Conan Documentation
Release 2.1.0

The Conan team

Jun 30, 2025

CONTENTS

1 Introduction 3
1.1 0penSource v i i e e e e e e e e e e e 3
1.2 Decentralized package manager e 3
1.3 Binary managemento e e e e e e e e e e e e e e e e e 4
1.4 All platforms, all build systems and compilers, 5
15 Stable 6
1.6 Community e e e e e e e e e e e e e e e 7
1.7 Navigating the documentation e e e e 7
2 What’s new in Conan 2 9
2.1 Conan2migration guide L 9
22 Newgraphmodel e 9
2.3 Newpublic Python API e 9
2.4 New build system integrations v v i i e e e e e e e e e e e e 10
2.5 Newecustomusercommandso e e e e 10
26 New CLIo 10
27 Newdeployers e e 10
2.8 Newpackage_id e e e e 11
2.9 compatibility.py e e e 11
2,10 Newlockfiles Lo 11
2.11 New configuration and environment managementottt 11
2.12 Multi-revisioncache L. e 12
2.13 New extensions plugins L e e e e e e 12
2.14 Package immutability optimizations L. 12
2.15 Package lists e e e e e e e e 13
2,16 Metadatafiles. 13
2.17 Third party backup sources 13
3 Install 15
3.1 Imstall with pip (recommended) L e e e 15
32 Install with pipxX o e e 16
3.3 Use a system installer or create a self-contained executable 17
34 Install fromsource e e e 17
4 Tutorial 19
4.1 Consuming packages e 19
4.2 Creating packages o e e e e e 46
4.3 Working with Conan repoSitorie€s v v v v i i e e e e e e e e e e e e e 98
4.4 Developing packages locally L L e e e 102
45 Versioning e e e e e e e e e e e e 117

10

4.6 Other important Conan features v i i v i i e e e e e e e e
Devops guide

5.1 Using ConanCenter packages in production environments
5.2 Backing up third-party sources withConan,
5.3 Managing package metadatafileso
54 Versioning e e e e e e e e
5.5 Save and restore packages from/tothecache L L o oL
Integrations

6.1 CMake
6.2 CLion L e e e
6.3 Visual Studio e e e
6.4 AUtOtOOlS L e e e
6.5 Bazel
6.6 Makefile L e
6.7 Xcode e e e e e e
6.8 Meson e e e e e e
6.9 Android L e e
6.10 JFrog e e e e e e e
Examples

7.1 ConanFile methods examples 0 i i i e e e e e e e e e e
7.2 Conan extensions eXamples o it e e e e e e e e e e e e
7.3 Conanrecipetoolsexamples e
7.4 Cross-building examples L
7.5 Configuration files examples L.
7.6 Graphexamples e e e e
7.7 Developertoolsand flows L e e e e e
7.8 Conan commands examples e e e e e e e e e e
Reference

8.1 Commands e e e e
82 conanfile.py L e e e e e e
8.3 conanfile.tXto L e e e e e e e e e e
84 Recipetools o e e e e e e e
8.5 Configurationfiles L
8.6 EXensions e e e e e e e
8.7 Environment variables e
8.8 Thebinarymodel. L e e e
8.9 Conan Server e e e e e e e e e e
Knowledge

9.1 Cheatsheet e e e e e e
9.2 Coreguidelines L e
9.3 FAQ . . . o
0.4 Videos
Changelog

10.1 2.1.0 (15-Feb-2024) o e e
10.2° 2.0.17 (10-Jan-2024) o o e e e e e
103 2.0.16 (21-Dec-2023) o o e e e e e e e e e e e
104 2.0.15 (20-Dec-2023) L e e e
10.5 2.0.14 (14-Nov-2023) . . . o o o o e e e
10.6 2.0.13 (28-Sept-2023) oo e e e e

143
143
146
150
157
158

161
161
162
168
168
169
169
170
170
171
171

173
173
184
193
225
242
246
258
259

265
265
371
442
444
569
605
631
633
649

657
657
658
660
662

10.7 2.0.12 (26-Sept-2023) L e e 669

10.8 2.0.11 (18-Sept-2023) o i i e e e e e e e e e e e e e 669
10.9 2.0.10 (29-Aug-2023) e e e e e e e 670
10.10 2.0.9 (19-Jul-2023) e e 672
10.11 2.0.8 (13-Jul-2023) o o e e e e e e 672
10.12 2.0.7 (21-Jun-2023) e e e e e 673
10.13 2.0.6 (26-May-2023) o e e e e e e e e e e e e 675
10.14 2.0.5 (18-May-2023) o o e e e e e e e e e e e 675
10.15 2.0.4 (11-Apr-2023) o o e e e e e 677
10.16 2.0.3 (03-Apr-2023) o e e e e 677
10.17 2.0.2 (15-Mar-2023) o o e e e e e e 678
10.18 2.0.1 (03-Mar-2023) v v e e e e e e e 679
10.19 2.0.0 (22-Feb-2023) e e e e e e 680
10.20 2.0.0-betal0 (16-Feb-2023) o e e e e e e e e e e 680
10.21 2.0.0-betad (31-Jan-2023) L e e 681
10.22 2.0.0-beta8 (12-Jan-2023) e e e e e 681
10.23 2.0.0-beta7 (22-Dec-2022) o e e e e e e e e e e 682
10.24 2.0.0-beta6 (02-Dec-2022) o i e e e e e e e e 682
10.25 2.0.0-betad (11-Nov-2022) o ot e e e e e e e e e e e e e e 682
10.26 2.0.0-betad (11-Oct-2022) o ot e e e e 683
10.27 2.0.0-beta3 (12-Sept-2022) i e e e e e 683
10.28 2.0.0-beta2 (27-Jul-2022) e e e e e 683
10.29 2.0.0-betal (20-Jun-2022) e e e e e e e e e 684
Index 685

Conan Documentation, Release 2.1.0

Welcome! This is the user documentation for Conan, an open source, decentralized C/C++ package manager that works
in all platforms and with all build systems and compilers. Other relevant resources:

» Conan home page. Entry point to the project, with links to docs, blog, social, downloads, release mailing list,
etc.

* Github project and issue tracker. The main support channel, file issues here for questions, bug reports and feature
requests.

Table of contents:

CONTENTS 1

https://conan.io
https://github.com/conan-io/conan

Conan Documentation, Release 2.1.0

2 CONTENTS

CHAPTER
ONE

INTRODUCTION

Conan is a dependency and package manager for C and C++ languages. It is free and open-source, works in all platforms
(Windows, Linux, OSX, FreeBSD, Solaris, etc.), and can be used to develop for all targets including embedded,
mobile (i0S, Android), and bare metal. It also integrates with all build systems like CMake, Visual Studio (MSBuild),
Makefiles, SCons, etc., including proprietary ones.

It is specifically designed and optimized for accelerating the development and Continuous Integration of C and C++
projects. With full binary management, it can create and reuse any number of different binaries (for different config-
urations like architectures, compiler versions, etc.) for any number of different versions of a package, using exactly
the same process in all platforms. As it is decentralized, it is easy to run your own server to host your own packages
and binaries privately, without needing to share them. The free JFrog Artifactory Community Edition (CE) is the
recommended Conan server to host your own packages privately under your control.

Conan is mature and stable, with a strong commitment to forward compatibility (non-breaking policy), and has a
complete team dedicated full time to its improvement and support. It is backed and used by a great community, from
open source contributors and package creators in ConanCenter to thousands of teams and companies using it.

1.1 Open Source

Conan is Free and Open Source, with a permissive MIT license. Check out the source code and issue tracking (for ques-
tions and support, reporting bugs and suggesting feature requests and improvements) at https://github.com/conan-io/
conan

1.2 Decentralized package manager

Conan is a decentralized package manager with a client-server architecture. This means that clients can fetch packages
from, as well as upload packages to, different servers (“remotes”), similar to the “git” push-pull model to/from git
remotes.

At a high level, the servers are just storing packages. They do not build nor create the packages. The packages are
created by the client, and if binaries are built from sources, that compilation is also done by the client application.

https://github.com/conan-io/conan
https://conan.io/downloads.html
https://conan.io/center
https://github.com/conan-io/conan
https://github.com/conan-io/conan

Conan Documentation, Release 2.1.0

" ARTIACTORY +

COMMUNITY EDITION FOR C/C++ “\\h
[JFrog
7 CONAN
<

Client

The different applications in the image above are:

* The Conan client: this is a console/terminal command-line application, containing the heavy logic for package
creation and consumption. Conan client has a local cache for package storage, and so it allows you to fully create
and test packages offline. You can also work offline as long as no new packages are needed from remote servers.

e JFrog Artifactory Community Edition (CE) is the recommended Conan server to host your own packages pri-
vately under your control. It is a free community edition of JFrog Artifactory for Conan packages, including a
WebUI, multiple auth protocols (LDAP), Virtual and Remote repositories to create advanced topologies, a Rest
API, and generic repositories to host any artifact.

* The conan_server is a small server distributed together with the Conan client. It is a simple open-source imple-
mentation and provides basic functionality, but no WebUI or other advanced features.

* ConanCenter is a central public repository where the community contributes packages for popular open-source
libraries like Boost, Zlib, OpenSSL, Poco, etc.

1.3 Binary management

One of the most powerful features of Conan is that it can create and manage pre-compiled binaries for any possible
platform and configuration. By using pre-compiled binaries and avoiding repeated builds from source, it saves signifi-
cant time for developers and Continuous Integration servers, while also improving the reproducibility and traceability
of artifacts.

A package is defined by a “conanfile.py”. This is a file that defines the package’s dependencies, sources, how to build
the binaries from sources, etc. One package “conanfile.py” recipe can generate any arbitrary number of binaries, one
for each different platform and configuration: operating system, architecture, compiler, build type, etc. These binaries
can be created and uploaded to a server with the same commands in all platforms, having a single source of truth for
all packages and not requiring a different solution for every different operating system.

4 Chapter 1. Introduction

https://conan.io/downloads.html
https://conan.io/center

Conan Documentation, Release 2.1.0

server
ackage Pkg/0.1@user/channel _Y
[l
- Ea.ckag.e)
-~ “binaries
recipe
(Pkg/O.l@user/channel v

_//

client

Installation of packages from servers is also very efficient. Only the necessary binaries for the current platform and
configuration are downloaded, not all of them. If the compatible binary is not available, the package can be built from
sources in the client too.

1.4 All platforms, all build systems and compilers

Conan works on Windows, Linux (Ubuntu, Debian, RedHat, ArchLinux, Raspbian), OSX, FreeBSD, and SunOS, and,
as it is portable, it might work in any other platform that can run Python. It can target any existing platform: ranging
from bare metal to desktop, mobile, embedded, servers, and cross-building.

Conan works with any build system too. There are built-in integrations to support the most popular ones like CMake,
Visual Studio (MSBuild), Autotools and Makefiles, Meson, SCons, etc., but it is not a requirement to use any of them.
It is not even necessary that all packages use the same build system: each package can use their own build system, and
depend on other packages using different build systems. It is also possible to integrate with any build system, including
proprietary ones.

Likewise, Conan can manage any compiler and any version. There are default definitions for the most popular ones:
gcc, cl.exe, clang, apple-clang, intel, with different configurations of versions, runtimes, C++ standard library, etc. This
model is also extensible to any custom configuration.

1.4. All platforms, all build systems and compilers 5

Conan Documentation, Release 2.1.0

1.5

Stable

From Conan 2.0 and onwards, there is a commitment to stability, with the goal of not breaking user space while evolving
the tool and the platform. This means:

Moving forward to following minor versions 2.1, 2.2, ..., 2.X should never break existing recipes, packages or
command line flows

If something is breaking, it will be considered a regression and reverted.

Bug fixes will not be considered breaking, recipes and packages relying on the incorrect behavior of such bugs
will be considered already broken.

Only documented features in https://docs.conan.io are considered part of the public interface of Conan. Private
implementation details, and everything not included in the documentation is subject to change.

The compatibility is always considered forward. New APIs, tools, methods, helpers can be added in following
2.X versions. Recipes and packages created with these features will be backwards incompatible with earlier
Conan versions.

Only the latest released patch (major.minor.patch) of every minor version is supported and stable.

There are some things that are not included in this commitment:

Public repositories, like ConanCenter, assume the use of the latest version of the Conan client, and using an older
version may result in failure of packages and recipes created with a newer version of the client. It is recommended
to use your own private repository to store your own copy of the packages for production, or as a secondary
alternative, to use some locking mechanism to avoid possible disruption from packages in ConanCenter that are
updated and require latest Conan version.

