan(ConanFile):
name = "{{name}}"
version = "{{version}}"
license = "{{license}}"

And it will require passing these values:

$ conan new mytemplate -d name=pkg -d version=0.1 -d license=MIT

and it will generate in the current folder a file:

File "<cwd>/conanfile.py"
from conan import ConanFile

class Conan(ConanFile):
name = "pkg"
version = "0.1"
license = "MIT"

There are some special -d/--defines names. The name one is always mandatory. The conan_version definition
will always be automatically defined. The requires and tool_requires definitions, if existing, will be automatically
converted to lists. The package_name will always be defined, by default equals to name.

For parametrized filenames, the filenames themselves support Jinja2 syntax. For example if we store a file named
literally {{name}} with the brackes in the template folder templates/command/new/mytemplate/, instead of the
conanfile.py above:

360 Chapter 8. Reference

Conan Documentation, Release 2.1.0

Listing 23: File: “templates/command/new/mytemplate/{{name}}”

{{contents}}

Then, executing

$ conan new mytemplate -d name=file.txt -d contents=hello!

will create a file called file.txt in the current dir containing the string hello!.

If there are files in the template not to be rendered with Jinja2, like image files, then their names should be added to a
file called not_templates inside the template directory, one filename per line. So we could have a folder with:

templates/command/new/mytemplate
|- not_templates
|- conanfile.py
|- image.png
|- image2.png

And the not_templates contains the string *.png, then conan new mytemplate ... will only render the
conanfile.py through Jinja2, but both images will be copied as-is.

8.1.20 conan source

$ conan source -h
WARN: Downgrading cache from Conan 2.2.3 to 2.1.0
usage: conan source [-h] [-v [V]] [-cc CORE_CONF] [--name NAME]

[--version VERSION] [--user USER] [--channel CHANNEL]
path

Call the source() method.

positional arguments:
path Path to a folder containing a conanfile.py

options:
-h, --help show this help message and exit
-v [V] Level of detail of the output. Valid options from less

verbose to more verbose: -vquiet, -verror, -vwarning,
-vnotice, -vstatus, -v or -vverbose, -vv or -vdebug,
-vvv or -vtrace

-cc CORE_CONF, --core-conf CORE_CONF
Global configuration for Conan

--name NAME Provide a package name if not specified in conanfile
--version VERSION Provide a package version if not specified in

conanfile
--user USER Provide a user if not specified in conanfile
--channel CHANNEL Provide a channel if not specified in conanfile

See also:
• Read the tutorial about the local package development flow.

8.1. Commands 361

Conan Documentation, Release 2.1.0

8.1.21 conan test

$ conan test -h
WARN: Downgrading cache from Conan 2.2.3 to 2.1.0
usage: conan test [-h] [-v [V]] [-cc CORE_CONF] [-f FORMAT] [-b BUILD]

[-r REMOTE | -nr] [-u [UPDATE]] [-pr PROFILE]
[-pr:b PROFILE_BUILD] [-pr:h PROFILE_HOST]
[-pr:a PROFILE_ALL] [-o OPTIONS] [-o:b OPTIONS_BUILD]
[-o:h OPTIONS_HOST] [-o:a OPTIONS_ALL] [-s SETTINGS]
[-s:b SETTINGS_BUILD] [-s:h SETTINGS_HOST]
[-s:a SETTINGS_ALL] [-c CONF] [-c:b CONF_BUILD]
[-c:h CONF_HOST] [-c:a CONF_ALL] [-l LOCKFILE]
[--lockfile-partial] [--lockfile-out LOCKFILE_OUT]
[--lockfile-clean] [--lockfile-overrides LOCKFILE_OVERRIDES]
path reference

Test a package from a test_package folder.

positional arguments:
path Path to a test_package folder containing a

conanfile.py
reference Provide a package reference to test

options:
-h, --help show this help message and exit
-v [V] Level of detail of the output. Valid options from less

verbose to more verbose: -vquiet, -verror, -vwarning,
-vnotice, -vstatus, -v or -vverbose, -vv or -vdebug,
-vvv or -vtrace

-cc CORE_CONF, --core-conf CORE_CONF
Global configuration for Conan

-f FORMAT, --format FORMAT
Select the output format: json

-b BUILD, --build BUILD
Optional, specify which packages to build from source.
Combining multiple '--build' options on one command
line is allowed. Possible values: --build="*" Force
build from source for all packages. --build=never
Disallow build for all packages, use binary packages
or fail if a binary package is not found, it cannot be
combined with other '--build' options. --build=missing
Build packages from source whose binary package is not
found. --build=cascade Build packages from source that
have at least one dependency being built from source.
--build=[pattern] Build packages from source whose
package reference matches the pattern. The pattern
uses 'fnmatch' style wildcards. --build=~[pattern]
Excluded packages, which will not be built from the
source, whose package reference matches the pattern.
The pattern uses 'fnmatch' style wildcards.
--build=missing:[pattern] Build from source if a
compatible binary does not exist, only for packages
matching pattern.

(continues on next page)

362 Chapter 8. Reference

Conan Documentation, Release 2.1.0

(continued from previous page)

-r REMOTE, --remote REMOTE
Look in the specified remote or remotes server

-nr, --no-remote Do not use remote, resolve exclusively in the cache
-u [UPDATE], --update [UPDATE]

Will install newer versions and/or revisions in the
local cache for the given reference, or all in case no
argument is supplied. When using version ranges, it
will install the latest version that satisfies the
range. Also, if using revisions, it will update to the
latest revision for the resolved version range.

-pr PROFILE, --profile PROFILE
Apply the specified profile. By default, or if
specifying -pr:h (--profile:host), it applies to the
host context. Use -pr:b (--profile:build) to specify
the build context, or -pr:a (--profile:all) to specify
both contexts at once

-pr:b PROFILE_BUILD, --profile:build PROFILE_BUILD
-pr:h PROFILE_HOST, --profile:host PROFILE_HOST
-pr:a PROFILE_ALL, --profile:all PROFILE_ALL
-o OPTIONS, --options OPTIONS

Apply the specified options. By default, or if
specifying -o:h (--options:host), it applies to the
host context. Use -o:b (--options:build) to specify
the build context, or -o:a (--options:all) to specify
both contexts at once. Example: -o pkg:with_qt=true

-o:b OPTIONS_BUILD, --options:build OPTIONS_BUILD
-o:h OPTIONS_HOST, --options:host OPTIONS_HOST
-o:a OPTIONS_ALL, --options:all OPTIONS_ALL
-s SETTINGS, --settings SETTINGS

Apply the specified settings. By default, or if
specifying -s:h (--settings:host), it applies to the
host context. Use -s:b (--settings:build) to specify
the build context, or -s:a (--settings:all) to specify
both contexts at once. Example: -s compiler=gcc

-s:b SETTINGS_BUILD, --settings:build SETTINGS_BUILD
-s:h SETTINGS_HOST, --settings:host SETTINGS_HOST
-s:a SETTINGS_ALL, --settings:all SETTINGS_ALL
-c CONF, --conf CONF Apply the specified conf. By default, or if specifying

-c:h (--conf:host), it applies to the host context.
Use -c:b (--conf:build) to specify the build context,
or -c:a (--conf:all) to specify both contexts at once.
Example: -c tools.cmake.cmaketoolchain:generator=Xcode

-c:b CONF_BUILD, --conf:build CONF_BUILD
-c:h CONF_HOST, --conf:host CONF_HOST
-c:a CONF_ALL, --conf:all CONF_ALL
-l LOCKFILE, --lockfile LOCKFILE

Path to a lockfile. Use --lockfile="" to avoid
automatic use of existing 'conan.lock' file

--lockfile-partial Do not raise an error if some dependency is not found
in lockfile

--lockfile-out LOCKFILE_OUT
Filename of the updated lockfile

(continues on next page)

8.1. Commands 363

Conan Documentation, Release 2.1.0

(continued from previous page)

--lockfile-clean Remove unused entries from the lockfile
--lockfile-overrides LOCKFILE_OVERRIDES

Overwrite lockfile overrides

The conan test command uses the test_package folder specified in path to tests the package reference specified in
reference.

See also:
• Read the tutorial about testing Conan packages.

8.1.22 conan upload

Use this command to upload recipes and binaries to Conan repositories. For more information on how to work with
Conan repositories, please check the dedicated section.

$ conan upload -h
WARN: Downgrading cache from Conan 2.2.3 to 2.1.0
usage: conan upload [-h] [-v [V]] [-cc CORE_CONF] [-f FORMAT]

[-p PACKAGE_QUERY] -r REMOTE [--only-recipe] [--force]
[--check] [-c] [--dry-run] [-l LIST] [-m METADATA]
[pattern]

Upload packages to a remote.

By default, all the matching references are uploaded (all revisions).
By default, if a recipe reference is specified, it will upload all the revisions for all␣
→˓the
binary packages, unless --only-recipe is specified. You can use the "latest" placeholder␣
→˓at the
"reference" argument to specify the latest revision of the recipe or the package.

positional arguments:
pattern A pattern in the form

'pkg/version#revision:package_id#revision', e.g:
zlib/1.2.13:* means all binaries for zlib/1.2.13. If
revision is not specified, it is assumed latest one.

options:
-h, --help show this help message and exit
-v [V] Level of detail of the output. Valid options from less

verbose to more verbose: -vquiet, -verror, -vwarning,
-vnotice, -vstatus, -v or -vverbose, -vv or -vdebug,
-vvv or -vtrace

-cc CORE_CONF, --core-conf CORE_CONF
Global configuration for Conan

-f FORMAT, --format FORMAT
Select the output format: json

-p PACKAGE_QUERY, --package-query PACKAGE_QUERY
Only upload packages matching a specific query. e.g:
os=Windows AND (arch=x86 OR compiler=gcc)

-r REMOTE, --remote REMOTE
(continues on next page)

364 Chapter 8. Reference

Conan Documentation, Release 2.1.0

(continued from previous page)

Upload to this specific remote
--only-recipe Upload only the recipe/s, not the binary packages.
--force Force the upload of the artifacts even if the revision

already exists in the server
--check Perform an integrity check, using the manifests,

before upload
-c, --confirm Upload all matching recipes without confirmation
--dry-run Do not execute the real upload (experimental)
-l LIST, --list LIST Package list file
-m METADATA, --metadata METADATA

Upload the metadata, even if the package is already in
the server and not uploaded

The conan upload command can upload packages to 1 server repository specified by the -r=myremote argument.

It has 2 possible and mutually exclusive inputs: - The conan upload <pattern> pattern-based matching of recipes,
with a pattern similar to the conan list <pattern>. - The conan upload --list=<pkglist> that will upload
the artifacts specified in the pkglist json file

If the --format=json formatter is specified, the result will be a “PackageList”, compatible with other Conan com-
mands, for example the conan remove command, so it is possible to concatenate different commands using the gen-
erated json file. See the Packages Lists examples.

The --dry-run argument will prepare the packages for upload, zip files if necessary, check in the server to see what
needs to be uploaded and what is already in the server, but it will not execute the actual upload.

Using the core.upload:parallel conf, it is possible to upload packages in parallel. By default, or when set to a
value less than 2, no parallelization will take place, and any other value will be the number of parallel threads to utilize.

See also:
• Uploading packages tutorial

• Working with Conan repositories

• Managing remotes with conan remote command

• Uploading metadata files.

• conan build: Install package and call its build method

• conan create: Create a package from a recipe

• conan download: Download (without install) a single conan package from a remote server.

• conan editable: Allows working with a package in user folder

• conan export: Export a recipe to the Conan package cache

• conan export-pkg: Create a package directly from pre-compiled binaries

• conan new: Create a new recipe from a predefined template

• conan source: Calls the source() method

• conan test: Test a package

• conan upload: Upload packages from the local cache to a specified remote

8.1. Commands 365

Conan Documentation, Release 2.1.0

8.1.23 Command formatters

Almost all the commands have the parameter --format xxxx which is used to apply an output conversion. The
command formatters help users see the command output in a different way that could fit better with their needs. Here,
there are only some of the most important ones whose details are worthy of having a separate section.

Formatter: Graph-info JSON

This section is aimed to show one example of the JSON format output when using any of these commands:

• conan graph info xxxx --format=json

• conan create xxxx --format=json

• conan install xxxx --format=json

• conan export-pkg xxxx --format=json

The output shows the graph information processed by Conan in each command.

Warning: This json output is experimental and subject to change.

The JSON output generated by conan graph info --require=zlib/1.2.11 -r=conancenter
--format=json > graph.json for instance:

Listing 24: graph.json
{

"graph": {
"nodes": {

"0": {
"ref": "conanfile",
"id": "0",
"recipe": "Cli",
"package_id": null,
"prev": null,
"rrev": null,
"rrev_timestamp": null,
"prev_timestamp": null,
"remote": null,
"binary_remote": null,
"build_id": null,
"binary": null,
"invalid_build": false,
"info_invalid": null,
"name": null,
"user": null,
"channel": null,
"url": null,
"license": null,
"author": null,
"description": null,
"homepage": null,
"build_policy": null,

(continues on next page)

366 Chapter 8. Reference

Conan Documentation, Release 2.1.0

(continued from previous page)

"upload_policy": null,
"revision_mode": "hash",
"provides": null,
"deprecated": null,
"win_bash": null,
"win_bash_run": null,
"default_options": null,
"options_description": null,
"version": null,
"topics": null,
"package_type": "unknown",
"settings": {

"os": "Macos",
"arch": "x86_64",
"compiler": "apple-clang",
"compiler.cppstd": "gnu17",
"compiler.libcxx": "libc++",
"compiler.version": "12.0",
"build_type": "Release"

},
"options": {},
"options_definitions": {},
"generators": [],
"python_requires": null,
"system_requires": {},
"recipe_folder": null,
"source_folder": null,
"build_folder": null,
"generators_folder": null,
"package_folder": null,
"cpp_info": {

"root": {
"includedirs": [

"include"
],
"srcdirs": null,
"libdirs": [

"lib"
],
"resdirs": null,
"bindirs": [

"bin"
],
"builddirs": null,
"frameworkdirs": null,
"system_libs": null,
"frameworks": null,
"libs": null,
"defines": null,
"cflags": null,
"cxxflags": null,
"sharedlinkflags": null,

(continues on next page)

8.1. Commands 367

Conan Documentation, Release 2.1.0

(continued from previous page)

"exelinkflags": null,
"objects": null,
"sysroot": null,
"requires": null,
"properties": null

}
},
"conf_info": {},
"label": "cli",
"dependencies": {

"1": {
"ref": "zlib/1.2.11",
"run": false,
"libs": true,
"skip": false,
"test": false,
"force": false,
"direct": true,
"build": false,
"transitive_headers": null,
"transitive_libs": null,
"headers": true,
"package_id_mode": null,
"visible": true

}
},
"context": "host",
"test": false

},
"1": {

"ref": "zlib/1.2.11#ffa77daf83a57094149707928bdce823",
"id": "1",
"recipe": "Cache",
"package_id": "d0599452a426a161e02a297c6e0c5070f99b4909",
"prev": "1440f4f447208c8e6808936b4c6ff282",
"rrev": "dc0e384f0551386cd76dc29cc964c95e",
"rrev_timestamp": 1703667991.3458598,
"prev_timestamp": 1703668372.8517942,
"remote": null,
"binary_remote": null,
"build_id": null,
"binary": "Missing",
"invalid_build": false,
"info_invalid": null,
"name": "zlib",
"user": null,
"channel": null,
"url": "https://github.com/conan-io/conan-center-index",
"license": "Zlib",
"author": null,
"description": "A Massively Spiffy Yet Delicately Unobtrusive␣

→˓Compression Library (Also Free, Not to Mention Unencumbered by Patents)",

(continues on next page)

368 Chapter 8. Reference

Conan Documentation, Release 2.1.0

(continued from previous page)

"homepage": "https://zlib.net",
"build_policy": null,
"upload_policy": null,
"revision_mode": "hash",
"provides": null,
"deprecated": null,
"win_bash": null,
"win_bash_run": null,
"default_options": {

"shared": false,
"fPIC": true

},
"options_description": null,
"version": "1.2.11",
"topics": [

"zlib",
"compression"

],
"package_type": "static-library",
"settings": {

"os": "Macos",
"arch": "x86_64",
"compiler": "apple-clang",
"compiler.cppstd": "gnu17",
"compiler.libcxx": "libc++",
"compiler.version": "12.0",
"build_type": "Release"

},
"options": {

"fPIC": "True",
"shared": "False"

},
"options_definitions": {

"shared": [
"True",
"False"

],
"fPIC": [

"True",
"False"

]
},
"generators": [],
"python_requires": null,
"system_requires": {},
"recipe_folder": "/Users/franchuti/.conan2/p/zlib774aa77541f8b/e",
"source_folder": null,
"build_folder": null,
"generators_folder": null,
"package_folder": null,
"cpp_info": {

"root": {

(continues on next page)

8.1. Commands 369

Conan Documentation, Release 2.1.0

(continued from previous page)

"includedirs": [
"include"

],
"srcdirs": null,
"libdirs": [

"lib"
],
"resdirs": null,
"bindirs": [

"bin"
],
"builddirs": null,
"frameworkdirs": null,
"system_libs": null,
"frameworks": null,
"libs": null,
"defines": null,
"cflags": null,
"cxxflags": null,
"sharedlinkflags": null,
"exelinkflags": null,
"objects": null,
"sysroot": null,
"requires": null,
"properties": null

}
},
"conf_info": {},
"label": "zlib/1.2.11",
"info": {

"settings": {
"os": "Macos",
"arch": "x86_64",
"compiler": "apple-clang",
"compiler.cppstd": "gnu17",
"compiler.libcxx": "libc++",
"compiler.version": "12.0",
"build_type": "Release"

},
"options": {

"fPIC": "True",
"shared": "False"

}
},
"dependencies": {},
"context": "host",
"test": false

}
},
"root": {

"0": "None"
},

(continues on next page)

370 Chapter 8. Reference

Conan Documentation, Release 2.1.0

(continued from previous page)

"overrides": {},
"resolved_ranges": {},
"replaced_requires": {}

}
}

• graph-info formatter: Show the graph information in JSON format. It’s used by several commands.

8.2 conanfile.py

The conanfile.py is the recipe file of a package, responsible for defining how to build it and consume it.

from conan import ConanFile

class HelloConan(ConanFile):
...

Important: conanfile.py recipes use a variety of attributes and methods to operate. In order to avoid collisions and
conflicts, follow these rules:

• Public attributes and methods, like build(), self.package_folder, are reserved for Conan. Don’t use public
members for custom fields or methods in the recipes.

• Use “protected” access for your own members, like self._my_data or def _my_helper(self):. Conan only
reserves “protected” members starting with _conan.

Contents:

8.2.1 Attributes

• Package reference

– name

– version

– user

– channel

• Metadata

– description

– license

– author

– topics

– homepage

– url

8.2. conanfile.py 371

Conan Documentation, Release 2.1.0

• Requirements

– requires

– tool_requires

– build_requires

– test_requires

– python_requires

– python_requires_extend

• Sources

– exports

– exports_sources

– conan_data

– source_buildenv

• Binary model

– package_type

– settings

– options

– default_options

– default_build_options

– options_description

– info

– package_id_{embed,non_embed,python,unknown}_mode

• Build

– generators

– build_policy

– win_bash

– win_bash_run

• Folders and layout

– source_folder

– export_sources_folder

– build_folder

– package_folder

– recipe_folder

– recipe_metadata_folder

– package_metadata_folder

– no_copy_source

372 Chapter 8. Reference

Conan Documentation, Release 2.1.0

• Layout

– folders

– cpp

– layouts

• Package information for consumers

– cpp_info

– buildenv_info

– runenv_info

– conf_info

– deprecated

– provides

• Other

– dependencies

– conf

– Output

– Output contents

– revision_mode

– upload_policy

– required_conan_version

– implements

– alias

– extension_properties

Package reference

Recipe attributes that can define the main pkg/version@user/channel package reference.

name

The name of the package. A valid name is all lowercase and has:

• A minimum of 2 and a maximum of 101 characters (though shorter names are recommended).

• Matches the following regex ^[a-z0-9_][a-z0-9_+.-]{1,100}$: so starts with alphanumeric or _,
then from 1 to 100 characters between alphanumeric, _, +, . or -.

The name is only necessary for export-ing the recipe into the local cache (export, export-pkg
and create commands), if they are not defined in the command line with --name=<pkgname>.

8.2. conanfile.py 373

Conan Documentation, Release 2.1.0

version

The version of the package. A valid version follows the same rules than the name attribute. In case the version follows
semantic versioning in the form X.Y.Z-pre1+build2, that value might be used for requiring this package through
version ranges instead of exact versions.

The version is only strictly necessary for export-ing the recipe into the local cache (export, export-pkg and create
commands), if they are not defined in the command line with --version=<pkgversion>

The version can be dynamically defined in the command line, and also programmatically in the recipe with the
set_version() method.

user

A valid string for the user field follows the same rules than the name attribute. This is an optional attribute. It can be
used to identify your own packages with pkg/version@user/channel, where user could be the name of your team,
org or company. ConanCenter recipes don’t have user/channel, so they are in the form of pkg/version only. You
can also name your packages without user and channel, or using only the user as pkg/version@user.

The user can be specified in the command line with --user=<myuser>

channel

A valid string for the channel field follows the same rules than the name attribute. This is an optional attribute. It is
sometimes used to identify a maturity of the package (“stable”, “testing”. . .), but in general this is not necessary, and
the maturity of packages is better managed by putting them in different server repositories.

The user can be specified in the command line with --channel=<mychannel>

Metadata

Optional metadata, like license, description, author, etc. Not necessary for most cases, but can be useful to have.

description

This is an optional, but recommended text field, containing the description of the package, and any information that
might be useful for the consumers. The first line might be used as a short description of the package.

class HelloConan(ConanFile):
name = "hello"
version = "0.1"
description = """This is a Hello World library.

A fully featured, portable, C++ library to say Hello World in the␣
→˓stdout,

with incredible iostreams performance"""

374 Chapter 8. Reference

Conan Documentation, Release 2.1.0

license

License of the target source code and binaries, i.e. the code that is being packaged, not the conanfile.py itself. Can
contain several, comma separated licenses. It is a text string, so it can contain any text, but it is strongly recommended
that recipes of Open Source projects use SPDX identifiers from the SPDX license list

This will help people wanting to automate license compatibility checks, like consumers of your package, or you if your
package has Open-Source dependencies.

class Pkg(ConanFile):
license = "MIT"

author

Main maintainer/responsible for the package, any format. This is an optional attribute.

class HelloConan(ConanFile):
author = "John J. Smith (john.smith@company.com)"

topics

Tags to group related packages together and describe what the code is about. Used as a search filter in ConanCenter.
Optional attribute. It should be a tuple of strings.

class ProtocInstallerConan(ConanFile):
name = "protoc_installer"
version = "0.1"
topics = ("protocol-buffers", "protocol-compiler", "serialization", "rpc")

homepage

The home web page of the library being packaged.

Used to link the recipe to further explanations of the library itself like an overview of its features, documentation, FAQ
as well as other related information.

class EigenConan(ConanFile):
name = "eigen"
version = "3.3.4"
homepage = "http://eigen.tuxfamily.org"

8.2. conanfile.py 375

https://spdx.dev
https://spdx.org/licenses/

Conan Documentation, Release 2.1.0

url

URL of the package repository, i.e. not necessarily of the original source code. Recommended, but not mandatory
attribute.

class HelloConan(ConanFile):
name = "hello"
version = "0.1"
url = "https://github.com/conan-io/hello.git"

Requirements

Attribute form of the dependencies simple declarations, like requires, tool_requires. For more advanced way to
define requirements, use the requirements(), build_requirements() methods instead.

requires

List or tuple of strings for regular dependencies in the host context, like a library.

class MyLibConan(ConanFile):
requires = "hello/1.0", "otherlib/2.1@otheruser/testing"

You can specify version ranges, the syntax is using brackets:

class HelloConan(ConanFile):
requires = "pkg/[>1.0 <1.8]"

Accepted expressions would be:

Expression Versions in range Versions outside of range
[>=1.0 <2] 1.0.0, 1.0.1, 1.1, 1.2.3 0.2, 2.0, 2.1, 3.0
[<3.2.1] 0.1, 1.2, 2.4, 3.1.1 3.2.2
[>2.0] 2.1, 2.2, 3.1, 14.2 1.1, 1.2, 2.0

If pre-releases are activated, like defining configuration core.version_ranges:resolve_prereleases=True:

Expression Versions in range Versions outside of range
[>=1.0 <2] 1.0.0-pre.1, 1.0.0, 1.0.1,

1.1, 1.2.3
0.2, 2.0-pre.1, 2.0, 2.1, 3.0

[<3.2.1] 0.1, 1.2, 1.8-beta.1, 2.0-
alpha.2, 2.4, 3.1.1

3.2.1-pre.1, 3.2.1, 3.2.2, 3.3

[>2.0] 2.1-pre.1, 2.1, 2.2, 3.1,
14.2

1.1, 1.2, 2.0-pre.1, 2.0

See also:
• Check Range expressions version_ranges tutorial section

376 Chapter 8. Reference

Conan Documentation, Release 2.1.0

tool_requires

List or tuple of strings for dependencies. Represents a build tool like “cmake”. If there is an existing pre-compiled
binary for the current package, the binaries for the tool_require won’t be retrieved. They cannot conflict.

class MyPkg(ConanFile):
tool_requires = "tool_a/0.2", "tool_b/0.2@user/testing"

This is the declarative way to add tool_requires. Check the tool_requires() conanfile.py method to learn a more
flexible way to add them.

build_requires

build_requires are used in Conan 2 to provide compatibility with the Conan 1.X syntax, but their use is discouraged
in Conan 2 and will be deprecated in future 2.X releases. Please use tool_requires instead of build_requires in your
Conan 2 recipes.

test_requires

List or tuple of strings for dependencies in the host context only. Represents a test tool like “gtest”. Used when the
current package is built from sources. They don’t propagate information to the downstream consumers. If there is an
existing pre-compiled binary for the current package, the binaries for the test_require won’t be retrieved. They cannot
conflict.

class MyPkg(ConanFile):
test_requires = "gtest/1.11.0", "other_test_tool/0.2@user/testing"

This is the declarative way to add test_requires. Check the test_requires() method to learn a more flexible way to
add them.

python_requires

This class attribute allows to define a dependency to another Conan recipe and reuse its code. Its basic syntax is:

from conan import ConanFile

class Pkg(ConanFile):
python_requires = "pyreq/0.1@user/channel" # recipe to reuse code from

def build(self):
self.python_requires["pyreq"].module # access to the whole conanfile.py module
self.python_requires["pyreq"].module.myvar # access to a variable
self.python_requires["pyreq"].module.myfunct() # access to a global function
self.python_requires["pyreq"].path # access to the folder where the reused file␣

→˓is

Read more about this attribute in Python requires

8.2. conanfile.py 377

Conan Documentation, Release 2.1.0

python_requires_extend

This class attribute defines one or more classes that will be injected in runtime as base classes of the recipe class.
Syntax for each of these classes should be a string like pyreq.MyConanfileBase where the pyreq is the name of a
python_requires and MyConanfileBase is the name of the class to use.

from conan import ConanFile

class Pkg(ConanFile):
python_requires = "pyreq/0.1@user/channel", "utils/0.1@user/channel"
python_requires_extend = "pyreq.MyConanfileBase", "utils.UtilsBase" # class/es to␣

→˓inject

Sources

exports

List or tuple of strings with file names or fnmatch patterns that should be exported and stored side by side with the
conanfile.py file to make the recipe work: other python files that the recipe will import, some text file with data to
read,. . .

For example, if we have some python code that we want the recipe to use in a helpers.py file, and have some text file
info.txt we want to read and display during the recipe evaluation we would do something like:

exports = "helpers.py", "info.txt"

Exclude patterns are also possible, with the ! prefix:

exports = "*.py", "!*tmp.py"

See also:
• Check the export() conanfile.py method.

exports_sources

List or tuple of strings with file names or fnmatch patterns that should be exported and will be available to generate
the package. Unlike the exports attribute, these files shouldn’t be used by the conanfile.py Python code, but to
compile the library or generate the final package. And, due to its purpose, these files will only be retrieved if requested
binaries are not available or the user forces Conan to compile from sources.

This is an alternative to getting the sources with the source() method. Used when we are not packaging a third party
library and we have together the recipe and the C/C++ project:

exports_sources = "include*", "src*"

Exclude patterns are also possible, with the ! prefix:

exports_sources = "include*", "src*", "!src/build/*"

Note, if the recipe defines the layout() method and specifies a self.folders.source = "src" it won’t affect
where the files (from the exports_sources) are copied. They will be copied to the base source folder. So, if you
want to replace some file that got into the source() method, you need to explicitly copy it from the parent folder or
even better, from self.export_sources_folder.

378 Chapter 8. Reference

https://docs.python.org/3/library/fnmatch.html
https://docs.python.org/3/library/fnmatch.html

Conan Documentation, Release 2.1.0

import os, shutil
from conan import ConanFile
from conan.tools.files import save, load

class Pkg(ConanFile):
...
exports_sources = "CMakeLists.txt"

def layout(self):
self.folders.source = "src"
self.folders.build = "build"

def source(self):
emulate a download from web site
save(self, "CMakeLists.txt", "MISTAKE: Very old CMakeLists to be replaced")
Now I fix it with one of the exported files
shutil.copy("../CMakeLists.txt", ".")
shutil.copy(os.path.join(self.export_sources_folder, "CMakeLists.txt", "."))

conan_data

Read only attribute with a dictionary with the keys and values provided in a conandata.yml file format placed next to
the conanfile.py. This YAML file is automatically exported with the recipe and automatically loaded with it too.

You can declare information in the conandata.yml file and then access it inside any of the methods of the recipe. For
example, a conandata.yml with information about sources that looks like this:

sources:
"1.1.0":
url: "https://www.url.org/source/mylib-1.0.0.tar.gz"
sha256: "8c48baf3babe0d505d16cfc0cf272589c66d3624264098213db0fb00034728e9"

"1.1.1":
url: "https://www.url.org/source/mylib-1.0.1.tar.gz"
sha256: "15b6393c20030aab02c8e2fe0243cb1d1d18062f6c095d67bca91871dc7f324a"

def source(self):
get(self, **self.conan_data["sources"][self.version])

source_buildenv

Boolean attribute to opt-in injecting the VirtualBuildEnv generated environment while running the source() method.

Setting this attribute to True (default value False) will inject the VirtualBuildEnv generated environment from tool
requires when executing the source() method.

class MyConan:
name = "mylib"
version = "1.0.0"
source_buildenv = True
tool_requires = "7zip/1.2.0"

(continues on next page)

8.2. conanfile.py 379

Conan Documentation, Release 2.1.0

(continued from previous page)

def source(self):
get(self, **self.conan_data["sources"][self.version])
self.run("7z x *.zip -o*") ## Can run 7z in the source method

Binary model

Important attributes that define the package binaries model, which settings, options, package type, etc. affect the final
packaged binaries.

package_type

Optional. Declaring the package_type will help Conan:

• To choose better the default package_id_mode for each dependency, that is, how a change in a dependency
should affect the package_id to the current package.

• Which information from the dependencies should be propagated to the consumers, like headers, libraries, runtime
information. See here to see what traits are propagated based on the package_type information.

The valid values are:

• application: The package is an application.

• library: The package is a generic library. It will try to determine the type of library (from shared-library,
static-library, header-library) reading the self.options.shared (if declared) and the self.
options.header_only

• shared-library: The package is a shared library.

• static-library: The package is a static library.

• header-library: The package is a header only library.

• build-scripts: The package only contains build scripts.

• python-require: The package is a python require.

• unknown: The type of the package is unknown.

settings

List of strings with the first level settings (from settings.yml) that the recipe needs, because: - They are read for building
(e.g: if self.settings.compiler == “gcc”) - They affect the package_id. If a value of the declared setting changes, the
package_id has to be different.

The most common is to declare:

settings = "os", "compiler", "build_type", "arch"

Once the recipe is loaded by Conan, the settings are processed and they can be read in the recipe, also the sub-settings:

settings = "os", "arch"

def build(self):
if self.settings.compiler == "gcc":

(continues on next page)

380 Chapter 8. Reference

Conan Documentation, Release 2.1.0

(continued from previous page)

if self.settings.compiler.cppstd == "gnu20":
do some special build commands

If you try to access some setting that doesn’t exist, like self.settings.compiler.libcxx for the msvc setting,
Conan will fail telling that libcxx does not exist for that compiler.

If you want to do a safe check of settings values, you could use the get_safe() method:

def build(self):
Will be None if doesn't exist (not declared)
arch = self.settings.get_safe("arch")
Will be None if doesn't exist (doesn't exist for the current compiler)
compiler_version = self.settings.get_safe("compiler.version")
Will be the default version if the return is None
build_type = self.settings.get_safe("build_type", default="Release")

The get_safe() method returns None if that setting or sub-setting doesn’t exist and there is no default value assigned.

It’s also feasible to check the possible values defined in settings.yml using the possible_values() method:

def generate(self):
Print if Android exists as OS in the whole settings.yml
is_android = "Android" in self.settings.possible_values()["os"]
self.output.info(f"Android in settings.yml: {is_android}")
Print the available versions for the compiler used by the HOST profile
compiler_versions = self.settings.compiler.version.possible_values()
self.output.info(f"[HOST] Versions for {str(self.settings.compiler)}: {', '.

→˓join(compiler_versions)}")
Print the available versions for the compiler used by the BUILD profile
compiler_versions = self.settings_build.compiler.version.possible_values()
self.output.info(f"[BUILD] Versions for {str(self.settings.compiler)}: {', '.

→˓join(compiler_versions)}")

As you can see above, doing self.settings.possible_values() returns the whole settings.yml as a Python dict-
like object, and doing self.settings.compiler.version.possible_values() for instance returns the available
versions for the compiler used by the consumer.

If you want to do a safe deletion of settings, you could use the rm_safe() method. For example, in the configure()
method a typical pattern for a C library would be:

def configure(self):
self.settings.rm_safe("compiler.libcxx")
self.settings.rm_safe("compiler.cppstd")

See also:
• settings.yml.

• Removing settings in the package_id() method.

8.2. conanfile.py 381

Conan Documentation, Release 2.1.0

options

Dictionary with traits that affects only the current recipe, where the key is the option name and the value is a list of
different values that the option can take. By default any value change in an option, changes the package_id. Check
the default_options and default_build_options fields to define default values for the options.

Values for each option can be typed or plain strings ("value", True, 42,. . .).

There are two special values:

• None: Allow the option to have a None value (not specified) without erroring.

• "ANY": For options that can take any value, not restricted to a set.

class MyPkg(ConanFile):
...
options = {

"shared": [True, False],
"option1": ["value1", "value2"],
"option2": ["ANY"],
"option3": [None, "value1", "value2"],
"option4": [True, False, "value"],

}

Once the recipe is loaded by Conan, the options are processed and they can be read in the recipe. You can also use
the method .get_safe() (see settings attribute) to avoid Conan raising an Exception if the option doesn’t exist:

class MyPkg(ConanFile):
options = {"shared": [True, False]}

def build(self):
if self.options.shared:

build the shared library
if self.options.get_safe("foo", True):

pass

In boolean expressions, like if self.options.shared:

• equals True for the values True, "True" and "true", and any other value that would be evaluated the same
way in Python code.

• equals False for the values False, "False" and "false", also for the empty string and for 0 and "0" as
expected.

Notice that a comparison using is is always False because the types would be different as it is encapsulated inside a
Python class.

If you want to do a safe deletion of options, you could use the rm_safe() method. For example, in the
config_options() method a typical pattern for Windows library would be:

def config_options(self):
if self.settings.os == "Windows":

self.options.rm_safe("fPIC")

See also:
• Read the Getting started, creating packages to know how to declare and how to define a value to an option.

• Removing options in the package_id() method. <MISSING PAGE>

382 Chapter 8. Reference

Conan Documentation, Release 2.1.0

• About the package_type and how it plays when a shared option is declared. <MISSING PAGE>

default_options

The attribute default_options defines the default values for the options, both for the current recipe and for any
requirement. This attribute should be defined as a python dictionary.

class MyPkg(ConanFile):
...
requires = "zlib/1.2.8", "zwave/2.0"
options = {"build_tests": [True, False],

"option2": "ANY"}
default_options = {"build_tests": True,

"option1": 42,
"z*:shared": True}

You can also assign default values for options of your requirements using “<reference_pattern>: option_name”, being
a valid reference_pattern a name/version or any pattern with * like the example above.

You can also set the options conditionally to a final value with configure() instead of using default_options:

class OtherPkg(ConanFile):
settings = "os", "arch", "compiler", "build_type"
options = {"some_option": [True, False]}
Do NOT declare 'default_options', use 'config_options()'

def configure(self):
if self.options.some_option == None:

if self.settings.os == 'Android':
self.options.some_option = True

else:
self.options.some_option = False

Take into account that if a value is assigned in the configure() method it cannot be overridden.

See also:
• config_options() method.

There are 2 different ways that a recipe can try to define options values for its dependencies. Using default_options
= {"mypkg/*:myoption", 123} the current recipe can define the 123 value to the dependency mypkg myoption.
This way of defining options for dependencies has some limitations:

• Any other downstream user of the current recipe that defines the same option for mypkg will have precedence,
overwriting the current recipe 123 value. Also any definition in the profile or command line will also have
precedence. The recipe default_options have the least precedence. If a recipe will not work at all with some
dependencies options, then recipes can check and raise ConanInvalidConfiguration errors accordingly.

• Any sibling package that depends on mypkg will also define its options and it will be the only one being taken
into account. In other words, the first time mypkg is required by any other package will “freeze” its currently
assigned options values. Any other package that depends later on mypkg, closing the diamond structures in the
dependency graph will not have any influence on the mypkg options. Only the first one requiring it will.

The second way to define the options values is defining them as important!.

8.2. conanfile.py 383

Conan Documentation, Release 2.1.0

Warning: The important! syntax is experimental and can be changed or removed at any time.

A recipe can define its dependencies options as important! with the syntax default_options = {"mypkg/
*:myoption!", 123}. That means that the mypkg myoption will not be overriden by other downstream packages,
profile or command line doing regular definition of options (like -o *:myoption=234).

But there are 2 cases in which this will still not define the final value of the dependency:

• If any downstream recipe, command line or profile also uses the myoption! syntax, that will also have prece-
dence and override the value upstream

• If there is any other package that requires first mypkg, the values defined at that moment will still have precedence.

In general the recommendation for defining options values is to do it in profile files, not in recipes, as in-recipe
definition can be more complicated specially for complex dependency graphs.

default_build_options

The attribute default_build_options defines the default values for the options in the build context and is typically
used for defining options for tool_requires.

from conan import ConanFile
class Consumer(ConanFile):

default_options = {"protobuf/*:shared": True}
default_build_options = {"protobuf/*:shared": False}
def requirements(self):

self.requires("protobuf/1.0")
def build_requirements(self):

self.tool_requires("protobuf/1.0")

options_description

The options_description attribute is an optional attribute that can be defined in the form of a dictionary where
the key is the option name and the value is a description of the option in text format. This attribute is useful for
providing additional information about the functionality and purpose of each option, particularly when the option is
not self-explanatory or has complex or special behavior.

The format for each dictionary entry should be:

• Key: Option name. Must be a string and must match one of the keys in the options dictionary.

• Value: Description of the option. Must be a string and can be as long as necessary.

For example:

class MyPkg(ConanFile):
...
options = {"option1": [True, False],

"option2": "ANY"}

options_description = {
"option1": "Describe the purpose and functionality of 'option1'. ",
"option2": "Describe the purpose and functionality of 'option2'. ",

}

384 Chapter 8. Reference

Conan Documentation, Release 2.1.0

info

Object used exclusively in package_id() method:

• The :ref:package_id method<reference_conanfile_methods_package_id> to control the unique ID for a package:

def package_id(self):
self.info.clear()

The self.info.clear() method removes all the settings, options, requirements (requires, tool_requires,
python_requires) and configuration (conf) from the package_id computation, so the package_id will always
result in the same binary, irrespective of all those things. This would be the typical case of a header-only library, in
which the packaged artifacts (files) are always identical.

package_id_{embed,non_embed,python,unknown}_mode

The package_id_embed_mode, package_id_non_embed_mode, package_id_python_mode,
package_id_unknown_mode are class attributes that can be defined in recipes to define the effect they have
on their consumers package_id. Can be declared as:

from conan import ConanFile

class Pkg(ConanFile):
name = "pkg"
version = "1.0.0"
They are not mandatory, and it is not necessary to define all
package_id_embed_mode = "full_mode"
package_id_non_embed_mode = "patch_mode"
package_id_unknown_mode = "minor_mode"
package_id_python_mode = "major_mode"

In general, the Conan defaults are good ones, and allow providing users good control over when the consumers need to
be re-built from source or not. Also, the Conan defaults can be changed globally in the global.conf file (they should
be changed globally for all users, CI, etc.) via the core.package_id:xxxx configurations. The in-recipe attribute
definition is useful to define behavior that deviates from the defaults.

Possible values are (following the semver definition of MAJOR.MINOR.PATCH):

• patch_mode: New patches, minors, and major releases of the package will require a new binary (new
package_id) of the consumers. New recipe revisions will not require new binaries of the consumers. For
example if we create a new pkg/1.0.1 version and some consumer has requires = "pkg/[>=1.0 <2.0]",
such a consumer will build a new binary against this specific new 1.0.1 version. But if we just change the recipe,
producing a new recipe_revision, the consumers will not require building a new binary.

• minor_mode: New minor and major releases of this package will require a new binary of the consumers. New
patches and new revisions will not require new binaries of the consumers. This is the default for the “non-embed-
mode”, as it allows fine control by the users to decide when to rebuild things or not.

• major_mode: Only new major releases will require new binaries. Any other modifications and new versions will
not require new binaries from the consumers.

• full_mode: The full identifier of this package, including pkgname/version@user/
channel#recipe_revision:package_id will be used in the consumers package_id, then requiring
to build a new binary of the consumer for every change of this package (as any change either in source or
configuration will produce a different recipe_revision or package_id respectively). This is the default for
the “embed-mode”.

8.2. conanfile.py 385

Conan Documentation, Release 2.1.0

• unrelated_mode: No change in this package will ever produce a new binary in the consumer.

The 4 different attributes are:

• package_id_embed_mode: Define the mode for “embedding” cases, that is, a shared library linking a static
library, an application linking a static library, an application or a library linking a header-only library. The
default for this mode is full_mode

• package_id_non_embed_mode. Define the mode for “non-embedding” cases, that is, a shared library linking
another shared library, a static library linking another static library, an application executable linking a shared
library. The default for this mode is minor_mode.

• package_id_unknown_mode: Define the mode when the relationship between packages is unknown. If it is not
possible to deduce the package type, because there are no shared or header_only options defined, or because
package_type is not defined, then, this mode will be used. The default for this mode is semver_mode (similar
to Conan 1.X behavior).

• package_id_python_mode: Define the mode for consumers of python_requires. By default it will be
minor_mode, and it is strongly recommended to use this default, and not define the package_id_python_mode.
This attribute is provided for completeness and exceptional cases like temporary migrations.

See also:
Read the binary model reference for a full view of the Conan binary model.

Build

generators

List or tuple of strings with names of generators.

class MyLibConan(ConanFile):
generators = "CMakeDeps", "CMakeToolchain"

The generators can also be instantiated explicitly in the generate() method.

from conan.tools.cmake import CMakeToolchain

class MyLibConan(ConanFile):
...

def generate(self):
tc = CMakeToolchain(self)
tc.generate()

build_policy

Controls when the current package is built during a conan install. The allowed values are:

• "missing": Conan builds it from source if there is no binary available.

• "never": This package cannot be built from sources, it is always created with conan export-pkg

• None (default value): This package won’t be built unless the policy is specified in the command line (e.g
--build=foo*)

386 Chapter 8. Reference

Conan Documentation, Release 2.1.0

class PocoTimerConan(ConanFile):
build_policy = "missing"

win_bash

When True it enables the new run in a subsystem bash in Windows mechanism.

from conan import ConanFile

class FooRecipe(ConanFile):
...
win_bash = True

It can also be declared as a property based on any condition:

from conan import ConanFile

class FooRecipe(ConanFile):
...

@property
def win_bash(self):

return self.settings.arch == "armv8"

win_bash_run

When True it enables running commands in the "run" scope, to run them inside a bash shell.

from conan import ConanFile

class FooRecipe(ConanFile):

...

win_bash_run = True
def build(self):

self.run(cmd, scope="run") # will run <cmd> inside bash

Folders and layout

source_folder

The folder in which the source code lives. The path is built joining the base directory (a cache directory when running
in the cache or the output folder when running locally) with the value of folders.source if declared in the
layout() method.

Note that the base directory for the source_folder when running in the cache will point to the base folder of the build
unless no_copy_source is set to True. But anyway it will always point to the correct folder where the source code is.

8.2. conanfile.py 387

Conan Documentation, Release 2.1.0

export_sources_folder

The value depends on the method you access it:

• At source(self): Points to the base source folder (that means self.source_folder but without taking into account
the folders.source declared in the layout() method). The declared exports_sources are copied to that base
source folder always.

• At exports_sources(self): Points to the folder in the cache where the export sources have to be copied.

See also:
• Read about the export_sources() method.

• Read about the source() method.

build_folder

The folder used to build the source code. The path is built joining the base directory (a cache directory when running in
the cache or the output folderwhen running locally) with the value of folders.build if declared in the layout()
method.

package_folder

The folder to copy the final artifacts for the binary package. In the local cache a package folder is created for every
different package ID.

The most common usage of self.package_folder is to copy the files at the package() method:

import os
from conan import ConanFile
from conan.tools.files import copy

class MyRecipe(ConanFile):
...

def package(self):
copy(self, "*.so", self.build_folder, os.path.join(self.package_folder, "lib"))
...

recipe_folder

The folder where the recipe conanfile.py is stored, either in the local folder or in the cache. This is useful in order to
access files that are exported along with the recipe, or the origin folder when exporting files in export(self) and
export_sources(self) methods.

The most common usage of self.recipe_folder is in the export(self) and export_sources(self) methods,
as the folder from where we copy the files:

from conan import ConanFile
from conan.tools.files import copy

class MethodConan(ConanFile):
(continues on next page)

388 Chapter 8. Reference

Conan Documentation, Release 2.1.0

(continued from previous page)

exports = "file.txt"
def export(self):

copy(self, "LICENSE.md", self.recipe_folder, self.export_folder)

recipe_metadata_folder

The self.recipe_metadata_folder (experimental) can be used in the export() and export_sources() and
source() methods to save or copy recipe metadata files. See metadata section for more information.

package_metadata_folder

The self.package_metadata_folder (experimental) can be used in the generate(), build() and package()
methods to save or copy package metadata files. See metadata section for more information.

no_copy_source

The attribute no_copy_source tells the recipe that the source code will not be copied from the source_folder to
the build_folder. This is mostly an optimization for packages with large source codebases or header-only, to avoid
extra copies.

If you activate no_copy_source=True, it is mandatory that the source code must not be modified at all by the
configure or build scripts, as the source code will be shared among all builds.

The recipes should always use self.source_folder attribute, which will point to the build folder when
no_copy_source=False and will point to the source folder when no_copy_source=True.

See also:
Read header-only packages section for an example using no_copy_source attribute.

Layout

folders

The folders attribute has to be set only in the layout() method. Please check the layout() method documentation
to learn more about this attribute.

cpp

Object storing all the information needed by the consumers of a package: include directories, library names, library
paths. . . Both for editable and regular packages in the cache. It is only available at the layout() method.

• self.cpp.package: For a regular package being used from the Conan cache. Same as declaring self.
cpp_info at the package_info() method.

• self.cpp.source: For “editable” packages, to describe the artifacts under self.source_folder

• self.cpp.build: For “editable” packages, to describe the artifacts under self.build_folder.

The cpp attribute has to be set only in the layout() method. Please check the layout() method documentation to learn
more about this attribute.

8.2. conanfile.py 389

Conan Documentation, Release 2.1.0

layouts

The layouts attribute has to be set only in the layout() method. Please check the layout() method documentation
to learn more about this attribute.

The layouts attribute contains information about environment variables and conf that would be path-dependent, and
as a result it would contain a different value when the package is in editable mode, or when the package is in the cache.
The layouts sub-attributes are:

• self.layouts.build: information related to the relative self.folders.build

• self.layouts.source: information related to the relative self.folders.source

• self.layouts.package: information related to the final package_folder

Each one of those will contain:

• buildenv_info: environment variables build information for consumers (equivalent to self.buildenv_info
in package_info())

• runenv_info: environment variables run information for consumers (equivalent to self.runenv_info in
package_info())

• conf_info: configuration information for consumers (equivalent to self.conf_info in package_info()).
Note this is only automatically propagated to self.conf of consumers when this package is a direct
tool_require.

For example, if we had an androidndk recipe that contains the AndroidNDK, and we want to have that recipe in
“editable” mode, it is necessary where the androidndk will be locally, before being in the created package:

import os
from conan import ConanFile
from conan.tools.files import copy

class AndroidNDK(ConanFile):

def layout(self):
When developing in user space it is in a "mybuild" folder (relative to current␣

→˓dir)
self.layouts.build.conf_info.define_path("tools.android:ndk_path", "mybuild")
but when packaged it will be in a "mypkg" folder (inside the cache package␣

→˓folder)
self.layouts.package.conf_info.define_path("tools.android:ndk_path", "mypkg")

def package(self):
copy(self, "*", src=os.path.join(self.build_folder, "mybuild"),

dst=os.path.join(self.package_folder, "mypkg"))

390 Chapter 8. Reference

Conan Documentation, Release 2.1.0

Package information for consumers

cpp_info

Same as using self.cpp.package in the layout() method. Use it if you need to read the package_folder to
locate the already located artifacts.

See also:
• CppInfo model.

Important: This attribute is only defined inside package_info() method being None elsewhere.

buildenv_info

For the dependant recipes, the declared environment variables will be present during the build process. Should be only
filled in the package_info() method.

Important: This attribute is only defined inside package_info() method being None elsewhere.

def package_info(self):
self.buildenv_info.append_path("PATH", self.package_folder)

See also:
Check the reference of the Environment object to know how to fill the self.buildenv_info.

runenv_info

For the dependant recipes, the declared environment variables will be present at runtime. Should be only filled in the
package_info() method.

Important: This attribute is only defined inside package_info() method being None elsewhere.

def package_info(self):
self.runenv_info.define_path("RUNTIME_VAR", "c:/path/to/exe")

See also:
Check the reference of the Environment object to know how to fill the self.runenv_info.

8.2. conanfile.py 391

Conan Documentation, Release 2.1.0

conf_info

Configuration variables to be passed to the dependant recipes. Should be only filled in the package_info() method.

class Pkg(ConanFile):
name = "pkg"

def package_info(self):
self.conf_info.define("tools.build:verbosity", "debug")
self.conf_info.get("tools.build:verbosity") # == "debug"
self.conf_info.append("user.myconf.build:ldflags", "--flag3") # == ["--flag1",

→˓"--flag2", "--flag3"]
self.conf_info.update("tools.microsoft.msbuildtoolchain:compile_options", {

→˓"ExpandAttributedSource": "false"})
self.conf_info.unset("tools.microsoft.msbuildtoolchain:compile_options")
self.conf_info.remove("user.myconf.build:ldflags", "--flag1") # == ["--flag0",

→˓"--flag2", "--flag3"]
self.conf_info.pop("tools.system.package_manager:sudo")

See also:
Read here the complete reference of self.conf_info.

deprecated

This attribute declares that the recipe is deprecated, causing a user-friendly warning message to be emitted whenever
it is used

For example, the following code:

from conan import ConanFile

class Pkg(ConanFile):
name = "cpp-taskflow"
version = "1.0"
deprecated = True

may emit a warning like:

cpp-taskflow/1.0: WARN: Recipe 'cpp-taskflow/1.0' is deprecated. Please, consider␣
→˓changing your requirements.

Optionally, the attribute may specify the name of the suggested replacement:

from conan import ConanFile

class Pkg(ConanFile):
name = "cpp-taskflow"
version = "1.0"
deprecated = "taskflow"

This will emit a warning like:

392 Chapter 8. Reference

Conan Documentation, Release 2.1.0

cpp-taskflow/1.0: WARN: Recipe 'cpp-taskflow/1.0' is deprecated in favor of 'taskflow'.␣
→˓Please, consider changing your requirements.

If the value of the attribute evaluates to False, no warning is printed.

provides

This attribute declares that the recipe provides the same functionality as other recipe(s). The attribute is usually needed
if two or more libraries implement the same API to prevent link-time and run-time conflicts (ODR violations). One
typical situation is forked libraries. Some examples are:

• LibreSSL, BoringSSL and OpenSSL

• libav and ffmpeg

• MariaDB client and MySQL client

If Conan encounters two or more libraries providing the same functionality within a single graph, it raises an error:

At least two recipes provides the same functionality:
- 'libjpeg' provided by 'libjpeg/9d', 'libjpeg-turbo/2.0.5'

The attribute value should be a string with a recipe name or a tuple of such recipe names.

For example, to declare that libjpeg-turbo recipe offers the same functionality as libjpeg recipe, the following
code could be used:

from conan import ConanFile

class LibJpegTurbo(ConanFile):
name = "libjpeg-turbo"
version = "1.0"
provides = "libjpeg"

To declare that a recipe provides the functionality of several different recipes at the same time, the following code could
be used:

from conan import ConanFile

class OpenBLAS(ConanFile):
name = "openblas"
version = "1.0"
provides = "cblas", "lapack"

If the attribute is omitted, the value of the attribute is assumed to be equal to the current package name. Thus, it’s
redundant for libjpeg recipe to declare that it provides libjpeg, it’s already implicitly assumed by Conan.

8.2. conanfile.py 393

https://www.libressl.org/
https://boringssl.googlesource.com/boringssl/
https://www.openssl.org/
https://en.wikipedia.org/wiki/Libav
https://ffmpeg.org/
https://downloads.mariadb.org/client-native
https://dev.mysql.com/downloads/c-api/

Conan Documentation, Release 2.1.0

Other

dependencies

Conan recipes provide access to their dependencies via the self.dependencies attribute.

class Pkg(ConanFile):
requires = "openssl/0.1"

def generate(self):
openssl = self.dependencies["openssl"]
access to members
openssl.ref.version
openssl.ref.revision # recipe revision
openssl.options
openssl.settings

See also:
Read here the complete reference of self.dependencies.

conf

In the self.conf attribute we can find all the conf entries declared in the [conf] section of the profiles. in addition of
the declared self.conf_info entries from the first level tool requirements. The profile entries have priority.

from conan import ConanFile

class MyConsumer(ConanFile):

tool_requires = "my_android_ndk/1.0"

def generate(self):
This is declared in the tool_requires
self.output.info("NDK host: %s" % self.conf.get("tools.android:ndk_path"))
This is declared in the profile at [conf] section
self.output.info("Custom var1: %s" % self.conf.get("user.custom.var1"))

Note: The conf attribute is a read-only attribute. It can only be defined in profiles and command lines, but it should
never be set by recipes. Recipes can only read its value via self.conf.get() method.

Output

Output contents

Use the self.output to print contents to the output.

self.output.success("This is good, should be green")
self.output.info("This is neutral, should be white")

(continues on next page)

394 Chapter 8. Reference

Conan Documentation, Release 2.1.0

(continued from previous page)

self.output.warning("This is a warning, should be yellow")
self.output.error("Error, should be red")

Additional output methods are available and you can produce different outputs with different colors. See the output
documentation for the list of available output methods.

revision_mode

This attribute allow each recipe to declare how the revision for the recipe itself should be computed. It can take three
different values:

• "hash" (by default): Conan will use the checksum hash of the recipe manifest to compute the revision for the
recipe.

• "scm": if the project is inside a Git repository the commit ID will be used as the recipe revision. If there is no
repository it will raise an error.

• "scm_folder": This configuration applies when you have a mono-repository project, but still want to use scm
revisions. In this scenario, the revision of the exported conanfile.py will correspond to the commit ID of the
folder where it’s located. This approach allows multiple conanfile.py files to exist within the same Git repository,
with each file exported under its distinct revision.

When scm or scm_folder is selected, the Git commit will be used, but by default the repository must be clean,
otherwise it would be very likely that there are uncommitted changes and the build wouldn’t be reproducible. So if
there are dirty files, Conan will raise an error. If there are files that can be dirty in the repo, but do not belong at all to the
recipe or the package, then it is possible to exclude them from the check with the core.scm:excluded configuration,
which is a list of patterns (fnmatch) to exclude.

upload_policy

Controls when the current package built binaries are uploaded or not

• "skip": The precompiled binaries are not uploaded. This is useful for “installer” packages that just download
and unzip something heavy (e.g. android-ndk), and is useful together with the build_policy = "missing"

class Pkg(ConanFile):
upload_policy = "skip"

required_conan_version

Recipes can define a module level required_conan_version that defines a valid version range of Conan versions
that can load and understand the current conanfile.py. The syntax is:

from conan import ConanFile

required_conan_version = ">=2.0"

class Pkg(ConanFile):
pass

8.2. conanfile.py 395

Conan Documentation, Release 2.1.0

Version ranges as in requires are allowed. Also there is a global.conf file core:required_conan_version
configuration that can define a global minimum, maximum or exact Conan version to run, which can be very convenient
to maintain teams of developers and CI machines to use the desired range of versions.

implements

A list is used to define a series of option configurations that Conan will handle automatically. This is especially handy
for avoiding boilerplate code that tends to repeat in most of the recipes. The syntax is as follows:

from conan import ConanFile

class Pkg(ConanFile):
implements = ["auto_shared_fpic", "auto_header_only", ...]

Currently these are the automatic implementations provided by Conan:

• "auto_shared_fpic": automatically manages fPIC and shared options. Adding this implementation will
have both effect in the configure and config_options steps when those methods are not explicitly defined in the
recipe.

• "auto_header_only": automatically manages the package ID clearing settings. Adding this implementation
will have effect in the package_id step when the method is not explicitly defined in the recipe.

Warning: This is a 2.0-only feature, and it will not work in 1.X

alias

Warning: While aliases can technically still be used in Conan 2, their usage is not recommended and they may
be fully removed in future releases. Users are encouraged to adapt to the newer versioning features for a more
standardized and efficient package management experience.

In Conan 2, the alias attribute remains a part of the recipe, allowing users to define an alias for a package version.
Normally, you would create one using the conan new command with the alias template and the exporting the recipe
with conan export:

$ conan new alias -d name=mypkg -d version=latest -d target=1.0
$ conan export .

Note that when requiring the alias, you must place the version in parentheses () to explicitly declare the use of an alias
as a requirement:

class Consumer(ConanFile):

...
requires = "mypkg/(latest)"
...

396 Chapter 8. Reference

Conan Documentation, Release 2.1.0

extension_properties

The extensions_properties attribute is a dictionary intended to define and pass information from the recipes to
the Conan extensions.

At the moment, the only defined property is compatibility_cppstd, that allows disabling the behavior of the de-
fault compatibility.py extension, that considers binaries built with different compiler.cppstd values ABI-compatible
among them. To disable this behavior for the current package, it is possible to do it with:

class Pkg(ConanFile):
extension_properties = {"compatibility_cppstd": False}

If it is necessary to do it conditionally, it is also possible to define its value inside recipe compatibility() method:

class Pkg(ConanFile):

def compatibility(self):
self.extension_properties = {"compatibility_cppstd": False}

8.2.2 Methods

What follows is a list of methods that you can define in your recipes to customize the package creation & consumption
processes:

build()

The build() method is used to define the build from source of the package. In practice this means calling some build
system, which could be done explicitly or using any of the build helpers provided by Conan:

from conan.tools.cmake import CMake

class Pkg(ConanFile):

def build(self):
Either using some of the Conan built-in helpers
cmake = CMake(self)
cmake.configure() # equivalent to self.run("cmake . <other args>")
cmake.build() # equivalent to self.run("cmake --build . <other args>")
cmake.test() # equivalent to self.run("cmake --target=RUN_TESTS")

Or it could run your own build system or scripts
self.run("mybuildsystem . --configure")
self.run("mybuildsystem . --build")

For more information about the existing built-in build system integrations, visit Recipe tools.

The build() method should be as simple as possible, just wrapping the command line invocations that a developer
would do in the simplest possible way. The generate()method is the one responsible for preparing the build, creating
toolchain files, CMake presets, or any other files which are necessary so developers could easily call the build system
by hand. This allows for much better integrations with IDEs and improves the developer experience. The result is that
in practice the build() method should be relatively simple.

8.2. conanfile.py 397

Conan Documentation, Release 2.1.0

The build() method runs once per unique configuration, so if there are some source operations like applying patches
that are done conditionally to different configurations, they could be also applied in the build() method, before the
actual build. It is important to note that in this case the no_copy_source attribute cannot be set to True.

The build() method is the right place to build and run unit tests, before packaging, and raising errors if those tests
fail, interrupting the process, and not even packaging the final binaries. The built-in helpers will skip the unit tests if
the tools.build:skip_test configuration is defined. For custom integrations, it is expected that the method checks
this conf value in order to skip building and running tests, which can be useful for some CI scenarios.

Running Tests in Cross-Building Scenarios: There may be some cases where you want to build tests but cannot run
them, such as in cross-building scenarios. For these rare situations, you can use the conan.tools.build.can_run tool as
follows:

...

def build(self):
cmake = CMake(self)
cmake.configure()
cmake.build()
if can_run(self):

cmake.test()

Note: Best practices
• The build() method should be as simple as possible, the heavy lifting of preparing the build should happen in

the generate() method in order to achieve a good developer experience that can easily build locally with just
conan install ., plus directly calling the build system or opening their IDE.

See also:
Follow the tutorial about building packages for more information about building from sources.

build_id()

The build_id() method allows to re-use the same build to create different binary packages in the cache, potentially
saving build time as it can avoid some unnecessary re-builds. It is therefore an optimization method.

In the general case, there is one build folder for each binary package, with the exact same package_id of the package.
However this behavior can be changed, there are a couple of scenarios that this might be useful:

• The package build scripts generate several different configurations at once (like both debug and release artifacts)
in the same run, without the possibility of building each configuration separately.

• The package build scripts generate one binary configuration, but different artifacts that can be packaged sepa-
rately. For example if there are some test executables, you might want to create two packages: one just containing
the library for general usage, and another one also containing the tests (for compliance, later reproducibility, de-
bugging, etc).

In the first case, we could for example write:

settings = "os", "compiler", "arch", "build_type"

def build_id(self):
self.info_build.settings.build_type = "Any"

398 Chapter 8. Reference

Conan Documentation, Release 2.1.0

This recipe will generate a final different package with a different package_id for debug and release configurations.
But as the build_id() will generate the same build_id for any build_type, then just one folder and one build()
will be done, building both debug and release artifacts, and then the package() method will be called for each config-
uration, and it should package the artifacts conditionally to the self.settings.build_type value. Different builds
will still be executed if using different compilers or architectures.

Other information like custom package options can also be changed:

def build_id(self):
self.info_build.options.myoption = 'MyValue' # any value possible
self.info_build.options.fullsource = 'Always'

If the build_id() method does not modify the info_build data, and it still produces a different id than the
package_id, then the standard behavior will be applied. Consider the following:

settings = "os", "compiler", "arch", "build_type"

def build_id(self):
if self.settings.os == "Windows":

self.info_build.settings.build_type = "Any"

This will only produce a different build_id if the package is for Windows, thus running build() just once for all
build_type values. The behavior in any other OS will be the standard one, as if the build_id() method was not
defined, running one different build() for each build_type.

Note: Best practices
Conan strongly recommends to use one package binary with its own package_id for each different configuration. The
goal of the build_id() method is to deal with legacy build scripts that cannot easily be changed to do the build of
one configuration each time.

build_requirements()

The build_requirements() method is functionally equivalent to the requirements() one, it is executed just af-
ter it. It is not strictly necessary, in theory everything that is inside this method, could be done in the end of the
requirements() one. Still, build_requirements() is good for having a dedicated place to define tool_requires
and test_requires:

def build_requirements(self):
self.tool_requires("cmake/3.23.5")
self.test_requires("gtest/1.13.0")

For simple cases the attribute syntax can be enough, like tool_requires = "cmake/3.23.5" and test_requires
= "gtest/1.13.0". The method form can be necessary for conditional or parameterized requirements.

The tool_requires and test_requires methods are just a specialized instance of requires with some predefined
trait values. See the requires() reference for more information about traits.

8.2. conanfile.py 399

Conan Documentation, Release 2.1.0

tool_requires()

The tool_requires is equivalent to requires() with the following traits:

• build=True. This dependency is in the “build” context, being necessary at build time, but not at application
runtime, and will receive the “build” profile and configuration.

• visible=False. The dependency to a tool requirement is not propagated downstream. For example, one pack-
age can call tool_requires("cmake/3.23.5"), but that doesn’t mean that the consumer packages also use
cmake, they could even use a different build system, or a different version, without causing conflicts.

• run=True. This dependency has some executables or runtime that needs to be ran at build time.

• headers=False A tool requirement does not have headers.

• libs=False: A tool requirement does not have libraries to be linked by the consumer (if it had libraries they
would be in the “build” context and could be incompatible with the “host” context of the consumer package).

Recall that tool_requires are intended exclusively for depending on tools like cmake or ninja, which run in the
“build” context, but not for library-like dependencies that would be linked into binaries. For libraries or library-like
dependencies, use requires or test_requires.

<host_version>

Warning: This feature is experimental and subject to breaking changes. See the Conan stability section for more
information.

This syntax is useful when you’re using the same package recipe as a requires and as a tool_requires and you want to
avoid conflicting downstream if any user decides to override the original requires version in the host context, i.e., the
user could end up with two different versions in the host and build contexts of the same dependency.

In a nutshell, the <host_version> specifier allows us to ensure that the version resolved for the tool_requires always
matches the one for the host requirement.

For instance, let’s show a simple recipe using protobuf :

from conan import ConanFile

class mylibRecipe(ConanFile):
name = "mylib"
version = "0.1"
def requirements(self):

self.requires("protobuf/3.18.1")
def build_requirements(self):

self.tool_requires("protobuf/<host_version>")

Then, if any user wants to use mylib/0.1, but another version of protobuf, there shouldn’t be any problems overriding
it:

from conan import ConanFile

class myappRecipe(ConanFile):
name = "myapp"
version = "0.1"
def requirements(self):

(continues on next page)

400 Chapter 8. Reference

Conan Documentation, Release 2.1.0

(continued from previous page)

self.requires("mylib/0.1")
self.requires("protobuf/3.21.9", override=True)

The <host_version> defined upstream is ensuring that the host and build contexts are using the same version of that
requirement.

Additionally, the syntax <host_version:mylib> can be used to specify the name of the package to be tracked, should
the requires and tool_requires have different names. For instance:

from conan import ConanFile

class mylibRecipe(ConanFile):
name = "mylib"
version = "0.1"
def requirements(self):

self.requires("gettext/2.31")
def build_requirements(self):

self.tool_requires("libgettext/<host_version:gettext>")

See also:
• Using the same requirement as a requires and as a tool_requires

test_requires

The test_requires is equivalent to requires() with the following traits:

• test=True. This dependency is a “test” dependency, existing in the “host” context, but not aiming to be part of
the final product.

• visible=False. The dependency to a test requirement is not propagated downstream. For example, one pack-
age can call self.test_requires("gtest/1.13.0"), but that doesn’t mean that the consumer packages also
use gtest, they could even use a different test framework, or the same gtest with a different version, without
causing conflicts.

It is possible to further modify individual traits of tool_requires() and test_requires() if necessary, for exam-
ple:

def build_requirements(self):
self.tool_requires("cmake/3.23.5", options={"shared": False})

The test_requires() allows the force=True trait in case there are transitive test requirements with conflicting
versions, and likewise tool_requires() support the override=True trait, for overriding possible transitive depen-
dencies of the direct tool requirements.

Note: Best practices
• tool_requires are exclusively for build time tools, not for libraries that would be included and linked into the

consumer package. For libraries with some special characteristics, use a requires() with custom trait values.

• The self.test_requires() and self.tool_requires() methods should exclusively be used in the
build_requirements() method, with the only possible exception being the requirements() method. Us-
ing them in any other method is forbidden. To access information about dependencies when necessary in some
methods, the self.dependencies attribute should be used.

8.2. conanfile.py 401

Conan Documentation, Release 2.1.0

See also:
• Follow the tutorial about consuming Conan packages as tools.

• Read the tutorial about creating tool_requires packages.

• Using the same requirement as a requires and as a tool_requires

compatibility()

Warning: This is a preview feature

The compatibility() method implements the same binary compatibility mechanism than the compatibility plugin,
but at the recipe level. In general, the global compatibility plugin should be good for most cases, and only require the
recipe method for exceptional cases.

This method can be used in a conanfile.py to define packages that are compatible between each other. If there are no
binaries available for the requested settings and options, this mechanism will retrieve the compatible package’s binaries
if they exist. This method should return a list of compatible configurations.

For example, if we want that binaries built with gcc versions 4.8, 4.7 and 4.6 to be considered compatible with the ones
compiled with 4.9 we could declare a compatibility() method like this:

def compatibility(self):
if self.settings.compiler == "gcc" and self.settings.compiler.version == "4.9":

return [{"settings": [("compiler.version", v)]}
for v in ("4.8", "4.7", "4.6")]

The format of the list returned is as shown below:

[
{

"settings": [(<setting>, <value>), (<setting>, <value>), ...],
"options": [(<option>, <value>), (<option>, <value>), ...]

},
{

"settings": [(<setting>, <value>), (<setting>, <value>), ...],
"options": [(<option>, <value>), (<option>, <value>), ...]

},
...

]

See also:
Read the binary model reference for a full view of the Conan binary model.

402 Chapter 8. Reference

Conan Documentation, Release 2.1.0

configure()

The configure() method should be used for the configuration of settings and options in the recipe for later use in the
different methods like generate(), build() or package(). This method executes while building the dependency
graph and expanding the packages dependencies, which means that when this method executes the dependencies are
still not there, they do not exist, and it is not possible to access self.dependencies.

For example, for a C (not C++) library, the compiler.libcxx and compiler.cppstd settings shouldn’t even exist
during the build(). It is not only that they are not part of the package_id, but they shouldn’t be used in the build
process at all. They will be defined in the profile, because other packages in the graph can be C++ packages and need
them, but it is the responsibility of this recipe to remove them so they are not used in the recipe:

settings = "os", "compiler", "build_type", "arch"

def configure(self):
Not all compilers have libcxx subsetting, so we use rm_safe
to avoid exceptions
self.settings.rm_safe("compiler.libcxx")
self.settings.rm_safe("compiler.cppstd")

def package_id(self):
No need to delete those settings here, they were already deleted
pass

Likewise, for a package containing a library, the fPIC option really only applies when the library is compiled as a static
library, but otherwise, the fPIC option doesn’t make sense, so it should be removed:

options = {"shared": [True, False], "fPIC": [True, False]}
default_options = {"shared": False, "fPIC": True}

def configure(self):
if self.options.shared:

fPIC might have been removed in config_options(), so we use rm_safe
self.options.rm_safe("fPIC")

Available automatic implementations

Warning: This feature is experimental and subject to breaking changes. See the Conan stability section for more
information.

When the configure()method is not defined, Conan can automatically manage some conventional options if specified
in the implements ConanFile attribute:

8.2. conanfile.py 403

Conan Documentation, Release 2.1.0

auto_shared_fpic

Options automatically managed:

• fPIC (True, False).

• shared (True, False).

• header_only (True, False).

It can be added to the recipe like this:

from conan import ConanFile

class Pkg(ConanFile):
implements = ["auto_shared_fpic"]
...

Then, if no configure() method is specified in the recipe, Conan will automatically manage the fPIC setting in the
configure step like this:

if conanfile.options.get_safe("header_only"):
conanfile.options.rm_safe("fPIC")
conanfile.options.rm_safe("shared")

elif conanfile.options.get_safe("shared"):
conanfile.options.rm_safe("fPIC")

Be aware that adding this implementation to the recipe may also affect the configure step.

If you need to implement custom behaviors in your recipes but also need this logic, it must be explicitly declared:

def configure(self):
if conanfile.options.get_safe("header_only"):

conanfile.options.rm_safe("fPIC")
conanfile.options.rm_safe("shared")

elif conanfile.options.get_safe("shared"):
conanfile.options.rm_safe("fPIC")

self.settings.rm_safe("compiler.libcxx")
self.settings.rm_safe("compiler.cppstd")

Recipes can suggest values for their dependencies options as default_options = {"*:shared": True}, but it is
not possible to do that conditionally. For this purpose, it is also possible to use the configure() method:

def configure(self):
if something:

self.options["*"].shared = True

Note: Best practices
• Recall that it is not possible to define settings or conf values in recipes, they are read only.

• The definition of options values is only a “suggestion”, depending on the graph computation, priorities, etc.,
the final value of options can be different from the one set by the recipe.

See also:
• Follow the tutorial about recipe configuration methods.

404 Chapter 8. Reference

Conan Documentation, Release 2.1.0

config_options()

The config_options() method is used to configure or constrain the available options in a package before assigning
them a value. A typical use case is to remove an option in a given platform. For example, the SSE2 flag doesn’t exist
in architectures different than 32 bits, so it should be removed in this method like so:

def config_options(self):
if self.settings.arch != "x86_64":

del self.options.with_sse2

The config_options() method executes: * Before calling the configure() method. * Before assigning the
options values. * After settings are already defined.

Available automatic implementations

Warning: This feature is experimental and subject to breaking changes. See the Conan stability section for more
information.

When the config_options() method is not defined, Conan can automatically manage some conventional options if
specified in the implements ConanFile attribute:

auto_shared_fpic

Options automatically managed:

• fPIC (True, False).

It can be added to the recipe like this:

from conan import ConanFile

class Pkg(ConanFile):
implements = ["auto_shared_fpic"]
...

Then, if no config_options() method is specified in the recipe, Conan will automatically manage the fPIC setting
in the config_options step like this:

if conanfile.settings.get_safe("os") == "Windows":
conanfile.options.rm_safe("fPIC")

Be aware that adding this implementation to the recipe may also affect the configure step.

If you need to implement custom behaviors in your recipes but also need this logic, it must be explicitly declared:

def config_options(self):
if conanfile.settings.get_safe("os") == "Windows":

conanfile.options.rm_safe("fPIC")
if self.settings.arch != "x86_64":

del self.options.with_sse2

See also:

8.2. conanfile.py 405

Conan Documentation, Release 2.1.0

• Follow the tutorial about recipe configuration methods.

deploy()

Warning: This feature is experimental and subject to breaking changes. See the Conan stability section for more
information.

The deploy() method is intended to deploy (copy) artifacts from the current package. It only executes at conan
install time, when the --deployer-package argument is provided, otherwise deploy() is ignored.

Artifacts should be deployed to the self.deploy_folder, by default the current folder. A custom destination can
be defined with --deployer-folder. A basic deploy() method would copy all files from the package folder to the
deploy folder:

from conan import ConanFile
from conan.tools.files import copy

class Pkg(ConanFile):

def deploy(self):
copy(self, "*", src=self.package_folder, dst=self.deploy_folder)

Refer to the documentation of the conan install command for more information.

Note: Best practices
• Only “binary” package artifacts can be deployed, copying from the self.package_folder. It is recommended

to copy only from the package folder, not other folders.

• The deploy()method is intended for final production deployments or the installation of binaries on the machine,
as it extracts the files from the Conan cache. It is not intended for normal development operations, nor to build
Conan packages against deployed binaries. The recommendation is to build against packages in the Conan cache.

• The self.deploy_folder should only be used from within the deploy() method.

export()

Equivalent to the exports attribute, but in method form. This method will be called at export time, which happens
in the conan export and conan create commands, and it is intended to allow copying files from the user folder to
the Conan cache folders, thus making files becoming part of the recipe. These sources will be uploaded to the servers
together with the recipe, but are typically not downloaded unless the package is being built from source.

The current working directory will be self.recipe_folder, and it can use the self.export_folder as the desti-
nation folder for using copy() or your custom copy.

from conan import ConanFile
from conan.tools.files import copy

class Pkg(ConanFile):
def export(self):

This LICENSE file is intended to be the license of the current conanfile.py␣
(continues on next page)

406 Chapter 8. Reference

Conan Documentation, Release 2.1.0

(continued from previous page)

→˓recipe
and go with it. It is not intended to be the license of the final package (for␣

→˓that
purpose export_sources() would be recommended)
copy(self, "LICENSE.md", self.recipe_folder, self.export_folder)

There are 2 files that are always exported to the cache, without being explicitly defined in the recipe: the conanfile.
py recipe, and the conandata.yml file if it exists. The conandata.yml file is automatically loaded whenever the
conanfile.py is loaded, becoming the self.conan_data attribute, so it is a intrinsic part of the recipe, so it is part
of the “exported” recipe files, not of the “exported” source files.

Note: Best practices
• The recipe files must be configuration independent. Those files are common for all configurations, thus it is not

possible to do conditional export() to different settings, options, or platforms. Do not try to do any kind of
conditional export. If necessary export all the files necessary for all configurations at once.

• The exported files must be small. Exporting big files with the recipe will make the resolution of dependencies
much slower the resolution.

• Only files that are necessary for the evaluation of the conanfile.py recipe must be exported with this method.
Files necessary for building from sources should be exported with the exports_sources attribute or the ex-
port_source() method.

export_sources()

Equivalent to the exports_sources attribute, but in method form. This method will be called at export time, which
happens in conan export and conan create commands, and it is intended to allow copying files from the user
folder to the Conan cache folders, those files becoming part of the recipe sources. These sources will be uploaded to
the servers together with the recipe, but are typically not downloaded unless the package is being built from source.

The current working directory will be self.recipe_folder, and it can use the self.export_sources_folder as
the destination folder for using copy() or your custom copy.

from conan import ConanFile
from conan.tools.files import copy

class Pkg(ConanFile):
def export_sources(self):

This LICENSE.md is a source file intended to be part of the final package
it is not the license of the current recipe
copy(self, "LICENSE.md", self.recipe_folder, self.export_sources_folder)

The method might be able to read files in the recipe folder and do something with it:

import os
from conan import ConanFile
from conan.tools.files import load, save

class Pkg(ConanFile):

def export_sources(self):
(continues on next page)

8.2. conanfile.py 407

Conan Documentation, Release 2.1.0

(continued from previous page)

content = load(self, os.path.join(self.recipe_folder, "data.txt"))
save(self, os.path.join(self.export_sources_folder, "myfile.txt"), content)

The export_conandata_patches() is a high-level helper function that does the export of the patches defined in the
conandata.yml file, which could be later applied with apply_conandata_patches() in the source() method.

from conan.tools.files import export_conandata_patches

class Pkg(ConanFile):

def export_sources(self):
export_conandata_patches(self)

Note: Best practices
The recipe sources must be configuration independent. Those sources are common for all configurations, thus it is not
possible to do conditional export_sources() to different settings, options, or platforms. Do not try to do any kind
of conditional export. If necessary export all the files necessary for all configurations at once.

generate()

This method will run after the computation and installation of the dependency graph. This means that it will run after
a conan install command, or when a package is being built in the cache, it will be run before calling the build()
method.

The purpose of generate() is to prepare the build, generating the necessary files. These files would typically be:

• Files containing information to locate the dependencies, as xxxx-config.cmake CMake config scripts, or
xxxx.props Visual Studio property files.

• Environment activation scripts, like conanbuild.bat or conanbuild.sh, that define all the necessary envi-
ronment variables necessary for the build.

• Toolchain files, like conan_toolchain.cmake, that contains a mapping between the current Conan settings and
options, and the build system specific syntax. CMakePresets.json for CMake users using modern versions.

• General purpose build information, as a conanbuild.conf file that could contain information for some
toolchains like autotools to be used in the build() method.

• Specific build system files, like conanvcvars.bat, that contains the necessary Visual Studio vcvars.bat call for
certain build systems like Ninja when compiling with the Microsoft compiler.

The idea is that the generate() method implements all the necessary logic, making both the user manual builds after
a conan install very straightforward, and also the build() method logic simpler. The build produced by a user
in their local flow should result in exactly the same one as the build done in the cache with a conan create without
effort.

Generation of files happens in the generators_folder as defined by the current layout.

In many cases, the generate() method might not be necessary, and declaring the generators attribute could be
enough:

from conan import ConanFile

(continues on next page)

408 Chapter 8. Reference

Conan Documentation, Release 2.1.0

(continued from previous page)

class Pkg(ConanFile):
generators = "CMakeDeps", "CMakeToolchain"

But the generate() method can explicitly instantiate those generators, use them conditionally (like using one build
system in Windows, and another build system integration in other platforms), customize them, or provide a complete
custom generation.

from conan import ConanFile
from conan.tools.cmake import CMakeToolchain

class Pkg(ConanFile):

def generate(self):
tc = CMakeToolchain(self)
customize toolchain "tc"
tc.generate()
Or provide your own custom logic

The current working directory for the generate() method will be the self.generators_folder defined in the
current layout.

For custom integrations, putting code in a common python_require would be a good way to avoid repetition in
multiple recipes:

from conan import ConanFile
from conan.tools.cmake import CMakeToolchain

class Pkg(ConanFile):

python_requires = "mygenerator/1.0"

def generate(self):
mygen = self.python_requires["mygenerator"].module.MyGenerator(self)
customize mygen behavior, like mygen.something= True
mygen.generate()

In case it is necessary to collect or copy some files from the dependencies, it is also possible to do it in the generate()
method, accessing self.dependencies. Listing the different include directories, lib directories from a dependency
“mydep” would be possible like this:

from conan import ConanFile

class Pkg(ConanFile):

def generate(self):
info = self.dependencies["mydep"].cpp_info
self.output.info("**includedirs:{}**".format(info.includedirs))
self.output.info("**libdirs:{}**".format(info.libdirs))
self.output.info("**libs:{}**".format(info.libs))

And copying the shared libraries in Windows and OSX to the current build folder, could be done like:

8.2. conanfile.py 409

Conan Documentation, Release 2.1.0

from conan import ConanFile

class Pkg(ConanFile):

def generate(self):
for dep in self.dependencies.values():

copy(self, "*.dylib", dep.cpp_info.libdir, self.build_folder)
copy(self, "*.dll", dep.cpp_info.libdir, self.build_folder)

Note: Best practices
• Accessing dependencies self.dependencies["mydep"].package_folder is possible, but it will be None

when the dependency “mydep” is in “editable” mode. If you plan to use editable packages, make sure to always
reference the cpp_info.xxxdirs instead.

