Conan Documentation
Release 2.14.0

The Conan team

Mar 12, 2025

CONTENTS

1 Introduction 3
1.1 0penSource v i i e e e e e e e e e e e 3
1.2 Decentralized package manager e 3
1.3 Binary managemento e e e e e e e e e e e e e e e e e 4
1.4 All platforms, all build systems and compilers, 5
15 Stable 6
1.6 Community e e e e e e e e e e e e e e e 7
1.7 Navigating the documentation e e e e 7
2 What’s new in Conan 2 9
2.1 Conan2migration guide L 9
22 Newgraphmodel e 9
2.3 Newpublic Python API e 9
2.4 New build system integrations v v i i e e e e e e e e e e e e 10
2.5 Newecustomusercommandso e e e e 10
26 New CLIo 10
27 Newdeployers e e 10
2.8 Newpackage_id e e e e 11
2.9 compatibility.py e e e 11
2,10 Newlockfiles Lo 11
2.11 New configuration and environment managementottt 11
2.12 Multi-revisioncache L. e 12
2.13 New extensions plugins L e e e e e e 12
2.14 Package immutability optimizations L. 12
2.15 Package lists e e e e e e e e 13
2,16 Metadatafiles. 13
2.17 Third party backup sources 13
2.18 Installing configuration from Conan packages 0oL, 13
3 Install 15
3.1 Install with pip (recommended) L e 15
32 Install with pipx o e 16
3.3 Use a system installer or create a self-contained executable 17
34 Install fromsource e 17
4 Tutorial 19
4.1 Consumingpackages 19
4.2 Creating packages v v v i i e e e e e e e e e e e e e e e e e e e 46
4.3 Working with Conan repositories v v i i e e e e e e e e e e 99
44 Developing packageslocally 104

4.5 Versioning e e e e
4.6 Other important Conan features i i v i i e e e e e e e e
Continuous Integration (CI) tutorial

5.1 Packages and products pipelines L e e e e
5.2 Repositories and promotions u e e e e e e e e e e e e e e e e e
Devops guide

6.1 Using ConanCenter packages in production environments
6.2 Local Recipes Index Repository o o . o 0 e e e
6.3 Backing up third-party sources withConan L L.
6.4 Managing package metadatafiles Lo L
6.5 Versioning e
6.6 Save and restore packages from/tothecache o ..
6.7 Vendoring dependencies in Conan packages i e e e
6.8 Package promotions L e e e
Integrations

T1 CMaKe . . . o e e e e e e e e e e
T2 CLION . . . o ot e e e e e e e e e e e e
7.3 Visual Studio e e e e e e e e e e e
T4 Autotools L e e e
7.5 Bazel e e e e e e
7.6 Makefile e e e e e e e e e
TT 0 Xcode . . oo o e e e e e e e e e e s
T8 MESON . . . o e e e e e e
7.9 Premake e e e e
710 Android e e e e e e e e e e e
TA1 JFrog . . o e e e e e e
712 ROS o e e
Examples

8.1 ConanFile methods examples e e e e e e e
8.2 Conan extensions examples e e e e e e e e e e e e
8.3 Conanrecipe tools examples e e e e e e e e e
8.4 Cross-building examples oL e e e e
8.5 Configuration files examples L. e e
8.6 Graphexamples e e e e e e e e e e e e e
8.7 Developertools and flows
8.8 Conan commands eXxampleso e e e e e e e e e e
8.9 Conanrunners examples e e e e e e e e e e e e
Reference

9.1 Commands e e e e e e e
9.2 conmanfile.py e e
0.3 conanfile.tXt e e e e e e e e e e e e e e e
9.4 Recipe tools o i e e e e e e e e e e e e
9.5 Configuration files L e e e e e e e
0.6 EXtensions i e e e e e e e e e e
9.7 Environment variables L L e e
9.8 Thebinarymodel L
0.9 Conan SEIVET v v i it e
0.10 RUNNETS o i o e e e e e e e e e e e e e e e e e

10 Knowledge

145
147
147

171
171
174
178
183
190
193
194
195

199
199
200
206
211
212
212
213
213
214
214
215
216

221
221
232
241
283
302
307
318
326
329

341
341
475
552
554
703
741
770
772
788
794

797

10.1 Cheatsheet e e e e e e e e e
10.2 Core guidelines o o i i e e e e e e e e e e e
103 FAQ . . o o o e e e e e e
104 Videos o e e e e e e e e e e e e