Configuration and automatic tools detection, like the detection of the default profile (conan profile detect)
can and will change at any time. Users are encouraged to define their configurations in their own profiles files
for repeatability. New versions of Conan might detect different default profiles.

Builtin default implementation of extension points as plugins or hooks can also change with every release. Users
can provide their own ones for stability.

Output of packages templates with conan new can update at any time to use latest features.

The output streams stdout, stderr, i.e. the terminal output can change at any time. Do not parse the terminal
output for automation.

Anything that is explicitly labeled as experimental or preview in the documentation, or in the Conan cli
output. Read the section below for a detailed definition of these labels.

Anything that is labeled as deprecated in the documentation should not get new usages, as it will not get new
fixes and it will be removed in the next major version.

Other tools and repositories outside of the Conan client

Conan needs Python>=3.6 to run. Conan will deprecate support for Python versions 1 year after those versions have
been declared End Of Life (EOL).

If you have any question regarding Conan updates, stability, or any clarification about this definition of stability, please
report in the documentation issue tracker: https://github.com/conan-io/docs.

Chapter 1. Introduction

https://docs.conan.io
https://github.com/conan-io/docs

Conan Documentation, Release 2.1.0

1.6

Community

Conan is being used in production by thousands of companies like TomTom, Audi, RTI, Continental, Plex, Electrolux
and Mercedes-Benz and many thousands of developers around the world.

But an essential part of Conan is that many of those users will contribute back, creating an amazing and helpful com-
munity:

1.7

The https://github.com/conan-io/conan project has around 6.5K stars in Github and counts with contributions
from more than 300 different users (this is just the client tool).

Many other users contribute recipes for ConanCenter via the https://github.com/conan-io/conan-center-index
repo, creating packages for popular Open Source libraries, contributing many thousands of Pull Requests per
year.

More than two thousands Conan users hang around the CppLang Slack #conan channel, and help responding to
questions, discussing problems and approaches, making it one of the most active channels in the whole CppLang
slack.

There is a Conan channel in #include<cpp> discord.

Navigating the documentation

This documentation has very different sections:

The tutorial is an actual hands-on tutorial, with examples and real code, intended to be played sequentially from
beginning to end, running the exercises in your own computer. There is a “narrative” to this section and the
exercises might depend on some previous explanations and code - building on the previous example. This is the
recommended approach for learning Conan.

The examples also contain hands-on, fully operational examples with code, aimed to explain some very specific
feature, tool or behavior. They do not have a conducting thread, they should be navigated by topic.

The reference is the source of truth for the interfaces of every public command, class, method, helper, API and
configuration file that can be used. It is not designed to be read fully, but to check for individual items when
necessary.

The knowledge base contains things like the FAQ, a very important section about general guidelines, good
practices and bad practices, videos from conference talks, etc.

Features in this documentation might be labeled as:

experimental: This feature is released and can be used, but it is under active development and the interfaces,
APIs or behavior might change as a result of evolution, and this will not be considered breaking. If you are
interested in these features you are encouraged to try them and give feedback, because that is exactly what allows
to stabilize them.

preview: When a feature is released in preview mode, this means it aims to be as final and stable as possible.
Users are encouraged to use them, and the maintainers team will try not to break them unless necessary. But if
necessary, they might change and break.

deprecated: This feature should no longer be used, and it will be fully removed in next major release. Other
alternatives or approaches should be used instead of it, and if using it, migrating to the other alternatives should
be done as soon as possible. They will not be maintained or get fixes.

Everything else that is not labeled should be considered stable, and won’t be broken, unless something that is declared
a bugfix.

Have any questions? Please check out our FAQ section or .

1.6. Community 7

https://github.com/conan-io/conan
https://github.com/conan-io/conan-center-index
https://cppalliance.org/slack/
https://www.includecpp.org/discord/

Conan Documentation, Release 2.1.0

8 Chapter 1. Introduction

CHAPTER
TWO

WHAT’S NEW IN CONAN 2

Conan 2 comes with many exciting improvements based on the lessons learned in the last years with Conan 1.X. Also,
a lot of effort has been made to backport necessary things to Conan 1.X to make the upgrade easier: Recipes using
latest 1.X integrations will be compatible with Conan 2, and binaries for both versions will not collide and be able to
live in the same server repositories.

2.1 Conan 2 migration guide

If you are using Conan 1.X, please read the Conan 2 Migration guide , to start preparing your package recipes to 2.0 and
be aware of some changes while you still work in Conan 1.X. That guide summarizes the above mentioned backports
to make the upgrade easier.

2.2 New graph model

Conan 2 defines new requirement traits (headers, libs, build, run, test, package_id_mode, options, transitive_headers,
transitive_libs) and package types (static, shared, application, header-only) to better represent the relations that happen
with C and C++ binaries, like executables or shared libraries linking static libraries or shared libraries.

See also:
* https://www.youtube.com/watch?v=kKGglzmS5ous
* https://github.com/conan-io/tribe/blob/main/design/026-requirements_traits.md

* https://github.com/conan-io/tribe/blob/main/design/027-package_types.md

2.3 New public Python API

A new modular Python API is made available, public and documented. This is a real API, with building blocks that
are already used to build the Conan built-in commands, but that will allow further extensions. There are subapis for
different functional groups, like api.list, api.search, api.remove, api.profile, api.graph, api.upload,
api.remotes, etc. that will allow to implement advanced user flows, functionality and automation.

See also:

* Python API reference

https://docs.conan.io/en/latest/conan_v2.html
https://www.youtube.com/watch?v=kKGglzm5ous
https://github.com/conan-io/tribe/blob/main/design/026-requirements_traits.md
https://github.com/conan-io/tribe/blob/main/design/027-package_types.md

Conan Documentation, Release 2.1.0

2.4 New build system integrations

Introduced in latest Conan 1.X, Conan 2 will use modern build system integrations like CMakeDeps and
CMakeToolchain that are fully transparent CMake integration (i.e. the consuming CMakeLists.txt doesn’t need
to be aware at all about Conan). These integrations can also achieve a better IDE integration, for example via CMakeP-
resets.json.

See also:

* Tools reference

2.5 New custom user commands

Conan 2 allows extending Conan with custom user commands, written in python that can be called as conan xxxx.
These commands can be shared and installed with conan config install, and have layers of commands and sub-
commands. The custom user commands use the new 2.0 public Python API to implement their functionality.

2.6 New CLI

Conan 2 has redesigned the CLI for better consistency, removing ambiguities, and improving the user experience.
The new CLI also sends all the information, warning, and error messages to stderr, while keeping the final result in
stdout, allowing multiple output formats like --format=html or --format=json and using redirects to create files
--format=json > myfile. json. The information provided by the CLI will be more structured and thorough so that
it can be used more easily for automation, especially in CI/CD systems.

See also:

* Commands reference

2.7 New deployers

Conan 2 implements ‘“deployers”, which can be called in the command line as conan install
--deployer=mydeploy, typically to perform copy operations from the Conan cache to user folders. Such deploy-
ers can be built-in (“full_deploy” and “direct_deploy” are provided so far), or user-defined, which can be shared and
managed with conan config install. Deployers run before generators, and they can change the target folders. For
example, if the --deployer=full_deploy deployer runs before CMakeDeps, the files generated by CMakeDeps will
point to the local copy in the user folder done by the full_deploy deployer, and not to the Conan cache.

Deployers can be multi-configuration. Running conan install . --deployer=full_deploy repeatedly for dif-
ferent profiles, can achieve a fully self-contained project, including all the artifacts, binaries, and build files that is
completely independent of Conan and no longer require Conan at all to build.

10 Chapter 2. What’s new in Conan 2

Conan Documentation, Release 2.1.0

2.8 New package_id

Conan 2 defines a new, dynamic package_id that is a great improvement over the limitations of Conan 1.X. This
package_id will take into account the package types and types of requirements to implement a more meaningful
strategy, depending on the scenario. For example, it is well known that when an application myapp is linking a static
library mylib, any change in the binary of the static library mylib requires re-building the application myapp. So
Conan will default to a mode like full_mode that will generate a new myapp package_id, for every change in the
mylib recipe or binary. While a dependency between a static library mylib_a that is used by “mylib_b"" in general
does not imply that a change in mylib_b always needs a rebuild of mylib_a, and that relationship can default to a
minor_mode mode. In Conan 2, the one doing modifications to mylib_a can better express whether the consumer
mylib_b needs to rebuild or not, based on the version bump (patch version bump will not trigger a rebuild while a
minor version bump will trigger it)

Furthermore the default versioning scheme in Conan has been generalized to any number of digits and letters, as
opposed to the official “semver” that uses just 3 fields.

2.9 compatibility.py

Conan 2 features a new extension mechanism to define binary compatibility at a global level. A compatibility.py
file in the Conan cache will be used to define which fallbacks of binaries should be used in case there is some missing
binary for a given package. Conan will provide a default one to account for cppstd compatibility, and executables
compatibility, but this extension is fully configurable by the user (and can also be shared and managed with conan
config install)

2.10 New lockfiles

Lockfiles in Conan 2 have been greatly simplified and made way more flexible. Lockfiles are now modeled as lists of
sorted references, which allow one single lockfile being used for multiple configurations, merging lockfiles, applying
partially defined lockfiles, being strict or non-strict, adding user defined constraints to lockfiles, and much more.

See also:
» Tutorial introduction to lockfiles
* https://github.com/conan-io/tribe/blob/main/design/034-new_lockfiles.md

e Tutorial about versioning and lockfiles

2.11 New configuration and environment management

The new configuration system called [conf] in profiles and command line, and introduced experimentally in Conan
1.X, is now the major mechanism to configure and control Conan behavior. The idea is that the configuration system
is used to transmit information from Conan (a Conan profile) to Conan (A Conan recipe, or a Conan build system
integration like CMakeToolchain). This new configuration system can define strings, boolean, lists, being cleaner,
more structured and powerful than using environment variables. A better, more explicit environment management,
also introduced in Conan 1.X is now the way to pass information from Conan (profiles) to tools (like compilers, build
systems).

See also:

* Reference of enviroment tools

2.8. New package_id 11

https://github.com/conan-io/tribe/blob/main/design/034-new_lockfiles.md

Conan Documentation, Release 2.1.0

2.12 Multi-revision cache

The Conan cache has been completely redesigned to allow storing more than one revision at a time. It has also shortened
the paths, using hashes, removing the need to use short_paths in Windows. Note that the cache is still not concurrent,
so parallel jobs or tasks should use independent caches.

2.13 New extensions plugins

Several extension points, named “plugins” have been added, to provide advanced and typically orthogonal function-
ality to what the Conan recipes implement. These plugins can be shared, managed and installed via conan config
install

2.13.1 Profile checker

A new profile.py extension point is provided that can be used to perform operations on the profile after it has been
processed. A default implementation that checks that the given compiler version is capable of supporting the given
compiler cppstd is provided, but this is fully customizable by the user.

2.13.2 Command wrapper

A new cmd_wrapper.py extension provides a way to wrap any conanfile.py command (i.e., anything that runs
inside self.run() in a recipe), in a new command. This functionality can be useful for wrapping build commands in
build optimization tools as IncrediBuild or compile caches.

2.13.3 Package signing

A new sign.py extension has been added to implement signing and verifying of packages. As the awareness about
the importance of software supply chain security grows, it is becoming more important the capability of being able to
sign and verify software packages. This extension point will soon get a plugin implementation based on Sigstore.

2.14 Package immutability optimizations

The thorough use of revisions (already introduced in Conan 1.X as opt-in in https://docs.conan.io/en/latest/
versioning/revisions.html) in Conan 2, together with the declaration of artifacts immutability allows for improved
processes, downloading, installing and updated dependencies as well as uploading dependencies.

The revisions allow accurate traceability of artifacts, and thus allows better update flows. For example, it will be
easier to get different binaries for different configurations from different repositories, as long as they were created from
the same recipe revision.

The package transfers, uploads, downloads, will also be more efficient, based on revisions. As long as a given
revision exists on the server or in the cache, Conan will not transfer artifacts at all for that package.

12 Chapter 2. What’s new in Conan 2

https://docs.conan.io/en/latest/versioning/revisions.html
https://docs.conan.io/en/latest/versioning/revisions.html

Conan Documentation, Release 2.1.0

2.15 Package lists

Conan 2 allows bulk operations over several recipes and packages with teh “Package Lists” feature. This feature allows
to upload, download, remove and list several recipes and packages with one single command.