See also:
• Follow the tutorial about preparing build from source in recipes.

self.dependencies

Conan recipes provide access to their dependencies via the self.dependencies attribute. This attribute is generally
used by generators like CMakeDeps or MSBuildDeps to generate the necessary files for the build.

This section documents the self.dependencies attribute, as it might be used by users both directly in recipe or
indirectly to create custom build integrations and generators.

Dependencies interface

It is possible to access each one of the individual dependencies of the current recipe, with the following syntax:

class Pkg(ConanFile):
requires = "openssl/0.1"

def generate(self):
openssl = self.dependencies["openssl"]
access to members
openssl.ref.version
openssl.ref.revision # recipe revision
openssl.options
openssl.settings

if "zlib" in self.dependencies:
do something

Some important points:

• All the information is read only. Any attempt to modify dependencies information is an error and can raise at
any time, even if it doesn’t raise yet.

• It is not possible either to call any methods or any attempt to reuse code from the dependencies via this mecha-
nism.

410 Chapter 8. Reference

Conan Documentation, Release 2.1.0

• This information does not exist in some recipe methods, only in those methods that evaluate after
the full dependency graph has been computed. It will not exist in configure(), config_options,
export(), export_source(), set_name(), set_version(), requirements(), build_requirements(),
system_requirements(), source(), init(), layout(). Any attempt to use it in these methods can raise
an error at any time.

• At the moment, this information should only be used in generate() and validate() methods. For any other
use, please submit a Github issue.

Not all fields of the dependency conanfile are exposed, the current fields are:

• package_folder: The folder location of the dependency package binary

• recipe_folder: The folder containing the conanfile.py (and other exported files) of the dependency

• ref : An object that contains name, version, user, channel and revision (recipe revision)

• pref : An object that contains ref, package_id and revision (package revision)

• buildenv_info: Environment object with the information of the environment necessary to build

• runenv_info: Environment object with the information of the environment necessary to run the app

• cpp_info: includedirs, libdirs, etc for the dependency.

• settings: The actual settings values of this dependency

• settings_build: The actual build settings values of this dependency

• options: The actual options values of this dependency

• context: The context (build, host) of this dependency

• conf_info: Configuration information of this dependency, intended to be applied to consumers.

• dependencies: The transitive dependencies of this dependency

• is_build_context: Return True if context == "build".

• conan_data: The conan_data attribute of the dependency that comes from its conandata.yml file

• license: The license attribute of the dependency

• description: The description attribute of the dependency

• homepage: The homepage attribute of the dependency

• url: The url attribute of the dependency

Iterating dependencies

It is possible to iterate in a dict-like fashion all dependencies of a recipe. Take into account that self.dependencies
contains all the current dependencies, both direct and transitive. Every upstream dependency of the current one that
has some effect on it, will have an entry in this self.dependencies.

Iterating the dependencies can be done as:

requires = "zlib/1.2.11", "poco/1.9.4"

def generate(self):
for require, dependency in self.dependencies.items():

self.output.info("Dependency is direct={}: {}".format(require.direct, dependency.
→˓ref))

8.2. conanfile.py 411

Conan Documentation, Release 2.1.0

will output:

conanfile.py (hello/0.1): Dependency is direct=True: zlib/1.2.11
conanfile.py (hello/0.1): Dependency is direct=True: poco/1.9.4
conanfile.py (hello/0.1): Dependency is direct=False: pcre/8.44
conanfile.py (hello/0.1): Dependency is direct=False: expat/2.4.1
conanfile.py (hello/0.1): Dependency is direct=False: sqlite3/3.35.5
conanfile.py (hello/0.1): Dependency is direct=False: openssl/1.1.1k
conanfile.py (hello/0.1): Dependency is direct=False: bzip2/1.0.8

Where the require dictionary key is a “requirement”, and can contain specifiers of the relation between the current
recipe and the dependency. At the moment they can be:

• require.direct: boolean, True if it is direct dependency or False if it is a transitive one.

• require.build: boolean, True if it is a build_require in the build context, as cmake.

• require.test: boolean, True if its a build_require in the host context (defined with self.
test_requires()), as gtest.

The dependency dictionary value is the read-only object described above that access the dependency attributes.

The self.dependencies contains some helpers to filter based on some criteria:

• self.dependencies.host: Will filter out requires with build=True, leaving regular dependencies like zlib
or poco.

• self.dependencies.direct_host: Will filter out requires with build=True or direct=False

• self.dependencies.build: Will filter out requires with build=False, leaving only tool_requires in the
build context, as cmake.

• self.dependencies.direct_build: Will filter out requires with build=False or direct=False

• self.dependencies.test: Will filter out requires with build=True or with test=False, leaving only test
requirements as gtest in the host context.

They can be used in the same way:

requires = "zlib/1.2.11", "poco/1.9.4"

def generate(self):
cmake = self.dependencies.direct_build["cmake"]
for require, dependency in self.dependencies.build.items():

do something, only build deps here

Dependencies cpp_info interface

The cpp_info interface is heavily used by build systems to access the data. This object defines global and per-
component attributes to access information like the include folders:

def generate(self):
cpp_info = self.dependencies["mydep"].cpp_info
cpp_info.includedirs
cpp_info.libdirs

cpp_info.components["mycomp"].includedirs
cpp_info.components["mycomp"].libdirs

412 Chapter 8. Reference

Conan Documentation, Release 2.1.0

All the paths declared in the cppinfo object (like cpp_info.includedirs) are absolute paths and works whether
the dependency is in the cache or is an editable package.

See also:
• CppInfo model.

init()

This is an optional method for initializing conanfile values, designed for inheritance from python_requires. Assum-
ing we have a base/1.1 recipe:

Listing 25: base/conanfile.py

from conan import ConanFile

class MyConanfileBase:
license = "MyLicense"
settings = "os", # tuple!

class PyReq(ConanFile):
name = "base"
version = "1.1"
package_type = "python-require"

We could reuse and inherit from it with:

Listing 26: pkg/conanfile.py

from conan import ConanFile

class Pkg(ConanFile):
license = "MIT"
settings = "arch", # tuple!
python_requires = "base/1.1"
python_requires_extend = "base.MyConanfileBase"

def init(self):
base = self.python_requires["base"].module.MyConanfileBase
self.settings = base.settings + self.settings # Note, adding 2 tuples = tuple
self.license = base.license # License is overwritten

The final Pkg conanfile will have both os and arch as settings, and MyLicense as license.

To extend the options of the base class, it is necessary to call the self.options.update() method:

Listing 27: base/conanfile.py

from conan import ConanFile

class BaseConan:
options = {"base": [True, False]}
default_options = {"base": True}

(continues on next page)

8.2. conanfile.py 413

Conan Documentation, Release 2.1.0

(continued from previous page)

class PyReq(ConanFile):
name = "base"
version = "1.0.0"
package_type = "python-require"

When the init() is called, the self.options object is already initialized. Then, updating the self.
default_options is useless, and it is necessary to update the self.options with both the base class options and
the base class default options values:

Listing 28: pkg/conanfile.py

from conan import ConanFile

class DerivedConan(ConanFile):
name = "derived"
python_requires = "base/1.0.0"
python_requires_extend = "base.BaseConan"
options = {"derived": [True, False]}
default_options = {"derived": False}

def init(self):
base = self.python_requires["base"].module.BaseConan
Note we pass the base options and default_options
self.options.update(base.options, base.default_options)

This method can also be useful if you need to unconditionally initialize class attributes like license or description
or any other from datafiles other than conandata.yml. For example, you can have a json file containing the information
about the license, description and author for the library:

Listing 29: data.json

{"license": "MIT", "description": "This is my awesome library.", "author": "Me"}

Then, you can load that information from the init() method:

import os
import json
from conan import ConanFile
from conan.tools.files import load

class Pkg(ConanFile):
exports = "data.json" # Important that it is exported with the recipe

def init(self):
data = load(self, os.path.join(self.recipe_folder, "data.json"))
d = json.loads(data)
self.license = d["license"]
self.description = d["description"]
self.author = d["author"]

Note: Best practices

414 Chapter 8. Reference

Conan Documentation, Release 2.1.0

• Try to keep your python_requires as simple as possible, and do not reuse attributes from them (the main need
for the init() method), trying to avoid the complexity of this init() method. In general inheritance can have
more issues than composition (or in other words “use composition over inheritance” as a general programming
good practice), so try to avoid it if possible.

• Do not abuse init() for other purposes other than listed here, nor use the Python private ConanFile.__init__
constructor.

• The init() method executes at recipe load time. It cannot contain conditionals on settings, options, conf, or
use any dependencies information other than the above python_requires.

layout()

In the layout() method you can adjust self.folders and self.cpp.

self.folders

• self.folders.source (Defaulted to ""): Specifies a subfolder where the sources are. The self.source_folder
attribute inside the source(self) and build(self) methods will be set with this subfolder. The current
working directory in the source(self) method will include this subfolder. The export_sources and exports
sources will also be copied to the root source directory. It is used in the cache when running conan create
(relative to the cache source folder) as well as in a local folder when running conan build (relative to the local
current folder).

• self.folders.build (Defaulted to ""): Specifies a subfolder where the files from the build are. The self.
build_folder attribute and the current working directory inside the build(self) method will be set with
this subfolder. It is used in the cache when running conan create (relative to the cache source folder) as well
as in a local folder when running conan build (relative to the local current folder).

• self.folders.generators (Defaulted to ""): Specifies a subfolder in which to write the files from the generators
and the toolchains. In the cache, when running conan create, this subfolder will be relative to the root build
folder and when running the conan install command it will be relative to the current working directory.

• self.folders.root (Defaulted to None): Specifies a parent directory where the sources, generators, etc., are located
specifically when the conanfile.py is located in a separated subdirectory. Check this example on how to use
self.folders.root.

• self.folders.subproject (Defaulted to None): Specifies a subfolder where the conanfile.py is relative to the
project root. This is particularly useful for layouts with multiple subprojects

• self.folders.build_folder_vars (Defaulted to None): Use settings and options to produce a different build folder
and different CMake presets names.

self.cpp

The layout() method allows to declare cpp_info objects not only for the final package (like the classic approach
with the self.cpp_info in the package_info(self) method) but for the self.source_folder and self.
build_folder.

The fields of the cpp_info objects at self.cpp.build and self.cpp.source are the same described here. Com-
ponents are also supported.

Properties to declare all the information needed by the consumers of a package: include directories, library names,
library paths. . . Used both for editable packages and regular packages in the cache.

8.2. conanfile.py 415

Conan Documentation, Release 2.1.0

There are three objects available in the layout() method:

• self.cpp.package: For a regular package being used from the Conan cache. Describes the contents of the final
package. Exactly the same as in the package_info() self.cpp_info, but in the layout() method.

• self.cpp.source: For “editable” packages, to describe the artifacts under self.source_folder. These can
cover:

– self.cpp.source.includedirs: To specify where the headers are at development time, like the typical
src folder, before being packaged in the include package folder.

– self.cpp.source.libdirs and self.cpp.source.libs could describe the case where libraries are
committed to source control (hopefully exceptional case), so they are not part of the build results, but part
of the source.

• self.cpp.build: For “editable” packages, to describe the artifacts under self.build_folder.

– self.cpp.build.libdirs will express the location of the built libraries before being packaged. They
can often be found in a folder like x64/Release, or release64 or similar.

– self.cpp.build.includedirs can define the location of headers that are generated at build time, like
headers stubs generated by some tools.

def layout(self):
...
self.folders.source = "src"
self.folders.build = "build"

In the local folder (when the package is in development, or "editable") the␣
→˓artifacts can be found:

self.cpp.source.includedirs = ["my_includes"]
self.cpp.build.libdirs = ["lib/x86_64"]
self.cpp.build.libs = ["foo"]

In the Conan cache, we packaged everything at the default standard directories,␣
→˓the library to link
is "foo"
self.cpp.package.libs = ["foo"]

See also:
• Read more about the usage of the layout() in this tutorial and Conan package layout

• here.

Environment variables and configuration

There are some packages that might define some environment variables in their package_info() method via self.
buildenv_info, self.runenv_info. Other packages can also use self.conf_info to pass configuration to their
consumers.

This is not an issue as long as the value of those environment variables or configuration do not require using the self.
package_folder. If they do, then their values will not be correct for the “source” and “build” layouts. Something
like this will be broken when used in editable mode:

import os
from conan import ConanFile

(continues on next page)

416 Chapter 8. Reference

Conan Documentation, Release 2.1.0

(continued from previous page)

class SayConan(ConanFile):
...
def package_info(self):

This is BROKEN if we put this package in editable mode
self.runenv_info.define_path("MYDATA_PATH",

os.path.join(self.package_folder, "my/data/path"))

When the package is in editable mode, for example, self.package_folder is None, as obviously there is no package
yet. The solution is to define it in the layout() method, in the same way the cpp_info can be defined there:

from conan import ConanFile

class SayConan(ConanFile):
...
def layout(self):

The final path will be relative to the self.source_folder
self.layouts.source.buildenv_info.define_path("MYDATA_PATH", "my/source/data/path

→˓")
The final path will be relative to the self.build_folder
self.layouts.build.buildenv_info.define_path("MYDATA_PATH2", "my/build/data/path

→˓")
The final path will be relative to the self.build_folder
self.layouts.build.conf_info.define_path("MYCONF", "my_conf_folder")

The layouts object contains source, build and package scopes, and each one contains one instance of
buildenv_info, runenv_info and conf_info.

package()

The package() method is in charge of copying files from the source_folder and the temporary build_folder to
the package_folder, copying only those files and artifacts that will be part of the final package, like headers, compiler
static and shared libraries, executables, license files, etc.

The package() method will be called once per different configuration that is creating a new package binary, which
happens with conan install --build=pkg*, conan create and conan export-pkg commands.

There are 2 main ways the package() method can do such a copy. The first one is an explicit copy() from the origin
source_folder and build_folder to the package folder:

from conan import ConanFile
from conan.tools.files import copy

class Pkg(ConanFile):

def package(self):
copying headers from source_folder
copy(self, "*.h", join(self.source_folder, "include"), join(self.package_folder,

→˓"include"))
copying compiled .lib from build folder
copy(self, "*.lib", self.build_folder, join(self.package_folder, "lib"), keep_

→˓path=False)

The second way is to use the install functionality of some build systems, provided that the build scripts imple-
ment such functionality. For example if the CMakeLists.txt of a package implements the correct CMake INSTALL

8.2. conanfile.py 417

Conan Documentation, Release 2.1.0

instructions, it is possible to do:

def package(self):
cmake = CMake(self)
cmake.install()

Also, it is possible to combine both approaches, doing cmake.install() and also adding some copy() calls, for
example to make sure some “License.txt” file is packaged that was not taken into account by the CMakeLists.txt script.

It is also possible to use conditionals in the package() method, because different platforms might have different
artifacts in different locations:

def package(self):
if self.settings.os == "Windows":

copy(self, "*.lib", src=os.path.join(self.build_folder, "libs"), ...)
copy(self, "*.dll",)

else:
copy(self, "*.lib", src=os.path.join(self.build_folder, "build", "libs"), ...)

Though in most situations it might not be necessary, because pattern based copy will likely not find wrong artifacts like
*.dll in a non-Windows build.

The package() method is also the one called when packaging precompiled binaries with conan export-pkg. In
this case the self.source_folder and self.build_folder refer to user space folders, as defined by the layout()
method and the only folder in the Conan cache will be self.package_folder.

Note: Best practices
The cmake.install() functionality should be called in the package() method, not in the build() method. It is not
necessary to reuse the CMake(self) object, it shouldn’t be reused among methods. Creating a new instance in every
method is the recommended approach.

See also:
See :ref:` the package() method tutorial<creating_packages_package_method>` for more information.

package_id()

Conan computes a unique package_id reference for each configuration, including settings, options and
dependencies versions. This package_id() method allows some customizations and changes over the computed
package_id, in general with the goal to relax some of the global binary compatibility assumptions.

The general rule is that every different value of settings and options creates a different package_id. This rule
can be relaxed or expanded following different approaches:

• A given package recipe can decide in its package_id() that the final binary is independent of some settings,
for example if it is a header-only library, that uses input settings to build some tests, it might completely clear all
configuration, so the resulting package_id is always the same irrespective of the inputs. Likewise a C library
might want to remove the effect of compiler.cppstd and/or compiler.libcxx from its binary package_id,
because as a C library, its binary will be independent.

• A given package recipe can implement some partial erasure of information, for example to obtain the same
package_id for a range of compiler versions. This type of binary compatibility is in general better addressed
with the global compatibility plugin, or with the compatibility() method if the global plugin is not
enough.

418 Chapter 8. Reference

Conan Documentation, Release 2.1.0

• A package recipe can decide to inject extra variability in its computed package_id, adding conf items or
“target” settings.

Available automatic implementations

Warning: This feature is experimental and subject to breaking changes. See the Conan stability section for more
information.

When the package_id() method is not defined, the following automatic implementation can be specified in the im-
plements ConanFile attribute:

auto_header_only

Conan will automatically manage the package ID clearing settings and options when the recipe declares an option
header_only=True or when package_type is "header-library". It can be added to the recipe like this:

from conan import ConanFile

class Pkg(ConanFile):
implements = ["auto_header_only"]
...

Then, if no package_id() method is specified in the recipe, Conan will automatically manage it and call self.info.
clear() in the package_id() automatically, to make the package_id independent of settings, options, configuration
and requirements.

If you need to implement custom behaviors in your recipes but also need this logic, it must be explicitly declared, for
example, something like this:

def package_id(self):
def package_id(self):

if self.package_type == "header-library":
self.info.clear()

else:
self.info.settings.rm_safe("compiler.libcxx")
self.info.settings.rm_safe("compiler.cppstd")

Information erasure

This is a package_id relaxing strategy. Let’s check the first case: a header-only library, that has input settings,
because it still wants to use them for some unit-tests in its build() method. In order to have exactly one final binary
for all configurations, because the final artifact should be identical in all cases (just the header files), it would be
necessary to do:

settings = "os", "compiler", "arch", "build_type"

def build(self):
cmake = CMake(self) # need specific settings to build
...

(continues on next page)

8.2. conanfile.py 419

Conan Documentation, Release 2.1.0

(continued from previous page)

cmake.test() # running unit tests for the current configuration

def package_id(self):
Completely clear all the settings from the ``package_id`` information ("info"␣

→˓object)
All resulting ``package_id`` will be the same, irrespective of configuration
self.info.settings.clear()

Warning: The modifications of the information always happen over the self.info object, not on self.
settings or self.options

If a package is just a C library, but it couldn’t remove the compiler.cppstd and compiler.libcxx in the
configure() method (the recommended approach for most cases, to guarantee those flags are not used in the build),
because there are C++ unit tests to the C library, then as the tests are not packaged and the final binary will be inde-
pendent of C++, those could be removed with:

settings = "os", "compiler", "arch", "build_type"

def build(self):
building C++ tests for a C library

def package_id(self):
del self.info.settings.compiler.cppstd
Some compilers might not declare libcxx subsetting
self.info.settings.rm_safe("compiler.libcxx")

If a package is building an executable to be used as a tool, and only 1 executable for each OS and architecture is desired
to be more efficient, the package_id() could remove the other settings and options if existing:

this will be a "tool_require"
package_type = "application"
settings = "os", "compiler", "arch", "build_type"

def package_id(self):
del self.info.settings.compiler
del self.info.settings.build_type

Note that this doesn’t mean that the compiler and build_type should be removed for every application executable.
For other things that are not tools, but final products to release, the most common situation is that maintaining the
different builds for the different compilers, compiler versions, build types, etc. is the best approach. It also means that
we are erasing some information. We will not have the information of the compiler and build type that was used for the
binary that we are using (it will not be in the conan list output, and it will not be in the server metadata either). If
we compile a new binary with a different compiler or build type, it will create a new package revision under the same
package_id.

420 Chapter 8. Reference

Conan Documentation, Release 2.1.0

Partial information erasure

It is also possible to partially erase information for given subsets of values. For example, if we want to have the same
package_id for all the binaries compiled with gcc between versions 4.5 and 5.0, we can do:

def package_id(self):
v = Version(str(self.info.settings.compiler.version))
if self.info.settings.compiler == "gcc" and (v >= "4.5" and v < "5.0"):

The assigned string can be arbitrary
self.info.settings.compiler.version = "GCC 4 between 4.5 and 5.0"

This will result in all other compilers rather than gcc and other versions outside of that range to have a different
package_id, but there will be only 1 package_id binary for all gcc 4.5-5.0 versions. This also has the disadvantage
mentioned above about losing the information that created this binary.

This approach is not recommended in the general case, and it would be better approached with the global
compatibility plugin or the recipe compatibility() method.

Adding information

There is some information not added by default to the package_id. If we are creating a package for a tool, to be used
as a tool_require, and it happens that such package binary will be different for each “target” configuration, like it
is the case for some cross-compilers, if the compiler itself might be different for the different architectures that it is
targeting, it will be necessary to add the settings_target to the package_id with:

def package_id(self):
self.info.settings_target = self.settings_target

The conf items do not affect the package_id by default. It is possible to explicitly make them part of it at the recipe
level with:

def package_id(self):
self.info.conf.define("user.myconf:myitem", self.conf.get("user.myconf:myitem"))

Although this can be achieved for all recipes without the package_id() method, using the tools.info.
package_id:confs = ["user.myconf:myitem"] configuration.

Using regex patterns: You can use regex patterns in the tools.info.package_id:confs. This means that instead of
specifying each individual configuration item, you can use a regex pattern to match multiple configurations. This is
particularly useful when dealing with a large number of configurations or when configurations follow a predictable
naming pattern. For instance:

• tools.info.package_id:confs=[".*"] matches all configurations.

• tools.info.package_id:confs=["tools\..*"] matches configurations starting with “tools.”.

• tools.info.package_id:confs=["(tools\.deploy|core)"] matches configurations starting with
“tools.deploy” or “core”.

See also:
• See the tutorial about header-only packages for explanations about the package_id() method.

• Read the binary model reference for a full view of the Conan binary model.

8.2. conanfile.py 421

Conan Documentation, Release 2.1.0

package_info()

The package_info() method is the one responsible of defining the information to the consumers of the package, so
those consumers can easily and automatically consume this package. The generate() method of the consumers is
the place where the information defined in the package_info() will be mapped to the specific build system of the
consumer. Then, if we want a package to be consumed by different build systems (like it happens with ConanCenter
recipes for the community), it is very important that this information is complete.

Important: This method defines information exclusively for consumers of this package, not for itself. This method
executes after the binary has been built and packaged. The information that is consumed in the build should be processed
in generate() method.

cpp_info: Library and build information

Each package has to specify certain build information for its consumers. This can be done in the cpp_info attribute.

Binaries to link
self.cpp_info.libs = [] # The libs to link against
self.cpp_info.system_libs = [] # System libs to link against
self.cpp_info.frameworks = [] # OSX frameworks that consumers will link against
self.cpp_info.objects = [] # precompiled objects like .obj .o that consumers will link
Directories
self.cpp_info.includedirs = ['include'] # Ordered list of include paths
self.cpp_info.libdirs = ['lib'] # Directories where libraries can be found
self.cpp_info.bindirs = ['bin'] # Directories where executables and shared libs can be␣
→˓found
self.cpp_info.resdirs = [] # Directories where resources, data, etc. can be found
self.cpp_info.srcdirs = [] # Directories where sources can be found (debugging, reusing␣
→˓sources)
self.cpp_info.builddirs = [] # Directories where build scripts for consumers can be␣
→˓found
self.cpp_info.frameworkdirs = [] # Directories where OSX frameworks can be found
Flags
self.cpp_info.defines = [] # preprocessor definitions
self.cpp_info.cflags = [] # pure C flags
self.cpp_info.cxxflags = [] # C++ compilation flags
self.cpp_info.sharedlinkflags = [] # linker flags
self.cpp_info.exelinkflags = [] # linker flags
Properties
self.cpp_info.set_property("property_name", "property_value")
Structure
self.cpp_info.components # Dictionary-like structure to define the different components␣
→˓a package may have
self.cpp_info.requires # List of components from requirements that need to be propagated␣
→˓downstream

Binaries to link:

• libs: Ordered list of compiled libraries (contained in the package) the consumers should link. Empty by default.

• system_libs: Ordered list of system libs (not contained in the package) the consumers should link. Empty by
default.

422 Chapter 8. Reference

Conan Documentation, Release 2.1.0

• frameworks: Ordered list of OSX frameworks (contained or not in the package), the consumers should link.
Empty by default.

• objects: Ordered list of precompiled objects (.obj, .o) contained in the package the consumers should link. Empty
by default

Directories:

• includedirs: List of relative paths (starting from the package root) of directories where headers can be found.
By default it is initialized to ['include'], and it is rarely changed.

• libdirs: List of relative paths (starting from the package root) of directories in which to find library object binaries
(*.lib, *.a, *.so, *.dylib). By default it is initialized to ['lib'], and it is rarely changed.

• bindirs: List of relative paths (starting from the package root) of directories in which to find library runtime
binaries (like executable Windows .dlls). By default it is initialized to ['bin'], and it is rarely changed.

• resdirs: List of relative paths (starting from the package root) of directories in which to find resource files
(images, xml, etc). By default it is empty.

• srcdirs: List of relative paths (starting from the package root) of directories in which to find sources (like .c,
.cpp). By default it is empty. It might be used to store sources (for later debugging of packages, or to reuse those
sources building them in other packages too).

• builddirs: List of relative paths (starting from package root) of directories that can contain build scripts that
could be used by the consumers. Empty by default.

• frameworkdirs: List of relative paths (starting from the package root), of directories containing OSX frame-
works.

Flags:

• defines: Ordered list of preprocessor directives. It is common that the consumers have to specify some sort of
defines in some cases, so that including the library headers matches the binaries.

• cflags, cxxflags, sharedlinkflags, exelinkflags: List of flags that the consumer should activate for proper behav-
ior. Rarely used.

Properties: - set_property() allows to define some built-in and user general properties to be propagated with the
cpp_info model for consumers. They might contain build-system specific information. Some built-in properties are
cmake_file_name, cmake_target_name, pkg_config_name, that can define specific behavior for CMakeDeps or
PkgConfigDeps generators. For more information about these, read the specific build system integration documenta-
tion.

Structure:

• components: Dictionary with names as keys and a component object as value to model the different components
a package may have: libraries, executables. . .

• requires: Experimental List of components from the requirements this package (and its consumers) should link
with. It will be used by generators that add support for components features.

It is common that different configurations will produce different package_info, for example, the library names might
change in different OSs, or different system_libs will be used depending on the compiler and OS:

settings = "os", "compiler", "arch", "build_type"
options = {"shared": [True, False]}

def package_info(self):
if not self.settings.os == "Windows":

self.cpp_info.libs = ["zmq-static"] if not self.options.shared else ["zmq"]
else:

(continues on next page)

8.2. conanfile.py 423

Conan Documentation, Release 2.1.0

(continued from previous page)

...

if not self.options.shared:
self.cpp_info.defines = ["ZMQ_STATIC"]

if self.settings.os == "Windows" and self.settings.compiler == "msvc":
self.cpp_info.system_libs.append("ws2_32")

Properties

Any CppInfo object can declare “properties” that can be read by the generators. The value of a property can be of any
type. Check each generator reference to see the properties used on it.

def set_property(self, property_name, value)
def get_property(self, property_name):

Example:

def package_info(self):
self.cpp_info.set_property("cmake_find_mode", "both")

Components

If your package is composed by more than one library, it is possible to declare components that allow to define a
CppInfo object per each of those libraries and also requirements between them and to components of other packages
(the following case is not a real example):

def package_info(self):
self.cpp_info.components["crypto"].set_property("cmake_file_name", "Crypto")
self.cpp_info.components["crypto"].libs = ["libcrypto"]
self.cpp_info.components["crypto"].defines = ["DEFINE_CRYPTO=1"]
self.cpp_info.components["crypto"].requires = ["zlib::zlib"] # Depends on all␣

→˓components in zlib package

self.cpp_info.components["ssl"].set_property("cmake_file_name", "SSL")
self.cpp_info.components["ssl"].includedirs = ["include/headers_ssl"]
self.cpp_info.components["ssl"].libs = ["libssl"]
self.cpp_info.components["ssl"].requires = ["crypto",

"boost::headers"] # Depends on headers␣
→˓component in boost package

obj_ext = "obj" if platform.system() == "Windows" else "o"
self.cpp_info.components["ssl-objs"].objects = [os.path.join("lib", "ssl-object.{}".

→˓format(obj_ext))]

Dependencies among components and to components of other requirements can be defined using the requires at-
tribute and the name of the component. The dependency graph for components will be calculated and values will be
aggregated in the correct order for each field.

424 Chapter 8. Reference

Conan Documentation, Release 2.1.0

buildenv_info, runenv_info

The buildenv_info and runenv_info attributes are Environment objects that allow to define information for the
consumers in the form of environment variables. They can use any of the Environment methods to define such
information:

settings = "os", "compiler", "arch", "build_type"

def package_info(self):
self.buildenv_info.define("MYVAR", "1")
self.buildenv_info.prepend_path("MYPATH", "my/path")
if self.settings.os == "Android":

arch = "myarmarch" if self.settings.arch=="armv8" else "otherarch"
self.buildenv_info.append("MY_ANDROID_ARCH", f"android-{arch})

self.runenv_info.append_path("MYRUNPATH", "my/run/path")
if self.settings.os == "Windows":

self.runenv_info.define_path("MYPKGHOME", "my/home")

Note that these objects are not tied to either regular requires or tool_requires, any package recipe can use both.
The difference between buildenv_info and runenv_info is that the former is applied when Conan is building
something from source, like in the build() method, while the later would be used when executing something in the
“host” context that would need the runtime activated.

Conan VirtualBuildEnv generator will be used by default in consumers, collecting the information from
buildenv_info (and some runenv_info from the “build” context) to create the conanbuild environment script,
which runs by default in all self.run(cmd, env="conanbuild") calls. The VirtualRunEnv generator will also be
used by default in consumers collecting the runenv_info from the “host” context creating the conanrun environment
script, which can be explicitly used with self.run(<cmd>, env="conanrun").

Note: Best practices
It is not necessary to add bindirs to the PATH environment variable, this will be automatically done by the consumer
VirtualBuildEnv and VirtualRunEnv generators. Likewise, it is not necessary to add includedirs, libdirs or
any other dirs to environment variables, as this information will be typically managed by other generators.

conf_info

tool_requires packages in the “build” context can transmit some conf configuration to its immediate consumers,
with the conf_info attribute. For example, one Conan package packaging the AndroidNDK could do:

def package_info(self):
self.conf_info.define_path("tools.android:ndk_path", "path/to/ndk/in/package")

conf_info from packages can still be overwritten from profiles values, because user profiles will have higher priority.

Conf.define(name, value)
Define a value for the given configuration name.

Parameters
• name – Name of the configuration.

8.2. conanfile.py 425

Conan Documentation, Release 2.1.0

• value – Value of the configuration.

def package_info(self):
Setting values
self.conf_info.define("tools.build:verbosity", "verbose")
self.conf_info.define("tools.system.package_manager:sudo", True)
self.conf_info.define("tools.microsoft.msbuild:max_cpu_count", 2)
self.conf_info.define("user.myconf.build:ldflags", ["--flag1", "--flag2"])
self.conf_info.define("tools.microsoft.msbuildtoolchain:compile_options", {

→˓"ExceptionHandling": "Async"})

Conf.append(name, value)
Append a value to the given configuration name.

Parameters
• name – Name of the configuration.

• value – Value to append.

def package_info(self):
Modifying configuration list-like values
self.conf_info.append("user.myconf.build:ldflags", "--flag3") # == ["--flag1",

→˓"--flag2", "--flag3"]

Conf.prepend(name, value)
Prepend a value to the given configuration name.

Parameters
• name – Name of the configuration.

• value – Value to prepend.

def package_info(self):
self.conf_info.prepend("user.myconf.build:ldflags", "--flag0") # == ["--flag0",

→˓ "--flag1", "--flag2", "--flag3"]

Conf.update(name, value)
Update the value to the given configuration name.

Parameters
• name – Name of the configuration.

• value – Value of the configuration.

def package_info(self):
Modifying configuration dict-like values
self.conf_info.update("tools.microsoft.msbuildtoolchain:compile_options", {

→˓"ExpandAttributedSource": "false"})

Conf.remove(name, value)
Remove a value from the given configuration name.

Parameters
• name – Name of the configuration.

• value – Value to remove.

426 Chapter 8. Reference

Conan Documentation, Release 2.1.0

def package_info(self):
Remove
self.conf_info.remove("user.myconf.build:ldflags", "--flag1") # == ["--flag0",

→˓"--flag2", "--flag3"]

Conf.unset(name)
Clears the variable, equivalent to a unset or set XXX=

Parameters
name – Name of the configuration.

def package_info(self):
Unset any value
self.conf_info.unset("tools.microsoft.msbuildtoolchain:compile_options")

It is possible to define configuration in packages that are tool_requires. For example, assuming there is a package
that bundles the AndroidNDK, it could define the location of such NDK to the tools.android:ndk_path configu-
ration as:

import os
from conan import ConanFile

class Pkg(ConanFile):
name = "android_ndk"

def package_info(self):
self.conf_info.define("tools.android:ndk_path", os.path.join(self.package_folder,

→˓ "ndk"))

Note that this only propagates from the immediate, direct tool_requires of a recipe.

Note: Best practices
• The package_info() method is not strictly necessary if you have other means of propagating information for

consumers. For example, if your package creates xxx-config.cmake files at build time, and they are put in the fi-
nal package, it might not be necessary to define package_info() at all, and in the consumer side the CMakeDeps
would not be necessary either, as CMakeToolchain is able to inject the paths to locate the xxx-config.cmake
files inside the packages. This approach can be good for private usage of Conan, albeit some limitations of
CMake, like not being able to manage multi-configuration projects (like Visual Studio switching Debug/Release
in the IDE, that CMakeDeps can provide), limitations in some cross-build scenarios using packages that are both
libraries and build tools (like protobuf, that also CMakeDeps can handle).

• Providing a package_info() is very necessary if consumers can use different build systems, like in ConanCen-
ter. In this case, it is necessary a bit of repetition, and coding the package_info() might feel duplicating the
package xxx-config.cmake, but automatically extracting the info from CMake is not feasible at this moment.

• If you plan to use editables or the local development flow, there’s a need to check the layout() and define the
information for self.cpp.build and self.cpp.source.

• It is not necessary to add bindirs to the PATH environment variable, this will be automatically done by the
consumer VirtualBuildEnv and VirtualRunEnv generators.

• The paths defined in package_info() shouldn’t be converted to any specific format (like the one required by
Windows subsystems). Instead, it is the responsibility of the consumer to translate these paths to the adequate
format.

8.2. conanfile.py 427

Conan Documentation, Release 2.1.0

See also:
See the defining package information tutorial for more information.

requirements()

The requirements() method is used to specify the dependencies of a package.

def requirements(self):
self.requires("zlib/1.2.11")

For simple cases the attribute syntax can be used, like requires = "zlib/1.2.11".

Requirement traits

Traits are properties of a requires clause. They determine how various parts of a dependency are treated and propagated
by Conan. Values for traits are usually computed by Conan based on the dependency’s package_type, but can also be
specified manually.

A good introduction to traits is provided in the Advanced Dependencies Model in Conan 2.0 presentation.

In the example below headers and libs are traits.

self.requires("math/1.0", headers=True, libs=True)

headers

Indicates that there are headers that are going to be #included from this package at compile time. The dependency
will be in the host context.

libs

The dependency contains some library or artifact that will be used at link time of the consumer. This trait will typically
be True for direct shared and static libraries, but could be false for indirect static libraries that are consumed via a
shared library. The dependency will be in the host context.

build

This dependency is a build tool, an application or executable, like cmake, that is used exclusively at build time. It is
not linked/embedded into binaries, and will be in the build context.

428 Chapter 8. Reference

https://youtu.be/kKGglzm5ous

Conan Documentation, Release 2.1.0

run

This dependency contains some executables, either apps or shared libraries that need to be available to execute (typically
in the path, or other system env-vars). This trait can be True for build=False, in that case, the package will contain
some executables that can run in the host system when installing it, typically like an end-user application. This trait
can be True for build=True, the package will contain executables that will run in the build context, typically while
being used to build other packages.

visible

This require will be propagated downstream, even if it doesn’t propagate headers, libs or run traits. Requirements
that propagate downstream can cause version conflicts. This is typically True, because in most cases, having 2 different
versions of the same library in the same dependency graph is at least complicated, if not directly violating ODR or
causing linking errors. It can be set to False in advanced scenarios, when we want to use different versions of the
same package during the build.

transitive_headers

If True the headers of the dependency will be visible downstream.

transitive_libs

If True the libraries to link with of the dependency will be visible downstream.

test

This requirement is a test library or framework, like Catch2 or gtest. It is mostly a library that needs to be included and
linked, but that will not be propagated downstream.

package_id_mode

If the recipe wants to specify how the dependency version affects the current package package_id, can be directly
specified here.

While it could be also done in the package_id() method, it seems simpler to be able to specify it in the requires
while avoiding some ambiguities.

We set the package_id_mode so it is part of the package_id
self.tool_requires("tool/1.1.1", package_id_mode="minor_mode")

Which would be equivalent to:

def package_id(self):
self.info.requires["tool"].minor_mode()

8.2. conanfile.py 429

Conan Documentation, Release 2.1.0

force

This requires will force its version in the dependency graph upstream, overriding other existing versions even of
transitive dependencies, and also solving potential existing conflicts. The downstream consumer’s force traits always
have higher priority.

override

The same as the force trait, but not adding a direct dependency. If there is no transitive dependency to override, this
require will be discarded. This trait only exists at the time of defining a requires, but it will not exist as an actual
requires once the graph is fully evaluated

Note: Best practices
The force and override traits to solve conflicts are not recommended as a general versioning solution, just as a
temporary workaround to solve a version conflict. Its usage should be avoided whenever possible, and updating versions
or version ranges in the graph to avoid the conflicts without overrides and forces is the recommended approach.

direct

If the dependency is a direct one, that is, it has explicitly been declared by the current recipe, or if it is a transitive one.

package_type trait inferring

Some traits are automatically inferred based on the value of the package_type if not explicitly set by the recipe.

• application: headers=False, libs=False, run=True

• shared-library: run=True

• static-library: run=False

• header-library: headers=True, libs=False, run=False

• build-scripts: headers=False, libs=False, run=True, visible=False

Additionally, some additional traits are inferred on top of the above mentioned based on the package_type of the
dependant:

• header-library: transitive_headers=True, transitive_libs=True

Default traits for each kind of requires

Each kind of requires sets some additional traits by default on top of the ones stated in the last section. Those are:

• requires: build=False

• build_requires: headers=False, libs=False, build=True, visible=False

• tool_requires: headers=False, libs=False, build=True, run=True, visible=False

• test_requires: headers=True, libs=True, build=False, visible=False, test=True

430 Chapter 8. Reference

Conan Documentation, Release 2.1.0

set_name()

Dynamically define name attribute. This method would be rarely needed, as the only use case that makes sense is when
a recipe is shared and used to create different packages with the same recipe. In most cases the recommended approach
is to define the name = "mypkg" attribute in the recipe.

This method is executed only when the recipe is exported to the cache conan create and conan export, and when
the recipe is being locally used, like with conan install .. In all other cases, the name of the package is fully
defined, and set_name() will not be called, so do not rely on it for any other functionality different than defining the
self.name value.

If the current package name was defined in a name.txt file, it would be possible to do:

from conan import ConanFile
from conan.tools.files import load

class Pkg(ConanFile):
def set_name(self):

This will execute relatively to the current user directory (name.txt in cwd)
self.name = load(self, "name.txt")
if "name.txt" is located relative to the conanfile.py better do:
self.name = load(self, os.path.join(self.recipe_folder, "name.txt"))

The package name can also be defined in command line for some commands with --name=xxxx argument. If we want
to prioritize the command line argument we should do:

from conan import ConanFile
from conan.tools.files import load

class Pkg(ConanFile):
def set_name(self):

Command line ``--name=xxxx`` will be assigned first to self.name and have␣
→˓priority

self.name = self.name or load(self, "name.txt")

The set_name() method can decide to define the name value, irrespective of the potential --name=xxx command line
argument, that can be even completely ignored by set_name(). It is the responsibility of the developer to provide a
correct set_name():

def set_name(self):
This will always assign "pkg" as name, ignoring ``--name`` command line argument
and without erroring or warning
self.name = "pkg"

If a command line argument --name=xxx is provided, it will be initialized in the self.name attribute, so set_name()
method can read and use it:

def set_name(self):
Takes the provided command line ``--name`` argument and creates a name appending to
it the ".extra" string
self.name = self.name + ".extra"

Warning: The set_name() method is an alternative to the name attribute. It is not advised or supported to define
both a name attribute and a set_name() method.

8.2. conanfile.py 431

Conan Documentation, Release 2.1.0

set_version()

Dynamically define version attribute. This method might be needed when the same recipe is being used to create
different versions of the same package, and such version is defined elsewhere, like in the git branch or in a text or build
script file. This would be a common situation.

This method is executed only when the recipe is exported to the cache conan create and conan export, and when
the recipe is being locally used, like with conan install .. In all other cases, the version of the package is fully
defined, and set_version() will not be called, so do not rely on it for any other functionality different than defining
the self.version value.

If the current package version was defined in a version.txt file, it would be possible to do:

from conan import ConanFile
from conan.tools.files import load

class Pkg(ConanFile):
def set_version(self):

This will execute relatively to the current user directory (version.txt in cwd)
self.version = load(self, "version.txt")
if "version.txt" is located relative to the conanfile.py better do:
self.version = load(self, os.path.join(self.recipe_folder, "version.txt"))

The package version can also be defined in command line for some commands with --version=xxxx argument. If
we want to prioritize the command line argument we should do:

from conan import ConanFile
from conan.tools.files import load

class Pkg(ConanFile):
def set_version(self):

Command line ``--version=xxxx`` will be assigned first to self.version and have␣
→˓priority

self.version = self.version or load(self, "version.txt")

A common use case could be to define the version dynamically from some version control mechanism, like the current
git tag. This could be done with:

from conan import ConanFile
from conan.tools.scm import Git

class Pkg(ConanFile):
name = "pkg"

def set_version(self):
git = Git(self, self.recipe_folder)
self.version = git.run("describe --tags")

The set_version() method can decide to define the version value, irrespective of the potential --version=xxx
command line argument, that can be even completely ignored by set_version(). It is the responsibility of the
developer to provide a correct set_version():

def set_version(self):
This will always assign "2.1" as version, ignoring ``--version`` command line␣

→˓argument
(continues on next page)

432 Chapter 8. Reference

Conan Documentation, Release 2.1.0

(continued from previous page)

and without erroring or warning
self.version = "2.1"

If a command line argument --version=xxx is provided, it will be initialized in the self.version attribute, so
set_version() method can read and use it:

def set_version(self):
Takes the provided command line ``--version`` argument and creates a version␣

→˓appending to
it the ".extra" string
self.version = self.version + ".extra"

Warning: The set_version() method is an alternative to the version attribute. It is not advised or supported
to define both a version class attribute and a set_version() method.

source()

The source() method can be used to retrieve the necessary source code to build a package from source, and to apply
patches to such source code if necessary. It will be called when a package is being built from source, like with conan
create or conan install --build=pkg*, but it will not be called if a package pre-compiled binary is being used.
That means that the source code will not be downloaded if a pre-compiled binary exists.

The source() method can implement different strategies for retrieving the source code:

• Fetching the source code for a third party library:

– Using a Git(self).clone() to clone a Git repository

– Executing a download() + unzip() or a combined get() (internally does download + unzip) to download
a tarball, tgz, or zip archive.

• Fetching the source code for itself, from its repository, whose coordinates have been captured in the conandata.
yml file in the export() method. This is the strategy that would be used to manage the source code for packages
in which the conanfile.py lives in the package itself, but that for some reason we don’t want to put the source
code in the recipe (like not distributing our source code, but being able to distribute our package binaries).

The source() method executes in the self.source_folder, the current working directory will be equal to that
folder (which value is derived from layout() method).

A source() implementation might use the convenient get() helper, or use its own mechanisms or other Conan helpers
for the task, something like:

import os
import shutil

from conan import ConanFile
from conan.tools.files import download, unzip, check_sha1

class PocoConan(ConanFile):
name = "poco"
version = "1.6.0"

(continues on next page)

8.2. conanfile.py 433

Conan Documentation, Release 2.1.0

(continued from previous page)

def source(self):
zip_name = f"poco-{self.version}-release.zip"
Immutable source .zip
download(self, f"https://github.com/pocoproject/poco/archive/poco-{self.version}-

→˓release.zip", zip_name)
Recommended practice, always check hashes of downloaded files
check_sha1(self, zip_name, "8d87812ce591ced8ce3a022beec1df1c8b2fac87")
unzip(self, zip_name)
shutil.move(f"poco-poco-{self.version}-release", "poco")
os.unlink(zip_name)

Applying patches to downloaded sources can be done (and should be done) in the source() method if those patches
apply to all possible configurations. As explained below, it is not possible to introduce conditionals in the source()
method. If the patches are in file form, those patches must be exported together with the recipe, so they can be used
whenever a build from source is fired.

It is possible to apply patches with:

• Your own or git patches utilities

• The Conan built-in patch() utility to explicitly apply patches one by one

• Apply the apply_conandata_patches() Conan utility to automatically apply all patches defined in
conandata.yml file following some conventions.

Source caching

Once the source() method has been called, its result will be cached and reused for any build from source, for any
configuration. That means that the retrieval of sources from the source() method should be completely independent
of the configuration. It is not possible to implement conditionals on the settings, and in general, any attempt to apply
any conditional logic to the source() method is wrong.

def source(self):
if self.settings.compiler == "gcc": # ERROR, will raise

download some source

Trying to bypass the Conan exception by using some other mechanism like:

def source(self):
Might work, but NOT recommended, try to avoid as much as possible
if platform.system() == "Windows":

download something
else:

download something different

Might apparently work if not doing any cross-build, and not recollecting sources in a different OS, but could be prob-
lematic otherwise.

To be completely safe, if different source code is necessary for different configurations, the recommended approach
would be to retrieve that code conditionally in the build() method.

434 Chapter 8. Reference

Conan Documentation, Release 2.1.0

Forced retrieval of sources

When working with a recipe in a user folder, it is easy to call the source() method and force the retrieval of the source
code, that will be done in the same user folder, according to the layout() definition:

$ conan source .

Calling the source() method and forcing the retrieval of source code in the cache, for all or some dependencies, even
if they are not being built from sources, is possible with the tools.build:download_source=True configuration.
For example:

$ conan graph info . -c tools.build:download_source=True

Will compute the dependency graph, then call the source() method for all “host” packages in the graph (as the
configuration by default is a “host” configuration, if you want also the sources for the “build” context tool_requires,
you could use -c:b tools.build:download_source=True). It is possible to collect all the source folders from the
json formatted output, or to automate recollection of all sources, a deployer could be used.

Likewise, it is possible to retrieve the sources for packages in other create and install commands, just by
passing the configuration. Finally, as also configuration can be defined per-package, using -c mypkg*:tools.
build:download_source=True would only retrieve the sources of packages matching the mypkg* pattern.

Note that tools.build:download_source=Truewill not have any effect on packages in editable mode. Download-
ing sources in that case could easily overwrite and destroy local developer changes over that code. The conan source
command must be used on packages in editable mode to download the sources.

Note: Best practices
• The source() method should be the same for all configurations, it cannot be conditional to any configuration.

• The source() method should retrieve immutable sources. Using some branch name, HEAD, or a tarball whose
URL is not immutable and is being overwritten is a bad practice and will lead to broken packages. Using a Git
commit, a frozen Git release tag, or a fixed and versioned release tarballs is the expected input.

• Applying patches should be done by default in the source() method, except if the patches are exclusive for one
configuration, in that case they could be applied in build() method.

• The source() method should not access nor manipulate files in other folders different to the self.
source_folder. All the “exported” files are copied to the self.source_folder before calling it.

See also:
See the tutorial about managing recipe sources for more information.

system_requirements()

The system_requirements() method can be used to call the system package managers to install packages at the
system level. In general, this should be reduced to a minimum, system packages are not modeled dependencies, but it
can be sometimes convenient to automate the installation of some system packages that are necessary for some Conan
packages. For example, when creating a recipe to package the opencv library, we could realize that it needs in Linux
the gtk libraries, but it might be undesired to create a package for them, because we want to make sure we use the
system ones. We code

from conan import ConanFile
from conan.tools.system.package_manager import Apt

(continues on next page)

8.2. conanfile.py 435

Conan Documentation, Release 2.1.0

(continued from previous page)

class OpenCV(ConanFile):
name = "opencv"
version = "4.0"

def system_requirements(self):
apt = Apt(self)
apt.install(["libgtk-3-dev"], update=True, check=True)

For full reference of the built-in helpers for different system package managers read the tools.system.package_manager
documentation.

Collecting system requirements

When system_requirements() uses some built-in package_manager helpers, it is possible to collect information
about the installed or required system requirements. If we have the following conanfile.py:

from conan import ConanFile
from conan.tools.system.package_manager import Apt

class MyPkg(ConanFile):
settings = "arch"

def system_requirements(self):
apt = Apt(self)
apt.install(["pkg1", "pkg2"])

It is possible to display the installed system packages (with the default tools.system.package_manager:mode
requirements will be checked, but not installed) with:

Assuming apt is the default or using explicitly
-c tools.system.package_manager:tool=apt-get
$ conan install . --format=json
"graph": {

"nodes": [
{

"ref": "",
"id": 0,
"settings": {

"arch": "x86_64"
},
"system_requires": {

"apt-get": {
"install": [

"pkg1",
"pkg2"

],
"missing": []

}
},

A similar result can be obtained without even installing binaries, we could use the report or report-installed

436 Chapter 8. Reference

Conan Documentation, Release 2.1.0

modes. The report mode displays the install packages, those are the packages that are required to be installed,
irrespective of whether they are actually installed or not. The report mode does not check the system for those
package, so it could even be ran in another OS:

$ conan graph info . -c tools.system.package_manager:mode=report --format=json
...
"system_requires": {

"apt-get": {
"install": [

"pkg1",
"pkg2"

]
}

}

On the other hand, the report-installed mode will do a check if the package is installed in the system or not, but
not failing nor raising any error if it is not found:

$ conan graph info . -c tools.system.package_manager:mode=report-installed --format=json
...
"system_requires": {

"apt-get": {
"install": [

"pkg1",
"pkg2"

],
"missing": [

"pkg1",
"pkg2"

]
}

}

test()

The test() method is only used for test_package/conanfile.py. It will execute immediately after build() has been
called, and its goal is to run some executable or tests on binaries to prove the package is correctly created. Note that it
is intended to be used as a test of the package: the headers are found, the libraries are found, it is possible to link, etc.
But it is not intended to run unit, integration or functional tests.

It usually takes the form of:

def test(self):
if can_run(self):

cmd = os.path.join(self.cpp.build.bindir, "example")
self.run(cmd, env="conanrun")

See also:
See the “testing packages” tutorial for more information.

8.2. conanfile.py 437

Conan Documentation, Release 2.1.0

validate()

The validate() method can be used to mark a package binary as “invalid”, or not working for the current config-
uration. For example, if we have a header-only library that doesn’t work in Windows, we could have the following
conanfile.py:

from conan import ConanFile
from conan.errors import ConanInvalidConfiguration

class Pkg(ConanFile):
name = "pkg"
version = "1.0"
package_type = "header-library"
settings = "os"

def validate(self):
if self.settings.os == "Windows":

raise ConanInvalidConfiguration("Windows not supported")

def package_id(self):
self.info.clear() # header-only

If we try to create this package in Windows, it will fail, but if we do it in Linux, it will succeed:

$ conan create . -s os=Windows # FAILS
...
ERROR: There are invalid packages:
pkg/1.0: Invalid: Windows not supported
$ conan create . -s os=Linux # WORKS

And if we try to use it in Windows, it will fail again:

$ conan install --requires=pkg/1.0 -s os=Windows # FAILS
...
ERROR: There are invalid packages:
pkg/1.0: Invalid: Windows not supported

When the ConanInvalidConfiguration causes an error, Conan application exit code will be 6

It is possible to check the validity of a given graph without raising errors with the conan graph info command:

$ conan graph info --requires=pkg/1.0 -s os=Windows --filter=binary
conanfile:
ref: conanfile
binary: None
pkg/1.0#cfc18fcc7a50ead278a7c1820be74e56:
ref: pkg/1.0#cfc18fcc7a50ead278a7c1820be74e56
binary: Invalid

The validate() method is evaluated after the whole graph has been computed. This means that it can use the self.
dependencies information to raise errors:

from conan import ConanFile
from conan.errors import ConanInvalidConfiguration

(continues on next page)

438 Chapter 8. Reference

Conan Documentation, Release 2.1.0

(continued from previous page)

class Pkg(ConanFile):
requires = "dep/0.1"

def validate(self):
if self.dependencies["dep"].options.myoption == 2:

raise ConanInvalidConfiguration("Option 2 of 'dep' not supported")

Note: Best practices
The configure()method evaluates before the graph is complete, so it doesn’t have the real values of the dependencies
options. The validate() method is the one that should be checking those dependencies options values if necessary,
not configure().

See also:
• Follow the tutorial about preparing build from source in recipes.

validate_build()

The validate_build() method is used to verify if a package binary can be built with the current configuration. It is
different than the validate() method which raises when the package cannot be used with the current configuration.

The validate_build() method can check the self.settings and self.options values to raise
ConanInvalidConfiguration if necessary.

from conan import ConanFile
from conan.errors import ConanInvalidConfiguration

class Pkg(ConanFile):
name = "pkg"
version = "1.0"
settings = "os", "arch", "compiler", "build_type"

def package_id(self):
For this package, it doesn't matter the compiler used for the binary package
del self.info.settings.compiler

def validate_build(self):
But we know this cannot be build with "gcc"
if self.settings.compiler == "gcc":

raise ConanInvalidConfiguration("This doesn't build in GCC")

This package cannot be created with the gcc compiler, but it can be created with other:

$ conan create . -s compiler=gcc
...
ERROR: There are invalid packages:
pkg/1.0: Cannot build for this configuration: This doesn't build in GCC

$ conan create . -s compiler=clang # WORKS!

Once the package has been built, it can be consumed with that compiler:

8.2. conanfile.py 439

Conan Documentation, Release 2.1.0

$ conan install --requires=pkg/1.0 -s compiler=gcc # WORKS!

• build(): Contains the build instructions to build a package from source

• build_id(): Allows reusing the same build to create different package binaries

• build_requirements(): Defines tool_requires and test_requires

• compatibility(): Defines binary compatibility at the recipe level

• configure(): Allows configuring settings and options while computing dependencies

• config_options(): Configure options while computing dependency graph

• deploy(): Deploys (copy from package to user folder) the desired artifacts

• export(): Copies files that are part of the recipe

• export_sources(): Copies files that are part of the recipe sources

• generate(): Generates the files that are necessary for building the package

• init(): Special initialization of recipe when extending from python_requires

• layout(): Defines the relative project layout, source folders, build folders, etc.

• package(): Copies files from build folder to the package folder.

• package_id(): Defines special logic for computing the binary package_id identifier

• package_info(): Provide information for consumers of this package about libraries, folders, etc.

• requirements(): Define the dependencies of the package

• set_name(): Dynamically define the name of a package

• set_version(): Dynamically define the version of a package.

• source(): Contains the commands to obtain the source code used to build

• system_requirements(): Call system package managers like Apt to install system packages

• test(): Run some simple package test (exclusive of test_package)

• validate(): Define if the current package is invalid (cannot work) with the current configuration.

• validate_build(): Define if the current package cannot be created with the current configuration.

8.2.3 Running and output

Output text from recipes

Use the self.output attribute to output text from the recipes. Do not use Python’s print() function. The self.
output attribute has the following methods to express the level of the printed message:

trace(msg)
debug(msg)
verbose(msg)
status(msg)
info(msg)
highlight(msg)
success(msg)

(continues on next page)

440 Chapter 8. Reference

Conan Documentation, Release 2.1.0

(continued from previous page)

warning(msg, warn_tag=None)
error(msg)

These output functions will only output if the verbosity level with which Conan was launched is the same or higher than
the message, so running with -vwarning will output calls to warning() and error(), but not info() (Additionally,
the highlight() and success() methods have a -vnotice verbosity level)

Note that these methods return the output object again, so that you can chain output calls if needed.

Using the core:warnings_as_errors conf, you can make Conan raise an exception when either errors or a
tagged warning matching any of the given patterns is printed. This is useful to make sure that recipes are not
printing unexpected warnings or errors. Additionally, you can skip which warnings trigger an exception with the
core:skip_warnings conf .

Raise an exception if any warning or error is printed
core:warnings_as_errors=['*']
But skip the deprecation warnings
core:skip_warnings=['deprecated']

Both confs accept a list of patterns to match against the warning tags. A special unknown value can be used to match
any warning without a tag.

To tag a warning, use the warn_tag argument of the warning() method in your recipes:

self.output.warning("Extra warning", warn_tag="custom_tag")

Running commands

run(self, command, stdout=None, cwd=None, ignore_errors=False, env="", quiet=False,␣
→˓shell=True, scope="build", stderr=None)

self.run() is a helper to run system commands while injecting the calls to activate the appropriate environment, and
throw exceptions when errors occur so that command errors do not pass unnoticed. It also wraps the commands with
the results of the command wrapper plugin.

• command should be specified as a string which is passed to the system shell.

• When the argument quiet is set to true, the invocation of self.run() will not print the command to be exe-
cuted.

Use the stdout and stderr arguments to redirect the output of the command to a file-like object instead of the console.

Redirect stdout to a file
with open("ninja_stdout.log", "w") as stdout:

Redirect stderr to a StringIO object to be able to read it later
stderr = StringIO()
self.run("ninja ...", stdout=stdout, stderr=stderr)

8.2. conanfile.py 441

Conan Documentation, Release 2.1.0

8.3 conanfile.txt

The conanfile.txt file is a simplified version of conanfile.py, aimed at simple consumption of dependencies, but
it cannot be used to create a package. Also, it is not necessary to have a conanfile.txt for consuming dependencies,
a conanfile.py is perfectly suited for simple consumption of dependencies.

It also provides a simplified functionality, for example it is not possible to express conditional requirements in
conanfile.txt, and it will be necessary to use a conanfile.py for that. Read Understanding the flexibility of
using conanfile.py vs conanfile.txt for more information about this.

8.3.1 [requires]

List of requirements, specifying the full reference. Equivalent to self.requires(<ref>) in conanfile.py.

[requires]
poco/1.9.4
zlib/1.2.11

This section supports references with version-ranges too:

[requires]
poco/[>1.0,<1.9]
zlib/1.2.11

And specific recipe revisions can be pinned too:

[requires]
zlib/1.2.13#revision1
boost/1.70.0#revision2

8.3.2 [tool_requires]

List of tool requirements (executable tools) specifying the full reference. Equivalent to self.tool_requires() in
conanfile.py.

[tool_requires]
7zip/16.00
cmake/3.23.0

This section also supports version ranges and pinned recipe revisions, as above.

In practice the [tool_requires] will be always installed (same as [requires]) as installing from a conanfile.txt
means that something is going to be built, so the tool requirements are indeed needed. Note however, that by default
tool_requires live in the “build” context, they cannot be libraries to built with, just executable tools, and for example,
using the CMakeDeps generator, they will not create CMake config files for them (an exception is possible, but it requires
using a conanfile.py, read the CMakeDeps reference for more information).

442 Chapter 8. Reference

Conan Documentation, Release 2.1.0

8.3.3 [test_requires]

List of test requirements specifying the full reference. Equivalent to self.test_requires() in conanfile.py.

[test_requires]
gtest/1.12.1

This section also supports version ranges and pinned recipe revisions, as above. The behavior of test_requires is
totally equivalent to the [requires] section above, as the only difference is that test_requires are not propagated
to consumers, but as a conanfile.txt is never creating a package that can be consumed, it is irrelevant. It is provided
to maintain the equivalence with conanfile.py

8.3.4 [generators]

List of built-in generators to be used, equivalent to the conanfile.py generators = "CMakeDeps", ... attribute.

[requires]
poco/1.9.4
zlib/1.2.13

[generators]
CMakeDeps
CMakeToolchain

8.3.5 [options]

List of options scoped for each package with a pattern like package_name*:option = Value.

[requires]
poco/1.9.4
zlib/1.2.11

[generators]
CMakeDeps
CMakeToolchain

[options]
poco*:shared=True
openssl*:shared=True

For example using *:shared=True will define shared=True for all packages in the dependency graph that have this
option defined.

8.3. conanfile.txt 443

Conan Documentation, Release 2.1.0

8.3.6 [layout]

You can specify one name of a predefined layout. The available values are:

• cmake_layout

• vs_layout

• bazel_layout (experimental)

[layout]
cmake_layout

See also:
Read Understanding the flexibility of using conanfile.py vs conanfile.txt for more information about conanfile.txt vs
conanfile.py.

8.4 Recipe tools

Tools are all things that can be imported and used in Conan recipes.

The import path is always like:

from conan.tools.cmake import CMakeToolchain, CMakeDeps, CMake
from conan.tools.microsoft import MSBuildToolchain, MSBuildDeps, MSBuild

The main guidelines are:

• Everything that recipes can import belong to from conan.tools. Any other thing is private implementation
and shouldn’t be used in recipes.

• Only documented, public (not preceded by _) tools can be used in recipes.

Contents:

8.4.1 conan.tools.android

android_abi()

android_abi(conanfile, context='host')
Returns Android-NDK ABI

Parameters
• conanfile – ConanFile instance

• context – either “host”, “build” or “target”

Returns
Android-NDK ABI

This function might not be necessary when using Conan built-in integrations, as they already manage it, but can be
useful if developing your own build system integration.

android_abi() function returns the Android standard ABI name based on Conan settings.arch value, something
like:

444 Chapter 8. Reference

Conan Documentation, Release 2.1.0

def android_abi(conanfile, context="host"):
...
return {

"armv5el": "armeabi",
"armv5hf": "armeabi",
"armv5": "armeabi",
"armv6": "armeabi-v6",
"armv7": "armeabi-v7a",
"armv7hf": "armeabi-v7a",
"armv8": "arm64-v8a",
}.get(conanfile.settings.arch)

As it can be seen, the default is the “host” ABI, but it is possible to select also the “build” or “target” ones if necessary.

from conan.tools.android import android_abi

class Pkg(ConanFile):
def generate(self)

abi = android_abi(self)

8.4.2 conan.tools.apple

XcodeDeps

The XcodeDeps tool is the dependency information generator for Xcode. It will generate multiple .xcconfig configura-
tion files, the can be used by consumers using xcodebuild or Xcode. To use them just add the generated configuration
files to the Xcode project or set the -xcconfig argument from the command line.

The XcodeDeps generator can be used by name in conanfiles:

Listing 30: conanfile.py

class Pkg(ConanFile):
generators = "XcodeDeps"

Listing 31: conanfile.txt

[generators]
XcodeDeps

And it can also be fully instantiated in the conanfile generate() method:

Listing 32: conanfile.py

from conan import ConanFile
from conan.tools.apple import XcodeDeps

class Pkg(ConanFile):
settings = "os", "compiler", "arch", "build_type"
requires = "libpng/1.6.37@" # Note libpng has zlib as transitive dependency

def generate(self):
(continues on next page)

8.4. Recipe tools 445

Conan Documentation, Release 2.1.0

(continued from previous page)

xcode = XcodeDeps(self)
xcode.generate()

When the XcodeDeps generator is used, every invocation of conan install will generate several configuration files,
per dependency and configuration. For the conanfile.py above, for example:

$ conan install conanfile.py # default is Release
$ conan install conanfile.py -s build_type=Debug

This generator is multi-configuration. It will generate different files for the different Debug/Release configurations
for each requirement. It will also generate one single file (conandeps.xcconfig) aggregating all the files for the direct
dependencies (just libpng in this case). The above commands generate the following files:

.
conan_config.xcconfig
conan_libpng.xcconfig
conan_libpng_libpng.xcconfig
conan_libpng_libpng_debug_x86_64.xcconfig
conan_libpng_libpng_release_x86_64.xcconfig
conan_zlib.xcconfig
conan_zlib_zlib.xcconfig
conan_zlib_zlib_debug_x86_64.xcconfig
conan_zlib_zlib_release_x86_64.xcconfig
conandeps.xcconfig

The first conan install with the default Release and x86_64 configuration generates:

• conan_libpng_libpng_release_x86_64.xcconfig: declares variables with conditional logic to be considered only
for the active configuration in Xcode or the one passed by command line to xcodebuild.

• conan_libpng_libpng.xcconfig: includes conan_libpng_libpng_release_x86_64.xcconfig and declares the
following Xcode build settings: SYSTEM_HEADER_SEARCH_PATHS, GCC_PREPROCESSOR_DEFINITIONS,
OTHER_CFLAGS, OTHER_CPLUSPLUSFLAGS, FRAMEWORK_SEARCH_PATHS, LIBRARY_SEARCH_PATHS,
OTHER_LDFLAGS. It also includes the generated xcconfig files for transitive dependencies (co-
nan_zlib_zlib.xcconfig in this case).

• conan_libpng.xcconfig: in this case it only includes conan_libpng_libpng.xcconfig, but in the case that the re-
quired package has components, this file will include all of the components of the package.

• Same 3 files will be generated for each dependency in the graph. In this case, as zlib is a dependency of libpng
it will generate: conan_zlib_zlib_release_x86_64.xcconfig, conan_zlib_zlib.xcconfig and conan_zlib.xcconfig.

• conandeps.xcconfig: configuration files including all direct dependencies, in this case, it just includes
conan_libpng.xcconfig.

• The main conan_config.xcconfig file, to be added to the project. Includes both the files from this generator and
the generated by the XcodeToolchain in case it was also set.

The second conan install -s build_type=Debug generates:

• conan_libpng_libpng_debug_x86_64.xcconfig: same variables as the one below for Debug configuration.

• conan_libpng_libpng.xcconfig: this file has been already created by the previous command, now it’s modified to
add the include for conan_libpng_debug_x86_64.xcconfig.

• conan_libpng.xcconfig: this file will remain the same.

446 Chapter 8. Reference

Conan Documentation, Release 2.1.0

• Like in the previous command the same 3 files will be generated for each dependency in the graph. In
this case, as zlib is a dependency of libpng it will generate: conan_zlib_zlib_debug_x86_64.xcconfig, co-
nan_zlib_zlib.xcconfig and conan_zlib.xcconfig.

• conandeps.xcconfig: configuration files including all direct dependencies, in this case, it just includes
conan_libpng.xcconfig.

• The main conan_config.xcconfig file, to be added to the project. Includes both the files from this generator and
the generated by the XcodeToolchain in case it was also set.

If you want to add this dependencies to you Xcode project, you just have to add the conan_config.xcconfig configuration
file for all of the configurations you want to use (usually Debug and Release).

Additional variables defined

Besides the variables that define the Xcode build settings mentioned above, there are additional variables declared that
may be useful to use in your Xcode project:

• PACKAGE_ROOT_<package_name>: Set to the location of the package_folder attribute.

Components support

This generator supports packages with components. That means that:

• If a dependency package_info() declares cpp_info.requires on some components, the generated .xcconfig
files will contain includes to only those components.

• The current package requireswill be fully dependent on and all components. Recall that the package_info()
only applies for consumers, but not to the current package.

Custom configurations

If your Xcode project defines custom configurations, like ReleaseShared, or MyCustomConfig, it is possible to define
it into the XcodeDeps generator, so different project configurations can use different set of dependencies. Let’s say that
our current project can be built as a shared library, with the custom configuration ReleaseShared, and the package
also controls this with the shared option:

from conan import ConanFile
from conan.tools.apple import XcodeDeps

class Pkg(ConanFile):
settings = "os", "compiler", "arch", "build_type"
options = {"shared": [True, False]}
default_options = {"shared": False}
requires = "zlib/1.2.11"

def generate(self):
xcode = XcodeDeps(self)
We assume that -o *:shared=True is used to install all shared deps too
if self.options.shared:

xcode.configuration = str(self.settings.build_type) + "Shared"
xcode.generate()

8.4. Recipe tools 447

Conan Documentation, Release 2.1.0

This will manage to generate new .xcconfig files for this custom configuration, and when you switch to this configuration
in the IDE, the build system will take the correct values depending whether we want to link with shared or static libraries.

XcodeToolchain

The XcodeToolchain is the toolchain generator for Xcode. It will generate .xcconfig configuration files that can be
added to Xcode projects. This generator translates the current package configuration, settings, and options, into Xcode
.xcconfig files syntax.

The XcodeToolchain generator can be used by name in conanfiles:

Listing 33: conanfile.py

class Pkg(ConanFile):
generators = "XcodeToolchain"

Listing 34: conanfile.txt

[generators]
XcodeToolchain

And it can also be fully instantiated in the conanfile generate() method:

from conan import ConanFile
from conan.tools.apple import XcodeToolchain

class App(ConanFile):
settings = "os", "arch", "compiler", "build_type"

def generate(self):
tc = XcodeToolchain(self)
tc.generate()

The XcodeToolchain will generate three files after a conan install command. As explained above for the Xcod-
eDeps generator, each different configuration will create a set of files with different names. For example, running conan
install for Release first and then Debug configuration:

$ conan install conanfile.py # default is Release
$ conan install conanfile.py -s build_type=Debug

Will create these files:

.
conan_config.xcconfig
conantoolchain_release_x86_64.xcconfig
conantoolchain_debug_x86_64.xcconfig
conantoolchain.xcconfig
conan_global_flags.xcconfig

Those files are:

• The main conan_config.xcconfig file, to be added to the project. Includes both the files from this generator and
the generated by the XcodeDeps in case it was also set.

448 Chapter 8. Reference

Conan Documentation, Release 2.1.0

• conantoolchain_<debug/release>_x86_64.xcconfig: declares CLANG_CXX_LIBRARY,
CLANG_CXX_LANGUAGE_STANDARD and MACOSX_DEPLOYMENT_TARGET variables with conditional logic
depending on the build configuration, architecture and sdk set.

• conantoolchain.xcconfig: aggregates all the conantoolchain_<config>_<arch>.xcconfig files for the different
installed configurations.

• conan_global_flags.xcconfig: this file will only be generated in case of any configuration variables related to
compiler or linker flags are set. Check the configuration section below for more details.

Every invocation to conan install with different configuration will create a new conan-
toolchain_<config>_<arch>.xcconfig file that is aggregated in the conantoolchain.xcconfig, so you can have
different configurations included in your Xcode project.

The XcodeToolchain files can declare the following Xcode build settings based on Conan settings values:

• MACOSX_DEPLOYMENT_TARGET is based on the value of the os.version setting and will make the build system
to pass the flag -mmacosx-version-min with that value (if set). It defines the operating system version the
binary should run into.

• CLANG_CXX_LANGUAGE_STANDARD is based on the value of the compiler.cppstd setting that sets the C++
language standard.

• CLANG_CXX_LIBRARY is based on the value of the compiler.libcxx setting and sets the version of the C++ standard
library to use.

One of the advantages of using toolchains is that they can help to achieve the exact same build with local development
flows, than when the package is created in the cache.

conf

This toolchain is also affected by these [conf] variables:

• tools.build:cxxflags list of C++ flags.

• tools.build:cflags list of pure C flags.

• tools.build:sharedlinkflags list of flags that will be used by the linker when creating a shared library.

• tools.build:exelinkflags list of flags that will be used by the linker when creating an executable.

• tools.build:defines list of preprocessor definitions.

If you set any of these variables, the toolchain will use them to generate the conan_global_flags.xcconfig file
that will be included from the conan_config.xcconfig file.

XcodeBuild

The XcodeBuild build helper is a wrapper around the command line invocation of Xcode. It will abstract the calls
like xcodebuild -project app.xcodeproj -configuration <config> -arch <arch> ...

The XcodeBuild helper can be used like:

from conan import conanfile
from conan.tools.apple import XcodeBuild

class App(ConanFile):
settings = "os", "arch", "compiler", "build_type"

(continues on next page)

8.4. Recipe tools 449

Conan Documentation, Release 2.1.0

(continued from previous page)

def build(self):
xcodebuild = XcodeBuild(self)
xcodebuild.build("app.xcodeproj")

Reference

class XcodeBuild(conanfile)

__init__(conanfile)

XcodeBuild.build(xcodeproj, target=None)
Call to xcodebuild to build a Xcode project.

Parameters
• xcodeproj – the xcodeproj file to build.

• target – the target to build, in case this argument is passed to the build() method it will
add the -target argument to the build system call. If not passed, it will build all the targets
passing the -alltargets argument instead.

Returns
the return code for the launched xcodebuild command.

The Xcode.build() method internally implements a call to xcodebuild like:

$ xcodebuild -project app.xcodeproj -configuration <configuration> -arch <architecture>
→˓<sdk> <verbosity> -target <target>/-alltargets

Where:

• configuration is the configuration, typically Release or Debug, which will be obtained from settings.
build_type.

• architecture is the build architecture, a mapping from the settings.arch to the common architectures
defined by Apple ‘i386’, ‘x86_64’, ‘armv7’, ‘arm64’, etc.

• sdk is set based on the values of the os.sdk and os.sdk_version defining the SDKROOT Xcode build setting
according to them. For example, setting os.sdk=iOS and os.sdk_version=8.3` will pass SDKROOT=iOS8.3 to
the build system. In case you defined the tools.apple:sdk_path in your [conf] this value will take preference
and will directly pass SDKROOT=<tools.apple:sdk_path> so take into account that for this case the skd
located in that path should set your os.sdk and os.sdk_version settings values.

• verbosity is the verbosity level for the build and can take value ‘verbose’ or ‘quiet’ if set by tools.
build:verbosity in your [conf]

450 Chapter 8. Reference

Conan Documentation, Release 2.1.0

conf

• tools.build:verbosity (or tools.compilation:verbosity as fallback) which accepts quiet or
verbose, and sets the -verbose or -quiet flags in XcodeBuild.install()

• tools.apple:sdk_path path for the sdk location, will set the SDKROOT value with preference over composing
the value from the os.sdk and os.sdk_version settings.

conan.tools.apple.fix_apple_shared_install_name()

fix_apple_shared_install_name(conanfile)
Search for all the dylib files in the conanfile’s package_folder and fix both the LC_ID_DYLIB and LC_LOAD_DYLIB
fields on those files using the install_name_tool utility available in macOS to set @rpath.

This tool will search for all the dylib files in the conanfile’s package_folder and fix the library install names (the
LC_ID_DYLIB header). Libraries and executables inside the package folder will also have the LC_LOAD_DYLIB fields
updated to reflect the patched install names. Executables inside the package will also get an LC_RPATH entry pointing to
the relative location of the libraries inside the package folder. This is done using the install_name_tool utility available
in macOS, as outlined below:

• For LC_ID_DYLIB which is the field containing the install name of the library, it will change the install name to
one that uses the @rpath. For example, if the install name is /path/to/lib/libname.dylib, the new install
name will be @rpath/libname.dylib. This is done by internally executing something like:

install_name_tool /path/to/lib/libname.dylib -id @rpath/libname.dylib

• For LC_LOAD_DYLIB which is the field containing the path to the library dependencies, it will change the path of
the dependencies to one that uses the @rpath. For example, if a binary has a dependency on /path/to/lib/
dependency.dylib, this will be updated to be @rpath/dependency.dylib. This is done for both libraries
and executables inside the package folder, invoking install_name_tool as below:

install_name_tool /path/to/lib/libname.dylib -change /path/to/lib/dependency.dylib␣
→˓@rpath/dependency.dylib

• For LC_RPATH, in those cases in which the packages also contain binary executables that depend on libraries
within the same package, entries will be added to reflect the location of the libraries relative to the executable.
If a package has executables in the bin subfolder and libraries in the lib subfolder, this can be performed with an
invocation like this:

install_name_tool /path/to/bin/my_executable -add_rpath @executable_path/../lib

This tool is typically needed by recipes that use Autotools as the build system and in the case that the correct install
names are not fixed in the library being packaged. Use this tool, if needed, in the conanfile’s package() method like:

from conan.tools.apple import fix_apple_shared_install_name

class HelloConan(ConanFile):

...

def package(self):
autotools = Autotools(self)
autotools.install()
fix_apple_shared_install_name(self)

8.4. Recipe tools 451

Conan Documentation, Release 2.1.0

conan.tools.apple.is_apple_os()

is_apple_os(conanfile)
returns True if OS is Apple one (Macos, iOS, watchOS, tvOS or visionOS)

conan.tools.apple.to_apple_arch()

to_apple_arch(conanfile, default=None)
converts conan-style architecture into Apple-style arch

conan.tools.apple.XCRun()

class XCRun(conanfile, sdk=None, use_settings_target=False)
XCRun is a wrapper for the Apple xcrun tool used to get information for building.

Parameters
• conanfile – Conanfile instance.

• sdk – Will skip the flag when False is passed and will try to adjust the sdk it automatically
if None is passed.

• use_settings_target – Try to use settings_target in case they exist (False by de-
fault)

find(tool)
find SDK tools (e.g. clang, ar, ranlib, lipo, codesign, etc.)

property sdk_path

obtain sdk path (aka apple sysroot or -isysroot

property sdk_version

obtain sdk version

property sdk_platform_path

obtain sdk platform path

property sdk_platform_version

obtain sdk platform version

property cc

path to C compiler (CC)

property cxx

path to C++ compiler (CXX)

property ar

path to archiver (AR)

property ranlib

path to archive indexer (RANLIB)

property strip

path to symbol removal utility (STRIP)

452 Chapter 8. Reference

Conan Documentation, Release 2.1.0

property libtool

path to libtool

property otool

path to otool

property install_name_tool

path to install_name_tool

8.4.3 conan.tools.build

Building

conan.tools.build.build_jobs()

build_jobs(conanfile)
Returns the number of CPUs available for parallel builds. It returns the configuration value for tools.
build:jobs if exists, otherwise, it defaults to the helper function _cpu_count(). _cpu_count() reads cgroup
to detect the configured number of CPUs. Currently, there are two versions of cgroup available.

In the case of cgroup v1, if the data in cgroup is invalid, processor detection comes into play. Whenever processor
detection is not enabled, build_jobs() will safely return 1.

In the case of cgroup v2, if no limit is set, processor detection is used. When the limit is set, the behavior is as
described in cgroup v1.

Parameters
conanfile – The current recipe object. Always use self.

Returns
int with the number of jobs

conan.tools.build.cross_building()

cross_building(conanfile=None, skip_x64_x86=False)
Check if we are cross building comparing the build and host settings. Returns True in the case that we are
cross-building.

Parameters
• conanfile – The current recipe object. Always use self.

• skip_x64_x86 – Do not consider cross building when building to 32 bits from 64 bits:
x86_64 to x86, sparcv9 to sparc or ppc64 to ppc32

Returns
bool value from tools.build.cross_building:cross_build if exists, otherwise, it returns
True if we are cross-building, else, False.

8.4. Recipe tools 453

Conan Documentation, Release 2.1.0

conan.tools.build.can_run()

can_run(conanfile)
Validates whether is possible to run a non-native app on the same architecture. It’s a useful feature for the case
your architecture can run more than one target. For instance, Mac M1 machines can run both armv8 and x86_64.

Parameters
conanfile – The current recipe object. Always use self.

Returns
bool value from tools.build.cross_building:can_run if exists, otherwise, it returns
False if we are cross-building, else, True.

Cppstd

conan.tools.build.check_min_cppstd()

check_min_cppstd(conanfile, cppstd, gnu_extensions=False)
Check if current cppstd fits the minimal version required.

In case the current cppstd doesn’t fit the minimal version required by cppstd, a ConanInvalidConfig-
uration exception will be raised.

1. If settings.compiler.cppstd, the tool will use settings.compiler.cppstd to compare

2. It not settings.compiler.cppstd, the tool will use compiler to compare (reading the default from
cppstd_default)

3. If not settings.compiler is present (not declared in settings) will raise because it cannot compare.

4. If can not detect the default cppstd for settings.compiler, a exception will be raised.

Parameters
• conanfile – The current recipe object. Always use self.

• cppstd – Minimal cppstd version required

• gnu_extensions – GNU extension is required (e.g gnu17)

conan.tools.build.check_max_cppstd()

check_max_cppstd(conanfile, cppstd, gnu_extensions=False)
Check if current cppstd fits the maximum version required.

In case the current cppstd doesn’t fit the maximum version required by cppstd, a ConanInvalidCon-
figuration exception will be raised.

1. If settings.compiler.cppstd, the tool will use settings.compiler.cppstd to compare

2. It not settings.compiler.cppstd, the tool will use compiler to compare (reading the default from
cppstd_default)

3. If not settings.compiler is present (not declared in settings) will raise because it cannot compare.

4. If can not detect the default cppstd for settings.compiler, a exception will be raised.

Parameters

454 Chapter 8. Reference

Conan Documentation, Release 2.1.0

• conanfile – The current recipe object. Always use self.

• cppstd – Maximum cppstd version required

• gnu_extensions – GNU extension is required (e.g gnu17)

conan.tools.build.valid_min_cppstd()

valid_min_cppstd(conanfile, cppstd, gnu_extensions=False)
Validate if current cppstd fits the minimal version required.

Parameters
• conanfile – The current recipe object. Always use self.

• cppstd – Minimal cppstd version required

• gnu_extensions – GNU extension is required (e.g gnu17). This option ONLY works on
Linux.

Returns
True, if current cppstd matches the required cppstd version. Otherwise, False.

conan.tools.build.valid_max_cppstd()

valid_max_cppstd(conanfile, cppstd, gnu_extensions=False)
Validate if current cppstd fits the maximum version required.