11 Incubating features

11.1 New CMakeConfigDeps generator o v v v v it i it e ettt e
11.2 WOrkspaces o o o e e e e e e e e e e e e

12 Changelog

12,1 204.0 (12-Mar-2025) o v oo e e e e e
122 203.0 26-Feb-2025) .« + o o o oo e
123 2022 (12-Fb-2025) . o v oo e e e e e e
124 2120 28JaN2025) « o v v e e e
12,5 2.12.0 Q7-JaN2025) « o v e e e e
126 2.11.0 (18-DeC-2024) . o o v e e e e e
127 2003 (18-DeC-2024) + v o o o e e e e e
128 2.010.2 (10-DeC-2024) . + v v oo e e e e e
129 2.10.1 (04-DeC-2024) o v o e e e e e
12.10 2.10.0 (02-DC-2024) .+ o o v oo e e e
1211 293 Q1-NOV-2024) + v o v e e e e e e
1212 2.9.2 (07-NOV-2024) . o o v e e e e e e e e
1213 2.9.1 B0-0Ct-2024) .+ o v oo e e e e
1214 2.9.0 (29-0Ct-2024) o o v oo e e
1215 2.8.1 (17-0CE2024) + o v v e e e e e e
12.16 2.8.0 (B30-SEPt-2024) .« . o v v oo e
1217 270 (11-SePt-2024) © o v v e e e e e e e e e
1218 2.7.0 (28-AUE2024) + o o v oo e e
1219 2,60 (O1-AUZ2024) .+« o v oo e e e e e e
1220 2.5.0 (03-TUI2024) + « o v e e e e
1221 240 (10-TUN-2024) © o v e e e e
12.22 240 (05-JUN-2024) + o v v e e
1223 232 (28-May-2024) « + o v oo
1224 231 (16May-2024) « © o v oo e e e e
1225 2.3.0 (06-May-2024) .« o o v oo e e e e
1226 223 (1T-APr2024) .« . o v e e e e e e
1227 222 (25-Mar-2024) . . o o v e
1228 2.2.1 20-MAr-2024) . o v v e e e e e
1229 2.2.0 20-MAr-2024) .« o o v e e e
1230 2.1.0 (15-Feb-2024) . o o v oo e e e e
1231 2007 (10-Ja02024) © o v v e e e e e
12.32 2.0.16 21-DEC-2023) .+ o o v e e e e
12.33 2.0.15 (20-DeC-2023) . + v o e e
12.34 2.0.14 (14-NoV-2023) + + + o o e e e e e e e
12.35 2.0.13 (28-SePt-2023) .+ o v v e e
12.36 2.0.12 (26-Sept-2023) .+ + v o e e
12.37 2011 (18-SePt-2023) .« o v v e e e e e e
12.38 2.0.10 (29-AUE-2023) .+« + v e e
1239 2.0.9 (19-JUI-2023) + « v o v e e e e e
1240 2.0.8 (13-JUI-2023) « o o v e e e e e e
1241 2.0.7 Q1TUN2023) o o e e e e
1242 2.0.6 (26-May-2023) .« . o o o oo e
1243 2.0.5 (18-May-2023) .« . o o v oo e e e
1244 2.0.4 (11-APE2023) o v v e e e e e e e e e

12.45 2.0.3 (03-Apr-2023) o e e e e e e e e 845
12.46 2.0.2 (15-Mar-2023) o e e e e e 846
12.47 2.0.1 (03-Mar-2023) o e e e e e 847
12.48 2.0.0 (22-Feb-2023) e e 848
12.49 2.0.0-betalO (16-Feb-2023) e 848
12.50 2.0.0-beta9 (31-Jan-2023) e e e e e 848
12.51 2.0.0-beta8 (12-Jan-2023) e e 849
12.52 2.0.0-beta7 (22-Dec-2022) e e e e 849
12.53 2.0.0-beta6 (02-Dec-2022) o e e e e e e 850
12.54 2.0.0-betaS (11-Nov-2022) o e e e e e e 850
12.55 2.0.0-betad (11-Oct-2022) o v e e e e e e e e 850
12.56 2.0.0-beta3 (12-Sept-2022) v v i e e e e e e e e e e e e 851
12.57 2.0.0-beta2 (27-Jul-2022) e 851
12.58 2.0.0-betal (20-Jun-2022) e e e e e e 852
Index 853

Conan Documentation, Release 2.14.0

Welcome! This is the user documentation for Conan, an open source, decentralized C/C++ package manager that works
in all platforms and with all build systems and compilers. Other relevant resources:

» Conan home page. Entry point to the project, with links to docs, blog, social, downloads, release mailing list,
etc.

* Github project and issue tracker. The main support channel, file issues here for questions, bug reports and feature
requests.

Table of contents:

CONTENTS 1

https://conan.io
https://github.com/conan-io/conan

Conan Documentation, Release 2.14.0

2 CONTENTS

CHAPTER
ONE

INTRODUCTION

Conan is a dependency and package manager for C and C++ languages. It is free and open-source, works in all platforms
(Windows, Linux, OSX, FreeBSD, Solaris, etc.), and can be used to develop for all targets including embedded,
mobile (i0S, Android), and bare metal. It also integrates with all build systems like CMake, Visual Studio (MSBuild),
Makefiles, SCons, etc., including proprietary ones.

It is specifically designed and optimized for accelerating the development and Continuous Integration of C and C++
projects. With full binary management, it can create and reuse any number of different binaries (for different config-
urations like architectures, compiler versions, etc.) for any number of different versions of a package, using exactly
the same process in all platforms. As it is decentralized, it is easy to run your own server to host your own packages
and binaries privately, without needing to share them. The free JFrog Artifactory Community Edition (CE) is the
recommended Conan server to host your own packages privately under your control.

Conan is mature and stable, with a strong commitment to forward compatibility (non-breaking policy), and has a
complete team dedicated full time to its improvement and support. It is backed and used by a great community, from
open source contributors and package creators in ConanCenter to thousands of teams and companies using it.

1.1 Open Source

Conan is Free and Open Source, with a permissive MIT license. Check out the source code and issue tracking (for ques-
tions and support, reporting bugs and suggesting feature requests and improvements) at https://github.com/conan-io/
conan

1.2 Decentralized package manager

Conan is a decentralized package manager with a client-server architecture. This means that clients can fetch packages
from, as well as upload packages to, different servers (“remotes”), similar to the “git” push-pull model to/from git
remotes.