Package lists can also be created from a dependency graph resulting from a conan create or conan install com-
mand, so it is possible to upload to a server all packages that belong to a given dependency graph just chaining 2
commands.

See also:
* Read the example usages

» Package lists blog post

2.16 Metadata files

Conan 2 allows to store, upload, download, modify metadata files associated to recipes and packages. This feature can
be very useful to manage build logs, tests executable, test results, coverage data and many other different files needed
for traceability, compliance and business purposes.

See also:

* Metadata files blog post

2.17 Third party backup sources

When building packages for third parties with sources in the internet, those sources can be removed or changed. The
“backup sources” can automatically store a copy of those sources in your own server, so your builds are always fully
reproducible, no matter what happens to the original internet sources.

See also:

¢ the backup-sources blog post

2.15. Package lists 13

https://blog.conan.io/2023/06/28/Conan-bulk-package-operations.html
https://blog.conan.io/2023/10/24/Conan-launches-metadata-files.html
https://blog.conan.io/2023/10/03/backup-sources-feature.html

Conan Documentation, Release 2.1.0

14 Chapter 2. What’s new in Conan 2

CHAPTER
THREE

INSTALL

Conan can be installed in many Operating Systems. It has been extensively used and tested in Windows, Linux (different
distros), OSX, and is also actively used in FreeBSD and Solaris SunOS. There are also several additional operating
systems on which it has been reported to work.

There are different ways to install Conan:

1. The preferred and strongly recommended way to install Conan is from PyPI, the Python Package Index, using
the pip command.

2. Use a system installer, or create your own self-contained Conan executable, to not require Python in your system.

3. Running Conan from sources.

3.1 Install with pip (recommended)

To install latest Conan 2 version using pip, you need a Python >= 3.6 distribution installed on your machine. Modern
Python distros come with pip pre-installed. However, if necessary you can install pip by following the instructions in
pip docs.

Install Conan:

[$ pip install conan }

Important: Please READ carefully
¢ Make sure that your pip installation matches your Python (>= 3.6) version.
¢ In Linux, you may need sudo permissions to install Conan globally.

e We strongly recommend using virtualenvs (virtualenvwrapper works great) for everything related to Python.
(check https://virtualenvwrapper.readthedocs.io/en/stable/, or https://pypi.org/project/virtualenvwrapper-win/
in Windows) With Python 3, the built-in module venv can also be used instead (check https://docs.python.org/3/
library/venv.html). If not using a virtualenv it is possible that conan dependencies will conflict with previously
existing dependencies, especially if you are using Python for other purposes.

* In OSX, especially the latest versions that may have System Integrity Protection, pip may fail. Try using
virtualenvs, or install it to the Python user install directory with § pip install --user conan.

* Some Linux distros, such as Linux Mint, require a restart (shell restart, or logout/system if not enough) after
installation, so Conan is found in the path.

15

https://pip.pypa.io/en/stable/installing/
https://virtualenvwrapper.readthedocs.io/en/stable/
https://pypi.org/project/virtualenvwrapper-win/
https://docs.python.org/3/library/venv.html
https://docs.python.org/3/library/venv.html

Conan Documentation, Release 2.1.0

3.1.1 Known installation issues with pip

When Conan is installed with pip install --user conan, a new directory is usually created for it. However, the
directory is not appended automatically to the PATH and the conan commands do not work. This can usually be solved
by restarting the session of the terminal or running the following command:

[$ source ~/.profile J

3.1.2 Update

If installed via pip, Conan version can be updated with:

[$ pip install conan --upgrade # Might need sudo or --user]

The upgrade shouldn’t affect the installed packages or cache information. If the cache becomes inconsistent somehow,
you may want to remove its content by deleting it (<userhome>/.conan2).

3.2 Install with pipx

In certain scenarios, attempting to install with pip may yield the following error:

error: externally-managed-environment

x This environment is externally managed
To install Python packages system-wide, try apt install
python3-xyz, where xyz is the package you are trying to
install.

This is because some modern Linux distributions have started marking their Python installations as “externally man-
aged”, which means that the system’s package manager is responsible for managing Python packages. Installing pack-
ages globally or even in the user space can interfere with system operations and potentially break system tools (check
PEP-668 for more detailed information).

For those cases, it’s recommended to use pipx to install Conan. pipx creates a virtual environment for each Python
application, ensuring that dependencies do not conflict. The advantage is that it isolates Conan and its dependencies
from the system Python and avoids potential conflicts with system packages while providing a clean environment for
Conan to run.

To install Conan with pipx:

1. Ensure pipx is installed on your system. If it isn’t, check the installation guidelines in the pipx documentation.
For Debian-based distributions, you can install pipx using the system package manager:

$ apt-get install pipx
$ pipx ensurepath

(Note: The package name might vary depending on the distribution)

2. Restart your terminal and then install Conan using pipx:

[$ pipx install conan J

3. Now you can use Conan as you typically would.

16 Chapter 3. Install

https://peps.python.org/pep-0668/
https://pypa.github.io/pipx/installation/

Conan Documentation, Release 2.1.0

3.3 Use a system installer or create a self-contained executable

There will be a number of existing installers in Conan downloads for OSX Brew, Debian, Windows, Linux Arch, that
will not require Python first.

We also distribute Conan binaries for Windows, Linux, and macOS in a compressed file that you can uncompress in
your system and run directly.

Warning: If you are using macOS, please be aware of the Gatekeeper feature that may quarantine the compressed
binaries if downloaded directly using a web browser. To avoid this issue, download them using a tool such as curl,
wget, or similar.

If there is no installer for your platform, you can create your own Conan executable, with the pyinstaller.py utility
in the repo. This process is able to create a self-contained Conan executable that contains all it needs, including the
Python interpreter, so it wouldn’t be necessary to have Python installed in the system.

You can do it with:

$ git clone https://github.com/conan-io/conan conan_src

$ cd conan_src

$ git checkout develop2 # or to the specific tag you want to
$ pip install -e .

$ python pyinstaller.py

It is important to install the dependencies and the project first with pip install -e . which configures the project
as “editable”, that is, to run from the current source folder. After creating the executable, it can be uninstalled with pip.

This has to run in the same platform that will be using the executable, pyinstaller does not cross-build. The resulting
executable can be just copied and put in the system PATH of the running machine to be able to run Conan.

3.4 Install from source

You can run Conan directly from source code. First, you need to install Python and pip.
Clone (or download and unzip) the git repository and install it.

Conan 2 is still in beta stage, so you must check the develop2 branch of the repository:

clone folder name matters, to avoid imports issues

git clone https://github.com/conan-io/conan.git conan_src
cd conan_src

git fetch --all

git checkout -b develop2 origin/develop2

python -m pip install -e .

Y Y WY I

And test your conan installation:

[$ conan

You should see the Conan commands help.

3.3. Use a system installer or create a self-contained executable 17

https://conan.io/downloads
https://github.com/conan-io/conan/releases/latest

Conan Documentation, Release 2.1.0

18 Chapter 3. Install

CHAPTER
FOUR

TUTORIAL

The purpose of this section is to guide you through the most important Conan features with practical examples. From
using libraries already packaged by Conan, to how to package your libraries and store them in a remote server alongside
all the precompiled binaries.

4.1 Consuming packages

This section shows how to build your projects using Conan to manage your dependencies. We will begin with a basic
example of a C project that uses CMake and depends on the zlib library. This project will use a conanfile.txt file to
declare its dependencies.

We will also cover how you can not only use ‘regular’ libraries with Conan but also manage tools you may need to use
while building: like CMake, msys2, MinGW, etc.

Then, we will explain different Conan concepts like settings and options and how you can use them to build your
projects for different configurations like Debug, Release, with static or shared libraries, etc.

Also, we will explain how to transition from the conanfile.txt file we used in the first example to a more powerful
conanfile.py.

After that, we will introduce the concept of Conan build and host profiles and explain how you can use them to cross-
compile your application to different platforms.

Then, in the “Introduction to versioning” we will learn about using different versions, defining requirements with
version ranges, the concept of revisions and a brief introduction to lockfiles to achieve reproducibility of the dependency
graph.

4.1.1 Build a simple CMake project using Conan
Let’s get started with an example: We are going to create a string compressor application that uses one of the most
popular C++ libraries: Zlib.

We’ll use CMake as build system in this case but keep in mind that Conan works with any build system and is not
limited to using CMake. You can check more examples with other build systems in the Read More section.

Please, first clone the sources to recreate this project, you can find them in the examples2 repository in GitHub:

$ git clone https://github.com/conan-io/examples2.git
$ cd examples2/tutorial/consuming_packages/simple_cmake_project

We start from a very simple C language project with this structure:

19

https://zlib.net/
https://github.com/conan-io/examples2

Conan Documentation, Release 2.1.0

CMakeLists.txt
src
L main.c

This project contains a basic CMakeLists.txt including the zlib dependency and the source code for the string compres-

sor program in main.c.

Let’s have a look at the main.c file:

Listing 1: main.c

#include <stdlib.h>
#include <stdio.h>
#include <string.h>

#include <zlib.h>

int main(void) {

char buffer_in [256] = {"Conan is a MIT-licensed, Open Source package manager for C.

—and C++ development

"for C and C++ development, allowing development teams to.

—.easily and efficiently "

"manage their packages and dependencies across platforms and.

—build systems."};
char buffer_out [256] = {0};

z_stream defstream;

defstream.zalloc = Z_NULL;
defstream.zfree = Z_NULL;
defstream.opaque = Z_NULL;

defstream.avail_in = (uInt) strlen(buffer_in);
defstream.next_in = (Bytef *) buffer_in;
defstream.avail_out = (uInt) sizeof(buffer_out);
defstream.next_out = (Bytef *) buffer_out;

deflateInit(&defstream, Z_BEST_COMPRESSION);

deflate(&defstream, Z_FINISH);

deflateEnd(&defstream) ;

printf("Uncompressed size is: %lu\n", strlen(buffer_in));
printf("Compressed size is: %lu\n", strlen(buffer_out));

printf("ZLIB VERSION: %s\n", zlibVersion());

return EXIT_SUCCESS;

Also, the contents of CMakelLists.txt are:

Listing 2: CMakeLists.txt

cmake_minimum_required (VERSION 3.15)

project(compressor C)

(continues on next page)

20

Chapter 4. Tutorial

Conan Documentation, Release 2.1.0

(continued from previous page)

find_package (ZLIB REQUIRED)

add_executable(${PROJECT_NAME} src/main.c)
target_link libraries(${PROJECT_NAME} ZLIB::ZLIB)

Our application relies on the Zlib library. Conan, by default, tries to install libraries from a remote server called
ConanCenter. You can search there for libraries and also check the available versions. In our case, after checking the
available versions for Zlib we choose to use one of the latest versions: zlib/1.2.11.

The easiest way to install the Zlib library and find it from our project with Conan is using a conanfile.txt file. Let’s
create one with the following content:

Listing 3: conanfile.txt

[requires]
z1lib/1.2.11

[generators]
CMakeDeps
CMakeToolchain

As you can see we added two sections to this file with a syntax similar to an INI file.
* [requires] section is where we declare the libraries we want to use in the project, in this case, zlib/1.2.11.

* [generators] section tells Conan to generate the files that the compilers or build systems will use to find the
dependencies and build the project. In this case, as our project is based in CMake, we will use CMakeDeps to
generate information about where the Zlib library files are installed and CMakeToolchain to pass build informa-
tion to CMake using a CMake toolchain file.

Besides the conanfile.txt, we need a Conan profile to build our project. Conan profiles allow users to define a con-
figuration set for things like the compiler, build configuration, architecture, shared or static libraries, etc. Conan, by
default, will not try to detect a profile automatically, so we need to create one. To let Conan try to guess the profile,
based on the current operating system and installed tools, please run:

[conan profile detect --force]

This will detect the operating system, build architecture and compiler settings based on the environment. It will also
set the build configuration as Release by default. The generated profile will be stored in the Conan home folder with
name default and will be used by Conan in all commands by default unless another profile is specified via the command
line. An example of the output of this command for MacOS would be:

$ conan profile detect --force
Found apple-clang 14.0
apple-clang>=13, using the major as version
Detected profile:

[settings]

arch=x86_64

build_type=Release
compiler=apple-clang
compiler.cppstd=gnul?7
compiler.libcxx=1libc++
compiler.version=14

os=Macos

4.1. Consuming packages 21

https://conan.io/center/
https://conan.io/center/zlib

Conan Documentation, Release 2.1.0

Note: A note about the detected C++ standard by Conan

Conan will always set the default C++ standard as the one that the detected compiler version uses by default, except
for the case of macOS using apple-clang. In this case, for apple-clang>=11, it sets compiler.cppstd=gnul?. If you
want to use a different C++ standard, you can edit the default profile file directly. First, get the location of the default
profile using:

$ conan profile path default
/Users/user/.conan2/profiles/default

Then open and edit the file and set compiler.cppstd to the C++ standard you want to use.