Parameters
• conanfile – The current recipe object. Always use self.

• cppstd – Maximum cppstd version required

• gnu_extensions – GNU extension is required (e.g gnu17). This option ONLY works on
Linux.

Returns
True, if current cppstd matches the required cppstd version. Otherwise, False.

conan.tools.build.default_cppstd()

default_cppstd(conanfile, compiler=None, compiler_version=None)
Get the default compiler.cppstd for the “conanfile.settings.compiler” and “conanfile set-
tings.compiler_version” or for the parameters “compiler” and “compiler_version” if specified.

Parameters
• conanfile – The current recipe object. Always use self.

• compiler – Name of the compiler e.g. gcc

• compiler_version – Version of the compiler e.g. 12

Returns
The default compiler.cppstd for the specified compiler

8.4. Recipe tools 455

Conan Documentation, Release 2.1.0

conan.tools.build.supported_cppstd()

supported_cppstd(conanfile, compiler=None, compiler_version=None)
Get a list of supported compiler.cppstd for the “conanfile.settings.compiler” and “conan-
file.settings.compiler_version” or for the parameters “compiler” and “compiler_version” if specified.

Parameters
• conanfile – The current recipe object. Always use self.

• compiler – Name of the compiler e.g: gcc

• compiler_version – Version of the compiler e.g: 12

Returns
a list of supported cppstd values.

8.4.4 conan.tools.cmake

CMakeDeps

The CMakeDeps generator produces the necessary files for each dependency to be able to use the cmake
find_package() function to locate the dependencies. It can be used like:

from conan import ConanFile

class App(ConanFile):
settings = "os", "arch", "compiler", "build_type"
requires = "hello/0.1"
generators = "CMakeDeps"

The full instantiation, that allows custom configuration can be done in the generate() method:

from conan import ConanFile
from conan.tools.cmake import CMakeDeps

class App(ConanFile):
settings = "os", "arch", "compiler", "build_type"
requires = "hello/0.1"

def generate(self):
cmake = CMakeDeps(self)
cmake.generate()

Listing 35: CMakeLists.txt
cmake_minimum_required(VERSION 3.15)
project(compressor C)

find_package(hello REQUIRED)

add_executable(${PROJECT_NAME} src/main.c)
target_link_libraries(${PROJECT_NAME} hello::hello)

456 Chapter 8. Reference

Conan Documentation, Release 2.1.0

By default, for a hello requires, you need to use find_package(hello) and link with the target hello::hello.
Check the properties affecting CMakeDeps like cmake_target_name to customize the file and the target names in the
conanfile.py of the dependencies and their components.

Note: The CMakeDeps is intended to run with the CMakeToolchain generator. It will set CMAKE_PREFIX_PATH
and CMAKE_MODULE_PATH to the right folder (conanfile.generators_folder) so CMake can locate the generated
config/module files.

Generated files

• XXX-config.cmake: By default, the CMakeDeps generator will create config files declaring the targets for the
dependencies and their components (if declared).

• FindXXX.cmake: Only when the property cmake_find_mode is set by the dependency with “module” or
“both”. See The properties affecting CMakeDeps is set in the dependency.

• Other necessary *.cmake: files like version, flags and directory data or configuration.

Note that it will also generate a conandeps_legacy.cmake file. This is a file that provides a behavior similar to
the Conan 1 cmake generator, allowing to include this file with include(${CMAKE_BINARY_DIR}/generators/
conandeps_legacy.cmake), and providing a single CMake CONANDEPS_LEGACY variable that allows to link with
all the direct and transitive dependencies without explicitly enumerating them like: target_link_libraries(app
${CONANDEPS_LEGACY}). This is a convenience provided for Conan 1.X users to upgrade to Conan 2 without chang-
ing their overall developer flow, but it is not recommended otherwise, and using the CMake canonical flow of explicitly
using find_package() and target_link_libraries(... pkg1::pkg1 pkg2::pkg2) with targets is the correct
approach.

Customization

There are some attributes you can adjust in the created CMakeDeps object to change the default behavior:

configuration

Allows to define custom user CMake configuration besides the standard Release, Debug, etc ones.

def generate(self):
deps = CMakeDeps(self)
By default, ``deps.configuration`` will be ``self.settings.build_type``
if self.options["hello"].shared:

Assuming the current project ``CMakeLists.txt`` defines the ReleasedShared␣
→˓configuration.

deps.configuration = "ReleaseShared"
deps.generate()

The CMakeDeps is a multi-configuration generator, it can correctly create files for Release/Debug configurations to
be simultaneously used by IDEs like Visual Studio. In single configuration environments, it is necessary to have a
configuration defined, which must be provided via the cmake ... -DCMAKE_BUILD_TYPE=<build-type> argument
in command line (Conan will do it automatically when necessary, in the CMake.configure() helper).

8.4. Recipe tools 457

Conan Documentation, Release 2.1.0

build_context_activated

When you have a build-require, by default, the config files (xxx-config.cmake) files are not generated. But you can
activate it using the build_context_activated attribute:

tool_requires = ["my_tool/0.0.1"]

def generate(self):
cmake = CMakeDeps(self)
generate the config files for the tool require
cmake.build_context_activated = ["my_tool"]
cmake.generate()

build_context_suffix

When you have the same package as a build-require and as a regular require it will cause a conflict in the generator
because the file names of the config files will collide as well as the targets names, variables names etc.

For example, this is a typical situation with some requirements (capnproto, protobuf. . .) that contain a tool used to
generate source code at build time (so it is a build_require), but also providing a library to link to the final application,
so you also have a regular require. Solving this conflict is specially important when we are cross-building because
the tool (that will run in the building machine) belongs to a different binary package than the library, that will “run” in
the host machine.

You can use the build_context_suffix attribute to specify a suffix for a requirement, so the files/targets/variables of the
requirement in the build context (tool require) will be renamed:

tool_requires = ["my_tool/0.0.1"]
requires = ["my_tool/0.0.1"]

def generate(self):
cmake = CMakeDeps(self)
generate the config files for the tool require
cmake.build_context_activated = ["my_tool"]
disambiguate the files, targets, etc
cmake.build_context_suffix = {"my_tool": "_BUILD"}
cmake.generate()

build_context_build_modules

Also there is another issue with the build_modules. As you may know, the recipes of the requirements can declare
a cppinfo.build_modules entry containing one or more .cmake files. When the requirement is found by the cmake
find_package() function, Conan will include automatically these files.

By default, Conan will include only the build modules from the host context (regular requires) to avoid the collision,
but you can change the default behavior.

Use the build_context_build_modules attribute to specify require names to include the build_modules from
tool_requires:

tool_requires = ["my_tool/0.0.1"]

(continues on next page)

458 Chapter 8. Reference

Conan Documentation, Release 2.1.0

(continued from previous page)

def generate(self):
cmake = CMakeDeps(self)
generate the config files for the tool require
cmake.build_context_activated = ["my_tool"]
Choose the build modules from "build" context
cmake.build_context_build_modules = ["my_tool"]
cmake.generate()

check_components_exist

Warning: The check_components_exist attribute is experimental and subject to change.

This property is False by default. Use this property if you want to add a check when you require specifying components
in the consumers’ find_package(). For example, if we are consuming a Conan package like Boost that declares
several components. If we set the attribute to True, the find_package() call of the consumer, will check that the
required components exist and raise an error otherwise. You can set this attribute in the generate() method:

requires = "boost/1.81.0"

...

def generate(self):
deps = CMakeDeps(self)
deps.check_components_exist = True
deps.generate()

Then, when consuming Boost the find_package() will raise an error as fakecomp does not exist:

cmake_minimum_required(VERSION 3.15)
...
find_package(Boost COMPONENTS random regex fakecomp REQUIRED)
...

Reference

class CMakeDeps(conanfile)

generate()

This method will save the generated files to the conanfile.generators_folder

set_property(dep, prop, value, build_context=False)
Using this method you can overwrite the property values set by the Conan recipes from the consumer. This
can be done for cmake_file_name, cmake_target_name, cmake_find_mode, cmake_module_file_name and
cmake_module_target_name properties.

Parameters
• dep – Name of the dependency to set the property. For components use the syntax:
dep_name::component_name.

8.4. Recipe tools 459

Conan Documentation, Release 2.1.0

• prop – Name of the property.

• value – Value of the property. Use None to invalidate any value set by the upstream recipe.

• build_context – Set to True if you want to set the property for a dependency that belongs
to the build context (False by default).

get_cmake_package_name(dep, module_mode=None)
Get the name of the file for the find_package(XXX)

get_find_mode(dep)

Parameters
dep – requirement

Returns
“none” or “config” or “module” or “both” or “config” when not set

Properties

The following properties affect the CMakeDeps generator:

• cmake_file_name: The config file generated for the current package will follow the <VALUE>-config.cmake
pattern, so to find the package you write find_package(<VALUE>).

• cmake_target_name: Name of the target to be consumed.

• cmake_target_aliases: List of aliases that Conan will create for an already existing target.

• cmake_find_mode: Defaulted to config. Possible values are:

– config: The CMakeDeps generator will create config scripts for the dependency.

– module: Will create module config (FindXXX.cmake) scripts for the dependency.

– both: Will generate both config and modules.

– none: Won’t generate any file. It can be used, for instance, to create a system wrapper package so the
consumers find the config files in the CMake installation config path and not in the generated by Conan
(because it has been skipped).

• cmake_module_file_name: Same as cmake_file_name but when generating modules with
cmake_find_mode=module/both. If not specified it will default to cmake_file_name.

• cmake_module_target_name: Same as cmake_target_name but when generating modules with
cmake_find_mode=module/both. If not specified it will default to cmake_target_name.

• cmake_build_modules: List of .cmake files (route relative to root package folder) that are automatically in-
cluded when the consumer run the find_package(). This property cannot be set in the components, only in
the root self.cpp_info.

• cmake_set_interface_link_directories: boolean value that should be only used by dependencies that don’t de-
clare self.cpp_info.libs but have #pragma comment(lib, "foo") (automatic link) declared at the public head-
ers. Those dependencies should add this property to their conanfile.py files at root cpp_info level (components
not supported for now).

• nosoname: boolean value that should be used only by dependencies that are defined as SHARED and represent a
library built without the soname flag option.

• cmake_config_version_compat: (preview) By default SameMajorVersion, it can take the values
"AnyNewerVersion", "SameMajorVersion", "SameMinorVersion", "ExactVersion". It will use that
policy in the generated <PackageName>ConfigVersion.cmake file

460 Chapter 8. Reference

Conan Documentation, Release 2.1.0

• system_package_version: version of the package used to generate the <PackageName>ConfigVersion.
cmake file. Can be useful when creating system packages or other wrapper packages, where the co-
nan package version is different to the eventually referenced package version to keep compatibility to
find_package(<PackageName> <Version>) calls.

Example:

def package_info(self):
...
MyFileName-config.cmake
self.cpp_info.set_property("cmake_file_name", "MyFileName")
Names for targets are absolute, Conan won't add any namespace to the target names␣

→˓automatically
self.cpp_info.set_property("cmake_target_name", "Foo::Foo")
Automatically include the lib/mypkg.cmake file when calling find_package()
This property cannot be set in a component.
self.cpp_info.set_property("cmake_build_modules", [os.path.join("lib", "mypkg.cmake

→˓")])

Create a new target "MyFooAlias" that is an alias to the "Foo::Foo" target
self.cpp_info.set_property("cmake_target_aliases", ["MyFooAlias"])

self.cpp_info.components["mycomponent"].set_property("cmake_target_name", "Foo::Var")

Create a new target "VarComponent" that is an alias to the "Foo::Var" component␣
→˓target

self.cpp_info.components["mycomponent"].set_property("cmake_target_aliases", [
→˓"VarComponent"])

Skip this package when generating the files for the whole dependency tree in the␣
→˓consumer
note: it will make useless the previous adjustements.
self.cpp_info.set_property("cmake_find_mode", "none")

Generate both MyFileNameConfig.cmake and FindMyFileName.cmake
self.cpp_info.set_property("cmake_find_mode", "both")

Overwrite properties from the consumer side using CMakeDeps.set_property()

Using CMakeDeps.set_property() method you can overwrite the property values set by the Conan recipes from the
consumer. This can be done for cmake_file_name, cmake_target_name, cmake_find_mode, cmake_module_file_name
and cmake_module_target_name properties. Let’s see an example of how this works:

Imagine we have a compressor/1.0 package that depends on zlib/1.2.11. The zlib recipe defines some properties:

Listing 36: Zlib conanfile.py

class ZlibConan(ConanFile):
name = "zlib"

...

def package_info(self):
(continues on next page)

8.4. Recipe tools 461

Conan Documentation, Release 2.1.0

(continued from previous page)

self.cpp_info.set_property("cmake_find_mode", "both")
self.cpp_info.set_property("cmake_file_name", "ZLIB")
self.cpp_info.set_property("cmake_target_name", "ZLIB::ZLIB")
...

This recipe defines several properties. For example the cmake_find_mode property is set to both. That means that
module and config files are generated for Zlib. Maybe we need to alter this behaviour and just generate config files.
You could do that in the compressor recipe using the CMakeDeps.set_property() method:

Listing 37: compressor conanfile.py

class Compressor(ConanFile):
name = "compressor"

requires = "zlib/1.2.11"
...

def generate(self):
deps = CMakeDeps(self)
deps.set_property("zlib", "cmake_find_mode", "config")
deps.generate()
...

You can also use the set_property() method to invalidate the property values set by the upstream recipe and use the
values that Conan assigns by default. To do so, set the value None to the property like this:

Listing 38: compressor conanfile.py

class Compressor(ConanFile):
name = "compressor"

requires = "zlib/1.2.11"
...

def generate(self):
deps = CMakeDeps(self)
deps.set_property("zlib", "cmake_target_name", None)
deps.generate()
...

After doing this the generated target name for the Zlib library will be zlib::zlib instead of ZLIB::ZLIB

Additionally, CMakeDeps.set_property() can also be used for packages that have components. In this case, you will
need to provide the package name along with its component separated by a double colon (::). Here’s an example:

def generate(self):
deps = CMakeDeps(self)
deps.set_property("pkg::component", "cmake_target_name", <new_component_target_name>)
deps.generate()
...

462 Chapter 8. Reference

Conan Documentation, Release 2.1.0

Disable CMakeDeps For Installed CMake configuration files

Some projects may want to disable the CMakeDeps generator for downstream consumers. This can be done by settings
cmake_find_mode to none. If the project wants to provide its own configuration targets, it should append them to the
buildirs attribute of cpp_info.

This method is intended to work with downstream consumers using the CMakeToolchain generator, which will be
populated with the builddirs attribute.

Example:

def package(self):
...
cmake.install()

def package_info(self):
self.cpp_info.set_property("cmake_find_mode", "none") # Do NOT generate any files
self.cpp_info.builddirs.append(os.path.join("lib", "cmake", "foo"))

Map from project configuration to imported target’s configuration

As mentioned above, CMakeDeps provides support for multiple configuration environments (Debug, Release, etc.)
This is achieved by populating properties on the imported targets according to the build_type setting when installing
dependencies. When a consumer project is configured with a single-configuration CMake generator, however, it is
necessary to define the CMAKE_BUILD_TYPE with a value that matches that of the installed dependencies.

If the consumer CMake project is configured with a different build type than the dependencies, it is necessary
to tell CMake how to map the configurations from the current project to the imported targets by setting the
CMAKE_MAP_IMPORTED_CONFIG_<CONFIG> CMake variable.

cd build-coverage/
conan install .. -s build_type=Debug
cmake .. -DCMAKE_BUILD_TYPE=Coverage -DCMAKE_TOOLCHAIN_FILE=conan_toolchain.cmake -
→˓DCMAKE_MAP_IMPORTED_CONFIG_COVERAGE=Debug

CMakeToolchain

The CMakeToolchain is the toolchain generator for CMake. It produces the toolchain file that can be used in the
command line invocation of CMake with the -DCMAKE_TOOLCHAIN_FILE=conan_toolchain.cmake. This generator
translates the current package configuration, settings, and options, into CMake toolchain syntax.

It can be declared as:

from conan import ConanFile

class Pkg(ConanFile):
generators = "CMakeToolchain"

Or fully instantiated in the generate() method:

from conan import ConanFile
from conan.tools.cmake import CMakeToolchain

(continues on next page)

8.4. Recipe tools 463

Conan Documentation, Release 2.1.0

(continued from previous page)

class App(ConanFile):
settings = "os", "arch", "compiler", "build_type"
requires = "hello/0.1"
generators = "CMakeDeps"
options = {"shared": [True, False], "fPIC": [True, False]}
default_options = {"shared": False, "fPIC": True}

def generate(self):
tc = CMakeToolchain(self)
tc.variables["MYVAR"] = "MYVAR_VALUE"
tc.preprocessor_definitions["MYDEFINE"] = "MYDEF_VALUE"
tc.generate()

Note: The CMakeToolchain is intended to run with the CMakeDeps dependencies generator. Please do not use other
CMake legacy generators (like cmake, or cmake_paths) with it.

Generated files

This will generate the following files after a conan install (or when building the package in the cache) with the
information provided in the generate() method as well as information translated from the current settings:

• conan_toolchain.cmake: containing the translation of Conan settings to CMake variables. Some things that
will be defined in this file:

– Definition of the CMake generator platform and generator toolset

– Definition of the CMAKE_POSITION_INDEPENDENT_CODE, based on fPIC option.

– Definition of the C++ standard as necessary

– Definition of the standard library used for C++

– Deactivation of rpaths in OSX

• conanvcvars.bat: In some cases, the Visual Studio environment needs to be defined correctly for building, like
when using the Ninja or NMake generators. If necessary, the CMakeToolchain will generate this script, so
defining the correct Visual Studio prompt is easier.

• CMakePresets.json: This toolchain generates a standard CMakePresets.json file. For more information, refer
to the documentation here. It currently uses version “3” of the JSON schema. Conan adds configure, build, and
test preset entries to the JSON file:

– configurePresets storing the following information:
∗ The generator to be used.

∗ The path to the conan_toolchain.cmake.

∗ Cache variables corresponding to the specified settings that cannot work if specified in the
toolchain.

∗ The CMAKE_BUILD_TYPE variable for single-configuration generators.

∗ The BUILD_TESTING variable set to OFF when the configuration tools.build:skip_test is true.

∗ An environment section, setting all the environment information related to the VirtualBuildEnv,
if applicable. This environment can be modified in the generate() method of the recipe by passing

464 Chapter 8. Reference

https://cmake.org/cmake/help/latest/manual/cmake-presets.7.html

Conan Documentation, Release 2.1.0

an environment through the CMakeToolchain.presets_build_environment attribute. Generation of
this section can be skipped by using the tools.cmake.cmaketoolchain:presets_environment config-
uration.

∗ By default, preset names will be conan-xxxx, but the “conan-” prefix can be customized with the
CMakeToolchain.presets_prefix = “conan” attribute.

∗ Preset names are controlled by the layout() self.folders.build_folder_vars definition, which
can contain a list of settings and options like [“settings.compiler”, “settings.arch”, “op-
tions.shared”].

∗ If CMake is found as a direct tool_requires dependency, or if tools.cmake:cmake_program is set,
the configure preset will include a cmakeExecutable field. This field represents the path to the
CMake executable to be used for this preset. As stated in the CMake documentation, this field is
reserved for use by IDEs and is not utilized by CMake itself.

– buildPresets storing the following information:
∗ The configurePreset associated with this build preset.

– testPresets storing the following information:
∗ The configurePreset associated with this build preset.

∗ An environment section, setting all the environment information related to the VirtualRunEnv, if
applicable. This environment can be modified in the generate() method of the recipe by passing
an environment through the CMakeToolchain.presets_run_environment attribute. Please note that
since this preset inherits from a configurePreset, it will also inherit its environment. Generation of
this section can be skipped by using the`tools.cmake.cmaketoolchain:presets_environment` con-
figuration.

• CMakeUserPresets.json: If you declare a layout() in the recipe and your CMakeLists.txt file is found
at the conanfile.source_folder folder, a CMakeUserPresets.json file will be generated (if doesn’t exist
already) including automatically the CMakePresets.json (at the conanfile.generators_folder) to allow
your IDE (Visual Studio, Visual Studio Code, CLion. . .) or cmake tool to locate the CMakePresets.json.
The location of the generated CMakeUserPresets.json can be further tweaked by the user_presets_path
attribute, as documented below. The version schema of the generated CMakeUserPresets.json is “4”
and requires CMake >= 3.23. The file name of this file can be configured with the CMakeToolchain.
user_presets_path = "CMakeUserPresets.json"` attribute, so if you want to generate a “Conan-
Presets.json” instead to be included from your own file, you can define tc.user_presets_path =
"ConanPresets.jon" in the generate() method. See extending your own CMake presets for a full exam-
ple.

Note: Conan will skip the generation of the CMakeUserPresets.json if it already exists and was not generated
by Conan.

Note: To list all available presets, use the cmake --list-presets command:

Note: The version schema of the generated CMakeUserPresets.json is 4 (compatible with CMake>=3.23) and the
schema for the CMakePresets.json is 3 (compatible with CMake>=3.21).

8.4. Recipe tools 465

Conan Documentation, Release 2.1.0

Customization

preprocessor_definitions

This attribute allows defining compiler preprocessor definitions, for multiple configurations (Debug, Release, etc).

def generate(self):
tc = CMakeToolchain(self)
tc.preprocessor_definitions["MYDEF"] = "MyValue"
tc.preprocessor_definitions.debug["MYCONFIGDEF"] = "MyDebugValue"
tc.preprocessor_definitions.release["MYCONFIGDEF"] = "MyReleaseValue"
Setting to None will add the definition with no value
tc.preprocessor_definitions["NOVALUE_DEF"] = None
tc.generate()

This will be translated to:

• One add_compile_definitions() definition for MYDEF in conan_toolchain.cmake file.

• One add_compile_definitions() definition, using a cmake generator expression in conan_toolchain.
cmake file, using the different values for different configurations.

cache_variables

This attribute allows defining CMake cache-variables. These variables, unlike the variables, are single-config. They
will be stored in the CMakePresets.json file (at the cacheVariables in the configurePreset) and will be applied with
-D arguments when calling cmake.configure using the CMake() build helper.

def generate(self):
tc = CMakeToolchain(self)
tc.cache_variables["foo"] = True
tc.cache_variables["foo2"] = False
tc.cache_variables["var"] = "23"

The booleans assigned to a cache_variable will be translated to ON and OFF symbols in CMake.

variables

This attribute allows defining CMake variables, for multiple configurations (Debug, Release, etc). These variables
should be used to define things related to the toolchain and for the majority of cases cache_variables is what you
probably want to use. Also, take into account that as these variables are defined inside the conan_toolchain.cmake file,
and the toolchain is loaded several times by CMake, the definition of these variables will be done at those points as
well.

def generate(self):
tc = CMakeToolchain(self)
tc.variables["MYVAR"] = "MyValue"
tc.variables.debug["MYCONFIGVAR"] = "MyDebugValue"
tc.variables.release["MYCONFIGVAR"] = "MyReleaseValue"
tc.generate()

This will be translated to:

466 Chapter 8. Reference

Conan Documentation, Release 2.1.0

• One set() definition for MYVAR in conan_toolchain.cmake file.

• One set() definition, using a cmake generator expression in conan_toolchain.cmake file, using the different
values for different configurations.

The booleans assigned to a variable will be translated to ON and OFF symbols in CMake:

def generate(self):
tc = CMakeToolchain(self)
tc.variables["FOO"] = True
tc.variables["VAR"] = False
tc.generate()

Will generate the sentences: set(FOO ON ...) and set(VAR OFF ...).

user_presets_path

This attribute allows specifying the location of the generated CMakeUserPresets.json file. Accepted values:

• An absolute path

• A path relative to self.source_folder

• The boolean value False, to suppress the generation of the file altogether.

For example, we can prevent the generator from creating CMakeUserPresets.json in the following way:

def generate(self):
tc = CMakeToolchain(self)
tc.user_presets_path = False
tc.generate()

presets_build_environment, presets_run_environment

These attributes enable the modification of the build and run environments associated with the presets, respectively, by
assigning an Environment. This can be accomplished in the generate() method.

For example, you can override the value of an environment variable already set in the build environment:

def generate(self):
buildenv = VirtualBuildEnv(self)
buildenv.environment().define("MY_BUILD_VAR", "MY_BUILDVAR_VALUE_OVERRIDDEN")
buildenv.generate()

tc = CMakeToolchain(self)
tc.presets_build_environment = buildenv.environment()
tc.generate()

Or generate a new environment and compose it with an already existing one:

def generate(self):
runenv = VirtualRunEnv(self)
runenv.environment().define("MY_RUN_VAR", "MY_RUNVAR_SET_IN_GENERATE")
runenv.generate()

(continues on next page)

8.4. Recipe tools 467

Conan Documentation, Release 2.1.0

(continued from previous page)

env = Environment()
env.define("MY_ENV_VAR", "MY_ENV_VAR_VALUE")
env = env.vars(self, scope="run")
env.save_script("other_env")

tc = CMakeToolchain(self)
tc.presets_run_environment = runenv.environment().compose_env(env)
tc.generate()

Extra compilation flags

You can use the following attributes to append extra compilation flags to the toolchain:

• extra_cxxflags (defaulted to []) for additional cxxflags

• extra_cflags (defaulted to []) for additional cflags

• extra_sharedlinkflags (defaulted to []) for additional shared link flags

• extra_exelinkflags (defaulted to []) for additional exe link flags

Note: flags order of preference: Flags specified in the tools.build configuration, such as cxxflags, cflags, sharedlink-
flags and exelinkflags, will always take precedence over those set by the CMakeToolchain attributes.

presets_prefix

By default it is "conan", and it will generate CMake presets named “conan-xxxx”. This is done to avoid potential
name clashes with users own presets.

Using a custom toolchain file

There are two ways of providing custom CMake toolchain files:

• The conan_toolchain.cmake file can be completely skipped and replaced by a user one, defining the tools.
cmake.cmaketoolchain:toolchain_file=<filepath> configuration value.

• A custom user toolchain file can be added (included from) to the conan_toolchain.cmake
one, by using the user_toolchain block described below, and defining the tools.cmake.
cmaketoolchain:user_toolchain=["<filepath>"] configuration value.

The configuration tools.cmake.cmaketoolchain:user_toolchain=["<filepath>"] can be defined in
the global.conf. but also creating a Conan package for your toolchain and using self.conf_info to declare
the toolchain file:

import os
from conan import ConanFile
class MyToolchainPackage(ConanFile):

...
def package_info(self):

f = os.path.join(self.package_folder, "mytoolchain.cmake")
(continues on next page)

468 Chapter 8. Reference

Conan Documentation, Release 2.1.0

(continued from previous page)

self.conf_info.define("tools.cmake.cmaketoolchain:user_toolchain",␣
→˓[f])

If you declare the previous package as a tool_require, the toolchain will be automatically applied.

• If you have more than one tool_requires defined, you can easily append all the user toolchain values together
using the append method in each of them, for instance:

import os
from conan import ConanFile
class MyToolRequire(ConanFile):

...
def package_info(self):

f = os.path.join(self.package_folder, "mytoolchain.cmake")
Appending the value to any existing one
self.conf_info.append("tools.cmake.cmaketoolchain:user_toolchain",␣

→˓f)

So, they’ll be automatically applied by your CMakeToolchain generator without writing any extra code:

from conan import ConanFile
from conan.tools.cmake import CMake
class Pkg(ConanFile):

settings = "os", "compiler", "arch", "build_type"
exports_sources = "CMakeLists.txt"
tool_requires = "toolchain1/0.1", "toolchain2/0.1"
generators = "CMakeToolchain"

def build(self):
cmake = CMake(self)
cmake.configure()

Extending and advanced customization

CMakeToolchain implements a powerful capability for extending and customizing the resulting toolchain file.

The contents are organized by blocks that can be customized. The following predefined blocks are available, and
added in this order:

• user_toolchain: Allows to include user toolchains from the conan_toolchain.cmake file. If the configu-
ration tools.cmake.cmaketoolchain:user_toolchain=["xxxx", "yyyy"] is defined, its values will be
include(xxx)\ninclude(yyyy) as the first lines in conan_toolchain.cmake.

• generic_system: Defines CMAKE_SYSTEM_NAME, CMAKE_SYSTEM_VERSION, CMAKE_SYSTEM_PROCESSOR,
CMAKE_GENERATOR_PLATFORM, CMAKE_GENERATOR_TOOLSET, CMAKE_C_COMPILER, CMAKE_CXX_COMPILER

• android_system: Defines ANDROID_PLATFORM, ANDROID_STL, ANDROID_ABI and includes
ANDROID_NDK_PATH/build/cmake/android.toolchain.cmake where ANDROID_NDK_PATH comes
defined in tools.android:ndk_path configuration value.

• apple_system: Defines CMAKE_OSX_ARCHITECTURES, CMAKE_OSX_SYSROOT for Apple systems.

• fpic: Defines the CMAKE_POSITION_INDEPENDENT_CODE when there is a options.fPIC

• arch_flags: Defines C/C++ flags like -m32, -m64 when necessary.

8.4. Recipe tools 469

Conan Documentation, Release 2.1.0

• linker_scripts: Defines the flags for any provided linker scripts.

• libcxx: Defines -stdlib=libc++ flag when necessary as well as _GLIBCXX_USE_CXX11_ABI.

• vs_runtime: Defines the CMAKE_MSVC_RUNTIME_LIBRARY variable, as a generator expression for multiple con-
figurations.

• cppstd: defines CMAKE_CXX_STANDARD, CMAKE_CXX_EXTENSIONS

• parallel: defines /MP parallel build flag for Visual.

• cmake_flags_init: defines CMAKE_XXX_FLAGS variables based on previously defined Conan variables.
The blocks above only define CONAN_XXX variables, and this block will define CMake ones like
set(CMAKE_CXX_FLAGS_INIT "${CONAN_CXX_FLAGS}" CACHE STRING "" FORCE)`.

• try_compile: Stop processing the toolchain, skipping the blocks below this one, if IN_TRY_COMPILE CMake
property is defined.

• find_paths: Defines CMAKE_FIND_PACKAGE_PREFER_CONFIG, CMAKE_MODULE_PATH, CMAKE_PREFIX_PATH
so the generated files from CMakeDeps are found.

• rpath: Defines CMAKE_SKIP_RPATH. By default it is disabled, and it is needed to define self.
blocks["rpath"].skip_rpath=True if you want to activate CMAKE_SKIP_RPATH

• shared: defines BUILD_SHARED_LIBS.

• output_dirs: Define the CMAKE_INSTALL_XXX variables.

– CMAKE_INSTALL_PREFIX: Is set with the package_folder, so if a “cmake install” oper-
ation is run, the artifacts go to that location.

– CMAKE_INSTALL_BINDIR, CMAKE_INSTALL_SBINDIR and
CMAKE_INSTALL_LIBEXECDIR: Set by default to bin.

– CMAKE_INSTALL_LIBDIR: Set by default to lib.

– CMAKE_INSTALL_INCLUDEDIR and CMAKE_INSTALL_OLDINCLUDEDIR: Set by
default to include.

– CMAKE_INSTALL_DATAROOTDIR: Set by default to res.

If you want to change the default values, adjust the cpp.package object at the layout() method:

def layout(self):
...
For CMAKE_INSTALL_BINDIR, CMAKE_INSTALL_SBINDIR and CMAKE_

→˓INSTALL_LIBEXECDIR, takes the first value:
self.cpp.package.bindirs = ["mybin"]
For CMAKE_INSTALL_LIBDIR, takes the first value:
self.cpp.package.libdirs = ["mylib"]
For CMAKE_INSTALL_INCLUDEDIR, CMAKE_INSTALL_OLDINCLUDEDIR,␣

→˓takes the first value:
self.cpp.package.includedirs = ["myinclude"]
For CMAKE_INSTALL_DATAROOTDIR, takes the first value:
self.cpp.package.resdirs = ["myres"]

Note: It is not valid to change the self.cpp_info at the package_info() method.

470 Chapter 8. Reference

Conan Documentation, Release 2.1.0

Customizing the content blocks

Every block can be customized in different ways (recall to call tc.generate() after the customization):

tc.generate() should be called at the end of every one

remove an existing block, the generated conan_toolchain.cmake
will not contain code for that block at all
def generate(self):

tc = CMakeToolchain(self)
tc.blocks.remove("generic_system")

remove several blocks
def generate(self):

tc = CMakeToolchain(self)
tc.blocks.remove("generic_system", "cmake_flags_init")

keep one block, remove all the others
If you want to generate conan_toolchain.cmake with only that
block
def generate(self):

tc = CMakeToolchain(self)
tc.blocks.select("generic_system")

keep several blocks, remove the other blocks
def generate(self):

tc = CMakeToolchain(self)
tc.blocks.select("generic_system", "cmake_flags_init")

iterate blocks
def generate(self):

tc = CMakeToolchain(self)
for block_name in tc.blocks.keys():

do something with block_name
for block_name, block in tc.blocks.items():

do something with block_name and block

modify the template of an existing block
def generate(self):

tc = CMakeToolchain(self)
tmp = tc.blocks["generic_system"].template
new_tmp = tmp.replace(...) # replace, fully replace, append...
tc.blocks["generic_system"].template = new_tmp

modify one or more variables of the context
def generate(self):

tc = CMakeToolchain(conanfile)
block.values is the context dictionary
toolset = tc.blocks["generic_system"].values["toolset"]
tc.blocks["generic_system"].values["toolset"] = "other_toolset"

modify the whole context values
def generate(self):

(continues on next page)

8.4. Recipe tools 471

Conan Documentation, Release 2.1.0

(continued from previous page)

tc = CMakeToolchain(conanfile)
tc.blocks["generic_system"].values = {"toolset": "other_toolset"}

modify the context method of an existing block
import types

def generate(self):
tc = CMakeToolchain(self)
generic_block = toolchain.blocks["generic_system"]

def context(self):
assert self # Your own custom logic here
return {"toolset": "other_toolset"}

generic_block.context = types.MethodType(context, generic_block)

completely replace existing block
from conan.tools.cmake import CMakeToolchain

def generate(self):
tc = CMakeToolchain(self)
this could go to a python_requires
class MyGenericBlock:

template = "HelloWorld"

def context(self):
return {}

tc.blocks["generic_system"] = MyGenericBlock

add a completely new block
from conan.tools.cmake import CMakeToolchain
def generate(self):

tc = CMakeToolchain(self)
this could go to a python_requires
class MyBlock:

template = "Hello {{myvar}}!!!"

def context(self):
return {"myvar": "World"}

tc.blocks["mynewblock"] = MyBlock

For more information about these blocks, please have a look at the source code.

472 Chapter 8. Reference

Conan Documentation, Release 2.1.0

Cross building

The generic_system block contains some basic cross-building capabilities. In the general case, the user would
want to provide their own user toolchain defining all the specifics, which can be done with the configuration tools.
cmake.cmaketoolchain:user_toolchain. If this conf value is defined, the generic_system block will include
the provided file or files, but no further define any CMake variable for cross-building.

If user_toolchain is not defined and Conan detects it is cross-building, because the build and host profiles contain
different OS or architecture, it will try to define the following variables:

• CMAKE_SYSTEM_NAME: tools.cmake.cmaketoolchain:system_name configuration if defined, otherwise, it
will try to autodetect it. This block will consider cross-building if Android systems (that is managed by other
blocks), and not 64bits to 32bits builds in x86_64, sparc and ppc systems.

• CMAKE_SYSTEM_VERSION: tools.cmake.cmaketoolchain:system_version conf if defined, otherwise os.
version subsetting (host) when defined

• CMAKE_SYSTEM_PROCESSOR: tools.cmake.cmaketoolchain:system_processor conf if defined, other-
wise arch setting (host) if defined

Reference

class CMakeToolchain(conanfile, generator=None)

generate()

This method will save the generated files to the conanfile.generators_folder

conf

CMakeToolchain is affected by these [conf] variables:

• tools.cmake.cmaketoolchain:toolchain_file user toolchain file to replace the conan_toolchain.cmake one.

• tools.cmake.cmaketoolchain:user_toolchain list of user toolchains to be included from the
conan_toolchain.cmake file.

• tools.android:ndk_path value for ANDROID_NDK_PATH.

• tools.android:cmake_legacy_toolchain: boolean value for ANDROID_USE_LEGACY_TOOLCHAIN_FILE. It will
only be defined in conan_toolchain.cmake if given a value. This is taken into account by the CMake
toolchain inside the Android NDK specified in the tools.android:ndk_path config, for versions r23c and
above. It may be useful to set this to False if compiler flags are defined via tools.build:cflags or tools.
build:cxxflags to prevent Android’s legacy CMake toolchain from overriding the values. If setting this to
False, please ensure you are using CMake 3.21 or above.

• tools.cmake.cmaketoolchain:system_name is not necessary in most cases and is only used to force-define
CMAKE_SYSTEM_NAME.

• tools.cmake.cmaketoolchain:system_version is not necessary in most cases and is only used to force-define
CMAKE_SYSTEM_VERSION.

• tools.cmake.cmaketoolchain:system_processor is not necessary in most cases and is only used to force-define
CMAKE_SYSTEM_PROCESSOR.

• tools.cmake.cmaketoolchain:toolset_arch: Will add the ,host=xxx specifier in the
CMAKE_GENERATOR_TOOLSET variable of conan_toolchain.cmake file.

8.4. Recipe tools 473

Conan Documentation, Release 2.1.0

• tools.cmake.cmaketoolchain:toolset_cuda: (Experimental) Will add the ,cuda=xxx specifier in the
CMAKE_GENERATOR_TOOLSET variable of conan_toolchain.cmake file.

• tools.cmake.cmake_layout:build_folder_vars: Settings and Options that will produce a different build folder
and different CMake presets names.

• tools.cmake.cmaketoolchain:presets_environment: Set to 'disabled' to prevent the addition of the environ-
ment section to the generated CMake presets.

• tools.build:cxxflags list of extra C++ flags that will be appended to CMAKE_CXX_FLAGS_INIT.

• tools.build:cflags list of extra of pure C flags that will be appended to CMAKE_C_FLAGS_INIT.

• tools.build:sharedlinkflags list of extra linker flags that will be appended to
CMAKE_SHARED_LINKER_FLAGS_INIT.

• tools.build:exelinkflags list of extra linker flags that will be appended to CMAKE_EXE_LINKER_FLAGS_INIT.

• tools.build:defines list of preprocessor definitions that will be used by add_definitions().

• tools.apple:sdk_path value for CMAKE_OSX_SYSROOT. In the general case it’s not needed and will be passed to
CMake by the settings values.

• tools.apple:enable_bitcode boolean value to enable/disable Bitcode Apple Clang flags, e.g.,
CMAKE_XCODE_ATTRIBUTE_ENABLE_BITCODE.

• tools.apple:enable_arc boolean value to enable/disable ARC Apple Clang flags, e.g.,
CMAKE_XCODE_ATTRIBUTE_CLANG_ENABLE_OBJC_ARC.

• tools.apple:enable_visibility boolean value to enable/disable Visibility Apple Clang flags, e.g.,
CMAKE_XCODE_ATTRIBUTE_GCC_SYMBOLS_PRIVATE_EXTERN.

• tools.build:sysroot defines the value of CMAKE_SYSROOT.

• tools.microsoft:winsdk_version Defines the CMAKE_SYSTEM_VERSION or the CMAKE_GENERATOR_PLATFORM
according to CMake policy CMP0149.

• tools.build:compiler_executables dict-like Python object which specifies the compiler as key and the compiler
executable path as value. Those keys will be mapped as follows:

– c: will set CMAKE_C_COMPILER in conan_toolchain.cmake.

– cpp: will set CMAKE_CXX_COMPILER in conan_toolchain.cmake.

– RC: will set CMAKE_RC_COMPILER in conan_toolchain.cmake.

– objc: will set CMAKE_OBJC_COMPILER in conan_toolchain.cmake.

– objcpp: will set CMAKE_OBJCXX_COMPILER in conan_toolchain.cmake.

– cuda: will set CMAKE_CUDA_COMPILER in conan_toolchain.cmake.

– fortran: will set CMAKE_Fortran_COMPILER in conan_toolchain.cmake.

– asm: will set CMAKE_ASM_COMPILER in conan_toolchain.cmake.

– hip: will set CMAKE_HIP_COMPILER in conan_toolchain.cmake.

– ispc: will set CMAKE_ISPC_COMPILER in conan_toolchain.cmake.

474 Chapter 8. Reference

Conan Documentation, Release 2.1.0

CMake

The CMake build helper is a wrapper around the command line invocation of cmake. It will abstract
the calls like cmake --build . --config Release into Python method calls. It will also add the ar-
gument -DCMAKE_TOOLCHAIN_FILE=conan_toolchain.cmake (from the generator CMakeToolchain) to the
configure() call, as well as other possible arguments like -DCMAKE_BUILD_TYPE=<config>. The arguments that
will be used are obtained from a generated CMakePresets.json file.

The helper is intended to be used in the build() method, to call CMake commands automatically when a package is
being built directly by Conan (create, install)

from conan import ConanFile
from conan.tools.cmake import CMake, CMakeToolchain, CMakeDeps

class App(ConanFile):
settings = "os", "arch", "compiler", "build_type"
requires = "hello/0.1"
options = {"shared": [True, False], "fPIC": [True, False]}
default_options = {"shared": False, "fPIC": True}

def generate(self):
tc = CMakeToolchain(self)
tc.generate()
deps = CMakeDeps(self)
deps.generate()

def build(self):
cmake = CMake(self)
cmake.configure()
cmake.build()

Reference

class CMake(conanfile)
CMake helper to use together with the CMakeToolchain feature

Parameters
conanfile – The current recipe object. Always use self.

configure(variables=None, build_script_folder=None, cli_args=None, stdout=None, stderr=None)
Reads the CMakePresets.json file generated by the :param cli_args: Extra CLI arguments to pass to
cmake invocation CMakeToolchain to get:

• The generator, to append -G="xxx".

• The path to the toolchain and append -DCMAKE_TOOLCHAIN_FILE=/path/conan_toolchain.
cmake

• The declared cache variables and append -Dxxx.

and call cmake.

Parameters
• variables – Should be a dictionary of CMake variables and values, that will be mapped

to command line -DVAR=VALUE arguments. Recall that in the general case information to

8.4. Recipe tools 475

Conan Documentation, Release 2.1.0

CMake should be passed in CMakeToolchain to be provided in the conan_toolchain.
cmake file. This variables argument is intended for exceptional cases that wouldn’t work
in the toolchain approach.

• build_script_folder – Path to the CMakeLists.txt in case it is not in the declared self.
folders.source at the layout() method.

• cli_args – List of extra arguments provided when calling to CMake.

• stdout – Use it to redirect stdout to this stream

• stderr – Use it to redirect stderr to this stream

build(build_type=None, target=None, cli_args=None, build_tool_args=None, stdout=None, stderr=None)

Parameters
• build_type – Use it only to override the value defined in the settings.build_type for

a multi-configuration generator (e.g. Visual Studio, XCode). This value will be ignored for
single-configuration generators, they will use the one defined in the toolchain file during
the install step.

• target – The name of a single build target as a string, or names of multiple build targets
in a list of strings to be passed to the --target argument.

• cli_args – A list of arguments [arg1, arg2, ...] that will be passed to the cmake
--build ... arg1 arg2 command directly.

• build_tool_args – A list of arguments [barg1, barg2, ...] for the underlying build
system that will be passed to the command line after the -- indicator: cmake --build .
.. -- barg1 barg2

• stdout – Use it to redirect stdout to this stream

• stderr – Use it to redirect stderr to this stream

install(build_type=None, component=None, cli_args=None, stdout=None, stderr=None)
Equivalent to run cmake --build . --target=install

Parameters
• component – The specific component to install, if any

• build_type – Use it only to override the value defined in the settings.build_type. It can
fail if the build is single configuration (e.g. Unix Makefiles), as in that case the build type
must be specified at configure time, not build type.

• cli_args – A list of arguments [arg1, arg2, ...] for the underlying build system that
will be passed to the command line: cmake --install ... arg1 arg2

• stdout – Use it to redirect stdout to this stream

• stderr – Use it to redirect stderr to this stream

test(build_type=None, target=None, cli_args=None, build_tool_args=None, env='', stdout=None,
stderr=None)

Equivalent to running cmake –build . –target=RUN_TESTS.

Parameters
• build_type – Use it only to override the value defined in the settings.build_type. It

can fail if the build is single configuration (e.g. Unix Makefiles), as in that case the build
type must be specified at configure time, not build time.

• target – Name of the build target to run, by default RUN_TESTS or test

476 Chapter 8. Reference

Conan Documentation, Release 2.1.0

• cli_args – Same as above build()

• build_tool_args – Same as above build()

• stdout – Use it to redirect stdout to this stream

• stderr – Use it to redirect stderr to this stream

ctest(cli_args=None, env='', stdout=None, stderr=None)
Equivalent to running ctest . . .

Parameters
• cli_args – Extra ctest command line arguments

• env – the environment files to activate, by default conanbuild + conanrun

• stdout – Use it to redirect stdout to this stream

• stderr – Use it to redirect stderr to this stream

conf

The CMake() build helper is affected by these [conf] variables:

• tools.build:verbosity will accept one of quiet or verbose to be passed to the CMake.build() com-
mand, when a Visual Studio generator (MSBuild build system) is being used for CMake. It is passed
as an argument to the underlying build system via the call cmake --build . --config Release -- /
verbosity:Diagnostic

• tools.compilation:verbosity will accept one of quiet or verbose to be passed to CMake, which sets
-DCMAKE_VERBOSE_MAKEFILE if verbose

• tools.build:jobs argument for the --jobs parameter when running Ninja generator.

• tools.microsoft.msbuild:max_cpu_count argument for the /m (/maxCpuCount) when running MSBuild

• tools.cmake:cmake_program specify the location of the CMake executable, instead of using the one found
in the PATH.

• tools.cmake:install_strip will pass --strip to the cmake --install call if set to True.

cmake_layout

The cmake_layout() sets the folders and cpp attributes to follow the structure of a typical CMake project.

from conan.tools.cmake import cmake_layout

def layout(self):
cmake_layout(self)

Note: To try it you can use the conan new -d name=hello -d version=1.0 cmake_lib template.

The assigned values depend on the CMake generator that will be used. It can be defined with the tools.
cmake.cmaketoolchain:generator [conf] entry or passing it in the recipe to the cmake_layout(self,
cmake_generator) function. The assigned values are different if it is a multi-config generator (like Visual Studio or
Xcode), or a single-config generator (like Unix Makefiles).

These are the values assigned by the cmake_layout:

8.4. Recipe tools 477

Conan Documentation, Release 2.1.0

• conanfile.folders.source: src_folder argument or . if not specified.

• conanfile.folders.build:
– build: if the cmake generator is multi-configuration.

– build/Debug or build/Release: if the cmake generator is single-configuration, depending on the
build_type.

– The "build" string, can be defined to other value by the build_folder argument.

• conanfile.folders.generators: build/generators

• conanfile.cpp.source.includedirs: ["include"]

• conanfile.cpp.build.libdirs and conanfile.cpp.build.bindirs:
– ["Release"] or ["Debug"] for a multi-configuration cmake generator.

– . for a single-configuration cmake generator.

Reference

cmake_layout(conanfile, generator=None, src_folder='.', build_folder='build')

Parameters
• conanfile – The current recipe object. Always use self.

• generator – Allow defining the CMake generator. In most cases it doesn’t
need to be passed, as it will get the value from the configuration tools.cmake.
cmaketoolchain:generator, or it will automatically deduce the generator from the
settings

• src_folder – Value for conanfile.folders.source, change it if your source code (and
CMakeLists.txt) is in a subfolder.

• build_folder – Specify the name of the “base” build folder. The default is “build”, but if
that folder name is used by the project, a different one can be defined

Multi-setting/option cmake_layout

The folders.build and conanfile.folders.generators can be customized to take into account the settings
and options and not only the build_type. Use the tools.cmake.cmake_layout:build_folder_vars conf to
declare a list of settings or options:

conan install . -c tools.cmake.cmake_layout:build_folder_vars="['settings.compiler',
→˓'options.shared']"

For the previous example, the values assigned by the cmake_layout (installing the Release/static default configuration)
would be:

• conanfile.folders.build:
– build/apple-clang-shared_false: if the cmake generator is multi-configuration.

– build/apple-clang-shared_false/Debug: if the cmake generator is single-configuration.

• conanfile.folders.generators: build/generators

If we repeat the previous install with a different configuration:

478 Chapter 8. Reference

Conan Documentation, Release 2.1.0

conan install . -o shared=True -c tools.cmake.cmake_layout:build_folder_vars="['settings.
→˓compiler', 'options.shared']"

The values assigned by the cmake_layout (installing the Release/shared configuration) would be:

• conanfile.folders.build:
– build/apple-clang-shared_true: if the cmake generator is multi-configuration.

– build/apple-clang-shared_true/Debug: if the cmake generator is single-configuration.

• conanfile.folders.generators: build-apple-clang-shared_true/generators

So we can keep separated folders for any number of different configurations that we want to install.

The CMakePresets.json file generated at the CMakeToolchain generator, will also take this tools.cmake.
cmake_layout:build_folder_vars config into account to generate different names for the presets, being very
handy to install N configurations and building our project for any of them by selecting the chosen preset.

8.4.5 conan.tools.CppInfo

The CppInfo class represents the basic C++ usage information of a given package, like the includedirs, libdirs,
library names, etc. It is the information that the consumers of the package need in order to be able to find the headers
and link correctly with the libraries.

The self.cpp_info object in the package_info() is a CppInfo object, so in most cases it will not be necessary to
explicitly instantiate it, and using it as explained in the package_info() section would be enough.

This section describes the other, advanced uses cases of the CppInfo.

Aggregating information in custom generators

Warning: This feature is experimental and subject to breaking changes. See the Conan stability section for more
information.

Some generators, like the built-in NMakeDeps, contains the equivalent to this code, that collapses all information from
all dependencies into one single CppInfo object that aggregates all the information

from conan.tools import CppInfo

...

def generate(self):
aggregated_cpp_info = CppInfo(self)
deps = self.dependencies.host.topological_sort
deps = [dep for dep in reversed(deps.values())]
for dep in deps:

We don't want independent components management, so we collapse
the "dep" components into one CppInfo called "dep_cppinfo"
dep_cppinfo = dep.cpp_info.aggregated_components()
Then we merge and aggregate this dependency "dep" into the final result
aggregated_cpp_info.merge(dep_cppinfo)

aggregated_cpp_info.includedirs # All include dirs from all deps, all components
(continues on next page)

8.4. Recipe tools 479

Conan Documentation, Release 2.1.0

(continued from previous page)

aggregated_cpp_info.libs # All library names from all deps, all components
aggregated_cpp_info.system_libs # All system-libs from all deps
....
Creates a file with this information that the build system will use

This aggregation could be useful in cases where the build system cannot easily use independent dependencies or com-
ponents. For example NMake or Autotools mechanism to provide dependencies information would be via LIBS,
CXXFLAGS and similar variables. These variables are global, so passing all the information from all dependencies is
the only possibility.

The public documented interface (besides the defined one in the package_info()) is:

• CppInfo(conanfile): Constructor. Receives a conanfile as argument, typically self

• aggregated_components(): return a new CppInfo object resulting from the aggregation of all the compo-
nents

• get_sorted_components(): Get the ordered components of a package, prioritizing those with fewer
dependencies within the same package. Returns an OrderedDict of sorted components in the format
{component_name: component}.

• merge(other_cppinfo: CppInfo): modifies the current CppInfo object, updating it with the information
of the parameter other_cppinfo, allowing to aggregate information from multiple dependencies.

8.4.6 conan.tools.env

Environment

Environment is a generic class that helps to define modifications to the environment variables. This class is used
by other tools like the conan.tools.gnu Autotools helpers and the VirtualBuildEnv and VirtualRunEnv generator. It is
important to highlight that this is a generic class, to be able to use it, a specialization for the current context (shell script,
bat file, path separators, etc), a EnvVars object needs to be obtained from it.

Variable declaration

from conan.tools.env import Environment

def generate(self):
env = Environment()
env.define("MYVAR1", "MyValue1") # Overwrite previously existing MYVAR1 with new␣

→˓value
env.append("MYVAR2", "MyValue2") # Append to existing MYVAR2 the new value
env.prepend("MYVAR3", "MyValue3") # Prepend to existing MYVAR3 the new value
env.remove("MYVAR3", "MyValue3") # Remove the MyValue3 from MYVAR3
env.unset("MYVAR4") # Remove MYVAR4 definition from environment

And the equivalent with paths
env.define_path("MYPATH1", "path/one") # Overwrite previously existing MYPATH1 with␣

→˓new value
env.append_path("MYPATH2", "path/two") # Append to existing MYPATH2 the new value
env.prepend_path("MYPATH3", "path/three") # Prepend to existing MYPATH3 the new value

480 Chapter 8. Reference

Conan Documentation, Release 2.1.0

The “normal” variables (the ones declared with define, append and prepend) will be appended with a space, by
default, but the separator argument can be provided to define a custom one.

The “path” variables (the ones declared with define_path, append_path and prepend_path) will be appended
with the default system path separator, either : or ;, but it also allows defining which one.

Composition

Environments can be composed:

from conan.tools.env import Environment

env1 = Environment()
env1.define(...)
env2 = Environment()
env2.append(...)

env1.compose_env(env2) # env1 has priority, and its modifications will prevail

Obtaining environment variables

You can obtain an EnvVars object with the vars() method like this:

from conan.tools.env import Environment

def generate(self):
env = Environment()
env.define("MYVAR1", "MyValue1")
envvars = env.vars(self, scope="build")
use the envvars object

The default scope is equal "build", which means that if this envvars generate a script to activate the variables,
such script will be automatically added to the conanbuild.sh|bat one, for users and recipes convenience. Conan
generators use build and run scope, but it might be possible to manage other scopes too.

Environment definition

There are some other places where Environment can be defined and used:

• In recipes package_info()method, in new self.buildenv_info and self.runenv_info, this environment
will be propagated via VirtualBuildEnv and VirtualRunEnv respectively to packages depending on this
recipe.

• In generators like AutootoolsDeps, AutotoolsToolchain, that need to define environment for the current
recipe.

• In profiles [buildenv] section.

• In profiles [runenv] section.

The definition in package_info() is as follow, taking into account that both self.buildenv_info and self.
runenv_info are objects of Environment() class.

8.4. Recipe tools 481

Conan Documentation, Release 2.1.0

from conan import ConanFile

class App(ConanFile):
name = "mypkg"
version = "1.0"
settings = "os", "arch", "compiler", "build_type"

def package_info(self):
This is information needed by consumers to build using this package
self.buildenv_info.append("MYVAR", "MyValue")
self.buildenv_info.prepend_path("MYPATH", "some/path/folder")

This is information needed by consumers to run apps that depends on this␣
→˓package

at runtime
self.runenv_info.define("MYPKG_DATA_DIR", os.path.join(self.package_folder,

"datadir"))

Reference

class Environment

Generic class that helps to define modifications to the environment variables.

dumps()

Returns
A string with a profile-like original definition, not the full environment values

define(name, value, separator=' ')
Define name environment variable with value value

Parameters
• name – Name of the variable

• value – Value that the environment variable will take

• separator – The character to separate appended or prepended values

unset(name)
clears the variable, equivalent to a unset or set XXX=

Parameters
name – Name of the variable to unset

append(name, value, separator=None)
Append the value to an environment variable name

Parameters
• name – Name of the variable to append a new value

• value – New value

• separator – The character to separate the appended value with the previous value. By
default it will use a blank space.

482 Chapter 8. Reference

Conan Documentation, Release 2.1.0

append_path(name, value)
Similar to “append” method but indicating that the variable is a filesystem path. It will automatically handle
the path separators depending on the operating system.

Parameters
• name – Name of the variable to append a new value

• value – New value

prepend(name, value, separator=None)
Prepend the value to an environment variable name

Parameters
• name – Name of the variable to prepend a new value

• value – New value

• separator – The character to separate the prepended value with the previous value

prepend_path(name, value)
Similar to “prepend” method but indicating that the variable is a filesystem path. It will automatically
handle the path separators depending on the operating system.

Parameters
• name – Name of the variable to prepend a new value

• value – New value

remove(name, value)
Removes the value from the variable name.

Parameters
• name – Name of the variable

• value – Value to be removed.

compose_env(other)
Compose an Environment object with another one. self has precedence, the “other” will add/append if
possible and not conflicting, but self mandates what to do. If self has define(), without placeholder,
that will remain.

Parameters
other (class:Environment) – the “other” Environment

vars(conanfile, scope='build')
Return an EnvVars object from the current Environment object :param conanfile: Instance of a conanfile,
usually self in a recipe :param scope: Determine the scope of the declared variables. :return:

deploy_base_folder(package_folder, deploy_folder)
Make the paths relative to the deploy_folder

8.4. Recipe tools 483

Conan Documentation, Release 2.1.0

EnvVars

EnvVars is a class that represents an instance of environment variables for a given system. It is obtained from the
generic Environment class.

This class is used by other tools like the conan.tools.gnu autotools helpers and the VirtualBuildEnv and VirtualRunEnv
generator.

Creating environment files

EnvVars object can generate environment files (shell, bat or powershell scripts):

def generate(self):
env1 = Environment()
env1.define("foo", "var")
envvars = env1.vars(self)
envvars.save_script("my_env_file")

Although it potentially could be used in other methods, this functionality is intended to work in the generate()
method.

It will generate automatically a my_env_file.bat for Windows systems or my_env_file.sh otherwise.

In Windows, it is possible to opt-in to generate Powershell .ps1 scripts instead of .bat ones, using the conf tools.
env.virtualenv:powershell=True.

Also, by default, Conan will automatically append that launcher file path to a list that will be used to create a
conanbuild.bat|sh|ps1 file aggregating all the launchers in order. The conanbuild.sh|bat|ps1 launcher will
be created after the execution of the generate() method.

The scope argument ("build" by default) can be used to define different scope of environment files, to aggregate them
separately. For example, using a scope="run", like the VirtualRunEnv generator does, will aggregate and create a
conanrun.bat|sh|ps1 script:

def generate(self):
env1 = Environment()
env1.define("foo", "var")
envvars = env1.vars(self, scope="run")
Will append "my_env_file" to "conanrun.bat|sh|ps1"
envvars.save_script("my_env_file")

You can also use scope=None argument to avoid appending the script to the aggregated conanbuild.bat|sh|ps1:

env1 = Environment()
env1.define("foo", "var")
Will not append "my_env_file" to "conanbuild.bat|sh|ps1"
envvars = env1.vars(self, scope=None)
envvars.save_script("my_env_file")

484 Chapter 8. Reference

Conan Documentation, Release 2.1.0

Running with environment files

The conanbuild.bat|sh|ps1 launcher will be executed by default before calling every self.run() command. This
would be typically done in the build() method.

You can change the default launcher with the env argument of self.run():

...
def build(self):

This will automatically wrap the "foo" command with the correct environment:
source my_env_file.sh && foo
my_env_file.bat && foo
powershell my_env_file.ps1 ; cmd c/ foo
self.run("foo", env=["my_env_file"])

Applying the environment variables

As an alternative to running a command, environments can be applied in the python environment:

from conan.tools.env import Environment

env1 = Environment()
env1.define("foo", "var")
envvars = env1.vars(self)
with envvars.apply():
Here os.getenv("foo") == "var"
...

Iterating the variables

You can iterate the environment variables of an EnvVars object like this:

env1 = Environment()
env1.append("foo", "var")
env1.append("foo", "var2")
envvars = env1.vars(self)
for name, value in envvars.items():

assert name == "foo":
assert value == "var var2"

The current value of the environment variable in the system is replaced in the returned value. This happens when
variables are appended or prepended. If a placeholder is desired instead of the actual value, it is possible to use the
variable_reference argument with a jinja template syntax, so a string with that resolved template will be returned
instead:

env1 = Environment()
env1.append("foo", "var")
envvars = env1.vars(self)
for name, value in envvars.items(variable_reference="$penv{{{name}}}""):

assert name == "foo":
assert value == "$penv{{foo}} var"

8.4. Recipe tools 485

Conan Documentation, Release 2.1.0

Warning: In Windows, there is a limit to the size of environment variables, a total of 32K for the whole environ-
ment, but specifically the PATH variable has a limit of 2048 characters. That means that the above utils could hit
that limit, for example for large dependency graphs where all packages contribute to the PATH env-var.

This can be mitigated by:

• Putting the Conan cache closer to C:/ for shorter paths

• Better definition of what dependencies can contribute to the PATH env-var

• Other mechanisms for things like running with many shared libraries dependencies with too many .dlls, like
deployers

Reference

class EnvVars(conanfile, values, scope)
Represents an instance of environment variables for a given system. It is obtained from the generic Environment
class.

get(name, default=None, variable_reference=None)
get the value of a env-var

Parameters
• name – The name of the environment variable.

• default – The returned value if the variable doesn’t exist, by default None.

• variable_reference – if specified, use a variable reference instead of the pre-existing
value of environment variable, where {name} can be used to refer to the name of the vari-
able.

items(variable_reference=None)
returns {str: str} (varname: value)

Parameters
variable_reference – if specified, use a variable reference instead of the pre-existing value
of environment variable, where {name} can be used to refer to the name of the variable.

apply()

Context manager to apply the declared variables to the current os.environ restoring the original environ-
ment when the context ends.

save_script(filename)
Saves a script file (bat, sh, ps1) with a launcher to set the environment. If the conf
“tools.env.virtualenv:powershell” is set to True it will generate powershell launchers if Windows.

Parameters
filename – Name of the file to generate. If the extension is provided, it will generate the
launcher script for that extension, otherwise the format will be deduced checking if we are
running inside Windows (checking also the subsystem) or not.

486 Chapter 8. Reference

Conan Documentation, Release 2.1.0

VirtualBuildEnv

VirtualBuildEnv is a generator that produces a conanbuildenv .bat, .ps1 or .sh script containing the environment vari-
ables of the build time context:

• From the self.buildenv_info of the direct tool_requires in “build” context.

• From the self.runenv_info of the transitive dependencies of those tool_requires.

It can be used by name in conanfiles:

Listing 39: conanfile.py

class Pkg(ConanFile):
generators = "VirtualBuildEnv"

Listing 40: conanfile.txt

[generators]
VirtualBuildEnv

And it can also be fully instantiated in the conanfile generate() method:

Listing 41: conanfile.py

from conan import ConanFile
from conan.tools.env import VirtualBuildEnv

class Pkg(ConanFile):
settings = "os", "compiler", "arch", "build_type"
requires = "zlib/1.2.11", "bzip2/1.0.8"

def generate(self):
ms = VirtualBuildEnv(self)
ms.generate()

Generated files

This generator (for example the invocation of conan install --tool-require=cmake/3.20.0@ -g
VirtualBuildEnv) will create the following files:

• conanbuildenv-release-x86_64.(bat|ps1|sh): This file contains the actual definition of environment variables like
PATH, LD_LIBRARY_PATH, etc, and any other variable defined in the dependencies buildenv_info corre-
sponding to the build context, and to the current installed configuration. If a repeated call is done with other set-
tings, a different file will be created. After the execution or sourcing of this file, a new deactivation script will be
generated, capturing the current environment, so the environment can be restored when desired. The file will be
named also following the current active configuration, like deactivate_conanbuildenv-release-x86_64.
bat.

• conanbuild.(bat|ps1|sh): Accumulates the calls to one or more other scripts, in case there are multiple tools
in the generate process that create files, to give one single convenient file for all. This only calls the latest
specific configuration one, that is, if conan install is called first for Release build type, and then for Debug,
conanbuild.(bat|ps1|sh) script will call the Debug one.

• deactivate_conanbuild.(bat|ps1|sh): Accumulates the deactivation calls defined in the above conanbuild.
(bat|ps1|sh). This file should only be called after the accumulated activate has been called first.

8.4. Recipe tools 487

Conan Documentation, Release 2.1.0

Note: To create .ps1 files required for Powershell it is necessary to set to True the following conf: tools.env.
virtualenv:powershell.

Reference

class VirtualBuildEnv(conanfile, auto_generate=False)
Calculates the environment variables of the build time context and produces a conanbuildenv .bat or .sh script

environment()

Returns an Environment object containing the environment variables of the build context.

Returns
an Environment object instance containing the obtained variables.

vars(scope='build')

Parameters
scope – Scope to be used.

Returns
An EnvVars instance containing the computed environment variables.

generate(scope='build')
Produces the launcher scripts activating the variables for the build context.

Parameters
scope – Scope to be used.

VirtualRunEnv

VirtualRunEnv is a generator that produces a launcher conanrunenv .bat, .ps1 or .sh script containing environment
variables of the run time environment.

The launcher contains the runtime environment information, anything that is necessary in the environment to actually
run the compiled executables and applications. The information is obtained from:

• The self.runenv_info of the dependencies corresponding to the host context.

• Also automatically deduced from the self.cpp_info definition of the package to define PATH.

• LD_LIBRARY_PATH, DYLD_LIBRARY_PATH, and DYLD_FRAMEWORK_PATH are similarly deduced on non-
Windows hosts if the os setting is set.

It can be used by name in conanfiles:

Listing 42: conanfile.py

class Pkg(ConanFile):
generators = "VirtualRunEnv"

Listing 43: conanfile.txt

[generators]
VirtualRunEnv

And it can also be fully instantiated in the conanfile generate() method:

488 Chapter 8. Reference

Conan Documentation, Release 2.1.0

Listing 44: conanfile.py

from conan import ConanFile
from conan.tools.env import VirtualRunEnv

class Pkg(ConanFile):
settings = "os", "compiler", "arch", "build_type"
requires = "zlib/1.2.11", "bzip2/1.0.8"

def generate(self):
ms = VirtualRunEnv(self)
ms.generate()

Generated files

• conanrunenv-release-x86_64.(bat|ps1|sh): This file contains the actual definition of environment variables like
PATH, LD_LIBRARY_PATH, etc, and runenv_info of dependencies corresponding to the host context, and
to the current installed configuration. If a repeated call is done with other settings, a different file will be created.

• conanrun.(bat|ps1|sh): Accumulates the calls to one or more other scripts to give one single convenient file for
all. This only calls the latest specific configuration one, that is, if conan install is called first for Release
build type, and then for Debug, conanrun.(bat|ps1|sh) script will call the Debug one.

After the execution of one of those files, a new deactivation script will be generated, capturing the current environment,
so the environment can be restored when desired. The file will be named also following the current active configuration,
like deactivate_conanrunenv-release-x86_64.bat.

Note: To create .ps1 files required for Powershell it is necessary to set to True the following conf: tools.env.
virtualenv:powershell.

Reference

class VirtualRunEnv(conanfile, auto_generate=False)
Calculates the environment variables of the runtime context and produces a conanrunenv .bat or .sh script

Parameters
conanfile – The current recipe object. Always use self.

environment()

Returns an Environment object containing the environment variables of the run context.

Returns
an Environment object instance containing the obtained variables.

vars(scope='run')

Parameters
scope – Scope to be used.

Returns
An EnvVars instance containing the computed environment variables.

8.4. Recipe tools 489

Conan Documentation, Release 2.1.0

generate(scope='run')
Produces the launcher scripts activating the variables for the run context.

Parameters
scope – Scope to be used.

8.4.7 conan.tools.files

conan.tools.files basic operations

conan.tools.files.copy()

copy(conanfile, pattern, src, dst, keep_path=True, excludes=None, ignore_case=True)
Copy the files matching the pattern (fnmatch) at the src folder to a dst folder.

Parameters
• conanfile – The current recipe object. Always use self.

• pattern – (Required) An fnmatch file pattern of the files that should be copied. It must not
start with .. relative path or an exception will be raised.

• src – (Required) Source folder in which those files will be searched. This folder will be
stripped from the dst parameter. E.g., lib/Debug/x86.

• dst – (Required) Destination local folder. It must be different from src value or an exception
will be raised.

• keep_path – (Optional, defaulted to True) Means if you want to keep the relative path when
you copy the files from the src folder to the dst one.

• excludes – (Optional, defaulted to None) A tuple/list of fnmatch patterns or even a single
one to be excluded from the copy.

• ignore_case – (Optional, defaulted to True) If enabled, it will do a case-insensitive pattern
matching. will do a case-insensitive pattern matching when True

Returns
list of copied files

Usage:

def package(self):
copy(self, "*.h", self.source_folder, os.path.join(self.package_folder, "include"))
copy(self, "*.lib", self.build_folder, os.path.join(self.package_folder, "lib"))

Note: The files that are symlinks to files or symlinks to folders with be treated like any other file, so they will only
be copied if the specified pattern matches with the file.

At the destination folder, the symlinks will be created pointing to the exact same file or folder, absolute or relative,
being the responsibility of the user to manipulate the symlink to, for example, transform the symlink into a relative
path before copying it so it points to the destination folder.

Check here the reference of tools to manage symlinks.

490 Chapter 8. Reference

Conan Documentation, Release 2.1.0

conan.tools.files.load()

load(conanfile, path, encoding='utf-8')
Utility function to load files in one line. It will manage the open and close of the file, and load binary encodings.
Returns the content of the file.

Parameters
• conanfile – The current recipe object. Always use self.

• path – Path to the file to read

• encoding – (Optional, Defaulted to utf-8): Specifies the input file text encoding.

Returns
The contents of the file

Usage:

from conan.tools.files import load

content = load(self, "myfile.txt")

conan.tools.files.save()

save(conanfile, path, content, append=False, encoding='utf-8')
Utility function to save files in one line. It will manage the open and close of the file and creating directories if
necessary.

Parameters
• conanfile – The current recipe object. Always use self.

• path – Path of the file to be created.

• content – Content (str or bytes) to be write to the file.

• append – (Optional, Defaulted to False): If True the contents will be appended to the exist-
ing one.

• encoding – (Optional, Defaulted to utf-8): Specifies the output file text encoding.

Usage:

from conan.tools.files import save

save(self, "path/to/otherfile.txt", "contents of the file")

8.4. Recipe tools 491

Conan Documentation, Release 2.1.0

conan.tools.files.rename()

rename(conanfile, src, dst)
Utility functions to rename a file or folder src to dst with retrying. os.rename() frequently raises “Access is
denied” exception on Windows. This function renames file or folder using robocopy to avoid the exception on
Windows.

Parameters
• conanfile – The current recipe object. Always use self.

• src – Path to be renamed.

• dst – Path to be renamed to.

Usage:

from conan.tools.files import rename

def source(self):
rename(self, "lib-sources-abe2h9fe", "sources") # renaming a folder

conan.tools.files.replace_in_file()

replace_in_file(conanfile, file_path, search, replace, strict=True, encoding='utf-8')
Replace a string search in the contents of the file file_path with the string replace.

Parameters
• conanfile – The current recipe object. Always use self.

• file_path – File path of the file to perform the replacing.

• search – String you want to be replaced.

• replace – String to replace the searched string.

• strict – (Optional, Defaulted to True) If True, it raises an error if the searched string is
not found, so nothing is actually replaced.

• encoding – (Optional, Defaulted to utf-8): Specifies the input and output files text encoding.

Usage:

from conan.tools.files import replace_in_file

replace_in_file(self, os.path.join(self.source_folder, "folder", "file.txt"), "foo", "bar
→˓")

492 Chapter 8. Reference

Conan Documentation, Release 2.1.0

conan.tools.files.rm()

rm(conanfile, pattern, folder, recursive=False)
Utility functions to remove files matching a pattern in a folder.

Parameters
• conanfile – The current recipe object. Always use self.

• pattern – Pattern that the files to be removed have to match (fnmatch).

• folder – Folder to search/remove the files.

• recursive – If recursive is specified it will search in the subfolders.

Usage:

from conan.tools.files import rm

rm(self, "*.tmp", self.build_folder, recursive=True)

conan.tools.files.mkdir()

mkdir(conanfile, path)
Utility functions to create a directory. The existence of the specified directory is checked, so mkdir() will do
nothing if the directory already exists.

Parameters
• conanfile – The current recipe object. Always use self.

• path – Path to the folder to be created.

Usage:

from conan.tools.files import mkdir

mkdir(self, "mydir") # Creates mydir if it does not already exist
mkdir(self, "mydir") # Does nothing

conan.tools.files.rmdir()

rmdir(conanfile, path)

Usage:

from conan.tools.files import rmdir

rmdir(self, "mydir") # Remove mydir if it exist
rmdir(self, "mydir") # Does nothing

8.4. Recipe tools 493

Conan Documentation, Release 2.1.0

conan.tools.files.chdir()

chdir(conanfile, newdir)
This is a context manager that allows to temporary change the current directory in your conanfile

Parameters
• conanfile – The current recipe object. Always use self.

• newdir – Directory path name to change the current directory.

Usage:

from conan.tools.files import chdir

def build(self):
with chdir(self, "./subdir"):

do_something()

conan.tools.files.unzip()

This function extract different compressed formats (.tar.gz, .tar, .tzb2, .tar.bz2, .tgz, .txz, tar.xz, and
.zip) into the given destination folder.

It also accepts gzipped files, with extension .gz (not matching any of the above), and it will unzip them into a file with
the same name but without the extension, or to a filename defined by the destination argument.

from conan.tools.files import unzip

unzip(self, "myfile.zip")
or to extract in "myfolder" sub-folder
unzip(self, "myfile.zip", "myfolder")

You can keep the permissions of the files using the keep_permissions=True parameter.

from conan.tools.files import unzip

unzip(self, "myfile.zip", "myfolder", keep_permissions=True)

Use the pattern argument if you want to filter specific files and paths to decompress from the archive.

from conan.tools.files import unzip

Extract only files inside relative folder "small"
unzip(self, "bigfile.zip", pattern="small/*")
Extract only txt files
unzip(self, "bigfile.zip", pattern="*.txt")

unzip(conanfile, filename, destination='.', keep_permissions=False, pattern=None, strip_root=False)
Extract different compressed formats

Parameters
• conanfile – The current recipe object. Always use self.

• filename – Path to the compressed file.

494 Chapter 8. Reference

Conan Documentation, Release 2.1.0

• destination – (Optional, Defaulted to .) Destination folder (or file for .gz files)

• keep_permissions – (Optional, Defaulted to False) Keep the zip permissions. WARN-
ING: Can be dangerous if the zip was not created in a NIX system, the bits could produce
undefined permission schema. Use this option only if you are sure that the zip was created
correctly.

• pattern – (Optional, Defaulted to None) Extract only paths matching the pattern. This
should be a Unix shell-style wildcard, see fnmatch documentation for more details.

• strip_root – (Optional, Defaulted to False) If True, and all the unzipped contents are in a
single folder it will flat the folder moving all the contents to the parent folder.

conan.tools.files.update_conandata()

This function reads the conandata.yml inside the exported folder in the conan cache, if it exists. If the conandata.
yml does not exist, it will create it. Then, it updates the conandata dictionary with the provided data one, which is
updated recursively, prioritizing the data values, but keeping other existing ones. Finally the conandata.yml is saved
in the same place.

This helper can only be used within the export() method, it can raise otherwise. One application is to capture in the
conandata.yml the scm coordinates (like Git remote url and commit), to be able to recover it later in the source()
method and have reproducible recipes that can build from sources without actually storing the sources in the recipe.

update_conandata(conanfile, data)
Tool to modify the conandata.yml once it is exported. It can be used, for example:

• To add additional data like the “commit” and “url” for the scm.

• To modify the contents cleaning the data that belong to other versions (different from the exported) to avoid
changing the recipe revision when the changed data doesn’t belong to the current version.

Parameters
• conanfile – The current recipe object. Always use self.

• data – (Required) A dictionary (can be nested), of values to update

conan.tools.files.trim_conandata()

trim_conandata(conanfile)
Tool to modify the conandata.yml once it is exported, to limit it to the current version only

Warning: The conan.tools.files.trim_conandata() function is in preview. See the Conan stability sec-
tion for more information.

This function modifies the conandata.yml inside the exported folder in the conan cache, if it exists, and keeps only
the information related to the currently built version.

This helper can only be used within the export() method, it can raise otherwise. One application is to ensure changes
in the conandata.yml file related to some versions do not affect the generated recipe revisions of the rest.

Usage:

8.4. Recipe tools 495

Conan Documentation, Release 2.1.0

from conan import ConanFile
from conan.tools.files import trim_conandata

class Pkg(ConanFile):
name = "pkg"

def export(self):
any change to other versions in the conandata.yml
won't affect the revision of the version that is built
trim_conandata(self)

conan.tools.files.collect_libs()

collect_libs(conanfile, folder=None)
Returns a sorted list of library names from the libraries (files with extensions .so, .lib, .a and .dylib) located inside
the conanfile.cpp_info.libdirs (by default) or the folder directory relative to the package folder. Useful
to collect not inter-dependent libraries or with complex names like libmylib-x86-debug-en.lib.

For UNIX libraries staring with lib, like libmath.a, this tool will collect the library name math.

Parameters
• conanfile – The current recipe object. Always use self.

• folder – (Optional, Defaulted to None): String indicating the subfolder name inside
conanfile.package_folder where the library files are.

Returns
A list with the library names

Warning: This tool collects the libraries searching directly inside the package folder and returns them in no
specific order. If libraries are inter-dependent, then package_info() method should order them to achieve correct
linking order.

Usage:

from conan.tools.files import collect_libs

def package_info(self):
self.cpp_info.libdirs = ["lib", "other_libdir"] # Default value is 'lib'
self.cpp_info.libs = collect_libs(self)

For UNIX libraries starting with lib, like libmath.a, this tool will collect the library name math. Regarding symlinks,
this tool will keep only the “most generic” file among the resolved real file and all symlinks pointing to this real file.
For example among files below, this tool will select libmath.dylib file and therefore only append math in the returned
list:

-rwxr-xr-x libmath.1.0.0.dylib lrwxr-xr-x libmath.1.dylib -> libmath.1.0.0.dylib
lrwxr-xr-x libmath.dylib -> libmath.1.dylib

496 Chapter 8. Reference

Conan Documentation, Release 2.1.0

conan.tools.files downloads

conan.tools.files.get()

get(conanfile, url, md5=None, sha1=None, sha256=None, destination='.', filename='', keep_permissions=False,
pattern=None, verify=True, retry=None, retry_wait=None, auth=None, headers=None, strip_root=False)
High level download and decompressing of a tgz, zip or other compressed format file. Just a high level wrapper
for download, unzip, and remove the temporary zip file once unzipped. You can pass hash checking parameters:
md5, sha1, sha256. All the specified algorithms will be checked. If any of them doesn’t match, it will raise a
ConanException.

Parameters
• conanfile – The current recipe object. Always use self.

• destination – (Optional defaulted to .) Destination folder

• filename – (Optional defaulted to ‘’) If provided, the saved file will have the specified name,
otherwise it is deduced from the URL

• url – forwarded to tools.file.download().

• md5 – forwarded to tools.file.download().

• sha1 – forwarded to tools.file.download().

• sha256 – forwarded to tools.file.download().

• keep_permissions – forwarded to tools.file.unzip().

• pattern – forwarded to tools.file.unzip().

• verify – forwarded to tools.file.download().

• retry – forwarded to tools.file.download().

• retry_wait – S forwarded to tools.file.download().

• auth – forwarded to tools.file.download().

• headers – forwarded to tools.file.download().

• strip_root – forwarded to tools.file.unzip().

conan.tools.files.ftp_download()

ftp_download(conanfile, host, filename, login='', password='', secure=False)
Ftp download of a file. Retrieves a file from an FTP server.

Parameters
• conanfile – The current recipe object. Always use self.

• host – IP or host of the FTP server.

• filename – Path to the file to be downloaded.

• login – Authentication login.

• password – Authentication password.

• secure – Set to True to use FTP over TLS/SSL (FTPS). Defaults to False for regular FTP.

Usage:

8.4. Recipe tools 497

Conan Documentation, Release 2.1.0

from conan.tools.files import ftp_download

def source(self):
ftp_download(self, 'ftp.debian.org', "debian/README")
self.output.info(load("README"))

conan.tools.files.download()

download(conanfile, url, filename, verify=True, retry=None, retry_wait=None, auth=None, headers=None,
md5=None, sha1=None, sha256=None)

Retrieves a file from a given URL into a file with a given filename. It uses certificates from a list of known
verifiers for https downloads, but this can be optionally disabled.

You can pass hash checking parameters: md5, sha1, sha256. All the specified algorithms will be checked. If
any of them doesn’t match, the downloaded file will be removed and it will raise a ConanException.

Parameters
• conanfile – The current recipe object. Always use self.

• url – URL to download. It can be a list, which only the first one will be downloaded, and the
follow URLs will be used as mirror in case of download error. Files accessible in the local
filesystem can be referenced with a URL starting with file:/// followed by an absolute
path to a file (where the third / implies localhost).

• filename – Name of the file to be created in the local storage

• verify – When False, disables https certificate validation

• retry – Number of retries in case of failure. Default is overridden by
“tools.files.download:retry” conf

• retry_wait – Seconds to wait between download attempts. Default is overriden by
“tools.files.download:retry_wait” conf.

• auth – A tuple of user and password to use HTTPBasic authentication

• headers – A dictionary with additional headers

• md5 – MD5 hash code to check the downloaded file

• sha1 – SHA-1 hash code to check the downloaded file

• sha256 – SHA-256 hash code to check the downloaded file

Usage:

download(self, "http://someurl/somefile.zip", "myfilename.zip")

to disable verification:
download(self, "http://someurl/somefile.zip", "myfilename.zip", verify=False)

to retry the download 2 times waiting 5 seconds between them
download(self, "http://someurl/somefile.zip", "myfilename.zip", retry=2, retry_wait=5)

Use https basic authentication
download(self, "http://someurl/somefile.zip", "myfilename.zip", auth=("user", "password
→˓"))

(continues on next page)

498 Chapter 8. Reference

Conan Documentation, Release 2.1.0

(continued from previous page)

Pass some header
download(self, "http://someurl/somefile.zip", "myfilename.zip", headers={"Myheader": "My␣
→˓value"})

Download and check file checksum
download(self, "http://someurl/somefile.zip", "myfilename.zip", md5=
→˓"e5d695597e9fa520209d1b41edad2a27")

to add mirrors
download(self, ["https://ftp.gnu.org/gnu/gcc/gcc-9.3.0/gcc-9.3.0.tar.gz",

"http://mirror.linux-ia64.org/gnu/gcc/releases/gcc-9.3.0/gcc-9.3.0.tar.gz
→˓"],

"gcc-9.3.0.tar.gz",
sha256="5258a9b6afe9463c2e56b9e8355b1a4bee125ca828b8078f910303bc2ef91fa6")

conf

It uses these configuration entries:

• tools.files.download:retry: number of retries in case some error occurs.