At a high level, the servers are just storing packages. They do not build nor create the packages. The packages are
created by the client, and if binaries are built from sources, that compilation is also done by the client application.

https://github.com/conan-io/conan
https://conan.io/downloads.html
https://conan.io/center
https://github.com/conan-io/conan
https://github.com/conan-io/conan

Conan Documentation, Release 2.14.0

" ARTIACTORY +

COMMUNITY EDITION FOR C/C++ “\\h
[JFrog
7 CONAN
<

Client

The different applications in the image above are:

* The Conan client: this is a console/terminal command-line application, containing the heavy logic for package
creation and consumption. Conan client has a local cache for package storage, and so it allows you to fully create
and test packages offline. You can also work offline as long as no new packages are needed from remote servers.

e JFrog Artifactory Community Edition (CE) is the recommended Conan server to host your own packages pri-
vately under your control. It is a free community edition of JFrog Artifactory for Conan packages, including a
WebUI, multiple auth protocols (LDAP), Virtual and Remote repositories to create advanced topologies, a Rest
API, and generic repositories to host any artifact.

* The conan_server is a small server distributed together with the Conan client. It is a simple open-source imple-
mentation and provides basic functionality, but no WebUI or other advanced features.

* ConanCenter is a central public repository where the community contributes packages for popular open-source
libraries like Boost, Zlib, OpenSSL, Poco, etc.

1.3 Binary management

One of the most powerful features of Conan is that it can create and manage pre-compiled binaries for any possible
platform and configuration. By using pre-compiled binaries and avoiding repeated builds from source, it saves signifi-
cant time for developers and Continuous Integration servers, while also improving the reproducibility and traceability
of artifacts.

A package is defined by a “conanfile.py”. This is a file that defines the package’s dependencies, sources, how to build
the binaries from sources, etc. One package “conanfile.py” recipe can generate any arbitrary number of binaries, one
for each different platform and configuration: operating system, architecture, compiler, build type, etc. These binaries
can be created and uploaded to a server with the same commands in all platforms, having a single source of truth for
all packages and not requiring a different solution for every different operating system.

4 Chapter 1. Introduction

https://conan.io/downloads.html
https://conan.io/center

Conan Documentation, Release 2.14.0

server
ackage Pkg/0.1@user/channel _Y
[l
- Ea.ckag.e)
-~ “binaries
recipe
(Pkg/O.l@user/channel v

_//

client

Installation of packages from servers is also very efficient. Only the necessary binaries for the current platform and
configuration are downloaded, not all of them. If the compatible binary is not available, the package can be built from
sources in the client too.

1.4 All platforms, all build systems and compilers

Conan works on Windows, Linux (Ubuntu, Debian, RedHat, ArchLinux, Raspbian), OSX, FreeBSD, and SunOS, and,
as it is portable, it might work in any other platform that can run Python. It can target any existing platform: ranging
from bare metal to desktop, mobile, embedded, servers, and cross-building.

Conan works with any build system too. There are built-in integrations to support the most popular ones like CMake,
Visual Studio (MSBuild), Autotools and Makefiles, Meson, SCons, etc., but it is not a requirement to use any of them.
It is not even necessary that all packages use the same build system: each package can use their own build system, and
depend on other packages using different build systems. It is also possible to integrate with any build system, including
proprietary ones.

Likewise, Conan can manage any compiler and any version. There are default definitions for the most popular ones:
gcc, cl.exe, clang, apple-clang, intel, with different configurations of versions, runtimes, C++ standard library, etc. This
model is also extensible to any custom configuration.

1.4. All platforms, all build systems and compilers 5

Conan Documentation, Release 2.14.0

1.5

Stable

From Conan 2.0 and onwards, there is a commitment to stability, with the goal of not breaking user space while evolving
the tool and the platform. This means:

Moving forward to following minor versions 2.1, 2.2, ..., 2.X should never break existing recipes, packages or
command line flows

If something is breaking, it will be considered a regression and reverted.

Bug fixes will not be considered breaking, recipes and packages relying on the incorrect behavior of such bugs
will be considered already broken.

Only documented features in https://docs.conan.io are considered part of the public interface of Conan. Private
implementation details, and everything not included in the documentation is subject to change.

The compatibility is always considered forward. New APIs, tools, methods, helpers can be added in following
2.X versions. Recipes and packages created with these features will be backwards incompatible with earlier
Conan versions.

Only the latest released patch (major.minor.patch) of every minor version is supported and stable.

There are some things that are not included in this commitment:

Public repositories, like ConanCenter, assume the use of the latest version of the Conan client, and using an older
version may result in failure of packages and recipes created with a newer version of the client. It is recommended
to use your own private repository to store your own copy of the packages for production, or as a secondary
alternative, to use some locking mechanism to avoid possible disruption from packages in ConanCenter that are
updated and require latest Conan version.

Configuration and automatic tools detection, like the detection of the default profile (conan profile detect)
can and will change at any time. Users are encouraged to define their configurations in their own profiles files
for repeatability. New versions of Conan might detect different default profiles.

Builtin default implementation of extension points as plugins or hooks can also change with every release. Users
can provide their own ones for stability.

Output of packages templates with conan new can update at any time to use latest features.

The output streams stdout, stderr, i.e. the terminal output can change at any time. Do not parse the terminal
output for automation.

Anything that is explicitly labeled as experimental or preview in the documentation, or in the Conan cli
output. Read the section below for a detailed definition of these labels.