Note: Using a compiler other than the auto-detected one

If you want to change a Conan profile to use a compiler different from the default one, you need to change the compiler
setting and also tell Conan explicitly where to find it using the fools.build:compiler_executables configuration.

We will use Conan to install Zlib and generate the files that CMake needs to find this library and build our project. We
will generate those files in the folder build. To do that, run:

[$ conan install . --output-folder=build --build=missing

You will get something similar to this as the output of that command:

$ conan install . --output-folder=build --build=missing

———————— Computing dependency graph ----------
z1lib/1.2.11: Not found in local cache, looking in remotes...
z1lib/1.2.11: Checking remote: conancenter
z1ib/1.2.11: Trying with 'conancenter'...
Downloading conanmanifest.txt
Downloading conanfile.py
Downloading conan_export.tgz
Decompressing conan_export.tgz
z1ib/1.2.11: Downloaded recipe revision flfadf0d3b196dc®332750354ad8ab7b
Graph root
conanfile.txt: /home/conan/examples2/tutorial/consuming_packages/simple_cmake_
—.project/conanfile.txt
Requirements
z1lib/1.2.11#£f1fadf0d3b196dc0332750354ad8ab7b - Downloaded (conancenter)

———————— Computing necessary packages ----------

Requirements
z1lib/1.2.11#£f1fadf0d3b196dc0332750354ad8ab7b:cdc9a35e010a17£fc90bb845108cf86cfcbce64bf

—#dd7bf2alab4eb5d1943598c09b616121 - Download (conancenter)

Installing (downloading, building) binaries...

z1ib/1.2.11: Retrieving package cdc9a35e010al17fc90bb845108cf86cfcbce64bf from remote
< 'conancenter'

Downloading conanmanifest.txt

(continues on next page)

22 Chapter 4. Tutorial

Conan Documentation, Release 2.1.0

(continued from previous page)

Downloading conaninfo.txt

Downloading conan_package.tgz

Decompressing conan_package.tgz

zlib/1.2.11: Package installed cdc9a35e010a17fc90bb845108cf86cfcbcebdbf
z1ib/1.2.11: Downloaded package revision dd7bf2alab4eb5d1943598c09b616121

———————— Finalizing install (deploy, generators) ----------
conanfile.txt: Generator 'CMakeToolchain' calling 'generate()'
conanfile.txt: Generator 'CMakeDeps' calling 'generate()'
conanfile.txt: Aggregating env generators

As you can see in the output, there are a couple of things that happened:

* Conan installed the ZIib library from the remote server, which should be the Conan Center server by default if
the library is available. This server stores both the Conan recipes, which are the files that define how libraries
must be built, and the binaries that can be reused so we don’t have to build from sources every time.

* Conan generated several files under the build folder. Those files were generated by both the CMakeToolchain
and CMakeDeps generators we set in the conanfile.txt. CMakeDeps generates files so that CMake finds the Zlib
library we have just downloaded. On the other side, CMakeToolchain generates a toolchain file for CMake so
that we can transparently build our project with CMake using the same settings that we detected for our default
profile.

Now we are ready to build and run our compressor app:

Listing 4: Windows

$ cd build

assuming Visual Studio 15 2017 is your VS version and that it matches your default.
—profile

$ cmake .. -G "Visual Studio 15 2017" -DCMAKE_TOOLCHAIN_FILE="conan_toolchain.cmake"
$ cmake --build . --config Release

[100%] Built target compressor
$ Release\compressor.exe
Uncompressed size is: 233
Compressed size is: 147

ZLIB VERSION: 1.2.11

Listing 5: Linux, macOS

$ cd build
$ cmake .. -DCMAKE_TOOLCHAIN_FILE=conan_toolchain.cmake -DCMAKE_BUILD_TYPE=Release
$ cmake --build .

[100%] Built target compressor
$./compressor

Uncompressed size is: 233
Compressed size is: 147

ZLIB VERSION: 1.2.11

See also:

* Getting started with Autotools

4.1. Consuming packages 23

Conan Documentation, Release 2.1.0

* Getting started with Meson

* Getting started with Bazel

4.1.2 Using build tools as Conan packages

In the previous example, we built our CMake project and used Conan to install and locate the Zlib library. We used
the CMake already installed in our system to build our compressor binary. However, what happens if you want to build
your project with a specific CMake version, different from the one already installed system-wide? Conan can also
help you install these tools and use them to compile consumer projects or other Conan packages. In this case, you can
declare this dependency in Conan using a type of requirement named tool_requires. Let’s see an example of how
to add a tool_requires to our project and use a different CMake version to build it.

Please, first clone the sources to recreate this project. You can find them in the examples2 repository in GitHub:

$ git clone https://github.com/conan-io/examples2.git
$ cd examples2/tutorial/consuming_packages/tool_requires

The structure of the project is the same as the one of the previous example:

conanfile.txt
E CMakeLists.txt
src
L— main.c

The main difference is the addition of the [t00l_requires] section in the conanfile.txt file. In this section, we declare
that we want to build our application using CMake v3.22.6.

Listing 6: conanfile.txt

[requires]
z1lib/1.2.11

[tool_requires]
cmake/3.22.6

[generators]
CMakeDeps
CMakeToolchain

Important: Please note that this conanfile.txt will install zIib/1.2.11 and cmake/3.22.6 separately. However, if Conan
does not find a binary for Zlib in Conan Center and it needs to be built from sources, a CMake installation must already
be present in your system, because the cmake/3.22.6 declared in your conanfile.txt only applies to your current
project, not all dependencies. If you want to use that crmake/3.22.6 to also build Zlib, when installing if necessary, you
may add the [tool_requires] section to the profile you are using. Please check the profile doc for more information.

We also added a message to the CMakeLists.txt to output the CMake version:

Listing 7: CMakeLists.txt

cmake_minimum_required (VERSION 3.15)
project(compressor C)
(continues on next page)

24 Chapter 4. Tutorial

https://github.com/conan-io/examples2

Conan Documentation, Release 2.1.0

(continued from previous page)

find_package (ZLIB REQUIRED)
message("Building with CMake version: ${CMAKE_VERSION}")

add_executable (${PROJECT_NAME} src/main.c)
target_link_libraries(${PROJECT_NAME} ZLIB::ZLIB)

Now, as in the previous example, we will use Conan to install Zlib and CMake 3.22.6 and generate the files to find
both of them. We will generate those files the folder build. To do that, just run:

[$ conan install . --output-folder=build --build=missing

Note: Powershell users need to add --conf=tools.env.virtualenv:powershell=True to the previous com-
mand to generate .ps1 files instead of .bat files. To avoid the need to add this line every time, we recommend
configuring it in the [conf] section of your profile. For detailed information, please refer to the profiles section.

You can check the output:

———————— Computing dependency graph ----------
cmake/3.22.6: Not found in local cache, looking in remotes...
cmake/3.22.6: Checking remote: conancenter
cmake/3.22.6: Trying with 'conancenter'...
Downloading conanmanifest.txt
Downloading conanfile.py
cmake/3.22.6: Downloaded recipe revision 3e3d8f3a848b2a60afafbe7a0955085a
Graph root
conanfile.txt: /Users/user/Documents/developer/conan/examples2/tutorial/consuming_
—.packages/tool_requires/conanfile.txt
Requirements
z1ib/1.2.11#£f1fadf0d3b196dc0332750354ad8ab7b - Cache
Build requirements
cmake/3.22.6#3e3d8f3a848b2a60afafbe7a®955085a - Downloaded (conancenter)

———————— Computing necessary packages ----------
Requirements
z1lib/1.2.11#£f1fadf0d3b196dc0332750354ad8ab7b:2a823fda5c9d8b4£682cbh27c30caf4124c5726c8
—#48bc7191eclee467£1e951033d7d41b2 - Cache
Build requirements
cmake/3.22.6
—.#3e3d8f3a848h2a60afafbe7a0955085a: £2£48d9745706caf77ea883a5855538256e7£f2d4
—#6¢c519070£f013dal19afd56b52c465b596 - Download (conancenter)

Installing (downloading, building) binaries...

cmake/3.22.6: Retrieving package £f2f48d9745706caf77ea883a5855538256e7f2d4 from remote
— 'conancenter'

Downloading conanmanifest.txt

Downloading conaninfo.txt

Downloading conan_package.tgz

(continues on next page)

4.1. Consuming packages 25

Conan Documentation, Release 2.1.0

(continued from previous page)

Decompressing conan_package.tgz

cmake/3.22.6: Package installed £f2£f48d9745706caf77ea883a5855538256e7f2d4
cmake/3.22.6: Downloaded package revision 6c519070f013dal9afd56b52c465b596
z1lib/1.2.11: Already installed!

———————— Finalizing install (deploy, generators) ----------
conanfile.txt: Generator 'CMakeToolchain' calling 'generate()'
conanfile.txt: Generator 'CMakeDeps' calling 'generate()'
conanfile.txt: Aggregating env generators

Now, if you check the folder you will see that Conan generated a new file called conanbuild.sh/bat. This is the result
of automatically invoking a VirtualBuildEnv generator when we declared the tool_requires in the conanfile.txt.

This file sets some environment variables like a new PATH that we can use to inject to our environment the location of
CMake v3.22.6.

Activate the virtual environment, and run cmake --version to check that you have installed the new CMake version
in the path.

Listing 8: Windows

$ cd build
$ conanbuild.bat
conanbuild.psl if using Powershell

Listing 9: Linux, macOS

$ cd build

$ source conanbuild.sh

Capturing current environment in deactivate_conanbuildenv-release-x86_64.sh
Configuring environment variables

Run cmake and check the version:

$ cmake --version
cmake version 3.22.6

As you can see, after activating the environment, the CMake v3.22.6 binary folder was added to the path and is the

currently active version now. Now you can build your project as you previously did, but this time Conan will use CMake
3.22.6 to build it:

Listing 10: Windows

assuming Visual Studio 15 2017 is your VS version and that it matches your default.

—.profile
$ cmake .. -G "Visual Studio 15 2017" -DCMAKE_TOOLCHAIN_FILE=conan_toolchain.cmake
$ cmake --build . --config Release

Building with CMake version: 3.22.6

[100%] Built target compressor
$ Release\compressor.exe
Uncompressed size is: 233

(continues on next page)

26 Chapter 4. Tutorial

Conan Documentation, Release 2.1.0

(continued from previous page)

Compressed size is: 147
ZLIB VERSION: 1.2.11

Listing 11: Linux, macOS

$ cmake .. -DCMAKE_TOOLCHAIN_FILE=conan_toolchain.cmake -DCMAKE_BUILD_TYPE=Release
$ cmake --build .

Building with CMake version: 3.22.6

[100%] Built target compressor
$./compressor

Uncompressed size is: 233
Compressed size is: 147

ZLIB VERSION: 1.2.11

Note that when we activated the environment, a new file named deactivate_conanbuild.sh/bat was created in
the same folder. If you source this file you can restore the environment as it was before.

Listing 12: Windows

[$ deactivate_conanbuild.bat]

Listing 13: Linux, macOS

$ source deactivate_conanbuild.sh
Restoring environment

Run cmake and check the version, it will be the version that was installed previous to the environment activation:

$ cmake --version
cmake version 3.22.0

Note: Best practice

tool_requires and tool packages are intended for executable applications, like cmake or ninja. Do not use
tool_requires to depend on library or library-like dependencies.