• tools.files.download:retry_wait: seconds to wait between retries.

conan.tools.files patches

conan.tools.files.patch()

patch(conanfile, base_path=None, patch_file=None, patch_string=None, strip=0, fuzz=False, **kwargs)
Applies a diff from file (patch_file) or string (patch_string) in the conanfile.source_folder directory. The folder
containing the sources can be customized with the self.folders attribute in the layout(self) method.

Parameters
• conanfile – the current recipe, always pass ‘self’

• base_path – The path is a relative path to conanfile.export_sources_folder unless an abso-
lute path is provided.

• patch_file – Patch file that should be applied. The path is relative to the conan-
file.source_folder unless an absolute path is provided.

• patch_string – Patch string that should be applied.

• strip – Number of folders to be stripped from the path.

• fuzz – Should accept fuzzy patches.

• kwargs – Extra parameters that can be added and will contribute to output information

Usage:

from conan.tools.files import patch

def build(self):
(continues on next page)

8.4. Recipe tools 499

Conan Documentation, Release 2.1.0

(continued from previous page)

for it in self.conan_data.get("patches", {}).get(self.version, []):
patch(self, **it)

conan.tools.files.apply_conandata_patches()

apply_conandata_patches(conanfile)
Applies patches stored in conanfile.conan_data (read from conandata.yml file). It will apply all the
patches under patches entry that matches the given conanfile.version. If versions are not defined in
conandata.yml it will apply all the patches directly under patches keyword.

The key entries will be passed as kwargs to the patch function.

Usage:

from conan.tools.files import apply_conandata_patches

def build(self):
apply_conandata_patches(self)

Examples of conandata.yml:

patches:
- patch_file: "patches/0001-buildflatbuffers-cmake.patch"
- patch_file: "patches/0002-implicit-copy-constructor.patch"
base_path: "subfolder"
patch_type: backport
patch_source: https://github.com/google/flatbuffers/pull/5650
patch_description: Needed to build with modern clang compilers.

With different patches for different versions:

patches:
"1.11.0":
- patch_file: "patches/0001-buildflatbuffers-cmake.patch"
- patch_file: "patches/0002-implicit-copy-constructor.patch"
base_path: "subfolder"
patch_type: backport
patch_source: https://github.com/google/flatbuffers/pull/5650
patch_description: Needed to build with modern clang compilers.

"1.12.0":
- patch_file: "patches/0001-buildflatbuffers-cmake.patch"
- patch_string: |

--- a/tests/misc-test.c
+++ b/tests/misc-test.c
@@ -1232,6 +1292,8 @@ main (int argc, char **argv)

g_test_add_func ("/misc/pause-cancel", do_pause_cancel_test);
g_test_add_data_func ("/misc/stealing/async", GINT_TO_POINTER (FALSE), do_

→˓stealing_test);
g_test_add_data_func ("/misc/stealing/sync", GINT_TO_POINTER (TRUE), do_

→˓stealing_test);
+ g_test_add_func ("/misc/response/informational/content-length", do_

→˓response_informational_content_length_test);
(continues on next page)

500 Chapter 8. Reference

Conan Documentation, Release 2.1.0

(continued from previous page)

+

ret = g_test_run ();
- patch_file: "patches/0003-fix-content-length-calculation.patch"

For each patch, a patch_file, a patch_string or a patch_user field must be provided. The first two are automat-
ically applied by apply_conandata_patches(), while patch_user are ignored, and must be handled by the user
directly in the conanfile.py recipe.

conan.tools.files.export_conandata_patches()

export_conandata_patches(conanfile)
Exports patches stored in ‘conanfile.conan_data’ (read from ‘conandata.yml’ file). It will export all the patches
under ‘patches’ entry that matches the given ‘conanfile.version’. If versions are not defined in ‘conandata.yml’
it will export all the patches directly under ‘patches’ keyword.

Example of conandata.yml without versions defined:

from conan.tools.files import export_conandata_patches
def export_sources(self):

export_conandata_patches(self)

conan.tools.files checksums

conan.tools.files.check_md5()

check_md5(conanfile, file_path, signature)
Check that the specified md5sum of the file_path matches with signature. If doesn’t match it will raise a
ConanException.

Parameters
• conanfile – The current recipe object. Always use self.

• file_path – Path of the file to check.

• signature – Expected md5sum.

conan.tools.files.check_sha1()

check_sha1(conanfile, file_path, signature)
Check that the specified sha1 of the file_path matches with signature. If doesn’t match it will raise a
ConanException.

Parameters
• conanfile – Conanfile object.

• file_path – Path of the file to check.

• signature – Expected sha1sum

8.4. Recipe tools 501

Conan Documentation, Release 2.1.0

conan.tools.files.check_sha256()

check_sha256(conanfile, file_path, signature)
Check that the specified sha256 of the file_path matches with signature. If doesn’t match it will raise a
ConanException.

Parameters
• conanfile – Conanfile object.

• file_path – Path of the file to check.

• signature – Expected sha256sum

conan.tools.files.symlinks

conan.tools.files.symlinks.absolute_to_relative_symlinks()

absolute_to_relative_symlinks(conanfile, base_folder)
Convert the symlinks with absolute paths into relative ones if they are pointing to a file or directory inside the
base_folder. Any absolute symlink pointing outside the base_folder will be ignored.

Parameters
• conanfile – The current recipe object. Always use self.

• base_folder – Folder to be scanned.

conan.tools.files.symlinks.remove_external_symlinks()

remove_external_symlinks(conanfile, base_folder)
Remove the symlinks to files that point outside the base_folder, no matter if relative or absolute.

Parameters
• conanfile – The current recipe object. Always use self.

• base_folder – Folder to be scanned.

conan.tools.files.symlinks.remove_broken_symlinks()

remove_broken_symlinks(conanfile, base_folder=None)
Remove the broken symlinks, no matter if relative or absolute.

Parameters
• conanfile – The current recipe object. Always use self.

• base_folder – Folder to be scanned.

502 Chapter 8. Reference

Conan Documentation, Release 2.1.0

conan.tools.files AutoPackager

Warning: This feature is deprecated, and will be removed in future Conan 2.X version. It was used to automati-
cally deduce what to copy() in the package() method.

The recommended approach is to use explicit copy() calls in the package() method, as explained in the rest of
the documentation.

8.4.8 conan.tools.gnu

AutotoolsDeps

The AutotoolsDeps is the dependencies generator for Autotools. It will generate shell scripts containing environment
variable definitions that the autotools build system can understand.

It can be used by name in conanfiles:

Listing 45: conanfile.py

class Pkg(ConanFile):
generators = "AutotoolsDeps"

Listing 46: conanfile.txt

[generators]
AutotoolsDeps

And it can also be fully instantiated in the conanfile generate() method:

from conan import ConanFile
from conan.tools.gnu import AutotoolsDeps

class App(ConanFile):
settings = "os", "arch", "compiler", "build_type"

def generate(self):
tc = AutotoolsDeps(self)
tc.generate()

Generated files

It will generate the file conanautotoolsdeps.sh or conanautotoolsdeps.bat:

$ conan install conanfile.py # default is Release
$ source conanautotoolsdeps.sh
or in Windows
$ conanautotoolsdeps.bat

These launchers will define aggregated variables CPPFLAGS, LIBS, LDFLAGS, CXXFLAGS, CFLAGS that accumulate all
dependencies information, including transitive dependencies, with flags like -I<path>, -L<path>, etc.

At this moment, only the requires information is generated, the tool_requires one is not managed by this generator
yet.

8.4. Recipe tools 503

Conan Documentation, Release 2.1.0

Customization

To modify the computed values, you can access the .environment property that returns an Environment class.

from conan import ConanFile
from conan.tools.gnu import AutotoolsDeps

class App(ConanFile):
settings = "os", "arch", "compiler", "build_type"

def generate(self):
tc = AutotoolsDeps(self)
tc.environment.remove("CPPFLAGS", "undesired_value")
tc.environment.append("CPPFLAGS", "var")
tc.environment.define("OTHER", "cat")
tc.environment.unset("LDFLAGS")
tc.generate()

Reference

class AutotoolsDeps(conanfile)

property environment

Returns
An Environment object containing the computed variables. If you need to modify some of
the computed values you can access to the environment object.

AutotoolsToolchain

The AutotoolsToolchain is the toolchain generator for Autotools. It will generate shell scripts containing environ-
ment variable definitions that the autotools build system can understand.

This generator can be used by name in conanfiles:

Listing 47: conanfile.py

class Pkg(ConanFile):
generators = "AutotoolsToolchain"

Listing 48: conanfile.txt

[generators]
AutotoolsToolchain

And it can also be fully instantiated in the conanfile generate() method:

from conan import ConanFile
from conan.tools.gnu import AutotoolsToolchain

class App(ConanFile):
settings = "os", "arch", "compiler", "build_type"

(continues on next page)

504 Chapter 8. Reference

Conan Documentation, Release 2.1.0

(continued from previous page)

def generate(self):
tc = AutotoolsToolchain(self)
tc.generate()

Generated files

It will generate the file conanautotoolstoolchain.sh or conanautotoolstoolchain.bat files:

$ conan install conanfile.py # default is Release
$ source conanautotoolstoolchain.sh
or in Windows
$ conanautotoolstoolchain.bat

This launchers will append information to the CPPFLAGS, LDFLAGS, CXXFLAGS, CFLAGS environment variables that
translate the settings and options to the corresponding build flags like -stdlib=libstdc++, -std=gnu14, architecture
flags, etc. It will also append the folder where the Conan generators are located to the PKG_CONFIG_PATH environment
variable.

This generator will also generate a file called conanbuild.conf containing two keys:

• configure_args: Arguments to call the configure script.

• make_args: Arguments to call the make script.

• autoreconf_args: Arguments to call the autoreconf script.

The Autotools build helper will use that conanbuild.conf file to seamlessly call the configure and make script using
these precalculated arguments.

Customization

You can change some attributes before calling the generate()method if you want to change some of the precalculated
values:

from conan import ConanFile
from conan.tools.gnu import AutotoolsToolchain

class App(ConanFile):
settings = "os", "arch", "compiler", "build_type"

def generate(self):
tc = AutotoolsToolchain(self)
tc.configure_args.append("--my_argument")
tc.generate()

• configure_args: Additional arguments to be passed to the configure script.
– By default the following arguments are passed:

∗ --prefix: Takes / as default value.

∗ --bindir=${prefix}/bin

∗ --sbindir=${prefix}/bin

8.4. Recipe tools 505

Conan Documentation, Release 2.1.0

∗ --libdir=${prefix}/lib

∗ --includedir=${prefix}/include

∗ --oldincludedir=${prefix}/include

∗ --datarootdir=${prefix}/res

– Also if the shared option exists it will add by default:
∗ --enable-shared, --disable-static if shared==True

∗ --disable-shared, --enable-static if shared==False

• make_args (Defaulted to []): Additional arguments to be passed to he make script.

• autoreconf_args (Defaulted to ["--force", "--install"]): Additional arguments to be passed to he make
script.

• extra_defines (Defaulted to []): Additional defines.

• extra_cxxflags (Defaulted to []): Additional cxxflags.

• extra_cflags (Defaulted to []): Additional cflags.

• extra_ldflags (Defaulted to []): Additional ldflags.

• ndebug: “NDEBUG” if the settings.build_type != Debug.

• gcc_cxx11_abi: “_GLIBCXX_USE_CXX11_ABI” if gcc/libstdc++.

• libcxx: Flag calculated from settings.compiler.libcxx.

• fpic: True/False from options.fpic if defined.

• cppstd: Flag from settings.compiler.cppstd

• arch_flag: Flag from settings.arch

• build_type_flags: Flags from settings.build_type

• sysroot_flag: To pass the --sysroot flag to the compiler.

• apple_arch_flag: Only when cross-building with Apple systems. Flags from settings.arch.

• apple_isysroot_flag: Only when cross-building with Apple systems. Path to the root sdk.

• msvc_runtime_flag: Flag from settings.compiler.runtime_type when compiler is msvc or settings.
compiler.runtime when using the deprecated Visual Studio.

The following attributes are ready-only and will contain the calculated values for the current configuration and cus-
tomized attributes. Some recipes might need to read them to generate custom build files (not strictly Autotools) with
the configuration:

• defines
• cxxflags
• cflags
• ldflags

from conan import ConanFile
from conan.tools.gnu import AutotoolsToolchain

class App(ConanFile):
settings = "os", "arch", "compiler", "build_type"

(continues on next page)

506 Chapter 8. Reference

Conan Documentation, Release 2.1.0

(continued from previous page)

def generate(self):
tc = AutotoolsToolchain(self)
Customize the flags
tc.extra_cxxflags = ["MyFlag"]
Read the computed flags and use them (write custom files etc)
tc.defines
tc.cxxflags
tc.cflags
tc.ldflags

If you want to change the default values for configure_args, adjust the cpp.package object at the layout()
method:

def layout(self):
...
For bindir and sbindir takes the first value:
self.cpp.package.bindirs = ["mybin"]
For libdir takes the first value:
self.cpp.package.libdirs = ["mylib"]
For includedir and oldincludedir takes the first value:
self.cpp.package.includedirs = ["myinclude"]
For datarootdir takes the first value:
self.cpp.package.resdirs = ["myres"]

Note: It is not valid to change the self.cpp_info at the package_info() method.

Customizing the environment

If your Makefile or configure scripts need some other environment variable rather than CPPFLAGS, LDFLAGS,
CXXFLAGS or CFLAGS, you can customize it before calling the generate() method. Call the environment() method
to calculate the mentioned variables and then add the variables that you need. The environment() method returns an
Environment object:

from conan import ConanFile
from conan.tools.gnu import AutotoolsToolchain

class App(ConanFile):
settings = "os", "arch", "compiler", "build_type"

def generate(self):
at = AutotoolsToolchain(self)
env = at.environment()
env.define("FOO", "BAR")
at.generate(env)

The AutotoolsToolchain also sets CXXFLAGS, CFLAGS, LDFLAGS and CPPFLAGS reading variables from the [conf]
section in the profiles. See the conf reference below.

8.4. Recipe tools 507

Conan Documentation, Release 2.1.0

Managing the configure_args, make_args and autoreconf_args attributes

AutotoolsToolchain provides some help methods so users can add/update/remove values defined in
configure_args, make_args and autoreconf_args (all of them lists of strings). Those methods are:

• update_configure_args(updated_flags): will change AutotoolsToolchain.configure_args.

• update_make_args(updated_flags): will change AutotoolsToolchain.make_args.

• update_autoreconf_args(updated_flags): will change AutotoolsToolchain.autoreconf_args.

Where updated_flags is a dict-like Python object defining all the flags to change. It follows the next rules:

• Key-value are the flags names and their values, e.g., {"--enable-tools": no} will be translated as
--enable-tools=no.

• If that key has no value, then it will be an empty string, e.g., {"--disable-verbose": ""} will be translated
as --disable-verbose.

• If the key value is None, it means that you want to remove that flag from the xxxxxx_args (notice that it could
be configure_args, make_args or autoreconf_args), e.g., {"--force": None} will remove that flag
from the final result.

In a nutshell, you will:

• Add arguments: if the given flag in updated_flags does not already exist in xxxxxx_args.

• Update arguments: if the given flag in updated_flags already exists in attribute xxxxxx_args.

• Remove arguments: if the given flag in updated_flags already exists in xxxxxx_args and it’s passed with
None as value.

For instance:

from conan import ConanFile
from conan.tools.gnu import AutotoolsToolchain

class App(ConanFile):
settings = "os", "arch", "compiler", "build_type"

def generate(self):
at = AutotoolsToolchain(self)
at.update_configure_args({

"--new-super-flag": "", # add new flag '--new-super-flag'
"--host": "my-gnu-triplet", # update flag '--host=my-gnu-triplet'
"--force": None # remove existing '--force' flag

})
at.generate()

508 Chapter 8. Reference

Conan Documentation, Release 2.1.0

Reference

class AutotoolsToolchain(conanfile, namespace=None, prefix='/')

Parameters
• conanfile – The current recipe object. Always use self.

• namespace – This argument avoids collisions when you have multiple toolchain calls in the
same recipe. By setting this argument, the conanbuild.conf file used to pass information to
the build helper will be named as <namespace>_conanbuild.conf. The default value is None
meaning that the name of the generated file is conanbuild.conf. This namespace must be also
set with the same value in the constructor of the Autotools build helper so that it reads the
information from the proper file.

• prefix – Folder to use for --prefix argument (“/” by default).

update_configure_args(updated_flags)
Helper to update/prune flags from self.configure_args.

Parameters
updated_flags – dict with arguments as keys and their argument values. Notice that if
argument value is None, this one will be pruned.

update_make_args(updated_flags)
Helper to update/prune arguments from self.make_args.

Parameters
updated_flags – dict with arguments as keys and their argument values. Notice that if
argument value is None, this one will be pruned.

update_autoreconf_args(updated_flags)
Helper to update/prune arguments from self.autoreconf_args.

Parameters
updated_flags – dict with arguments as keys and their argument values. Notice that if
argument value is None, this one will be pruned.

conf

• tools.build:cxxflags list of extra C++ flags that will be used by CXXFLAGS.

• tools.build:cflags list of extra of pure C flags that will be used by CFLAGS.

• tools.build:sharedlinkflags list of extra linker flags that will be used by LDFLAGS.

• tools.build:exelinkflags list of extra linker flags that will be used by LDFLAGS.

• tools.build:defines list of preprocessor definitions that will be used by CPPFLAGS.

• tools.build:linker_scripts list of linker scripts, each of which will be prefixed with -T and added to
LDFLAGS. Only use this flag with linkers that supports specifying linker scripts with the -T flag, such as ld,
gold, and lld.

• tools.build:sysroot defines the --sysroot flag to the compiler.

• tools.build:compiler_executables dict-like Python object which specifies the compiler as key and the
compiler executable path as value. Those keys will be mapped as follows:

– c: will set CC in conanautotoolstoolchain.sh|bat script.

8.4. Recipe tools 509

Conan Documentation, Release 2.1.0

– cpp: will set CXX in conanautotoolstoolchain.sh|bat script.

– cuda: will set NVCC in conanautotoolstoolchain.sh|bat script.

– fortran: will set FC in conanautotoolstoolchain.sh|bat script.

Note: flags order of preference: Flags specified in the tools.build configuration, such as cxxflags, cflags, sharedlink-
flags, exelinkflags, and defines, will always take precedence over those set by the AutotoolsToolchain attributes.

Autotools

The Autotools build helper is a wrapper around the command line invocation of autotools. It will abstract the calls
like ./configure or make into Python method calls.

Usage:

from conan import ConanFile
from conan.tools.gnu import Autotools

class App(ConanFile):
settings = "os", "arch", "compiler", "build_type"

def build(self):
autotools = Autotools(self)
autotools.configure()
autotools.make()

It will read the conanbuild.conf file generated by the AutotoolsToolchain to know read the arguments for calling the
configure and make scripts:

• configure_args: Arguments to call the configure script.

• make_args: Arguments to call the make script.

Reference

class Autotools(conanfile, namespace=None)

Parameters
• conanfile – The current recipe object. Always use self.

• namespace – this argument avoids collisions when you have multiple toolchain calls in the
same recipe. By setting this argument, the conanbuild.conf file used to pass information to
the toolchain will be named as: <namespace>_conanbuild.conf. The default value is None
meaning that the name of the generated file is conanbuild.conf. This namespace must be
also set with the same value in the constructor of the AutotoolsToolchain so that it reads the
information from the proper file.

configure(build_script_folder=None, args=None)
Call the configure script.

Parameters
• args – List of arguments to use for the configure call.

510 Chapter 8. Reference

Conan Documentation, Release 2.1.0

• build_script_folder – Subfolder where the configure script is located. If not specified
conanfile.source_folder is used.

make(target=None, args=None)
Call the make program.

Parameters
• target – (Optional, Defaulted to None): Choose which target to build. This allows build-

ing of e.g., docs, shared libraries or install for some AutoTools projects

• args – (Optional, Defaulted to None): List of arguments to use for the make call.

install(args=None, target='install')
This is just an “alias” of self.make(target="install")

Parameters
• args – (Optional, Defaulted to None): List of arguments to use for the make call. By default

an argument DESTDIR=unix_path(self.package_folder) is added to the call if the
passed value is None. See more information about tools.microsoft.unix_path() function

• target – (Optional, Defaulted to None): Choose which target to install.

autoreconf(build_script_folder=None, args=None)
Call autoreconf

Parameters
• args – (Optional, Defaulted to None): List of arguments to use for the autoreconf call.

• build_script_folder – Subfolder where the configure script is located. If not specified
conanfile.source_folder is used.

A note about relocatable shared libraries in macOS built the Autotools build helper

When building a shared library with Autotools in macOS a section LC_ID_DYLIB and another LC_LOAD_DYLIB are
added to the .dylib. These sections store install_name information, which is the location of the folder where
the library or its dependencies are installed. You can check the install_name of your shared libraries using the otool
command:

$ otool -l path/to/libMyLib.dylib
...
cmd LC_ID_DYLIB

cmdsize 48
name path/to/libMyLib.dylib (offset 24)

time stamp 1 Thu Jan 1 01:00:01 1970
current version 1.0.0

compatibility version 1.0.0
...
Load command 11

cmd LC_LOAD_DYLIB
cmdsize 48

name path/to/dependency.dylib (offset 24)
time stamp 2 Thu Jan 1 01:00:02 1970

current version 1.0.0
compatibility version 1.0.0
...

8.4. Recipe tools 511

Conan Documentation, Release 2.1.0

Why is this a problem when using Conan?

When using Conan the library will be built in the local cache and this means that this location will point to Conan’s
local cache folder where the library was installed. This location is where the library tells any other binaries using it
where to load it at runtime. This is a problem since you can build the shared library in one machine, then upload it
to a server and install it in another machine to use it. In this case, as Autotools behaves by default, you would have
a library storing an install_name pointing to a folder that does not exist in your current machine so you would get
linker errors when building.

How to address this problem in Conan

The only thing Conan can do to make these shared libraries relocatable is to patch the built binaries after installa-
tion. To do this, when using the Autotools build helper and after running the Makefile’s install() step, you
can use the fix_apple_shared_install_name() tool to search for the built .dylib files and patch them by running the
install_name_tool macOS utility, like this:

from conan.tools.apple import fix_apple_shared_install_name
class HelloConan(ConanFile):
...
def package(self):

autotools = Autotools(self)
autotools.install()
fix_apple_shared_install_name(self)

This will change the value of the LC_ID_DYLIB and LC_LOAD_DYLIB sections in the .dylib file to:

$ otool -l path/to/libMyLib.dylib
...
cmd LC_ID_DYLIB

cmdsize 48
name @rpath/libMyLib.dylib (offset 24)

time stamp 1 Thu Jan 1 01:00:01 1970
current version 1.0.0

compatibility version 1.0.0
...
Load command 11

cmd LC_LOAD_DYLIB
cmdsize 48

name @rpath/dependency.dylib (offset 24)
time stamp 2 Thu Jan 1 01:00:02 1970

current version 1.0.0
compatibility version 1.0.0

The @rpath special keyword will tell the loader to search a list of paths to find the library. These paths can be defined by
the consumer of that library by defining the LC_RPATH field. This is done by passing the -Wl,-rpath -Wl,/path/
to/libMyLib.dylib linker flag when building the consumer of the library. Then if Conan builds an executable
that consumes the libMyLib.dylib library, it will automatically add the -Wl,-rpath -Wl,/path/to/libMyLib.
dylib flag so that the library is correctly found when building.

512 Chapter 8. Reference

Conan Documentation, Release 2.1.0

MakeDeps

Warning: This feature is experimental and subject to breaking changes. See the Conan stability section for more
information.

MakeDeps is the dependencies generator for make. It generates a Makefile file named conandeps.mk containing a
valid make file syntax with all dependencies listed, including their components.

This generator can be used by name in conanfiles:

Listing 49: conanfile.py

class Pkg(ConanFile):
generators = "MakeDeps"

Listing 50: conanfile.txt

[generators]
MakeDeps

And it can also be fully instantiated in the conanfile generate() method:

from conan import ConanFile
from conan.tools.gnu import MakeDeps

class App(ConanFile):
settings = "os", "arch", "compiler", "build_type"
requires = "zlib/1.2.13"

def generate(self):
pc = MakeDeps(self)
pc.generate()

Generated files

make format file named conandeps.mk, containing a valid makefile file syntax. The prefix variable is automatically
adjusted to the package_folder:

CONAN_DEPS = zlib

zlib/1.2.13
CONAN_NAME_ZLIB = zlib
CONAN_VERSION_ZLIB = 1.2.13
CONAN_REFERENCE_ZLIB = zlib/1.2.13
CONAN_ROOT_ZLIB = /home/conan/.conan2/p/b/zlib273508b343e8c/p
CONAN_INCLUDE_DIRS_ZLIB = $(CONAN_INCLUDE_DIR_FLAG)$(CONAN_ROOT_ZLIB)/include
CONAN_LIB_DIRS_ZLIB = $(CONAN_LIB_DIR_FLAG)$(CONAN_ROOT_ZLIB)/lib
CONAN_BIN_DIRS_ZLIB = $(CONAN_BIN_DIR_FLAG)$(CONAN_ROOT_ZLIB)/bin
CONAN_LIBS_ZLIB = $(CONAN_LIB_FLAG)z

CONAN_INCLUDE_DIRS = $(CONAN_INCLUDE_DIRS_ZLIB)
(continues on next page)

8.4. Recipe tools 513

Conan Documentation, Release 2.1.0

(continued from previous page)

CONAN_LIB_DIRS = $(CONAN_LIB_DIRS_ZLIB)
CONAN_BIN_DIRS = $(CONAN_BIN_DIRS_ZLIB)
CONAN_LIBS = $(CONAN_LIBS_ZLIB)

Customization

Flags

By default, the conandeps.mk will contain all dependencies listed, including their cpp_info information, but will
not pass any flags to the compiler.

Thus, the consumer should pass the following flags to the compiler:

• CONAN_LIB_FLAG: Add a prefix to all libs variables, e.g. -l

• CONAN_DEFINE_FLAG: Add a prefix to all defines variables, e.g. -D

• CONAN_SYSTEM_LIB_FLAG: Add a prefix to all system_libs variables, e.g. -l

• CONAN_INCLUDE_DIR_FLAG: Add a prefix to all include dirs variables, e.g. -I

• CONAN_LIB_DIR_FLAG: Add a prefix to all lib dirs variables, e.g. -L

• CONAN_BIN_DIR_FLAG: Add a prefix to all bin dirs variables, e.g. -L

Those flags should be appended as prefixes to flags variables. For example, if the CONAN_LIB_FLAG is set to -l, the
CONAN_LIBS variable will be set to -lz.

Reference

class MakeDeps(conanfile)
Generates a Makefile with the variables needed to build a project with the specified.

Parameters
conanfile – < ConanFile object > The current recipe object. Always use self.

generate()→ None
Collects all dependencies and components, then, generating a Makefile

PkgConfigDeps

The PkgConfigDeps is the dependencies generator for pkg-config. Generates pkg-config files named <PKG-NAME>.pc
containing a valid pkg-config file syntax.

This generator can be used by name in conanfiles:

Listing 51: conanfile.py

class Pkg(ConanFile):
generators = "PkgConfigDeps"

514 Chapter 8. Reference

Conan Documentation, Release 2.1.0

Listing 52: conanfile.txt

[generators]
PkgConfigDeps

And it can also be fully instantiated in the conanfile generate() method:

from conan import ConanFile
from conan.tools.gnu import PkgConfigDeps

class App(ConanFile):
settings = "os", "arch", "compiler", "build_type"
requires = "zlib/1.2.11"

def generate(self):
pc = PkgConfigDeps(self)
pc.generate()

Generated files

pkg-config format files named <PKG-NAME>.pc, containing a valid pkg-config file syntax. The prefix variable is
automatically adjusted to the package_folder:

prefix=/Users/YOUR_USER/.conan/data/zlib/1.2.11/_/_/package/
→˓647afeb69d3b0a2d3d316e80b24d38c714cc6900
libdir=${prefix}/lib
includedir=${prefix}/include
bindir=${prefix}/bin

Name: zlib
Description: Conan package: zlib
Version: 1.2.11
Libs: -L"${libdir}" -lz -F Frameworks
Cflags: -I"${includedir}"

Customization

Naming

By default, the *.pc files will be named following these rules:

• For packages, it uses the package name, e.g., package zlib/1.2.11 -> zlib.pc.

• For components, the package name + hyphen + component name, e.g., openssl/3.0.0 with self.cpp_info.
components["crypto"] -> openssl-crypto.pc.

You can change that default behavior with the pkg_config_name and pkg_config_aliases properties. See Prop-
erties section below.

If a recipe uses components, the files generated will be <[PKG-NAME]-[COMP-NAME]>.pc with their corresponding
flags and require relations.

8.4. Recipe tools 515

Conan Documentation, Release 2.1.0

Additionally, a <PKG-NAME>.pc is generated to maintain compatibility for consumers with recipes that start supporting
components. This <PKG-NAME>.pc file declares all the components of the package as requires while the rest of the
fields will be empty, relying on the propagation of flags coming from the components <[PKG-NAME]-[COMP-NAME]>.
pc files.

Reference

class PkgConfigDeps(conanfile)

property content

Get all the .pc files content

generate()

Save all the *.pc files

Attributes

build_context_activated

When you have a build-require, by default, the *.pc files are not generated. But you can activate it using the
build_context_activated attribute:

tool_requires = ["my_tool/0.0.1"]
def generate(self):

pc = PkgConfigDeps(self)
generate the *.pc file for the tool require
pc.build_context_activated = ["my_tool"]
pc.generate()

build_context_suffix

When you have the same package as a build-require and as a regular require it will cause a conflict in the generator
because the file names of the *.pc files will collide as well as the names, requires names, etc.

For example, this is a typical situation with some requirements (capnproto, protobuf. . .) that contain a tool used to
generate source code at build time (so it is a build_require), but also providing a library to link to the final application,
so you also have a regular require. Solving this conflict is specially important when we are cross-building because
the tool (that will run in the building machine) belongs to a different binary package than the library, that will “run” in
the host machine.

You can use the build_context_suffix attribute to specify a suffix for a requirement, so the files/requires/names of the
requirement in the build context (tool require) will be renamed:

tool_requires = ["my_tool/0.0.1"]
requires = ["my_tool/0.0.1"]
def generate(self):

pc = PkgConfigDeps(self)
generate the *.pc file for the tool require
pc.build_context_activated = ["my_tool"]
disambiguate the files, requires, names, etc
pc.build_context_suffix = {"my_tool": "_BUILD"}
pc.generate()

516 Chapter 8. Reference

Conan Documentation, Release 2.1.0

Properties

The following properties affect the PkgConfigDeps generator:

• pkg_config_name property will define the name of the generated *.pc file (xxxxx.pc)

• pkg_config_aliases property sets some aliases of any package/component name for pkg_config generator. This
property only accepts list-like Python objects.

• pkg_config_custom_content property will add user defined content to the .pc files created by this generator as
freeform variables. That content can be a string or a dict-like Python object. Notice that the variables declared
here will overwrite those ones already defined by Conan. Click here for more information about the type of
variables in a *.pc file.

• system_package_version: property sets a custom version to be used in the Version field belonging to the
created *.pc file for the package.

• component_version property sets a custom version to be used in the Version field belonging to the created
*.pc file for that component (takes precedence over the system_package_version property).

These properties can be defined at global cpp_info level or at component level.

Example:

def package_info(self):
custom_content = {"datadir": "${prefix}/share"} # or "datadir=${prefix}/share"
self.cpp_info.set_property("pkg_config_custom_content", custom_content)
self.cpp_info.set_property("pkg_config_name", "myname")
self.cpp_info.components["mycomponent"].set_property("pkg_config_name",

→˓"componentname")
self.cpp_info.components["mycomponent"].set_property("pkg_config_aliases", ["alias1",

→˓ "alias2"])
self.cpp_info.components["mycomponent"].set_property("component_version", "1.14.12")

PkgConfig

This tool can execute pkg_config executable to extract information from existing .pc files. This can be useful for
example to create a “system” package recipe over some system installed library, as a way to automatically extract the
.pc information from the system. Or if some proprietary package has a build system that only outputs .pc files.

Usage:

Read a pc file and access the information:

pkg_config = PkgConfig(conanfile, "libastral", pkg_config_path=<somedir>)

print(pkg_config.provides) # something like"libastral = 6.6.6"
print(pkg_config.version) # something like"6.6.6"
print(pkg_config.includedirs) # something like['/usr/local/include/libastral']
print(pkg_config.defines) # something like['_USE_LIBASTRAL']
print(pkg_config.libs) # something like['astral', 'm']
print(pkg_config.libdirs) # something like['/usr/local/lib/libastral']
print(pkg_config.linkflags) # something like['-Wl,--whole-archive']
print(pkg_config.variables['prefix']) # something like'/usr/local'

Use the pc file information to fill a cpp_info object:

8.4. Recipe tools 517

https://people.freedesktop.org/~dbn/pkg-config-guide.html#concepts

Conan Documentation, Release 2.1.0

def package_info(self):
pkg_config = PkgConfig(conanfile, "libastral", pkg_config_path=tmp_dir)
pkg_config.fill_cpp_info(self.cpp_info, is_system=False, system_libs=["m", "rt"])

Reference

class PkgConfig(conanfile, library, pkg_config_path=None)

Parameters
• conanfile – The current recipe object. Always use self.

• library – The library which .pc file is to be parsed. It must exist in the pkg_config path.

• pkg_config_path – If defined it will be prepended to PKG_CONFIG_PATH environment
variable, so the execution finds the required files.

fill_cpp_info(cpp_info, is_system=True, system_libs=None)
Method to fill a cpp_info object from the PkgConfig configuration

Parameters
• cpp_info – Can be the global one (self.cpp_info) or a component one

(self.components[“foo”].cpp_info).

• is_system – If True, all detected libraries will be assigned to cpp_info.system_libs,
and none to cpp_info.libs.

• system_libs – If True, all detected libraries will be assigned to cpp_info.
system_libs, and none to cpp_info.libs.

conf

This helper will listen to tools.gnu:pkg_config from the global.conf to define the pkg_config executable name
or full path. It will by default it is pkg-config.

8.4.9 conan.tools.google

Bazel

Warning: This feature is experimental and subject to breaking changes. See the Conan stability section for more
information.

The Bazel build helper is a wrapper around the command line invocation of bazel. It will abstract the calls like bazel
<rcpaths> build <configs> <targets> into Python method calls.

The helper is intended to be used in the conanfile.py build() method, to call Bazel commands automatically when a
package is being built directly by Conan (create, install)

from conan import ConanFile
from conan.tools.google import Bazel

(continues on next page)

518 Chapter 8. Reference

Conan Documentation, Release 2.1.0

(continued from previous page)

class App(ConanFile):
settings = "os", "arch", "compiler", "build_type"

def build(self):
bz = Bazel(self)
bz.build(target="//main:hello-world")

Reference

class Bazel(conanfile)

Parameters
conanfile – < ConanFile object > The current recipe object. Always use self.

build(args=None, target='//...', clean=True)
Runs “bazel <rcpaths> build <configs> <args> <targets>” command where:

• rcpaths: adds --bazelrc=xxxx per rc-file path. It listens to BazelToolchain
(--bazelrc=conan_bzl.rc), and tools.google.bazel:bazelrc_path conf.

• configs: adds --config=xxxx per bazel-build configuration. It listens to BazelToolchain
(--config=conan-config), and tools.google.bazel:configs conf.

• args: they are any extra arguments to add to the bazel build execution.

• targets: all the target labels.

Parameters
• target – It is the target label. By default, it’s “//. . . ” which runs all the targets.

• args – list of extra arguments to pass to the CLI.

• clean – boolean that indicates to run a “bazel clean” before running the “bazel build”.
Notice that this is important to ensure a fresh bazel cache every

test(target=None)
Runs “bazel test <targets>” command.

Properties

The following properties affect the Bazel build helper:

• tools.build:skip_test=<bool> (boolean) if True, it runs the bazel test <target>.

8.4. Recipe tools 519

Conan Documentation, Release 2.1.0

conf

Bazel is affected by these [conf] variables:

• tools.google.bazel:bazelrc_path: List of paths to other bazelrc files to be used as bazel
--bazelrc=rcpath1 ... build.

• tools.google.bazel:configs: List of Bazel configurations to be used as bazel build
--config=config1

See also:
• Build a simple Bazel project using Conan

BazelDeps

Warning: This feature is experimental and subject to breaking changes. See the Conan stability section for more
information.

The BazelDeps is the dependencies generator for Bazel. Generates a <REPOSITORY>/BUILD.bazel file per depen-
dency, where the <REPOSITORY>/ folder is the Conan recipe reference name by default, e.g., mypkg/BUILD.bazel.
Apart from that, it also generates a dependencies.bzl file which contains a Bazel function to load all your Conan de-
pendencies.

The BazelDeps generator can be used by name in conanfiles:

Listing 53: conanfile.py

class Pkg(ConanFile):
generators = "BazelDeps"

Listing 54: conanfile.txt

[generators]
BazelDeps

And it can also be fully instantiated in the conanfile generate() method:

from conan import ConanFile
from conan.tools.google import BazelDeps

class App(ConanFile):
settings = "os", "arch", "compiler", "build_type"
requires = "zlib/1.2.11"

def generate(self):
bz = BazelDeps(self)
bz.generate()

520 Chapter 8. Reference

Conan Documentation, Release 2.1.0

Generated files

When the BazelDeps generator is used, every invocation of conan install will generate several bazel files. For the
conanfile.py above, for example:

$ conan install .
.

BUILD.bazel
conanfile.py
dependencies.bzl
zlib

BUILD.bazel

Every conan install generates these files:

• BUILD.bazel: An empty file aimed to be alongside the dependencies.bzl one. More information here.

• dependencies.bzl: this file tells your Bazel WORKSPACE how to load the dependencies.

• zlib/BUILD.bazel: contains all the targets that you can load from any of your BUILD files. More information in
Customization.

Let’s check the content of the files created:

Listing 55: dependencies.bzl

This Bazel module should be loaded by your WORKSPACE file.
Add these lines to your WORKSPACE one (assuming that you're using the "bazel_layout"):
load("@//conan:dependencies.bzl", "load_conan_dependencies")
load_conan_dependencies()

def load_conan_dependencies():
native.new_local_repository(

name="zlib",
path="/path/to/conan/package/folder/",
build_file="/your/current/working/directory/zlib/BUILD.bazel",

)

Given the example above, and imagining that your WORKSPACE is at the same directory, you would have to add these
lines in there:

Listing 56: WORKSPACE

load("@//:dependencies.bzl", "load_conan_dependencies")
load_conan_dependencies()

Listing 57: zlib/BUILD.bazel

load("@rules_cc//cc:defs.bzl", "cc_import", "cc_library")

Components precompiled libs
Root package precompiled libs
cc_import(

name = "z_precompiled",
static_library = "lib/libz.a",

)
(continues on next page)

8.4. Recipe tools 521

https://bazel.build/concepts/build-files

Conan Documentation, Release 2.1.0

(continued from previous page)

Components libraries declaration
Package library declaration
cc_library(

name = "zlib",
hdrs = glob([

"include/**",
]),
includes = [

"include",
],
visibility = ["//visibility:public"],
deps = [

":z_precompiled",
],

)

Filegroup library declaration
filegroup(

name = "zlib_binaries",
srcs = glob([

"bin/**",
]),
visibility = ["//visibility:public"],

)

As you can observe, the zlib/BUILD.bazel defines these global targets:

• zlib: bazel library target. The label used to depend on it would be @zlib//:zlib.

• zlib_binaries: bazel filegroup target. The label used to depend on it would be @zlib//:zlib_binaries.

You can put all the files generated by BazelDeps into another folder using the bazel_layout:

Listing 58: conanfile.py

from conan import ConanFile
from conan.tools.google import BazelDeps, bazel_layout

class App(ConanFile):
settings = "os", "arch", "compiler", "build_type"
requires = "zlib/1.2.11"

def layout(self):
bazel_layout(self)

def generate(self):
bz = BazelDeps(self)
bz.generate()

Running again the conan install command, we now get this structure:

$ conan install .
.

(continues on next page)

522 Chapter 8. Reference

Conan Documentation, Release 2.1.0

(continued from previous page)

conan
BUILD.bazel
dependencies.bzl
zlib

BUILD.bazel
conanfile.py

Now your Conan-bazel files were generated in the conan/ folder, so your WORKSPACE will look like:

Listing 59: WORKSPACE

load("@//conan:dependencies.bzl", "load_conan_dependencies")
load_conan_dependencies()

Customization

Naming

The <REPOSITORY>/BUILD.bazel file contains all the targets declared by the dependency. Both the <REPOSITORY>/
folder and the targets declared in there will be named following these rules by default:

• For packages, it uses the package name as folder/target name, e.g., package zlib/1.2.11 will have:
– Folder: zlib/BUILD.bazel.

– Global target: zlib.

– How it can be consumed: @zlib//:zlib.

• For components, the package name + hyphen + component name, e.g., package openssl/3.1.4 will have:
– Folder: openssl/BUILD.bazel.

– Global target: openssl.

– Components targets: openssl-ssl, and openssl-crypto.

– How it can be consumed:
∗ @openssl//:openssl (global one which includes all the components)

∗ @openssl//:openssl-ssl (component one)

∗ @openssl//:openssl-crypto (component one)

You can change that default behavior with the bazel_target_name and the bazel_repository_name properties.
See Properties section below.

8.4. Recipe tools 523

Conan Documentation, Release 2.1.0

Reference

class BazelDeps(conanfile)

Parameters
conanfile – < ConanFile object > The current recipe object. Always use self.

build_context_activated

Activates the build context for the specified Conan package names.

generate()

Generates all the targets <DEP>/BUILD.bazel files and the dependencies.bzl one in the build folder. It’s
important to highlight that the dependencies.bzl file should be loaded by your WORKSPACE Bazel file:

load("@//[BUILD_FOLDER]:dependencies.bzl", "load_conan_dependencies")
load_conan_dependencies()

build_context_activated

When you have a build-requirement, by default, the Bazel files are not generated. But you can activate it using the
build_context_activated attribute:

def build_requirements(self):
self.tool_requires("my_tool/0.0.1")

def layout(self):
bazel_layout(self)

def generate(self):
bz = BazelDeps(self)
generate the build-mytool/BUILD.bazel file for the tool require
bz.build_context_activated = ["my_tool"]
bz.generate()

Running the conan install command, the structure created is as follows:

$ conan install . -pr:b default
.

conan
BUILD.bazel
build-my_tool

BUILD.bazel
dependencies.bzl

conanfile.py

Notice that my_tool Bazel folder is prefixed with build- which indicates that it’s being used in the build context.

524 Chapter 8. Reference

Conan Documentation, Release 2.1.0

Properties

The following properties affect the BazelDeps generator:

• bazel_target_name property will define the name of the target declared in the <REPOSITORY>/BUILD.bazel.
This property can be defined at both global and component cpp_info level.

• bazel_repository_name property will define the name of the folder where the dependency BUILD.bazel will be
allocated. This property can only be defined at global cpp_info level.

Example:

def package_info(self):
self.cpp_info.set_property("bazel_target_name", "my_target")
self.cpp_info.set_property("bazel_repository_name", "my_repo")
self.cpp_info.components["mycomponent"].set_property("bazel_target_name", "component_

→˓name")

See also:
• Build a simple Bazel project using Conan

BazelToolchain

Warning: This feature is experimental and subject to breaking changes. See the Conan stability section for more
information.

The BazelToolchain is the toolchain generator for Bazel. It will generate a conan_bzl.rc file that contains a build
configuration conan-config to inject all the parameters into the bazel build command.

The BazelToolchain generator can be used by name in conanfiles:

Listing 60: conanfile.py

class Pkg(ConanFile):
generators = "BazelToolchain"

Listing 61: conanfile.txt

[generators]
BazelToolchain

And it can also be fully instantiated in the conanfile generate() method:

Listing 62: conanfile.py

from conan import ConanFile
from conan.tools.google import BazelToolchain

class App(ConanFile):
settings = "os", "arch", "compiler", "build_type"

def generate(self):
(continues on next page)

8.4. Recipe tools 525

Conan Documentation, Release 2.1.0

(continued from previous page)

tc = BazelToolchain(self)
tc.generate()

Generated files

After running conan install command, the BazelToolchain generates the conan_bzl.rc file that contains Bazel
build parameters (it will depend on your current Conan settings and options from your default profile):

Listing 63: conan_bzl.rc

Automatic bazelrc file created by Conan

build:conan-config --cxxopt=-std=gnu++17

build:conan-config --dynamic_mode=off
build:conan-config --compilation_mode=opt

The Bazel build helper will use that conan_bzl.rc file to perform a call using this configuration. The outcom-
ing command will look like this bazel --bazelrc=/path/to/conan_bzl.rc build --config=conan-config
<target>.

Reference

class BazelToolchain(conanfile)

Parameters
conanfile – < ConanFile object > The current recipe object. Always use self.

force_pic

Boolean used to add –force_pic=True. Depends on self.options.shared and self.options.fPIC values

dynamic_mode

String used to add –dynamic_mode=[“fully”|”off”]. Depends on self.options.shared value.

cppstd

String used to add –cppstd=[FLAG]. Depends on your settings.

copt

List of flags used to add –copt=flag1 . . . –copt=flagN

conlyopt

List of flags used to add –conlyopt=flag1 . . . –conlyopt=flagN

cxxopt

List of flags used to add –cxxopt=flag1 . . . –cxxopt=flagN

linkopt

List of flags used to add –linkopt=flag1 . . . –linkopt=flagN

compilation_mode

String used to add –compilation_mode=[“opt”|”dbg”]. Depends on self.settings.build_type

526 Chapter 8. Reference

Conan Documentation, Release 2.1.0

compiler

String used to add –compiler=xxxx.

cpu

String used to add –cpu=xxxxx. At the moment, it’s only added if cross-building.

crosstool_top

String used to add –crosstool_top.

generate()

Creates a conan_bzl.rc file with some bazel-build configuration. This last mentioned is put as
conan-config.

conf

BazelToolchain is affected by these [conf] variables:

• tools.build:cxxflags list of extra C++ flags that will be used by cxxopt.

• tools.build:cflags list of extra of pure C flags that will be used by conlyopt.

• tools.build:sharedlinkflags list of extra linker flags that will be used by linkopt.

• tools.build:exelinkflags list of extra linker flags that will be used by linkopt.

• tools.build:linker_scripts list of linker scripts, each of which will be prefixed with -T and added to
linkopt.

See also:
• Build a simple Bazel project using Conan

8.4.10 conan.tools.intel

IntelCC

This tool helps you to manage the new Intel oneAPI DPC++/C++ and Classic ecosystem in Conan.

Warning: This generator is experimental and subject to breaking changes.

Warning: macOS is not supported for the Intel oneAPI DPC++/C++ (icx/icpx or dpcpp) compilers. For macOS
or Xcode support, you’ll have to use the Intel C++ Classic Compiler.

Note: Remember, you need to have installed previously the Intel oneAPI software.

This generator creates a conanintelsetvars.sh|bat wrapping the Intel script setvars.sh|bat that sets the Intel
oneAPI environment variables needed. That script is the first step to start using the Intel compilers because it’s setting
some important variables in your local environment.

In summary, the IntelCC generator:

1. Reads your profile [settings] and [conf].

8.4. Recipe tools 527

https://software.intel.com/content/www/us/en/develop/documentation/oneapi-dpcpp-cpp-compiler-dev-guide-and-reference/top.html
https://software.intel.com/content/www/us/en/develop/documentation/cpp-compiler-developer-guide-and-reference/top.html
https://www.intel.com/content/www/us/en/developer/tools/oneapi/toolkits.html

Conan Documentation, Release 2.1.0

2. Uses that information to generate a conanintelsetvars.sh|bat script with the command to load the Intel
setvars.sh|bat script.

3. Then, you or the chosen generator will be able to run that script and use any Intel compiler to compile the project.

Note: You can launch the conanintelsetvars.sh|bat before calling your intel compiler to build a project. Conan
will also call it in the conanfile build(self) method when running any command with self.run.

At first, ensure you are using a profile like this one:

Listing 64: intelprofile

[settings]
...
compiler=intel-cc
compiler.mode=dpcpp
compiler.version=2021.3
compiler.libcxx=libstdc++
build_type=Release

[buildenv]
CC=dpcpp
CXX=dpcpp

[conf]
tools.intel:installation_path=/opt/intel/oneapi

The IntelCC generator can be used by name in conanfiles:

Listing 65: conanfile.py

class Pkg(ConanFile):
generators = "IntelCC"

Listing 66: conanfile.txt

[generators]
IntelCC

And it can also be fully instantiated in the conanfile generate() method:

Listing 67: conanfile.py

from conan import ConanFile
from conan.tools.intel import IntelCC

class App(ConanFile):
settings = "os", "arch", "compiler", "build_type"

def generate(self):
intelcc = IntelCC(self)
intelcc.generate()

Now, running the command conan install . -pr intelprofile generates the conanintelsetvars.sh|bat

528 Chapter 8. Reference

Conan Documentation, Release 2.1.0

script which runs the Intel setvars script and loads all the variables into your local environment.

Custom configurations

Apply different installation paths and command arguments simply by changing the [conf] entries. For instance:

Listing 68: intelprofile

[settings]
...
compiler=intel-cc
compiler.mode=dpcpp
compiler.version=2021.3
compiler.libcxx=libstdc++
build_type=Release

[buildenv]
CC=dpcpp
CXX=dpcpp

[conf]
tools.intel:installation_path=/opt/intel/oneapi
tools.intel:setvars_args=--config="full/path/to/your/config.txt" --force

Run again a conan install . -pr intelprofile, then the conanintelsetvars.sh script (if we are using Linux
OS) will contain something like:

Listing 69: conanintelsetvars.sh

. "/opt/intel/oneapi/setvars.sh" --config="full/path/to/your/config.txt" --force

Reference

class IntelCC(conanfile)
Class that manages Intel oneAPI DPC++/C++/Classic Compilers vars generation

arch

arch setting

property ms_toolset

Get Microsoft Visual Studio Toolset depending on the mode selected

generate(scope='build')
Generate the Conan Intel file to be loaded in build environment by default

property installation_path

Get the Intel oneAPI installation root path

property command

The Intel oneAPI DPC++/C++ Compiler includes environment configuration scripts to configure your build
and development environment variables:

• On Linux, the file is a shell script called setvars.sh.

• On Windows, the file is a batch file called setvars.bat.

8.4. Recipe tools 529

Conan Documentation, Release 2.1.0

• Linux -> >> . /<install-dir>/setvars.sh <arg1> <arg2> ... <argn><arg1> <arg2>
... <argn> The compiler environment script file accepts an optional target architecture argument
<arg>: - intel64: Generate code and use libraries for Intel 64 architecture-based targets. - ia32: Gen-
erate code and use libraries for IA-32 architecture-based targets.

• Windows -> >> call <install-dir>\setvars.bat [<arg1>] [<arg2>] Where <arg1> is op-
tional and can be one of the following: - intel64: Generate code and use libraries for Intel 64 ar-
chitecture (host and target). - ia32: Generate code and use libraries for IA-32 architecture (host and
target).

With the dpcpp compiler, <arg1> is intel64 by default.

The <arg2> is optional. If specified, it is one of the following: - vs2019: Microsoft Visual Studio*
2019 - vs2017: Microsoft Visual Studio 2017

Returns
str setvars.sh|bat command to be run

conf

IntelCC uses these configuration entries:

• tools.intel:installation_path: (required) argument to tell Conan the installation path, if it’s not defined,
Conan will try to find it out automatically.

• tools.intel:setvars_args: (optional) it is used to pass whatever we want as arguments to our setvars.sh|bat
file. You can check out all the possible ones from the Intel official documentation.

8.4.11 conan.tools.layout

Predefined layouts

There are some pre-defined common layouts, ready to be simply used in recipes:

• cmake_layout(): a layout for a typical CMake project

• vs_layout(): a layout for a typical Visual Studio project

• basic_layout(): a very basic layout for a generic project

The pre-defined layouts define the Conanfile .folders and .cpp attributes with typical values. To check which
values are set by these pre-defined layouts please check the reference for the layout() method. For example in the
cmake_layout() the source folder is set to ".", meaning that Conan will expect the sources in the same directory
where the conanfile is (most likely the project root, where a CMakeLists.txt file will be typically found). If you have
a different folder where the CMakeLists.txt is located, you can use the src_folder argument:

from conan.tools.cmake import cmake_layout

def layout(self):
cmake_layout(self, src_folder="mysrcfolder")

Even if this pre-defined layout doesn’t suit your specific projects layout, checking how they implement their logic shows
how you could implement your own logic (and probably put it in a common python_require if you are going to use
it in multiple packages).

To learn more about the layouts and how to use them while developing packages, please check the Conan package
layout tutorial.

530 Chapter 8. Reference

Conan Documentation, Release 2.1.0

basic_layout

Usage:

from conan.tools.layout import basic_layout

def layout(self):
basic_layout(self)

The current layout implementation is very simple, basically sets a different build folder for different build_types and
sets the generators output folder inside the build folder. This way we avoid to clutter our project while working locally.

def basic_layout(conanfile, src_folder="."):
conanfile.folders.build = "build"
if conanfile.settings.get_safe("build_type"):

conanfile.folders.build += "-{}".format(str(conanfile.settings.build_type).
→˓lower())

conanfile.folders.generators = os.path.join(conanfile.folders.build, "conan")
conanfile.cpp.build.bindirs = ["."]
conanfile.cpp.build.libdirs = ["."]
conanfile.folders.source = src_folder

8.4.12 conan.tools.meson

MesonToolchain

Important: This class will generate files that are only compatible with Meson versions >= 0.55.0

The MesonToolchain is the toolchain generator for Meson and it can be used in the generate() method as follows:

from conan import ConanFile
from conan.tools.meson import MesonToolchain

class App(ConanFile):
settings = "os", "arch", "compiler", "build_type"
requires = "hello/0.1"
options = {"shared": [True, False]}
default_options = {"shared": False}

def generate(self):
tc = MesonToolchain(self)
tc.preprocessor_definitions["MYDEFINE"] = "MYDEF_VALUE"
tc.generate()

Important: When your recipe has dependencies MesonToolchain only works with the PkgConfigDeps generator.
Please, do not use other generators, as they can have overlapping definitions that can conflict.

8.4. Recipe tools 531

Conan Documentation, Release 2.1.0

Generated files

The MesonToolchain generates the following files after a conan install (or when building the package in the
cache) with the information provided in the generate() method as well as information translated from the current
settings, conf, etc.:

• conan_meson_native.ini: if doing a native build.

• conan_meson_cross.ini: if doing a cross-build (conan.tools.build).

conan_meson_native.ini

This file contains the definitions of all the Meson properties related to the Conan options and settings for the current
package, platform, etc. This includes but is not limited to the following:

• Detection of default_library from Conan settings.

– Based on existence/value of an option named shared.

• Detection of buildtype from Conan settings.

• Definition of the C++ standard as necessary.

• The Visual Studio runtime (b_vscrt), obtained from Conan input settings.

conan_meson_cross.ini

This file contains the same information as the previous conan_meson_native.ini, but with additional information to
describe host, target, and build machines (such as the processor architecture).

Check out the meson documentation for more details on native and cross files:

• Machine files

• Native environments

• Cross compilation

Default directories

MesonToolchain manages some of the directories used by Meson. These are variables declared under the [project
options] section of the files conan_meson_native.ini and conan_meson_cross.ini (see more information about Meson
directories):

bindir: value coming from self.cpp.package.bindirs. Defaulted to None. sbindir: value coming from self.
cpp.package.bindirs. Defaulted to None. libexecdir: value coming from self.cpp.package.bindirs. De-
faulted to None. datadir: value coming from self.cpp.package.resdirs. Defaulted to None. localedir: value
coming from self.cpp.package.resdirs. Defaulted to None. mandir: value coming from self.cpp.package.
resdirs. Defaulted to None. infodir: value coming from self.cpp.package.resdirs. Defaulted to None.
includedir: value coming from self.cpp.package.includedirs. Defaulted to None. libdir: value coming
from self.cpp.package.libdirs. Defaulted to None.

Notice that it needs a layout to be able to initialize those self.cpp.package.xxxxx variables. For instance:

532 Chapter 8. Reference

https://mesonbuild.com/Machine-files.html
https://mesonbuild.com/Native-environments.html
https://mesonbuild.com/Cross-compilation.html
https://mesonbuild.com/Builtin-options.html#directories
https://mesonbuild.com/Builtin-options.html#directories

Conan Documentation, Release 2.1.0

from conan import ConanFile
from conan.tools.meson import MesonToolchain
class App(ConanFile):

settings = "os", "arch", "compiler", "build_type"
def layout(self):

self.folders.build = "build"
self.cpp.package.resdirs = ["res"]

def generate(self):
tc = MesonToolchain(self)
self.output.info(tc.project_options["datadir"]) # Will print '["res"]'
tc.generate()

Note: All of them are saved only if they have any value. If the values are``None``, they won’t be mentioned in
[project options] section.

Customization

Attributes

project_options

This attribute allows defining Meson project options:

def generate(self):
tc = MesonToolchain(self)
tc.project_options["MYVAR"] = "MyValue"
tc.generate()

This is translated to:

• One project options definition for MYVAR in conan_meson_native.ini or conan_meson_cross.ini file.

The wrap_mode: nofallback is defined by default as a project option, to make sure that dependencies are found in
Conan packages. It is possible to change or remove it with:

def generate(self):
tc = MesonToolchain(self)
tc.project_options.pop("wrap_mode")
tc.generate()

Note that in this case, Meson might be able to find dependencies in “wraps”, it is the responsibility of the user to check
the behavior and make sure about the dependencies origin.

8.4. Recipe tools 533

Conan Documentation, Release 2.1.0

preprocessor_definitions

This attribute allows defining compiler preprocessor definitions, for multiple configurations (Debug, Release, etc).

def generate(self):
tc = MesonToolchain(self)
tc.preprocessor_definitions["MYDEF"] = "MyValue"
tc.generate()

This is translated to:

• One preprocessor definition for MYDEF in conan_meson_native.ini or conan_meson_cross.ini file.

conf

MesonToolchain is affected by these [conf] variables:

• tools.meson.mesontoolchain:backend. the meson backend to use. Possible values: ninja, vs, vs2010,
vs2015, vs2017, vs2019, xcode.

• tools.apple:sdk_path argument for SDK path in case of Apple cross-compilation. It is used as value of the
flag -isysroot.

• tools.android:ndk_path argument for NDK path in case of Android cross-compilation. It is used to get
some binaries like c, cpp and ar used in [binaries] section from conan_meson_cross.ini.

• tools.build:cxxflags list of extra C++ flags that is used by cpp_args.

• tools.build:cflags list of extra of pure C flags that is used by c_args.

• tools.build:sharedlinkflags list of extra linker flags that is used by c_link_args and cpp_link_args.

• tools.build:exelinkflags list of extra linker flags that is used by c_link_args and cpp_link_args.

• tools.build:linker_scripts list of linker scripts, each of which will be prefixed with -T and passed to
c_link_args and cpp_link_args. Only use this flag with linkers that supports specifying linker scripts with
the -T flag, such as ld, gold, and lld.

• tools.build:compiler_executables dict-like Python object which specifies the compiler as key and the
compiler executable path as value. Those keys will be mapped as follows:

– c: will set c in [binaries] section from conan_meson_xxxx.ini.

– cpp: will set cpp in [binaries] section from conan_meson_xxxx.ini.

– objc: will set objc in [binaries] section from conan_meson_xxxx.ini.

– objcpp: will set objcpp in [binaries] section from conan_meson_xxxx.ini.

Using Proper Data Types for Conan Options in Meson

Always transform Conan options into valid Python data types before assigning them as Meson values:

options = {{"shared": [True, False], "fPIC": [True, False], "with_msg": ["ANY"]}}
default_options = {{"shared": False, "fPIC": True, "with_msg": "Hi everyone!"}}

def generate(self):
tc = MesonToolchain(self)

(continues on next page)

534 Chapter 8. Reference

https://mesonbuild.com/Configuring-a-build-directory.html

Conan Documentation, Release 2.1.0

(continued from previous page)

tc.project_options["DYNAMIC"] = bool(self.options.shared) # shared is bool
tc.project_options["GREETINGS"] = str(self.options.with_msg) # with_msg is str
tc.generate()

In contrast, directly assigning a Conan option as a Meson value is strongly discouraged:

options = {{"shared": [True, False], "fPIC": [True, False], "with_msg": ["ANY"]}}
default_options = {{"shared": False, "fPIC": True, "with_msg": "Hi everyone!"}}
...
def generate(self):

tc = MesonToolchain(self)
tc.project_options["DYNAMIC"] = self.options.shared # == <PackageOption object>
tc.project_options["GREETINGS"] = self.options.with_msg # == <PackageOption object>
tc.generate()

These are not boolean or string values but an internal Conan class representing such option values. If you assign
these values directly, upon executing the generate() function, you should receive a warning in your console stating,
WARN: deprecated: Please, do not use a Conan option value directly. This method is considered
bad practice as it can result in unexpected errors during your project’s build process.

Cross-building for Apple and Android

The MesonToolchain adds all the flags required to cross-compile for Apple (MacOS M1, iOS, etc.) and Android.

Apple
It adds link flags -arch XXX, -isysroot [SDK_PATH] and the minimum deployment target flag, e.g.,
-mios-version-min=8.0 to the MesonToolchain c_args, c_link_args, cpp_args, and cpp_link_args at-
tributes, given the Conan settings for any Apple OS (iOS, watchOS, etc.) and the tools.apple:sdk_path configu-
ration value like it’s shown in this example of host profile:

8.4. Recipe tools 535

Conan Documentation, Release 2.1.0

Listing 70: ios_host_profile
[settings]
os = iOS
os.version = 10.0
os.sdk = iphoneos
arch = armv8
compiler = apple-clang
compiler.version = 12.0
compiler.libcxx = libc++

[conf]
tools.apple:sdk_path=/my/path/to/iPhoneOS.sdk

Objective-C arguments

In Apple OS’s there are also specific Objective-C/Objective-C++ arguments: objc, objcpp, objc_args,
objc_link_args, objcpp_args, and objcpp_link_args, as public attributes of the MesonToolchain class, where
the variables objc and objcpp are initialized as clang and clang++ respectively by default.

Android
It initializes the MesonToolchain c, cpp, and ar attributes, which are needed to cross-compile for Android, given the
Conan settings for Android and the tools.android:ndk_path configuration value like it’s shown in this example of
host profile:

Listing 71: android_host_profile
[settings]
os = Android
os.api_level = 21
arch = armv8

[conf]
tools.android:ndk_path=/my/path/to/NDK

See also:
• Getting started with Meson

Reference

class MesonToolchain(conanfile, backend=None)
MesonToolchain generator

Parameters
• conanfile – < ConanFile object > The current recipe object. Always use self.

• backend – str backend Meson variable value. By default, ninja.

properties

Dict-like object that defines Meson``properties`` with key=value format

536 Chapter 8. Reference

Conan Documentation, Release 2.1.0

project_options

Dict-like object that defines Meson project options with key=value format

preprocessor_definitions

Dict-like object that defines Meson preprocessor definitions

pkg_config_path

Defines the Meson pkg_config_path variable

cross_build

Dict-like object with the build, host, and target as the Meson machine context

c

Sets the Meson c variable, defaulting to the CC build environment value. If provided as a blank-separated
string, it will be transformed into a list. Otherwise, it remains a single string.

cpp

Sets the Meson cpp variable, defaulting to the CXX build environment value. If provided as a blank-
separated string, it will be transformed into a list. Otherwise, it remains a single string.

ld

Sets the Meson ld variable, defaulting to the LD build environment value. If provided as a blank-separated
string, it will be transformed into a list. Otherwise, it remains a single string.

c_ld

Defines the Meson c_ld variable. Defaulted to CC_LD environment value

cpp_ld

Defines the Meson cpp_ld variable. Defaulted to CXX_LD environment value

ar

Defines the Meson ar variable. Defaulted to AR build environment value

strip

Defines the Meson strip variable. Defaulted to STRIP build environment value

as_

Defines the Meson as variable. Defaulted to AS build environment value

windres

Defines the Meson windres variable. Defaulted to WINDRES build environment value

pkgconfig

Defines the Meson pkgconfig variable. Defaulted to PKG_CONFIG build environment value

c_args

Defines the Meson c_args variable. Defaulted to CFLAGS build environment value

c_link_args

Defines the Meson c_link_args variable. Defaulted to LDFLAGS build environment value

cpp_args

Defines the Meson cpp_args variable. Defaulted to CXXFLAGS build environment value

cpp_link_args

Defines the Meson cpp_link_args variable. Defaulted to LDFLAGS build environment value

8.4. Recipe tools 537

Conan Documentation, Release 2.1.0

apple_arch_flag

Apple arch flag as a list, e.g., ["-arch", "i386"]

apple_isysroot_flag

Apple sysroot flag as a list, e.g., ["-isysroot", "./Platforms/MacOSX.platform"]

apple_min_version_flag

Apple minimum binary version flag as a list, e.g., ["-mios-version-min", "10.8"]

objc

Defines the Meson objc variable. Defaulted to None, if if any Apple OS clang

objcpp

Defines the Meson objcpp variable. Defaulted to None, if if any Apple OS clang++

objc_args

Defines the Meson objc_args variable. Defaulted to OBJCFLAGS build environment value

objc_link_args

Defines the Meson objc_link_args variable. Defaulted to LDFLAGS build environment value

objcpp_args

Defines the Meson objcpp_args variable. Defaulted to OBJCXXFLAGS build environment value

objcpp_link_args

Defines the Meson objcpp_link_args variable. Defaulted to LDFLAGS build environment value

generate()

Creates a conan_meson_native.ini (if native builds) or a conan_meson_cross.ini (if cross builds)
with the proper content. If Windows OS, it will be created a conanvcvars.bat as well.

Meson

The Meson() build helper is intended to be used in the build() and package() methods, to call Meson commands
automatically.

from conan import ConanFile
from conan.tools.meson import Meson

class PkgConan(ConanFile):

def build(self):
meson = Meson(self)
meson.configure()
meson.build()

def package(self):
meson = Meson(self)
meson.install()

538 Chapter 8. Reference

Conan Documentation, Release 2.1.0

Reference

class Meson(conanfile)
This class calls Meson commands when a package is being built. Notice that this one should be used together
with the MesonToolchain generator.

Parameters
conanfile – < ConanFile object > The current recipe object. Always use self.

configure(reconfigure=False)
Runs meson setup [FILE] "BUILD_FOLDER" "SOURCE_FOLDER" [-Dprefix=PACKAGE_FOLDER]
command, where FILE could be --native-file conan_meson_native.ini (if native builds) or
--cross-file conan_meson_cross.ini (if cross builds).

Parameters
reconfigure – bool value that adds --reconfigure param to the final command.

build(target=None)
Runs meson compile -C . -j[N_JOBS] [TARGET] in the build folder. You can specify N_JOBS
through the configuration line tools.build:jobs=N_JOBS in your profile [conf] section.

Parameters
target – str Specifies the target to be executed.

install()

Runs meson install -C "." in the build folder. Notice that it will execute self.
configure(reconfigure=True) at first.

test()

Runs meson test -v -C "." in the build folder.

conf

The Meson build helper is affected by these [conf] variables:

• tools.meson.mesontoolchain:extra_machine_files=[<FILENAME>] configuration to add your ma-
chine files at the end of the command using the correct parameter depending on native or cross builds. See
this Meson reference for more information.

• tools.compilation:verbosity which accepts one of quiet or verbose and sets the --verbose flag in
Meson.build()

• tools.build:verbosity which accepts one of quiet or verbose and sets the --quiet flag in Meson.
install()

8.4.13 conan.tools.microsoft

MSBuild

The MSBuild build helper is a wrapper around the command line invocation of MSBuild. It abstracts the calls like
msbuild "MyProject.sln" /p:Configuration=<conf> /p:Platform=<platform> into Python method ones.

This helper can be used like:

8.4. Recipe tools 539

https://mesonbuild.com/Machine-files.html#loading-multiple-machine-files

Conan Documentation, Release 2.1.0

from conan import ConanFile
from conan.tools.microsoft import MSBuild

class App(ConanFile):
settings = "os", "arch", "compiler", "build_type"

def build(self):
msbuild = MSBuild(self)
msbuild.build("MyProject.sln")

The MSBuild.build() method internally implements a call to msbuild like:

$ <vcvars-cmd> && msbuild "MyProject.sln" /p:Configuration=<configuration> /p:Platform=
→˓<platform>

Where:

• <vcvars-cmd> calls the Visual Studio prompt that matches the current recipe settings.

• configuration, typically Release, Debug, which will be obtained from settings.build_type but this can
be customized with the build_type attribute.

• <platform> is the architecture, a mapping from the settings.arch to the common ‘x86’, ‘x64’, ‘ARM’,
‘ARM64’. This can be customized with the platform attribute.

Customization

attributes

You can customize the following attributes in case you need to change them:

• build_type (default settings.build_type): Value for the /p:Configuration.

• platform (default based on settings.arch to select one of these values: ('x86', 'x64', 'ARM',
'ARM64'): Value for the /p:Platform.

Example:

from conan import ConanFile
from conan.tools.microsoft import MSBuild
class App(ConanFile):

settings = "os", "arch", "compiler", "build_type"
def build(self):

msbuild = MSBuild(self)
msbuild.build_type = "MyRelease"
msbuild.platform = "MyPlatform"
msbuild.build("MyProject.sln")

540 Chapter 8. Reference

Conan Documentation, Release 2.1.0

conf

MSBuild is affected by these [conf] variables:

• tools.build:verbosity accepts one of quiet or verbose to be passed to the MSBuild.build() call as
msbuild /verbosity:{Quiet,Detailed}.

• tools.microsoft.msbuild:max_cpu_count maximum number of CPUs to be passed to the MSBuild.
build() call as msbuild /m:N.

Reference

class MSBuild(conanfile)
MSBuild build helper class

Parameters
conanfile – < ConanFile object > The current recipe object. Always use self.

command(sln, targets=None)
Gets the msbuild command line. For instance, msbuild "MyProject.sln" /
p:Configuration=<conf> /p:Platform=<platform>.

Parameters
• sln – str name of Visual Studio *.sln file

• targets – targets is an optional argument, defaults to None, and otherwise it is a list of
targets to build

Returns
str msbuild command line.

build(sln, targets=None)
Runs the msbuild command line obtained from self.command(sln).

Parameters
• sln – str name of Visual Studio *.sln file

• targets – targets is an optional argument, defaults to None, and otherwise it is a list of
targets to build

MSBuildDeps

The MSBuildDeps is the dependency information generator for Microsoft MSBuild build system. It will generate
multiple xxxx.props properties files, one per dependency of a package, to be used by consumers using MSBuild or
Visual Studio, just adding the generated properties files to the solution and projects.

The MSBuildDeps generator can be used by name in conanfiles:

Listing 72: conanfile.py

class Pkg(ConanFile):
generators = "MSBuildDeps"

8.4. Recipe tools 541

Conan Documentation, Release 2.1.0

Listing 73: conanfile.txt

[generators]
MSBuildDeps

And it can also be fully instantiated in the conanfile generate() method:

Listing 74: conanfile.py

from conan import ConanFile
from conan.tools.microsoft import MSBuildDeps

class Pkg(ConanFile):
settings = "os", "compiler", "arch", "build_type"
requires = "zlib/1.2.11", "bzip2/1.0.8"

def generate(self):
ms = MSBuildDeps(self)
ms.generate()

Generated files

The MSBuildDeps generator is a multi-configuration generator, and generates different files for any different De-
bug/Release configuration. For instance, running these commands:

$ conan install . # default is Release
$ conan install . -s build_type=Debug

It generates the next files:

• conan_zlib_vars_release_x64.props: Conanzlibxxxx variables definitions for the zlib dependency, Release
config, like ConanzlibIncludeDirs, ConanzlibLibs, etc.

• conan_zlib_vars_debug_x64.props: Same Conanzlib``variables for ``zlib dependency, Debug config

• conan_zlib_release_x64.props: Activation of Conanzlibxxxx variables in the current build as standard C/C++
build configuration, Release config. This file contains also the transitive dependencies definitions.

• conan_zlib_debug_x64.props: Same activation of Conanzlibxxxx variables, Debug config, also inclusion of
transitive dependencies.

• conan_zlib.props: Properties file for zlib. It conditionally includes, depending on the configuration, one of the
two immediately above Release/Debug properties files.

• Same 5 files are generated for every dependency in the graph, in this case conan_bzip.props too, which con-
ditionally includes the Release/Debug bzip properties files.

• conandeps.props: Properties files that includes all direct dependencies, for this case conan_zlib.props and
conan_bzip2.props

Add the conandeps.props to your solution project files if you want to depend on all the declared dependencies. For single
project solutions, this is probably the way to go. For multi-project solutions, you might be more efficient and add prop-
erties files per project. You could add conan_zlib.props properties to “project1” in the solution and conan_bzip2.props
to “project2” in the solution for example.

The above files are generated when the package doesn’t have components. If the package has defined components, the
following files will be generated:

542 Chapter 8. Reference

Conan Documentation, Release 2.1.0

• conan_pkgname_compname_vars_release_x64.props: Definition of variables for the component compname of
the package pkgname

• conan_pkgname_compname_release_x64.props: Activation of the above variables into VS effective variables to
be used in the build

• conan_pkgname_compname.props: Properties file for component compname of package pkgname. It condition-
ally includes, depending on the configuration, the specific activation property files.

• conan_pkgname.props: Properties file for package pkgname. It includes and aggregates all the components of
the package.

• conandeps.props: Same as above, aggregates all the direct dependencies property files for the packages (like
conan_pkgname.props)

If your project depends only on certain components, the specific conan_pkgname_compname.props files can be added
to the project instead of the global or the package ones.

Requirement traits support

The above generated files, more specifically the files containing the variables (conan_pkgname_vars_release_x64.
props/conan_pkgname_compname_vars_release_x64.props), will not contain all the information if the require-
ment traits have excluded them. For example, by default, the includedirs of transitive dependencies will be empty,
as those headers shouldn’t be included by the user unless a specific requires to that package is defined.

Configurations

If your Visual Studio project defines custom configurations, like ReleaseShared, or MyCustomConfig, it is possible
to define it into the MSBuildDeps generator, so different project configurations can use different set of dependencies.
Let’s say that our current project can be built as a shared library, with the custom configuration ReleaseShared, and
the package also controls this with the shared option:

from conan import ConanFile
from conan.tools.microsoft import MSBuildDeps

class Pkg(ConanFile):
settings = "os", "compiler", "arch", "build_type"
options = {"shared": [True, False]}
default_options = {"shared": False}
requires = "zlib/1.2.11"

def generate(self):
ms = MSBuildDeps(self)
We assume that -o *:shared=True is used to install all shared deps too
if self.options.shared:

ms.configuration = str(self.settings.build_type) + "Shared"
ms.generate()

This generates new properties files for this custom configuration, and switching it in the IDE allows to gather depen-
dencies configuration like Debug/Release, and even static and/or shared libraries.

8.4. Recipe tools 543

Conan Documentation, Release 2.1.0

Dependencies

MSBuildDeps uses the self.dependencies to access to the dependencies information. The following dependencies
are translated to properties files:

• All the direct dependencies, which are the ones declared by the current conanfile, live in the host context:
all regular requires, plus the tool_requires, that are in the host context, e.g. test frameworks like gtest or
catch.

• All transitive requires of those direct dependencies (all in the host context)

• Tool requires, in the build context, that is, application and executables that run in the build machine irrespective
of the destination platform, are added exclusively to the <ExecutablePath> property, taking the value from
$(Conan{{name}}BinaryDirectories) defined properties. This allows to define custom build commands,
invoke code generation tools, with the <CustomBuild> and <Command> elements.

Customization

conf

MSBuildDeps is affected by these [conf] variables:

• tools.microsoft.msbuilddeps:exclude_code_analysis list of packages names patterns to be added to
the Visual Studio CAExcludePath property.

Reference

class MSBuildDeps(conanfile)
MSBuildDeps class generator conandeps.props: unconditional import of all direct dependencies only

Parameters
conanfile – < ConanFile object > The current recipe object. Always use self.

generate()

Generates conan_<pkg>_<config>_vars.props, conan_<pkg>_<config>.props, and
conan_<pkg>.props files into the conanfile.generators_folder.

MSBuildToolchain

The MSBuildToolchain is the toolchain generator for MSBuild. It will generate MSBuild properties files that can be
added to the Visual Studio solution projects. This generator translates the current package configuration, settings, and
options, into MSBuild properties files syntax.

This generator can be used by name in conanfiles:

Listing 75: conanfile.py
class Pkg(ConanFile):

generators = "MSBuildToolchain"

544 Chapter 8. Reference

Conan Documentation, Release 2.1.0

Listing 76: conanfile.txt
[generators]
MSBuildToolchain

And it can also be fully instantiated in the conanfile generate() method:

from conan import ConanFile
from conan.tools.microsoft import MSBuildToolchain

class App(ConanFile):
settings = "os", "arch", "compiler", "build_type"

def generate(self):
tc = MSBuildToolchain(self)
tc.generate()

The MSBuildToolchain will generate three files after a conan install command:

$ conan install . # default is Release
$ conan install . -s build_type=Debug

• The main conantoolchain.props file, to be added to the project.

• A conantoolchain_<config>.props file, that will be conditionally included from the previous conan-
toolchain.props file based on the configuration and platform, e.g., conantoolchain_release_x86.props.

• A conanvcvars.bat file with the vcvars invocation to define the build environment from the command line, or
any other automated tools (might not be required if opening the IDE). This file will be automatically called by
the MSBuild.build() method.

Every invocation with different configuration creates a new properties .props file, that is also conditionally included.
That allows to install different configurations, then switch among them directly from the Visual Studio IDE.

The MSBuildToolchain files can configure:

• The Visual Studio runtime (MT/MD/MTd/MDd), obtained from Conan input settings.

• The C++ standard, obtained from Conan input settings.

One of the advantages of using toolchains is that they help to achieve the exact same build with local development
flows, than when the package is created in the cache.

Customization

conf

MSBuildToolchain is affected by these [conf] variables:

• tools.microsoft.msbuildtoolchain:compile_options dict-like object of extra compile options to be
added to <ClCompile> section. The dict will be translated as follows: <[KEY]>[VALUE]</[KEY]>.

• tools.microsoft:winsdk_version value will define the <WindowsTargetPlatformVersion> element in
the toolchain file.

• tools.build:cxxflags list of extra C++ flags that will be appended to <AdditionalOptions> section from
<ClCompile> and <ResourceCompile> one.

8.4. Recipe tools 545

Conan Documentation, Release 2.1.0

• tools.build:cflags list of extra of pure C flags that will be appended to <AdditionalOptions> section
from <ClCompile> and <ResourceCompile> one.

• tools.build:sharedlinkflags list of extra linker flags that will be appended to <AdditionalOptions>
section from <Link> one.

• tools.build:exelinkflags list of extra linker flags that will be appended to <AdditionalOptions> section
from <Link> one.

• tools.build:defines list of preprocessor definitions that will be appended to
<PreprocessorDefinitions> section from <ResourceCompile> one.

Reference

class MSBuildToolchain(conanfile)
MSBuildToolchain class generator

Parameters
conanfile – < ConanFile object > The current recipe object. Always use self.

generate()

Generates a conantoolchain.props, a conantoolchain_<config>.props, and, if compiler=msvc,
a conanvcvars.bat files. In the first two cases, they’ll have the valid XML format with all the good
settings like any other VS project *.props file. The last one emulates the vcvarsall.bat env script. See
also VCVars.

Attributes

• properties: Additional properties added to the generated .props files. You can define the properties in a key-
value syntax like:

from conan import ConanFile
from conan.tools.microsoft import MSBuildToolchain

class App(ConanFile):
settings = "os", "arch", "compiler", "build_type"

def generate(self):
msbuild = MSBuildToolchain(self)
msbuild.properties["IncludeExternals"] = "true"
msbuild.generate()

Then, the generated conantoolchain_<config>.props file will contain the defined property in its contents:

<?xml version="1.0" encoding="utf-8"?>
<Project xmlns="http://schemas.microsoft.com/developer/msbuild/2003">
<ItemDefinitionGroup>
...
</ItemDefinitionGroup>
<PropertyGroup Label="Configuration">

...
<IncludeExternals>true</IncludeExternals>
...

(continues on next page)

546 Chapter 8. Reference

Conan Documentation, Release 2.1.0

(continued from previous page)

</PropertyGroup>
</Project>

VCVars

Generates a file called conanvcvars.bat that activates the Visual Studio developer command prompt according to
the current settings by wrapping the vcvarsall Microsoft bash script.

The VCVars generator can be used by name in conanfiles:

Listing 77: conanfile.py

class Pkg(ConanFile):
generators = "VCVars"

Listing 78: conanfile.txt

[generators]
VCVars

And it can also be fully instantiated in the conanfile generate() method:

Listing 79: conanfile.py

from conan import ConanFile
from conan.tools.microsoft import VCVars

class Pkg(ConanFile):
settings = "os", "compiler", "arch", "build_type"
requires = "zlib/1.2.11", "bzip2/1.0.8"

def generate(self):
ms = VCVars(self)
ms.generate()

Customization

conf

VCVars is affected by these [conf] variables:

• tools.microsoft.msbuild:installation_path indicates the path to Visual Studio installation folder.
For instance: C:\Program Files (x86)\Microsoft Visual Studio\2019\Community, C:\Program
Files (x86)\Microsoft Visual Studio 14.0, etc.