Anything that is labeled as deprecated in the documentation should not get new usages, as it will not get new
fixes and it will be removed in the next major version.

Other tools and repositories outside of the Conan client

Conan needs Python>=3.6 to run. Conan will deprecate support for Python versions 1 year after those versions have
been declared End Of Life (EOL).

If you have any question regarding Conan updates, stability, or any clarification about this definition of stability, please
report in the documentation issue tracker: https://github.com/conan-io/docs.

Chapter 1. Introduction

https://docs.conan.io
https://github.com/conan-io/docs

Conan Documentation, Release 2.14.0

1.6

Community

Conan is being used in production by thousands of companies like TomTom, Audi, RTI, Continental, Plex, Electrolux
and Mercedes-Benz and many thousands of developers around the world.

But an essential part of Conan is that many of those users will contribute back, creating an amazing and helpful com-
munity:

1.7

The https://github.com/conan-io/conan project has around 6.5K stars in Github and counts with contributions
from more than 300 different users (this is just the client tool).

Many other users contribute recipes for ConanCenter via the https://github.com/conan-io/conan-center-index
repo, creating packages for popular Open Source libraries, contributing many thousands of Pull Requests per
year.

More than two thousands Conan users hang around the CppLang Slack #conan channel, and help responding to
questions, discussing problems and approaches, making it one of the most active channels in the whole CppLang
slack.

There is a Conan channel in #include<cpp> discord.

Navigating the documentation

This documentation has very different sections:

The tutorial is an actual hands-on tutorial, with examples and real code, intended to be played sequentially from
beginning to end, running the exercises in your own computer. There is a “narrative” to this section and the
exercises might depend on some previous explanations and code - building on the previous example. This is the
recommended approach for learning Conan.

The examples also contain hands-on, fully operational examples with code, aimed to explain some very specific
feature, tool or behavior. They do not have a conducting thread, they should be navigated by topic.

The reference is the source of truth for the interfaces of every public command, class, method, helper, API and
configuration file that can be used. It is not designed to be read fully, but to check for individual items when
necessary.

The knowledge base contains things like the FAQ, a very important section about general guidelines, good
practices and bad practices, videos from conference talks, etc.

Features in this documentation might be labeled as:

experimental: This feature is released and can be used, but it is under active development and the interfaces,
APIs or behavior might change as a result of evolution, and this will not be considered breaking. If you are
interested in these features you are encouraged to try them and give feedback, because that is exactly what allows
to stabilize them.

preview: When a feature is released in preview mode, this means it aims to be as final and stable as possible.
Users are encouraged to use them, and the maintainers team will try not to break them unless necessary. But if
necessary, they might change and break.

deprecated: This feature should no longer be used, and it will be fully removed in next major release. Other
alternatives or approaches should be used instead of it, and if using it, migrating to the other alternatives should
be done as soon as possible. They will not be maintained or get fixes.

Everything else that is not labeled should be considered stable, and won’t be broken, unless something that is declared
a bugfix.

Have any questions? Please check out our FAQ section or .

1.6. Community 7

https://github.com/conan-io/conan
https://github.com/conan-io/conan-center-index
https://cppalliance.org/slack/
https://www.includecpp.org/discord/

Conan Documentation, Release 2.14.0

8 Chapter 1. Introduction

CHAPTER
TWO

WHAT’S NEW IN CONAN 2

Conan 2 comes with many exciting improvements based on the lessons learned in the last years with Conan 1.X. Also,
a lot of effort has been made to backport necessary things to Conan 1.X to make the upgrade easier: Recipes using
latest 1.X integrations will be compatible with Conan 2, and binaries for both versions will not collide and be able to
live in the same server repositories.

2.1 Conan 2 migration guide

If you are using Conan 1.X, please read the Conan 2 Migration guide , to start preparing your package recipes to 2.0 and
be aware of some changes while you still work in Conan 1.X. That guide summarizes the above mentioned backports
to make the upgrade easier.

2.2 New graph model

Conan 2 defines new requirement traits (headers, libs, build, run, test, package_id_mode, options, transitive_headers,
transitive_libs) and package types (static, shared, application, header-only) to better represent the relations that happen
with C and C++ binaries, like executables or shared libraries linking static libraries or shared libraries.

See also:
* https://www.youtube.com/watch?v=kKGglzmS5ous
* https://github.com/conan-io/tribe/blob/main/design/026-requirements_traits.md

* https://github.com/conan-io/tribe/blob/main/design/027-package_types.md

2.3 New public Python API

A new modular Python API is made available, public and documented. This is a real API, with building blocks that
are already used to build the Conan built-in commands, but that will allow further extensions. There are subapis for
different functional groups, like api.list, api.search, api.remove, api.profile, api.graph, api.upload,
api.remotes, etc. that will allow to implement advanced user flows, functionality and automation.

See also:

* Python API reference

https://docs.conan.io/en/latest/conan_v2.html
https://www.youtube.com/watch?v=kKGglzm5ous
https://github.com/conan-io/tribe/blob/main/design/026-requirements_traits.md
https://github.com/conan-io/tribe/blob/main/design/027-package_types.md

Conan Documentation, Release 2.14.0

2.4 New build system integrations

Introduced in latest Conan 1.X, Conan 2 will use modern build system integrations like CMakeDeps and
CMakeToolchain that are fully transparent CMake integration (i.e. the consuming CMakeLists.txt doesn’t need
to be aware at all about Conan). These integrations can also achieve a better IDE integration, for example via CMakeP-
resets.json.