See also:
e Using [system_tools] in your profiles.
* Creating recipes for tool_requires: packaging build tools.
 Using the same requirement as a requires and as a tool_requires
» Using MinGW as tool_requires
 Using tool_requires in profiles

 Using conf to set a toolchain from a tool requires

4.1. Consuming packages 27

Conan Documentation, Release 2.1.0

4.1.3 Building for multiple configurations: Release, Debug, Static and Shared

Please, first clone the sources to recreate this project. You can find them in the examples2 repository in GitHub:

$ git clone https://github.com/conan-io/examples2.git
$ cd examples2/tutorial/consuming_packages/different_configurations

So far, we built a simple CMake project that depended on the zlib library and learned about tool_requires, a special
type of requirements for build-tools like CMake. In both cases, we did not specify anywhere that we wanted to build
the application in Release or Debug mode, or if we wanted to link against static or shared libraries. That is because
Conan, if not instructed otherwise, will use a default configuration declared in the ‘default profile’. This default profile
was created in the first example when we run the conan profile detect command. Conan stores this file in the
/profiles folder, located in the Conan user home. You can check the contents of your default profile by running the
conan config home command to get the location of the Conan user home and then showing the contents of the
default profile in the /profiles folder:

$ conan config home
Current Conan home: /Users/tutorial_user/.conan2

output the file contents
$ cat /Users/tutorial_user/.conan2/profiles/default
[settings]

os=Macos

arch=x86_64
compiler=apple-clang
compiler.version=14.0
compiler.libcxx=1libc++
compiler.cppstd=gnull
build_type=Release
[options]

[tool_requires]

[env]

The default profile can also be checked with the command "conan profile show"

As you can see, the profile has different sections. The [settings] section is the one that has information about things
like the operating system, architecture, compiler, and build configuration.

When you call a Conan command setting the --profile argument, Conan will take all the information from the profile
and apply it to the packages you want to build or install. If you don’t specify that argument it’s equivalent to call it with
--profile=default. These two commands will behave the same:

$ conan install . --build=missing
$ conan install . --build=missing --profile=default

You can store different profiles and use them to build for different settings. For example, to use a build_type=Debug,
or adding a tool_requires to all the packages you build with that profile. We will create a debug profile to try
building with different configurations:

Listing 14: <conan home>/profiles/debug

[settings]
os=Macos
arch=x86_64
compiler=apple-clang
(continues on next page)

28 Chapter 4. Tutorial

https://github.com/conan-io/examples2

Conan Documentation, Release 2.1.0

(continued from previous page)

compiler.version=14.0
compiler.libcxx=libc++
compiler.cppstd=gnull
build_type=Debug

Modifying settings: use Debug configuration for the application and its dependencies

Using profiles is not the only way to set the configuration you want to use. You can also override the profile settings
in the Conan command using the --settings argument. For example, you can build the project from the previous
examples in Debug configuration instead of Release.

Before building, please check that we modified the source code from the previous example to show the build configu-
ration the sources were built with:

#include <stdlib.h>

int main(void) {

#1ifdef NDEBUG

printf("Release configuration!\n");
#else

printf("Debug configuration!\n");
#endif

return EXIT_SUCCESS;

Now let’s build our project for Debug configuration:

[$ conan install . --output-folder=build --build=missing --settings=build_type=Debug]

As we explained above, this is the equivalent of having debug profile and running these command using the
--profile=debug argument instead of the --settings=build_type=Debug argument.

This conan install command will check if we already have the required libraries in the local cache (Zlib) for Debug
configuration and obtain them if not. It will also set the build configuration in the conan_toolchain. cmake toolchain
that the CMakeToolchain generator creates so that when we build the application it’s built in Debug configuration. Now
build your project as you did in the previous examples and check in the output how it was built in Debug configuration:

Listing 15: Windows

assuming Visual Studio 15 2017 is your VS version and that it matches your default.

—profile

$ cd build

$ cmake .. -G "Visual Studio 15 2017" -DCMAKE_TOOLCHAIN_FILE=conan_toolchain.cmake
$ cmake --build . --config Debug

$ Debug\compressor.exe
Uncompressed size is: 233
Compressed size is: 147
ZLIB VERSION: 1.2.11
Debug configuration!

4.1. Consuming packages 29

Conan Documentation, Release 2.1.0

Listing 16: Linux, macOS

$ cd build

$ cmake .. -DCMAKE_TOOLCHAIN_FILE=conan_toolchain.cmake -DCMAKE_BUILD_TYPE=Debug
$ cmake --build .

$./compressor

Uncompressed size is: 233

Compressed size is: 147

ZLIB VERSION: 1.2.11

Debug configuration!

Modifying options: linking the application dependencies as shared libraries

So far, we have been linking Zlib statically in our application. That’s because in the Zlib’s Conan package there’s an
attribute set to build in that mode by default. We can change from static to shared linking by setting the shared option
to True using the --options argument. To do so, please run:

[$ conan install . --output-folder=build --build=missing ——options:zlib/l.z.11:shared=TrueJ

Doing this, Conan will install the ZIib shared libraries, generate the files to build with them and, also the necessary
files to locate those dynamic libraries when running the application. Let’s build the application again after configuring
it to link ZIib as a shared library:

Listing 17: Windows

$ cd build

assuming Visual Studio 15 2017 is your VS version and that it matches your default.,
—,profile

$ cmake .. -G "Visual Studio 15 2017" -DCMAKE_TOOLCHAIN_FILE=conan_toolchain.cmake

$ cmake --build . --config Release

[100%] Built target compressor

Listing 18: Linux, Macos

$ cd build
$ cmake .. -DCMAKE_TOOLCHAIN_FILE=conan_toolchain.cmake -DCMAKE_BUILD_TYPE=Release
$ cmake --build .

[100%] Built target compressor

Now, if you try to run the compiled executable you will see an error because the executable can’t find the shared libraries
for ZIib that we just installed.

Listing 19: Windows

$ Release\compressor.exe

(on a pop-up window) The code execution cannot proceed because zlibl.dll was not found..
—Reinstalling the program may fix this problem.

This error depends on the console being used and may not always pop up.

It could run correctly if the console gets the zlib dll1 from a different path.

30 Chapter 4. Tutorial

Conan Documentation, Release 2.1.0

Listing 20: Linux

$./compressor
./compressor: error while loading shared libraries: libz.so.l: cannot open shared object.
—.file: No such file or directory

Listing 21: Macos

$./compressor
./compressor: dyld[41259]: Library not loaded: @rpath/libz.1.dylib

This is because shared libraries (.dll in windows, .dylib in OSX and .so in Linux), are loaded at runtime. That means
that the application executable needs to know where are the required shared libraries when it runs. On Windows, the
dynamic linker will search in the same directory then in the PATH directories. On OSX, it will search in the directories
declared in DYLD_LIBRARY PATH as on Linux will use the LD_LIBRARY PATH.

Conan provides a mechanism to define those variables and make it possible, for executables, to find and load these
shared libraries. This mechanism is the VirtualRunEnv generator. If you check the output folder you will see that Co-
nan generated a new file called conanrun. sh/bat. This is the result of automatically invoking that VirtualRunEnv
generator when we activated the shared option when doing the conan install. This generated script will set the
PATH, LD_LIBRARY_PATH, DYLD_LIBRARY_PATH and DYLD_FRAMEWORK_PATH environment vari-
ables so that executables can find the shared libraries.

Activate the virtual environment, and run the executables again:

Listing 22: Windows

$ conanrun.bat

$ Release\compressor.exe
Uncompressed size is: 233
Compressed size is: 147

Listing 23: Linux, macOS

$ source conanrun.sh

$./compressor
Uncompressed size is: 233
Compressed size is: 147

Just as in the previous example with the VirtualBuildEnv generator, when we run the conanrun. sh/bat script a
deactivation script called deactivate_conanrun.sh/bat is created to restore the environment. Source or run it to
do so:

Listing 24: Windows

[$ deactivate_conanrun.bat

4.1. Consuming packages 31

Conan Documentation, Release 2.1.0

Listing 25: Linux, macOS

[$ source deactivate_conanrun.sh]

Difference between settings and options

You may have noticed that for changing between Debug and Release configuration we used a Conan setting, but when
we set shared mode for our executable we used a Conan option. Please, note the difference between settings and
options:

* settings are typically a project-wide configuration defined by the client machine. Things like the operating
system, compiler or build configuration that will be common to several Conan packages and would not make
sense to define one default value for only one of them. For example, it doesn’t make sense for a Conan package
to declare “Visual Studio” as a default compiler because that is something defined by the end consumer, and
unlikely to make sense if they are working in Linux.

* options are intended for package-specific configuration that can be set to a default value in the recipe. For
example, one package can define that its default linkage is static, and this is the linkage that should be used if
consumers don’t specify otherwise.

Introducing the concept of Package ID
When consuming packages like Zlib with different settings and options, you might wonder how Conan determines
which binary to retrieve from the remote. The answer lies in the concept of the package_id.

The package_id is an identifier that Conan uses to determine the binary compatibility of packages. It is computed based
on several factors, including the package’s settings, options, and dependencies. When you modify any of these factors,
Conan computes a new package_id to reference the corresponding binary.

Here’s a breakdown of the process:

1. Determine Settings and Options: Conan first retrieves the user’s input settings and options. These can come
from the command line or profiles like —settings=build_type=Debug or —profile=debug.

2. Compute the Package ID: With the current values for settings, options, and dependencies, Conan computes a
hash. This hash serves as the package_id, representing the binary package’s unique identity.

3. Fetch the Binary: Conan then checks its cache or the specified remote for a binary package with the computed
package_id. 1f it finds a match, it retrieves that binary. If not, Conan can build the package from source or
indicate that the binary is missing.

In the context of our tutorial, when we consumed Zlib with different settings and options, Conan used the package_id
to ensure that it fetched the correct binary that matched our specified configuration.

See also:
e VirtualRunEny reference
* Cross-compiling using —profile:build and —profile:host
e Conan packages binary compatibility: the package ID
e Installing configurations with conan config install
* VS Multi-config
* How settings and options influence the package id

* Using patterns for settings and options

32 Chapter 4. Tutorial

Conan Documentation, Release 2.1.0

4.1.4 Understanding the flexibility of using conanfile.py vs conanfile.txt

In the previous examples, we declared our dependencies (Zlib and CMake) in a conanfile.txt file. Let’s have a look at
that file:

Listing 26: conanfile.txt

[requires]
z1lib/1.2.11

[tool_requires]
cmake/3.22.6

[generators]
CMakeDeps
CMakeToolchain

Using a conanfile.txt to build your projects using Conan it’s enough for simple cases, but if you need more flexibility you
should use a conanfile.py file where you can use Python code to make things such as adding requirements dynamically,
changing options depending on other options or setting options for your requirements. Let’s see an example on how to
migrate to a conanfile.py and use some of those features.

Please, first clone the sources to recreate this project. You can find them in the examples2 repository in GitHub:

$ git clone https://github.com/conan-io/examples2.git
$ cd examples2/tutorial/consuming_packages/conanfile_py

Check the contents of the folder and note that the contents are the same that in the previous examples but with a
conanfile.py instead of a conanfile.txt.

CMakeLists.txt
E conanfile.py
src
L— main.c

Remember that in the previous examples the conanfile.txt had this information:

Listing 27: conanfile.txt

[requires]
z1lib/1.2.11

[tool_requires]
cmake/3.22.6

[generators]
CMakeDeps
CMakeToolchain

We will translate that same information to a conanfile.py. This file is what is typically called a ‘“Conan recipe”. It
can be used for consuming packages, like in this case, and also to create packages. For our current case, it will define
our requirements (both libraries and build tools) and logic to modify options and set how we want to consume those
packages. In the case of using this file to create packages, it can define (among other things) how to download the
package’s source code, how to build the binaries from those sources, how to package the binaries, and information for

4.1. Consuming packages 33

https://github.com/conan-io/examples2

Conan Documentation, Release 2.1.0

future consumers on how to consume the package. We will explain how to use Conan recipes to create packages in the
Creating Packages section later.

The equivalent of the conanfile.txt in form of Conan recipe could look like this:

Listing 28: conanfile.py

from conan import ConanFile

class CompressorRecipe(ConanFile):
settings = "os", "compiler", "build_type", "arch"
generators = "CMakeToolchain", "CMakeDeps"

def requirements(self):
self.requires("zlib/1.2.11")

def build_requirements(self):
self.tool_requires("cmake/3.22.6")

To create the Conan recipe we declared a new class that inherits from the ConanFile class. This class has different
class attributes and methods:

* settings this class attribute defines the project-wide variables, like the compiler, its version, or the OS itself that
may change when we build our project. This is related to how Conan manages binary compatibility as these
values will affect the value of the package ID for Conan packages. We will explain how Conan uses this value
to manage binary compatibility later.

* generators this class attribute specifies which Conan generators will be run when we call the conan install
command. In this case, we added CMakeToolchain and CMakeDeps as in the conanfile.txt.