• tools.microsoft:winsdk_version defines the specific winsdk version in the vcvars command line.

• tools.env.virtualenv:powershell generates an additional conanvcvars.ps1 so it can be run from the
Powershell console.

8.4. Recipe tools 547

https://docs.microsoft.com/en-us/cpp/build/building-on-the-command-line?view=vs-2017

Conan Documentation, Release 2.1.0

Reference

class VCVars(conanfile)
VCVars class generator

Parameters
conanfile – < ConanFile object > The current recipe object. Always use self.

generate(scope='build')
Creates a conanvcvars.bat file with the good args from settings to set environment variables to configure
the command line for native 32-bit or 64-bit compilation.

Parameters
scope – str Launcher to be used to run all the variables. For instance, if build, then it’ll
be used the conanbuild launcher.

NMakeDeps

This generator can be used as:

from conan import ConanFile

class Pkg(ConanFile):
settings = "os", "compiler", "build_type", "arch"

requires = "mydep/1.0"
attribute declaration
generators = "NMakeDeps"

OR explicit usage in the generate() method
def generate(self):

deps = NMakeDeps(self)
deps.generate()

def build(self):
self.run(f"nmake /f makefile")

The generator will create a conannmakedeps.bat environment script that defines CL, LIB and _LINK_ environment
variables, injecting necessary flags to locate and link the dependencies declared in requires. This generator should
most likely be used together with NMakeToolchain one.

NMakeToolchain

This generator can be used as:

from conan import ConanFile

class Pkg(ConanFile):
settings = "os", "compiler", "build_type", "arch"
generators = "NMakeToolchain"

def build(self):
self.run("nmake /f makefile")

548 Chapter 8. Reference

Conan Documentation, Release 2.1.0

Or it can be fully instantiated in the conanfile generate() method:

from conan import ConanFile
from conan.tools.microsoft import NMakeToolchain

class Pkg(ConanFile):
settings = "os", "arch", "compiler", "build_type"

def generate(self):
tc = NMakeToolchain(self)
tc.generate()

def build(self):
self.run("nmake /f makefile")

NMakeToolchain generator will create a conannmaketoolchain.bat environment script injecting flags deduced from
profile (build_type, runtime, cppstd, build flags from conf) into environment variables NMake can understand: CL and
LINK. It will also generate a conanvcvars.bat script that activates the correct VS prompt matching the Conan
host settings arch, compiler and compiler.version, and build settings arch.

constructor

def __init__(self, conanfile):

• conanfile: the current recipe object. Always use self.

Attributes

You can change some attributes before calling the generate() method if you want to inject more flags:

from conan import ConanFile
from conan.tools.microsoft import NMakeToolchain

class Pkg(ConanFile):
settings = "os", "arch", "compiler", "build_type"

def generate(self):
tc = NMakeToolchain(self)
tc.extra_cflags.append("/my_flag")
tc.extra_defines.append("FOO=BAR")
tc.generate()

• extra_cflags (Defaulted to []): Additional cflags.

• extra_cxxflags (Defaulted to []): Additional cxxflags.

• extra_defines (Defaulted to []): Additional defines.

• extra_ldflags (Defaulted to []): Additional ldflags.

8.4. Recipe tools 549

Conan Documentation, Release 2.1.0

conf

NMaketoolchain is affected by these [conf] variables:

• tools.build:cflags list of extra pure C flags that will be used by CL.

• tools.build:cxxflags list of extra C++ flags that will be used by CL.

• tools.build:defines list of preprocessor definitions that will be used by CL.

• tools.build:sharedlinkflags list of extra linker flags that will be used by _LINK_.

• tools.build:exelinkflags list of extra linker flags that will be used by _LINK_.

• tools.build:compiler_executables dict-like Python object which specifies the compiler as key and the
compiler executable path as value. Those keys will be mapped as follows:

– asm: will set AS in conannmaketoolchain.sh|bat script.

– c: will set CC in conannmaketoolchain.sh|bat script.

– cpp: will set CPP and CXX in conannmaketoolchain.sh|bat script.

– rc: will set RC in conannmaketoolchain.sh|bat script.

Customizing the environment

If your Makefile script needs some other environment variable rather than CL and _LINK_, you can customize it before
calling the generate() method. Call the environment() method to calculate the mentioned variables and then add
the variables that you need. The environment() method returns an Environment object:

from conan import ConanFile
from conan.tools.microsoft import NMakeToolchain

class Pkg(ConanFile):
settings = "os", "arch", "compiler", "build_type"

def generate(self):
tc = NMakeToolchain(self)
env = tc.environment()
env.define("FOO", "BAR")
tc.generate(env)

You can also inspect default environment variables NMakeToolchain will inject in conannmaketoolchain.sh|bat script:

from conan import ConanFile
from conan.tools.microsoft import NMakeToolchain

class Pkg(ConanFile):
settings = "os", "arch", "compiler", "build_type"

def generate(self):
tc = NMakeToolchain(self)
env_vars = tc.vars()
cl_env_var = env_vars.get("CL")

550 Chapter 8. Reference

Conan Documentation, Release 2.1.0

vs_layout

vs_layout(conanfile)
Initialize a layout for a typical Visual Studio project.

Parameters
conanfile – < ConanFile object > The current recipe object. Always use self.

conan.tools.microsoft.visual

check_min_vs

check_min_vs(conanfile, version, raise_invalid=True)
This is a helper method to allow the migration of 1.X -> 2.0 and VisualStudio -> msvc settings without breaking
recipes. The legacy “Visual Studio” with different toolset is not managed, not worth the complexity.

Parameters
• raise_invalid – bool Whether to raise or return False if the version check fails

• conanfile – < ConanFile object > The current recipe object. Always use self.

• version – str Visual Studio or msvc version number.

Example:

def validate(self):
check_min_vs(self, "192")

msvc_runtime_flag

msvc_runtime_flag(conanfile)
Gets the MSVC runtime flag given the compiler.runtime value from the settings.

Parameters
conanfile – < ConanFile object > The current recipe object. Always use self.

Returns
str runtime flag.

is_msvc

is_msvc(conanfile, build_context=False)
Validates if the current compiler is msvc.

Parameters
• conanfile – < ConanFile object > The current recipe object. Always use self.

• build_context – If True, will use the settings from the build context, not host ones

Returns
bool True, if the host compiler is msvc, otherwise, False.

8.4. Recipe tools 551

Conan Documentation, Release 2.1.0

is_msvc_static_runtime

is_msvc_static_runtime(conanfile)
Validates when building with Visual Studio or msvc and MT on runtime.

Parameters
conanfile – < ConanFile object > The current recipe object. Always use self.

Returns
bool True, if msvc + runtime MT. Otherwise, False.

msvs_toolset

msvs_toolset(conanfile)
Returns the corresponding platform toolset based on the compiler of the given conanfile. In case no toolset is
configured in the profile, it will return a toolset based on the compiler version, otherwise, it will return the toolset
from the profile. When there is no compiler version neither toolset configured, it will return None It supports
Visual Studio, msvc and Intel.

Parameters
conanfile – Conanfile instance to access settings.compiler

Returns
A toolset when compiler.version is valid or compiler.toolset is configured. Otherwise, None.

conan.tools.microsoft.subsystems

unix_path

unix_path(conanfile, path, scope='build')

8.4.14 conan.tools.scm

Git

The Git helper is a thin wrapper over the git command. It can be used for different purposes: - Obtaining the current
tag in the set_version()method to assign it to self.version - Clone sources in third-party or open source package
recipes in the source() method (in general, doing a download() or get() to fetch release tarballs will be preferred)
- Capturing the “scm” coordinates (url, commit) of your own package sources in the export() method, to be able to
reproduce a build from source later, retrieving the code in the source() method. See the example of git-scm capture.

The Git() constructor receives the current folder as argument, but that can be changed if necessary, for example, to
clone the sources of some repo in source():

def source(self):
git = Git(self) # by default, the current folder "."
git.clone(url="<repourl>", target="target") # git clone url target
we need to cd directory for next command "checkout" to work
git.folder = "target" # cd target
git.checkout(commit="<commit>") # git checkout commit

An alternative, equivalent approach would be:

552 Chapter 8. Reference

Conan Documentation, Release 2.1.0

def source(self):
git = Git(self, "target")
Cloning in current dir, not a children folder
git.clone(url="<repourl>", target=".")
git.checkout(commit="<commit>")

class Git(conanfile, folder='.', excluded=None)
Git is a wrapper for several common patterns used with git tool.

Parameters
• conanfile – Conanfile instance.

• folder – Current directory, by default ., the current working directory.

• excluded – Files to be excluded from the “dirty” checks. It will compose with the configu-
ration core.scm:excluded (the configuration has higher priority). It is a list of patterns to
fnmatch.

run(cmd, hidden_output=None)
Executes git <cmd>

Returns
The console output of the command.

get_commit(repository=False)

Parameters
repository – By default gets the commit of the defined folder, use repo=True to get the
commit of the repository instead.

Returns
The current commit, with git rev-list HEAD -n 1 -- <folder>. The latest commit is
returned, irrespective of local not committed changes.

get_remote_url(remote='origin')
Obtains the URL of the remote git remote repository, with git remote -v

Warning! Be aware that This method will get the output from git remote -v. If you added tokens or
credentials to the remote in the URL, they will be exposed. Credentials shouldn’t be added to git remotes
definitions, but using a credentials manager or similar mechanism. If you still want to use this approach, it
is your responsibility to strip the credentials from the result.

Parameters
remote – Name of the remote git repository (‘origin’ by default).

Returns
URL of the remote git remote repository.

commit_in_remote(commit, remote='origin')
Checks that the given commit exists in the remote, with branch -r --contains <commit> and checking
an occurrence of a branch in that remote exists.

Parameters
• commit – Commit to check.

• remote – Name of the remote git repository (‘origin’ by default).

Returns
True if the given commit exists in the remote, False otherwise.

8.4. Recipe tools 553

Conan Documentation, Release 2.1.0

is_dirty()

Returns if the current folder is dirty, running git status -s The Git(..., excluded=[]) argument
and the core.scm:excluded configuration will define file patterns to be skipped from this check.

Returns
True, if the current folder is dirty. Otherwise, False.

get_url_and_commit(remote='origin', repository=False)
This is an advanced method, that returns both the current commit, and the remote repository url. This
method is intended to capture the current remote coordinates for a package creation, so that can be used
later to build again from sources from the same commit. This is the behavior:

• If the repository is dirty, it will raise an exception. Doesn’t make sense to capture coordinates of
something dirty, as it will not be reproducible. If there are local changes, and the user wants to test a
local conan create, should commit the changes first (locally, not push the changes).

• If the repository is not dirty, but the commit doesn’t exist in the given remote, the method will return
that commit and the URL of the local user checkout. This way, a package can be conan create created
locally, testing everything works, before pushing some changes to the remote.

• If the repository is not dirty, and the commit exists in the specified remote, it will return that commit
and the url of the remote.

Warning! Be aware that This method will get the output from git remote -v. If you added tokens or
credentials to the remote in the URL, they will be exposed. Credentials shouldn’t be added to git remotes
definitions, but using a credentials manager or similar mechanism. If you still want to use this approach, it
is your responsibility to strip the credentials from the result.

Parameters
• remote – Name of the remote git repository (‘origin’ by default).

• repository – By default gets the commit of the defined folder, use repo=True to get the
commit of the repository instead.

Returns
(url, commit) tuple

get_repo_root()

Get the current repository top folder with git rev-parse --show-toplevel

Returns
Repository top folder.

clone(url, target='', args=None)
Performs a git clone <url> <args> <target> operation, where target is the target directory.

Parameters
• url – URL of remote repository.

• target – Target folder.

• args – Extra arguments to pass to the git clone as a list.

fetch_commit(url, commit)
Experimental: does a 1 commit fetch and checkout, instead of a full clone, should be faster.

checkout(commit)
Checkouts the given commit using git checkout <commit>.

Parameters
commit – Commit to checkout.

554 Chapter 8. Reference

Conan Documentation, Release 2.1.0

included_files()

Run git ls-files --full-name --others --cached --exclude-standard to the get the list
of files not ignored by .gitignore

Returns
List of files.

coordinates_to_conandata()

Capture the “url” and “commit” from the Git repo, calling get_url_and_commit(), and then store those
in the conandata.yml under the “scm” key. This information can be used later to clone and checkout
the exact source point that was used to create this package, and can be useful even if the recipe uses
exports_sources as mechanism to embed the sources.

checkout_from_conandata_coordinates()

Reads the “scm” field from the conandata.yml, that must contain at least “url” and “commit” and then
do a clone(url, target=".") followed by a checkout(commit).

Version

class Version(value, qualifier=False)
This is NOT an implementation of semver, as users may use any pattern in their versions. It is just a helper to
parse “.” or “-” and compare taking into account integers when possible

8.4.15 conan.tools.scons

SConsDeps

The SConsDeps is the dependency generator for SCons. It will generate a SConscript_conandeps file containing the
necessary information for SCons to build against the desired dependencies.

The SConsDeps generator can be used by name in conanfiles:

Listing 80: conanfile.py

from conan import ConanFile

class Pkg(ConanFile):
generators = "SConsDeps"

Listing 81: conanfile.txt

[generators]
SConsDeps

It can also be fully instantiated in the conanfile generate() method:

from conan import ConanFile
from conan.tools.scons import SConsDeps

class App(ConanFile):
settings = "os", "arch", "compiler", "build_type"

(continues on next page)

8.4. Recipe tools 555

https://scons.org/

Conan Documentation, Release 2.1.0

(continued from previous page)

def generate(self):
tc = SConsDeps(self)
tc.generate()

After executing the conan install command, the SConsDeps generator will create the SConscript_conandeps
file. This file will provide the following information for SCons: CPPPATH, LIBPATH, BINPATH, LIBS, FRAMEWORKS,
FRAMEWORKPATH, CPPDEFINES, CXXFLAGS, CCFLAGS, SHLINKFLAGS, and LINKFLAGS. This information is generated
for the accumulated list of all dependencies and also for each one of the requirements. You can load it in your consumer
SConscript like this:

Listing 82: consumer SConscript

...
info = SConscript('./SConscript_conandeps')
You can use conandeps to get the information
for all the dependencies.
flags = info["conandeps"]

Or use the name of the requirement if
you only want the information about that one.
flags = info["zlib"]

env.MergeFlags(flags)
...

8.4.16 conan.tools.system

conan.tools.system.package_manager

The tools under conan.tools.system.package_manager are wrappers around some of the most popular system package
managers for different platforms. You can use them to invoke system package managers in recipes and perform the
most typical operations, like installing a package, updating the package manager database or checking if a package is
installed. By default, when you invoke them they will not try to install anything on the system, to change this behavior
you can set the value of the tools.system.package_manager:mode configuration.

You can use these tools inside the system_requirements() method of your recipe, like:

Listing 83: conanfile.py

from conan.tools.system.package_manager import Apt, Yum, PacMan, Zypper

def system_requirements(self):
depending on the platform or the tools.system.package_manager:tool configuration
only one of these will be executed
Apt(self).install(["libgl-dev"])
Yum(self).install(["libglvnd-devel"])
PacMan(self).install(["libglvnd"])
Zypper(self).install(["Mesa-libGL-devel"])

Conan will automatically choose which package manager to use by looking at the Operating System name. In the
example above, if we are running on Ubuntu Linux, Conan will ignore all the calls except for the Apt() one and will

556 Chapter 8. Reference

Conan Documentation, Release 2.1.0

only try to install the packages using the apt-get tool. Conan uses the following mapping by default:

• Apt for Linux with distribution names: ubuntu, debian, raspbian or linuxmint

• Yum for Linux with distribution names: pidora, scientific, xenserver, amazon, oracle, amzn, almalinux or rocky

• Dnf for Linux with distribution names: fedora, rhel, centos, mageia

• Apk for Linux with distribution names: alpine

• Brew for macOS
• PacMan for Linux with distribution names: arch, manjaro and when using Windows with msys2

• Chocolatey for Windows
• Zypper for Linux with distribution names: opensuse, sles

• Pkg for FreeBSD
• PkgUtil for Solaris

You can override this default mapping and set the package manager tool you want to use by default setting the config-
uration property tools.system.package_manager:tool.

Methods available for system package manager tools

All these wrappers share three methods that represent the most common operations with a system package manager.
They take the same form for all of the package managers except for Apt that also accepts the recommends argument for
the install method.

• install(self, packages, update=False, check=True, host_package=True): try to install the list
of packages passed as a parameter. If the parameter check is True it will check if those packages are al-
ready installed before installing them. If the parameter update is True it will try to update the package
manager database before checking and installing. Its behaviour is affected by the value of tools.system.
package_manager:mode configuration. If the parameter host_package is True it will install the packages for
the host machine architecture (the machine that will run the software), it has an effect when cross building. This
method will return the return code of the executed commands.

• install_substitutes(packages_substitutes, update=False, check=True): try to install the list of
lists of substitutes packages passed as a parameter, e.g., [["pkg1", "pkg2"], ["pkg3"]]. It succeeds if one
of the substitutes list is completely installed, so it’s intended to be used when you have different packages for
different distros. Internally, it’s calling the previous install(packages, update=update, check=check)
method, so update and check have the same purpose as above.

• update() update the system package manager database. Its behaviour is affected by the value of tools.
system.package_manager:mode configuration.

• check(packages) check if the list of packages passed as parameter are already installed. It will return a list
with the packages that are missing.

8.4. Recipe tools 557

Conan Documentation, Release 2.1.0

Configuration properties that affect how system package managers are invoked

As explained above there are several [conf] that affect how these tools are invoked:

• tools.system.package_manager:tool: to choose which package manager tool you want to use by default:
"apk", "apt-get", "yum", "dnf", "brew", "pacman", "choco", "zypper", "pkg" or "pkgutil"

• tools.system.package_manager:mode: mode to use when invoking the package manager tool. There are
two possible values:

– "check": it will just check for missing packages at most and will not try to update the package manager
database or install any packages in any case. It will raise an error if required packages are not installed in
the system. This is the default value.

– "report": Just capture the .install() calls to capture packages, but do not check nor install them. Never
raises an error. Mostly useful for conan graph info commands.

– "report-installed": Report, without failing which packages are needed (same as report) and also
check which of them are actually installed in the current system.

– "install": it will allow Conan to perform update or install operations.

• tools.system.package_manager:sudo: Use sudo when invoking the package manager tools in Linux
(False by default)

• tools.system.package_manager:sudo_askpass: Use the -A argument if using sudo in Linux to invoke the
system package manager (False by default)

There are some specific arguments for each of these tools. Here is the complete reference:

conan.tools.system.package_manager.Apk

Will invoke the apk command. Enabled by default for Linux with distribution names: alpine.

Reference

class Apk(conanfile, _arch_names=None)
Constructor method. Note that Apk does not support architecture names since Alpine Linux does not support
multiarch. Therefore, the arch_names argument is ignored.

Parameters
conanfile – the current recipe object. Always use self.

check(*args, **kwargs)
Check if the list of packages passed as parameter are already installed.

Parameters
packages – list of packages to check.

Returns
list of packages from the packages argument that are not installed in the system.

install(*args, **kwargs)
Will try to install the list of packages passed as a parameter. Its behaviour is affected by the value of
tools.system.package_manager:mode configuration.

Parameters
• packages – try to install the list of packages passed as a parameter.

558 Chapter 8. Reference

Conan Documentation, Release 2.1.0

• update – try to update the package manager database before checking and installing.

• check – check if the packages are already installed before installing them.

Returns
the return code of the executed package manager command.

install_substitutes(*args, **kwargs)
Will try to call the install() method with several lists of packages passed as a variable number of param-
eters. This is useful if, for example, the names of the packages are different from one distro or distro
version to another. For example, libxcb for Apt is named libxcb-util-dev in Ubuntu >= 15.0 and
libxcb-util0-dev for other versions. You can call to:

will install the first list of packages that succeeds in the␣
→˓installation
Apt.install_substitutes(["libxcb-util-dev"], ["libxcb-util0-dev"])

Parameters
• packages_alternatives – try to install the list of packages passed as a parameter.

• update – try to update the package manager database before checking and installing.

• check – check if the packages are already installed before installing them.

Returns
the return code of the executed package manager command.

update(*args, **kwargs)
Update the system package manager database. Its behaviour is affected by the value of tools.system.
package_manager:mode configuration.

Returns
the return code of the executed package manager update command.

Alpine Linux does not support multiple architectures in the same repository, so there is no mapping from Conan
architectures to Alpine architectures.

conan.tools.system.package_manager.Apt

Will invoke the apt-get command. Enabled by default for Linux with distribution names: ubuntu, debian, raspbian
and linuxmint.

Reference

class Apt(conanfile, arch_names=None)

Parameters
• conanfile – The current recipe object. Always use self.

• arch_names – This argument maps the Conan architecture setting with the package manager
tool architecture names. It is None by default, which means that it will use a default mapping
for the most common architectures. For example, if you are using x86_64Conan architecture
setting, it will map this value to amd64 for Apt and try to install the <package_name>:amd64
package.

8.4. Recipe tools 559

Conan Documentation, Release 2.1.0

install(packages, update=False, check=True, recommends=False, host_package=True)
Will try to install the list of packages passed as a parameter. Its behaviour is affected by the value of
tools.system.package_manager:mode configuration.

Parameters
• packages – try to install the list of packages passed as a parameter.

• update – try to update the package manager database before checking and installing.

• check – check if the packages are already installed before installing them.

• host_package – install the packages for the host machine architecture (the machine that
will run the software), it has an effect when cross building.

• recommends – if the parameter recommends is False it will add the
'--no-install-recommends' argument to the apt-get command call.

Returns
the return code of the executed apt command.

check(*args, **kwargs)
Check if the list of packages passed as parameter are already installed.

Parameters
packages – list of packages to check.

Returns
list of packages from the packages argument that are not installed in the system.

install_substitutes(*args, **kwargs)
Will try to call the install() method with several lists of packages passed as a variable number of param-
eters. This is useful if, for example, the names of the packages are different from one distro or distro
version to another. For example, libxcb for Apt is named libxcb-util-dev in Ubuntu >= 15.0 and
libxcb-util0-dev for other versions. You can call to:

will install the first list of packages that succeeds in the␣
→˓installation
Apt.install_substitutes(["libxcb-util-dev"], ["libxcb-util0-dev"])

Parameters
• packages_alternatives – try to install the list of packages passed as a parameter.

• update – try to update the package manager database before checking and installing.

• check – check if the packages are already installed before installing them.

Returns
the return code of the executed package manager command.

update(*args, **kwargs)
Update the system package manager database. Its behaviour is affected by the value of tools.system.
package_manager:mode configuration.

Returns
the return code of the executed package manager update command.

You can pass the arch_names argument to override the default Conan mapping like this:

560 Chapter 8. Reference

Conan Documentation, Release 2.1.0

Listing 84: conanfile.py

...
def system_requirements(self):

apt = Apt(self, arch_names={"<conan_arch_setting>": "apt_arch_setting"})
apt.install(["libgl-dev"])

The default mapping that Conan uses for APT packages architecture is:

self._arch_names = {"x86_64": "x86_64",
"x86": "i?86",
"ppc32": "powerpc",
"ppc64le": "ppc64le",
"armv7": "armv7",
"armv7hf": "armv7hl",
"armv8": "aarch64",
"s390x": "s390x"} if arch_names is None else arch_names

conan.tools.system.package_manager.Yum

Will invoke the yum command. Enabled by default for Linux with distribution names: pidora, scientific, xenserver,
amazon, oracle, amzn and almalinux.

Reference

class Yum(conanfile, arch_names=None)

Parameters
• conanfile – the current recipe object. Always use self.

• arch_names – this argument maps the Conan architecture setting with the package manager
tool architecture names. It is None by default, which means that it will use a default mapping
for the most common architectures. For example, if you are using x86 Conan architecture
setting, it will map this value to i?86 for Yum and try to install the <package_name>.i?86
package.

check(*args, **kwargs)
Check if the list of packages passed as parameter are already installed.

Parameters
packages – list of packages to check.

Returns
list of packages from the packages argument that are not installed in the system.

install(*args, **kwargs)
Will try to install the list of packages passed as a parameter. Its behaviour is affected by the value of
tools.system.package_manager:mode configuration.

Parameters
• packages – try to install the list of packages passed as a parameter.

• update – try to update the package manager database before checking and installing.

8.4. Recipe tools 561

Conan Documentation, Release 2.1.0

• check – check if the packages are already installed before installing them.

Returns
the return code of the executed package manager command.

install_substitutes(*args, **kwargs)
Will try to call the install() method with several lists of packages passed as a variable number of param-
eters. This is useful if, for example, the names of the packages are different from one distro or distro
version to another. For example, libxcb for Apt is named libxcb-util-dev in Ubuntu >= 15.0 and
libxcb-util0-dev for other versions. You can call to:

will install the first list of packages that succeeds in the␣
→˓installation
Apt.install_substitutes(["libxcb-util-dev"], ["libxcb-util0-dev"])

Parameters
• packages_alternatives – try to install the list of packages passed as a parameter.

• update – try to update the package manager database before checking and installing.

• check – check if the packages are already installed before installing them.

Returns
the return code of the executed package manager command.

update(*args, **kwargs)
Update the system package manager database. Its behaviour is affected by the value of tools.system.
package_manager:mode configuration.

Returns
the return code of the executed package manager update command.

The default mapping Conan uses for Yum packages architecture is:

self._arch_names = {"x86_64": "x86_64",
"x86": "i?86",
"ppc32": "powerpc",
"ppc64le": "ppc64le",
"armv7": "armv7",
"armv7hf": "armv7hl",
"armv8": "aarch64",
"s390x": "s390x"} if arch_names is None else arch_names

conan.tools.system.package_manager.Dnf

Will invoke the dnf command. Enabled by default for Linux with distribution names: fedora, rhel, centos and mageia.
This tool has exactly the same default values, constructor and methods than the Yum tool.

562 Chapter 8. Reference

Conan Documentation, Release 2.1.0

conan.tools.system.package_manager.PacMan

Will invoke the pacman command. Enabled by default for Linux with distribution names: arch, manjaro and when
using Windows with msys2

Reference

class PacMan(conanfile, arch_names=None)

Parameters
• conanfile – the current recipe object. Always use self.

• arch_names – this argument maps the Conan architecture setting with the package manager
tool architecture names. It is None by default, which means that it will use a default mapping
for the most common architectures. If you are using x86 Conan architecture setting, it will
map this value to lib32 for PacMan and try to install the <package_name>-lib32 package.

check(*args, **kwargs)
Check if the list of packages passed as parameter are already installed.

Parameters
packages – list of packages to check.

Returns
list of packages from the packages argument that are not installed in the system.

install(*args, **kwargs)
Will try to install the list of packages passed as a parameter. Its behaviour is affected by the value of
tools.system.package_manager:mode configuration.

Parameters
• packages – try to install the list of packages passed as a parameter.

• update – try to update the package manager database before checking and installing.

• check – check if the packages are already installed before installing them.

Returns
the return code of the executed package manager command.

install_substitutes(*args, **kwargs)
Will try to call the install() method with several lists of packages passed as a variable number of param-
eters. This is useful if, for example, the names of the packages are different from one distro or distro
version to another. For example, libxcb for Apt is named libxcb-util-dev in Ubuntu >= 15.0 and
libxcb-util0-dev for other versions. You can call to:

will install the first list of packages that succeeds in the␣
→˓installation
Apt.install_substitutes(["libxcb-util-dev"], ["libxcb-util0-dev"])

Parameters
• packages_alternatives – try to install the list of packages passed as a parameter.

• update – try to update the package manager database before checking and installing.

• check – check if the packages are already installed before installing them.

8.4. Recipe tools 563

Conan Documentation, Release 2.1.0

Returns
the return code of the executed package manager command.

update(*args, **kwargs)
Update the system package manager database. Its behaviour is affected by the value of tools.system.
package_manager:mode configuration.

Returns
the return code of the executed package manager update command.

The default mapping Conan uses for PacMan packages architecture is:

self._arch_names = {"x86": "lib32"} if arch_names is None else arch_names

conan.tools.system.package_manager.Zypper

Will invoke the zypper command. Enabled by default for Linux with distribution names: opensuse, sles.

Reference

class Zypper(conanfile)

Parameters
conanfile – The current recipe object. Always use self.

check(*args, **kwargs)
Check if the list of packages passed as parameter are already installed.

Parameters
packages – list of packages to check.

Returns
list of packages from the packages argument that are not installed in the system.

install(*args, **kwargs)
Will try to install the list of packages passed as a parameter. Its behaviour is affected by the value of
tools.system.package_manager:mode configuration.

Parameters
• packages – try to install the list of packages passed as a parameter.

• update – try to update the package manager database before checking and installing.

• check – check if the packages are already installed before installing them.

Returns
the return code of the executed package manager command.

install_substitutes(*args, **kwargs)
Will try to call the install() method with several lists of packages passed as a variable number of param-
eters. This is useful if, for example, the names of the packages are different from one distro or distro
version to another. For example, libxcb for Apt is named libxcb-util-dev in Ubuntu >= 15.0 and
libxcb-util0-dev for other versions. You can call to:

564 Chapter 8. Reference

Conan Documentation, Release 2.1.0

will install the first list of packages that succeeds in the␣
→˓installation
Apt.install_substitutes(["libxcb-util-dev"], ["libxcb-util0-dev"])

Parameters
• packages_alternatives – try to install the list of packages passed as a parameter.

• update – try to update the package manager database before checking and installing.

• check – check if the packages are already installed before installing them.

Returns
the return code of the executed package manager command.

update(*args, **kwargs)
Update the system package manager database. Its behaviour is affected by the value of tools.system.
package_manager:mode configuration.

Returns
the return code of the executed package manager update command.

conan.tools.system.package_manager.Brew

Will invoke the brew command. Enabled by default for macOS.

Reference

class Brew(conanfile)

Parameters
conanfile – The current recipe object. Always use self.

check(*args, **kwargs)
Check if the list of packages passed as parameter are already installed.

Parameters
packages – list of packages to check.

Returns
list of packages from the packages argument that are not installed in the system.

install(*args, **kwargs)
Will try to install the list of packages passed as a parameter. Its behaviour is affected by the value of
tools.system.package_manager:mode configuration.

Parameters
• packages – try to install the list of packages passed as a parameter.

• update – try to update the package manager database before checking and installing.

• check – check if the packages are already installed before installing them.

Returns
the return code of the executed package manager command.

8.4. Recipe tools 565

Conan Documentation, Release 2.1.0

install_substitutes(*args, **kwargs)
Will try to call the install() method with several lists of packages passed as a variable number of param-
eters. This is useful if, for example, the names of the packages are different from one distro or distro
version to another. For example, libxcb for Apt is named libxcb-util-dev in Ubuntu >= 15.0 and
libxcb-util0-dev for other versions. You can call to:

will install the first list of packages that succeeds in the␣
→˓installation
Apt.install_substitutes(["libxcb-util-dev"], ["libxcb-util0-dev"])

Parameters
• packages_alternatives – try to install the list of packages passed as a parameter.

• update – try to update the package manager database before checking and installing.

• check – check if the packages are already installed before installing them.

Returns
the return code of the executed package manager command.

update(*args, **kwargs)
Update the system package manager database. Its behaviour is affected by the value of tools.system.
package_manager:mode configuration.

Returns
the return code of the executed package manager update command.

conan.tools.system.package_manager.Pkg

Will invoke the pkg command. Enabled by default for Linux with distribution names: freebsd.

Reference

class Pkg(conanfile)

Parameters
conanfile – The current recipe object. Always use self.

check(*args, **kwargs)
Check if the list of packages passed as parameter are already installed.

Parameters
packages – list of packages to check.

Returns
list of packages from the packages argument that are not installed in the system.

install(*args, **kwargs)
Will try to install the list of packages passed as a parameter. Its behaviour is affected by the value of
tools.system.package_manager:mode configuration.

Parameters
• packages – try to install the list of packages passed as a parameter.

• update – try to update the package manager database before checking and installing.

566 Chapter 8. Reference

Conan Documentation, Release 2.1.0

• check – check if the packages are already installed before installing them.

Returns
the return code of the executed package manager command.

install_substitutes(*args, **kwargs)
Will try to call the install() method with several lists of packages passed as a variable number of param-
eters. This is useful if, for example, the names of the packages are different from one distro or distro
version to another. For example, libxcb for Apt is named libxcb-util-dev in Ubuntu >= 15.0 and
libxcb-util0-dev for other versions. You can call to:

will install the first list of packages that succeeds in the␣
→˓installation
Apt.install_substitutes(["libxcb-util-dev"], ["libxcb-util0-dev"])

Parameters
• packages_alternatives – try to install the list of packages passed as a parameter.

• update – try to update the package manager database before checking and installing.

• check – check if the packages are already installed before installing them.

Returns
the return code of the executed package manager command.

update(*args, **kwargs)
Update the system package manager database. Its behaviour is affected by the value of tools.system.
package_manager:mode configuration.

Returns
the return code of the executed package manager update command.

conan.tools.system.package_manager.PkgUtil

Will invoke the pkgutil command. Enabled by default for Solaris.

Reference

class PkgUtil(conanfile)

Parameters
conanfile – The current recipe object. Always use self.

check(*args, **kwargs)
Check if the list of packages passed as parameter are already installed.

Parameters
packages – list of packages to check.

Returns
list of packages from the packages argument that are not installed in the system.

install(*args, **kwargs)
Will try to install the list of packages passed as a parameter. Its behaviour is affected by the value of
tools.system.package_manager:mode configuration.

8.4. Recipe tools 567

Conan Documentation, Release 2.1.0

Parameters
• packages – try to install the list of packages passed as a parameter.

• update – try to update the package manager database before checking and installing.

• check – check if the packages are already installed before installing them.

Returns
the return code of the executed package manager command.

install_substitutes(*args, **kwargs)
Will try to call the install() method with several lists of packages passed as a variable number of param-
eters. This is useful if, for example, the names of the packages are different from one distro or distro
version to another. For example, libxcb for Apt is named libxcb-util-dev in Ubuntu >= 15.0 and
libxcb-util0-dev for other versions. You can call to:

will install the first list of packages that succeeds in the␣
→˓installation
Apt.install_substitutes(["libxcb-util-dev"], ["libxcb-util0-dev"])

Parameters
• packages_alternatives – try to install the list of packages passed as a parameter.

• update – try to update the package manager database before checking and installing.

• check – check if the packages are already installed before installing them.

Returns
the return code of the executed package manager command.

update(*args, **kwargs)
Update the system package manager database. Its behaviour is affected by the value of tools.system.
package_manager:mode configuration.

Returns
the return code of the executed package manager update command.

conan.tools.system.package_manager.Chocolatey

Will invoke the choco command. Enabled by default for Windows.

Reference

class Chocolatey(conanfile)

Parameters
conanfile – The current recipe object. Always use self.

check(*args, **kwargs)
Check if the list of packages passed as parameter are already installed.

Parameters
packages – list of packages to check.

Returns
list of packages from the packages argument that are not installed in the system.

568 Chapter 8. Reference

Conan Documentation, Release 2.1.0

install(*args, **kwargs)
Will try to install the list of packages passed as a parameter. Its behaviour is affected by the value of
tools.system.package_manager:mode configuration.

Parameters
• packages – try to install the list of packages passed as a parameter.

• update – try to update the package manager database before checking and installing.

• check – check if the packages are already installed before installing them.

Returns
the return code of the executed package manager command.

install_substitutes(*args, **kwargs)
Will try to call the install() method with several lists of packages passed as a variable number of param-
eters. This is useful if, for example, the names of the packages are different from one distro or distro
version to another. For example, libxcb for Apt is named libxcb-util-dev in Ubuntu >= 15.0 and
libxcb-util0-dev for other versions. You can call to:

will install the first list of packages that succeeds in the␣
→˓installation
Apt.install_substitutes(["libxcb-util-dev"], ["libxcb-util0-dev"])

Parameters
• packages_alternatives – try to install the list of packages passed as a parameter.

• update – try to update the package manager database before checking and installing.

• check – check if the packages are already installed before installing them.

Returns
the return code of the executed package manager command.

update(*args, **kwargs)
Update the system package manager database. Its behaviour is affected by the value of tools.system.
package_manager:mode configuration.

Returns
the return code of the executed package manager update command.

8.5 Configuration files

These are the most important configuration files, used to customize conan.

8.5. Configuration files 569

Conan Documentation, Release 2.1.0

8.5.1 global.conf

The global.conf file is located in the Conan user home directory, e.g., [CONAN_HOME]/global.conf. If it does not
already exist, a default one is automatically created.

Introduction to configuration

global.conf is aimed to save some core/tools/user configuration variables that will be used by Conan. For instance:

• Package ID modes.

• General HTTP(python-requests) configuration.

• Number of retries when downloading/uploading recipes.

• Related tools configurations (used by toolchains, helpers, etc.)

• Others (required Conan version, CLI non-interactive, etc.)

Let’s briefly explain the three types of existing configurations:

• core.*: aimed to configure values of Conan core behavior (download retries, package ID modes, etc.). Only
definable in global.conf file.

• tools.*: aimed to configure values of Conan tools (toolchains, build helpers, etc.) used in your recipes. Defin-
able in both global.conf and profiles.

• user.*: aimed to define personal user configurations. They can define whatever user wants. Definable in both
global.conf and profiles.

To list all the possible configurations available, run conan config list:

$ conan config list
WARN: Downgrading cache from Conan 2.2.3 to 2.1.0
core.cache:storage_path: Absolute path where the packages and database are stored
core.download:download_cache: Define path to a file download cache
core.download:parallel: Number of concurrent threads to download packages
core.download:retry: Number of retries in case of failure when downloading from Conan␣
→˓server
core.download:retry_wait: Seconds to wait between download attempts from Conan server
core.gzip:compresslevel: The Gzip compression level for Conan artifacts (default=9)
core.net.http:cacert_path: Path containing a custom Cacert file
core.net.http:clean_system_proxy: If defined, the proxies system env-vars will be␣
→˓discarded
core.net.http:client_cert: Path or tuple of files containing a client cert (and key)
core.net.http:max_retries: Maximum number of connection retries (requests library)
core.net.http:no_proxy_match: List of urls to skip from proxies configuration
core.net.http:proxies: Dictionary containing the proxy configuration
core.net.http:timeout: Number of seconds without response to timeout (requests library)
core.package_id:default_build_mode: By default, 'None'
core.package_id:default_embed_mode: By default, 'full_mode'
core.package_id:default_non_embed_mode: By default, 'minor_mode'
core.package_id:default_python_mode: By default, 'minor_mode'
core.package_id:default_unknown_mode: By default, 'semver_mode'
core.scm:excluded: List of excluded patterns for builtin git dirty checks
core.sources:download_cache: Folder to store the sources backup
core.sources:download_urls: List of URLs to download backup sources from
core.sources:exclude_urls: URLs which will not be backed up

(continues on next page)

570 Chapter 8. Reference

Conan Documentation, Release 2.1.0

(continued from previous page)

core.sources:upload_url: Remote URL to upload backup sources to
core.upload:parallel: Number of concurrent threads to upload packages
core.upload:retry: Number of retries in case of failure when uploading to Conan server
core.upload:retry_wait: Seconds to wait between upload attempts to Conan server
core.version_ranges:resolve_prereleases: Whether version ranges can resolve to pre-
→˓releases or not
core:allow_uppercase_pkg_names: Temporarily (will be removed in 2.X) allow uppercase␣
→˓names
core:default_build_profile: Defines the default build profile ('default' by default)
core:default_profile: Defines the default host profile ('default' by default)
core:non_interactive: Disable interactive user input, raises error if input necessary
core:required_conan_version: Raise if current version does not match the defined range.
core:skip_warnings: Do not show warnings matching any of the patterns in this list.␣
→˓Current warning tags are 'network', 'deprecated'
core:warnings_as_errors: Treat warnings matching any of the patterns in this list as␣
→˓errors and then raise an exception. Current warning tags are 'network', 'deprecated'
tools.android:cmake_legacy_toolchain: Define to explicitly pass ANDROID_USE_LEGACY_
→˓TOOLCHAIN_FILE in CMake toolchain
tools.android:ndk_path: Argument for the CMAKE_ANDROID_NDK
tools.apple:enable_arc: (boolean) Enable/Disable ARC Apple Clang flags
tools.apple:enable_bitcode: (boolean) Enable/Disable Bitcode Apple Clang flags
tools.apple:enable_visibility: (boolean) Enable/Disable Visibility Apple Clang flags
tools.apple:sdk_path: Path to the SDK to be used
tools.build.cross_building:can_run: (boolean) Indicates whether is possible to run a non-
→˓native app on the same architecture. It's used by 'can_run' tool
tools.build.cross_building:cross_build: (boolean) Decides whether cross-building or not␣
→˓regardless of arch/OS settings. Used by 'cross_building' tool
tools.build:cflags: List of extra C flags used by different toolchains like␣
→˓CMakeToolchain, AutotoolsToolchain and MesonToolchain
tools.build:compiler_executables: Defines a Python dict-like with the compilers path to␣
→˓be used. Allowed keys {'c', 'cpp', 'cuda', 'objc', 'objcxx', 'rc', 'fortran', 'asm',
→˓'hip', 'ispc'}
tools.build:cxxflags: List of extra CXX flags used by different toolchains like␣
→˓CMakeToolchain, AutotoolsToolchain and MesonToolchain
tools.build:defines: List of extra definition flags used by different toolchains like␣
→˓CMakeToolchain and AutotoolsToolchain
tools.build:download_source: Force download of sources for every package
tools.build:exelinkflags: List of extra flags used by CMakeToolchain for CMAKE_EXE_
→˓LINKER_FLAGS_INIT variable
tools.build:jobs: Default compile jobs number -jX Ninja, Make, /MP VS (default: max CPUs)
tools.build:linker_scripts: List of linker script files to pass to the linker used by␣
→˓different toolchains like CMakeToolchain, AutotoolsToolchain, and MesonToolchain
tools.build:sharedlinkflags: List of extra flags used by CMakeToolchain for CMAKE_SHARED_
→˓LINKER_FLAGS_INIT variable
tools.build:skip_test: Do not execute CMake.test() and Meson.test() when enabled
tools.build:sysroot: Pass the --sysroot=<tools.build:sysroot> flag if available. (None␣
→˓by default)
tools.build:verbosity: Verbosity of build systems if set. Possible values are 'quiet'␣
→˓and 'verbose'
tools.cmake.cmake_layout:build_folder_vars: Settings and Options that will produce a␣
→˓different build folder and different CMake presets names
tools.cmake.cmaketoolchain:find_package_prefer_config: Argument for the CMAKE_FIND_

(continues on next page)

8.5. Configuration files 571

Conan Documentation, Release 2.1.0

(continued from previous page)

→˓PACKAGE_PREFER_CONFIG
tools.cmake.cmaketoolchain:generator: User defined CMake generator to use instead of␣
→˓default
tools.cmake.cmaketoolchain:presets_environment: String to define wether to add or not␣
→˓the environment section to the CMake presets. Empty by default, will generate the␣
→˓environment section in CMakePresets. Can take values: 'disabled'.
tools.cmake.cmaketoolchain:system_name: Define CMAKE_SYSTEM_NAME in CMakeToolchain
tools.cmake.cmaketoolchain:system_processor: Define CMAKE_SYSTEM_PROCESSOR in␣
→˓CMakeToolchain
tools.cmake.cmaketoolchain:system_version: Define CMAKE_SYSTEM_VERSION in CMakeToolchain
tools.cmake.cmaketoolchain:toolchain_file: Use other existing file rather than conan_
→˓toolchain.cmake one
tools.cmake.cmaketoolchain:toolset_arch: Toolset architecture to be used as part of␣
→˓CMAKE_GENERATOR_TOOLSET in CMakeToolchain
tools.cmake.cmaketoolchain:toolset_cuda: (Experimental) Path to a CUDA toolset to use,␣
→˓or version if installed at the system level
tools.cmake.cmaketoolchain:user_toolchain: Inject existing user toolchains at the␣
→˓beginning of conan_toolchain.cmake
tools.cmake:cmake_program: Path to CMake executable
tools.cmake:install_strip: Add --strip to cmake.install()
tools.compilation:verbosity: Verbosity of compilation tools if set. Possible values are
→˓'quiet' and 'verbose'
tools.deployer:symlinks: Set to False to disable deployers copying symlinks
tools.env.virtualenv:powershell: If it is set to True it will generate powershell␣
→˓launchers if os=Windows
tools.files.download:retry: Number of retries in case of failure when downloading
tools.files.download:retry_wait: Seconds to wait between download attempts
tools.files.download:verify: If set, overrides recipes on whether to perform SSL␣
→˓verification for their downloaded files. Only recommended to be set while testing
tools.gnu:define_libcxx11_abi: Force definition of GLIBCXX_USE_CXX11_ABI=1 for␣
→˓libstdc++11
tools.gnu:host_triplet: Custom host triplet to pass to Autotools scripts
tools.gnu:make_program: Indicate path to make program
tools.gnu:pkg_config: Path to pkg-config executable used by PkgConfig build helper
tools.google.bazel:bazelrc_path: List of paths to bazelrc files to be used as 'bazel --
→˓bazelrc=rcpath1 ... build'
tools.google.bazel:configs: List of Bazel configurations to be used as 'bazel build --
→˓config=config1 ...'
tools.graph:skip_binaries: Allow the graph to skip binaries not needed in the current␣
→˓configuration (True by default)
tools.info.package_id:confs: List of existing configuration to be part of the package ID
tools.intel:installation_path: Defines the Intel oneAPI installation root path
tools.intel:setvars_args: Custom arguments to be passed onto the setvars.sh|bat script␣
→˓from Intel oneAPI
tools.meson.mesontoolchain:backend: Any Meson backend: ninja, vs, vs2010, vs2012, vs2013,
→˓ vs2015, vs2017, vs2019, xcode
tools.meson.mesontoolchain:extra_machine_files: List of paths for any additional native/
→˓cross file references to be appended to the existing Conan ones
tools.microsoft.bash:active: If Conan is already running inside bash terminal in Windows
tools.microsoft.bash:path: The path to the shell to run when conanfile.win_bash==True
tools.microsoft.bash:subsystem: The subsystem to be used when conanfile.win_bash==True.␣
→˓Possible values: msys2, msys, cygwin, wsl, sfu

(continues on next page)

572 Chapter 8. Reference

Conan Documentation, Release 2.1.0

(continued from previous page)

tools.microsoft.msbuild:installation_path: VS install path, to avoid auto-detect via␣
→˓vswhere, like C:/Program Files (x86)/Microsoft Visual Studio/2019/Community. Use empty␣
→˓string to disable
tools.microsoft.msbuild:max_cpu_count: Argument for the /m when running msvc to build␣
→˓parallel projects
tools.microsoft.msbuild:vs_version: Defines the IDE version (15, 16, 17) when using the␣
→˓msvc compiler. Necessary if compiler.version specifies a toolset that is not the IDE␣
→˓default
tools.microsoft.msbuilddeps:exclude_code_analysis: Suppress MSBuild code analysis for␣
→˓patterns
tools.microsoft.msbuildtoolchain:compile_options: Dictionary with MSBuild compiler␣
→˓options
tools.microsoft:winsdk_version: Use this winsdk_version in vcvars
tools.system.package_manager:mode: Mode for package_manager tools: 'check', 'report',
→˓'report-installed' or 'install'
tools.system.package_manager:sudo: Use 'sudo' when invoking the package manager tools in␣
→˓Linux (False by default)
tools.system.package_manager:sudo_askpass: Use the '-A' argument if using sudo in Linux␣
→˓to invoke the system package manager (False by default)
tools.system.package_manager:tool: Default package manager tool: 'apk', 'apt-get', 'yum',
→˓ 'dnf', 'brew', 'pacman', 'choco', 'zypper', 'pkg' or 'pkgutil'

Description of configurations

core.cache:storage_path

Absolute path to a folder where the Conan packages and the database of the packages will be stored. This folder will
be the heaviest Conan storage folder, as it stores the binary packages dowloaded or created.

Listing 85: global.conf

core.cache.storage_path = C:\Users\danielm\my_conan_storage_folder

Default value: <CONAN_HOME>/p

core.download:download_cache

Absolute path to a folder where the Conan packages will be stored compressed. This is useful to avoid recurrent
downloads of the same packages, especially in CI.

8.5. Configuration files 573

Conan Documentation, Release 2.1.0

Listing 86: global.conf

core.cache.download_cache = C:\Users\danielm\my_download_cache

Default value: Not defined.

User/Tools configurations

Tools and user configurations can be defined in both the global.conf file and Conan profiles. They look like:

Listing 87: global.conf

tools.build:verbosity=verbose
tools.microsoft.msbuild:max_cpu_count=2
tools.microsoft.msbuild:vs_version = 16
tools.build:jobs=10
User conf variable
user.confvar:something=False

Important: Profiles values will have priority over globally defined ones in global.conf.

These are some hints about configuration items scope and naming:

• core.xxx and tools.yyy are Conan built-ins, users cannot define their own ones in these scopes.

• core.xxx can be defined in global.conf or via the --core-conf CLI argument only, but not in profiles.

• tools.yyy can be defined in global.conf, in profiles [conf] section and as CLI -c arguments

• user.zzz can be defined everywhere, and they are totally at the user discretion, no established naming
convention. However this would be more or less expected:

– For open source libraries, specially those in conancenter, user.packagename:conf might be ex-
pected, like the boost recipe defining user.boost:conf conf

– For private usage, the recommendation could be to use something like user.orgname:conf for global
org configuration across all projects, user.orgname.project:conf for project or package configu-
ration, though user.project:conf might be also good if the project name is unique enough.

– They _must_ have one : separator, like user.myorg:conf, but not user.myorg.conf or user.
myorg. This is to disambiguate from patterns, which are discussed below.

Configuration file template

It is possible to use jinja2 template engine for global.conf. When Conan loads this file, it immediately parses and
renders the template, which must result in a standard tools-configuration text.

Using all the cores automatically
tools.build:jobs={{os.cpu_count()}}
Using the current OS
user.myconf.system:name = {{platform.system()}}

Conan also injects detect_api (non-stable, read the reference) to the jinja rendering context. You can use it like this:

574 Chapter 8. Reference

Conan Documentation, Release 2.1.0

user.myteam:myconf1={{detect_api.detect_os()}}
user.myteam:myconf2={{detect_api.detect_arch()}}

For more information on how to use it, please check the detect_api section in the profiles reference.

The Python packages passed to render the template are os and platform for all platforms and distro in Linux
platforms. Additionally, the variables conan_version and conan_home_folder are also available.

Configuration data types

All the values will be interpreted by Conan as the result of the python built-in eval() function:

String
tools.build:verbosity=verbose
Boolean
tools.system.package_manager:sudo=True
Integer
tools.microsoft.msbuild:max_cpu_count=2
List of values
user.myconf.build:ldflags=["--flag1", "--flag2"]
Dictionary
tools.microsoft.msbuildtoolchain:compile_options={"ExceptionHandling": "Async"}

Configuration data operators

It’s also possible to use some extra operators when you’re composing tool configurations in your global.conf or any of
your profiles:

• += == append: appends values at the end of the existing value (only for lists).

• =+ == prepend: puts values at the beginning of the existing value (only for lists).

• *= == update: updates the specified keys only, leaving the rest unmodified (only for dictionaries)

• =! == unset: gets rid of any configuration value.

Listing 88: global.conf

Define the value => ["-f1"]
user.myconf.build:flags=["-f1"]

Append the value ["-f2"] => ["-f1", "-f2"]
user.myconf.build:flags+=["-f2"]

Prepend the value ["-f0"] => ["-f0", "-f1", "-f2"]
user.myconf.build:flags=+["-f0"]

Unset the value
user.myconf.build:flags=!

Define the value => {"a": 1, "b": 2}
user.myconf.build:other={"a": 1, "b": 2}

(continues on next page)

8.5. Configuration files 575

Conan Documentation, Release 2.1.0

(continued from previous page)

Update b = 4 => {"a": 1, "b": 4}
user.myconf.build:other*={"b": 4}

Configuration patterns

You can use package patterns to apply the configuration in those dependencies which are matching:

*:tools.cmake.cmaketoolchain:generator=Ninja
zlib:tools.cmake.cmaketoolchain:generator=Visual Studio 16 2019

This example shows you how to specify a general generator for all your packages except for zlib which is defining
Visual Studio 16 2019 as its generator.

Besides that, it’s quite relevant to say that the order matters. So, if we change the order of the configuration lines
above:

zlib:tools.cmake.cmaketoolchain:generator=Visual Studio 16 2019
*:tools.cmake.cmaketoolchain:generator=Ninja

The result is that you’re specifying a general generator for all your packages, and that’s it. The zlib line has no
effect because it’s the first one evaluated, and after that, Conan is overriding that specific pattern with the most general
one, so it deserves to pay special attention to the order.

8.5.2 Information about built-in confs

This section provides extra information about specific confs.

Networking confs

Configuration of client certificates

Conan supports client TLS certificates. You can configure the path to your existing Cacert file and/or your client
certificate (and the key) using the following configuration variables:

• core.net.http:cacert_path: Path containing a custom Cacert file.

• core.net.http:client_cert: Path or tuple of files containing a client certificate (and the key). See more
details in Python requests and Client Side Certificates

For instance:

Listing 89: [CONAN_HOME]/global.conf
core.net.http:cacert_path=/path/to/cacert.pem
core.net.http:client_cert=('/path/client.cert', '/path/client.key')

See also:
• Managing configuration in your recipes (self.conf_info)

• tools.files.download:verify: Setting tools.files.download:verify=False constitutes a security
risk if enabled, as it disables certificate validation. Do not use it unless you understand the implications (And even
then, properly scoping the conf to only the required recipes is a good idea) or if you are using it for development
purposes

576 Chapter 8. Reference

https://requests.readthedocs.io/en/latest/user/advanced/#client-side-certificates

Conan Documentation, Release 2.1.0

UX confs

Skip warnings

There are several warnings that Conan outputs in certain cases which can be omitted via the core:skip_warnings
conf, by adding the warning tag to its value.

Those warnings are:

• deprecated: Messages for deprecated features such as legacy generators

• network: Messages related to network issues, such as retries

8.5.3 profiles

Introduction to profiles

Conan profiles allow users to set a complete configuration set for settings, options, environment variables (for build
time and runtime context), tool requirements, and configuration variables in a file.

They have this structure:

[settings]
arch=x86_64
build_type=Release
os=Macos

[options]
MyLib:shared=True

[tool_requires]
tool1/0.1@user/channel
*: tool4/0.1@user/channel

[buildenv]
VAR1=value

[runenv]
EnvironmentVar1=My Value

[conf]
tools.build:jobs=2

[replace_requires]
zlib/1.2.123: zlib/*

[replace_tool_requires]
7zip/*: 7zip/system

[platform_requires]
dlib/1.3.22

[platform_tool_requires]
cmake/3.24.2

8.5. Configuration files 577

Conan Documentation, Release 2.1.0

Profiles can be created with the detect option in conan profile command, and edited later. If you don’t specify a name,
the command will create the default profile:

Listing 90: Creating the Conan default profile

$ conan profile detect
apple-clang>=13, using the major as version
Detected profile:
[settings]
arch=x86_64
build_type=Release
compiler=apple-clang
compiler.cppstd=gnu17
compiler.libcxx=libc++
compiler.version=14
os=Macos

WARN: This profile is a guess of your environment, please check it.
WARN: Defaulted to cppstd='gnu17' for apple-clang.
WARN: The output of this command is not guaranteed to be stable and can change in future␣
→˓Conan versions.
WARN: Use your own profile files for stability.
Saving detected profile to [CONAN_HOME]/profiles/default

Note: A note about the detected C++ standard by Conan
Conan will always set the default C++ standard as the one that the detected compiler version uses by default, except
for the case of macOS using apple-clang. In this case, for apple-clang>=11, it sets compiler.cppstd=gnu17. If you
want to use a different C++ standard, you can edit the default profile file directly.

Listing 91: Creating another profile: myprofile

$ conan profile detect --name myprofile
Found apple-clang 14.0
apple-clang>=13, using the major as version
Detected profile:
[settings]
arch=x86_64
build_type=Release
compiler=apple-clang
compiler.cppstd=gnu17
compiler.libcxx=libc++
compiler.version=14
os=Macos

WARN: This profile is a guess of your environment, please check it.
WARN: Defaulted to cppstd='gnu17' for apple-clang.
WARN: The output of this command is not guaranteed to be stable and can change in future␣
→˓Conan versions.
WARN: Use your own profile files for stability.
Saving detected profile to [CONAN_HOME]/profiles/myprofile

Profile files can be used with -pr/--profile option in many commands like conan install or conan create

578 Chapter 8. Reference

Conan Documentation, Release 2.1.0

commands. If you don’t specify any profile at all, the default profile will be always used:

Listing 92: Using the default profile

$ conan create .

Listing 93: Using a myprofile profile

$ conan create . -pr=myprofile

Profiles can be located in different folders:

$ conan install . -pr /abs/path/to/myprofile # abs path
$ conan install . -pr ./relpath/to/myprofile # resolved to current dir
$ conan install . -pr ../relpath/to/myprofile # resolved to relative dir
$ conan install . -pr myprofile # resolved to [CONAN_HOME]/profiles/myprofile

Listing existing profiles in the profiles folder can be done like this:

$ conan profile list
Profiles found in the cache:
default
myprofile1
myprofile2
...

You can also show the profile’s content per context:

$ conan profile show -pr myprofile
Host profile:
[settings]
arch=x86_64
build_type=Release
compiler=apple-clang
compiler.cppstd=gnu17
compiler.libcxx=libc++
compiler.version=14
os=Macos

Build profile:
[settings]
arch=x86_64
build_type=Release
compiler=apple-clang
compiler.cppstd=gnu17
compiler.libcxx=libc++
compiler.version=14
os=Macos

See also:
• Manage your profiles and share them using conan config install.

• Check the command and its sub-commands of conan profile.

8.5. Configuration files 579

Conan Documentation, Release 2.1.0

Profile sections

These are the available sections in profiles:

[settings]

List of settings available from settings.yml:

Listing 94: myprofile

[settings]
arch=x86_64
build_type=Release
compiler=apple-clang
compiler.cppstd=gnu17
compiler.libcxx=libc++
compiler.version=14
os=Macos

[options]

List of options available from your recipe and its dependencies:

Listing 95: myprofile

[options]
my_pkg_option=True
shared=True

[tool_requires]

List of tool_requires required by your recipe or its dependencies:

580 Chapter 8. Reference

Conan Documentation, Release 2.1.0

Listing 96: myprofile

[tool_requires]
cmake/3.25.2

See also:
Read more about tool requires in this section: Using build tools as Conan packages.

[system_tools] (DEPRECATED)

Note: This section is deprecated and has been replaced by [platform_requires] and [platform_tool_requires] sections.

[buildenv]

List of environment variables that will be injected to the environment every time the ConanFile run(cmd,
env="conanbuild") method is invoked (build time context is automatically run by VirtualBuildEnv).

Besides that, it is able to apply some additional operators to each variable declared when you’re composing profiles or
even local variables:

• += == append: appends values at the end of the existing value.

• =+ == prepend: puts values at the beginning of the existing value.

• =! == unset: gets rid of any variable value.

Another essential point to mention is the possibility of defining variables as PATH ones by simply putting (path)
as the prefix of the variable. It is useful to automatically get the append/prepend of the PATH in different systems
(Windows uses ; as separation, and UNIX :).

Listing 97: myprofile

[buildenv]
Define a variable "MyVar1"
MyVar1=My Value; other

Append another value to "MyVar1"
MyVar1+=MyValue12

Define a PATH variable "MyPath1"
MyPath1=(path)/some/path11

Prepend another PATH to "MyPath1"
MyPath1=+(path)/other path/path12

Unset the variable "MyPath1"
MyPath1=!

Then, the result of applying this profile is:

• MyVar1: My Value; other MyValue12

• MyPath1:

8.5. Configuration files 581

Conan Documentation, Release 2.1.0

– Unix: /other path/path12:/some/path11

– Windows: /other path/path12;/some/path11

• mypkg*:PATH: None

[runenv]

List of environment variables that will be injected to the environment every time the ConanFile run(cmd,
env="conanrun") method is invoked (runtime context is automatically run by VirtualRunEnv).

All the operators/patterns explained for [buildenv] applies to this one in the same way:

Listing 98: myprofile

[runenv]
MyVar1=My Value; other
MyVar1+=MyValue12
MyPath1=(path)/some/path11
MyPath1=+(path)/other path/path12
MyPath1=!

[conf]

Note: It’s recommended to have previously read the global.conf section.

List of user/tools configurations:

Listing 99: myprofile

[conf]
tools.build:verbosity=verbose
tools.microsoft.msbuild:max_cpu_count=2
tools.microsoft.msbuild:vs_version = 16
tools.build:jobs=10
User conf variable
user.confvar:something=False

Recall some hints about configuration scope and naming:

• core.xxx configuration can only be defined in global.conf file, but not in profiles

• tools.yyy and user.zzz can be defined in global.conf and they will affect both the “build” and the “host”
context. But configurations defined in a profile [conf] will only affect the respective “build” or “host” context
of the profile, not both.

They can also be used in global.conf , but profiles values will have priority over globally defined ones in global.conf,
so let’s see an example that is a bit more complex, trying different configurations coming from the global.conf and
another profile myprofile:

582 Chapter 8. Reference

Conan Documentation, Release 2.1.0

Listing 100: global.conf

Defining several lists
user.myconf.build:ldflags=["--flag1 value1"]
user.myconf.build:cflags=["--flag1 value1"]

Listing 101: myprofile

[settings]
...

[conf]
Appending values into the existing list
user.myconf.build:ldflags+=["--flag2 value2"]

Unsetting the existing value (it'd be like we define it as an empty value)
user.myconf.build:cflags=!

Prepending values into the existing list
user.myconf.build:ldflags=+["--prefix prefix-value"]

Running, for instance, conan install . -pr myprofile, the configuration output will be something like:

...
Configuration:
[settings]
[options]
[tool_requires]
[conf]
user.myconf.build:cflags=!
user.myconf.build:ldflags=['--prefix prefix-value', '--flag1 value1', '--flag2 value2']
...

[replace_requires]

Warning: This feature is experimental and subject to breaking changes. See the Conan stability section for more
information.

This section allows the user to redefine requires of recipes. This can be useful when a package can be changed by a
similar one like zlib and zlibng. It is also useful to solve conflicts, or to replace some dependencies by system alternatives
wrapped in another Conan package recipe.

References listed under this section work as a literal replacement of requires in recipes, and is done as the very first
step before any other processing of recipe requirements, without processing them or checking for conflicts.

As an example, we could define zlibng as a replacement for the typical zlib

8.5. Configuration files 583

Conan Documentation, Release 2.1.0

Listing 102: myprofile

[replace_requires]
zlib/*: zlibng/*

Using the * pattern for the zlibng reference means that zlib will be replaced by the exact same version of zlibng.

Other examples are:

Listing 103: myprofile

[replace_requires]
dep/*: dep/1.1 # To override dep/[>=1.0 <2] in recipes to a specific␣
→˓version dep/1.1)
dep/*: dep/*@system # To override a dep/1.3 in recipes to dep/1.3@system
dep/*: dep/[>=1 <2] # To override every dep requirement in recipes to a␣
→˓specific version range
dep/*@*/*: dep/*@system/* # To override "dep/1.3@comp/stable" in recipes to the same␣
→˓version with other user but same channel
dep/1.1: dep/1.1@system # To replace exact reference in recipes by the same one in␣
→˓the system
dep/1.1@*: dep/1.1@*/stable # To replace dep/[>=1.0 <2]@comp version range in recipes␣
→˓by 1.1 version in stable chanel

Note: Best practices
• Please make rational use of this feature. It is not a versioning mechanism and is not intended to replace actual

requires in recipes.

• The usage of this feature is intended for temporarily solving conflicts or replacing a specific dependency by a
system one in some cross-build scenarios.

[replace_tool_requires]

Warning: This feature is experimental and subject to breaking changes. See the Conan stability section for more
information.

Same usage as the replace_requires section but in this case for tool_requires.

584 Chapter 8. Reference

Conan Documentation, Release 2.1.0

Listing 104: myprofile

[replace_tool_requires]
cmake/*: cmake/3.25.2

In this case, whatever version of cmake declared in recipes, will be replaced by the reference cmake/3.25.2.

[platform_requires]

Warning: This feature is experimental and subject to breaking changes. See the Conan stability section for more
information.

This section allows the user to redefine requires of recipes replacing them with platform-provided dependencies, this
means that Conan will not try to download the reference or look for it in the cache and will assume that it is installed
in your system and ready to be used.

For example, if the zlib 1.2.11 library is already installed in your system or it is part of your build toolchain and you
would like Conan to use it, you could specify so as:

Listing 105: myprofile

[platform_requires]
zlib/1.2.11

[platform_tool_requires]

Warning: This feature is experimental and subject to breaking changes. See the Conan stability section for more
information.

Same usage as the platform_requires section but in this case for tool_requires such as cmake, meson. . .

As an example, let’s say you have already installed cmake==3.24.2 in your system:

$ cmake --version
cmake version 3.24.2

CMake suite maintained and supported by Kitware (kitware.com/cmake).

And you have in your recipe (or the transitive dependencies) declared a tool_requires, i.e., something like this:

Listing 106: conanfile.py
from conan import ConanFile

class PkgConan(ConanFile):
name = "pkg"
version = "2.0"
....

(continues on next page)

8.5. Configuration files 585

Conan Documentation, Release 2.1.0

(continued from previous page)

Exact version
def build_requirements(self):

self.tool_requires("cmake/3.24.2")

Or even version ranges
def build_requirements(self):

self.tool_requires("cmake/[>=3.20.0]")

Given this situation, it could make sense to want to use your already installed CMake version, so it’s enough to declare
it as a platform_tool_requires in your profile:

Listing 107: myprofile

...

[platform_tool_requires]
cmake/3.24.2

Whenever you want to create the package, you’ll see that build requirement is already satisfied because of the platform
tool declaration:

$ conan create . -pr myprofile --build=missing
...
-------- Computing dependency graph --------
Graph root

virtual
Requirements

pkg/2.0#3488ec5c2829b44387152a6c4b013767 - Cache
Build requirements

cmake/3.24.2 - Platform

-------- Computing necessary packages --------

-------- Computing necessary packages --------
pkg/2.0: Forced build from source
Requirements

pkg/2.0#3488ec5c2829b44387152a6c4b013767:20496b332552131b67fb99bf425f95f64d0d0818 -␣
→˓Build
Build requirements

cmake/3.24.2 - Platform

Note that if the platform_tool_requires declared does not make a strict match with the tool_requires one
(version or version range), then Conan will try to bring them remotely or locally as usual.

586 Chapter 8. Reference

Conan Documentation, Release 2.1.0

Profile rendering

The profiles are rendered as jinja2 templates by default. When Conan loads a profile, it immediately parses and renders
the template, which must result in a standard text profile.

Some of the capabilities of the profile templates are:

• Using the platform information, like obtaining the current OS, is possible because the Python platform module
is added to the render context:

Listing 108: profile_vars

[settings]
os = {{ {"Darwin": "Macos"}.get(platform.system(), platform.system()) }}

• Reading environment variables can be done because the Python os module is added to the render context:

Listing 109: profile_vars

[settings]
build_type = {{ os.getenv("MY_BUILD_TYPE") }}

• Defining your own variables and using them in the profile:

Listing 110: profile_vars

{% set os = "FreeBSD" %}
{% set clang = "my/path/to/clang" %}

[settings]
os = {{ os }}

[conf]
tools.build:compiler_executables={'c': '{{ clang }}', 'cpp': '{{ clang + '++' }}' }

• Joining and defining paths, including referencing the current profile directory. For example, defining a toolchain
whose file is located besides the profile can be done. Besides the os Python module, the variable profile_dir
pointing to the current profile folder is added to the context.

Listing 111: profile_vars

[conf]
tools.cmake.cmaketoolchain:toolchain_file = {{ os.path.join(profile_dir, "toolchain.
→˓cmake") }}

• Getting settings from a filename, including referencing the current profile name. For example, defining a generic
profile which is configured according to its file name. The variable profile_name pointing to the current profile
file name is added to the context.

Listing 112: Linux-x86_64-gcc-12

{% set os, arch, compiler, compiler_version = profile_name.split('-') %}
[settings]
os={{ os }}
arch={{ arch }}
compiler={{ compiler }}

(continues on next page)

8.5. Configuration files 587

Conan Documentation, Release 2.1.0

(continued from previous page)

compiler.version={{ compiler_version }}

• Including or importing other files from profiles folder:

Listing 113: profile_vars

{% set a = "Debug" %}

Listing 114: myprofile

{% import "profile_vars" as vars %}
[settings]
build_type = {{ vars.a }}

• Any other feature supported by jinja2 is possible: for loops, if-else, etc. This would be useful to define custom
per-package settings or options for multiple packages in a large dependency graph.

Profile Rendering with ``detect_api``

Warning: Stability Guarantees: The detect_api, similar to conan profile detect, does not offer strong
stability guarantees.

Usage Recommendations: The detect_api is not a regular API meant for creating new commands or similar func-
tionalities. While auto-detection can be convenient, it’s not the recommended approach for all scenarios. This API
is internal to Conan and is only exposed for profile and global.conf rendering. It’s advised to use it judiciously.

Conan also injects detect_api to the jinja rendering context. With it, it’s possible to use Conan’s auto-detection
capabilities directly within Jinja profile templates. This provides a way to dynamically determine certain settings
based on the environment.

detect_api can be invoked within the Jinja template of a profile. For instance, to detect the operating system and
architecture, you can use:

[settings]
os={{detect_api.detect_os()}}
arch={{detect_api.detect_arch()}}

Similarly, for more advanced detections like determining the compiler, its version, and the associated runtime, you can
use:

{% set compiler, version, compiler_exe = detect_api.detect_default_compiler() %}
{% set runtime, _ = detect_api.default_msvc_runtime(compiler) %}
[settings]
compiler={{compiler}}
compiler.version={{detect_api.default_compiler_version(compiler, version)}}
compiler.runtime={{runtime}}
compiler.cppstd={{detect_api.default_cppstd(compiler, version)}}
compiler.libcxx={{detect_api.detect_libcxx(compiler, version, compiler_exe)}}

detect_api reference:

• `detect_os()`: returns operating system as a string (e.g., “Windows”, “Macos”).

• `detect_arch()`: returns system architecture as a string (e.g., “x86_64”, “armv8”).

588 Chapter 8. Reference

Conan Documentation, Release 2.1.0

• `detect_libcxx(compiler, version, compiler_exe=None)`: returns C++ standard library as a string (e.g., “lib-
stdc++”, “libc++”).

• `default_msvc_runtime(compiler)`: returns tuple with runtime (e.g., “dynamic”) and its version (e.g., “v143”).

• `default_cppstd(compiler, compiler_version)`: returns default C++ standard as a string (e.g., “gnu14”).

• `detect_default_compiler()`: returns tuple with compiler name (e.g., “gcc”), its version and the executable path.

• `detect_msvc_update(version)`: returns MSVC update version as a string (e.g., “7”).

• `default_msvc_ide_version(version)`: returns MSVC IDE version as a string (e.g., “17”).

• `default_compiler_version(compiler, version)`: returns the default version that
Conan uses in profiles, typically dropping some of the minor or patch digits, that do not affect binary
compatibility.

Profile patterns

Profiles (and everywhere where a setting or option is defined) also support patterns definition, so you can override some
settings, configuration variables, etc. for some specific packages:

Listing 115: zlib_clang_profile

[settings]
Only for zlib
zlib/*:compiler=clang
zlib/*:compiler.version=3.5
zlib/*:compiler.libcxx=libstdc++11

For the all the dependency tree
compiler=gcc
compiler.version=4.9
compiler.libcxx=libstdc++11

[options]
shared=True option only for zlib package
zlib/*:shared=True

[buildenv]
For the all the dependency tree
*:MYVAR=my_var

[conf]
Only for zlib
zlib/*:tools.build:compiler_executables={'c': '/usr/bin/clang', 'cpp': '/usr/bin/clang++
→˓'}

Your build tool will locate clang compiler only for the zlib package and gcc (default one) for the rest of your dependency
tree.

Important: Putting only zlib: is deprecated behaviour and won’t work, you have to always put a pattern-like
expression, e.g., zlib*:, zlib/*:, zlib/1.*:, etc.

They accept patterns too, like -s *@myuser/*, which means that packages that have the username “myuser” will use
clang 3.5 as compiler, and gcc otherwise:

8.5. Configuration files 589

Conan Documentation, Release 2.1.0

Listing 116: myprofile

[settings]
@myuser/:compiler=clang
@myuser/:compiler.version=3.5
@myuser/:compiler.libcxx=libstdc++11
compiler=gcc
compiler.version=4.9
compiler.libcxx=libstdc++11

Also & can be specified as the package name. It will apply only to the consumer conanfile (.py or .txt). This is a special
case because the consumer conanfile might not declare a name so it would be impossible to reference it.

Listing 117: myprofile

[settings]
&:compiler=gcc
&:compiler.version=4.9
&:compiler.libcxx=libstdc++11

Partial matches are also supported, so you can define a pattern like zlib* to match all the zlib like libraries, so it will
match everything starting with zlib, like zlib, zlibng, zlib/1.2.8@user/channel, etc.

Listing 118: myprofile

[settings]
zlib*:compiler=clang
zlib*:compiler.version=3.5
zlib*:compiler.libcxx=libstdc++11

Profile includes

You can include other profile files using the include() statement. The path can be relative to the current profile,
absolute, or a profile name from the default profile location in the local cache.

The include() statement has to be at the top of the profile file:

Listing 119: gcc_49

[settings]
compiler=gcc
compiler.version=4.9
compiler.libcxx=libstdc++11

Listing 120: myprofile

include(gcc_49)

[settings]
zlib/*:compiler=clang
zlib/*:compiler.version=3.5
zlib/*:compiler.libcxx=libstdc++11

The final result of using myprofile is:

590 Chapter 8. Reference

Conan Documentation, Release 2.1.0

Listing 121: myprofile (virtual result)

[settings]
compiler=gcc
compiler.libcxx=libstdc++11
compiler.version=4.9
zlib/*:compiler=clang
zlib/*:compiler.libcxx=libstdc++11
zlib/*:compiler.version=3.5

See also:
• How to compose two or more profiles

8.5.4 settings.yml

This configuration file is located in the Conan user home, i.e., [CONAN_HOME]/settings.yml. It looks like this:

This file was generated by Conan. Remove this comment if you edit this file or Conan
will destroy your changes.
os:

Windows:
subsystem: [null, cygwin, msys, msys2, wsl]

WindowsStore:
version: ["8.1", "10.0"]

WindowsCE:
platform: [ANY]
version: ["5.0", "6.0", "7.0", "8.0"]

Linux:
iOS:

version: &ios_version
["7.0", "7.1", "8.0", "8.1", "8.2", "8.3", "9.0", "9.1", "9.2", "9.3",

→˓ "10.0", "10.1", "10.2", "10.3",
"11.0", "11.1", "11.2", "11.3", "11.4", "12.0", "12.1", "12.2", "12.3

→˓", "12.4",
"13.0", "13.1", "13.2", "13.3", "13.4", "13.5", "13.6", "13.7",
"14.0", "14.1", "14.2", "14.3", "14.4", "14.5", "14.6", "14.7", "14.8

→˓",
"15.0", "15.1", "15.2", "15.3", "15.4", "15.5", "15.6", "16.0", "16.1

→˓",
"16.2", "16.3", "16.4", "16.5", "16.6", "17.0"]

sdk: ["iphoneos", "iphonesimulator"]
sdk_version: [null, "11.3", "11.4", "12.0", "12.1", "12.2", "12.4",

"13.0", "13.1", "13.2", "13.4", "13.5", "13.6", "13.7",
"14.0", "14.1", "14.2", "14.3", "14.4", "14.5", "15.0", "15.2",

→˓"15.4",
"15.5", "16.0", "16.1", "16.2", "16.4", "17.0"]

watchOS:
version: ["4.0", "4.1", "4.2", "4.3", "5.0", "5.1", "5.2", "5.3", "6.0", "6.1",

→˓"6.2",
"7.0", "7.1", "7.2", "7.3", "7.4", "7.5", "7.6", "8.0", "8.1", "8.3",

→˓ "8.4",
(continues on next page)

8.5. Configuration files 591

Conan Documentation, Release 2.1.0

(continued from previous page)

"8.5", "8.6", "8.7", "9.0", "9.1", "9.2", "9.3", "9.4", "9.5", "9.6",
→˓ "10.0"]

sdk: ["watchos", "watchsimulator"]
sdk_version: [null, "4.3", "5.0", "5.1", "5.2", "5.3", "6.0", "6.1", "6.2",

"7.0", "7.1", "7.2", "7.4", "8.0", "8.0.1", "8.3", "8.5", "9.0",
→˓"9.1",

"9.4", "10.0"]
tvOS:

version: ["11.0", "11.1", "11.2", "11.3", "11.4", "12.0", "12.1", "12.2", "12.3",
→˓ "12.4",

"13.0", "13.2", "13.3", "13.4", "14.0", "14.2", "14.3", "14.4", "14.5
→˓",

"14.6", "14.7", "15.0", "15.1", "15.2", "15.3", "15.4", "15.5", "15.6
→˓",

"16.0", "16.1", "16.2", "16.3", "16.4", "16.5", "16.6", "17.0"]
sdk: ["appletvos", "appletvsimulator"]
sdk_version: [null, "11.3", "11.4", "12.0", "12.1", "12.2", "12.4",

"13.0", "13.1", "13.2", "13.4", "14.0", "14.2", "14.3", "14.5",
→˓"15.0",

"15.2", "15.4", "16.0", "16.1", "16.4", "17.0"]
visionOS:

version: ["1.0"]
sdk: ["xros", "xrsimulator"]
sdk_version: [null, "1.0"]

Macos:
version: [null, "10.6", "10.7", "10.8", "10.9", "10.10", "10.11", "10.12", "10.13

→˓", "10.14", "10.15",
"11.0", "11.1", "11.2", "11.3", "11.4", "11.5", "11.6", "11.7",
"12.0", "12.1", "12.2", "12.3", "12.4", "12.5", "12.6",
"13.0", "13.1", "13.2", "13.3", "13.4", "13.5", "13.6",
"14.0"]

sdk_version: [null, "10.13", "10.14", "10.15", "11.0", "11.1", "11.3", "12.0",
→˓"12.1",

"12.3", "13.0", "13.1", "13.3", "14.0"]
subsystem:

null:
catalyst:

ios_version: *ios_version
Android:

api_level: [ANY]
FreeBSD:
SunOS:
AIX:
Arduino:

board: [ANY]
Emscripten:
Neutrino:

version: ["6.4", "6.5", "6.6", "7.0", "7.1"]
baremetal:
VxWorks:

version: ["7"]
arch: [x86, x86_64, ppc32be, ppc32, ppc64le, ppc64,

(continues on next page)

592 Chapter 8. Reference

Conan Documentation, Release 2.1.0

(continued from previous page)

armv4, armv4i, armv5el, armv5hf, armv6, armv7, armv7hf, armv7s, armv7k, armv8,␣
→˓armv8_32, armv8.3, arm64ec,

sparc, sparcv9,
mips, mips64, avr, s390, s390x, asm.js, wasm, sh4le,
e2k-v2, e2k-v3, e2k-v4, e2k-v5, e2k-v6, e2k-v7,
xtensalx6, xtensalx106, xtensalx7]

compiler:
sun-cc:

version: ["5.10", "5.11", "5.12", "5.13", "5.14", "5.15"]
threads: [null, posix]
libcxx: [libCstd, libstdcxx, libstlport, libstdc++]

gcc:
version: ["4.1", "4.4", "4.5", "4.6", "4.7", "4.8", "4.9",

"5", "5.1", "5.2", "5.3", "5.4", "5.5",
"6", "6.1", "6.2", "6.3", "6.4", "6.5",
"7", "7.1", "7.2", "7.3", "7.4", "7.5",
"8", "8.1", "8.2", "8.3", "8.4", "8.5",
"9", "9.1", "9.2", "9.3", "9.4", "9.5",
"10", "10.1", "10.2", "10.3", "10.4", "10.5",
"11", "11.1", "11.2", "11.3", "11.4",
"12", "12.1", "12.2", "12.3",
"13", "13.1", "13.2"]

libcxx: [libstdc++, libstdc++11]
threads: [null, posix, win32] # Windows MinGW
exception: [null, dwarf2, sjlj, seh] # Windows MinGW
cppstd: [null, 98, gnu98, 11, gnu11, 14, gnu14, 17, gnu17, 20, gnu20, 23, gnu23]

msvc:
version: [170, 180, 190, 191, 192, 193]
update: [null, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
runtime: [static, dynamic]
runtime_type: [Debug, Release]
cppstd: [null, 14, 17, 20, 23]
toolset: [null, v110_xp, v120_xp, v140_xp, v141_xp]

clang:
version: ["3.3", "3.4", "3.5", "3.6", "3.7", "3.8", "3.9", "4.0",

"5.0", "6.0", "7.0", "7.1",
"8", "9", "10", "11", "12", "13", "14", "15", "16", "17"]

libcxx: [null, libstdc++, libstdc++11, libc++, c++_shared, c++_static]
cppstd: [null, 98, gnu98, 11, gnu11, 14, gnu14, 17, gnu17, 20, gnu20, 23, gnu23]
runtime: [null, static, dynamic]
runtime_type: [null, Debug, Release]
runtime_version: [null, v140, v141, v142, v143]

apple-clang:
version: ["5.0", "5.1", "6.0", "6.1", "7.0", "7.3", "8.0", "8.1", "9.0", "9.1",

→˓"10.0", "11.0", "12.0", "13", "13.0", "13.1", "14", "14.0", "15", "15.0"]
libcxx: [libstdc++, libc++]
cppstd: [null, 98, gnu98, 11, gnu11, 14, gnu14, 17, gnu17, 20, gnu20, 23, gnu23]

intel-cc:
version: ["2021.1", "2021.2", "2021.3"]
update: [null, ANY]
mode: ["icx", "classic", "dpcpp"]
libcxx: [null, libstdc++, libstdc++11, libc++]

(continues on next page)

8.5. Configuration files 593

Conan Documentation, Release 2.1.0

(continued from previous page)

cppstd: [null, 98, gnu98, "03", gnu03, 11, gnu11, 14, gnu14, 17, gnu17, 20,␣
→˓gnu20, 23, gnu23]

runtime: [null, static, dynamic]
runtime_type: [null, Debug, Release]

qcc:
version: ["4.4", "5.4", "8.3"]
libcxx: [cxx, gpp, cpp, cpp-ne, accp, acpp-ne, ecpp, ecpp-ne]
cppstd: [null, 98, gnu98, 11, gnu11, 14, gnu14, 17, gnu17]

mcst-lcc:
version: ["1.19", "1.20", "1.21", "1.22", "1.23", "1.24", "1.25"]
libcxx: [libstdc++, libstdc++11]
cppstd: [null, 98, gnu98, 11, gnu11, 14, gnu14, 17, gnu17, 20, gnu20, 23, gnu23]

build_type: [null, Debug, Release, RelWithDebInfo, MinSizeRel]

As you can see, the possible values of settings are defined in the same file. This is done to ensure matching nam-
ing and spelling as well as defining a common settings model among users and the OSS community. Some general
information about settings:

• If a setting is allowed to be set to any value, you can use ANY.