See also:

* Tools reference

2.5 New custom user commands

Conan 2 allows extending Conan with custom user commands, written in python that can be called as conan xxxx.
These commands can be shared and installed with conan config install, and have layers of commands and sub-
commands. The custom user commands use the new 2.0 public Python API to implement their functionality.

2.6 New CLI

Conan 2 has redesigned the CLI for better consistency, removing ambiguities, and improving the user experience.
The new CLI also sends all the information, warning, and error messages to stderr, while keeping the final result in
stdout, allowing multiple output formats like --format=html or --format=json and using redirects to create files
--format=json > myfile. json. The information provided by the CLI will be more structured and thorough so that
it can be used more easily for automation, especially in CI/CD systems.

See also:

* Commands reference

2.7 New deployers

Conan 2 implements ‘“deployers”, which can be called in the command line as conan install
--deployer=mydeploy, typically to perform copy operations from the Conan cache to user folders. Such deploy-
ers can be built-in (“full_deploy”, “direct_deploy” and “runtime_deploy” are provided so far), or user-defined, which
can be shared and managed with conan config install. Deployers run before generators, and they can change the
target folders. For example, if the --deployer=full_deploy deployer runs before CMakeDeps, the files generated
by CMakeDeps will point to the local copy in the user folder done by the full_deploy deployer, and not to the Conan

cache.

Deployers can be multi-configuration. Running conan install . --deployer=full_deploy repeatedly for dif-
ferent profiles, can achieve a fully self-contained project, including all the artifacts, binaries, and build files that is
completely independent of Conan and no longer require Conan at all to build.

10 Chapter 2. What’s new in Conan 2

Conan Documentation, Release 2.14.0

2.8 New package_id

Conan 2 defines a new, dynamic package_id that is a great improvement over the limitations of Conan 1.X. This
package_id will take into account the package types and types of requirements to implement a more meaningful
strategy, depending on the scenario. For example, it is well known that when an application myapp is linking a static
library mylib, any change in the binary of the static library mylib requires re-building the application myapp. So
Conan will default to a mode like full_mode that will generate a new myapp package_id, for every change in the
mylib recipe or binary. While a dependency between a static library mylib_a that is used by mylib_b in general
does not imply that a change in mylib_b always needs a rebuild of mylib_a, and that relationship can default to a
minor_mode mode. In Conan 2, the one doing modifications to mylib_a can better express whether the consumer
mylib_b needs to rebuild or not, based on the version bump (patch version bump will not trigger a rebuild while a
minor version bump will trigger it)

Furthermore the default versioning scheme in Conan has been generalized to any number of digits and letters, as
opposed to the official “semver” that uses just 3 fields.

2.9 compatibility.py

Conan 2 features a new extension mechanism to define binary compatibility at a global level. A compatibility.py
file in the Conan cache will be used to define which fallbacks of binaries should be used in case there is some missing
binary for a given package. Conan will provide a default one to account for cppstd compatibility, and executables
compatibility, but this extension is fully configurable by the user (and can also be shared and managed with conan
config install)

2.10 New lockfiles

Lockfiles in Conan 2 have been greatly simplified and made way more flexible. Lockfiles are now modeled as lists of
sorted references, which allow one single lockfile being used for multiple configurations, merging lockfiles, applying
partially defined lockfiles, being strict or non-strict, adding user defined constraints to lockfiles, and much more.

See also:
» Tutorial introduction to lockfiles
* https://github.com/conan-io/tribe/blob/main/design/034-new_lockfiles.md

e Tutorial about versioning and lockfiles

2.11 New configuration and environment management

The new configuration system called [conf] in profiles and command line, and introduced experimentally in Conan
1.X, is now the major mechanism to configure and control Conan behavior. The idea is that the configuration system
is used to transmit information from Conan (a Conan profile) to Conan (A Conan recipe, or a Conan build system
integration like CMakeToolchain). This new configuration system can define strings, boolean, lists, being cleaner,
more structured and powerful than using environment variables. A better, more explicit environment management,
also introduced in Conan 1.X is now the way to pass information from Conan (profiles) to tools (like compilers, build
systems).

See also:

* Reference of enviroment tools

2.8. New package_id 11

https://github.com/conan-io/tribe/blob/main/design/034-new_lockfiles.md

Conan Documentation, Release 2.14.0

2.12 Multi-revision cache

The Conan cache has been completely redesigned to allow storing more than one revision at a time. It has also shortened
the paths, using hashes, removing the need to use short_paths in Windows. Note that the cache is still not concurrent,
so parallel jobs or tasks should use independent caches.

2.13 New extensions plugins

Several extension points, named “plugins” have been added, to provide advanced and typically orthogonal function-
ality to what the Conan recipes implement. These plugins can be shared, managed and installed via conan config
install

2.13.1 Profile checker

A new profile.py extension point is provided that can be used to perform operations on the profile after it has been
processed. A default implementation that checks that the given compiler version is capable of supporting the given
compiler cppstd is provided, but this is fully customizable by the user.

2.13.2 Command wrapper

A new cmd_wrapper.py extension provides a way to wrap any conanfile.py command (i.e., anything that runs
inside self.run() in a recipe), in a new command. This functionality can be useful for wrapping build commands in
build optimization tools as IncrediBuild or compile caches.