* requirements() in this method we use the self.requires() method to declare the z/ib/1.2.11 dependency.

¢ build_requirements() in this method we use the self.tool_requires() method to declare the cmake/3.22.6
dependency.

Note: It’s not strictly necessary to add the dependencies to the tools in build_requirements(), as in theory every-
thing within this method could be done in the requirements () method. However, build_requirements () provides
a dedicated place to define tool_requires and test_requires, which helps in keeping the structure organized and
clear. For more information, please check the requirements() and build_requirements() docs.

You can check that running the same commands as in the previous examples will lead to the same results as before.

Listing 29: Windows

$ conan install . --output-folder=build --build=missing

$ cd build

$ conanbuild.bat

assuming Visual Studio 15 2017 is your VS version and that it matches your default.

—.profile
$ cmake .. -G "Visual Studio 15 2017" -DCMAKE_TOOLCHAIN_FILE=conan_toolchain.cmake
$ cmake --build . --config Release

Building with CMake version: 3.22.6

(continues on next page)

34 Chapter 4. Tutorial

Conan Documentation, Release 2.1.0

(continued from previous page)

[100%] Built target compressor

$ Release\compressor.exe
Uncompressed size is: 233
Compressed size is: 147
ZLIB VERSION: 1.2.11

$ deactivate_conanbuild.bat

Listing 30: Linux, macOS

$ conan install . --output-folder build --build=missing

$ cd build

$ source conanbuild.sh

Capturing current environment in deactivate_conanbuildenv-release-x86_64.sh
Configuring environment variables

$ cmake .. -DCMAKE_TOOLCHAIN_FILE=conan_toolchain.cmake -DCMAKE_BUILD_TYPE=Release
$ cmake --build .

Building with CMake version: 3.22.6
[100%] Built target compressor

$./compressor

Uncompressed size is: 233
Compressed size is: 147

ZLIB VERSION: 1.2.11

$ source deactivate_conanbuild.sh

So far we have achieved the same functionality we had using a conanfile.txt, let’s see how we can take advantage of
the capabilities of the conanfile.py to define the project structure we want to follow and also to add some logic using
Conan settings and options.

Use the layout() method

In the previous examples, every time we executed a conan install command, we had to use the —output-folder argument
to define where we wanted to create the files that Conan generates. There’s a neater way to decide where we want
Conan to generate the files for the build system that will allow us to decide, for example, if we want different output
folders depending on the type of CMake generator we are using. You can define this directly in the conanfile.py inside
the layout() method and make it work for every platform without adding more changes.

Listing 31: conanfile.py

import os

from conan import ConanFile

class CompressorRecipe(ConanFile):

settings = "os", "compiler", "build_type", "arch"
generators = "CMakeToolchain", "CMakeDeps"

def requirements(self):
(continues on next page)

4.1. Consuming packages 35

Conan Documentation, Release 2.1.0

(continued from previous page)
self.requires("zlib/1.2.11")
if self.settings.os == "Windows":
self.requires('"base64/0.4.0")

def build_requirements(self):
if self.settings.os != "Windows":
self.tool_requires("cmake/3.22.6")

def layout(self):
We make the assumption that if the compiler is msvc the
CMake generator is multi-config

multi = True if self.settings.get_safe("compiler") == "msvc" else False
if multi:
self.folders.generators = os.path.join("build", "generators")
self.folders.build = "build"
else:

self.folders.generators = os.path.join("build", str(self.settings.build_
—type), '"generators")
self.folders.build = os.path.join("build", str(self.settings.build_type))

As you can see, we defined the self.folders.generators attribute in the layout() method. This is the folder where all the
auxiliary files generated by Conan (CMake toolchain and cmake dependencies files) will be placed.

Note that the definitions of the folders is different if it is a multi-config generator (like Visual Studio), or a single-config
generator (like Unix Makefiles). In the first case, the folder is the same irrespective of the build type, and the build
system will manage the different build types inside that folder. But single-config generators like Unix Makefiles, must
use a different folder for each different configuration (as a different build_type Release/Debug). In this case we added
a simple logic to consider multi-config if the compiler name is msvc.

Check that running the same commands as in the previous examples without the —output-folder argument will lead to
the same results as before:

Listing 32: Windows

$ conan install . --build=missing

$ cd build

$ generators\conanbuild.bat

assuming Visual Studio 15 2017 is your VS version and that it matches your default.
—profile

$ cmake .. -G "Visual Studio 15 2017" -DCMAKE_TOOLCHAIN_FILE=generators\conan_toolchain.
—.cmake
$ cmake --build . --config Release

Building with CMake version: 3.22.6
[100%] Built target compressor

$ Release\compressor.exe

Uncompressed size is: 233

Compressed size is: 147

ZLIB VERSION: 1.2.11

$ generators\deactivate_conanbuild.bat

36 Chapter 4. Tutorial

Conan Documentation, Release 2.1.0

Listing 33: Linux, macOS

$ conan install . --build=missing

$ cd build/Release

$ source ./generators/conanbuild.sh

Capturing current environment in deactivate_conanbuildenv-release-x86_64.sh
Configuring environment variables

$ cmake ../.. -DCMAKE_TOOLCHAIN_FILE=generators/conan_toolchain.cmake -DCMAKE_BUILD_
—TYPE=Release

$ cmake --build .

Building with CMake version: 3.22.6
[100%] Built target compressor

$./compressor

Uncompressed size is: 233

Compressed size is: 147

ZLIB VERSION: 1.2.11

$ source ./generators/deactivate_conanbuild.sh

There’s no need to always write this logic in the conanfile.py. There are some pre-defined layouts you can import and
directly use in your recipe. For example, for the CMake case, there’s a cmake_layout() already defined in Conan:

Listing 34: conanfile.py

from conan import ConanFile
from conan.tools.cmake import cmake_layout

class CompressorRecipe(ConanFile):
settings = "os", "compiler", "build_type", "arch"
generators = "CMakeToolchain", "CMakeDeps"

def requirements(self):
self.requires("zlib/1.2.11")

def build_requirements(self):
self.tool_requires("cmake/3.22.6")

def layout(self):
cmake_layout(self)

4.1. Consuming packages 37

Conan Documentation, Release 2.1.0

Use the validate() method to raise an error for non-supported configurations

The validate() method is evaluated when Conan loads the conanfile.py and you can use it to perform checks of the input
settings. If, for example, your project does not support armv8 architecture on macOS you can raise the Conanlnvalid-
Configuration exception to make Conan return with a special error code. This will indicate that the configuration used
for settings or options is not supported.

Listing 35: conanfile.py

from conan.errors import ConanInvalidConfiguration
class CompressorRecipe(ConanFile):
def validate(self):

if self.settings.os == "Macos" and self.settings.arch == "armv8":
raise ConanInvalidConfiguration("ARM v8 not supported in Macos")

Conditional requirements using a conanfile.py
You could add some logic to the requirements() method to add or remove requirements conditionally. Imagine, for
example, that you want to add an additional dependency in Windows or that you want to use the system’s CMake

installation instead of using the Conan fool_requires:

Listing 36: conanfile.py

from conan import ConanFile

class CompressorRecipe(ConanFile):
Binary configuration
settings = "os", "compiler", "build_type", "arch"
generators = "CMakeToolchain", "CMakeDeps"

def requirements(self):
self.requires("zlib/1.2.11")

Add base64 dependency for Windows
if self.settings.os == "Windows":
self.requires('"base64/0.4.0")

def build_requirements(self):
Use the system's CMake for Windows
if self.settings.os != "Windows":
self.tool_requires("cmake/3.22.6")

38 Chapter 4. Tutorial

Conan Documentation, Release 2.1.0

Use the generate() method to copy resources from packages

In some scenarios, Conan packages include files that are useful or even necessary for the consumption of the libraries
they package. These files can range from configuration files, assets, to specific files required for the project to build
or run correctly. Using the generate() method you can copy these files from the Conan cache to your project’s folder,
ensuring that all required resources are directly available for use.

Here’s an example that shows how to copy all resources from a dependency’s resdirs directory to an assets directory
within your project:

import os
from conan import ConanFile
from conan.tools.files import copy

class MyProject(ConanFile):

def generate(self):
Copy all resources from the dependency's resource directory
to the "assets" folder in the source directory of your project
dep = self.dependencies["dep_name"]
copy(self, "*", dep.cpp_info.resdirs[0®], os.path.join(self.source_folder, "assets
="))

Then, after the conan install step, all those resource files will be copied locally, allowing you to use them in your
project’s build process. For a complete example of how to import files from a package in the generate () method, you
can refer to the blog post about using the Dear ImGui library <https://blog.conan.io/2019/06/26/An-introduction-to-
the-Dear-ImGui-library.html>, which demonstrates how to import bindings for the library depending on the graphics
APL

Note: It’s important to clarify that copying libraries, whether static or shared, is not necessary. Conan is designed to
use the libraries from their locations in the Conan local cache using generators and environment tools without the need
to copy them to the local folder.

See also:
* Using “cmake_layout” + “CMakeToolchain” + “CMakePresets feature” to build your project.
* Understanding the Conan Package layout.
* Documentation for all conanfile.py available methods.

 Conditional generators in configure()

4.1. Consuming packages 39

Conan Documentation, Release 2.1.0

4.1.5 How to cross-compile your applications using Conan: host and build contexts

Please, first clone the sources to recreate this project. You can find them in the examples2 repository on GitHub:

$ git clone https://github.com/conan-io/examples2.git
$ cd examples2/tutorial/consuming_packages/cross_building

In the previous examples, we learned how to use a conanfile.py or conanfile.txt to build an application that compresses
strings using the Zlib and CMake Conan packages. Also, we explained that you can set information like the operating
system, compiler or build configuration in a file called the Conan profile. You can use that profile as an argument
(--profile) to invoke the conan install. We also explained that not specifying that profile is equivalent to using
the --profile=default argument.

For all those examples, we used the same platform for building and running the application. But, what if you want to
build the application on your machine running Ubuntu Linux and then run it on another platform like a Raspberry Pi?
Conan can model that case using two different profiles, one for the machine that builds the application (Ubuntu Linux)
and another for the machine that runs the application (Raspberry Pi). We will explain this “two profiles” approach in
the next section.

Conan two profiles model: build and host profiles

Even if you specify only one --profile argument when invoking Conan, Conan will internally use two profiles. One
for the machine that builds the binaries (called the build profile) and another for the machine that runs those binaries
(called the host profile). Calling this command:

[$ conan install . --build=missing --profile=someprofile

Is equivalent to:

[$ conan install . --build=missing --profile:host=someprofile --profile:build=default

As you can see we used two new arguments:

» profile:host: This is the profile that defines the platform where the built binaries will run. For our string
compressor application this profile would be the one applied for the Z/ib library that will run in a Raspberry Pi.

e profile:build: This is the profile that defines the platform where the binaries will be built. For our string
compressor application, this profile would be the one used by the CMake tool that will compile it on the Ubuntu
Linux machine.

Note that when you just use one argument for the profile --profile is equivalent to --profile:host. If you don’t
specify the --profile:build argument, Conan will use the default profile internally.

So, if we want to build the compressor application in the Ubuntu Linux machine but run it in a Raspberry Pi, we should
use two different profiles. For the build machine we could use the default profile, that in our case looks like this:

Listing 37: <conan home>/profiles/default

[settings]

os=Linux

arch=x86_64
build_type=Release
compiler=gcc
compiler.cppstd=gnuléd
compiler.libcxx=libstdc++11
compiler.version=9

40 Chapter 4. Tutorial

https://github.com/conan-io/examples2

Conan Documentation, Release 2.1.0

And the profile for the Raspberry Pi that is the host machine:

Listing 38: <local folder>/profiles/raspberry

[settings]

os=Linux

arch=armv7hf

compiler=gcc
build_type=Release
compiler.cppstd=gnuléd
compiler.libcxx=1libstdc++11
compiler.version=9
[buildenv]
CC=arm-linux-gnueabihf-gcc-9
CXX=arm-linux-gnueabihf-g++-9
LD=arm-linux-gnueabihf-1d

Important: Please, take into account that in order to build this example successfully, you should have installed a
toolchain that includes the compiler and all the tools to build the application for the proper architecture. In this case
the host machine is a Raspberry Pi 3 with armv7hf architecture operating system and we have the arm-linux-gnueabihf
toolchain installed in the Ubuntu machine.