• If a setting is allowed to be set to any value or it can also be unset, you can use [null, ANY].

However, this configuration file can be modified to any needs, including new settings or sub-settings and their values.
If you want to distribute an unified settings.yml file you can use the conan config install command.

See also:
• Conan packages binary compatibility: the package ID

• settings

Operating systems

baremetal operating system is a convention meaning that the binaries run directly on the hardware, without an oper-
ating system or equivalent layer. This is to differentiate to the null value, which is associated to the “this value is not
defined” semantics. baremetal is a common name convention for embedded microprocessors and microcontrollers’
code. It is expected that users might customize the space inside the baremetal setting with further subsettings to
specify their specific hardware platforms, boards, families, etc. At the moment the os=baremetal value is still not
used by Conan builtin toolchains and helpers, but it is expected that they can evolve and start using it.

Compilers

Some notes about different compilers:

594 Chapter 8. Reference

Conan Documentation, Release 2.1.0

msvc

• It uses the compiler version, that is 190 (19.0), 191 (19.1), etc, instead of the Visual Studio IDE (15, 16, etc).

• It is only used by the new build integrations in conan.tools.cmake and conan.tools.microsoft, but not the previous
ones.

When using the msvc compiler, the Visual Studio toolset version (the actual vcvars activation and MSBuild location)
will be defined by the default provided by that compiler version:

• msvc compiler version ‘190’: Visual Studio 14 2015

• msvc compiler version ‘191’: Visual Studio 15 2017

• msvc compiler version ‘192’: Visual Studio 16 2019

• msvc compiler version ‘193’: Visual Studio 17 2022

This can be configured in your profiles with the tools.microsoft.msbuild:vs_version configuration:

[settings]
compiler=msvc
compiler.version=190

[conf]
tools.microsoft.msbuild:vs_version = 16

In this case, the vcvars will activate the Visual Studio 16 installation, but the 190 compiler version will still be used
because the necessary toolset=v140 will be set.

The settings define the last digit update: [null, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9], which by default is null
and means that Conan assumes binary compatibility for the compiler patches, which works in general for the Microsoft
compilers. For cases where finer control is desired, you can just add the update part to your profiles:

[settings]
compiler=msvc
compiler.version=191
compiler.update=3

This will be equivalent to the full version 1913 (19.13). If even further details are desired, you could even add your
own digits to the update subsetting in settings.yml.

intel-cc

Warning: This feature is experimental and subject to breaking changes. See the Conan stability section for more
information.

This compiler is aimed to handle the new Intel oneAPI DPC++/C++/Classic compilers. Instead of having n different
compilers, you have 3 different modes of working:

• icx for Intel oneAPI C++.

• dpcpp for Intel oneAPI DPC++.

• classic for Intel C++ Classic ones.

8.5. Configuration files 595

Conan Documentation, Release 2.1.0

Besides that, Intel releases some versions with revisions numbers so the update field is supposed to be any possible
minor number for the Intel compiler version used, e.g, compiler.version=2021.1 and compiler.update=311
mean Intel version is 2021.1.311.

Architectures

Here you can find a brief explanation of each of the architectures defined as arch, arch_build and arch_target
settings.

• x86: The popular 32 bit x86 architecture.

• x86_64: The popular 64 bit x64 architecture.

• ppc64le: The PowerPC 64 bit Big Endian architecture.

• ppc32: The PowerPC 32 bit architecture.

• ppc64le: The PowerPC 64 bit Little Endian architecture.

• ppc64: The PowerPC 64 bit Big Endian architecture.

• armv5el: The ARM 32 bit version 5 architecture, soft-float.

• armv5hf : The ARM 32 bit version 5 architecture, hard-float.

• armv6: The ARM 32 bit version 6 architecture.

• armv7: The ARM 32 bit version 7 architecture.

• armv7hf : The ARM 32 bit version 7 hard-float architecture.

• armv7s: The ARM 32 bit version 7 swift architecture mostly used in Apple’s A6 and A6X chips on iPhone 5,
iPhone 5C and iPad 4.

• armv7k: The ARM 32 bit version 7 k architecture mostly used in Apple’s WatchOS.

• armv8: The ARM 64 bit and 32 bit compatible version 8 architecture. It covers only the aarch64 instruction
set.

• armv8_32: The ARM 32 bit version 8 architecture. It covers only the aarch32 instruction set (a.k.a. ILP32).

• armv8.3: The ARM 64 bit and 32 bit compatible version 8.3 architecture. Also known as arm64e, it is used on
the A12 chipset added in the latest iPhone models (XS/XS Max/XR).

• arm64e: Windows 11 ARM64 (Emulation Compatible). This architecture support is experimental and incom-
plete. The only usage is to define CMAKE_GENERATOR_PLATFORM in CMake VS generators. Report new
issues in Github if necessary.

• sparc: The SPARC (Scalable Processor Architecture) originally developed by Sun Microsystems.

• sparcv9: The SPARC version 9 architecture.

• mips: The 32 bit MIPS (Microprocessor without Interlocked Pipelined Stages) developed by MIPS Technologies
(formerly MIPS Computer Systems).

• mips64: The 64 bit MIPS (Microprocessor without Interlocked Pipelined Stages) developed by MIPS Technolo-
gies (formerly MIPS Computer Systems).

• avr: The 8 bit AVR microcontroller architecture developed by Atmel (Microchip Technology).

• s390: The 32 bit address Enterprise Systems Architecture 390 from IBM.

• s390x: The 64 bit address Enterprise Systems Architecture 390 from IBM.

596 Chapter 8. Reference

Conan Documentation, Release 2.1.0

• asm.js: The subset of JavaScript that can be used as low-level target for compilers, not really a processor archi-
tecture, it’s produced by Emscripten. Conan treats it as an architecture to align with build systems design (e.g.
GNU auto tools and CMake).

• wasm: The Web Assembly, not really a processor architecture, but byte-code format for Web, it’s produced by
Emscripten. Conan treats it as an architecture to align with build systems design (e.g. GNU auto tools and
CMake).

• sh4le: The Hitachi SH-4 SuperH architecture.

• e2k-v2: The Elbrus 2000 v2 512 bit VLIW (Very Long Instruction Word) architecture (Elbrus 2CM, Elbrus 2C+
CPUs) originally developed by MCST (Moscow Center of SPARC Technologies).

• e2k-v3: The Elbrus 2000 v3 512 bit VLIW (Very Long Instruction Word) architecture (Elbrus 2S, aka Elbrus
4C, CPU) originally developed by MCST (Moscow Center of SPARC Technologies).

• e2k-v4: The Elbrus 2000 v4 512 bit VLIW (Very Long Instruction Word) architecture (Elbrus 8C, Elbrus 8C1,
Elbrus 1C+ and Elbrus 1CK CPUs) originally developed by MCST (Moscow Center of SPARC Technologies).

• e2k-v5: The Elbrus 2000 v5 512 bit VLIW (Very Long Instruction Word) architecture (Elbrus 8C2 ,aka Elbrus
8CB, CPU) originally developed by MCST (Moscow Center of SPARC Technologies).

• e2k-v6: The Elbrus 2000 v6 512 bit VLIW (Very Long Instruction Word) architecture (Elbrus 2C3, Elbrus 12C
and Elbrus 16C CPUs) originally developed by MCST (Moscow Center of SPARC Technologies).

• e2k-v7: The Elbrus 2000 v7 512 bit VLIW (Very Long Instruction Word) architecture (Elbrus 32C CPU) origi-
nally developed by MCST (Moscow Center of SPARC Technologies).

• xtensalx6: Xtensa LX6 DPU for ESP32 microcontroller.

• xtensalx106: Xtensa LX6 DPU for ESP8266 microcontroller.

• xtensalx7: Xtensa LX7 DPU for ESP32-S2 and ESP32-S3 microcontrollers.

C++ standard libraries (aka compiler.libcxx)

compiler.libcxx sub-setting defines C++ standard libraries implementation to be used. The sub-setting applies only
to certain compilers, e.g. it applies to clang, apple-clang and gcc, but doesn’t apply to Visual Studio.

• libstdc++ (gcc, clang, apple-clang, sun-cc): The GNU C++ Library. NOTE that this implicitly defines
_GLIBCXX_USE_CXX11_ABI=0 to use old ABI. Might be a wise choice for old systems, such as CentOS 6.
On Linux systems, you may need to install libstdc++-dev (package name could be different in various distros) in
order to use the standard library. NOTE that on Apple systems usage of libstdc++ has been deprecated.

• libstdc++11 (gcc, clang, apple-clang): The GNU C++ Library. NOTE that this implicitly defines
_GLIBCXX_USE_CXX11_ABI=1 to use new ABI. Might be a wise choice for newer systems, such as Ubuntu
20. On Linux systems, you may need to install libstdc++-dev (package name could be different in various distros)
in order to use the standard library. NOTE that on Apple systems usage of libstdc++ has been deprecated.

• libc++ (clang, apple-clang): LLVM libc++. On Linux systems, you may need to install libc++-dev (package
name could be different in various distros) in order to use the standard library.

• c++_shared (clang, Android only): use LLVM libc++ as a shared library. Refer to the C++ Library Support for
the additional details.

• c++_static (clang, Android only): use LLVM libc++ as a static library. Refer to the C++ Library Support for the
additional details.

• libCstd (sun-cc): Rogue Wave’s stdlib. See Comparing C++ Standard Libraries libCstd, libstlport, and libstdcxx.

• libstlport (sun-cc): STLport. See Comparing C++ Standard Libraries libCstd, libstlport, and libstdcxx.

8.5. Configuration files 597

https://gcc.gnu.org/onlinedocs/libstdc++/
https://packages.debian.org/sid/libstdc++-dev
https://gcc.gnu.org/onlinedocs/libstdc++/
https://packages.debian.org/sid/libstdc++-dev
https://libcxx.llvm.org/
https://packages.debian.org/sid/libc++-dev
https://libcxx.llvm.org/
https://developer.android.com/ndk/guides/cpp-support
https://libcxx.llvm.org/
https://developer.android.com/ndk/guides/cpp-support
https://www.oracle.com/solaris/technologies/cmp-stlport-libcstd.html
http://www.stlport.org/
https://www.oracle.com/solaris/technologies/cmp-stlport-libcstd.html

Conan Documentation, Release 2.1.0

• libstdcxx (sun-cc): Apache C++ Standard Library. See Comparing C++ Standard Libraries libCstd, libstlport,
and libstdcxx.

• gpp (qcc): GNU C++ lib. See QCC documentation.

• cpp (qcc): Dinkum C++ lib. See QCC documentation.

• cpp-ne (qcc): Dinkum C++ lib (no exceptions). See QCC documentation.

• acpp (qcc): Dinkum Abridged C++ lib. See QCC documentation.

• acpp-ne (qcc): Dinkum Abridged C++ lib (no exceptions). See QCC documentation.

• ecpp (qcc): Embedded Dinkum C++ lib. See QCC documentation.

• ecpp-ne (qcc): Embedded Dinkum C++ lib (no exceptions). See QCC documentation.

• cxx (qcc): LLVM C++. See QCC documentation.

Customizing settings

Settings are also customizable to add your own ones:

Adding new settings

It is possible to add new settings at the root of the settings.yml file, something like:

os:
Windows:

subsystem: [null, cygwin, msys, msys2, wsl]
distro: [null, RHEL6, CentOS, Debian]

If we want to create different binaries from our recipes defining this new setting, we would need to add to our recipes
that:

class Pkg(ConanFile):
settings = "os", "compiler", "build_type", "arch", "distro"

The value null allows for not defining it (which would be a default value, valid for all the other distros). It is also
possible to define values for it in the profiles:

[settings]
os = "Linux"
distro = "CentOS"
compiler = "gcc"

And use their values to affect our build if desired:

class Pkg(ConanFile):
settings = "os", "compiler", "build_type", "arch", "distro"

def generate(self):
tc = CMakeToolchain(self)
if self.settings.distro == "CentOS":

tc.cache_variables["SOME_CENTOS_FLAG"] = "Some CentOS Value"
...

598 Chapter 8. Reference

http://people.apache.org/~gmcdonald/stdcxx/index.html
https://www.oracle.com/solaris/technologies/cmp-stlport-libcstd.html
https://www.oracle.com/solaris/technologies/cmp-stlport-libcstd.html
https://www.qnx.com/developers/docs/6.5.0SP1.update/com.qnx.doc.neutrino_utilities/q/qcc.html
https://www.qnx.com/developers/docs/6.5.0SP1.update/com.qnx.doc.neutrino_utilities/q/qcc.html
https://www.qnx.com/developers/docs/6.5.0SP1.update/com.qnx.doc.neutrino_utilities/q/qcc.html
https://www.qnx.com/developers/docs/6.5.0SP1.update/com.qnx.doc.neutrino_utilities/q/qcc.html
https://www.qnx.com/developers/docs/6.5.0SP1.update/com.qnx.doc.neutrino_utilities/q/qcc.html
https://www.qnx.com/developers/docs/6.5.0SP1.update/com.qnx.doc.neutrino_utilities/q/qcc.html
https://www.qnx.com/developers/docs/6.5.0SP1.update/com.qnx.doc.neutrino_utilities/q/qcc.html
https://www.qnx.com/developers/docs/6.5.0SP1.update/com.qnx.doc.neutrino_utilities/q/qcc.html

Conan Documentation, Release 2.1.0

Adding new sub-settings

The above approach requires modification to all recipes to take it into account. It is also possible to define kind of
incompatible settings, like os=Windows and distro=CentOS. While adding new settings is totally suitable, it might
make more sense to add it as a new sub-setting of the Linux OS:

os:
Windows:

subsystem: [null, cygwin, msys, msys2, wsl]
Linux:

distro: [null, RHEL6, CentOS, Debian]

With this definition we could define our profiles as:

[settings]
os = "Linux"
os.distro = "CentOS"
compiler = "gcc"

And any attempt to define os.distro for another os value rather than Linux will raise an error.

As this is a sub-setting, it will be automatically taken into account in all recipes that declare an os setting. Note that
having a value of distro=null possible is important if you want to keep previously created binaries, otherwise you
would be forcing to always define a specific distro value, and binaries created without this sub-setting, won’t be usable
anymore.

The sub-setting can also be accessed from recipes:

class Pkg(ConanFile):
settings = "os", "compiler", "build_type", "arch" # Note, no "distro" defined here

def generate(self):
tc = CMakeToolchain(self)
if self.settings.os == "Linux" and self.settings.os.distro == "CentOS":

tc.cache_variables["SOME_CENTOS_FLAG"] = "Some CentOS Value"

It is possible to have ANY to define nested subsettings, being the ANY the fallback for any value not matching the defined
ones:

os:
ANY:

version: [null, ANY]
Ubuntu:

version: ["18.04", "20.04"]

This will allow settings like -s os=MyOS -s os.version=1.2.3, because the version can be ANY for os!=Ubuntu,
but if we try -s os=Ubuntu -s os.version=1.2.3 it will error because Ubuntu only accept those defined versions.

8.5. Configuration files 599

Conan Documentation, Release 2.1.0

Add new values

In the same way we have added a new distro sub-setting, it is possible to add new values to existing settings and
sub-settings. For example, if some compiler version is not present in the range of accepted values, you can add those
new values.

You can also add a completely new compiler:

os:
Windows:

subsystem: [null, cygwin, msys, msys2, wsl]
...

compiler:
gcc:

...
mycompiler:

version: [1.1, 1.2]
msvc:

This works as the above regarding profiles, and the way they can be accessed from recipes. The main issue with custom
compilers is that the builtin build helpers, like CMake, MSBuild, etc, internally contains code that will check for those
values. For example, the MSBuild build helper will only know how to manage the msvc setting and sub-settings, but
not the new compiler. For those cases, custom logic can be implemented in the recipes:

class Pkg(ConanFile):
settings = "os", "compiler", "build_type", "arch"

def build(self):
if self.settings.compiler == "mycompiler":

my_custom_compile = ["some", "--flags", "for", "--my=compiler"]
self.run(["mycompiler", "."] + my_custom_compile)

Note: You can remove items from settings.yml file: compilers, OS, architectures, etc. Do that only in the case you
really want to protect against creation of binaries for other platforms other than your main supported ones. In the general
case, you can leave them, the binary configurations are managed in profiles, and you want to define your supported
configurations in profiles, not by restricting the settings.yml

Note: If you customize your settings.yml, you can share, distribute and sync this configuration with your team and CI
machines with the conan config install command.

settings_user.yml

The previous section explains how to customize the Conan settings.yml, but you could also create your set-
tings_user.yml. This file will contain only the new fields-values that you want to use in your recipes, so the final
result will be a composition of both files, the settings.yml and the settings_user.yml.

See also:
• Customize your settings: create your settings_user.yml

600 Chapter 8. Reference

Conan Documentation, Release 2.1.0

8.5.5 remotes.json

The remotes.json file is located in the Conan user home directory, e.g., [CONAN_HOME]/remotes.json.

The default file created by Conan looks like this:

Listing 122: remotes.json
{
"remotes": [
{
"name": "conancenter",
"url": "https://center.conan.io",
"verify_ssl": true
}

]
}

Essentially, it tells Conan where to list/upload/download the recipes/binaries from the remotes specified by their URLs.

The fields for each remote are:

• name (Required, string value): Name of the remote. This name will be used in commands like conan list, e.g.,
conan list zlib/1.2.11 --remote my_remote_name.

• url (Required, string value): indicates the URL to be used by Conan to search for the recipes/binaries.

• verify_ssl (Required, bool value): Verify SSL certificate of the specified url.

• disabled (Optional, bool value, false by default): If the remote is enabled or not to be used by commands
like search, list, download and upload. Notice that a disabled remote can be used to authenticate against it even
if it’s disabled.

See also:
• How to manage SSL (TLS) certificates

• How to manage remotes.json through CLI: conan remotes.

8.5.6 source_credentials.json

Warning: This feature is experimental and subject to breaking changes. See the Conan stability section for more
information.

When a conanfile.py recipe downloads some sources from other servers with the download() or the get() helpers
like:

def source(self):
Immutable source .zip
download(self, f"https://server/that/need/credentials/files/tarballname-{self.

→˓version}.zip", "downloaded.zip")
Also the ``get()`` function, as it internally calls ``download()``

These downloads would be typically anonymous for open-source third party libraries in the internet, but it is also
possible that some proprietary code in a private organization or provided by a vendor would require some kind of
authentication.

8.5. Configuration files 601

Conan Documentation, Release 2.1.0

For this purpose the source_credentials.json file can be provided in the Conan cache. This file has the following
format, in which every credentials entry should have a url that defines the URL that should match the recipe one. If
the recipe URL starts with the given one in the credentials files, then the credentials will be injected. If the file provides
multiple credentials for multiple URLs, they will be evaluated in order until the first match happens. If no match is
found, no credentials will be injected.

{
"credentials": [

{
"url": "https://server/that/need/credentials",
"token": "mytoken"

}
]

}

Using the token field, will add an Authorization = Bearer {token} header. This would be the preferred way of
authentication, as it is typically more secure than using user/password.

If for some reason HTTP-Basic auth with user/password is necessary it can be provided with the user and password
fields:

{
"credentials": [

{
"url": "https://server/that/need/credentials",
"user": "myuser",
"password": "mypassword"

}
]

}

As a general rule, hardcoding secrets like passwords in files is strongly discouraged. To avoid it, the
source_credentials.json file is always rendered as a jinja template, so it can do operations like getting envi-
ronment variables os.getenv(), allowing the secrets to be configured at the system or CI level:

{% set mytk = os.getenv('mytoken') %}
{

"credentials": [
{

"url": "https://server/that/need/credentials",
"token": "{{mytk}}"

}
]

}

Note: Best practices
• Avoid using URLs that encode tokens or user/password authentication in the conanfile.py recipes. These

URLs can easily leak into logs, and can be more difficult to fix in case of credentials changes (this is also valid
for Git repositories URLs and clones, better use other Git auth mechanisms like ssh-keys)

602 Chapter 8. Reference

Conan Documentation, Release 2.1.0

8.5.7 credentials.json

Warning: This feature is experimental and subject to breaking changes. See the Conan stability section for more
information.

Conan can authenticate against its Conan remote servers with the following:

• Interactive command line, when some server launches an unauthorized error, the Conan client will ask for
user/password interactively and retry.

• With the conan remote login command, authentication can be done with argument passing, or interactively.

• With the environment variables CONAN_LOGIN_USERNAME for all remotes
(CONAN_LOGIN_USERNAME_{REMOTE} for an individual remote) and CONAN_PASSWORD
(CONAN_PASSWORD_{REMOTE} for an individual remote), Conan will not request interactively in the com-
mand line when necessary, but will take the values from the environment variables as if they were provided by
the user.

• With a credentials.json file put in the Conan cache.

This section describes the usage of credentials.json file.

This file has the following format, in which every credentials entry should have a remote name, matching the name
defined in conan remote list. Then, the user and password fields.

{
"credentials": [

{
"remote": "default",
"user": "admin",
"password": "password"

}
]

}

Conan will be able to extract the credentials from this file automatically when necessary and requested by the server.

Note: Conan does not pre-emptively use the credentials to force a login automatically in every remote defined at every
Conan command. By default Conan uses the previously stored tokens or anonymous usage, until an explicit conan
remote login command is done, or until a remote server launches an authentication error. When that happens,
authentication against that server will be done, using the credentials.json file, the environment variables or the
user interactive inputs.

The priority of credentials origins is as follows:

• If the credentials.json file exist, it has higher priority, if an entry for the remote exists, it will be used. If it
doesn’t work, it will be an error.

• If an entry in the credentials.json for that remote does not exist, it will look for defined environment variables

• If environment variables don’t exist, it will request interactively the credentials. If
core:non_interactive=True, it will error.

The credentials.json file is jinja-rendered with injected platform and os imports, so it allows to use jinja syntax.
For example it could do something like the following to get the credentials from environment variables:

8.5. Configuration files 603

Conan Documentation, Release 2.1.0

{% set myuser = os.getenv('myuser') %}
{% set mytk = os.getenv('mytoken') %}
{

"credentials": [
{

"remote": "myremote",
"user": "{{myuser}}"
"password": "{{mytk}}"

}
]

}

8.5.8 .conanrc

Warning: This feature is in preview. See the Conan stability section for more information.

The .conanrc file can be placed in the folder where you are running Conan or any parent folder. This file is used to
set up the Conan user home directory by defining the conan_home value. This value will take precedence over the
CONAN_HOME environment variable in case it’s also defined. Below are some examples of how you can define the
Conan user home in the .conanrc file:

Set the Conan home to an absolute folder:

accepts comments
conan_home=/absolute/folder

Set the Conan home to a relative folder inside the current folder:

conan_home=./relative/folder/inside/current/folder

Set the Conan home to a relative folder outside the current folder:

conan_home=../relative/folder/outside/current/folder

Set the Conan home to a path containing the ~ symbol, which will be expanded to the system’s user home:

conan_home=~/use/the/user/home/to/expand/it

Be aware that the .conanrc file is searched for in all parent folders. For example, in this structure:

.

.conanrc
|-- project1
|-- project2

If you are running from the folder project1, the parent folders are traversed recursively until a .conanrc file is found,
in case it exists.

604 Chapter 8. Reference

Conan Documentation, Release 2.1.0

8.6 Extensions

Conan can be extended in a few ways, with custom user code:

• python_requires allow to put common recipe code in a recipe package that can be reused by other recipes by
declaring a python_requires = "mypythoncode/version"

• You can create your own custom Conan commands to solve self-needs thanks to Python and Conan public API
powers altogether.

• It’s also possible to make your own custom Conan generators in case you are using build systems that are not
supported by the built-in Conan tools. Those can be used from python_requires or installed globally.

• hooks are “pre” and “post” recipe methods (like pre_build() and post_build()) extensions that can be used
to complement recipes with orthogonal functionality, like quality checks, binary analyzing, logging, etc.

• Binary compatibility compatibility.py extension allows to write custom rules for defining custom binary
compatibility across different settings and options

• The cmd_wrapper.py extension allows to inject arbitrary command wrappers to any self.run() recipe com-
mand invocation, which can be useful to inject wrappers as parallelization tools

• The package signing extension allows to sign and verify packages at upload and install time respectively

• Deployers, a mechanism to facilitate copying files from one folder, usually the Conan cache, to user folders

Note: Besides the built-in Conan extensions listed in this document, there is a repository that contains extensions
for Conan, such as custom commands and deployers, useful for different purposes like artifactory tasks, Conan Center
Index, etc.

You can find more information on how to use those extensions in the GitHub repository.

Contents:

8.6.1 Python requires

Introduction

The python_requires feature is a very convenient way to share files and code between different recipes. A python
require is a special recipe that does not create packages and it is just intended to be reused by other recipes.

A very simple recipe that we want to reuse could be:

from conan import ConanFile

myvar = 123

def myfunct():
return 234

class Pkg(ConanFile):
name = "pyreq"
version = "0.1"
package_type = "python-require"

8.6. Extensions 605

https://github.com/conan-io/conan-extensions

Conan Documentation, Release 2.1.0

And then we will make it available to other packages with conan create .. Note that a python-require package
does not create binaries, it is just the recipe part.

$ conan create .
It will only export the recipe, but will NOT create binaries
python-requires do NOT have binaries

We can reuse the above recipe functionality declaring the dependency in the python_requires attribute and we can
access its members using self.python_requires["<name>"].module:

from conan import ConanFile

class Pkg(ConanFile):
name = "pkg"
version = "0.1"
python_requires = "pyreq/0.1"

def build(self):
v = self.python_requires["pyreq"].module.myvar # v will be 123
f = self.python_requires["pyreq"].module.myfunct() # f will be 234
self.output.info(f"{v}, {f}")

$ conan create .
...
pkg/0.1: 123, 234

Python requires can also use version ranges, and this can be recommended in many cases if those python-requires
need to evolve over time:

from conan import ConanFile

class Pkg(ConanFile):
python_requires = "pyreq/[>=1.0 <2]"

It is also possible to require more than 1 python-requires with python_requires = "pyreq/0.1", "other/
1.2"

Extending base classes

A common use case would be to declare a base class with methods we want to reuse in several recipes via inheritance.
We’d write this base class in a python-requires package:

from conan import ConanFile

class MyBase:
def source(self):

self.output.info("My cool source!")
def build(self):

self.output.info("My cool build!")
def package(self):

self.output.info("My cool package!")
def package_info(self):

self.output.info("My cool package_info!")
(continues on next page)

606 Chapter 8. Reference

Conan Documentation, Release 2.1.0

(continued from previous page)

class PyReq(ConanFile):
name = "pyreq"
version = "0.1"
package_type = "python-require"

And make it available for reuse with:

$ conan create .

Note that there are two classes in the recipe file:

• MyBase is the one intended for inheritance and doesn’t extend ConanFile.

• PyReq is the one that defines the current package being exported, it is the recipe for the reference pyreq/0.1.

Once the package with the base class we want to reuse is available we can use it in other recipes to inherit the function-
ality from that base class. We’d need to declare the python_requires as we did before and we’d need to tell Conan
the base classes to use in the attribute python_requires_extend. Here our recipe will inherit from the class MyBase:

from conan import ConanFile

class Pkg(ConanFile):
name = "pkg"
version = "0.1"
python_requires = "pyreq/0.1"
python_requires_extend = "pyreq.MyBase"

The resulting inheritance is equivalent to declare our Pkg class as class Pkg(pyreq.MyBase, ConanFile). So
creating the package we can see how the methods from the base class are reused:

$ conan create .
...
pkg/0.1: My cool source!
pkg/0.1: My cool build!
pkg/0.1: My cool package!
pkg/0.1: My cool package_info!
...

In general, base class attributes are not inherited, and should be avoided as much as possible. There are method
alternatives to some of them like export() or set_version(). For exceptional situations, see the init() method
documentation for more information to extend inherited attributes.

It is possible to re-implement some of the base class methods, and also to call the base class method explicitly, with
the Python super() syntax:

from conan import ConanFile

class Pkg(ConanFile):
name = "pkg"
version = "0.1"
python_requires = "pyreq/0.1"
python_requires_extend = "pyreq.MyBase"

def source(self):
(continues on next page)

8.6. Extensions 607

Conan Documentation, Release 2.1.0

(continued from previous page)

super().source() # call the base class method
self.output.info("MY OWN SOURCE") # Your own implementation

It is not mandatory to call the base class method, a full overwrite without calling super() is possible. Also the call
order can be changed, and calling your own code, then super() is possible.

Reusing files

It is possible to access the files exported by a recipe that is used with python_requires. We could have this recipe,
together with a myfile.txt file containing the “Hello” text.

from conan import ConanFile

class PyReq(ConanFile):
name = "pyreq"
version = "1.0"
package_type = "python-require"
exports = "*"

$ echo "Hello" > myfile.txt
$ conan create .

Now that the python-require has been created, we can access its path (the place where myfile.txt is) with the path
attribute:

import os

from conan import ConanFile
from conan.tools.files import load

class Pkg(ConanFile):
python_requires = "pyreq/0.1"

def build(self):
pyreq_path = self.python_requires["pyreq"].path
myfile_path = os.path.join(pyreq_path, "myfile.txt")
content = load(self, myfile_path) # content = "Hello"
self.output.info(content)
we could also copy the file, instead of reading it

Note that only exports works for this case, but not exports_sources.

608 Chapter 8. Reference

Conan Documentation, Release 2.1.0

Testing python-requires

It is possible to test with test_package a python_require, by adding a test_package/conanfile.py:

Listing 123: conanfile.py

from conan import ConanFile

def mynumber():
return 42

class PyReq(ConanFile):
name = "pyreq"
version = "1.0"
package_type = "python-require"

Listing 124: test_package/conanfile.py

from conan import ConanFile

class Tool(ConanFile):

Literal "tested_reference_str", Conan will dynamically replace it
python_requires = "tested_reference_str"

def test(self):
pyreq = self.python_requires["pyreq"].module
mynumber = pyreq.mynumber()
self.output.info("{}!!!".format(mynumber))

The python_requires = "tested_reference_str" is mandatory from Conan 2.1. Automatic injection of
python_requires without this declaration is deprecated and it will be removed in future versions.

Note that the test_package/conanfile.py does not need any type of declaration of the python_requires, this is
done automatically and implicitly. We can now create and test it with:

$ conan create .
...
pyreq/0.1 (test package): 42!!!

Effect in package_id

The python_requires will affect the package_id of the consumer packages using those dependencies. By default,
the policy is minor_mode, which means:

• Changes to the patch version of the revision of a python-require will not affect the package ID. So depending
on "pyreq/1.2.3" or "pyreq/1.2.4" will result in identical package ID (both will be mapped to "pyreq/1.
2.Z" in the hash computation). Bump the patch version if you want to change your common code, but you don’t
want the consumers to be affected or to fire a re-build of the dependants.

• Changes to the minor version will produce a different package ID. So if you depend on "pyreq/1.2.3", and you
bump the version to "pyreq/1.3.0", then, you will need to build new binaries that are using that new python-
require. Bump the minor or major version if you want to make sure that packages requiring this python-require
will be built using these changes in the code.

8.6. Extensions 609

Conan Documentation, Release 2.1.0

In most cases using a version-range python_requires = "pyreq/[>=1.0 <2.0]" is the right approach, because
that means the major version bumps are not included because they would require changes in the consumers themselves.
It is then possible to release a new major version of the pyreq/2.0, and have consumers gradually change their re-
quirements to python_requires = "pyreq/[>=2.0 <3.0]", fix the recipes, and move forward without breaking
the whole project.

As with the regular requires, this default can be customized with the core.package_id:default_python_mode
configuration.

It is also possible to customize the effect of python_requires per package, using the package_id() method:

from conan import ConanFile

class Pkg(ConanFile):
python_requires ="pyreq/[>=1.0]"
def package_id(self):

self.info.python_requires.patch_mode()

Resolution of python_requires

There are few important things that should be taken into account when using python_requires:

• Python requires recipes are loaded by the interpreter just once, and they are common to all consumers. Do not
use any global state in the python_requires recipes.

• Python requires are private to the consumers. They are not transitive. Different consumers can require different
versions of the same python-require. Being private, they cannot be overridden from downstream in any way.

• python_requires cannot use regular requires or tool_requires themselves. Having a requirements()
(and similar) methods to be inherited by recipes is possible and allowed, but the python_requires class itself
cannot use them.

• python_requires cannot be “aliased”.

• python_requires can use native python import to other python files, as long as these are exported together
with the recipe.

• python_requires can be used as editable packages too.

• python_requires are locked in lockfiles, to guarantee reproducibility, in the same way that other requires
and tool_requires are locked.

Note: Best practices
• Even if python-requires can python_requires transitively other python-requires recipes, this is dis-

couraged. Multiple level inheritance and reuse can become quite complex and difficult to manage, it is recom-
mended to keep the hierarchy flat.

• Do not try to mix Python inheritance with python_requires_extend inheritance mechanisms, they are in-
compatible and can break.

• Do not use multiple inheritance for python-requires

610 Chapter 8. Reference

Conan Documentation, Release 2.1.0

8.6.2 Custom commands

It’s possible to create your own Conan commands to solve self-needs thanks to Python and Conan public API powers
altogether.

Location and naming

All the custom commands must be located in [YOUR_CONAN_HOME]/extensions/commands/ folder. If you don’t
know where [YOUR_CONAN_HOME] is located, you can run conan config home to check it.

If _commands_ sub-directory is not created yet, you will have to create it. Those custom commands files must be
Python files and start with the prefix cmd_[your_command_name].py. The call to the custom commands is like any
other existing Conan one: conan your_command_name.

Scoping

It’s possible to have another folder layer to group some commands under the same topic.

For instance:

| - [YOUR_CONAN_HOME]/extensions/commands/greet/
| - cmd_hello.py
| - cmd_bye.py

The call to those commands change a little bit: conan [topic_name]:your_command_name. Following the previous
example:

$ conan greet:hello
$ conan greet:bye

Note: It’s possible for only one folder layer, so it won’t work to have something like [YOUR_CONAN_HOME]/
extensions/commands/topic1/topic2/cmd_command.py

Decorators

conan_command(group=None, formatters=None)

Main decorator to declare a function as a new Conan command. Where the parameters are:

• group is the name of the group of commands declared under the same name. This grouping will appear executing
the conan -h command.

• formatters is a dict-like Python object where the key is the formatter name and the value is the function
instance where will be processed the information returned by the command one.

Listing 125: cmd_hello.py

import json

from conan.api.conan_api import ConanAPI
from conan.api.output import ConanOutput

(continues on next page)

8.6. Extensions 611

Conan Documentation, Release 2.1.0

(continued from previous page)

from conan.cli.command import conan_command

def output_json(msg):
return json.dumps({"greet": msg})

@conan_command(group="Custom commands", formatters={"json": output_json})
def hello(conan_api: ConanAPI, parser, *args):

"""
Simple command to print "Hello World!" line
"""
msg = "Hello World!"
ConanOutput().info(msg)
return msg

Important: The function decorated by @conan_command(....) must have the same name as the suffix used by the
Python file. For instance, the previous example, the file name is cmd_hello.py, and the command function decorated
is def hello(....).

conan_subcommand(formatters=None)

Similar to conan_command, but this one is declaring a sub-command of an existing custom command. For instance:

Listing 126: cmd_hello.py

from conan.api.conan_api import ConanAPI
from conan.api.output import ConanOutput
from conan.cli.command import conan_command, conan_subcommand

@conan_subcommand()
def hello_moon(conan_api, parser, subparser, *args):

"""
Sub-command of "hello" that prints "Hello Moon!" line
"""
ConanOutput().info("Hello Moon!")

@conan_command(group="Custom commands")
def hello(conan_api: ConanAPI, parser, *args):

"""
Simple command "hello"
"""

The command call looks like conan hello moon.

Note: Notice that to declare a sub-command is required an empty Python function acts as the main command.

612 Chapter 8. Reference

Conan Documentation, Release 2.1.0

Argument definition and parsing

Commands can define their own arguments with the argparse Python library.

@conan_command(group='Creator')
def build(conan_api, parser, *args):

"""
Command help
"""
parser.add_argument("path", nargs="?", help='help for command')
...
args = parser.parse_args(*args)
Use args.path

When there are sub-commands, the base command cannot define arguments, only the sub-commands can do it. If you
have a set of common arguments to all sub-commands, you can define a function that adds them.

@conan_command(group="MyGroup")
def mycommand(conan_api, parser, *args):

"""
Command help
"""
Do not define arguments in the base command
pass

@conan_subcommand()
def mycommand_mysubcommand(conan_api: ConanAPI, parser, subparser, *args):

"""
Subcommand help
"""
Arguments are added to "subparser"
subparser.add_argument("reference", help="Recipe reference or Package reference")
You can add common args with your helper
add_my_common_args(subparser)
But parsing all of them happens to "parser"
args = parser.parse_args(*args)
use args.reference

Formatters

The return of the command will be passed as argument to the formatters. If there are different formatters that require
different arguments, the approach is to return a dictionary, and let the formatters chose the arguments they need. For
example, the graph info command uses several formatters like:

def format_graph_html(result):
graph = result["graph"]
conan_api = result["conan_api"]
...

def format_graph_info(result):
graph = result["graph"]
field_filter = result["field_filter"]
package_filter = result["package_filter"]

(continues on next page)

8.6. Extensions 613

Conan Documentation, Release 2.1.0

(continued from previous page)

...

@conan_subcommand(formatters={"text": format_graph_info,
"html": format_graph_html,
"json": format_graph_json,
"dot": format_graph_dot})

def graph_info(conan_api, parser, subparser, *args):
...
return {"graph": deps_graph,

"field_filter": args.filter,
"package_filter": args.package_filter,
"conan_api": conan_api}

Commands parameters

These are the passed arguments to any custom command and its sub-commands functions:

Listing 127: cmd_command.py

from conan.cli.command import conan_command, conan_subcommand

@conan_subcommand()
def command_subcommand(conan_api, parser, subparser, *args):

"""
subcommand information. This info will appear on ``conan command subcommand -h``.

:param conan_api: <object conan.api.conan_api.ConanAPI> instance
:param parser: root <object argparse.ArgumentParser> instance (coming from main␣

→˓command)
:param subparser: <object argparse.ArgumentParser> instance for sub-command
:param args: ``list`` of all the arguments passed after sub-command call
:return: (optional) whatever is returned will be passed to formatters functions (if␣

→˓declared)
"""
...

@conan_command(group="Custom commands")
def command(conan_api, parser, *args):

"""
command information. This info will appear on ``conan command -h``.

:param conan_api: <object conan.api.conan_api.ConanAPI> instance
:param parser: root <object argparse.ArgumentParser> instance
:param args: ``list`` of all the arguments passed after command call
:return: (optional) whatever is returned will be passed to formatters functions (if␣

→˓declared)
"""
...

• conan_api: instance of ConanAPI class. See more about it in conan.api.conan_api.ConanAPI section

614 Chapter 8. Reference

Conan Documentation, Release 2.1.0

• parser: root instance of Python argparse.ArgumentParser class to be used by the main command function.
See more information in argparse official website.

• subparser (only for sub-commands): child instance of Python argparse.ArgumentParser class for each
sub-command function.

• *args: list of all the arguments passed via command line to be parsed and used inside the command func-
tion. Normally, they’ll be parsed as args = parser.parse_args(*args). For instance, running conan
mycommand arg1 arg2 arg3, the command function will receive them as a Python list-like ["arg1",
"arg2", "arg3"].

See also:
• Custom command to remove recipe and package revisions but the latest package one from the latest recipe one.

• You can check more examples of Conan custom command in the conan-extensions repository https://github.com/
conan-io/conan-extensions

8.6.3 Custom Conan generators

In the case that you need to use a build system or tool that is not supported by Conan off-the-shelf, you could create
your own custom integrations using a custom generator. This can be done in two different ways.

Custom generators as python_requires

One way of having your own custom generators in Conan is by using them as python_requires. You could declare a
MyGenerator class with all the logic to generate some files inside the mygenerator/1.0 python_requires package:

from conan import ConanFile
from conan.tools.files import save

class MyGenerator:
def __init__(self, conanfile):

self._conanfile = conanfile

def generate(self):
deps_info = ""
for dep, _ in self._conanfile.dependencies.items():

deps_info = f"{dep.ref.name}, {dep.ref.version}"
save(self._conanfile, "deps.txt", deps_info)

class PyReq(ConanFile):
name = "mygenerator"
version = "1.0"
package_type = "python-require"

And then use it in the generate method of your own packages like this:

from conan import ConanFile

class MyPkg(ConanFile):
(continues on next page)

8.6. Extensions 615

https://docs.python.org/3/library/argparse.html
https://github.com/conan-io/conan-extensions
https://github.com/conan-io/conan-extensions

Conan Documentation, Release 2.1.0

(continued from previous page)

name = "pkg"
version = "1.0"

python_requires = "mygenerator/1.0"
requires = "zlib/1.2.11"

def generate(self):
mygenerator = self.python_requires["mygenerator"].module.MyGenerator
mygenerator.generate(self)

This has the advantage that you can version your own custom generators as packages and also that you can share those
generators as Conan packages.

Using global custom generators

You can also use your custom generators globally if you store them in the [CONAN_HOME]/extensions/generators
folder. You can place them directly in that folder or install with the conan config install command.

Listing 128: [CONAN_HOME]/extensions/generators/mygen.py

from conan.tools.files import save

class MyGenerator:
def __init__(self, conanfile):

self._conanfile = conanfile

def generate(self):
deps_info = ""
for dep, _ in self._conanfile.dependencies.items():

deps_info = f"{dep.ref.name}, {dep.ref.version}"
save(self._conanfile, "deps.txt", deps_info)

Then you can use them by name in the recipes or in the command line using the -g argument:

conan install --requires=zlib/1.2.13 -g MyGenerator

8.6.4 Python API

Warning: The full Python API is experimental. See the Conan stability section for more information.

Conan API Reference

Warning: This feature is experimental and subject to breaking changes. See the Conan stability section for more
information.

class ConanAPI(cache_folder=None)

616 Chapter 8. Reference

Conan Documentation, Release 2.1.0

See also:
• Creating Conan custom commands

• . . .

Remotes API

Warning: This feature is experimental and subject to breaking changes. See the Conan stability section for more
information.

class RemotesAPI(conan_api)
The RemotesAPI manages the definition of remotes, contained in the “remotes.json” file in the Conan home,
supporting addition, removal, update, rename, enable, disable of remotes. These operations do not contact the
servers or check their existence at all. If they are not available, they will fail later when used.

The user_xxx methods perform authentication related tasks, and some of them will contact the servers to per-
form such authentication

list(pattern=None, only_enabled=True)
Obtain a list of Remote objects matching the pattern.

Parameters
• pattern – None, single str or list of str. If it is None, all remotes will be returned

(equivalent to pattern="*").

• only_enabled – boolean, by default return only enabled remotes

Returns
A list of Remote objects

disable(pattern)
Disable all remotes matching pattern

Parameters
pattern – single str or list of str. If the pattern is an exact name without wildcards like
“*” and no remote is found matching that exact name, it will raise an error.

Returns
the list of disabled Remote objects (even if they were already disabled)

enable(pattern)
Enable all remotes matching pattern.

Parameters
pattern – single str or list of str. If the pattern is an exact name without wildcards like
“*” and no remote is found matching that exact name, it will raise an error.

Returns
the list of enabled Remote objects (even if they were already enabled)

get(remote_name)
Obtain a Remote object

Parameters
remote_name – the exact name of the remote to be returned

8.6. Extensions 617

Conan Documentation, Release 2.1.0

Returns
the Remote object, or raise an Exception if the remote does not exist.

add(remote: Remote, force=False, index=None)
Add a new Remote object to the existing ones

Parameters
• remote – a Remote object to be added

• force – do not fail if the remote already exist (but default it failes)

• index – if not defined, the new remote will be last one. Pass an integer to insert the remote
in that position instead of the last one

remove(pattern)
Remove the remotes matching the pattern

Parameters
pattern – single str or list of str. If the pattern is an exact name without wildcards like
“*” and no remote is found matching that exact name, it will raise an error.

Returns
The list of removed Remote objects

update(remote_name: str, url=None, secure=None, disabled=None, index=None, allowed_packages=None)
Update an existing remote

Parameters
• remote_name – The name of the remote to update, must exist

• url – optional url to update, if not defined it will not be updated

• secure – optional ssl secure connection to update

• disabled – optional disabled state

• index – optional integer to change the order of the remote

• allowed_packages – optional list of packages allowed from this remote

rename(remote_name: str, new_name: str)
Change the name of an existing remote

Parameters
• remote_name – The previous existing name

• new_name – The new name

user_login(remote: Remote, username: str, password: str)
Perform user authentication against the given remote with the provided username and password

Parameters
• remote – a Remote object

• username – the user login as str

• password – password str

user_logout(remote: Remote)
Logout from the given Remote

618 Chapter 8. Reference

Conan Documentation, Release 2.1.0

Parameters
remote – The Remote object to logout

Search API

Warning: This feature is experimental and subject to breaking changes. See the Conan stability section for more
information.

class SearchAPI(conan_api)

List API

Warning: This feature is experimental and subject to breaking changes. See the Conan stability section for more
information.

class ListAPI(conan_api)
Get references from the recipes and packages in the cache or a remote

static filter_packages_configurations(pkg_configurations, query)

Parameters
• pkg_configurations – Dict[PkgReference, PkgConfiguration]

• query – str like “os=Windows AND (arch=x86 OR compiler=gcc)”

Returns
Dict[PkgReference, PkgConfiguration]

Profiles API

Warning: This feature is experimental and subject to breaking changes. See the Conan stability section for more
information.

class ProfilesAPI(conan_api)

get_default_host()

Returns
the path to the default “host” profile, either in the cache or as defined by the user in configu-
ration

get_default_build()

Returns
the path to the default “build” profile, either in the cache or as defined by the user in config-
uration

8.6. Extensions 619

Conan Documentation, Release 2.1.0

get_profile(profiles, settings=None, options=None, conf=None, cwd=None)
Computes a Profile as the result of aggregating all the user arguments, first it loads the “profiles”, composing
them in order (last profile has priority), and finally adding the individual settings, options (priority over the
profiles)

get_path(profile, cwd=None, exists=True)

Returns
the resolved path of the given profile name, that could be in the cache, or local, depending on
the “cwd”

list()

List all the profiles file sin the cache :return: an alphabetically ordered list of profile files in the default
cache location

static detect()

Returns
an automatically detected Profile, with a “best guess” of the system settings

Install API

Warning: This feature is experimental and subject to breaking changes. See the Conan stability section for more
information.

class InstallAPI(conan_api)

install_binaries(deps_graph, remotes=None)
Install binaries for dependency graph :param deps_graph: Dependency graph to intall packages for :param
remotes:

install_system_requires(graph, only_info=False)
Install binaries for dependency graph :param only_info: Only allow reporting and checking, but never
install :param graph: Dependency graph to intall packages for

install_sources(graph, remotes)
Install sources for dependency graph :param remotes: :param graph: Dependency graph to install packages
for

install_consumer(deps_graph, generators=None, source_folder=None, output_folder=None,
deploy=False, deploy_package=None, deploy_folder=None)

Once a dependency graph has been installed, there are things to be done, like invoking generators for the
root consumer. This is necessary for example for conanfile.txt/py, or for “conan install <ref> -g

620 Chapter 8. Reference

Conan Documentation, Release 2.1.0

Graph API

Warning: This feature is experimental and subject to breaking changes. See the Conan stability section for more
information.

class GraphAPI(conan_api)

load_root_test_conanfile(path, tested_reference, profile_host, profile_build, update=None,
remotes=None, lockfile=None, tested_python_requires=None)

Create and initialize a root node from a test_package/conanfile.py consumer

Parameters
• tested_python_requires – the reference of the python_require to be tested

• lockfile – Might be good to lock python-requires, build-requires

• path – The full path to the test_package/conanfile.py being used

• tested_reference – The full RecipeReference of the tested package

• profile_host –

• profile_build –

• update –

• remotes –

Returns
a graph Node, recipe=RECIPE_CONSUMER

load_graph(root_node, profile_host, profile_build, lockfile=None, remotes=None, update=None,
check_update=False)

Compute the dependency graph, starting from a root package, evaluation the graph with the provided con-
figuration in profile_build, and profile_host. The resulting graph is a graph of recipes, but packages are
not computed yet (package_ids) will be empty in the result. The result might have errors, like version or
configuration conflicts, but it is still possible to inspect it. Only trying to install such graph will fail

Parameters
• root_node – the starting point, an already initialized Node structure, as returned by the

“load_root_node” api

• profile_host – The host profile

• profile_build – The build profile

• lockfile – A valid lockfile (None by default, means no locked)

• remotes – list of remotes we want to check

• update – (False by default), if Conan should look for newer versions or revisions for al-
ready existing recipes in the Conan cache

• check_update – For “graph info” command, check if there are recipe updates

analyze_binaries(graph, build_mode=None, remotes=None, update=None, lockfile=None,
build_modes_test=None, tested_graph=None)

Given a dependency graph, will compute the package_ids of all recipes in the graph, and evaluate if they
should be built from sources, downloaded from a remote server, of if the packages are already in the local
Conan cache

8.6. Extensions 621

Conan Documentation, Release 2.1.0

Parameters
• lockfile –

• graph – a Conan dependency graph, as returned by “load_graph()”

• build_mode – TODO: Discuss if this should be a BuildMode object or list of arguments

• remotes – list of remotes

• update – (False by default), if Conan should look for newer versions or revisions for al-
ready existing recipes in the Conan cache

• build_modes_test – the –build-test argument

• tested_graph – In case of a “test_package”, the graph being tested

Export API

Warning: This feature is experimental and subject to breaking changes. See the Conan stability section for more
information.

class ExportAPI(conan_api)

Remove API

Warning: This feature is experimental and subject to breaking changes. See the Conan stability section for more
information.

class RemoveAPI(conan_api)

Config API

Warning: This feature is experimental and subject to breaking changes. See the Conan stability section for more
information.

class ConfigAPI(conan_api)

property global_conf

this is the new global.conf to replace the old conan.conf that contains configuration defined with the new
syntax as in profiles, this config will be composed to the profile ones and passed to the conanfiles.conf,
which can be passed to collaborators

property settings_yml

Returns {setting: [value, . . .]} defining all the possible settings without values

622 Chapter 8. Reference

Conan Documentation, Release 2.1.0

New API

Warning: This feature is experimental and subject to breaking changes. See the Conan stability section for more
information.

class NewAPI(conan_api)

get_template(template_folder)
Load a template from a user absolute folder

get_home_template(template_name)
Load a template from the Conan home templates/command/new folder

Upload API

Warning: This feature is experimental and subject to breaking changes. See the Conan stability section for more
information.

class UploadAPI(conan_api)

check_upstream(package_list, remote, enabled_remotes, force=False)
Check if the artifacts are already in the specified remote, skipping them from the package_list in that case

prepare(package_list, enabled_remotes, metadata=None)
Compress the recipes and packages and fill the upload_data objects with the complete information. It
doesn’t perform the upload nor checks upstream to see if the recipe is still there :param package_list: :param
enabled_remotes: :param metadata: A list of patterns of metadata that should be uploaded. Default None
means all metadata will be uploaded together with the pkg artifacts. If metadata is empty string (“”), it
means that no metadata files should be uploaded.

upload_full(package_list, remote, enabled_remotes, check_integrity=False, force=False, metadata=None,
dry_run=False)

Does the whole process of uploading, including the possibility of parallelizing per recipe based on
core.upload:parallel: - calls check_integrity - checks which revision already exist in the server (not neces-
sary to upload) - prepare the artifacts to upload (compress .tgz) - execute the actual upload - upload potential
sources backups

get_backup_sources(package_list=None)
Get list of backup source files currently present in the cache, either all of them if no argument, else filter
by those belonging to the references in the package_list

8.6. Extensions 623

Conan Documentation, Release 2.1.0

Download API

Warning: This feature is experimental and subject to breaking changes. See the Conan stability section for more
information.

class DownloadAPI(conan_api)

recipe(ref: RecipeReference, remote: Remote, metadata: List[str] | None = None)
Download the recipe specified in the ref from the remote. If the recipe is already in the cache it will be
skipped, but the specified metadata will be downloaded.

package(pref: PkgReference, remote: Remote, metadata: List[str] | None = None)
Download the package specified in the pref from the remote. The recipe for this package binary must already
exist in the cache. If the package is already in the cache it will be skipped, but the specified metadata will
be downloaded.

download_full(package_list: PackagesList, remote: Remote, metadata: List[str] | None = None)
Download the recipes and packages specified in the package_list from the remote, parallelized based on
core.download:parallel

8.6.5 Deployers

Deployers are a mechanism to facilitate copying files from one folder, usually the Conan cache, to user folders. While
Conan provides two built-in ones (full_deploy and direct_deploy), users can easily manage their own with conan
config install.

Deployers run before generators, and they can change the target folders. For example, if the
--deployer=full_deploy deployer runs before CMakeDeps, the files generated by CMakeDeps will point to
the local copy in the user folder done by the full_deploy deployer, and not to the Conan cache. Multiple deployers
can be specified by supplying more than one --deployer= argument, and they will be ran in order of appearance.

Deployers can be multi-configuration. Running conan install . --deployer=full_deploy repeatedly for dif-
ferent profiles can achieve a fully self-contained project, including all the artifacts, binaries, and build files. This
project will be completely independent of Conan and no longer require it at all to build. Use the --deployer-folder
argument to change the base folder output path for the deployer as desired.

Built-in deployers

full_deploy

Deploys each package folder of every dependency to your recipe’s output_folder in a subfolder tree based on:

1. The build context

2. The dependency name and version

3. The build type

4. The build arch

Then every dependency will end up in a folder such as:

[OUTPUT_FOLDER]/full_deploy/host/dep/0.1/Release/x86_64

See a full example of the usage of full_deploy deployer in Creating a Conan-agnostic deploy of dependencies for
developer use.

624 Chapter 8. Reference

Conan Documentation, Release 2.1.0

direct_deploy

Same as full_deploy, but only processes your recipe’s direct dependencies. This deployer will output your depen-
dencies in a tree folder such as:

[OUTPUT_FOLDER]/direct_deploy/dep/0.1

Warning: The built-in deployers are in preview. See the Conan stability section for more information.

configuration

Both the full_deploy and the direct_deploy understand when the conf tools.deployer:symlinks is set to
False to disable deployers copying symlinks. This can be convenient in systems that do not support symlinks and
could fail if deploying packages that contain symlinks.

Custom deployers

Custom deployers can be managed via conan config install. When looking for a specific deployer, Conan will
look in these locations for the deployer in the following order:

1. Absolute paths

2. Relative to cwd

3. In the [CONAN_HOME]/extensions/deployers folder

4. As built-in deployers

Conan will look for a deploy() method to call for each installed file. The function signature of your custom deployers
should be as follows:

Listing 129: my_custom_deployer.py
def deploy(graph, output_folder: str, **kwargs):

(Note that the arguments are passed as named parameters, so both the graph and output_folder names are manda-
tory)

The **kwargs is mandatory even if not used, as new arguments can be added in future Conan versions, and those
would break if **kwargs is not defined.

You can access your conanfile object with graph.root.conanfile. See ConanFile.dependencies for information
on how to iterate over its dependencies. Your custom deployer can now be invoked as if it were a built-in deployer
using the filename in which it’s found, in this case conan install . --deployer=my_custom_deployer. Note
that supplying the .py extension is optional.

See the custom deployers section for examples on how to implement your own deployers.

8.6. Extensions 625

Conan Documentation, Release 2.1.0

8.6.6 Hooks

The Conan hooks is a feature intended to extend the Conan functionalities to perform certain orthogonal operations,
like some quality checks, in different stages of a package creation process, like pre-build and post-build.

Hook structure

A hook is a Python function that will be executed at certain points of Conan workflow to customize the client behavior
without modifying the client sources or the recipe ones.

Here is an example of a simple hook:

Listing 130: hook_example.py

from conan.tools.files import load

def pre_export(conanfile):
for field in ["url", "license", "description"]:

field_value = getattr(conanfile, field, None)
if not field_value:

conanfile.output.error(f"[REQUIRED ATTRIBUTES] Conanfile doesn't have '
→˓{field}'.

It is recommended to add it as attribute.")

This hook checks the recipe content prior to it being exported. Basically the pre_export() function checks the
attributes of the conanfile object to see if there is an URL, a license and a description and if missing, warns the user
with a message through the conanfile.output. This is done before the recipe is exported to the local cache.

Any kind of Python script can be executed. You can create global functions and call them from different hook functions,
import from a relative module and warn, error or even raise to abort the Conan client execution.

Importing from a module

The hook interface should always be placed inside a Python file with the name of the hook starting by hook_ and
with the extension .py. It also should be stored in the <conan_home>/extensions/hooks folder. However, you can use
functionalities from imported modules if you have them installed in your system or if they are installed with Conan:

Listing 131: hook_example.py

import requests
from conan.tools.files import replace_in_file

def post_package(conanfile):
if not os.path.isdir(os.path.join(conanfile.package_folder, "licenses")):

response = requests.get('https://api.github.com/repos/company/repository/
→˓contents/LICENSE')

You can also import functionalities from a relative module:

hooks
custom_module

custom.py
__init__.py

hook_printer.py

626 Chapter 8. Reference

Conan Documentation, Release 2.1.0

Inside the custom.py from my custom_module there is:

Listing 132: custom.py

def my_printer(conanfile):
conanfile.output.info("my_printer(): CUSTOM MODULE")

And it can be used in the hook importing the module, just like regular Python:

Listing 133: hook_printer.py

from custom_module.custom import my_printer

def pre_export(conanfile):
my_printer(conanfile)

Hook interface

Here you can see a complete example of all the hook functions available:

Listing 134: hook_full.py

def pre_export(conanfile):
conanfile.output.info("Running before to execute export() method.")

def post_export(conanfile):
conanfile.output.info("Running after of executing export() method.")

def pre_source(conanfile):
conanfile.output.info("Running before to execute source() method.")

def post_source(conanfile):
conanfile.output.info("Running after of executing source() method.")

def pre_generate(conanfile):
conanfile.output.info("Running before to execute generate() method.")

def post_generate(conanfile):
conanfile.output.info("Running after of executing generate() method.")

def pre_build(conanfile):
conanfile.output.info("Running before to execute build() method.")

def post_build(conanfile):
conanfile.output.info("Running after of executing build() method.")

def pre_package(conanfile):
conanfile.output.info("Running before to execute package() method.")

def post_package(conanfile):
conanfile.output.info("Running after of executing package() method.")

def pre_package_info(conanfile):
(continues on next page)

8.6. Extensions 627

Conan Documentation, Release 2.1.0

(continued from previous page)

conanfile.output.info("Running before to execute package_info() method.")

def post_package_info(conanfile):
conanfile.output.info("Running after of executing package_info() method.")

Functions of the hooks are intended to be self-descriptive regarding to the execution of them. For example, the
pre_package() function is called just before the package() method of the recipe is executed.

All hook methods are filled only with the same single object:

• conanfile: It is a regular ConanFile object loaded from the recipe that received the Conan command. It has
its normal attributes and dynamic objects such as build_folder, package_folder, output, dependencies,
options . . .

Storage, activation and sharing

Hooks are Python files stored under <conan_home>/extensions/hooks folder and their file name should start with
hook_ and end with the .py extension.

The activation of the hooks is done automatically once the hook file is stored in the hook folder. In case storing in
subfolders, it works automatically too.

To deactivate a hook, its file should be removed from the hook folder. There is no configuration which can deactivate
but keep the file stored in hooks folder.

Official Hooks

There are some officially maintained hooks in its own repository in Conan hooks GitHub, but mostly are only compatible
with Conan 1.x, so please, check first the README to have information which hooks are compatible with Conan v2.

8.6.7 Binary compatibility

This plugin, located in the cache extensions/plugins/compatibility/compatibility.py allows defining cus-
tom rules for the binary compatibility of packages across settings and options. It has some built-in logic implemented,
but can be customized.

The interface is a single function called def compatibility(conanfile) that receives a single conanfile object as
argument. Its return will be equal to the compatibility() recipe method, an ordered list of variations over settings,
options that is considered to be binary compatible. Conan will check that list in order for binary existence until one
binary is found. The following would be valid syntax (but not an useful or working one, as it will fail in Windows, for
example):

def compatibility(conanfile):
result = []
if conanfile.settings.build_type == "Debug":

result.append({"settings": [("build_type", "Release")]})
return result

Conan provides a default compatibility.py implementation that implements binary compatibility for different
compiler.cppstd values. That is, by default it assumes that binaries built with different cppstd values (for the
same compiler and compiler version) are binary compatible, and can be linked together without issues.

The compiler.cppstd must be defined in profiles in most C++ scenarios. If a binary for a given compiler.cppstd
value doesn’t exist (that means, a binary built with exactly that setting), Conan default compatibility.py will iterate

628 Chapter 8. Reference

https://github.com/conan-io/hooks
https://github.com/conan-io/hooks/blob/master/README.md

Conan Documentation, Release 2.1.0

the supported cppstd values by that compiler version. It is possible to disable this behavior for any specific pack-
age, adding to the package conanfile.py recipe the extension_properties = {"compatibility_cppstd":
False} attribute, read the extension_properties docs.

Some important rules:

• The built-in compatibility.py is subject to changes in future releases. To avoid being updated in the future,
please remove the first comment # This file was generated by Conan.

Warning: The compatibility.py feature is in preview. The current default compatibility.py is experi-
mental. See the Conan stability section for more information.

See also:
Read the binary model reference for a full view of the Conan binary model.

8.6.8 Profile plugin

The profile.py extension plugin is a Python script that receives one profile and allow checking and modifying it.

This plugin is located in the extensions/plugins/profile.py cache folder.

This profile.py contains a default implementation that does:

• Will try to define compiler.runtime_type for msvc and clang compilers (in Windows) if it is not defined,
and it will define it to match the settings.build_type. That allow users to let it undefined in profiles, and
switch it conveniently in command line just with -s build_type=Debug

• Will check the compiler.cppstd value if defined to validate if the current compiler version has support for
it. For example, if a developer tries to use -s compiler=gcc -s compiler.version=5 -s compiler.
cppstd=20, it will raise an error.

Users can customize this profile.py and distribute it via conan config install, in that case, the first lines should
be removed:

This file was generated by Conan. Remove this comment if you edit this file or Conan
will destroy your changes.

And profile.py should contain one function with the signature:

def profile_plugin(profile):
settings = profile.settings
print(settings)

When a profile is computed, it will display something like:

OrderedDict([('arch', 'x86_64'), ('build_type', 'Release'), ('compiler', 'msvc'), (
→˓'compiler.cppstd', '14'), ('compiler.runtime', 'dynamic'), ('compiler.runtime_type',
→˓'Release'), ('compiler.version', '192'), ('os', 'Windows')])

See also:
• See the documentation about the Conan profiles.

8.6. Extensions 629

Conan Documentation, Release 2.1.0

8.6.9 Command wrapper

The cmd_wrapper.py extension plugin is a Python script that receives the command line argument provided by self.
run() recipe calls, and allows intercepting them and returning a new one.

This plugin must be located in the extensions/plugins cache folder, and can be installed with the conan config
install command.

For example:

def cmd_wrapper(cmd, **kwargs):
return 'echo "{}"'.format(cmd)

Would just intercept the commands and display them to terminal, which means that all commmands in all recipes
self.run() will not execute, but just be echoed.

The **kwargs is a mandatory generic argument to be robust against future changes and injection by Conan of new
keyword arguments. Not adding it, even if not used could make the extension fail in future Conan versions.

A more common use case would be the injection of a parallelization tools over some commands, which could look like:

def cmd_wrapper(cmd, **kwargs):
lets parallelize only CMake invocations
if cmd.startswith("cmake"):

return 'parallel-build "{}" --parallel-argument'.format(cmd)
otherwise return same command, not modified
return cmd

The conanfile object is passed as an argument, so it is possible to customize the behavior depending on the caller:

def cmd_wrapper(cmd, conanfile, **kwargs):
Let's parallelize only CMake invocations, for a few specific heavy packages
name = conanfile.ref.name
heavy_pkgs = ["qt", "boost", "abseil", "opencv", "ffmpeg"]
if cmd.startswith("cmake") and name in heavy_pkgs:

return 'parallel-build "{}" --parallel-argument'.format(cmd)
otherwise return same command, not modified
return cmd

8.6.10 Package signing

Warning: The package signing plugin is in preview. See the Conan stability section for more information.

This plugin, which must be located in the cache extensions/plugins/sign/sign.py file contains 2 methods:

• The sign(ref, artifacts_folder, signature_folder, **kwargs) executes for every recipe and pack-
age that is to be uploaded to a server. The ref is the full reference to the artifact, it can be either a recipe refer-
ence or a package reference. The artifacts_folder is the folder containing the files to be uploaded, typically
the conanfile.py, conan_package.tgz, conanmanifest.txt, etc. The signature_folder contains the
folder in which the generated files should be written.

• The verify(ref, artifacts_folder, signature_folder, files, **kwargs) executes when a pack-
age is installed from a server, receives the same arguments as above and should be used to verify the integrity or
correctness of the signatures. The files is an iterable of downloaded files, because this function can be called

630 Chapter 8. Reference

Conan Documentation, Release 2.1.0

twice when a package is being installed: first, the recipe is installed, and verify() will be called with the recipe
files, that is conanfile.py, conandata.yml, etc. But also, when a package is being built from sources, it is
possible that the recipe exported conan_sources.tgz file is also downloaded, and the verify() function will
be called again, now this time with the files argument containing conan_sources.tgz only.

Example of a package signer that puts the artifact filenames in a file called signature.asc when the package is
uploaded and assert that the downloaded artifacts are in the downloaded signature.asc:

import os

def sign(ref, artifacts_folder, signature_folder, **kwargs):
print("Signing ref: ", ref)
print("Signing folder: ", artifacts_folder)
files = []
for f in sorted(os.listdir(artifacts_folder)):

if os.path.isfile(os.path.join(artifacts_folder, f)):
files.append(f)

signature = os.path.join(signature_folder, "signature.asc")
open(signature, "w").write("\n".join(files))

def verify(ref, artifacts_folder, signature_folder, files, **kwargs):
print("Verifying ref: ", ref)
print("Verifying folder: ", artifacts_folder)
signature = os.path.join(signature_folder, "signature.asc")
contents = open(signature).read()
print("verifying contents", contents)
for f in files:

print("VERIFYING ", f)
if os.path.isfile(os.path.join(artifacts_folder, f)):

assert f in contents

Note that the **kwargs argument is important to avoid future changes adding new arguments that would otherwise
break the plugin, please make sure to add it to your methods.

8.7 Environment variables

These are very few environment variables that can be used to configure some of the Conan behavior. These variables
are the exception, for customization and configuration control, Conan uses the global.conf configuration and the profile
[conf] section

8.7.1 CONAN_HOME

This variable controls the location of the Conan home folder. By default, if it is not defined, it will be <username>/.
conan2.

Note: Recall that the Conan package cache, contained in the Conan home, is not concurrent. Different parallel tasks
like those that can happen in CI, need to use a separate cache, and defining CONAN_HOME is the way to do it.

8.7. Environment variables 631

Conan Documentation, Release 2.1.0

8.7.2 CONAN_DEFAULT_PROFILE

The default profile will be the "default" file in the Conan cache. This environment variable allows to define a different
default name. There are also conf items core:default_profile and core:default_build_profile to define
such default profile names, this env-var should be used only when the conf is not enough.

8.7.3 Remote login variables

CONAN_LOGIN_USERNAME, CONAN_LOGIN_USERNAME_{REMOTE_NAME} define the login username for a given remote.
CONAN_PASSWORD, CONAN_PASSWORD_{REMOTE_NAME} define the login password for a given remote.

These environment variables are just a substitute of the interactive input of the username or password when Conan CLI
requests it. They do not perform any kind of authentication unless the remote server throws an authentication challenge.
That means that for some remote servers configured to allow anonymous usage, these will not be used, and the user
will remain as an unauthenticated user, unless a conan remote login or conan remote auth is done first.

When the Conan CLI is about to ask the user for the remote password, it will check the variable
CONAN_LOGIN_USERNAME_{REMOTE_NAME} or CONAN_PASSWORD_{REMOTE_NAME} first, if the variable is not de-
clared Conan will try to use the variable CONAN_LOGIN_USERNAME and CONAN_PASSWORD respectively, if the variable
is not declared either, Conan will request to the user to input a password or fail.

The remote name is transformed to all uppercase. If the remote name contains “-“, you have to replace it with “_” in
the variable name.

Note:
• These variables are useful for unattended executions like CI servers or automated tasks, as CI secrets

• These variables are not recommended for developer machines.

• Recall that these variables do not perform authentication unless the remote server requests it.

• The core:non_interactive conf can be defined in global.conf to force Conan to fail if any interactive
prompt is requested, to avoid CI process being stuck.

8.7.4 Terminal color variables

Conan default behavior is try to autodetect the output. If the output is redirected to a file, or other support not tty, that
cannot print colors, it will disable colored output. For regular terminals, it will try to do colored output, unless some
of the following change that behavior:

• CLICOLOR_FORCE Forces the generation of terminal color escape characters, no matter what the autodetection
of terminal is.

• NO_COLOR disables the generation of color escape characters. This will be ignored if CLICOLOR_FORCE is acti-
vated.

• CONAN_COLOR_DARK will revert the color scheme for white/light background terminals (default assumes dark
background).

632 Chapter 8. Reference

Conan Documentation, Release 2.1.0

8.7.5 Logging

The environment variable CONAN_LOG_LEVEL can define the Conan command line verbosity in the same way that
the -v command line argument, with the same values (error, verbose, etc.). It also has priority over the value of
the command line arg if both are present. This can be useful to temporarily change the log level in CI pipelines, in
automation, etc., without needing to modify the command line arguments.

8.8 The binary model

This section introduces first how the package_id, the package binaries identifier is computed, hashing the configura-
tion (settings + options + dependencies versions). While the effect of settings and options is more straightforward,
understanding the effects of the dependencies requires more explanations, so that will be done in its own section.

Conan binary model is extensible, and users can define their custom settings, options and configuration to model their
own binaries characteristics.

Finally, the default binary compatibility model will be described, and how it can be customized to adapt to different
needs.

8.8.1 How the package_id is computed

Let’s take some package and list its binaries, for example:

$ conan list zlib/1.2.13:* -r=conancenter

zlib
zlib/1.2.13
revisions
97d5730b529b4224045fe7090592d4c1 (2023-08-22 02:51:57 UTC)
packages

d62dff20d86436b9c58ddc0162499d197be9de1e # package_id
info
settings
arch: x86_64
build_type: Release
compiler: apple-clang
compiler.version: 13
os: Macos

options
fPIC: True
shared: False

abe5e2b04ea92ce2ee91bc9834317dbe66628206 # package_id
info
settings
arch: x86_64
build_type: Release
compiler: gcc
compiler.version: 11
os: Linux

options
shared: True

8.8. The binary model 633

Conan Documentation, Release 2.1.0

We can see several binaries for the latest recipe revision of zlib/1.2.13. Every binary is identified by its own
package_id, and below it we can see some information for that binary under info. This information is the one used
to compute the package_id. Every time something changes in this information, like the architecture, or being a static
or a shared library, a new package_id is computed because it represents a different binary.

The package_id is computed as the sha1 hash of the conaninfo.txt file, containing the info displayed above. It is
relatively easy to display such file:

$ conan install --requires=zlib/1.2.13 --build=missing
Use the <package-id> listed in the install
$ conan cache path zlib/1.2.13:<package-id>
cat the conaninfo.txt in the returned path
$ cat <path>/conaninfo.txt
[settings]
arch=x86_64
build_type=Release
compiler=msvc
compilerruntime=dynamic
compilerruntime_type=Release
compiler.version=193
os=Windows
[options]
shared=False
$ sha1sum <path>/conaninfo.txt
Should be the "package_id"!

The package_id is the sha1 checksum of the conaninfo.txt file inside the package. You can validate it with the
sha1sum utility.

If now we have a look to the binaries of openssl we can see something like:

634 Chapter 8. Reference

Conan Documentation, Release 2.1.0

$ conan list openssl/3.1.2:* -r=conancenter
conancenter
openssl
openssl/3.1.2
revisions
8879e931d726a8aad7f372e28470faa1 (2023-09-13 18:52:54 UTC)
packages
0348efdcd0e319fb58ea747bb94dbd88850d6dd1 # package_id
info
settings
arch: x86_64
build_type: Release
compiler: apple-clang
compiler.version: 13
os: Macos

options
386: False
...
shared: True

requires
zlib/1.3.Z

We see now that the conaninfo.txt contains a new section the requires section. This happens because openssl
depends on zlib, and due to the C and C++ compilation model, the dependencies can affect the binaries that use them.
Some examples are when using inline or templates from #include header files of the dependency.

Expanding the image above:

As it can be seen, even if the settings and the options are the same, different binaries will be obtained if the
dependencies versions change. In the next section how the versions affect the package_id is explained.

8.8. The binary model 635

Conan Documentation, Release 2.1.0

8.8.2 How settings and options of a recipe influence its package ID

In Conan, a package ID is a unique identifier for a package binary that takes into account all the factors that affect its
binary compatibility. These factors include recipe options and settings as well as requirements or tool requirements.

Let’s see how settings and options affect the package ID and some examples where they should not.

How settings influence the package ID

Settings are development project-wide variables, like the compiler, its version, or the OS itself. These variable values
have to be defined, they should match the values of our development environment, and they cannot have a default value
like options do.

For example, let’s define a recipe that generates packages that are only OS dependent:

from conan import ConanFile

class Pkg(ConanFile):
name = "pkg"
version = "1.0.0"
settings = "os" # Only OS setting affects the package ID

If we generate a package from this recipe for Linux we will get the following package ID:

$ conan create . --settings os=Linux
...
pkg/1.0.0: Package '9a4eb3c8701508aa9458b1a73d0633783ecc2270' created

$ conan list pkg/1.0.0:*
Local Cache
pkg
pkg/1.0.0
revisions

476929a74c859bb5f646363a4900f7cf (2024-03-07 09:13:43 UTC)
packages

9a4eb3c8701508aa9458b1a73d0633783ecc2270
info
settings
os: Linux

If we do the same thing with Windows, now the package ID will be diffent:

$ conan create . --settings os=Windows
...
pkg/1.0.0: Package 'ebec3dc6d7f6b907b3ada0c3d3cdc83613a2b715' created

$ conan list pkg/1.0.0:*
Local Cache
pkg
pkg/1.0.0
revisions

476929a74c859bb5f646363a4900f7cf (2024-03-07 09:13:43 UTC)
packages

9a4eb3c8701508aa9458b1a73d0633783ecc2270
(continues on next page)

636 Chapter 8. Reference

Conan Documentation, Release 2.1.0

(continued from previous page)

info
settings
os: Linux

ebec3dc6d7f6b907b3ada0c3d3cdc83613a2b715
info
settings
os: Windows

Whenever a value of the settings or subsettings changes, the package ID will be different to reflect that.

The most common usage for settings is to model the different project-wide aspects that might influence the package
ID. A recipe that does that will be:

from conan import ConanFile

class Pkg(ConanFile):
name = "pkg"
version = "1.0.0"
settings = "os", "arch", "compiler", "build_type"

Now, compiling a package with different compiler versions will result into different package IDs:

$ conan create . --settings compiler.version=192
...
pkg/1.0.0: Package '4f267380690f99b3ef385199826c268f63147457' created

$ conan create . --settings compiler.version=193
...
pkg/1.0.0: Package 'c13a22a41ecd72caf9e556f68b406569547e0861' created

$ conan list pkg/1.0.0:*
Local Cache
pkg
pkg/1.0.0
revisions
f1f48830ecb04f3b328429b390fc5de8 (2024-03-07 09:21:07 UTC)
packages

4f267380690f99b3ef385199826c268f63147457
info
settings
arch: x86_64
build_type: Release
compiler: msvc
compiler.cppstd: 14
compiler.runtime: dynamic
compiler.runtime_type: Release
compiler.version: 192
os: Windows

c13a22a41ecd72caf9e556f68b406569547e0861
info
settings
arch: x86_64
build_type: Release

(continues on next page)

8.8. The binary model 637

Conan Documentation, Release 2.1.0

(continued from previous page)

compiler: msvc
compiler.cppstd: 14
compiler.runtime: dynamic
compiler.runtime_type: Release
compiler.version: 193
os: Windows

Removing settings for a package used as a tool_require

There could be cases when a setting should not influence the resulting package ID. An example of this could be when
a recipe packages a tool that would be used to build other packages via tool_requires

In that case, the value of the compiler used is needed for the compilation of the tool but not that relevant for consumers,
as we only want to execute the tool to build other projects. So we could eventually remove the influence of the compiler
from the pacakge ID:

from conan import ConanFile

class CMake(ConanFile):
name = "cmake"
version = "1.0.0"
settings = "os", "arch", "compiler", "build_type" # Only OS and architecture␣

→˓influence the resulting package

def build(self):
self.settings.compiler value will be used here to compile cmake

def package_id(self):
Remove compiler setting from package ID
del self.info.settings.compiler

Why not removing the setting from the settings attribute? Because the compiler value is still needed in the build()
method to perform the compilation of the executable.

Note: In the case we are generating our own executables (our own apps, not a tool_require), removing the compiler
setting from package ID is not recommended, as we would always want to know that the package was generated with
a specific compiler.

However, in case we are packaging a tool that does not even require a compiler input for building (a python script for
example), we could also directly remove the settings attribute:

from conan import ConanFile

class MyPythonScripts(ConanFile):
name = "my-python-scripts"
version = "1.0.0"
No settings this time

Or, if the tool is platform specific we can just keep the OS and architecture information:

638 Chapter 8. Reference

Conan Documentation, Release 2.1.0

from conan import ConanFile

class MyScripts(ConanFile):
name = "my-scripts"
version = "1.0.0"
settings = "os", "arch"

How options influence the package ID

Options are used to specify characteristics that are particular to a single recipe, contrasting with settings that gener-
ally remain consistent across recipes within a project. They are usually a set of particular characteristics of a library
executable or conan package may have.

For example, a shared option is a very common option used in recipes that can produce shared libraries. However, it
could not be a setting as not all recipes produce shared libraries.

from conan import ConanFile

class Pkg(ConanFile):
name = "pkg"
version = "1.0.0"
options = {"shared": [True, False]}
default_options = {"shared": True}

As in the previous case with settings, the different values of an option will influence the package ID and therefore,
generate different packages depending on it.

$ conan create . --options shared=True
...
pkg/1.0.0: Package '1744785cb24e3bdca70e27041dc5abd20476f947' created

$ conan create . --options shared=False
...
pkg/1.0.0: Package '55c609fe8808aa5308134cb5989d23d3caffccf2' created

In the same way, there might be “options” that are needed as input in a recipe to generate a package which shouldn’t be
taken into account in the package ID. An example of this could be an option to control something that during the build
phase but that does not influence the package result, like the verbosity of a compilation. In that case, the recipe should
remove the option in the package_id() method:

However, the general advice is that options should always affect the package ID, and in case we would like to have
an input to the recipe that should not affect it, it should be done via the conf section of your profile. Then in the recipe
we should just add:

from conan import ConanFile

class MyPkg(ConanFile):
name = "my-pkg"
version = "1.0.0"

def build(self):
verbosity = self.conf.get("user.my-pkg:verbosity")

(continues on next page)

8.8. The binary model 639

Conan Documentation, Release 2.1.0

(continued from previous page)

self.output.info(f"Using verbosity level: {verbosity})
...

Listing 135: myprofile

[conf]
user.my-pkg:verbosity=silent

That way the package ID will be not affected, the recipe will be cleaner (without irrelevant options for package ID) and
the input is easily managed via the profile’s conf section.

See also:
• How the package_id is computed

• Configure settings and options in recipes

8.8.3 The effect of dependencies on package_id

When a given package depends on a another package and uses it, the effect of dependencies can be different based on
the package types:

For libraries:

• Non-embed mode: When an application or a shared library depends on another shared library, or when a static
library depends on another static library, the “consumer” library does not do a copy of the binary artifacts of the
“dependency” at all. We call it non-embed mode, the dependency binaries are not being linked or embedded in
the consumer. This assumes that there are not inlined functionalities in the dependency headers, and the headers
are pure interface and not implementation.

• Embed mode: When an application or a shared library depends on a header-only or a static-library, the depen-
dencies binaries are copied or partially copied (depending on the linker) in the consumer binary. Also when
a static library depends on a header-only library, it is considered that there will be embedding in the consumer
binary of such headers, as they will also contain the implementation, it is impossible that they are a pure interface.