2.13.3 Package signing

A new sign.py extension has been added to implement signing and verifying of packages. As the awareness about
the importance of software supply chain security grows, it is becoming more important the capability of being able to
sign and verify software packages. This extension point will soon get a plugin implementation based on Sigstore.

2.14 Package immutability optimizations

The thorough use of revisions (already introduced in Conan 1.X as opt-in in https://docs.conan.io/en/latest/
versioning/revisions.html) in Conan 2, together with the declaration of artifacts immutability allows for improved
processes, downloading, installing and updated dependencies as well as uploading dependencies.

The revisions allow accurate traceability of artifacts, and thus allows better update flows. For example, it will be
easier to get different binaries for different configurations from different repositories, as long as they were created from
the same recipe revision.

The package transfers, uploads, downloads, will also be more efficient, based on revisions. As long as a given
revision exists on the server or in the cache, Conan will not transfer artifacts at all for that package.

12 Chapter 2. What’s new in Conan 2

https://docs.conan.io/en/latest/versioning/revisions.html
https://docs.conan.io/en/latest/versioning/revisions.html

Conan Documentation, Release 2.14.0

2.15 Package lists

Conan 2 allows bulk operations over several recipes and packages with the “Package Lists” feature. This feature allows
to upload, download, remove and list several recipes and packages with one single command.

Package lists can also be created from a dependency graph resulting from a conan create or conan install com-
mand, so it is possible to upload to a server all packages that belong to a given dependency graph just chaining 2
commands.

See also:
* Read the example usages

» Package lists blog post

2.16 Metadata files

Conan 2 allows to store, upload, download, modify metadata files associated to recipes and packages. This feature can
be very useful to manage build logs, tests executable, test results, coverage data and many other different files needed
for traceability, compliance and business purposes.

See also:

* Metadata files blog post

2.17 Third party backup sources

When building packages for third parties with sources in the internet, those sources can be removed or changed. The
“backup sources” can automatically store a copy of those sources in your own server, so your builds are always fully
reproducible, no matter what happens to the original internet sources.

See also:

¢ the backup-sources blog post

2.18 Installing configuration from Conan packages

From Conan 2.2 it is possible to install configuration not only from git repos and http servers, but also from Conan
packages. Doing conan config install-pkg myconf/myversion over a Conan package myconf/myversion
stored in a a Conan server, allows to install the configuration files inside that package. It also allows to use version
ranges to update easily to the latest one within the range, and lockfiles to achieve reproducibility.

See also:

* Read the conan config install-pkg command reference

2.15. Package lists 13

https://blog.conan.io/2023/06/28/Conan-bulk-package-operations.html
https://blog.conan.io/2023/10/24/Conan-launches-metadata-files.html
https://blog.conan.io/2023/10/03/backup-sources-feature.html

Conan Documentation, Release 2.14.0

14 Chapter 2. What’s new in Conan 2

CHAPTER
THREE

INSTALL

Conan can be installed in many Operating Systems. It has been extensively used and tested in Windows, Linux (different
distros), OSX, and is also actively used in FreeBSD and Solaris SunOS. There are also several additional operating
systems on which it has been reported to work.

There are different ways to install Conan:

1. The preferred and strongly recommended way to install Conan is from PyPI, the Python Package Index, using
the pip command.

2. Use a system installer, or create your own self-contained Conan executable, to not require Python in your system.

3. Running Conan from sources.

3.1 Install with pip (recommended)

To install latest Conan 2 version using pip, you need a Python >= 3.6 distribution installed on your machine. Modern
Python distros come with pip pre-installed. However, if necessary you can install pip by following the instructions in
pip docs.

Install Conan:

[$ pip install conan }

Important: Please READ carefully
¢ Make sure that your pip installation matches your Python (>= 3.6) version.
¢ In Linux, you may need sudo permissions to install Conan globally.

e We strongly recommend using virtualenvs (virtualenvwrapper works great) for everything related to Python.
(check https://virtualenvwrapper.readthedocs.io/en/stable/, or https://pypi.org/project/virtualenvwrapper-win/
in Windows) With Python 3, the built-in module venv can also be used instead (check https://docs.python.org/3/
library/venv.html). If not using a virtualenv it is possible that conan dependencies will conflict with previously
existing dependencies, especially if you are using Python for other purposes.

* In OSX, especially the latest versions that may have System Integrity Protection, pip may fail. Try using
virtualenvs, or install it to the Python user install directory with § pip install --user conan.

* Some Linux distros, such as Linux Mint, require a restart (shell restart, or logout/system if not enough) after
installation, so Conan is found in the path.

15

https://pip.pypa.io/en/stable/installing/
https://virtualenvwrapper.readthedocs.io/en/stable/
https://pypi.org/project/virtualenvwrapper-win/
https://docs.python.org/3/library/venv.html
https://docs.python.org/3/library/venv.html

Conan Documentation, Release 2.14.0

3.1.1 Known installation issues with pip

When Conan is installed with pip install --user conan, a new directory is usually created for it. However, the
directory is not appended automatically to the PATH and the conan commands do not work. This can usually be solved
by restarting the session of the terminal or running the following command:

[$ source ~/.profile J

3.1.2 Update

If installed via pip, Conan version can be updated with:

[$ pip install conan --upgrade # Might need sudo or --user]

The upgrade shouldn’t affect the installed packages or cache information. If the cache becomes inconsistent somehow,
you may want to remove its content by deleting it (<userhome>/.conan2).