If you have a look at the raspberry profile, there is a section named [buildenv]. This section is used to set the
environment variables that are needed to build the application. In this case we declare the CC, CXX and LD variables
pointing to the cross-build toolchain compilers and linker, respectively. Adding this section to the profile will invoke the
VirtualBuildEnv generator everytime we do a conan install. This generator will add that environment information
to the conanbuild. shscript that we will source before building with CMake so that it can use the cross-build toolchain.

Note: In some cases, you don’t have the toolchain available on the build platform. For those cases, you can use a
Conan package for the cross-compiler and add it to the [tool_requires] section of the profile. For an example of
cross-building using a toolchain package, please check this example.

Build and host contexts

Now that we have our two profiles prepared, let’s have a look at our conanfile.py:

Listing 39: conanfile.py

from conan import ConanFile
from conan.tools.cmake import cmake_layout

class CompressorRecipe(ConanFile):
settings = "os", "compiler", "build_type", "arch"
generators = "CMakeToolchain", "CMakeDeps"

def requirements(self):
self.requires("zlib/1.2.11")

def build_requirements(self):
self.tool_requires("cmake/3.22.6")

(continues on next page)

4.1. Consuming packages 41

Conan Documentation, Release 2.1.0

(continued from previous page)

def layout(self):
cmake_layout(self)

As you can see, this is practically the same conanfile.py we used in the previous example. We will require zlib/1.2.11
as a regular dependency and cmake/3.22.6 as a tool needed for building the application.

We will need the application to build for the Raspberry Pi with the cross-build toolchain and also link the zlib/1.2.11
library built for the same platform. On the other side, we need the cmake/3.22.6 binary to run in Ubuntu Linux. Conan
manages this internally in the dependency graph differentiating between what we call the “build context” and the “host
context”:

¢ The host context is populated with the root package (the one specified in the conan install or conan create
command) and all its requirements added via self.requires(). In this case, this includes the compressor
application and the zlib/1.2.11 dependency.

* The build context contains the tool requirements used in the build machine. This category typically includes all
the developer tools like CMake, compilers and linkers. In this case, this includes the cmake/3.22.6 tool.

These contexts define how Conan will manage each one of the dependencies. For example, as zlib/1.2.11 belongs to the
host context, the [buildenv] build environment we defined in the raspberry profile (profile host) will only apply to
the zlib/1.2.11 library when building and won’t affect anything that belongs to the build context like the cmake/3.22.6
dependency.

Now, let’s build the application. First, call conan install with the profiles for the build and host platforms. This
will install the zlib/1.2.11 dependency built for armv7hf architecture and a cmake/3.22.6 version that runs for 64-bit
architecture.

[$ conan install . --build missing -pr:b=default -pr:h=./profiles/raspberry

Then, let’s call CMake to build the application. As we did in the previous example we have to activate the build envi-
ronment running source Release/generators/conanbuild.sh. That will set the environment variables needed
to locate the cross-build toolchain and build the application.

$ cd build

$ source Release/generators/conanbuild.sh

Capturing current environment in deactivate_conanbuildenv-release-armv7hf.sh

Configuring environment variables

$ cmake .. -DCMAKE_TOOLCHAIN_FILE=Release/generators/conan_toolchain.cmake -DCMAKE_BUILD_
. TYPE=Release

$ cmake --build .

-- Conan toolchain: C++ Standard 14 with extensions ON

-- The C compiler identification is GNU 9.4.0

-- Detecting C compiler ABI info

-- Detecting C compiler ABI info - done

-- Check for working C compiler: /usr/bin/arm-linux-gnueabihf-gcc-9 - skipped
-- Detecting C compile features

-- Detecting C compile features - done [100%] Built target compressor

$ source Release/generators/deactivate_conanbuild.sh

You could check that we built the application for the correct architecture by running the file Linux utility:

42 Chapter 4. Tutorial

Conan Documentation, Release 2.1.0

$ file compressor

compressor: ELF 32-bit LSB shared object, ARM, EABI5 version 1 (SYSV), dynamically
linked, interpreter /lib/ld-linux-armhf.so.3,
BuildID[shal]=2a216076864alb1£f30211debf297ac37a9195196, for GNU/Linux 3.2.0, not
stripped

See also:
* Creating a Conan package for a toolchain
* Cross building to Android with the NDK
* VirtualBuildEnv reference
* Cross-build using a tool_requires
* How to require test frameworks like gtest: using test_requires

* Using Conan to build for iOS

4.1.6 Introduction to versioning
So far we have been using requires with fixed versions like requires = "zlib/1.2.12". But sometimes dependen-
cies evolve, new versions are released and consumers want to update to those versions as easy as possible.

Itis always possible to edit the conanfiles and explicitly update the versions to the new ones, but there are mechanisms
in Conan to allow such updates without even modifying the recipes.

Version ranges

A requires can express a dependency to a certain range of versions for a given package, with the syntax pkgname/
[version-range-expression]. Let’s see an example, please, first clone the sources to recreate this project. You
can find them in the examples?2 repository in GitHub:

$ git clone https://github.com/conan-io/examples2.git
$ cd examples2/tutorial/consuming_packages/versioning

‘We can see that we have there:

Listing 40: conanfile.py

from conan import ConanFile

class CompressorRecipe(ConanFile):
settings = "os", "compiler", "build_type", "arch"
generators = "CMakeToolchain", "CMakeDeps"

def requirements(self):
self.requires("zlib/[~1.2]")

That requires contains the expression z1ib/[~1.2], which means “approximately” 1.2 version, that means, it can
resolve to any z1ib/1.2.8, z1ib/1.2.11 or z1ib/1.2.12, but it will not resolve to something like z1ib/1.3.0.
Among the available matching versions, a version range will always pick the latest one.

If we do a conan install, we would see something like:

4.1. Consuming packages 43

https://github.com/conan-io/examples2

Conan Documentation, Release 2.1.0

$ conan install .

Graph root

conanfile.py: .../conanfile.py
Requirements

z1ib/1.2.12#87a7211557b6690ef5bf7£c599dd8349 - Downloaded
Resolved version ranges

zlib/[~1.2]: zlib/1.2.12

If we tried instead to use z1ib/[<1.2.12], that means that we would like to use a version lower than 1.2. 12, but that
one is excluded, so the latest one to satisfy the range would be z1ib/1.2.11:

$ conan install .

Resolved version ranges
zlib/[<1.2.12]: zlib/1.2.11

The same applies to other type of requirements, like tool_requires. If we add now to the recipe:

Listing 41: conanfile.py

from conan import ConanFile

class CompressorRecipe(ConanFile):
settings = "os", "compiler", "build_type", "arch"
generators = "CMakeToolchain", "CMakeDeps"

def requirements(self):
self.requires("zlib/[~1.2]")

def build_requirements(self):
self.tool_requires("cmake/[>3.10]")

Then we would see it resolved to the latest available CMake package, with at least version 3.11:

$ conan install .
Graph root
conanfile.py: .../conanfile.py
Requirements
z1ib/1.2.12#87a7211557b6690ef5bf7£c599dd8349 - Cache
Build requirements
cmake/3.22.6#£305019023c2db74d1001c5afa5cf362 - Downloaded
Resolved version ranges

cmake/[>3.10]: cmake/3.22.6
zlib/[~1.2]: zlib/1.2.12

44 Chapter 4. Tutorial

Conan Documentation, Release 2.1.0

Revisions

What happens when a package creator does some change to the package recipe or to the source code, but they don’t
bump the version to reflect those changes? Conan has an internal mechanism to keep track of those modifications,
and it is called the revisions.

The recipe revision is the hash that can be seen together with the package name and version in the form pkgname/
version#recipe_revision or pkgname/version@user/channel#recipe_revision. The recipe revision is a
hash of the contents of the recipe and the source code. So if something changes either in the recipe, its associated files
or in the source code that this recipe is packaging, it will create a new recipe revision.

You can list existing revisions with the conan list command:

$ conan list zlib/1.2.12#* -r=conancenter

conancenter
zlib
zlib/1.2.12
revisions
82202701ea360c0863f1db5008067122 (2022-03-29 15:47:45 UTC)
bd533fb124387a214816ab72c8d1df28 (2022-05-09 06:59:58 UTC)
3b9%9e037aelc615d045a06c67d88491ae (2022-05-13 13:55:39 UTO)

Revisions always resolve to the latest (chronological order of creation or upload to the server) revision. Though it is
not a common practice, it is possible to explicitly pin a given recipe revision directly in the conanfile, like:

def requirements(self):
self.requires("zlib/1.2.12#87a7211557b6690ef5b£f7£c599dd8349")

This mechanism can however be tedious to maintain and update when new revisions are created, so probably in the
general case, this shouldn’t be done.

Lockfiles

The usage of version ranges, and the possibility of creating new revisions of a given package without bumping the
version allows to do automatic faster and more convenient updates, without need to edit recipes.

But in some occasions, there is also a need to provide an immutable and reproducible set of dependencies. This process
is known as “locking”, and the mechanism to allow it is “lockfile” files. A lockfile is a file that contains a fixed list of
dependencies, specifying the exact version and exact revision. So, for example, a lockfile will never contain a version
range with an expression, but only pinned dependencies.

A lockfile can be seen as a snapshot of a given dependency graph at some point in time. Such snapshot must be
“realizable”, that is, it needs to be a state that can be actually reproduced from the conanfile recipes. And this lockfile
can be used at a later point in time to force that same state, even if there are new created package versions.

Let’s see lockfiles in action. First, let’s pin the dependency to z1ib/1.2.11 in our example:

def requirements(self):
self.requires("zlib/1.2.11")

And let’s capture a lockfile:

conan lock create .

(continues on next page)

4.1. Consuming packages 45

Conan Documentation, Release 2.1.0

(continued from previous page)

———————— Computing dependency graph ----------

Graph root
conanfile.py: .../conanfile.py

Requirements
z1ib/1.2.11#4524fcdd41£f33e8df88ecebe755a5dcc - Cache

Generated lockfile: .../conan.lock

Let’s see what the lockfile conan.lock contains:

{
"version": "0.5",
"requires": [
"zlib/1.2.11#4524fcdd41£33e8df88ecebe755a5dcc%1650538915.154"
1,
"build_requires": [],
"python_requires": []
}

Now, let’s restore the original requires version range:

def requirements(self):
self.requires("zlib/[~1.2]")

And run conan install ., which by default will find the conan.lock, and run the equivalent conan install .
--lockfile=conan.lock

conan install .

Graph root
conanfile.py: .../conanfile.py

Requirements
z1lib/1.2.11#4524fcdd41£f33e8df88ecebe755a5dcc - Cache

Note how the version range is no longer resolved, and it doesn’t get the z1ib/1.2.12 dependency, even if it is the
allowed range z1ib/[~1.2], because the conan.lock lockfile is forcing it to stay in z1ib/1.2.11 and that exact
revision too.

See also:

e Introduction to Versioning

4.2 Creating packages

This section shows how to create Conan packages using a Conan recipe. We begin by creating a basic Conan recipe to
package a simple C++ library that you can scaffold using the conan new command. Then, we will explain the different
methods that you can define inside a Conan recipe and the things you can do inside them:

» Using the source () method to retrieve sources from external repositories and apply patches to those sources.
* Add requirements to your Conan packages inside the requirements () method.

* Use the generate() method to prepare the package build, and customize the toolchain.

46 Chapter 4. Tutorial

Conan Documentation, Release 2.1.0

 Configure settings and options in the configure() and config_options() methods and how they affect the
packages’ binary compatibility.

* Use the build () method to customize the build process and launch the tests for the library you are packaging.
¢ Select which files will be included in the Conan package using the package () method.

* Define the package information in the package_info() method so that consumers of this package can use it.
» Use a test_package to test that the Conan package can be consumed correctly.

After this walkthrough around some Conan recipe methods, we will explain some peculiarities of different types of
Conan packages like, for example, header-only libraries, packages for pre-built binaries, packaging tools for building
other packages or packaging your own applications.

4.2.1 Create your first Conan package

In previous sections, we consumed Conan packages (like the ZIlib one), first using a conanfile.txt and then with a
conanfile.py. But a conanfile.py recipe file is not only meant to consume other packages, it can be used to create your
own packages as well. In this section, we explain how to create a simple Conan package with a conanfile.py recipe and
how to use Conan commands to build those packages from sources.

Important: This is a tutorial section. You are encouraged to execute these commands. For this concrete example,
you will need CMake installed in your path. It is not strictly required by Conan to create packages, you can use other
build systems (such as VS, Meson, Autotools, and even your own) to do that, without any dependency on CMake.