For applications (tool_requires):

• Build mode: When some package uses a tool_requires of another package, the binary artifacts in the depen-
dency are never copied or embedded.

Non-embed mode

When we list the binaries of a package like openssl with dependencies:

$ conan list openssl/3.1.2:* -r=conancenter
conancenter
openssl
openssl/3.1.2
revisions
8879e931d726a8aad7f372e28470faa1 (2023-09-13 18:52:54 UTC)
packages
0348efdcd0e319fb58ea747bb94dbd88850d6dd1 # package_id

info
options

(continues on next page)

640 Chapter 8. Reference

Conan Documentation, Release 2.1.0

(continued from previous page)

shared: True
...
requires
zlib/1.3.Z

This binary was a shared library, linking with zlib as a shared library. This means it was using “non-embed” mode.
The default of non-embed mode is minor_mode, which means:

• All zlib patch versions will be mapped to the same zlib/1.3.Z. This means that if our openssl/3.1.2 pack-
age binary 0348efdcd0e319fb58ea747bb94dbd88850d6dd1 binary is considered binary compatible with all
zlib/1.3.Z versions (for any Z), and will not require to rebuild the openssl binary.

• New zlib minor versions, like zlib/1.4.0 will result in a “minor-mode” identifier like zlib/1.4.Z, and then,
it will require a new openssl/3.1.2 package binary, with a new package_id

Embed mode

The following commands illustrate the concept of embed-mode. We create a dep/0.1 package with a static library,
and then we create a app/0.1 package with an executable that links with static library inside dep/0.1. We can use
the conan new command for quickly creating these two packages:

$ mkdir dep && cd dep
$ conan new cmake_lib -d name=dep -d version=0.1
$ conan create . -tf=""
$ cd .. && mkdir app && cd app
$ conan new cmake_exe -d name=app -d version=0.1 -d requires=dep/0.1
$ conan create .
dep/0.1: Hello World Release!
...
app/0.1: Hello World Release!

If we now list the app/0.1 binaries, we will see the binary just created:

$ conan list app/0.1:*
Local Cache
app/0.1
revisions
632e236936211ac2293ec33339ce582b (2023-09-25 22:34:17 UTC)
packages
3ca530d20914cf632eb00efbccc564da48190314
info
settings
...

requires
dep/0.1

→˓#d125304fb1fb088d5b92d4f8135f4dff:9bdee485ef71c14ac5f8a657202632bdb8b4482b

It is now visible that the app/0.1 package-id depends on the full identifier of the dep/0.1 dependency, that includes
both its recipe revision and package_id.

If we do a change now to the dep code, and re-create the dep/0.1 package , even if we don’t bump the version, it will
create a new recipe revision:

8.8. The binary model 641

Conan Documentation, Release 2.1.0

$ cd ../dep
Change the "src/dep.cpp" code to print a new message, like "Hello Moon"
$ conan create . -tf=""
New recipe revision dep/0.1#1c90e8b8306c359b103da31faeee824c

So if we try now to install app/0.1 binary, it will fail with a “missing binary” error:

$ conan install --requires=app/0.1
ERROR: Missing binary: app/0.1:ef2b5ed33d26b35b9147c90b27b217e2c7bde2d0

app/0.1: WARN: Can't find a 'app/0.1' package binary
→˓'ef2b5ed33d26b35b9147c90b27b217e2c7bde2d0' for the configuration:
[settings]
...
[requires]
dep/0.1#1c90e8b8306c359b103da31faeee824c:9bdee485ef71c14ac5f8a657202632bdb8b4482b

ERROR: Missing prebuilt package for 'app/0.1'

As the app executable links with the dep static library, it needs to be rebuilt to include the latest changes, even if dep/
0.1 didn’t bump its version, app/0.1 depends on “embed-mode” on dep/0.1, so it wil use down to the package_id
of such dependency identifier.

Let’s build the new app/0.1 binary:

$ cd ../app
$ conan create .
dep/0.1: Hello Moon Release! # Message changed to Moon
...
app/0.1: Hello World Release!

Now we will have two app/0.1 different binaries:

$ conan list app/0.1:*
Local Cache
app
app/0.1
revisions
632e236936211ac2293ec33339ce582b (2023-09-25 22:49:32 UTC)
packages
3ca530d20914cf632eb00efbccc564da48190314
info
settings
...

requires
dep/0.1

→˓#d125304fb1fb088d5b92d4f8135f4dff:9bdee485ef71c14ac5f8a657202632bdb8b4482b
ef2b5ed33d26b35b9147c90b27b217e2c7bde2d0
info
settings
...

requires
dep/0.1

→˓#1c90e8b8306c359b103da31faeee824c:9bdee485ef71c14ac5f8a657202632bdb8b4482b

642 Chapter 8. Reference

Conan Documentation, Release 2.1.0

We will have these two different binaries, one of them linking with the first revision of the dep/0.1 dependency (with
the “Hello World” message), and the other binary with the other package_id linked with the second revision of the
dep/0.1 dependency (with the “Hello Moon” message).

The above described mode is called full_mode, and it is the default for the embed_mode.

8.8.4 Extending the binary model

There are a few mechanisms to extend the default Conan binary model:

Custom settings

It is possible to add new settings or subsettings in the settings.yml file, something like:

os:
Windows:

new_subsetting: [null, "subvalue1", "subvalue2"]
new_root_setting: [null, "value1", "value2"]

Where the null value allows leaving the setting undefined in profiles. If not including, it will be mandatory that profiles
define a value for them.

The custom settings will be used explicitly or implictly in recipes and packages:

class Pkg(ConanFile):
If we explicilty want this package binaries to vary according to 'new_root_setting'
settings = "os", "compiler", "build_type", "arch", "new_root_setting"
While all packages with 'os=Windows' will implicitly vary according to 'new_

→˓subsetting'

See also:
For the full reference of how settings.yml file can be customized visit the settings section. In practice, it is not
necessary to modify the settings.yml file, and instead, it is possible to provide settings_user.yml file to extend
the existing settings. See the settings_user.yml documentation.

Custom options

Options are custom to every recipe, there is no global definition of options like the settings.yml one.

Package conanfile.py recipes define their own options, with their own range of valid values and their own defaults:

class MyPkg(ConanFile):
...
options = {"build_tests": [True, False],

"option2": ["ANY"]}
default_options = {"build_tests": True,

"option1": 42,
"z*:shared": True}

The options shared, fPIC and header_only have special meaning for Conan, and are considered automatically by
most built-in build system integrations. They are also the recommended default to represent when a library is shared,
static or header-only.

See also:

8.8. The binary model 643

Conan Documentation, Release 2.1.0

• documentation for options

• documentation for default_options.

Settings vs options vs conf

When to use settings or options or configuration?

• Settings are a project-wide configuration, something that typically affects the whole project that is being built and
affects the resulting package binaries. For example, the operating system or the architecture would be naturally
the same for all packages in a dependency graph, linking a Linux library to build a Windows app, or mixing
architectures is impossible. Settings cannot be defaulted in a package recipe. A recipe for a given library cannot
say that its default is os=Windows. The os will be given by the environment in which that recipe is processed.
It is a mandatory input to be defined in the input profiles.

• On the other hand, options are a package-specific configuration that affects the resulting package binaries. Static
or shared library are not settings that apply to all packages. Some can be header only libraries while other
packages can be just data, or package executables. For example, shared is a common option (the default for
specifying if a library can be static or shared), but packages can define and use any options they want. Options
are defined in the package conanfile.py recipe, including their supported and default values with options
and default_options.

• Configuration via conf is intended for configuration that does not affect the resulting package binaries in the
general case. For example, building one library with the tools.cmake.cmaketoolchain:generator=Ninja
shouldn’t result in a binary different than if built with Visual Studio (just a typically faster build thanks to Ninja).

There are some exceptions to the above. For example, settings can be defined per-package using the
<pattern:>setting=value, both in profiles and command line:

$ conan install . -s mypkg/*:compiler=gcc -s compiler=clang ..

This will use gcc for “mypkg” and clang for the rest of the dependencies (in most cases it is recommended to use the
same compiler for the whole dependency graph, but some scenarios when strong binary compatibility is guaranteed, it
is possible to mix libraries built with different compilers).

There are situations whereby many packages use the same option value, thereby allowing you to set its value once using
patterns, like:

$ conan install . -o *:shared=True

Custom configuration

As commented above, the Conan conf configuration system is intended to tune some of the tools and behaviors, but
without really affecting the resulting package binaries. Some typical conf items are activating parallel builds, config-
uring “retries” when uploading to servers, or changing the CMake generator. Read more about the Conan configuration
system in this section.

There is also the possibility to define user.xxxx:conf=value for user-defined configuration, that in the same spirit
as core and tools built-in configurations, do not affect the package_id of binaries.

But there might be some special situations in which it is really desired that some conf defines different package_ids,
creating different package binaries. It is possible to do this in two different places:

• Locally, in the recipe’s package_id method, via the self.info.conf attribute:

644 Chapter 8. Reference

Conan Documentation, Release 2.1.0

def package_id(self):
We can get the value from the actual current conf value, or define a new value
value = self.conf.get("user.myconf:myitem")
This ``self.info.conf`` will become part of the ``package_id``
self.info.conf.define("user.myconf:myitem", value)

• Globally, with the tools.info.package_id:confs configuration, receiving as argument a list of existing
configuration to be part of the package ID, so you can define in profiles:

tools.info.package_id:confs=["tools.build:cxxflags", ...]

The value of the package_id will contain the value provided in the tools.build:cxxflags and other con-
figurations. Note that this value is managed as a string, changing the string, will produce a different result and
a different package_id, so if this approach is used, it is very important to be very consistent with the provided
values for different configurations like tools.build:cxxflags.

It is also possible to use regex expressions to match several confs, instead of listing all of them, for example
.*cmake could match any configuration that contains “cmake” in its name (not that this is recommended, see
best practices below).

Note: Best practices
In general, defining variability of binaries package_id via conf should be reserved for special situations and always
managed with care. Passing many different confs to the tools.info.package_id:confs can easily result in issues
like missing binaries or unnecessarily building too many binaries. If that is the case, consider building higher level
abstraction over your binaries with new custom settings or options.

Cross build target settings

The self.settings_target is a conanfile.py attribute that becomes relevant in cross-compilation scenarios for
the tool_requires tools in the “build” context. When we have a tool_requires like CMake, lets say the cmake/3.
25.3, the package binary is independent of the possible platform that cross-compiling will target, it is the same cmake
executable for all different target platforms. The settings for a cross-building from Windows-X64 to Linux-armv8
scenario for the cmake conanfile recipe would be:

• self.settings: The settings where the current cmake/3.25.3 will run. As it is a tool-require, it will run in
the Windows machine, so self.settings.os = Windows and self.settings.arch = x86_64.

• self.settings_build: The settings of the current build machine that would build this package if nec-
essary. This is also the Windows-x64 machine, so self.settings_build.os = Windows and self.
settings_build.arch = x86_64 too.

• self.settings_target: The settings that the current application outcome will target. In this case it will be
self.settings_target.os = Linux and self.settings_target.arch = armv8

In the cmake package scenario, as we pointed out, the target is irrelevant. It is not used in the cmake conanfile recipe
at all, and it doesn’t affect the package_id of the cmake binary package.

But there are situations when the binary package can be different based on the target platform. For example a cross-
compiler gcc that has a different gcc executable based on the target it will compile for. This is typical in the GNU
ecosystem where we can find arm-gcc toolchains, for example, specific for a given architecture. This scenario can be
reflected by Conan, extending the package_id with the value of these settings_target:

8.8. The binary model 645

Conan Documentation, Release 2.1.0

def package_id(self):
self.info.settings_target = self.settings_target
If we only want the ``os`` and ``arch`` settings, then we remove the other:
self.info.settings_target.rm_safe("compiler")
self.info.settings_target.rm_safe("build_type")

8.8.5 Customizing the binary compatibility

The default binary compatibility requires an almost exact match of settings and options, and a versioned match of
dependencies versions, as explained in the previous section about dependencies.

In summary, the required binaries package_id when installing dependencies should match by default:

• All the settings in the package_id except compiler.cppstd should match exactly the ones provided in the input
profiles, including the compiler version. So compiler.version=9 is different than compiler.version=9.1.

• The default behavior will assume binary compatibility among different compiler.cppstd values for C++ pack-
ages, being able to fall back to other values rather than the one specified in the input profiles, if the cppstd
required by the input profile does not exist. This is controlled by the compatibility.py plugin, that can be
customized by users.

• All the options in the package_id should match exactly the ones provided in the input profiles.

• The versions of the dependencies should match:

– In case of “embedding dependencies”, should match the exact version, including the recipe-revision and
the dependency package_id. The package_revision is never included as it is assumed to be ill-formed
to have more than one package_revision for the same package_id.

– In case of “non-embedding dependencies”, the versions of the dependencies should match down to the
minor version, being the patch, recipe_revision and further information not taken into account.

– In case of “tool dependencies”, the versions of the dependencies do not affect at all by default to the con-
sumer package_id.

These rules can be customized and changed using different approaches, depending on the needs, as explained in fol-
lowing sections

Customizing binary compatibility of settings and options

Information erasure in package_id() method

Recipes can erase information from their package_id using their package_id() method. For example, a pack-
age containing only an executable can decide to remove the information from settings.compiler and settings.
build_type from their package_id, assuming that an executable built with any compiler will be valid, and that it is
not necessary to store different binaries built with different compilers:

def package_id(self):
del self.info.settings.compiler
del self.info.settings.build_type

It is also possible to assign a value for a given setting, for example if we want to have one single binary for all gcc
versions included in the [>=5 <7>] range, we could do:

646 Chapter 8. Reference

Conan Documentation, Release 2.1.0

def package_id(self):
if self.info.settings.compiler == "gcc":

version = Version(self.info.settings.compiler.version)
if version >= "5.0" and version < "7.0":

self.info.settings.compiler.version = "gcc5-6"

Note: Best practice
Note that information erasure in package_id() means that 1 single package_id will represent a whole range of
different settings, but the information of what exact setting was used to create the binary will be lost, and only 1 binary
can be created for that range. Re-creating the package with different settings in the range, will create a new binary that
overwrites the previous one (with a new package-revision).

If we want to be able to create, store and manage different binaries for different input settings, information erasure can’t
be used, and using the below compatibility approaches is recommended.

See also:
• Conan packages binary compatibility: the package ID

• package_id() method reference

The compatibility() method

Recipes can define their binary compatibility rules, using their compatibility() method. For example, if we want
that binaries built with gcc versions 4.8, 4.7 and 4.6 to be considered compatible with the ones compiled with 4.9 we
could declare a compatibility() method like this:

def compatibility(self):
if self.settings.compiler == "gcc" and self.settings.compiler.version == "4.9":

return [{"settings": [("compiler.version", v)]}
for v in ("4.8", "4.7", "4.6")]

Read more about the compatibility() method in the compatibility() method reference

The compatibility.py plugin

Compatibility can be defined globally via the compatibility.py plugin, in the same way that the compatibility()
method does for one recipe, but for all packages globally.

Check the binary compatibility compatibility.py extension.

Customizing binary compatibility of dependencies versions

Global default package_id modes

The core.package_id:default_xxx configurations defined in global.conf can be used to globally change the
defaults of how dependencies affect their consumers

8.8. The binary model 647

Conan Documentation, Release 2.1.0

core.package_id:default_build_mode: By default, 'None'
core.package_id:default_embed_mode: By default, 'full_mode'
core.package_id:default_non_embed_mode: By default, 'minor_mode'
core.package_id:default_python_mode: By default, 'minor_mode'
core.package_id:default_unknown_mode: By default, 'semver_mode'

Note: Best practices
It is strongly recommended that the core.package_id:default_xxx should be global, consistent and immutable
accross organizations. It can be confusing to change these defaults for different projects or teams, because it will result
in missing binaries.

It should also be consistent and shared with the consumers of generated packages if those packages are shared outside
the organization, in that case sharing the global.conf file via conan config install could be recommended.

Consider using the Conan defaults, they should be a good balance between efficiency and safety, ensuring exact re-
building for embed cases, and good control via versions for non-embed cases.

Custom package_id modes for recipe consumers

Recipes can define their default effect to their consumers, via some package_id_xxxx_mode attributes.

The package_id_embed_mode, package_id_non_embed_mode, package_id_unknown_mode are class at-
tributes that can be defined in recipes to define the effect they have on their consumers package_id. Can be declared
as:

from conan import ConanFile

class Pkg(ConanFile):
...
package_id_embed_mode = "full_mode"
package_id_non_embed_mode = "patch_mode"
package_id_unknown_mode = "minor_mode"

Read more in package_id_{embed,non_embed,python,unknown}_mode

Custom package_id from recipe dependencies

Recipes can define how their dependencies affect their package_id, using the package_id_mode trait:

from conan import ConanFile

class Pkg(ConanFile):
def requirements(self):

self.requires("mydep/1.0", package_id_mode="patch_mode")

Using package_id_mode trait does not differentiate between the “embed” and “non-embed” cases, it is up to the user
to define the correct value. It is likely that this approach should only be used for very special cases that do not have
variability of shared/static libraries controlled via options.

Note that the requirements() method is evaluated while the graph is being expanded, the dependencies do not exist
yet (haven’t been computed), so it is not possible to know the dependencies options. In this case it might be preferred

648 Chapter 8. Reference

Conan Documentation, Release 2.1.0

to use the package_id() method.

The package_id() method can define how the dependencies affect the current package with:

from conan import ConanFile

class Pkg(ConanFile):
def package_id(self):

self.info.requires["mydep"].major_mode()

The different modes that can be used are defined in package_id_{embed,non_embed,python,unknown}_mode

8.9 Conan Server

Important: This server is mainly used for testing (though it might work fine for small teams). We recommend using
the free Artifactory Community Edition for C/C++ for private development or Artifactory Pro as Enterprise solution.

8.9.1 Configuration

By default your server configuration is saved under ~/.conan_server/server.conf, however you can modify
this behaviour by either setting the CONAN_SERVER_HOME environment variable or launching the server with -d or
--server_dir command line argument followed by desired path. In case you use one of the options your configuration
file will be stored under server_directory/server.conf Please note that command line argument will override
the environment variable. You can change configuration values in server.conf, prior to launching the server. Note
that the server does not support hot-reload, and thus in order to see configuration changes you will have to manually
relaunch the server.

The server configuration file is by default:

[server]
jwt_secret: IJKhyoioUINMXCRTytrR
jwt_expire_minutes: 120

ssl_enabled: False
port: 9300

public_port:
host_name: localhost

authorize_timeout: 1800

disk_storage_path: ./data
disk_authorize_timeout: 1800
updown_secret: HJhjujkjkjkJKLUYyuuyHJ

[write_permissions]
"opencv/2.3.4@lasote/testing": default_user,default_user2

[read_permissions]
/@*/*: *

(continues on next page)

8.9. Conan Server 649

Conan Documentation, Release 2.1.0

(continued from previous page)

[users]
demo: demo

Server Parameters

Note: The Conan server supports relative URLs, allowing you to avoid setting host_name, public_port and
ssl_enabled. The URLs used to upload/download packages will be automatically generated in the client follow-
ing the URL of the remote. This allows accessing the Conan server from different networks.

• port: Port where conan_server will run.

• The client server authorization is done with JWT. jwt_secret is a random string used to generate authentication
tokens. You can change it safely anytime (in fact it is a good practice). The change will just force users to log in
again. jwt_expire_minutes is the amount of time that users remain logged-in within the client without having
to introduce their credentials again.

• host_name: If you set host_name, you must use the machine’s IP where you are running your server (or domain
name), something like host_name: 192.168.1.100. This IP (or domain name) has to be visible (and resolved)
by the Conan client, so take it into account if your server has multiple network interfaces.

• public_port: Might be needed when running virtualized, Docker or any other kind of port redirection. File
uploads/downloads are served with their own URLs, generated by the system, so the file storage backend is
independent. Those URLs need the public port they have to communicate from the outside. If you leave it blank,
the port value is used.

Example: Use conan_server in a Docker container that internally runs in the 9300 port but exposes the 9999
port (where the clients will connect to):

docker run ... -p9300:9999 ... # Check Docker docs for that

server.conf

[server]

ssl_enabled: False
port: 9300
public_port: 9999
host_name: localhost

• ssl_enabled Conan doesn’t handle the SSL traffic by itself, but you can use a proxy like Nginx to redirect the
SSL traffic to your Conan server. If your Conan clients are connecting with “https”, set ssl_enabled to True.
This way the conan_server will generate the upload/download urls with “https” instead of “http”.

Note: Important: The Conan client, by default, will validate the server SSL certificates and won’t connect if it’s
invalid. If you have self signed certificates you have two options:

1. Use the conan remote command to disable the SSL certificate checks. E.g., conan remote add/update myremote
https://somedir False

2. If using the core.net.http:cacert_path configuration in the Conan client, append the server .crt file contents to
the cacert.pem location.

650 Chapter 8. Reference

Conan Documentation, Release 2.1.0

The folder in which the uploaded packages are stored (i.e., the folder you would want to backup) is defined in the
disk_storage_path. The storage backend might use a different channel, and uploads/downloads are authorized up
to a maximum of authorize_timeout seconds. The value should sufficient so that large downloads/uploads are not
rejected, but not too big to prevent hanging up the file transfers. The value disk_authorize_timeout is not currently
used. File transfers are authorized with their own tokens, generated with the secret updown_secret. This value should
be different from the above jwt_secret.

Permissions Parameters

By default, the server configuration when set to Read can be done anonymous, but uploading requires you to be regis-
tered users. Users can easily be registered in the [users] section, by defining a pair of login: password for each
one. Plain text passwords are used at the moment, but as the server is on-premises (behind firewall), you just need to
trust your sysadmin :)

If you want to restrict read/write access to specific packages, configure the [read_permissions] and
[write_permissions] sections. These sections specify the sequence of patterns and authorized users, in the form:

use a comma-separated, no-spaces list of users
package/version@user/channel: allowed_user1,allowed_user2

E.g.:

/@*/*: * # allow all users to all packages
PackageA/*@*/*: john,peter # allow john and peter access to any PackageA
/@project/*: john # Allow john to access any package from the "project" user

The rules are evaluated in order. If the left side of the pattern matches, the rule is applied and it will not continue
searching for matches.

Authentication

By default, Conan provides a simple user: password users list in the server.conf file.

There is also a plugin mechanism for setting other authentication methods. The process to install any of them is a
simple two-step process:

1. Copy the authenticator source file into the .conan_server/plugins/authenticator folder.

2. Add custom_authenticator: authenticator_name to the server.conf [server] section.

This is a list of available authenticators, visit their URLs to retrieve them, but also to report issues and collaborate:

• htpasswd: Use your server Apache htpasswd file to authenticate users. Get it: https://github.com/d-schiffner/
conan-htpasswd

• LDAP: Use your LDAP server to authenticate users. Get it: https://github.com/uilianries/
conan-ldap-authentication

8.9. Conan Server 651

https://github.com/d-schiffner/conan-htpasswd
https://github.com/d-schiffner/conan-htpasswd
https://github.com/uilianries/conan-ldap-authentication
https://github.com/uilianries/conan-ldap-authentication

Conan Documentation, Release 2.1.0

Create Your Own Custom Authenticator

If you want to create your own Authenticator, create a Python module in ~/.conan_server/plugins/
authenticator/my_authenticator.py

Example:

def get_class():
return MyAuthenticator()

class MyAuthenticator(object):
def valid_user(self, username, plain_password):

return username == "foo" and plain_password == "bar"

The module has to implement:

• A factory function get_class() that returns a class with a valid_user() method instance.

• The class containing the valid_user() that has to return True if the user and password are valid or False
otherwise.

Authorizations

By default, Conan uses the contents of the [read_permissions] and [write_permissions] sections to authorize
or reject a request.

A plugin system is also available to customize the authorization mechanism. The installation of such a plugin is a
simple two-step process:

1. Copy the authorizer’s source file into the .conan_server/plugins/authorizer folder.

2. Add custom_authorizer: authorizer_name to the server.conf [server] section.

Create Your Own Custom Authorizer

If you want to create your own Authorizer, create a Python module in ~/.conan_server/plugins/authorizer/
my_authorizer.py

Example:

from conans.errors import AuthenticationException, ForbiddenException

def get_class():
return MyAuthorizer()

class MyAuthorizer(object):
def _check_conan(self, username, ref):

if ref.user == username:
return

if username:
raise ForbiddenException("Permission denied")

else:
raise AuthenticationException()

(continues on next page)

652 Chapter 8. Reference

Conan Documentation, Release 2.1.0

(continued from previous page)

def _check_package(self, username, pref):
self._check(username, pref.ref)

check_read_conan = _check_conan check_write_conan = _check_conan
check_delete_conan = _check_conan check_read_package = _check_package
check_write_package = _check_package check_delete_package = _check_package

The module has to implement:

• A factory function get_class() that returns an instance of a class conforming to the Authorizer’s interface.

• A class that implements all the methods defined in the Authorizer interface:
– check_read_conan() is used to decide whether to allow read access to a recipe.

– check_write_conan() is used to decide whether to allow write access to a recipe.

– check_delete_conan() is used to decide whether to allow a recipe’s deletion.

– check_read_package() is used to decide whether to allow read access to a package.

– check_write_package() is used to decide whether to allow write access to a package.

– check_delete_package() is used to decide whether to allow a package’s deletion.

The check_*_conan() methods are called with a username and conans.model.ref.ConanFileReference in-
stance as their arguments. Meanwhile the check_*_package() methods are passed a username and conans.model.
ref.PackageReference instance as their arguments. These methods should raise an exception, unless the user is
allowed to perform the requested action.

8.9.2 Running the Conan Server with SSL using Nginx

server.conf

[server] port: 9300

nginx conf file

server {
listen 443; server_name myservername.mydomain.com;

location / {
proxy_pass http://0.0.0.0:9300;

} ssl on; ssl_certificate /etc/nginx/ssl/server.crt; ssl_certificate_key
/etc/nginx/ssl/server.key;

}

remote configuration in Conan client

$ conan remote add myremote https://myservername.mydomain.com

8.9. Conan Server 653

Conan Documentation, Release 2.1.0

8.9.3 Running the Conan Server with SSL using Nginx in a Subdirectory

server.conf

[server] port: 9300

nginx conf file

server {

listen 443; ssl on; ssl_certificate /usr/local/etc/nginx/ssl/server.crt;
ssl_certificate_key /usr/local/etc/nginx/ssl/server.key; server_name
myservername.mydomain.com;

location /subdir/ {
proxy_pass http://0.0.0.0:9300/;

}
}

remote configuration in Conan client

$ conan remote add myremote https://myservername.mydomain.com/subdir/

8.9.4 Running Conan Server using Apache

You need to install mod_wsgi. If you want to use Conan installed from pip, the conf file should be similar
to the following example:

Apache conf file (e.g., /etc/apache2/sites-available/0_conan.conf)

<VirtualHost *:80>
WSGIScriptAlias /
/usr/local/lib/python3.6/dist-packages/conans/server/server_launcher.py
WSGICallableObject app WSGIPassAuthorization On

<Directory /usr/local/lib/python3.6/dist-packages/conans>
Require all granted

</Directory>
</VirtualHost>

If you want to use Conan checked out from source in, for example in /srv/conan, the conf file should be as
follows:

Apache conf file (e.g., /etc/apache2/sites-available/0_conan.conf)

<VirtualHost *:80>
WSGIScriptAlias / /srv/conan/conans/server/server_launcher.py
WSGICallableObject app WSGIPassAuthorization On

<Directory /srv/conan/conans>
Require all granted

</Directory>
</VirtualHost>

654 Chapter 8. Reference

Conan Documentation, Release 2.1.0

The directive WSGIPassAuthorization On is needed to pass the HTTP basic authentication to Conan.

Also take into account that the server config files are located in the home of the configured Apache user,
e.g., var/www/.conan_server, so remember to use that directory to configure your Conan server.

See also:
• Setting-up a Conan Server

8.9. Conan Server 655

Conan Documentation, Release 2.1.0

656 Chapter 8. Reference

CHAPTER

NINE

KNOWLEDGE

9.1 Cheat sheet

This is a visual cheat sheet for basic Conan commands and concepts which users can print out and use as a handy
reference. It is available as both a PDF and PNG.

Tip: There is a blog post which goes over the changes from Conan 1.x and 2.0 as well.

PDF Format

PNG Format

657

https://blog.conan.io/2023/06/07/New-Cheat-Sheet-For-Conan-2.html

Conan Documentation, Release 2.1.0

9.2 Core guidelines

9.2.1 Good practices

• build() should be simple, prepare the builds in generate() instead: The recipes’ generate()method purpose
is to prepare the build as much as possible. Users calling conan install will execute this method, and the
generated files should allow users to do “native” builds (calling directly “cmake”, “meson”, etc.) as easy as
possible. Thus, avoiding as much as possible any logic in the build()method, and moving it to the generate()
method helps developers achieve the same build locally as the one that would be produced by a conan create
build in the local cache.

• Always use your own profiles in production, instead of relying on the auto-detected profile, as the output of
such auto detection can vary over time, resulting in unexpected results. Profiles (and many other configuration),
can be managed with conan config install.

• Developers should not be able to upload to “development” and “production” repositories in the server.
Only CI builds have write permissions in the server. Developers should only have read permissions and at most
to some “playground” repositories used to work and share things with colleagues, but which packages are never
used, moved or copied to the development or production repositories.

• The test_package purpose is to validate the correct creation of the package, not for functional testing. The
test_package purpose is to check that the package has been correctly created (that is, that it has correctly
packaged the headers, the libraries, etc, in the right folders), not that the functionality of the package is correct.
Then, it should be kept as simple as possible, like building and running an executable that uses the headers and
links against a packaged library should be enough. Such execution should be as simple as possible too. Any kind
of unit and functional tests should be done in the build() method.

• All input sources must be common for all binary configurations: All the “source” inputs, including the
conanfile.py, the conandata.yml, the exports and exports_source, the source() method, patches ap-
plied in the source() method, cannot be conditional to anything, platform, OS or compiler, as they are shared
among all configurations. Furthermore, the line endings for all these things should be the same, it is recom-
mended to use always just line-feeds in all platforms, and do not convert or checkout to crlf in Windows, as
that will cause different recipe revisions.

• Keep ``python_requires`` as simple as possible. Avoid transitive python_requires, keep them as reduced
as possible, and at most, require them explicitly in a “flat” structure, without python_requires requiring other
python_requires. Avoid inheritance (via python_requires_extend) if not strictly necessary, and avoid
multiple inheritance at all costs, as it is extremely complicated, and it does not work the same as the built-in
Python one.

• At the moment the Conan cache is not concurrent. Avoid any kind of concurrency or parallelism, for example
different parallel CI jobs should use different caches (with CONAN_HOME env-var). This might change in the
future and we will work on providing concurrency in the cache, but until then, use isolated caches for concurrent
tasks.

• Avoid ‘force’ and ‘override’ traits as a versioning mechanism. The force and override traits to solve
conflicts are not recommended as a general versioning solution, just as a temporary workaround to solve a version
conflict. Its usage should be avoided whenever possible, and updating versions or version ranges in the graph to
avoid the conflicts without overrides and forces is the recommended approach.

• Please, do not abuse ‘tool_requires’. Those are intended only for executables like cmake and ninja running in
the “build” context, not for libraries or library-like dependencies, that must use requires or test_requires.

658 Chapter 9. Knowledge

Conan Documentation, Release 2.1.0

9.2.2 Forbidden practices

• Conan is not re-entrant: Calling the Conan process from Conan itself cannot be done. That includes calling
Conan from recipe code, hooks, plugins, and basically every code that already executes when Conan is called.
Doing it will result in undefined behavior. For example it is not valid to run conan search from a conanfile.
py. This includes indirect calls, like running Conan from a build script (like CMakeLists.txt) while this build
script is already being executed as a result of a Conan invocation. For the same reason Conan Python API
cannot be used from recipes: The Conan Python API can only be called from Conan custom commands or
from user Python scripts, but never from conanfile.py recipes, hooks, extensions, plugins, or any other code
executed by Conan.

• Settings and configuration (conf) are read-only in recipes: The settings and configuration cannot be defined
or assigned values in recipes. Something like self.settings.compiler = "gcc" in recipes shouldn’t be
done. That is undefined behavior and can crash at any time, or just be ignored. Settings and configuration can
only be defined in profiles, in command line arguments or in the profile.py plugin.

• Recipes reserved names: Conan conanfile.py recipes user attributes and methods should always start with _.
Conan reserves the “public” namespace for all attributes and methods, and _conan for private ones. Using any
non-documented Python function, method, class, attribute, even if it is “public” in the Python sense, is undefined
behavior if such element is not documented in this documentation.

• Conan artifacts are immutable: Conan packages and artifacts, once they are in the Conan cache, they are
assumed to be immutable. Any attempt to modify the exported sources, the recipe, the conandata.yml or any
of the exported or the packaged artifacts, is undefined behavior. For example, it is not possible to modify the
contents of a package inside the package_info() method or the package_id() method, those methods should
never modify, delete or create new files inside the packages. If you need to modify some package, you might use
your own custom deployer.

• Conan cache paths are internal implementation detail: The Conan cache paths are an internal implementation
detail. Conan recipes provide abstractions like self.build_folder to represent the necessary information
about folders, and commands like conan cache path to get information of the current folders. The Conan
cache might be checked while debugging, as read-only, but it is not allowed to edit, modify or delete artifacts or
files from the Conan cache by any other means that Conan command line or public API.

• Sources used in recipes must be immutable. Once a recipe is exported to the Conan cache, it is expected that
the sources are immutable, that is, that retrieving the sources in the future will always retrieve the exact same
sources. It is not allowed to use moving targets like a git branch or a download of a file that is continuously
rewritten in the server. git checkouts must be of an immutable tag or a commit, and download()/get() must
use checksums to verify the server files doesn’t change. Not using immutable sources will be undefined behavior.

9.2. Core guidelines 659

Conan Documentation, Release 2.1.0

9.3 FAQ

See also:
There is a great community behind Conan with users helping each other in Cpplang Slack. Please join us in the #conan
channel!

9.3.1 Troubleshooting

ERROR: Missing prebuilt package

When installing packages (with conan install or conan create) it is possible that you get an error like the follow-
ing one:

ERROR: Missing binary: zlib/1.2.11:b1d267f77ddd5d10d06d2ecf5a6bc433fbb7eeed

zlib/1.2.11: WARN: Can't find a 'zlib/1.2.11' package binary
→˓'b1d267f77ddd5d10d06d2ecf5a6bc433fbb7eeed' for the configuration:
[settings]
arch=x86_64
build_type=Release
compiler=apple-clang
compiler.cppstd=gnu11
compiler.libcxx=libc++
compiler.version=14
os=Macos
[options]
fPIC=True
shared=False

ERROR: Missing prebuilt package for 'zlib/1.2.11'. You can try:
- List all available packages using 'conan list {ref}:* -r=remote'
- Explain missing binaries: replace 'conan install ...' with 'conan graph explain ...

→˓'
- Try to build locally from sources using the '--build=zlib/1.2.11' argument

More Info at 'https://docs.conan.io/en/2/knowledge/faq.html#error-missing-prebuilt-
→˓package'

This means that the package recipe zlib/1.2.11 exists, but for some reason there is no precompiled package for
your current settings or options. Maybe the package creator didn’t build and shared pre-built packages at all and only
uploaded the package recipe, or they are only providing packages for some platforms or compilers. E.g. the package
creator built packages from the recipe for apple-clang 11, but you are using apple-clang 14. Also you may want to
check your package ID mode as it may have an influence on the packages available for it.

By default, Conan doesn’t build packages from sources. There are several possibilities to overcome this error:

• You can try to build the package for your settings from sources, indicating some build policy as argument, like
--build zlib* or --build missing. If the package recipe and the source code work for your settings you
will have your binaries built locally and ready for use.

• If building from sources fails, and you are using the conancenter remote, you can open an issue in the Conan
Center Index repository

660 Chapter 9. Knowledge

https://cppalliance.org/slack/
https://github.com/conan-io/conan-center-index
https://github.com/conan-io/conan-center-index

Conan Documentation, Release 2.1.0

ERROR: Invalid setting

It might happen sometimes, when you specify a setting not present in the defaults that you receive a message like this:

$ conan install . -s compiler.version=4.19 ...

ERROR: Invalid setting '4.19' is not a valid 'settings.compiler.version' value.
Possible values are ['4.4', '4.5', '4.6', '4.7', '4.8', '4.9', '5.1', '5.2', '5.3', '5.4
→˓', '6.1', '6.2']

This doesn’t mean that such compiler version is not supported by Conan, it is just that it is not present in the actual
defaults settings. You can find in your user home folder ~/.conan2/settings.yml a settings file that you can modify,
edit, add any setting or any value, with any nesting if necessary. See settings.yml to learn how you can customize your
settings to model your binaries at your will.

As long as your team or users have the same settings (settings.yml and settings_user.yml an be easily shared
with the conan config install command), everything will work. The settings.yml file is just a mechanism so users
agree on a common spelling for typical settings. Also, if you think that some settings would be useful for many other
conan users, please submit it as an issue or a pull request, so it is included in future releases.

It is possible that some built-in helper or integrations, like CMake or CMakeToolchain will not understand the new
added settings, don’t use them or even fail if you added some new unexpected value to existing settings. Such helpers
as CMake are simple utilities to translate from conan settings to the respective build system syntax and command line
arguments, so they can be extended or replaced with your own one that would handle your own private settings.

ERROR: AuthenticationException:

This error can happen, if there are no or false authentication credentials in the HTTP request from conan. To get more
information try enabling the debug level for HTTP connections:

import http.client
http.client.HTTPConnection.debuglevel = 1

One source of error can be the .netrc file, which is honored by the requests library.

ERROR: Obtaining different revisions in Linux and Windows

Git will (by default) checkout files in Windows systems using CRLF line endings, effectively producing different files
than in Linux that files will use LF line endings. As files are different, the Conan recipe revision will be different
from the revisions computed in other platforms such as Linux, resulting in missing the respective binaries in the other
revision.

Conan will not normalize or change in any way the source files, it is not its responsibility and there are risks of breaking
things. The source control is the application changing the files, so that is a more correct place to handle this. It is
necessary to instruct Git to do the checkout with the same line endings. This can be done several ways, for example,
by adding a .gitattributes file to the project repository:

[auto]
crlf = false

Other approach would be to change the .gitconfig to change it globally. Modern editors (even Notepad) in Windows
can perfectly work with files with LF, it is no longer necessary to change the line endings.

9.3. FAQ 661

https://requests.readthedocs.io/en/latest/user/quickstart/#custom-headers

Conan Documentation, Release 2.1.0

9.4 Videos

Warning: This section presents some conference talks and presentations regarding Conan. While they can be very
informative and educational, please note that some of them might be outdated. Always use the documentation and
reference as the source of truth, not the videos.

• ACCU 2022: Advanced Dependencies Model in Conan 2.0 C, C++ Package Manager by Diego Rodriguez-
Losada

Conan 2.0 introduces a new dependencies model with requirements “traits” like visibility, definition
and propagation of headers and libraries independently, and more that allow modeling all these ad-
vanced use cases. This talk will present this new model, and apply it to solve different advanced use
cases, with real life examples

https://youtu.be/kKGglzm5ous

• CppCon 2022: What’s New in Conan 2.0 C/C++ Package Manager - Diego Rodriguez-Losada

During the years since Conan 1.0 was released, we have continued to learn from the C++ ecosystem
as we watched it grow; learning many lessons, challenges and trends in the industry from the feedback
from tens of thousands of conversations with users and customers, including many of the largest C++
related companies in the world. This talk summarizes some of these lessons and how they have been
used to create the new major version of Conan.

https://youtu.be/NM-xp3tob2Q

• Using std::cpp: Why you shouldn’t write your own C++ package manager Luis Caro Campos JFrog

This talk will provide a quick overview of how Conan deals with intrinsic C++ complexities: Headers
vs binary symbols Shared and static library Symbol visibilityBinary compatibility: is there a one-size
fits all approach to modeling it? Build-time dependency resolution is only half the battle, what about
runtime dependencies?

• Meeting C++ 2023: CMake and Conan: past, present and future - Diego Rodriguez-Losada

https://youtu.be/s0q6s5XzIrA

https://youtu.be/8Go5g2jVJWo

• Meeting C++ online book & tool fair: Conan 2.0 demo - Chris McArthur

https://youtu.be/1q5oIOupwjg

662 Chapter 9. Knowledge

https://youtu.be/kKGglzm5ous
https://youtu.be/NM-xp3tob2Q
https://youtu.be/s0q6s5XzIrA
https://youtu.be/8Go5g2jVJWo
https://youtu.be/1q5oIOupwjg

CHAPTER

TEN

CHANGELOG

For a more detailed description of the major changes that Conan 2 brings, compared with Conan 1.X, please read
What’s new in Conan 2

10.1 2.1.0 (15-Feb-2024)

• Feature: Implement multi-config tools.build:xxxx flags in CMakeToolchain. #15654

• Feature: Add ability to pass patterns to –update flag. #15652 . Docs here

• Feature: Add –format=json formatter to conan build. #15651

• Feature: Added tools.build.cross_building:cross_build to decide whether cross-building or not regardless of the
internal Conan mechanism. #15616

• Feature: Add –format=json option to conan cache path. #15613

• Feature: Add the –order-by argument for conan graph build-order. #15602 . Docs here

• Feature: Provide a new graph build-order --reduce argument to reduce the order exclusively to packages
that need to be built from source. #15573 . Docs here

• Feature: Add configuration to specify desired CUDA Toolkit in CMakeToolchain for Visual Studio CMake gen-
erators. #15572 . Docs here

• Feature: New “important” options values definition, with higher precedence over regular option value definitions.
#15571 . Docs here

• Feature: Display message when calling deactivate_conanvcvars. #15557

• Feature: Add self.info information of package_id to serialized output in the graph, and forward it to
package-lists. #15553 . Docs here

• Feature: Log Git tool commands when running in verbose mode. #15514

• Feature: Add verbose debug information (with -vvv) for conan.tools.files.copy() calls. #15513

• Feature: Define python_requires = "tested_reference_str" for explicit test_package of
python_requires. #15485 . Docs here

• Feature: Adding CMakeToolchain.presets_build/run_environment to modify CMakePresets environment in gen-
erate() method. #15470 . Docs here

• Feature: Add –allowed-packges to remotes to limit what references a remote can supply. #15464 . Docs here

• Feature: Initial documentation to make RemotesAPI publicly available (experimental). #15462

• Feature: Add support for use of vcvars env variables when calling from powershell. #15461 . Docs here

663

https://github.com/conan-io/conan/pull/15654
https://github.com/conan-io/conan/pull/15652
https://github.com/conan-io/docs/pull/3587
https://github.com/conan-io/conan/pull/15651
https://github.com/conan-io/conan/pull/15616
https://github.com/conan-io/conan/pull/15613
https://github.com/conan-io/conan/pull/15602
https://github.com/conan-io/docs/pull/3582
https://github.com/conan-io/conan/pull/15573
https://github.com/conan-io/docs/pull/3584
https://github.com/conan-io/conan/pull/15572
https://github.com/conan-io/docs/pull/3568
https://github.com/conan-io/conan/pull/15571
https://github.com/conan-io/docs/pull/3585
https://github.com/conan-io/conan/pull/15557
https://github.com/conan-io/conan/pull/15553
https://github.com/conan-io/docs/pull/3553
https://github.com/conan-io/conan/pull/15514
https://github.com/conan-io/conan/pull/15513
https://github.com/conan-io/conan/pull/15485
https://github.com/conan-io/docs/pull/3537
https://github.com/conan-io/conan/pull/15470
https://github.com/conan-io/docs/pull/3547
https://github.com/conan-io/conan/pull/15464
https://github.com/conan-io/docs/pull/3534
https://github.com/conan-io/conan/pull/15462
https://github.com/conan-io/conan/pull/15461
https://github.com/conan-io/docs/pull/3541

Conan Documentation, Release 2.1.0

• Feature: New Git(..., excluded=[]) feature to avoid “dirty” errors in Git helper. #15457 . Docs here

• Feature: New core.scm:excluded feature to avoid “dirty” errors in Git helper and revision_mode =
"scm". #15457 . Docs here

• Feature: Recipe python_package_id_mode for python_requires recipes, to define per-recipe effect on con-
sumers package_id. #15453 . Docs here

• Feature: Add cmakeExecutable to configure preset. #15447 . Docs here

• Feature: Add new --core-conf command line argument to allow passing core. confs via CLI. #15441 . Docs
here

• Feature: Add detect_api.detect_msvc_update(version) helper to detect_api. #15435 . Docs here

• Feature: CMakeToolchain defines jobs in generated CMakePresets.json buildPresets. #15422

• Feature: Allow nested “ANY” definitions in settings.yml. #15415 . Docs here

• Feature: Helpers Git().coordinates_to_conandata() and Git().
checkout_from_conandata_coordinates() to simplify scm based flows. #15377

• Feature: AutotoolsToolchain automatically inject -FS for VS. #15375

• Feature: New conan upload core.upload:parallel for faster parallel uploads. #15360 . Docs here

• Feature: Intel oneAPI compiler detection improvement. #15358

• Feature: Display progress for long conan list commands. #15354

• Feature: Add extension_properties attribute to pass information to extensions from recipes. #15348 . Docs here

• Feature: Implement compatibility_cppstd in extension_properties for the compatibility.py plugin to disable
fallback to other cppstd for the recipe. #15348 . Docs here

• Feature: Add Git.get_commit(..., repository=True) to obtain the repository commit, not the folder
commit. #15304

• Feature: Ensure --build=editable and --build=cascade works together. #15300 . Docs here

• Feature: New conan graph build-order --order=configuration to output a different order, sorted by
package binaries/configurations, not grouped by recipe revisions. #15270 . Docs here

• Feature: Allow copy&paste of recipe revisions with timestamps from --format=compact into conan lock
add. #15262 . Docs here

• Fix: Guarantee order of generators attribute execution. #15678

• Fix: Solve issue with [platform_tool_requires] in the build profile and context. Discard
[platform_requires] in build profile. #15665

• Fix: Fix gcc detection in conda environments. #15664

• Fix: Improve handling of .dirty download files when uploading backup sources. #15601

• Fix: Fix relativize paths in generated files. #15592

• Fix: Allow None values for CMakeToolchain.preprocessor_definitions that will map to definitions with-
out values. #15545 . Docs here

• Fix: Fix graph build-order –order=configuration text format output. #15538

• Fix: Raise a helpful error when the remote is not reachable in case the user wants to work in offline mode. #15516

• Fix: Avoid missing file stacktrace when no metadata exists for a source backup. #15501

• Fix: Remove --lockfile-packages argument, it was not documented as it is was not intended for public
usage. #15499 . Docs here

664 Chapter 10. Changelog

https://github.com/conan-io/conan/pull/15457
https://github.com/conan-io/docs/pull/3538
https://github.com/conan-io/conan/pull/15457
https://github.com/conan-io/docs/pull/3538
https://github.com/conan-io/conan/pull/15453
https://github.com/conan-io/docs/pull/3542
https://github.com/conan-io/conan/pull/15447
https://github.com/conan-io/docs/pull/3548
https://github.com/conan-io/conan/pull/15441
https://github.com/conan-io/docs/pull/3515
https://github.com/conan-io/conan/pull/15435
https://github.com/conan-io/docs/pull/3535
https://github.com/conan-io/conan/pull/15422
https://github.com/conan-io/conan/pull/15415
https://github.com/conan-io/docs/pull/3546
https://github.com/conan-io/conan/pull/15377
https://github.com/conan-io/conan/pull/15375
https://github.com/conan-io/conan/pull/15360
https://github.com/conan-io/docs/pull/3540
https://github.com/conan-io/conan/pull/15358
https://github.com/conan-io/conan/pull/15354
https://github.com/conan-io/conan/pull/15348
https://github.com/conan-io/docs/pull/3549
https://github.com/conan-io/conan/pull/15348
https://github.com/conan-io/docs/pull/3549
https://github.com/conan-io/conan/pull/15304
https://github.com/conan-io/conan/pull/15300
https://github.com/conan-io/docs/pull/3550
https://github.com/conan-io/conan/pull/15270
https://github.com/conan-io/docs/pull/3552
https://github.com/conan-io/conan/pull/15262
https://github.com/conan-io/docs/pull/3533
https://github.com/conan-io/conan/pull/15678
https://github.com/conan-io/conan/pull/15665
https://github.com/conan-io/conan/pull/15664
https://github.com/conan-io/conan/pull/15601
https://github.com/conan-io/conan/pull/15592
https://github.com/conan-io/conan/pull/15545
https://github.com/conan-io/docs/pull/3551
https://github.com/conan-io/conan/pull/15538
https://github.com/conan-io/conan/pull/15516
https://github.com/conan-io/conan/pull/15501
https://github.com/conan-io/conan/pull/15499
https://github.com/conan-io/docs/pull/3536

Conan Documentation, Release 2.1.0

• Fix: Raise if check_type=int and conf value is set to bool. #15378

• Fix: Add pkg-config entry to machine file generated by MesonToolchain, due to pkgconfig entry being deprecated
since Meson 1.3.0. #15369

• Fix: Fix graph explain not showing some differences in requirements if missing. #15355

• Fix: Fix tools.info.package_id:confs when pattern did not match any defined conf. #15353

• Fix: Fix upload_policy=skip with --build=missing issues. #15336

• Fix: Accept conan download/upload --list=.. --only-recipe to download only the recipes. #15312

• Fix: Allow cmake.build(build_type="Release") for recipes built with multi-config systems but without
build_type setting. #14780

• Bugfix: Fix MSBuildDeps with components and skipped dependencies. #15626

• Bugfix: Avoid provides raising an error for packages that self tool_requires to themselves to cross-build.
#15575

• Bugfix: Fix build scope OS detection in tools.microsoft.visual.VCVars. #15568

• Bugfix: Fix wrong propagation over visible=False when dependency is header-only. #15564

• Bugfix: Store the temporary cache folders inside core.cache:storage_path, so conan cache clean also
finds and clean them correctly. #15505

• Bugfix: The conan export-pkg --format=json output now returns recipe = "cache" status, as the
recipe is in the cache after the command. #15504

• Bugfix: The conan export-pkg command stores the lockfile excluding the test_package, following the same
behavior as conan create. #15504

• Bugfix: Avoid conan test failing for python_requires test-package. #15485 . Docs here

• Bugfix: MesonToolchain calculates a valid apple_min_version_flag. #15465

• Bugfix: Allow to limit os, compiler and other settings with subsettings in build_id() and package_id()
methods. #15439

• Bugfix: Fix getting environment variable CONAN_LOGIN_USERNAME_REMOTE. #15388

• Bugfix: Don’t take . folder into consideration for tools.files.copy() excludes patterns. #15349

• Bugfix: Disable creating editables without name and version. #15337

• Bugfix: Fix Git.get_url_and_commit raising for some Git configs. #15271

• Bugfix: Direct dependencies in the “host” context of packages being built shouldn’t be skipped. This allows for
non C/C++ libraries artifacts, like images, in the “host” context, to be used as build-time resources. #15128

10.2 2.0.17 (10-Jan-2024)

• Fix: Automatically create folder if conan cache save --file=subfolder/file.tgz subfolder doesn’t ex-
ist. #15409

• Bugfix: Fix libcxx detection when using CC/CXX env vars. #15418 . Docs here

• Bugfix: Solve winsdk_version bug in CMakeToolchain generator for cmake_minimum_required(3.27).
#15373

• Bugfix: Fix visible trait propagation with build=True trait. #15357

• Bugfix: Fix package_id calculation when including conf values thru tools.info.package_id:confs. #15356

10.2. 2.0.17 (10-Jan-2024) 665

https://github.com/conan-io/conan/pull/15378
https://github.com/conan-io/conan/pull/15369
https://github.com/conan-io/conan/pull/15355
https://github.com/conan-io/conan/pull/15353
https://github.com/conan-io/conan/pull/15336
https://github.com/conan-io/conan/pull/15312
https://github.com/conan-io/conan/pull/14780
https://github.com/conan-io/conan/pull/15626
https://github.com/conan-io/conan/pull/15575
https://github.com/conan-io/conan/pull/15568
https://github.com/conan-io/conan/pull/15564
https://github.com/conan-io/conan/pull/15505
https://github.com/conan-io/conan/pull/15504
https://github.com/conan-io/conan/pull/15504
https://github.com/conan-io/conan/pull/15485
https://github.com/conan-io/docs/pull/3537
https://github.com/conan-io/conan/pull/15465
https://github.com/conan-io/conan/pull/15439
https://github.com/conan-io/conan/pull/15388
https://github.com/conan-io/conan/pull/15349
https://github.com/conan-io/conan/pull/15337
https://github.com/conan-io/conan/pull/15271
https://github.com/conan-io/conan/pull/15128
https://github.com/conan-io/conan/pull/15409
https://github.com/conan-io/conan/pull/15418
https://github.com/conan-io/docs/pull/3509
https://github.com/conan-io/conan/pull/15373
https://github.com/conan-io/conan/pull/15357
https://github.com/conan-io/conan/pull/15356

Conan Documentation, Release 2.1.0

• Bugfix: Order conf items when dumping them to allow reproducible package_id independent of the order the
confs were declared. #15356

10.3 2.0.16 (21-Dec-2023)

• Bugfix: Revert the default of source_buildenv, make it False by default. #15319 . Docs here

10.4 2.0.15 (20-Dec-2023)

• Feature: New conan lock remove command to remove requires from lockfiles. #15284 . Docs here

• Feature: New CMake.ctest() helper method to launch directly ctest instead of via cmake
--target=RUN_TEST. #15282

• Feature: Add tracking syntax in <host_version> for different references. #15274 . Docs here

• Feature: Adding tools.microsoft:winsdk_version conf to make VCVars generator to use the given
winsdk_version. #15272 . Docs here

• Feature: Add pkglist formatter for conan export command. #15266 . Docs here

• Feature: Define CONAN_LOG_LEVEL env-var to be able to change verbosity at a global level. #15263 . Docs here

• Feature: conan cache path xxx –folder xxxx raises an error if the folder requested does not exist. #15257

• Feature: Add in operator support for ConanFile’s self.dependencies. #15221 . Docs here

• Feature: Make CMakeDeps generator create a conandeps.cmake that aggregates all direct dependencies in a
cmake-like generator style. #15207 . Docs here

• Feature: Add build environment information to CMake configure preset and run environment information to
CMake test presets. #15192 . Docs here

• Feature: Removed a warning about a potential issue with conan migration that would print every time a build
failed. #15174

• Feature: New deploy() method in recipes for explicit per-recipe deployment. #15172 . Docs here

• Feature: Allow tool-requires to be used in source() method injecting environment. #15153 . Docs here

• Feature: Allow accessing the contents of settings.yml (and settings_user!) from ConfigAPI. #15151

• Feature: Add builtin conf access from ConfigAPI. #15151

• Feature: Add redirect_stdout to CMake integration methods. #15150

• Feature: Add core:warnings_as_errors configuration option to make Conan raise on warnings and errors.
#15149 . Docs here

• Feature: Added FTP_TLS option using secure argument in ftp_download for secure communication. #15137

• Feature: New [replace_requires] and [replace_tool_requires] in profile for redefining requires, useful
for package replacements like zlibng/zlib, to solve conflicts, and to replace some dependencies by system
alternatives wrapped in another Conan package recipe. #15136 . Docs here

• Feature: Add stderr capture argument to conanfile’s run() method. #15121 . Docs here

• Feature: New [platform_requires] profile definition to be able to replace Conan dependencies by platform-
provided dependencies. #14871 . Docs here

666 Chapter 10. Changelog

https://github.com/conan-io/conan/pull/15356
https://github.com/conan-io/conan/pull/15319
https://github.com/conan-io/docs/pull/3501
https://github.com/conan-io/conan/pull/15284
https://github.com/conan-io/docs/pull/3496
https://github.com/conan-io/conan/pull/15282
https://github.com/conan-io/conan/pull/15274
https://github.com/conan-io/docs/pull/3480
https://github.com/conan-io/conan/pull/15272
https://github.com/conan-io/docs/pull/3487
https://github.com/conan-io/conan/pull/15266
https://github.com/conan-io/docs/pull/3483
https://github.com/conan-io/conan/pull/15263
https://github.com/conan-io/docs/pull/3490
https://github.com/conan-io/conan/pull/15257
https://github.com/conan-io/conan/pull/15221
https://github.com/conan-io/docs/pull/3481
https://github.com/conan-io/conan/pull/15207
https://github.com/conan-io/docs/pull/3492
https://github.com/conan-io/conan/pull/15192
https://github.com/conan-io/docs/pull/3488
https://github.com/conan-io/conan/pull/15174
https://github.com/conan-io/conan/pull/15172
https://github.com/conan-io/docs/pull/3494
https://github.com/conan-io/conan/pull/15153
https://github.com/conan-io/docs/pull/3493
https://github.com/conan-io/conan/pull/15151
https://github.com/conan-io/conan/pull/15151
https://github.com/conan-io/conan/pull/15150
https://github.com/conan-io/conan/pull/15149
https://github.com/conan-io/docs/pull/3484
https://github.com/conan-io/conan/pull/15137
https://github.com/conan-io/conan/pull/15136
https://github.com/conan-io/docs/pull/3495
https://github.com/conan-io/conan/pull/15121
https://github.com/conan-io/docs/pull/3482
https://github.com/conan-io/conan/pull/14871
https://github.com/conan-io/docs/pull/3495

Conan Documentation, Release 2.1.0

• Feature: New conan graph explain command to search, compare and explain missing binaries. #14694 .
Docs here

• Feature: Global cpp_info can be used to initialize components values. #13994

• Fix: Make core:warnings_as_errors accept a list #15297

• Fix: Fix user confs package scoping when no separator was given #15296

• Fix: Fix range escaping in conflict reports involving ranges. #15222

• Fix: Allow hard set_name() and set_version() to mutate name and version provided in command line.
#15211 . Docs here

• Fix: Make conan graph info –format=text print to stdout. #15170

• Fix: Avoid warning in CMake output due to CMAKE_POLICY_DEFAULT_CMP0091 unused variable. #15127

• Fix: Deprecate [system_tools] in favor of [platform_tool_requires] to align with
[platform_requires] for regular dependencies. Changed output from “System tool” to “Platform”.
#14871 . Docs here

• Bugfix: Ensure user confs have at least 1 : separator #15296

• Bugfix: Git.is_dirty() will use git status . -s to make sure it only process the current path, not the
whole repo, similarly to other Git methods. #15289

• Bugfix: Make self.info.clear() and header-only packages to remove python_requires and
tool_requires. #15285 . Docs here

• Bugfix: Make conan cache save/restore portable across Windows and other OSs. #15253

• Bugfix: Do not relativize absolute paths in deployers. #15244

• Bugfix: Add architecture to CMakePresets to avoid cmake ignoring toolchain definitions when using pre-
sets. #15215

• Bugfix: Fix conan graph info –format=html reporting misleading conflicting nodes. #15196

• Bugfix: Fix serialization of tool_requires in conan profile show –format=json. #15185

• Bugfix: Fix NMakeDeps quoting issues. #15140

• Bugfix: Fix the 2.0.14 migration to add LRU data to the cache when storage_path conf is defined. #15135

• Bugfix: Fix definition of package_metadata_folder for conan export-pkg command. #15126

• Bugfix: pyinstaller.py was broken for Python 3.12 due to a useless distutils import. #15116

• Bugfix: Fix backup sources error when no core.sources:download_cache is set. #15109

10.5 2.0.14 (14-Nov-2023)

• Feature: Added riscv64, riscv32 architectures to default settings.yml and management of them in Meson
and Autotools. #15053

• Feature: Allow only one simultaneous database connection. #15029

• Feature: Add conan cache backup-upload to upload all the backup sources in the cache, regardless of which
references they are from #15013 . Docs here

• Feature: New conan list --format=compact for better UX. #15011 . Docs here

• Feature: Ignore metadata upload by passing –metadata=”” #15007 . Docs here

10.5. 2.0.14 (14-Nov-2023) 667

https://github.com/conan-io/conan/pull/14694
https://github.com/conan-io/docs/pull/3486
https://github.com/conan-io/conan/pull/13994
https://github.com/conan-io/conan/pull/15297
https://github.com/conan-io/conan/pull/15296
https://github.com/conan-io/conan/pull/15222
https://github.com/conan-io/conan/pull/15211
https://github.com/conan-io/docs/pull/3491
https://github.com/conan-io/conan/pull/15170
https://github.com/conan-io/conan/pull/15127
https://github.com/conan-io/conan/pull/14871
https://github.com/conan-io/docs/pull/3495
https://github.com/conan-io/conan/pull/15296
https://github.com/conan-io/conan/pull/15289
https://github.com/conan-io/conan/pull/15285
https://github.com/conan-io/docs/pull/3485
https://github.com/conan-io/conan/pull/15253
https://github.com/conan-io/conan/pull/15244
https://github.com/conan-io/conan/pull/15215
https://github.com/conan-io/conan/pull/15196
https://github.com/conan-io/conan/pull/15185
https://github.com/conan-io/conan/pull/15140
https://github.com/conan-io/conan/pull/15135
https://github.com/conan-io/conan/pull/15126
https://github.com/conan-io/conan/pull/15116
https://github.com/conan-io/conan/pull/15109
https://github.com/conan-io/conan/pull/15053
https://github.com/conan-io/conan/pull/15029
https://github.com/conan-io/conan/pull/15013
https://github.com/conan-io/docs/pull/3438
https://github.com/conan-io/conan/pull/15011
https://github.com/conan-io/docs/pull/3446
https://github.com/conan-io/conan/pull/15007
https://github.com/conan-io/docs/pull/3436

Conan Documentation, Release 2.1.0

• Feature: Better output messages in conan upload #14984

• Feature: Add extra flags to CMakeToolchain. #14966 . Docs here

• Feature: Implement package load/restore from the cache, for CI workflows and moving packages over air-gaps.
#14923 . Docs here

• Feature: Compute version-ranges intersection to avoid graph version conflicts for compatible ranges #14912

• Feature: CMake helper can use multiple targets in target argument. #14883

• Feature: Add Macos 13.6 to settings.yml. #14858 . Docs here

• Feature: Add CMakeDeps and PkgConfigDeps generators listening to system_package_version property. #14808
. Docs here

• Feature: Add shorthand syntax in cli to specify host and build in 1 argument #14727 . Docs here

• Feature: Implement cache LRU control for cleaning of unused artifacts. #14054 . Docs here

• Fix: Avoid CMakeToolchain overwriting user CMakePresets.json when no layout nor output-folder is de-
fined #15058

• Fix: Add astra, elbrus and altlinux as distribution using apt in SystemPackageManager #15051

• Fix: Default to apt-get package manager in Linux Mint #15026 . Docs here

• Fix: Make Git() check commits in remote server even for shallow clones. #15023

• Fix: Add new Apple OS versions to settings.yml #15015

• Fix: Fix AutotoolsToolchain extraflags priority. #15005 . Docs here

• Fix: Remove colors from conan --version output #15002

• Fix: Add an error message if the sqlite3 version is unsupported (less than 3.7.11 from 2012) #14950

• Fix: Make cache DB always use forward slash for paths, to be uniform across Windows and Linux #14940

• Fix: Solve re-build of an existing package revision (like forcing rebuild of a an existing header-only package),
while previous folder was still used by other projects. #14938

• Fix: Avoid a recipe mutating a conf to affect other recipes. #14932 . Docs here

• Fix: The output of system packages via Apt.install() or PkgConfig.fill_cpp_info, like xorg/system
was very noisy to the Conan output, making it more quiet #14924

• Fix: Serialize the path information of python_requires, necessary for computing buildinfo #14886

• Fix: Define remotes in conan source command in case recipe has python_requires that need to be down-
loaded from remotes. #14852

• Fix: Fix min target flag for xros and xros-simulator. #14776

• Bugfix: --build=missing was doing unnecessary builds of packages that were not needed and could be
skipped, in the case of tool_requires having transitive dependencies. #15082

• BugFix: Add package revision to format=json in ‘conan export-pkg’ command #15042

• Bugfix: tools.build:download_source=True will not fail when there are editable packages. #15004 . Docs
here

• Bugfix: Transitive dependencies were incorrectly added to conandeps.xcconfig. #14898

• Bugfix: Fix integrity-check (upload --check or cache check-integrity) when the export_source has
not been downloaded #14850

• Bugfix: Properly lock release candidates of python requires #14846

668 Chapter 10. Changelog

https://github.com/conan-io/conan/pull/14984
https://github.com/conan-io/conan/pull/14966
https://github.com/conan-io/docs/pull/3452
https://github.com/conan-io/conan/pull/14923
https://github.com/conan-io/docs/pull/3453
https://github.com/conan-io/conan/pull/14912
https://github.com/conan-io/conan/pull/14883
https://github.com/conan-io/conan/pull/14858
https://github.com/conan-io/docs/pull/3416
https://github.com/conan-io/conan/pull/14808
https://github.com/conan-io/docs/pull/3399
https://github.com/conan-io/conan/pull/14727
https://github.com/conan-io/docs/pull/3439
https://github.com/conan-io/conan/pull/14054
https://github.com/conan-io/docs/pull/3455
https://github.com/conan-io/conan/pull/15058
https://github.com/conan-io/conan/pull/15051
https://github.com/conan-io/conan/pull/15026
https://github.com/conan-io/docs/pull/3441
https://github.com/conan-io/conan/pull/15023
https://github.com/conan-io/conan/pull/15015
https://github.com/conan-io/conan/pull/15005
https://github.com/conan-io/docs/pull/3451
https://github.com/conan-io/conan/pull/15002
https://github.com/conan-io/conan/pull/14950
https://github.com/conan-io/conan/pull/14940
https://github.com/conan-io/conan/pull/14938
https://github.com/conan-io/conan/pull/14932
https://github.com/conan-io/docs/pull/3449
https://github.com/conan-io/conan/pull/14924
https://github.com/conan-io/conan/pull/14886
https://github.com/conan-io/conan/pull/14852
https://github.com/conan-io/conan/pull/14776
https://github.com/conan-io/conan/pull/15082
https://github.com/conan-io/conan/pull/15042
https://github.com/conan-io/conan/pull/15004
https://github.com/conan-io/docs/pull/3448
https://github.com/conan-io/conan/pull/14898
https://github.com/conan-io/conan/pull/14850
https://github.com/conan-io/conan/pull/14846

Conan Documentation, Release 2.1.0

• BugFix: Version ranges ending with - do not automatically activate pre-releases resolution in the full range.
#14814 . Docs here

• BugFix: Fix version ranges so pre-releases are correctly included in the lower bound and excluded in the upper
bound. #14814 . Docs here

10.6 2.0.13 (28-Sept-2023)

• Bugfix: Fix wrong cppstd detection for newer apple-clang versions introduced in 2.0.11. #14837

10.7 2.0.12 (26-Sept-2023)

• Feature: Add support for Clang 17. #14781 . Docs here

• Feature: Add –dry-run for conan remove. #14760 . Docs here

• Feature: Add host_tool to install() method in package_manager to indicate whether the package is a host tool or
a library. #14752 . Docs here

• Fix: Better error message when trying to export-pkg a python-require package, and avoid it being exported
and then failing. #14819

• Fix: CMakeDeps allows set_property() on all properties. #14813

• Fix: Add minor version for Apple clang 15.0. #14797 . Docs here

• Fix: conan build command prettier error when <path> argument not provided. #14787

• Bugfix: fix compatibility() over settings_target making it None #14825

• Bugfix: compatible packages look first in the cache, and only if not found, the servers, to allow offline installs
when there are compatible packages. #14800

• BugFix: Reuse session in ConanRequester to speed up requests. #14795

• Bugfix: Fix relative paths of editable packages when they have components partially defining directories.
#14782

10.8 2.0.11 (18-Sept-2023)

• Feature: Add --format=json formatter to conan profile show command #14743 . Docs here

• Feature: add new –deployer –generators args to ‘conan build’ cmd #14737 . Docs here

• Feature: Better CMakeToolchain blocks interface. Added new .blocks.select(), .blocks.keys().
#14731 . Docs here

• Feature: Add message when copying large files from download cache instead of downloading from server.
#14716

• Feature: MesonToolchain shows a warning message if any options are used directly. #14692 . Docs here

• Feature: Support clang-cl in default profile plugin. #14682 . Docs here

• Feature: Added mechanism to transform c, cpp, and/or ld binaries variables from Meson into lists if declared
blank-separated strings. #14676

• Feature: Add nobara distro to dnf package manager mapping. #14668

10.6. 2.0.13 (28-Sept-2023) 669

https://github.com/conan-io/conan/pull/14814
https://github.com/conan-io/docs/pull/3454
https://github.com/conan-io/conan/pull/14814
https://github.com/conan-io/docs/pull/3454
https://github.com/conan-io/conan/pull/14837
https://github.com/conan-io/conan/pull/14781
https://github.com/conan-io/docs/pull/3398
https://github.com/conan-io/conan/pull/14760
https://github.com/conan-io/docs/pull/3404
https://github.com/conan-io/conan/pull/14752
https://github.com/conan-io/docs/pull/3401
https://github.com/conan-io/conan/pull/14819
https://github.com/conan-io/conan/pull/14813
https://github.com/conan-io/conan/pull/14797
https://github.com/conan-io/docs/pull/3402
https://github.com/conan-io/conan/pull/14787
https://github.com/conan-io/conan/pull/14825
https://github.com/conan-io/conan/pull/14800
https://github.com/conan-io/conan/pull/14795
https://github.com/conan-io/conan/pull/14782
https://github.com/conan-io/conan/pull/14743
https://github.com/conan-io/docs/pull/3388
https://github.com/conan-io/conan/pull/14737
https://github.com/conan-io/docs/pull/3383
https://github.com/conan-io/conan/pull/14731
https://github.com/conan-io/docs/pull/3384
https://github.com/conan-io/conan/pull/14716
https://github.com/conan-io/conan/pull/14692
https://github.com/conan-io/docs/pull/3381
https://github.com/conan-io/conan/pull/14682
https://github.com/conan-io/docs/pull/3387
https://github.com/conan-io/conan/pull/14676
https://github.com/conan-io/conan/pull/14668

Conan Documentation, Release 2.1.0

• Feature: Ensure meson toolchain sets b_vscrt with clang-cl. #14664

• Feature: Supporting regex pattern for conf tools.info.package_id:confs #14621 . Docs here

• Feature: MakeDeps: Provide “require” information, and more styling tweaks. #14605

• Feature: New detect_api to be used in profiles jinja templates. #14578 . Docs here

• Feature: Allow access to settings_target in compatibility method. #14532

• Fix: Add missing minor macos versions #14740 . Docs here

• Fix: Improve error messages in ConanApi init failures, #14735

• Fix: CMakeDeps: Remove “Target name . . . already exists” warning about duplicating aliases. #14644

• Bugfix: Fix regression in Git.run() when win_bash=True. #14756

• Bugfix: Change the default check=False in conan.tools.system.package_manager.Apt to True as the other pack-
age manager tools. #14728 . Docs here

• Bugfix: Solved propagation of transitive shared dependencies of test_requires with diamonds. #14721

• Bugfix: Solve crash with conan export-pkg with test_package doing calls to remotes. #14712

• Bugfix: Do not binary-skip packages that have transitive dependencies that are not skipped, otherwise the build
chain of build systems to those transitive dependencies like CMakeDeps generated files are broken. #14673

• Bugfix: Fix detected CPU architecture when running conan profile detect on native ARM64 Windows.
#14667

• Bugfix: conan lock create --update now correctly updates references from servers if newer than cache
ones. #14643

• Bugfix: Fix unnecessarily decorating command stdout with escape sequences. #14642

• Bugfix: tools.info.package_id:confs shouldn’t affect header-only libraries. #14622

10.9 2.0.10 (29-Aug-2023)

• Feature: Allow patch_user in conandata.yml definition for user patches, not handled by
apply_conandata_patches(). #14576 . Docs here

• Feature: Support for Xcode 15, iOS 17, tvOS 17, watchOS 10, macOS 14. #14538

• Feature: Raise an error if users are adding incorrect ConanCenter web URL as remote. #14531

• Feature: Serialization of graph with --format=json adds information to python_requires so conan list
--graph can list python_requires too. #14529

• Feature: Add rrev, rrev_timestamp and prev_timestamp to the graph json serialization. #14526

• Feature: Allow version-ranges to resolve to editable packages too. #14510

• Feature: Add tools.files.download:verify. #14508 . Docs here

• Feature: Add support for Apple visionOS. #14504

• Feature: Warn of unknown version range options. #14493

• Feature: Add tools.graph:skip_binaries to control binary skipping in the graph. #14466 . Docs here

• Feature: New tools.deployer:symlinks configuration to disable symlinks copy in deployers. #14461 . Docs
here

670 Chapter 10. Changelog

https://github.com/conan-io/conan/pull/14664
https://github.com/conan-io/conan/pull/14621
https://github.com/conan-io/docs/pull/3382
https://github.com/conan-io/conan/pull/14605
https://github.com/conan-io/conan/pull/14578
https://github.com/conan-io/docs/pull/3390
https://github.com/conan-io/conan/pull/14532
https://github.com/conan-io/conan/pull/14740
https://github.com/conan-io/docs/pull/3389
https://github.com/conan-io/conan/pull/14735
https://github.com/conan-io/conan/pull/14644
https://github.com/conan-io/conan/pull/14756
https://github.com/conan-io/conan/pull/14728
https://github.com/conan-io/docs/pull/3380
https://github.com/conan-io/conan/pull/14721
https://github.com/conan-io/conan/pull/14712
https://github.com/conan-io/conan/pull/14673
https://github.com/conan-io/conan/pull/14667
https://github.com/conan-io/conan/pull/14643
https://github.com/conan-io/conan/pull/14642
https://github.com/conan-io/conan/pull/14622
https://github.com/conan-io/conan/pull/14576
https://github.com/conan-io/docs/pull/3332
https://github.com/conan-io/conan/pull/14538
https://github.com/conan-io/conan/pull/14531
https://github.com/conan-io/conan/pull/14529
https://github.com/conan-io/conan/pull/14526
https://github.com/conan-io/conan/pull/14510
https://github.com/conan-io/conan/pull/14508
https://github.com/conan-io/docs/pull/3341
https://github.com/conan-io/conan/pull/14504
https://github.com/conan-io/conan/pull/14493
https://github.com/conan-io/conan/pull/14466
https://github.com/conan-io/docs/pull/3342
https://github.com/conan-io/conan/pull/14461
https://github.com/conan-io/docs/pull/3335

Conan Documentation, Release 2.1.0

• Feature: Allow remotes to automatically resolve missing python_requires in ‘editable add’. #14413 . Docs
here

• Feature: Add cli_args argument for CMake.install(). #14397 . Docs here

• Feature: Allow test_requires(..., force=True). #14394 . Docs here

• Feature: New credentials.json file to store credentials for Conan remotes. #14392 . Docs here

• Feature: Added support for apk package manager and Alpine Linux #14382 . Docs here

• Feature: conan profile detect can now detect the version of msvc when invoked within a Visual Studio prompt
where CC or CXX are defined and pointing to the cl compiler executable #14364

• Feature: Properly document --build=editable build mode. #14358 . Docs here

• Feature: conan create --build-test=missing new argument to control what is being built as dependencies
of the test_package folder. #14347 . Docs here

• Feature: Provide new default_build_options attribute for defining options for tool_requires in recipes.
#14340 . Docs here

• Feature: Implement ...@ as a pattern for indicating matches with packages without user/channel. #14338 . Docs
here

• Feature: Add support to Makefile by the new MakeDeps generator #14133 . Docs here

• Fix: Allow –format=json in conan create for python-requires #14594

• Fix: Remove conan v2 ready conan-center link. #14593

• Fix: Make conan inspect use all remotes by default. #14572 . Docs here

• Fix: Allow extra hyphens in versions pre-releases. #14561

• Fix: Allow confs for tools.cmake.cmaketoolchain to be used if defined even if tools.cmake.
cmaketoolchain:user_toolchain is defined. #14556 . Docs here

• Fix: Serialize booleans of dependencies in --format=json for graphs as booleans, not strings. #14530 .
Docs here

• Fix: Avoid errors in conan upload when python_requires are not in the cache and need to be downloaded.
#14511

• Fix: Improve error check of lock add adding a full package reference instead of a recipe reference. #14491

• Fix: Better error message when a built-in deployer failed to copy files. #14461 . Docs here

• Fix: Do not print non-captured stacktraces to stdout but to stderr. #14444

• Fix: Serialize conf_info in --format=json output. #14442

• Fix: MSBuildToolchain/MSBuildDeps: Avoid passing C/C++ compiler options as options for ResourceCompile.
#14378

• Fix: Removal of plugin files result in a better error message instead of stacktrace. #14376

• Fix: Fix CMake system processor name on armv8/aarch64. #14362

• Fix: Make backup sources core.sources conf not mandate the final slash. #14342

• Fix: Correctly propagate options defined in recipe default_options to test_requires. #14340 . Docs here

• Fix: Invoke XCRun using conanfile.run() so that environment is injected. #14326

• Fix: Use abspath for conan config install to avoid symlinks issues. #14183

• Bugfix: Solve build_id() issues, when multiple different package_ids reusing same build-folder. #14555

10.9. 2.0.10 (29-Aug-2023) 671

https://github.com/conan-io/conan/pull/14413
https://github.com/conan-io/docs/pull/3345
https://github.com/conan-io/conan/pull/14397
https://github.com/conan-io/docs/pull/3314
https://github.com/conan-io/conan/pull/14394
https://github.com/conan-io/docs/pull/3349
https://github.com/conan-io/conan/pull/14392
https://github.com/conan-io/docs/pull/3350
https://github.com/conan-io/conan/pull/14382
https://github.com/conan-io/docs/pull/3312
https://github.com/conan-io/conan/pull/14364
https://github.com/conan-io/conan/pull/14358
https://github.com/conan-io/docs/pull/3308
https://github.com/conan-io/conan/pull/14347
https://github.com/conan-io/docs/pull/3336
https://github.com/conan-io/conan/pull/14340
https://github.com/conan-io/docs/pull/3338
https://github.com/conan-io/conan/pull/14338
https://github.com/conan-io/docs/pull/3337
https://github.com/conan-io/conan/pull/14133
https://github.com/conan-io/docs/pull/3348
https://github.com/conan-io/conan/pull/14594
https://github.com/conan-io/conan/pull/14593
https://github.com/conan-io/conan/pull/14572
https://github.com/conan-io/docs/pull/3340
https://github.com/conan-io/conan/pull/14561
https://github.com/conan-io/conan/pull/14556
https://github.com/conan-io/docs/pull/3333
https://github.com/conan-io/conan/pull/14530
https://github.com/conan-io/docs/pull/3334
https://github.com/conan-io/conan/pull/14511
https://github.com/conan-io/conan/pull/14491
https://github.com/conan-io/conan/pull/14461
https://github.com/conan-io/docs/pull/3335
https://github.com/conan-io/conan/pull/14444
https://github.com/conan-io/conan/pull/14442
https://github.com/conan-io/conan/pull/14378
https://github.com/conan-io/conan/pull/14376
https://github.com/conan-io/conan/pull/14362
https://github.com/conan-io/conan/pull/14342
https://github.com/conan-io/conan/pull/14340
https://github.com/conan-io/docs/pull/3338
https://github.com/conan-io/conan/pull/14326
https://github.com/conan-io/conan/pull/14183
https://github.com/conan-io/conan/pull/14555

Conan Documentation, Release 2.1.0

• Bugfix: Avoid DB errors when timestamp is not provided to conan downloadwhen using package lists. #14526

• Bugfix: Print exception stacktrace (when -vtrace is set) into stderr instead of stdout #14522

• Bugfix: Print only packages confirmed interactively in conan upload. #14512

• Bugfix: ‘conan remove’ was outputting all entries in the cache matching the filter not just the once which where
confirmed by the user. #14478

• Bugfix: Better error when passing –channel without –user. #14443

• Bugfix: Fix settings_target computation for tool_requires of packages already in the “build” context.
#14441

• Bugfix: Avoid DB is locked error when core.download:parallel is defined. #14410

• Bugfix: Make generated powershell environment scripts relative when using deployers. #14391

• Bugfix: fix profile [tool_requires] using revisions that were ignored. #14337

10.10 2.0.9 (19-Jul-2023)

• Feature: Add implements attribute in ConanFile to provide automatic management of some options and settings.
#14320 . Docs here

• Feature: Add apple-clang 15. #14302

• Fix: Allow repository being dirty outside of conanfile.py folder when using revision_mode = “scm_folder”.
#14330

• Fix: Improve the error messages and provide Conan traces for errors in compatibility.py and profile.py plugins.
#14322

• Fix: flush() output streams after every message write. #14310

• Bugfix: Fix Package signing plugin not verifying the downloaded sources. #14331 . Docs here

• Bugfix: Fix CMakeUserPresets inherits from conan generated presets due to typo. #14325

• Bugfix: ConanPresets.json contains duplicate presets if multiple user presets inherit from the same conan presets.
#14296

• Bugfix: Meson prefix param is passed as UNIX path. #14295

• Bugfix: Fix CMake Error: Invalid level specified for –loglevel when tools.build:verbosity is set to quiet. #14289

10.11 2.0.8 (13-Jul-2023)

• Feature: Add GCC 10.5 to default settings.yml. #14252

• Feature: Let pkg_config_custom_content overwrite default *.pc variables created by PkgConfigDeps. #14233 .
Docs here

• Feature: Let pkg_config_custom_content be a dict-like object too. #14233 . Docs here

• Feature: The fix_apple_shared_install_name tool now uses xcrun to resolve the otool and install_name_tool
programs. #14195

• Feature: Manage shared, fPIC, and header_only options automatically. #14194 . Docs here

• Feature: Manage package ID for header-library package type automatically. #14194 . Docs here