3.2 Install with pipx

In certain scenarios, attempting to install with pip may yield the following error:

error: externally-managed-environment

x This environment is externally managed
To install Python packages system-wide, try apt install
python3-xyz, where xyz is the package you are trying to
install.

This is because some modern Linux distributions have started marking their Python installations as “externally man-
aged”, which means that the system’s package manager is responsible for managing Python packages. Installing pack-
ages globally or even in the user space can interfere with system operations and potentially break system tools (check
PEP-668 for more detailed information).

For those cases, it’s recommended to use pipx to install Conan. pipx creates a virtual environment for each Python
application, ensuring that dependencies do not conflict. The advantage is that it isolates Conan and its dependencies
from the system Python and avoids potential conflicts with system packages while providing a clean environment for
Conan to run.

To install Conan with pipx:

1. Ensure pipx is installed on your system. If it isn’t, check the installation guidelines in the pipx documentation.
For Debian-based distributions, you can install pipx using the system package manager:

$ apt-get install pipx
$ pipx ensurepath

(Note: The package name might vary depending on the distribution)

2. Restart your terminal and then install Conan using pipx:

[$ pipx install conan J

3. Now you can use Conan as you typically would.

16 Chapter 3. Install

https://peps.python.org/pep-0668/
https://pypa.github.io/pipx/installation/

Conan Documentation, Release 2.14.0

3.3 Use a system installer or create a self-contained executable

There will be a number of existing installers in Conan downloads for OSX Brew, Debian, Windows, Linux Arch, that
will not require Python first.

We also distribute Conan binaries for Windows, Linux, and macOS in a compressed file that you can uncompress in
your system and run directly.

Warning: If you are using macOS, please be aware of the Gatekeeper feature that may quarantine the compressed
binaries if downloaded directly using a web browser. To avoid this issue, download them using a tool such as curl,
wget, or similar.

If there is no installer for your platform, you can create your own Conan executable, with the pyinstaller.py utility
in the repo. This process is able to create a self-contained Conan executable that contains all it needs, including the
Python interpreter, so it wouldn’t be necessary to have Python installed in the system.

You can do it with:

$ git clone https://github.com/conan-io/conan conan_src

$ cd conan_src

$ git checkout develop2 # or to the specific tag you want to
$ pip install -e .

$ python pyinstaller.py

It is important to install the dependencies and the project first with pip install -e . which configures the project
as “editable”, that is, to run from the current source folder. After creating the executable, it can be uninstalled with pip.

This has to run in the same platform that will be using the executable, pyinstaller does not cross-build. The resulting
executable can be just copied and put in the system PATH of the running machine to be able to run Conan.

3.4 Install from source

You can run Conan directly from source code. First, you need to install Python and pip.
Clone (or download and unzip) the git repository and install it.

Conan 2 is still in beta stage, so you must check the develop2 branch of the repository:

clone folder name matters, to avoid imports issues

git clone https://github.com/conan-io/conan.git conan_src
cd conan_src

git fetch --all

git checkout -b develop2 origin/develop2

python -m pip install -e .

Y Y WY I

And test your conan installation:

[$ conan

You should see the Conan commands help.

3.3. Use a system installer or create a self-contained executable 17

https://conan.io/downloads
https://github.com/conan-io/conan/releases/latest

Conan Documentation, Release 2.14.0

18 Chapter 3. Install

CHAPTER
FOUR

TUTORIAL

The purpose of this section is to guide you through the most important Conan features with practical examples. From
using libraries already packaged by Conan, to how to package your libraries and store them in a remote server alongside
all the precompiled binaries.

4.1 Consuming packages

This section shows how to build your projects using Conan to manage your dependencies. We will begin with a basic
example of a C project that uses CMake and depends on the zlib library. This project will use a conanfile.txt file to
declare its dependencies.

We will also cover how you can not only use ‘regular’ libraries with Conan but also manage tools you may need to use
while building: like CMake, msys2, MinGW, etc.

Then, we will explain different Conan concepts like settings and options and how you can use them to build your
projects for different configurations like Debug, Release, with static or shared libraries, etc.

Also, we will explain how to transition from the conanfile.txt file we used in the first example to a more powerful
conanfile.py.

After that, we will introduce the concept of Conan build and host profiles and explain how you can use them to cross-
compile your application to different platforms.

Then, in the “Introduction to versioning” we will learn about using different versions, defining requirements with
version ranges, the concept of revisions and a brief introduction to lockfiles to achieve reproducibility of the dependency
graph.

4.1.1 Build a simple CMake project using Conan
Let’s get started with an example: We are going to create a string compressor application that uses one of the most
popular C++ libraries: Zlib.

We’ll use CMake as build system in this case but keep in mind that Conan works with any build system and is not
limited to using CMake. You can check more examples with other build systems in the Read More section.

Please, first clone the sources to recreate this project, you can find them in the examples2 repository in GitHub:

$ git clone https://github.com/conan-io/examples2.git
$ cd examples2/tutorial/consuming_packages/simple_cmake_project

We start from a very simple C language project with this structure:

19

https://zlib.net/
https://github.com/conan-io/examples2

Conan Documentation, Release 2.14.0

CMakeLists.txt
src
L main.c

This project contains a basic CMakeLists.txt including the zlib dependency and the source code for the string compres-

sor program in main.c.

Let’s have a look at the main.c file:

Listing 1: main.c

#include <stdlib.h>
#include <stdio.h>
#include <string.h>

#include <zlib.h>

int main(void) {

char buffer_in [256] = {"Conan is a MIT-licensed, Open Source package manager for C.