Use the conan new command to create a “Hello World” C++ library example project:

[$ conan new cmake_lib -d name=hello -d version=1.0]

This will create a Conan package project with the following structure.

— CMakeLists.txt

—— conanfile.py

— include

L— hello.h

— src

L— hello.cpp

L— test_package

CMakeLists.txt

E conanfile.py
src
L example.cpp

The generated files are:

¢ conanfile.py: On the root folder, there is a conanfile.py which is the main recipe file, responsible for defining
how the package is built and consumed.

* CMakeLists.txt: A simple generic CMakeLists.txt, with nothing specific about Conan in it.
* src and include folders: the folders that contains the simple C++ “hello” library.

* test_package folder: contains an example application that will require and link with the created package. It is
not mandatory, but it is useful to check that our package is correctly created.

4.2. Creating packages 47

Conan Documentation, Release 2.1.0

Let’s have a look at the package recipe conanfile.py:

from conan import ConanFile
from conan.tools.cmake import CMakeToolchain, CMake, cmake_layout, CMakeDeps

class helloRecipe(ConanFile):
name = "hello"
version = "1.0"

Optional metadata

license = "<Put the package license here>"

author = "<Put your name here> <And your email here>"

url = "<Package recipe repository url here, for issues about the package>"
description = "<Description of hello package here>"

topics = ("<Put some tag here>", '<here>", "<and here>")

Binary configuration

settings = "os", "compiler", "build_type", "arch"

options = {"shared": [True, False], "fPIC": [True, Falsel}
default_options = {"shared": False, "fPIC": True}

Sources are located in the same place as this recipe, copy them to the recipe
exports_sources = "CMakelLists.txt", "src/*", "include/*"

def config_options(self):
if self.settings.os == "Windows":
del self.options.fPIC

def layout(self):
cmake_layout (self)

def generate(self):
deps = CMakeDeps(self)
deps.generate()
tc = CMakeToolchain(self)
tc.generate()

def build(self):
cmake = CMake(self)
cmake.configure()
cmake.build()

def package(self):
cmake = CMake(self)
cmake.install ()

def package_info(self):
self.cpp_info.libs = ["hello"]

Let’s explain the different sections of the recipe briefly:

First, you can see the name and version of the Conan package defined:

* name: astring, with a minimum of 2 and a maximum of 100 lowercase characters that defines the package name.

48 Chapter 4. Tutorial

Conan Documentation, Release 2.1.0

It should start with alphanumeric or underscore and can contain alphanumeric, underscore, +, ., - characters.

» version: Itis a string, and can take any value, matching the same constraints as the name attribute. In case the
version follows semantic versioning in the form X.Y.Z-prel+build2, that value might be used for requiring
this package through version ranges instead of exact versions.

Then you can see, some attributes defining metadata. These are optional but recommended and define things like
a short description for the package, the author of the packaged library, the 1icense, the url for the package
repository, and the topics that the package is related to.

After that, there is a section related with the binary configuration. This section defines the valid settings and options
for the package. As we explained in the consuming packages section:

* settings are project-wide configuration that cannot be defaulted in recipes. Things like the operating system,
compiler or build configuration that will be common to several Conan packages

* options are package-specific configuration and can be defaulted in recipes, in this case, we have the option of
creating the package as a shared or static library, being static the default.

After that, the exports_sources attribute is set to define which sources are part of the Conan package. These are the
sources for the library you want to package. In this case the sources for our “hello” library.

Then, several methods are declared:

e The config_options() method (together with the configure() one) allows fine-tuning the binary configu-
ration model, for example, in Windows, there is no £PIC option, so it can be removed.

e The layout () method declares the locations where we expect to find the source files and destinations for the
files generated during the build process. Example destination folders are those for the generated binaries and all
the files that the Conan generators create in the generate () method. In this case, as our project uses CMake as
the build system, we call to cmake_layout (). Calling this function will set the expected locations for a CMake
project.

* The generate() method prepares the build of the package from source. In this case, it could be simplified to
an attribute generators = "CMakeToolchain", but it is left to show this important method. In this case, the
execution of CMakeToolchain generate () method will create a conan_toolchain.cmake file that translates the
Conan settings and options to CMake syntax. The CMakeDeps generator is added for completitude, but it is
not strictly necessary until requires are added to the recipe.

e The build() method uses the CMake wrapper to call CMake commands, it is a thin layer that will manage to
pass in this case the ~-DCMAKE_TOOLCHAIN_FILE=conan_toolchain.cmake argument. It will configure the
project and build it from source.

* The package () method copies artifacts (headers, libs) from the build folder to the final package folder. It can be
done with bare “copy” commands, but in this case, it is leveraging the already existing CMake install functionality
(if the CMakeLists.txt didn’t implement it, it is easy to write an equivalent using the copy() fool in the package ()
method.

* Finally, the package_info() method defines that consumers must link with a “hello” library when using this
package. Other information as include or lib paths can be defined as well. This information is used for files
created by generators (as CMakeDeps) to be used by consumers. This is generic information about the current
package, and is available to the consumers irrespective of the build system they are using and irrespective of the
build system we have used in the build() method

The test_package folder is not critical now for understanding how packages are created. The important bits are:

* test_package folder is different from unit or integration tests. These tests are “package” tests, and validate that
the package is properly created and that the package consumers will be able to link against it and reuse it.

* Itis a small Conan project itself, it contains its conanfile.py, and its source code including build scripts, that
depends on the package being created, and builds and executes a small application that requires the library in the
package.

4.2. Creating packages 49

Conan Documentation, Release 2.1.0

* It doesn’t belong in the package. It only exists in the source repository, not in the package.

Let’s build the package from sources with the current default configuration, and then let the test_package folder test
the package:

$ conan create .

======== Exporting recipe to the cache ========
hello/1.0: Exporting package recipe

hello/1.0: Exported: hello/1.0#dcbfe21e5250264b26595d151796be70 (2024-03-04 17:52:39 UTC)

======== Installing packages ========

———————— Installing package hello/1.0 (1 of 1) --—-—-—---—-
hello/1.0: Building from source

hello/1.0: Calling build(Q

hello/1.0: Package '9bdee485ef71cl14ac5£8a657202632bdb8b4482b' built
======== Testing the package: Building ========

[50%] Building CXX object CMakeFiles/example.dir/src/example.cpp.o
[100%] Linking CXX executable example
[100%] Built target example

======== Testing the package: Executing test ========
hello/1.0 (test package): Running test()

hello/1.0 (test package): RUN: ./example

hello/1.0: Hello World Release!

hello/1.0: __x86_64__ defined

hello/1.0: __cplusplus199711

hello/1.0: __GNUC__4

hello/1.0: __GNUC_MINOR__2

hello/1.0: __clang major__13

hello/1.0: __clang minor__1
0

hello/1.0: __apple_build_version__13160021

If “Hello world Release!” is displayed, it worked. This is what has happened:

* The conanfile.py together with the contents of the src folder have been copied (exported, in Conan terms) to the
local Conan cache.

¢ A new build from source for the hello/1.0 package starts, calling the generate(), build() and package()
methods. This creates the binary package in the Conan cache.

¢ Conan then moves to the fest_package folder and executes a conan install + conan build+ test () method,
to check if the package was correctly created.

We can now validate that the recipe and the package binary are in the cache:

$ conan list hello
Local Cache:
hello
hello/1.0

The conan create command receives the same parameters as conan install, so you can pass to it the same settings

50 Chapter 4. Tutorial

Conan Documentation, Release 2.1.0

and options. If we execute the following lines, we will create new package binaries for Debug configuration or to build
the hello library as shared:

$ conan create . -s build_type=Debug
hello/1.0: Hello World Debug!
$ conan create . -o hello/1.0:shared=True

hello/1.0: Hello World Release!

These new package binaries will be also stored in the Conan cache, ready to be used by any project in this computer.
We can see them with:

list all the binaries built for the hello/1.0 package in the cache
$ conan list hello/1.0:*
Local Cache:
hello
hello/1.0
revisions
dcbfe21e5250264b26595d151796be70 (2024-03-04 17:52:39 UTC)
packages
6679492451b5d0750£14£9024fdb£f84e19d2941b
info
settings
arch: x86_64
build_type: Release
compiler: apple-clang
compiler.cppstd: gnull
compiler.libcxx: libc++
compiler.version: 14
os: Macos
options
fPIC: True
shared: True
b1d267£77ddd5d10d06d2ecf5ab6bc433fbb7eeed
info
settings
arch: x86_64
build_type: Release
compiler: apple-clang
compiler.cppstd: gnull
compiler.libcxx: libc++
compiler.version: 14
os: Macos
options
fPIC: True
shared: False
d15c4£81b5de757b13ca26b636246edff7bdbf24
info
settings:
arch: x86_64
build_type: Debug
compiler: apple-clang
(continues on next page)

4.2. Creating packages 51

Conan Documentation, Release 2.1.0

(continued from previous page)
compiler.cppstd: gnull
compiler.libcxx: libc++
compiler.version: 14
os: Macos
options:
fPIC: True

Now that we have created a simple Conan package, we will explain each of the methods of the Conanfile in more detail.
You will learn how to modify those methods to achieve things like retrieving the sources from an external repository,
adding dependencies to our package, customising our toolchain and much more.

A note about the Conan cache

When you did the conan create command, the build of your package did not take place in your local folder but in
other folder inside the Conan cache. This cache is located in the user home folder under the .conan2 folder. Conan
will use the ~/ . conan2 folder to store the built packages and also different configuration files. You already used the
conan list command to list the recipes and binaries stored in the local cache.

An important note: the Conan cache is private to the Conan client - modifying, adding, removing or changing files
inside the Conan cache is undefined behaviour likely to cause breakages.

See also:
* Create your first Conan package with Visual Studio/MSBuild.
* Create your first Conan package with Meson.
* Create your first Conan package with Autotools (only Linux).
* CMake built-in integrations reference.

* conan create command reference and Conan list command reference.

4.2.2 Handle sources in packages

In the previous tutorial section we created a Conan package for a “Hello World” C++ library. We used the
exports_sources attribute of the Conanfile to declare the location of the sources for the library. This method is
the simplest way to define the location of the source files when they are in the same folder as the Conanfile. However,
sometimes the source files are stored in a repository or a file in a remote server, and not in the same location as the
Conanfile. In this section, we will modify the recipe we created previously by adding a source () method and explain
how to:

* Retrieve the sources from a zip file stored in a remote repository.
* Retrieve the sources from a branch of a git repository.

Please, first clone the sources to recreate this project. You can find them in the examples2 repository on GitHub:

$ git clone https://github.com/conan-io/examples2.git
$ cd examples2/tutorial/creating_packages/handle_sources

The structure of the project is the same as the one in the previous example but without the library sources:

CMakeLists.txt
conanfile.py

(continues on next page)

52 Chapter 4. Tutorial

https://github.com/conan-io/examples2

Conan Documentation, Release 2.1.0

(continued from previous page)

L test_package

-

CMakeLists.txt
conanfile.py
src

L— example.cpp

Sources from a zip file stored in a remote repository

Let’s have a look at the changes in the conanfile.py:

from conan import ConanFile
from conan.tools.cmake import CMakeToolchain, CMake, cmake_layout
from conan.tools.files import get

class helloRecipe(ConanFile):
name = "hello"
version = "1.0"

Binary configuration

settings = "os", "compiler", "build_type", "arch"

options = {"shared": [True, False], "fPIC": [True, False]}
default_options = {"shared": False, "fPIC": True}

def

def

def

def

def

source(self):

Please, be aware that using the head of the branch instead of an immutable tag

or commit is a bad practice and not allowed by Conan

get(self, "https://github.com/conan-io/libhello/archive/refs/heads/main.zip",
strip_root=True)

config_options(self):
if self.settings.os == "Windows":
del self.options.fPIC

layout (self):
cmake_layout (self)

generate(self):
tc = CMakeToolchain(self)
tc.generate()

build(self):

cmake = CMake(self)
cmake.configure()
cmake.build()

def package(self):

cmake = CMake(self)
cmake.install ()

(continues on next page)

4.2. Creating packages 53

Conan Documentation, Release 2.1.0

(continued from previous page)

def package_info(self):
self.cpp_info.libs = ["hello"]

As you can see, the recipe is the same but instead of declaring the exports_sources attribute as we did previously,
i.e.

N

[exports_sources = "(CMakeLists.txt", "src/*", "include/

w0

we declare a source () method with this informatio