672 Chapter 10. Changelog

https://github.com/conan-io/conan/pull/14526
https://github.com/conan-io/conan/pull/14522
https://github.com/conan-io/conan/pull/14512
https://github.com/conan-io/conan/pull/14478
https://github.com/conan-io/conan/pull/14443
https://github.com/conan-io/conan/pull/14441
https://github.com/conan-io/conan/pull/14410
https://github.com/conan-io/conan/pull/14391
https://github.com/conan-io/conan/pull/14337
https://github.com/conan-io/conan/pull/14320
https://github.com/conan-io/docs/pull/3303
https://github.com/conan-io/conan/pull/14302
https://github.com/conan-io/conan/pull/14330
https://github.com/conan-io/conan/pull/14322
https://github.com/conan-io/conan/pull/14310
https://github.com/conan-io/conan/pull/14331
https://github.com/conan-io/docs/pull/3304
https://github.com/conan-io/conan/pull/14325
https://github.com/conan-io/conan/pull/14296
https://github.com/conan-io/conan/pull/14295
https://github.com/conan-io/conan/pull/14289
https://github.com/conan-io/conan/pull/14252
https://github.com/conan-io/conan/pull/14233
https://github.com/conan-io/docs/pull/3293
https://github.com/conan-io/conan/pull/14233
https://github.com/conan-io/docs/pull/3293
https://github.com/conan-io/conan/pull/14195
https://github.com/conan-io/conan/pull/14194
https://github.com/conan-io/docs/pull/3296
https://github.com/conan-io/conan/pull/14194
https://github.com/conan-io/docs/pull/3296

Conan Documentation, Release 2.1.0

• Feature: New cpp_info.set_property("cmake_package_version_compat" , "AnyNewerVersion")
for CMakeDeps generator. #14176 . Docs here

• Feature: Metadata improvements. #14152

• Fix: Improve error message when missing binaries with conan test command. #14272

• Fix: Make conan download command no longer need to load conanfile, won’t fail for 1.X recipes or missing
python_requires. #14261

• Fix: Using upload with the –list argument now permits empty recipe lists. #14254

• Fix: Guarantee that Options.rm_safe never raises. #14238

• Fix: Allow tools.gnu:make_program to affect every CMake configuration. #14223

• Fix: Add missing package_type to conan new lib templates. #14215

• Fix: Add clarification for the default folder shown when querying a package reference. #14199 . Docs here

• Fix: Enable existing status-message code in the patch() function. #14177

• Fix: Use configuration in XcodeDeps instead of always build_type. #14168

• Fix: Respect symlinked path for cache location. #14164

• Fix: PkgConfig uses conanfile.run() instead of internal runner to get full Conan environment from profiles
and dependencies. #13985

• Bugfix: Fix leaking of CMakeDeps CMAKE_FIND_LIBRARY_SUFFIXES variable. #14253

• Bugfix: Fix conan not finding generator by name when multiple custom global generators are detected. #14227

• Bugfix: Improve display of graph conflicts in conan graph info in html format. #14190

• Bugfix: Fix CMakeToolchain cross-building from Linux to OSX. #14187

• Bugfix: Fix KeyError in backup sources when no package is selected. #14185

10.12 2.0.7 (21-Jun-2023)

• Feature: Add new arm64ec architecture, used to define CMAKE_GENERATOR_PLATFORM. #14114 . Docs
here

• Feature: Make CppInfo a public, documented, importable tool for generators that need to aggregate them.
#14101 . Docs here

• Feature: Allow conan remove --list=pkglist to remove package-lists. #14082 . Docs here

• Feature: Output for conan remove --format both text (summary of deleted things) and json. #14082 . Docs
here

• Feature: Add core.sources:excluded_urls to backup sources. #14020

• Feature: conan test command learned the --format=json formatter. #14011 . Docs here

• Feature: Allow pkg/[version-range] expressions in conan list (and download, upload, remove) patterns.
#14004 . Docs here

• Feature: Add conan upload --dry-run equivalent to 1.X conan upload --skip-upload. #14002 . Docs
here

• Feature: Add new command conan version to format the output. #13999 . Docs here

• Feature: Small UX improvement to print some info while downloading large files. #13989

10.12. 2.0.7 (21-Jun-2023) 673

https://github.com/conan-io/conan/pull/14176
https://github.com/conan-io/docs/pull/3292
https://github.com/conan-io/conan/pull/14152
https://github.com/conan-io/conan/pull/14272
https://github.com/conan-io/conan/pull/14261
https://github.com/conan-io/conan/pull/14254
https://github.com/conan-io/conan/pull/14238
https://github.com/conan-io/conan/pull/14223
https://github.com/conan-io/conan/pull/14215
https://github.com/conan-io/conan/pull/14199
https://github.com/conan-io/docs/pull/3290
https://github.com/conan-io/conan/pull/14177
https://github.com/conan-io/conan/pull/14168
https://github.com/conan-io/conan/pull/14164
https://github.com/conan-io/conan/pull/13985
https://github.com/conan-io/conan/pull/14253
https://github.com/conan-io/conan/pull/14227
https://github.com/conan-io/conan/pull/14190
https://github.com/conan-io/conan/pull/14187
https://github.com/conan-io/conan/pull/14185
https://github.com/conan-io/conan/pull/14114
https://github.com/conan-io/docs/pull/3266
https://github.com/conan-io/conan/pull/14101
https://github.com/conan-io/docs/pull/3268
https://github.com/conan-io/conan/pull/14082
https://github.com/conan-io/docs/pull/3270
https://github.com/conan-io/conan/pull/14082
https://github.com/conan-io/docs/pull/3270
https://github.com/conan-io/conan/pull/14020
https://github.com/conan-io/conan/pull/14011
https://github.com/conan-io/docs/pull/3273
https://github.com/conan-io/conan/pull/14004
https://github.com/conan-io/docs/pull/3244
https://github.com/conan-io/conan/pull/14002
https://github.com/conan-io/docs/pull/3274
https://github.com/conan-io/conan/pull/13999
https://github.com/conan-io/docs/pull/3243
https://github.com/conan-io/conan/pull/13989

Conan Documentation, Release 2.1.0

• Feature: Use PackagesList as input argument for conan upload --list=pkglist.json. #13928 . Docs
here

• Feature: Use --graph input for conan list to create a PackagesList that can be used as input for conan
upload. #13928 . Docs here

• Feature: New metadata files associated to recipes and packages that can be uploaded, downloaded and added
after the package exists. #13918

• Feature: Allow to specify a custom deployer output folder. #13757 . Docs here

• Feature: Split build & compilation verbosity control to two confs. #13729 . Docs here

• Feature: Added bindir to generated .pc file in PkgConfigDeps. #13623 . Docs here

• Fix: Deprecate AutoPackage remnant from Conan 1.X. #14083 . Docs here

• Fix: Fix description for the conf entry for default build profile used. #14075 . Docs here

• Fix: Allow spaces in path in Git helper. #14063 . Docs here

• Fix: Remove trailing . in conanfile.xxx_folder that is breaking subsystems like msys2. #14061

• Fix: Avoid caching issues when some intermediate package in the graph calls aggregated_components() over
some dependency and using --deployer, generators still pointed to the Conan cache and not deployed copy.
#14060

• Fix: Allow internal Cli object to be called more than once. #14053

• Fix: Force pyyaml>=6 for Python 3.10, as previous versions broke. #13990

• Fix: Improve graph conflict message when Conan can’t show one of the conflicting recipes. #13946

• Bugfix: Solve bug in timestamp of non-latest revision download from the server. #14110

• Bugfix: Fix double base path setup in editable packages. #14109

• Bugfix: Raise if conan graph build-order graph has any errors, instead of quietly doing nothing and out-
putting and empty json. #14106

• Bugfix: Avoid incorrect path replacements for editable packages when folders have overlapping matching
names. #14095

• Bugfix: Set clang as the default FreeBSD detected compiler. #14065

• Bugfix: Add prefix var and any custom content (through the pkg_config_custom_content property) to already
generated pkg-config root .pc files by PkgConfigDeps. #14051

• Bugfix: conan create command returns always the same output for --format=json result graph, irrespective
of test_package existence. #14011 . Docs here

• Bugfix: Fix problem with editable packages when defining self.folders.root=".." parent directory.
#13983

• Bugfix: Removed libdir1 and includedir1 as the default index. Now, PkgConfigDeps creates the libdir and
includedir variables by default in .pc files. #13623 . Docs here

674 Chapter 10. Changelog

https://github.com/conan-io/conan/pull/13928
https://github.com/conan-io/docs/pull/3257
https://github.com/conan-io/conan/pull/13928
https://github.com/conan-io/docs/pull/3257
https://github.com/conan-io/conan/pull/13918
https://github.com/conan-io/conan/pull/13757
https://github.com/conan-io/docs/pull/3275
https://github.com/conan-io/conan/pull/13729
https://github.com/conan-io/docs/pull/3277
https://github.com/conan-io/conan/pull/13623
https://github.com/conan-io/docs/pull/3269
https://github.com/conan-io/conan/pull/14083
https://github.com/conan-io/docs/pull/3253
https://github.com/conan-io/conan/pull/14075
https://github.com/conan-io/docs/pull/3252
https://github.com/conan-io/conan/pull/14063
https://github.com/conan-io/docs/pull/3271
https://github.com/conan-io/conan/pull/14061
https://github.com/conan-io/conan/pull/14060
https://github.com/conan-io/conan/pull/14053
https://github.com/conan-io/conan/pull/13990
https://github.com/conan-io/conan/pull/13946
https://github.com/conan-io/conan/pull/14110
https://github.com/conan-io/conan/pull/14109
https://github.com/conan-io/conan/pull/14106
https://github.com/conan-io/conan/pull/14095
https://github.com/conan-io/conan/pull/14065
https://github.com/conan-io/conan/pull/14051
https://github.com/conan-io/conan/pull/14011
https://github.com/conan-io/docs/pull/3273
https://github.com/conan-io/conan/pull/13983
https://github.com/conan-io/conan/pull/13623
https://github.com/conan-io/docs/pull/3269

Conan Documentation, Release 2.1.0

10.13 2.0.6 (26-May-2023)

• Feature: Add a tools.cmake:cmake_program configuration item to allow specifying the location of the desired
CMake executable. #13940 . Docs here

• Fix: Output “id” property in graph json output as str instead of int. #13964 . Docs here

• Fix: Fix custom commands in a layer not able to do a local import. #13944

• Fix: Improve the output of download + unzip. #13937

• Fix: Add missing values to package_manager:mode in conan config install. #13929

• Bugfix: Ensuring the same graph-info JSON output for graph info, create, export-pkg, and install. #13967 .
Docs here

• Bugfix: test_requireswere affecting the package_id of consumers as regular requires, but they shouldn’t.
#13966

• Bugfix: Define source_folder correctly in the json output when -c tools.
build:download_source=True. #13953

• Bugfix: Fixed and completed the graph info xxxx –format json output, to publicly document it. #13934 . Docs
here

• Bugfix: Fix “double” absolute paths in premakedeps. #13926

• Bugfix: Fix regression from 2.0.5 https://github.com/conan-io/conan/pull/13898, in which overrides of packages
and components specification was failing #13923

10.14 2.0.5 (18-May-2023)

• Feature: -v argument defaults to the VERBOSE level. #13839

• Feature: Avoid showing unnecessary skipped dependencies. Now, it only shows a list of reference names if exists
skipped binaries. They can be completely listed by adding -v (verbose mode) to the current command. #13836

• Feature: Allow step-into dependencies debugging for packages built locally with --build #13833 . Docs here

• Feature: Allow non relocatable, locally built packages with upload_policy="skip" and
build_policy="missing" #13833 . Docs here

• Feature: Do not move “build” folders in cache when package-revision is computed to allow locating sources
for dependencies debuggability with step-into #13810

• Feature: New settings.possible_values() method to query the range of possible values for a setting.
#13796 . Docs here

• Feature: Optimize and avoid hitting servers for binaries when upload_policy=skip #13771

• Feature: Partially relativize generated environment .sh shell scripts #13764

• Feature: Improve settings.yml error messages #13748

• Feature: Auto create empty global.conf to improve UX looking for file in home. #13746 . Docs here

• Feature: Render the profile file name as profile_name #13721 . Docs here

• Feature: New global custom generators in cache “extensions/generators” that can be used by name. #13718 .
Docs here

• Feature: Improve conan inspect output, it now understands set_name/set_version. #13716 . Docs here

10.13. 2.0.6 (26-May-2023) 675

https://github.com/conan-io/conan/pull/13940
https://github.com/conan-io/docs/pull/3232
https://github.com/conan-io/conan/pull/13964
https://github.com/conan-io/docs/pull/3236
https://github.com/conan-io/conan/pull/13944
https://github.com/conan-io/conan/pull/13937
https://github.com/conan-io/conan/pull/13929
https://github.com/conan-io/conan/pull/13967
https://github.com/conan-io/docs/pull/3236
https://github.com/conan-io/conan/pull/13966
https://github.com/conan-io/conan/pull/13953
https://github.com/conan-io/conan/pull/13934
https://github.com/conan-io/docs/pull/3236
https://github.com/conan-io/conan/pull/13926
https://github.com/conan-io/conan/pull/13898
https://github.com/conan-io/conan/pull/13923
https://github.com/conan-io/conan/pull/13839
https://github.com/conan-io/conan/pull/13836
https://github.com/conan-io/conan/pull/13833
https://github.com/conan-io/docs/pull/3210
https://github.com/conan-io/conan/pull/13833
https://github.com/conan-io/docs/pull/3210
https://github.com/conan-io/conan/pull/13810
https://github.com/conan-io/conan/pull/13796
https://github.com/conan-io/docs/pull/3212
https://github.com/conan-io/conan/pull/13771
https://github.com/conan-io/conan/pull/13764
https://github.com/conan-io/conan/pull/13748
https://github.com/conan-io/conan/pull/13746
https://github.com/conan-io/docs/pull/3211
https://github.com/conan-io/conan/pull/13721
https://github.com/conan-io/docs/pull/3180
https://github.com/conan-io/conan/pull/13718
https://github.com/conan-io/docs/pull/3213
https://github.com/conan-io/conan/pull/13716
https://github.com/conan-io/docs/pull/3204

Conan Documentation, Release 2.1.0

• Feature: Define new self.tool_requires("pkg/<host_version>") to allow some tool-requires to follow
and use the same version as the “host” regular requires do. #13712 . Docs here

• Feature: Introduce new core:skip_warns configuration to be able to silence some warnings in the output.
#13706 . Docs here

• Feature: Add info_invalid to graph node serialization #13688

• Feature: Computing and reporting the overrides in the graph, and in the graph build-order #13680

• Feature: New revision_mode = "scm_folder" for mono-repo projects that want to use scm revisions.
#13562 . Docs here

• Feature: Demonstrate that it is possible to tool_requires different versions of the same package. #13529 .
Docs here

• Fix: build_scripts now set the run trait to True by default #13901 . Docs here

• Fix: Fix XcodeDeps includes skipped dependencies. #13880

• Fix: Do not allow line feeds into pkg/version reference fields #13870

• Fix: Fix AutotoolsToolchain definition of tools.build:compiler_executable for Windows subsystems
#13867

• Fix: Speed up the CMakeDeps generation #13857

• Fix: Fix imported library config suffix. #13841

• Fix: Fail when defining an unkown conf #13832

• Fix: Fix incorrect printing of “skipped” binaries in the conan install/create commands, when they are
used by some other dependencies. #13778

• Fix: Renaming the cache “deploy” folder to “deployers” and allow -d, --deployer cli arg. (“deploy” folder
will not break but will warn as deprecated). #13740 . Docs here

• Fix: Omit -L libpaths in CMakeDeps for header-only libraries. #13704

• Bugfix: Fix when a test_requires is also a regular transitive “host” requires and consumer defines compo-
nents. #13898

• Bugfix: Fix propagation of options like *:shared=True defined in recipes #13855

• Bugfix: Fix --lockfile-out paths for ‘graph build-order’ and ‘test’ commands #13853

• Bugfix: Ensure backup sources are uploaded in more cases #13846

• Bugfix: fix settings.yml definition of intel-cc cppstd=03 #13844

• Bugfix: Fix conan upload with backup sources for exported-only recipes #13779

• Bugfix: Fix conan lock merge of lockfiles containing alias #13763

• Bugfix: Fix python_requires in transitive deps with version ranges #13762

• Bugfix: fix CMakeToolchain CMAKE_SYSTEM_NAME=Generic for baremetal #13739

• Bugfix: Fix incorrect environment scripts deactivation order #13707

• Bugfix: Solve failing lockfiles when graph has requirements with override=True #13597

676 Chapter 10. Changelog

https://github.com/conan-io/conan/pull/13712
https://github.com/conan-io/docs/pull/3223
https://github.com/conan-io/conan/pull/13706
https://github.com/conan-io/docs/pull/3215
https://github.com/conan-io/conan/pull/13688
https://github.com/conan-io/conan/pull/13680
https://github.com/conan-io/conan/pull/13562
https://github.com/conan-io/docs/pull/3218
https://github.com/conan-io/conan/pull/13529
https://github.com/conan-io/docs/pull/3219
https://github.com/conan-io/conan/pull/13901
https://github.com/conan-io/docs/pull/3206
https://github.com/conan-io/conan/pull/13880
https://github.com/conan-io/conan/pull/13870
https://github.com/conan-io/conan/pull/13867
https://github.com/conan-io/conan/pull/13857
https://github.com/conan-io/conan/pull/13841
https://github.com/conan-io/conan/pull/13832
https://github.com/conan-io/conan/pull/13778
https://github.com/conan-io/conan/pull/13740
https://github.com/conan-io/docs/pull/3209
https://github.com/conan-io/conan/pull/13704
https://github.com/conan-io/conan/pull/13898
https://github.com/conan-io/conan/pull/13855
https://github.com/conan-io/conan/pull/13853
https://github.com/conan-io/conan/pull/13846
https://github.com/conan-io/conan/pull/13844
https://github.com/conan-io/conan/pull/13779
https://github.com/conan-io/conan/pull/13763
https://github.com/conan-io/conan/pull/13762
https://github.com/conan-io/conan/pull/13739
https://github.com/conan-io/conan/pull/13707
https://github.com/conan-io/conan/pull/13597

Conan Documentation, Release 2.1.0

10.15 2.0.4 (11-Apr-2023)

• Feature: extend --build-require to more commands (graph info, lock create, install) and cases.
#13669 . Docs here

• Feature: Add -d tool_requires to conan new. #13608 . Docs here

• Feature: Make CMakeDeps, CMakeToolchain and Environment (.bat, Windows only) generated files have rela-
tive paths. #13607

• Feature: Adding preliminary (non documented, dev-only) support for premake5 deps (PremakeDeps). #13390

• Fix: Update old conan user references to conan remote login. #13671

• Fix: Improve dependencies options changed in requirements() error msg. #13668

• Fix: [system_tools] was not reporting the correct resolved version, but still the original range. #13667

• Fix: Improve provides conflict message error. #13661

• Fix: When server responds Forbidden to the download of 1 file in a recipe/package, make sure other files and
DB are cleaned. #13626

• Fix: Add error in conan removewhen using –package-query without providing a pattern that matches packages.
#13622

• Fix: Add direct_deploy subfolder for the direct_deploy deployer. #13612 . Docs here

• Fix: Fix html output when pattern does not list package revisions, like: conan list "*#*:*". #13605

• Bugfix: conan list -p <package-query> failed when a package had no settings or options. #13662

• Bugfix: python_requires now properly loads remote requirements. #13657

• Bugfix: Fix crash when override is used in a node of the graph that is also the closing node of a diamond.
#13631

• Bugfix: Fix the --package-query argument for options. #13618

• Bugfix: Add full_deploy subfolder for the full_deploy deployer to avoid collision with “build” folder.
#13612 . Docs here

• Bugfix: Make STATUS the default log level. #13610

• Bugfix: Fix double delete error in conan cache clean. #13601

10.16 2.0.3 (03-Apr-2023)

• Feature: conan cache clean learned the --all and --temp to clean everything (sources, builds) and also the
temporary folders. #13581 . Docs here

• Feature: Introduce the conf dictionary update semantics with *= operator. #13571 . Docs here

• Feature: Support MacOS SDK 13.1 (available in Xcode 14.2). #13531

• Feature: The full_deploy deployer together with CMakeDeps generator learned to create relative paths deploys,
so they are relocatable. #13526

• Feature: Introduce the conan remove *#!latest (also for package-revisions), to remove all revisions except
the latest one. #13505 . Docs here

• Feature: New conan cache check-integrity command to replace 1.X legacy conan upload
--skip-upload --check. #13502 . Docs here

10.15. 2.0.4 (11-Apr-2023) 677

https://github.com/conan-io/conan/pull/13669
https://github.com/conan-io/docs/pull/3166
https://github.com/conan-io/conan/pull/13608
https://github.com/conan-io/docs/pull/3156
https://github.com/conan-io/conan/pull/13607
https://github.com/conan-io/conan/pull/13390
https://github.com/conan-io/conan/pull/13671
https://github.com/conan-io/conan/pull/13668
https://github.com/conan-io/conan/pull/13667
https://github.com/conan-io/conan/pull/13661
https://github.com/conan-io/conan/pull/13626
https://github.com/conan-io/conan/pull/13622
https://github.com/conan-io/conan/pull/13612
https://github.com/conan-io/docs/pull/3155
https://github.com/conan-io/conan/pull/13605
https://github.com/conan-io/conan/pull/13662
https://github.com/conan-io/conan/pull/13657
https://github.com/conan-io/conan/pull/13631
https://github.com/conan-io/conan/pull/13618
https://github.com/conan-io/conan/pull/13612
https://github.com/conan-io/docs/pull/3155
https://github.com/conan-io/conan/pull/13610
https://github.com/conan-io/conan/pull/13601
https://github.com/conan-io/conan/pull/13581
https://github.com/conan-io/docs/pull/3145
https://github.com/conan-io/conan/pull/13571
https://github.com/conan-io/docs/pull/3141
https://github.com/conan-io/conan/pull/13531
https://github.com/conan-io/conan/pull/13526
https://github.com/conan-io/conan/pull/13505
https://github.com/conan-io/docs/pull/3144
https://github.com/conan-io/conan/pull/13502
https://github.com/conan-io/docs/pull/3147

Conan Documentation, Release 2.1.0

• Feature: Add filtering for options and settings in conan list html output. #13470

• Feature: Automatic server side source backups for third parties. #13461

• Feature: Add tools.android:cmake_legacy_toolchain configuration useful when building CMake projects for
Android. If defined, this will set the value of ANDROID_USE_LEGACY_TOOLCHAIN_FILE. It may be useful
to set this to False if compiler flags are defined via tools.build:cflags or tools.build:cxxflags to prevent Android’s
legacy CMake toolchain from overriding the values. #13459 . Docs here

• Feature: Default tools.files.download:download_cache to core.download:download_cache, so it is
only necessary to define one. #13458

• Feature: Authentication for tools.files.download(). #13421 . Docs here

• Fix: Define a way to update default_options in python_requires_extend extension. #13487 . Docs here

• Fix: Allow again to specify self.options["mydep"].someoption=value, equivalent to "mydep/*".
#13467

• Fix: Generate cpp_std=vc++20 for c++20 with meson with VS2019 and VS2022, rather than vc++latest.
#13450

• Bugfix: Fixed CMakeDeps not clearing CONAN_SHARED_FOUND_LIBRARY var in find_library(). #13596

• Bugfix: Do not allow adding more than 1 remote with the same remote name. #13574

• Bugfix: cmd_wrapper added missing parameter conanfile. #13564 . Docs here

• Bugfix: Avoid generators errors because dependencies binaries of editable packages were “skip”. #13544

• Bugfix: Fix subcommands names when the parent command has underscores. #13516

• Bugfix: Fix python-requires in remotes when running conan export-pkg. #13496

• Bugfix: Editable packages now also follow build_folder_vars configuration. #13488

• Bugfix: Fix [system_tools] profile composition. #13468

10.17 2.0.2 (15-Mar-2023)

• Feature: Allow relative paths to the Conan home folder in the global.conf. #13415 . Docs here

• Feature: Some improvements for html formatter in conan list command. #13409 . Docs here

• Feature: Adds an optional “build_script_folder” argument to the autoreconf method of the Autotools class. It
mirrors the same argument and behavior of the configure method of the same class. That is, it allows one to
override where the tool is run (by default it runs in the source_folder. #13403

• Feature: Create summary of cached content. #13386

• Feature: Add conan config show <conf> command. #13354 . Docs here

• Feature: Allow global.conf jinja2 inclusion of other files. #13336

• Feature: Add conan export-pkg --skip-binaries to allow exporting without binaries of dependencies.
#13324 . Docs here

• Feature: Add core.version_ranges:resolve_prereleases conf to control whether version ranges can resolve to
prerelease versions #13321

• Fix: Allow automatic processing of package_type = "build-scripts" in conan create as
--build-require. #13433

• Fix: Improve the detection and messages of server side package corruption. #13432

678 Chapter 10. Changelog

https://github.com/conan-io/conan/pull/13470
https://github.com/conan-io/conan/pull/13461
https://github.com/conan-io/conan/pull/13459
https://github.com/conan-io/docs/pull/3146
https://github.com/conan-io/conan/pull/13458
https://github.com/conan-io/conan/pull/13421
https://github.com/conan-io/docs/pull/3149
https://github.com/conan-io/conan/pull/13487
https://github.com/conan-io/docs/pull/3120
https://github.com/conan-io/conan/pull/13467
https://github.com/conan-io/conan/pull/13450
https://github.com/conan-io/conan/pull/13596
https://github.com/conan-io/conan/pull/13574
https://github.com/conan-io/conan/pull/13564
https://github.com/conan-io/docs/pull/3137
https://github.com/conan-io/conan/pull/13544
https://github.com/conan-io/conan/pull/13516
https://github.com/conan-io/conan/pull/13496
https://github.com/conan-io/conan/pull/13488
https://github.com/conan-io/conan/pull/13468
https://github.com/conan-io/conan/pull/13415
https://github.com/conan-io/docs/pull/3087
https://github.com/conan-io/conan/pull/13409
https://github.com/conan-io/docs/pull/3093
https://github.com/conan-io/conan/pull/13403
https://github.com/conan-io/conan/pull/13386
https://github.com/conan-io/conan/pull/13354
https://github.com/conan-io/docs/pull/3091
https://github.com/conan-io/conan/pull/13336
https://github.com/conan-io/conan/pull/13324
https://github.com/conan-io/docs/pull/3106
https://github.com/conan-io/conan/pull/13321
https://github.com/conan-io/conan/pull/13433
https://github.com/conan-io/conan/pull/13432

Conan Documentation, Release 2.1.0

• Fix: Fix conan download help typo. #13430

• Fix: Remove profile arguments from conan profile path. #13423 . Docs here

• Fix: Fix typo in _detect_compiler_version. #13396

• Fix: Fix conan profile detect detection of libc++ for clang compiler on OSX. #13359

• Fix: Allow internal vswhere calls to detect and use VS pre-releases too. #13355

• Fix: Allow conan export-pkg to use remotes to install missing dependencies not in the cache. #13324 . Docs
here

• Fix: Allow conversion to dict of settings.yml lists when settings_user.yml define a dict. #13323

• Fix: Fix flags passed by AutotoolsToolchain when cross compiling from macOS to a non-Apple OS. #13230

• BugFix: Fix issues in MSBuild with custom configurations when custom configurations has spaces. #13435

• Bugfix: Solve bug in conan profile path <nonexisting> that was crashing. #13434

• Bugfix: Add global verbosity conf tools.build:verbosity instead of individual ones. #13428 . Docs here

• Bugfix: Avoid raising fatal exceptions for malformed custom commands. #13365

• Bugfix: Do not omit system_libs from dependencies even if they are header-only. #13364

• Bugfix: Fix VirtualBuildEnv environment not being created when MesonToolchain is instantiated. #13346

• Bugfix: Nicer error in the compatibility plugin with custom compilers. #13328

• Bugfix: adds qcc cppstd compatibility info to allow dep graph to be calculated. #13326

10.18 2.0.1 (03-Mar-2023)

• Feature: Add –insecure alias to –verify-ssl in config install. #13270 . Docs here

• Feature: Add .conanignore support to conan config install. #13269 . Docs here

• Feature: Make verbose tracebacks on exception be shown for -vv and -vvv, instead of custom env-var used in
1.X. #13226

• Fix: Minor improvements to conan install and 2.0-readiness error messages. #13299

• Fix: Remove vcvars.bat VS telemetry env-var, to avoid Conan hanging. #13293

• Fix: Remove legacy CMakeToolchain support for CMakePresets schema2 for CMakeUserPresets.json.
#13288 . Docs here

• Fix: Remove --logger json logging and legacy traces. #13287 . Docs here

• Fix: Fix typo in conan remote auth help. #13285 . Docs here

• Fix: Raise arg error if conan config list unexpected-arg. #13282

• Fix: Do not auto-detect compiler.runtime_type for msvc, rely on profile plugin. #13277

• Fix: Fix conanfile.txt options parsing error message. #13266

• Fix: Improve error message for unified patterns in options. #13264

• Fix: Allow conan remote add --force to force re-definition of an existing remote name. #13249

• Fix: Restore printing of profiles for build command. #13214

• Fix: Change conan build argument description for “path” to indicate it is only for conanfile.py and explicitly
state that it does not work with conanfile.txt. #13211 . Docs here

10.18. 2.0.1 (03-Mar-2023) 679

https://github.com/conan-io/conan/pull/13430
https://github.com/conan-io/conan/pull/13423
https://github.com/conan-io/docs/pull/3090
https://github.com/conan-io/conan/pull/13396
https://github.com/conan-io/conan/pull/13359
https://github.com/conan-io/conan/pull/13355
https://github.com/conan-io/conan/pull/13324
https://github.com/conan-io/docs/pull/3106
https://github.com/conan-io/conan/pull/13323
https://github.com/conan-io/conan/pull/13230
https://github.com/conan-io/conan/pull/13435
https://github.com/conan-io/conan/pull/13434
https://github.com/conan-io/conan/pull/13428
https://github.com/conan-io/docs/pull/3107
https://github.com/conan-io/conan/pull/13365
https://github.com/conan-io/conan/pull/13364
https://github.com/conan-io/conan/pull/13346
https://github.com/conan-io/conan/pull/13328
https://github.com/conan-io/conan/pull/13326
https://github.com/conan-io/conan/pull/13270
https://github.com/conan-io/docs/pull/3035
https://github.com/conan-io/conan/pull/13269
https://github.com/conan-io/docs/pull/3036
https://github.com/conan-io/conan/pull/13226
https://github.com/conan-io/conan/pull/13299
https://github.com/conan-io/conan/pull/13293
https://github.com/conan-io/conan/pull/13288
https://github.com/conan-io/docs/pull/3049
https://github.com/conan-io/conan/pull/13287
https://github.com/conan-io/docs/pull/3050
https://github.com/conan-io/conan/pull/13285
https://github.com/conan-io/docs/pull/3039
https://github.com/conan-io/conan/pull/13282
https://github.com/conan-io/conan/pull/13277
https://github.com/conan-io/conan/pull/13266
https://github.com/conan-io/conan/pull/13264
https://github.com/conan-io/conan/pull/13249
https://github.com/conan-io/conan/pull/13214
https://github.com/conan-io/conan/pull/13211
https://github.com/conan-io/docs/pull/3046

Conan Documentation, Release 2.1.0

• Fix: Better error message when dependencies options are defined in requirements() method. #13207

• Fix: Fix broken links to docs from error messages and readme. #13186

• Bugfix: Ensure that topics are always serialized as lists. #13298

• Bugfix: Ensure that provides are always serialized as lists. #13298

• Bugfix: Fixed the detection of certain visual c++ installations. #13284

• Bugfix: Fix supported cppstd values for msvc compiler. #13278

• Bugfix: CMakeDeps generate files for tool_requires with the same build_type as the “host” context.
#13267

• Bugfix: Fix definition of patterns for dependencies options in configure(). #13263

• Bugfix: Fix CMakeToolchain error when output folder in different Win drive. #13248

• Bugfix: Do not raise errors if a test_requires is not used by components .requires. #13191

10.19 2.0.0 (22-Feb-2023)

• Feature: Change default profile cppstd for apple-clang to gnu17. #13185

• Feature: New conan remote auth command to force authentication in the remotes #13180

• Fix: Allow defining options trait in test_requires(..., options={}) #13178

• Fix: Unifying Conan commands help messages. #13176

• Bugfix: Fix MesonToolchain wrong cppstd in apple-clang #13172

• Feature: Improved global Conan output messages (create, install, export, etc.) #12746

10.20 2.0.0-beta10 (16-Feb-2023)

• Feature: Add basic html output to conan list command. #13135

• Feature: Allow test_package to process --build arguments (computing –build=never for the main, non
test_package graph). #13117

• Feature: Add –force argument to remote add. #13112

• Feature: Validate if the input configurations exist, to avoid typos. #13110

• Feature: Allow defining self.folders.build_folder_vars in recipes layout(). #13109

• Feature: Block settings assignment. #13099

• Feature: Improve conan editable ui. #13093

• Feature: Provide the ability for users to extend Conan generated CMakePresets. #13090

• Feature: Add error messages to help with the migration of recipes to 2.0, both from ConanCenter and from user
repos. #13074

• Feature: Remove option.fPIC for shared in conan new templates. #13066

• Feature: Add conan cache clean subcommand to clean build and source folders. #13050

• Feature: Implement customizable CMakeToolchain.presets_prefix so presets name prepend this. #13015

680 Chapter 10. Changelog

https://github.com/conan-io/conan/pull/13207
https://github.com/conan-io/conan/pull/13186
https://github.com/conan-io/conan/pull/13298
https://github.com/conan-io/conan/pull/13298
https://github.com/conan-io/conan/pull/13284
https://github.com/conan-io/conan/pull/13278
https://github.com/conan-io/conan/pull/13267
https://github.com/conan-io/conan/pull/13263
https://github.com/conan-io/conan/pull/13248
https://github.com/conan-io/conan/pull/13191
https://github.com/conan-io/conan/pull/13185
https://github.com/conan-io/conan/pull/13180
https://github.com/conan-io/conan/pull/13178
https://github.com/conan-io/conan/pull/13176
https://github.com/conan-io/conan/pull/13172
https://github.com/conan-io/conan/pull/12746
https://github.com/conan-io/conan/pull/13135
https://github.com/conan-io/conan/pull/13117
https://github.com/conan-io/conan/pull/13112
https://github.com/conan-io/conan/pull/13110
https://github.com/conan-io/conan/pull/13109
https://github.com/conan-io/conan/pull/13099
https://github.com/conan-io/conan/pull/13093
https://github.com/conan-io/conan/pull/13090
https://github.com/conan-io/conan/pull/13074
https://github.com/conan-io/conan/pull/13066
https://github.com/conan-io/conan/pull/13050
https://github.com/conan-io/conan/pull/13015

Conan Documentation, Release 2.1.0

• Feature: Add [system_tools] section to profiles to use your own installed tools instead of the packages declared
in the requires. #10166

• Fix: Fixes in powershell escaping. #13084

• Fix: Define CMakeToolchain.presets_prefix="conan" by default, to avoid conflict with other users pre-
sets. #13015

10.21 2.0.0-beta9 (31-Jan-2023)

• Feature: Add package names in Conan cache hash paths. #13011

• Feature: Implement tools.build:download_source conf to force the installation of sources in conan
install or conan graph info. #13003

• Feature: Users can define their own settings in settings_user.yml that will be merged with the Conan settings.yml.
#12980

• Feature: List disabled remotes too. #12937

• Fix: PkgConfiDeps is using the wrong dependencies.host from dependencies instead of
get_transitive_requires() computation. #13013

• Fix: Fixing transitive shared linux libraries in CMakeDeps. #13010

• Fix: Fixing issues with test_package output folder. #12992

• Fix: Improve error messages for wrong methods. #12962

• Fix: Fix fail in parallel packages download due to database concurrency issues. #12930

• Fix: Enable authentication against disabled remotes. #12913

• Fix: Improving system_requirements. #12912

• Fix: Change tar format to PAX, which is the Python3.8 default. #12899

10.22 2.0.0-beta8 (12-Jan-2023)

• Feature: Add unix_path_package_info_legacy function for those cases in which it is used in package_info in
recipes that require compatibility with Conan 1.x. In Conan 2, path conversions should not be performed in the
package_info method. #12886

• Feature: New serialization json and printing for conan list. #12883

• Feature: Add requirements to conan new cmake_{lib,exe} #12875

• Feature: Allow --no-remotes to force temporal disabling of remotes #12808

• Feature: Add barebones template option to conan new. #12802

• Feature: Avoid requesting package configuration if PkgID is passed. #12801

• Feature: Implemented conan list *#latest and conan list *:*#latest. Basically, this command can show the latest
RREVs and PREVs for all the matching references. #12781

• Feature: Allow chaining of self.output write methods #12780

• Fix: Make graph info filters to work on json output too #12836

• Bugfix: Fix bug to pass a valid GNU triplet when using AutotoolsToolchain and cross-building on Windows.
#12881

10.21. 2.0.0-beta9 (31-Jan-2023) 681

https://github.com/conan-io/conan/pull/10166
https://github.com/conan-io/conan/pull/13084
https://github.com/conan-io/conan/pull/13015
https://github.com/conan-io/conan/pull/13011
https://github.com/conan-io/conan/pull/13003
https://github.com/conan-io/conan/pull/12980
https://github.com/conan-io/conan/pull/12937
https://github.com/conan-io/conan/pull/13013
https://github.com/conan-io/conan/pull/13010
https://github.com/conan-io/conan/pull/12992
https://github.com/conan-io/conan/pull/12962
https://github.com/conan-io/conan/pull/12930
https://github.com/conan-io/conan/pull/12913
https://github.com/conan-io/conan/pull/12912
https://github.com/conan-io/conan/pull/12899
https://github.com/conan-io/conan/pull/12886
https://github.com/conan-io/conan/pull/12883
https://github.com/conan-io/conan/pull/12875
https://github.com/conan-io/conan/pull/12808
https://github.com/conan-io/conan/pull/12802
https://github.com/conan-io/conan/pull/12801
https://github.com/conan-io/conan/pull/12781
https://github.com/conan-io/conan/pull/12780
https://github.com/conan-io/conan/pull/12836
https://github.com/conan-io/conan/pull/12881

Conan Documentation, Release 2.1.0

• Bugfix: Ordering if same ref.name but different versions. #12801

10.23 2.0.0-beta7 (22-Dec-2022)

• Feature: Raise an error when a generator is both defined in generators attribute and instantiated in generate()
method #12722

• Feature: test_requires improvements, including allowing it in conanfile.txt #12699

• Feature: Improve errors for when required_conan_version has spaces between the operator and the version
#12695

• Feature: ConanAPI cleanup and organization #12666

10.24 2.0.0-beta6 (02-Dec-2022)

• Feature: Use --confirm to not request confirmation when removing instead of --force #12636

• Feature: Simplify loading conaninfo.txt for search results #12616

• Feature: Renamed ConanAPIV2 to ConanAPI #12615

• Feature: Refactor ConanAPI #12615

• Feature: Improve conan cache path command #12554

• Feature: Improve #latest and pattern selection from remove/upload/download #12572

• Feature: Add build_modules to provided deprecated warning to allow migration from 1.x #12578

• Feature: Lockfiles alias support #12525

10.25 2.0.0-beta5 (11-Nov-2022)

• Feature: Improvements in the remotes management and API #12468

• Feature: Implement env_info and user_info as fake attributes in Conan 2.0 #12351

• Feature: Improve settings.rm_safe() #12379

• Feature: New RecipeReference equality #12506

• Feature: Simplifying compress and uncompress of .tgz files #12378

• Feature: conan source command does not require a default profile #12475

• Feature: Created a proper LockfileAPI, with detailed methods (update, save, etc), instead of several loose meth-
ods #12502

• Feature: The conan export can also produce lockfiles, necessary for users doing a 2 step (export + install–build)
process #12502

• Feature: Drop compat_app #12484

• Fix: Fix transitive propagation of transitive_headers=True #12508

• Fix: Fix transitive propagation of transitive_libs=False for static libraries #12508

• Fix: Fix test_package for python_requires #12508

682 Chapter 10. Changelog

https://github.com/conan-io/conan/pull/12801
https://github.com/conan-io/conan/pull/12722
https://github.com/conan-io/conan/pull/12699
https://github.com/conan-io/conan/pull/12695
https://github.com/conan-io/conan/pull/12666
https://github.com/conan-io/conan/pull/12636
https://github.com/conan-io/conan/pull/12616
https://github.com/conan-io/conan/pull/12615
https://github.com/conan-io/conan/pull/12615
https://github.com/conan-io/conan/pull/12554
https://github.com/conan-io/conan/pull/12572
https://github.com/conan-io/conan/pull/12578
https://github.com/conan-io/conan/pull/12525
https://github.com/conan-io/conan/pull/12468
https://github.com/conan-io/conan/pull/12351
https://github.com/conan-io/conan/pull/12379
https://github.com/conan-io/conan/pull/12506
https://github.com/conan-io/conan/pull/12378
https://github.com/conan-io/conan/pull/12475
https://github.com/conan-io/conan/pull/12502
https://github.com/conan-io/conan/pull/12502
https://github.com/conan-io/conan/pull/12484
https://github.com/conan-io/conan/pull/12508
https://github.com/conan-io/conan/pull/12508
https://github.com/conan-io/conan/pull/12508

Conan Documentation, Release 2.1.0

10.26 2.0.0-beta4 (11-Oct-2022)

• Feature: Do not allow doing conan create/export with uncommitted changes using revision_mode=scm #12267

• Feature: Simplify conan inspect command, removing path subcommand #12263

• Feature: Add –deploy argument to graph info command #12243

• Feature: Pass graph object to deployers instead of ConanFile #12243

• Feature: Add included_files method to conan.tools.scm.Git #12246

• Feature: Improve detection of clang libcxx #12251

• Feature: Remove old profile variables system in favor of Jinja2 syntax in profiles #12152

• Fix: Update command to follow Conan 2.0 conventions about CLI output #12235

• Fix: Fix aggregation of test trait in diamonds #12080

10.27 2.0.0-beta3 (12-Sept-2022)

• Feature: Decouple test_package from create. #12046

• Feature: Warn if special chars in exported refs. #12053

• Feature: Improvements in MSBuildDeps traits. #12032

• Feature: Added support for CLICOLOR_FORCE env var, that will activate the colors in the output if the value
is declared and different to 0. #12028

• Fix: Call source() just once for all configurations. #12050

• Fix: Fix deployers not creating output_folder. #11977

• Fix: Fix build_id() removal of require. #12019

• Fix: If Conan fails to load a custom command now it fails with a useful error message. #11720

• Bugfix: If the ‘os’ is not specified in the build profile and a recipe, in Windows, wanted to run a command.
#11728

10.28 2.0.0-beta2 (27-Jul-2022)

• Feature: Add traits support in MSBuildDeps. #11680

• Feature: Add traits support in XcodeDeps. #11615

• Feature: Let dependency define package_id modes. #

• Feature: Add conan.conanrc file to setup the conan user home. #11675

• Feature: Add core.cache:storage_path to declare the absolute path where you want to store the Conan
packages. #11672

• Feature: Add tools for checking max cppstd version. #11610

• Feature: Add a post_build_fail hook that is called when a build fails. #11593

• Feature: Add pre_generate and post_generate hook, covering the generation of files around the
generate() method call. #11593

10.26. 2.0.0-beta4 (11-Oct-2022) 683

https://github.com/conan-io/conan/pull/12267
https://github.com/conan-io/conan/pull/12263
https://github.com/conan-io/conan/pull/12243
https://github.com/conan-io/conan/pull/12243
https://github.com/conan-io/conan/pull/12246
https://github.com/conan-io/conan/pull/12251
https://github.com/conan-io/conan/pull/12152
https://github.com/conan-io/conan/pull/12235
https://github.com/conan-io/conan/pull/12080
https://github.com/conan-io/conan/pull/12046
https://github.com/conan-io/conan/pull/12053
https://github.com/conan-io/conan/pull/12032
https://github.com/conan-io/conan/pull/12028
https://github.com/conan-io/conan/pull/12050
https://github.com/conan-io/conan/pull/11977
https://github.com/conan-io/conan/pull/12019
https://github.com/conan-io/conan/pull/11720
https://github.com/conan-io/conan/pull/11728
https://github.com/conan-io/conan/pull/11680
https://github.com/conan-io/conan/pull/11615
https://github.com/conan-io/conan/pull/11441
https://github.com/conan-io/conan/pull/11675
https://github.com/conan-io/conan/pull/11672
https://github.com/conan-io/conan/pull/11610
https://github.com/conan-io/conan/pull/11593
https://github.com/conan-io/conan/pull/11593

Conan Documentation, Release 2.1.0

• Feature: Brought conan config list command back and other conf improvements. #11575

• Feature: Added two new arguments for all commands -v for controlling the verbosity of the output and –logger
to output the contents in a json log format for log processors. #11522

10.29 2.0.0-beta1 (20-Jun-2022)

• Feature: New graph model to better support C and C++ binaries relationships, compilation, and linkage.

• Feature: New documented public Python API, for user automation

• Feature: New build system integrations, more flexible and powerful, and providing transparent integration when
possible, like CMakeDeps and CMakeToolchain

• Feature: New custom user commands, that can be built using the public PythonAPI and can be shared and
installed with conan config install

• Feature: New CLI interface, with cleaner commands and more structured output

• Feature: New deployers mechanism to copy artifacts from the cache to user folders, and consume those copies
while building.

• Feature: Improved package_id computation, taking into account the new more detailed graph model.

• Feature: Added compatibility.py extension mechanism to allow users to define binary compatibility globally.

• Feature: Simpler and more powerful lockfiles to provide reproducibility over time.

• Feature: Better configuration with [conf] and better environment management with the new conan.tools.
env tools.

• Feature: Conan cache now can store multiple revisions simultaneously.

• Feature: New extensions plugins to implement profile checking, package signing, and build commands wrapping.

• Feature: Used the package immutability for an improved update, install and upload flows.

684 Chapter 10. Changelog

https://github.com/conan-io/conan/pull/11575
https://github.com/conan-io/conan/pull/11522

INDEX

Symbols
__init__() (XcodeBuild method), 450

A
absolute_to_relative_symlinks() (in module co-

nan.tools.files.symlinks), 502
add() (RemotesAPI method), 618
analyze_binaries() (GraphAPI method), 621
android_abi() (in module conan.tools.android), 444
Apk (class in conan.tools.system.package_manager), 558
append() (Conf method), 426
append() (Environment method), 482
append_path() (Environment method), 482
apple_arch_flag (MesonToolchain attribute), 537
apple_isysroot_flag (MesonToolchain attribute), 538
apple_min_version_flag (MesonToolchain attribute),

538
apply() (EnvVars method), 486
apply_conandata_patches() (in module co-

nan.tools.files.patches), 500
Apt (class in conan.tools.system.package_manager), 559
ar (MesonToolchain attribute), 537
ar (XCRun property), 452
arch (IntelCC attribute), 529
as_ (MesonToolchain attribute), 537
autoreconf() (Autotools method), 511
Autotools (class in conan.tools.gnu.autotools), 510
AutotoolsDeps (class in co-

nan.tools.gnu.autotoolsdeps), 504
AutotoolsToolchain (class in co-

nan.tools.gnu.autotoolstoolchain), 509

B
Bazel (class in conan.tools.google), 519
BazelDeps (class in conan.tools.google), 524
BazelToolchain (class in conan.tools.google), 526
Brew (class in conan.tools.system.package_manager),

565
build() (Bazel method), 519
build() (CMake method), 476
build() (Meson method), 539
build() (MSBuild method), 541

build() (XcodeBuild method), 450
build_context_activated (BazelDeps attribute), 524
build_jobs() (in module conan.tools.build.cpu), 453

C
c (MesonToolchain attribute), 537
c_args (MesonToolchain attribute), 537
c_ld (MesonToolchain attribute), 537
c_link_args (MesonToolchain attribute), 537
can_run() (in module conan.tools.build.cross_building),

454
cc (XCRun property), 452
chdir() (in module conan.tools.files.files), 494
check() (Apk method), 558
check() (Apt method), 560
check() (Brew method), 565
check() (Chocolatey method), 568
check() (PacMan method), 563
check() (Pkg method), 566
check() (PkgUtil method), 567
check() (Yum method), 561
check() (Zypper method), 564
check_max_cppstd() (in module co-

nan.tools.build.cppstd), 454
check_md5() (in module conan.tools.files.files), 501
check_min_cppstd() (in module co-

nan.tools.build.cppstd), 454
check_min_vs() (in module co-

nan.tools.microsoft.visual), 551
check_sha1() (in module conan.tools.files.files), 501
check_sha256() (in module conan.tools.files.files), 502
check_upstream() (UploadAPI method), 623
checkout() (Git method), 554
checkout_from_conandata_coordinates() (Git

method), 555
Chocolatey (class in co-

nan.tools.system.package_manager), 568
clone() (Git method), 554
CMake (class in conan.tools.cmake.cmake), 475
cmake_layout() (in module conan.tools.cmake.layout),

478

685

Conan Documentation, Release 2.1.0

CMakeDeps (class in co-
nan.tools.cmake.cmakedeps.cmakedeps),
459

CMakeToolchain (class in co-
nan.tools.cmake.toolchain.toolchain), 473

collect_libs() (in module conan.tools.files), 496
command (IntelCC property), 529
command() (MSBuild method), 541
commit_in_remote() (Git method), 553
compilation_mode (BazelToolchain attribute), 526
compiler (BazelToolchain attribute), 526
compose_env() (Environment method), 483
ConanAPI (class in conan.api.conan_api), 616
ConfigAPI (class in conan.api.subapi.config), 622
configure() (Autotools method), 510
configure() (CMake method), 475
configure() (Meson method), 539
conlyopt (BazelToolchain attribute), 526
content (PkgConfigDeps property), 516
coordinates_to_conandata() (Git method), 555
copt (BazelToolchain attribute), 526
copy() (in module conan.tools.files.copy_pattern), 490
cpp (MesonToolchain attribute), 537
cpp_args (MesonToolchain attribute), 537
cpp_ld (MesonToolchain attribute), 537
cpp_link_args (MesonToolchain attribute), 537
cppstd (BazelToolchain attribute), 526
cpu (BazelToolchain attribute), 527
cross_build (MesonToolchain attribute), 537
cross_building() (in module co-

nan.tools.build.cross_building), 453
crosstool_top (BazelToolchain attribute), 527
ctest() (CMake method), 477
cxx (XCRun property), 452
cxxopt (BazelToolchain attribute), 526

D
default_cppstd() (in module co-

nan.tools.build.cppstd), 455
define() (Conf method), 425
define() (Environment method), 482
deploy_base_folder() (Environment method), 483
detect() (ProfilesAPI static method), 620
disable() (RemotesAPI method), 617
download() (in module conan.tools.files.files), 498
download_full() (DownloadAPI method), 624
DownloadAPI (class in conan.api.subapi.download), 624
dumps() (Environment method), 482
dynamic_mode (BazelToolchain attribute), 526

E
enable() (RemotesAPI method), 617
environment (AutotoolsDeps property), 504

Environment (class in conan.tools.env.environment),
482

environment() (VirtualBuildEnv method), 488
environment() (VirtualRunEnv method), 489
EnvVars (class in conan.tools.env.environment), 486
export_conandata_patches() (in module co-

nan.tools.files.patches), 501
ExportAPI (class in conan.api.subapi.export), 622

F
fetch_commit() (Git method), 554
fill_cpp_info() (PkgConfig method), 518
filter_packages_configurations() (ListAPI static

method), 619
find() (XCRun method), 452
fix_apple_shared_install_name() (in module co-

nan.tools.apple), 451
force_pic (BazelToolchain attribute), 526
ftp_download() (in module conan.tools.files.files), 497

G
generate() (BazelDeps method), 524
generate() (BazelToolchain method), 527
generate() (CMakeDeps method), 459
generate() (CMakeToolchain method), 473
generate() (IntelCC method), 529
generate() (MakeDeps method), 514
generate() (MesonToolchain method), 538
generate() (MSBuildDeps method), 544
generate() (MSBuildToolchain method), 546
generate() (PkgConfigDeps method), 516
generate() (VCVars method), 548
generate() (VirtualBuildEnv method), 488
generate() (VirtualRunEnv method), 489
get() (EnvVars method), 486
get() (in module conan.tools.files.files), 497
get() (RemotesAPI method), 617
get_backup_sources() (UploadAPI method), 623
get_cmake_package_name() (CMakeDeps method),

460
get_commit() (Git method), 553
get_default_build() (ProfilesAPI method), 619
get_default_host() (ProfilesAPI method), 619
get_find_mode() (CMakeDeps method), 460
get_home_template() (NewAPI method), 623
get_path() (ProfilesAPI method), 620
get_profile() (ProfilesAPI method), 619
get_remote_url() (Git method), 553
get_repo_root() (Git method), 554
get_template() (NewAPI method), 623
get_url_and_commit() (Git method), 554
Git (class in conan.tools.scm.git), 553
global_conf (ConfigAPI property), 622
GraphAPI (class in conan.api.subapi.graph), 621

686 Index

Conan Documentation, Release 2.1.0

I
included_files() (Git method), 554
install() (Apk method), 558
install() (Apt method), 559
install() (Autotools method), 511
install() (Brew method), 565
install() (Chocolatey method), 569
install() (CMake method), 476
install() (Meson method), 539
install() (PacMan method), 563
install() (Pkg method), 566
install() (PkgUtil method), 567
install() (Yum method), 561
install() (Zypper method), 564
install_binaries() (InstallAPI method), 620
install_consumer() (InstallAPI method), 620
install_name_tool (XCRun property), 453
install_sources() (InstallAPI method), 620
install_substitutes() (Apk method), 559
install_substitutes() (Apt method), 560
install_substitutes() (Brew method), 565
install_substitutes() (Chocolatey method), 569
install_substitutes() (PacMan method), 563
install_substitutes() (Pkg method), 567
install_substitutes() (PkgUtil method), 568
install_substitutes() (Yum method), 562
install_substitutes() (Zypper method), 564
install_system_requires() (InstallAPI method),

620
InstallAPI (class in conan.api.subapi.install), 620
installation_path (IntelCC property), 529
IntelCC (class in conan.tools.intel), 529
is_apple_os() (in module conan.tools.apple), 452
is_dirty() (Git method), 553
is_msvc() (in module conan.tools.microsoft.visual), 551
is_msvc_static_runtime() (in module co-

nan.tools.microsoft.visual), 552
items() (EnvVars method), 486

L
ld (MesonToolchain attribute), 537
libtool (XCRun property), 452
linkopt (BazelToolchain attribute), 526
list() (ProfilesAPI method), 620
list() (RemotesAPI method), 617
ListAPI (class in conan.api.subapi.list), 619
load() (in module conan.tools.files.files), 491
load_graph() (GraphAPI method), 621
load_root_test_conanfile() (GraphAPI method),

621

M
make() (Autotools method), 511
MakeDeps (class in conan.tools.gnu), 514

Meson (class in conan.tools.meson), 539
MesonToolchain (class in conan.tools.meson), 536
mkdir() (in module conan.tools.files.files), 493
ms_toolset (IntelCC property), 529
MSBuild (class in conan.tools.microsoft), 541
MSBuildDeps (class in conan.tools.microsoft), 544
MSBuildToolchain (class in conan.tools.microsoft), 546
msvc_runtime_flag() (in module co-

nan.tools.microsoft.visual), 551
msvs_toolset() (in module co-

nan.tools.microsoft.visual), 552

N
NewAPI (class in conan.api.subapi.new), 623

O
objc (MesonToolchain attribute), 538
objc_args (MesonToolchain attribute), 538
objc_link_args (MesonToolchain attribute), 538
objcpp (MesonToolchain attribute), 538
objcpp_args (MesonToolchain attribute), 538
objcpp_link_args (MesonToolchain attribute), 538
otool (XCRun property), 453

P
package() (DownloadAPI method), 624
PacMan (class in conan.tools.system.package_manager),

563
patch() (in module conan.tools.files.patches), 499
Pkg (class in conan.tools.system.package_manager), 566
pkg_config_path (MesonToolchain attribute), 537
PkgConfig (class in conan.tools.gnu), 518
pkgconfig (MesonToolchain attribute), 537
PkgConfigDeps (class in conan.tools.gnu), 516
PkgUtil (class in conan.tools.system.package_manager),

567
prepare() (UploadAPI method), 623
prepend() (Conf method), 426
prepend() (Environment method), 483
prepend_path() (Environment method), 483
preprocessor_definitions (MesonToolchain at-

tribute), 537
ProfilesAPI (class in conan.api.subapi.profiles), 619
project_options (MesonToolchain attribute), 536
properties (MesonToolchain attribute), 536

R
ranlib (XCRun property), 452
recipe() (DownloadAPI method), 624
RemotesAPI (class in conan.api.subapi.remotes), 617
remove() (Conf method), 426
remove() (Environment method), 483
remove() (RemotesAPI method), 618

Index 687

Conan Documentation, Release 2.1.0

remove_broken_symlinks() (in module co-
nan.tools.files.symlinks), 502

remove_external_symlinks() (in module co-
nan.tools.files.symlinks), 502

RemoveAPI (class in conan.api.subapi.remove), 622
rename() (in module conan.tools.files.files), 492
rename() (RemotesAPI method), 618
replace_in_file() (in module conan.tools.files.files),

492
rm() (in module conan.tools.files.files), 493
rmdir() (in module conan.tools.files.files), 493
run() (Git method), 553

S
save() (in module conan.tools.files.files), 491
save_script() (EnvVars method), 486
sdk_path (XCRun property), 452
sdk_platform_path (XCRun property), 452
sdk_platform_version (XCRun property), 452
sdk_version (XCRun property), 452
SearchAPI (class in conan.api.subapi.search), 619
set_property() (CMakeDeps method), 459
settings_yml (ConfigAPI property), 622
strip (MesonToolchain attribute), 537
strip (XCRun property), 452
supported_cppstd() (in module co-

nan.tools.build.cppstd), 456

T
test() (Bazel method), 519
test() (CMake method), 476
test() (Meson method), 539
to_apple_arch() (in module conan.tools.apple), 452
trim_conandata() (in module co-

nan.tools.files.conandata), 495

U
unix_path() (in module conan.tools.microsoft), 552
unset() (Conf method), 427
unset() (Environment method), 482
unzip() (in module conan.tools.files.files), 494
update() (Apk method), 559
update() (Apt method), 560
update() (Brew method), 566
update() (Chocolatey method), 569
update() (Conf method), 426
update() (PacMan method), 564
update() (Pkg method), 567
update() (PkgUtil method), 568
update() (RemotesAPI method), 618
update() (Yum method), 562
update() (Zypper method), 565
update_autoreconf_args() (AutotoolsToolchain

method), 509

update_conandata() (in module co-
nan.tools.files.conandata), 495

update_configure_args() (AutotoolsToolchain
method), 509

update_make_args() (AutotoolsToolchain method),
509

upload_full() (UploadAPI method), 623
UploadAPI (class in conan.api.subapi.upload), 623
user_login() (RemotesAPI method), 618
user_logout() (RemotesAPI method), 618

V
valid_max_cppstd() (in module co-

nan.tools.build.cppstd), 455
valid_min_cppstd() (in module co-

nan.tools.build.cppstd), 455
vars() (Environment method), 483
vars() (VirtualBuildEnv method), 488
vars() (VirtualRunEnv method), 489
VCVars (class in conan.tools.microsoft), 548
Version (class in conan.tools.scm), 555
VirtualBuildEnv (class in co-

nan.tools.env.virtualbuildenv), 488
VirtualRunEnv (class in conan.tools.env.virtualrunenv),

489
vs_layout() (in module conan.tools.microsoft), 551

W
windres (MesonToolchain attribute), 537

X
XcodeBuild (class in conan.tools.apple.xcodebuild), 450
XCRun (class in conan.tools.apple), 452

Y
Yum (class in conan.tools.system.package_manager), 561

Z
Zypper (class in conan.tools.system.package_manager),

564

688 Index

	Introduction
	Open Source
	Decentralized package manager
	Binary management
	All platforms, all build systems and compilers
	Stable
	Community
	Navigating the documentation

	What’s new in Conan 2
	Conan 2 migration guide
	New graph model
	New public Python API
	New build system integrations
	New custom user commands
	New CLI
	New deployers
	New package_id
	compatibility.py
	New lockfiles
	New configuration and environment management
	Multi-revision cache
	New extensions plugins
	Profile checker
	Command wrapper
	Package signing

	Package immutability optimizations
	Package lists
	Metadata files
	Third party backup sources

	Install
	Install with pip (recommended)
	Known installation issues with pip
	Update

	Install with pipx
	Use a system installer or create a self-contained executable
	Install from source

	Tutorial
	Consuming packages
	Build a simple CMake project using Conan
	Using build tools as Conan packages
	Building for multiple configurations: Release, Debug, Static and Shared
	Modifying settings: use Debug configuration for the application and its dependencies
	Modifying options: linking the application dependencies as shared libraries
	Difference between settings and options
	Introducing the concept of Package ID

	Understanding the flexibility of using conanfile.py vs conanfile.txt
	Use the layout() method
	Use the validate() method to raise an error for non-supported configurations
	Conditional requirements using a conanfile.py
	Use the generate() method to copy resources from packages

	How to cross-compile your applications using Conan: host and build contexts
	Conan two profiles model: build and host profiles
	Build and host contexts

	Introduction to versioning
	Version ranges
	Revisions
	Lockfiles

	Creating packages
	Create your first Conan package
	A note about the Conan cache

	Handle sources in packages
	Sources from a zip file stored in a remote repository
	Sources from a branch in a git repository
	Using the conandata.yml file

	Add dependencies to packages
	Preparing the build
	Configure settings and options in recipes
	Conan packages binary compatibility: the package ID
	C libraries
	Header-only libraries

	Build packages: the build() method
	Build and run tests for your project
	Changes introduced in the recipe
	Changes introduced in the library sources

	Conditionally patching the source code
	Conditionally select your build system

	Package files: the package() method
	Using CMake install step in the package() method
	Use conan.tools.files.copy() in the package() method and packaging licenses
	Managing symlinks in the package() method

	Define information for consumers: the package_info() method
	Setting information in the package_info() method
	Define information for consumers depending on settings or options
	Changes introduced in the library sources
	Changes introduced in the recipe

	Properties model: setting information for specific generators
	Propagating environment or configuration information to consumers
	Define components for Conan packages that provide multiple libraries

	Testing Conan packages
	Other types of packages
	Header-only packages
	Header-only library with tests

	Package prebuilt binaries
	Locally building binaries
	Packaging already Pre-built Binaries
	Downloading and Packaging Pre-built Binaries

	Tool requires packages
	A simple tool require recipe
	Removing settings in package_id()

	Working with Conan repositories
	Setting up a Conan remote
	Artifactory Community Edition for C/C++
	Running Artifactory CE
	Creating and Using a Conan Repo

	Setting-up a Conan Server

	Uploading Packages
	Contributing to Conan Center

	Developing packages locally
	Package Development Flow
	conan source
	conan install
	conan build
	conan export-pkg

	Packages in editable mode
	Put say/1.0 package in editable mode
	Using say/1.0 package in editable mode
	Working with editable packages
	Building editable dependencies
	Revert the editable mode

	Understanding the Conan Package layout
	self.folders
	self.cpp
	cpp.package
	cpp.source and cpp.build

	Versioning
	Versions
	Automating versions
	Requiring the new versions

	Version ranges
	Semantic versioning
	Range expressions

	Revisions
	Creating different revisions
	Using revisions
	Uploading revisions
	Package revisions

	Lockfiles
	Multi-configuration lockfiles
	Evolving lockfiles

	Dependencies conflicts
	Resolving conflicts
	Overriding options

	Other important Conan features
	python_requires
	Packages lists
	Removing unused packages from the cache

	Devops guide
	Using ConanCenter packages in production environments
	Repeatability and reproducibility
	Service reliability
	Compliance and security
	Control and customization
	Creating and hosting your own ConanCenter binaries
	Updating from upstream

	Backing up third-party sources with Conan
	Configuration overview
	Usage
	Setting up the necessary configs
	Run Conan as normal
	Upload the packages
	Creating the backup repository
	Creating an Artifactory backup repo for your sources

	Managing package metadata files
	Creating metadata in recipes
	Creating metadata with hooks
	Adding metadata with commands
	Uploading metadata
	Downloading metadata
	Removing metadata
	test_package as metadata

	Versioning
	Handling version ranges and pre-releases

	Save and restore packages from/to the cache

	Integrations
	CMake
	CLion
	Introduction
	Installing the plugin
	Configuring the plugin
	Using the plugin

	Visual Studio
	Autotools
	Bazel
	Makefile
	Xcode
	Meson
	Android
	JFrog
	Artifactory Build Info
	How to install the build info extension commands
	Generating a Build Info

	Examples
	ConanFile methods examples
	ConanFile package_info() examples
	Propagating environment or configuration information to consumers
	Define components for Conan packages that provide multiple libraries

	ConanFile layout() examples
	Declaring the layout when the Conanfile is inside a subfolder
	Declaring the layout when creating packages for third-party libraries
	Declaring the layout when we have multiple subprojects
	Using components and editable packages

	Conan extensions examples
	Custom commands
	Custom command: Clean old recipe and package revisions
	Locate the command
	Run it
	Code tour
	parser
	User input and user output
	Conan public API

	Builtin deployers
	Creating a Conan-agnostic deploy of dependencies for developer use

	Custom deployers
	Copy sources from all your dependencies
	Locate the deployer
	Run it
	Code tour
	deploy()

	Conan recipe tools examples
	CMake
	CMakeToolchain: Building your project using CMakePresets
	Generating the toolchain
	Building the project using CMakePresets

	CMakeToolchain: Extending your CMakePresets with Conan generated ones
	CMakeToolchain: Inject arbitrary CMake variables into dependencies
	CMakeToolchain: Using xxx-config.cmake files inside packages
	Important considerations

	File interaction
	Patching sources
	Patching using ‘replace_in_file’
	in source() method
	in build() method

	Patching using “patch” tool
	Patching using “apply_conandata_patches” tool

	Meson
	Build a simple Meson project using Conan
	Create your first Conan package with Meson

	Bazel
	Build a simple Bazel project using Conan

	Autotools
	Build a simple Autotools project with Conan dependencies
	Building on Linux and macOS

	Create your first Conan package with Autotools

	Capturing Git scm information
	Credentials management

	MSBuild
	Create your first Conan package with Visual Studio/MSBuild

	Cross-building examples
	Creating a Conan package for a toolchain
	Validating the toolchain package: settings, settings_build and settings_target
	Downloading the binaries for the toolchain and packaging it
	Adding settings_target to the Package ID information
	Define information for consumers
	Testing the Conan toolchain package
	Cross-build an application using the toolchain

	Cross building to Android with the NDK
	Integrating Conan in Android Studio
	Creating a new project
	Introducing dependencies with Conan
	conanfile.txt
	build.gradle
	conan_android_toolchain.cmake
	CMakeLists.txt

	Building the application

	Configuration files examples
	Customize your settings: create your settings_user.yml
	Locate the settings_user.yml
	Use your new settings

	Graph examples
	Use a CMake macro packaged in a dependency
	Use cmake modules inside a tool_requires transparently
	Depending on different versions of the same tool-require
	Depending on same version of a tool-require with different options
	Using the same requirement as a requires and as a tool_requires

	Developer tools and flows
	Debugging and stepping into dependencies
	Building from source
	Step into a dependency with Visual Studio

	Conan commands examples
	Using packages-lists
	Listing packages and downloading them
	Downloading from one remote and uploading to a different remote
	Building and uploading packages
	Removing packages lists

	Reference
	Commands
	conan cache
	conan cache path
	conan cache clean
	conan cache check-integrity
	conan cache backup-upload
	conan cache save
	conan cache restore

	conan config
	conan config home
	conan config install
	conan config list
	conan config show

	conan graph
	conan graph info
	conan graph build-order
	conan graph build-order-merge
	conan graph explain

	conan inspect
	conan install
	Conanfile path or –requires
	Profiles, Settings, Options, Conf
	Generators and deployers
	Name, version, user, channel
	Lockfiles
	Update

	conan list
	Listing recipe references
	Listing recipe revisions
	Listing package IDs
	Listing package revisions
	Listing graph artifacts
	List json output format
	List html output format
	List compact output format

	conan lock
	conan lock add
	conan lock create
	conan lock merge
	conan lock remove

	conan profile
	conan profile detect
	conan profile list
	conan profile path
	conan profile show

	conan remove
	conan remote
	conan remote add
	conan remote auth
	conan remote disable
	conan remote enable
	conan remote list
	conan remote list-users
	conan remote login
	conan remote logout
	conan remote remove
	conan remote rename
	conan remote set-user
	conan remote update

	conan search
	conan version
	conan build
	conan create
	Using conan create with build requirements
	Conan create output

	conan download
	Downloading metadata

	conan editable
	conan editable add
	conan editable remove
	conan editable list

	conan export
	Output Formats

	conan export-pkg
	conan new
	conan new
	Examples
	Custom templates

	conan source
	conan test
	conan upload
	Command formatters
	Formatter: Graph-info JSON

	conanfile.py
	Attributes
	Package reference
	name
	version
	user
	channel

	Metadata
	description
	license
	author
	topics
	homepage
	url

	Requirements
	requires
	tool_requires
	build_requires
	test_requires
	python_requires
	python_requires_extend

	Sources
	exports
	exports_sources
	conan_data
	source_buildenv

	Binary model
	package_type
	settings
	options
	default_options
	default_build_options
	options_description
	info
	package_id_{embed,non_embed,python,unknown}_mode

	Build
	generators
	build_policy
	win_bash
	win_bash_run

	Folders and layout
	source_folder
	export_sources_folder
	build_folder
	package_folder
	recipe_folder
	recipe_metadata_folder
	package_metadata_folder
	no_copy_source

	Layout
	folders
	cpp
	layouts

	Package information for consumers
	cpp_info
	buildenv_info
	runenv_info
	conf_info
	deprecated
	provides

	Other
	dependencies
	conf
	Output
	Output contents
	revision_mode
	upload_policy
	required_conan_version
	implements
	alias
	extension_properties

	Methods
	build()
	build_id()
	build_requirements()
	tool_requires()
	<host_version>

	test_requires

	compatibility()
	configure()
	Available automatic implementations
	auto_shared_fpic

	config_options()
	Available automatic implementations
	auto_shared_fpic

	deploy()
	export()
	export_sources()
	generate()
	self.dependencies
	Dependencies interface
	Iterating dependencies
	Dependencies cpp_info interface

	init()
	layout()
	self.folders
	self.cpp
	Environment variables and configuration

	package()
	package_id()
	Available automatic implementations
	auto_header_only
	Information erasure
	Partial information erasure
	Adding information

	package_info()
	cpp_info: Library and build information
	Properties

	Components
	buildenv_info, runenv_info
	conf_info

	requirements()
	Requirement traits
	headers
	libs
	build
	run
	visible
	transitive_headers
	transitive_libs
	test
	package_id_mode
	force
	override
	direct

	package_type trait inferring
	Default traits for each kind of requires
	set_name()
	set_version()
	source()
	Source caching
	Forced retrieval of sources

	system_requirements()
	Collecting system requirements

	test()
	validate()
	validate_build()

	Running and output
	Output text from recipes
	Running commands

	conanfile.txt
	[requires]
	[tool_requires]
	[test_requires]
	[generators]
	[options]
	[layout]

	Recipe tools
	conan.tools.android
	android_abi()

	conan.tools.apple
	XcodeDeps
	Additional variables defined
	Components support
	Custom configurations

	XcodeToolchain
	conf

	XcodeBuild
	Reference
	conf

	conan.tools.apple.fix_apple_shared_install_name()
	conan.tools.apple.is_apple_os()
	conan.tools.apple.to_apple_arch()
	conan.tools.apple.XCRun()

	conan.tools.build
	Building
	conan.tools.build.build_jobs()
	conan.tools.build.cross_building()
	conan.tools.build.can_run()

	Cppstd
	conan.tools.build.check_min_cppstd()
	conan.tools.build.check_max_cppstd()
	conan.tools.build.valid_min_cppstd()
	conan.tools.build.valid_max_cppstd()
	conan.tools.build.default_cppstd()
	conan.tools.build.supported_cppstd()

	conan.tools.cmake
	CMakeDeps
	Generated files
	Customization
	configuration
	build_context_activated
	build_context_suffix
	build_context_build_modules
	check_components_exist

	Reference
	Properties
	Overwrite properties from the consumer side using CMakeDeps.set_property()
	Disable CMakeDeps For Installed CMake configuration files
	Map from project configuration to imported target’s configuration

	CMakeToolchain
	Generated files
	Customization
	preprocessor_definitions
	cache_variables
	variables
	user_presets_path
	presets_build_environment, presets_run_environment
	Extra compilation flags
	presets_prefix
	Using a custom toolchain file

	Extending and advanced customization
	Customizing the content blocks

	Cross building
	Reference
	conf

	CMake
	Reference
	conf

	cmake_layout
	Reference
	Multi-setting/option cmake_layout

	conan.tools.CppInfo
	Aggregating information in custom generators

	conan.tools.env
	Environment
	Variable declaration
	Composition
	Obtaining environment variables
	Environment definition
	Reference

	EnvVars
	Creating environment files
	Running with environment files
	Applying the environment variables
	Iterating the variables
	Reference

	VirtualBuildEnv
	Generated files
	Reference

	VirtualRunEnv
	Generated files
	Reference

	conan.tools.files
	conan.tools.files basic operations
	conan.tools.files.copy()
	conan.tools.files.load()
	conan.tools.files.save()
	conan.tools.files.rename()
	conan.tools.files.replace_in_file()
	conan.tools.files.rm()
	conan.tools.files.mkdir()
	conan.tools.files.rmdir()
	conan.tools.files.chdir()
	conan.tools.files.unzip()
	conan.tools.files.update_conandata()
	conan.tools.files.trim_conandata()
	conan.tools.files.collect_libs()

	conan.tools.files downloads
	conan.tools.files.get()
	conan.tools.files.ftp_download()
	conan.tools.files.download()
	conf

	conan.tools.files patches
	conan.tools.files.patch()
	conan.tools.files.apply_conandata_patches()
	conan.tools.files.export_conandata_patches()

	conan.tools.files checksums
	conan.tools.files.check_md5()
	conan.tools.files.check_sha1()
	conan.tools.files.check_sha256()

	conan.tools.files.symlinks
	conan.tools.files.symlinks.absolute_to_relative_symlinks()
	conan.tools.files.symlinks.remove_external_symlinks()
	conan.tools.files.symlinks.remove_broken_symlinks()

	conan.tools.files AutoPackager

	conan.tools.gnu
	AutotoolsDeps
	Generated files
	Customization
	Reference

	AutotoolsToolchain
	Generated files
	Customization
	Customizing the environment
	Managing the configure_args, make_args and autoreconf_args attributes

	Reference
	conf

	Autotools
	Reference
	A note about relocatable shared libraries in macOS built the Autotools build helper
	Why is this a problem when using Conan?
	How to address this problem in Conan

	MakeDeps
	Generated files
	Customization
	Flags

	Reference

	PkgConfigDeps
	Generated files
	Customization
	Naming

	Reference
	Attributes
	build_context_activated
	build_context_suffix
	Properties

	PkgConfig
	Reference
	conf

	conan.tools.google
	Bazel
	Reference
	Properties
	conf

	BazelDeps
	Generated files
	Customization
	Naming

	Reference
	build_context_activated
	Properties

	BazelToolchain
	Generated files
	Reference
	conf

	conan.tools.intel
	IntelCC
	Custom configurations

	Reference
	conf

	conan.tools.layout
	Predefined layouts
	basic_layout

	conan.tools.meson
	MesonToolchain
	Generated files
	conan_meson_native.ini
	conan_meson_cross.ini
	Default directories

	Customization
	Attributes
	project_options
	preprocessor_definitions
	conf

	Using Proper Data Types for Conan Options in Meson
	Cross-building for Apple and Android
	Objective-C arguments

	Reference

	Meson
	Reference
	conf

	conan.tools.microsoft
	MSBuild
	Customization
	attributes
	conf

	Reference

	MSBuildDeps
	Generated files
	Requirement traits support

	Configurations
	Dependencies
	Customization
	conf

	Reference

	MSBuildToolchain
	Customization
	conf

	Reference
	Attributes

	VCVars
	Customization
	conf

	Reference

	NMakeDeps
	NMakeToolchain
	constructor
	Attributes
	conf
	Customizing the environment

	vs_layout
	conan.tools.microsoft.visual
	check_min_vs
	msvc_runtime_flag
	is_msvc
	is_msvc_static_runtime
	msvs_toolset

	conan.tools.microsoft.subsystems
	unix_path

	conan.tools.scm
	Git
	Version

	conan.tools.scons
	SConsDeps

	conan.tools.system
	conan.tools.system.package_manager
	Methods available for system package manager tools
	Configuration properties that affect how system package managers are invoked
	conan.tools.system.package_manager.Apk
	Reference

	conan.tools.system.package_manager.Apt
	Reference

	conan.tools.system.package_manager.Yum
	Reference

	conan.tools.system.package_manager.Dnf
	conan.tools.system.package_manager.PacMan
	Reference

	conan.tools.system.package_manager.Zypper
	Reference

	conan.tools.system.package_manager.Brew
	Reference

	conan.tools.system.package_manager.Pkg
	Reference

	conan.tools.system.package_manager.PkgUtil
	Reference

	conan.tools.system.package_manager.Chocolatey
	Reference

	Configuration files
	global.conf
	Introduction to configuration
	Description of configurations
	core.cache:storage_path
	core.download:download_cache

	User/Tools configurations
	Configuration file template
	Configuration data types
	Configuration data operators
	Configuration patterns

	Information about built-in confs
	Networking confs
	Configuration of client certificates

	UX confs
	Skip warnings

	profiles
	Introduction to profiles
	Profile sections
	[settings]
	[options]
	[tool_requires]
	[system_tools] (DEPRECATED)
	[buildenv]
	[runenv]
	[conf]
	[replace_requires]
	[replace_tool_requires]
	[platform_requires]
	[platform_tool_requires]

	Profile rendering
	Profile patterns
	Profile includes

	settings.yml
	Operating systems
	Compilers
	msvc
	intel-cc

	Architectures
	C++ standard libraries (aka compiler.libcxx)
	Customizing settings
	Adding new settings
	Adding new sub-settings
	Add new values

	settings_user.yml

	remotes.json
	source_credentials.json
	credentials.json
	.conanrc

	Extensions
	Python requires
	Introduction
	Extending base classes
	Reusing files
	Testing python-requires
	Effect in package_id
	Resolution of python_requires

	Custom commands
	Location and naming
	Scoping

	Decorators
	conan_command(group=None, formatters=None)
	conan_subcommand(formatters=None)

	Argument definition and parsing
	Formatters
	Commands parameters

	Custom Conan generators
	Custom generators as python_requires
	Using global custom generators

	Python API
	Conan API Reference
	Remotes API
	Search API
	List API
	Profiles API
	Install API
	Graph API
	Export API
	Remove API
	Config API
	New API
	Upload API
	Download API

	Deployers
	Built-in deployers
	full_deploy
	direct_deploy
	configuration

	Custom deployers

	Hooks
	Hook structure
	Importing from a module
	Hook interface
	Storage, activation and sharing
	Official Hooks

	Binary compatibility
	Profile plugin
	Command wrapper
	Package signing

	Environment variables
	CONAN_HOME
	CONAN_DEFAULT_PROFILE
	Remote login variables
	Terminal color variables
	Logging

	The binary model
	How the package_id is computed
	How settings and options of a recipe influence its package ID
	How settings influence the package ID
	Removing settings for a package used as a tool_require

	How options influence the package ID

	The effect of dependencies on package_id
	Non-embed mode
	Embed mode

	Extending the binary model
	Custom settings
	Custom options
	Settings vs options vs conf
	Custom configuration
	Cross build target settings

	Customizing the binary compatibility
	Customizing binary compatibility of settings and options
	Information erasure in package_id() method
	The compatibility() method
	The compatibility.py plugin

	Customizing binary compatibility of dependencies versions
	Global default package_id modes
	Custom package_id modes for recipe consumers
	Custom package_id from recipe dependencies

	Conan Server
	Configuration
	Server Parameters
	Permissions Parameters
	Authentication
	Create Your Own Custom Authenticator

	Authorizations
	Create Your Own Custom Authorizer

	Running the Conan Server with SSL using Nginx
	Running the Conan Server with SSL using Nginx in a Subdirectory
	Running Conan Server using Apache

	Knowledge
	Cheat sheet
	Core guidelines
	Good practices
	Forbidden practices

	FAQ
	Troubleshooting
	ERROR: Missing prebuilt package
	ERROR: Invalid setting
	ERROR: AuthenticationException:
	ERROR: Obtaining different revisions in Linux and Windows

	Videos

	Changelog
	2.1.0 (15-Feb-2024)
	2.0.17 (10-Jan-2024)
	2.0.16 (21-Dec-2023)
	2.0.15 (20-Dec-2023)
	2.0.14 (14-Nov-2023)
	2.0.13 (28-Sept-2023)
	2.0.12 (26-Sept-2023)
	2.0.11 (18-Sept-2023)
	2.0.10 (29-Aug-2023)
	2.0.9 (19-Jul-2023)
	2.0.8 (13-Jul-2023)
	2.0.7 (21-Jun-2023)
	2.0.6 (26-May-2023)
	2.0.5 (18-May-2023)
	2.0.4 (11-Apr-2023)
	2.0.3 (03-Apr-2023)
	2.0.2 (15-Mar-2023)
	2.0.1 (03-Mar-2023)
	2.0.0 (22-Feb-2023)
	2.0.0-beta10 (16-Feb-2023)
	2.0.0-beta9 (31-Jan-2023)
	2.0.0-beta8 (12-Jan-2023)
	2.0.0-beta7 (22-Dec-2022)
	2.0.0-beta6 (02-Dec-2022)
	2.0.0-beta5 (11-Nov-2022)
	2.0.0-beta4 (11-Oct-2022)
	2.0.0-beta3 (12-Sept-2022)
	2.0.0-beta2 (27-Jul-2022)
	2.0.0-beta1 (20-Jun-2022)

	Index