—and C++ development

"for C and C++ development, allowing development teams to.

—~easily and efficiently

"manage their packages and dependencies across platforms and.

—build systems."};
char buffer_out [256] = {0};

z_stream defstream;

defstream.zalloc = Z_NULL;
defstream.zfree = Z_NULL;
defstream.opaque = Z_NULL;

defstream.avail_in = (uInt) strlen(buffer_in);
defstream.next_in = (Bytef *) buffer_in;
defstream.avail_out = (uInt) sizeof(buffer_out);

defstream.next_out = (Bytef *)

buffer_out;

deflateInit(&defstream, Z_BEST_COMPRESSION);

deflate(&defstream, Z_FINISH);
deflateEnd(&defstream) ;

printf("Uncompressed size is: %lu\n", strlen(buffer_in));
printf("Compressed size is: %lu\n", strlen(buffer_out));

printf("ZLIB VERSION: %s\n", zlibVersion());

return EXIT_SUCCESS;

Also, the contents of CMakelLists.txt are:

Listing 2: CMakeLists.txt

cmake_minimum_required (VERSION 3.15)

project(compressor C)

(continues on next page)

20

Chapter 4. Tutorial

Conan Documentation, Release 2.14.0

(continued from previous page)

find_package (ZLIB REQUIRED)

add_executable(${PROJECT_NAME} src/main.c)
target_link libraries(${PROJECT_NAME} ZLIB::ZLIB)

Our application relies on the Zlib library. Conan, by default, tries to install libraries from a remote server called
ConanCenter. You can search there for libraries and also check the available versions. In our case, after checking the
available versions for Zlib we choose to use one of the latest versions: zlib/1.2.11.

The easiest way to install the Zlib library and find it from our project with Conan is using a conanfile.txt file. Let’s
create one with the following content:

Listing 3: conanfile.txt

[requires]
z1lib/1.2.11

[generators]
CMakeDeps
CMakeToolchain

As you can see we added two sections to this file with a syntax similar to an INI file.
* [requires] section is where we declare the libraries we want to use in the project, in this case, zlib/1.2.11.

* [generators] section tells Conan to generate the files that the compilers or build systems will use to find the
dependencies and build the project. In this case, as our project is based in CMake, we will use CMakeDeps to
generate information about where the Zlib library files are installed and CMakeToolchain to pass build informa-
tion to CMake using a CMake toolchain file.

Besides the conanfile.txt, we need a Conan profile to build our project. Conan profiles allow users to define a con-
figuration set for things like the compiler, build configuration, architecture, shared or static libraries, etc. Conan, by
default, will not try to detect a profile automatically, so we need to create one. To let Conan try to guess the profile,
based on the current operating system and installed tools, please run:

[conan profile detect --force]

This will detect the operating system, build architecture and compiler settings based on the environment. It will also
set the build configuration as Release by default. The generated profile will be stored in the Conan home folder with
name default and will be used by Conan in all commands by default unless another profile is specified via the command
line. An example of the output of this command for MacOS would be:

$ conan profile detect --force
Found apple-clang 14.0
apple-clang>=13, using the major as version
Detected profile:

[settings]

arch=x86_64

build_type=Release
compiler=apple-clang
compiler.cppstd=gnul?7
compiler.libcxx=1libc++
compiler.version=14

os=Macos

4.1. Consuming packages 21

https://conan.io/center/
https://conan.io/center/zlib

Conan Documentation, Release 2.14.0

Note: A note about the detected C++ standard by Conan

Conan will always set the default C++ standard as the one that the detected compiler version uses by default, except
for the case of macOS using apple-clang. In this case, for apple-clang>=11, it sets compiler.cppstd=gnul?. If you
want to use a different C++ standard, you can edit the default profile file directly. First, get the location of the default
profile using:

$ conan profile path default
/Users/user/.conan2/profiles/default

Then open and edit the file and set compiler.cppstd to the C++ standard you want to use.

Note: Using a compiler other than the auto-detected one

If you want to change a Conan profile to use a compiler different from the default one, you need to change the compiler
setting and also tell Conan explicitly where to find it using the fools.build:compiler_executables configuration.

We will use Conan to install Zlib and generate the files that CMake needs to find this library and build our project. We
will generate those files in the folder build. To do that, run:

[$ conan install . --output-folder=build --build=missing

You will get something similar to this as the output of that command:

$ conan install . --output-folder=build --build=missing

———————— Computing dependency graph ----------
z1lib/1.2.11: Not found in local cache, looking in remotes...
z1lib/1.2.11: Checking remote: conancenter
z1ib/1.2.11: Trying with 'conancenter'...
Downloading conanmanifest.txt
Downloading conanfile.py
Downloading conan_export.tgz
Decompressing conan_export.tgz
z1ib/1.2.11: Downloaded recipe revision flfadf0d3b196dc®332750354ad8ab7b
Graph root
conanfile.txt: /home/conan/examples2/tutorial/consuming_packages/simple_cmake_
—.project/conanfile.txt
Requirements
z1lib/1.2.11#£f1fadf0d3b196dc0332750354ad8ab7b - Downloaded (conancenter)

———————— Computing necessary packages ----------

Requirements
z1lib/1.2.11#£f1fadf0d3b196dc0332750354ad8ab7b:cdc9a35e010a17£fc90bb845108cf86cfcbce64bf

—#dd7bf2alab4eb5d1943598c09b616121 - Download (conancenter)

Installing (downloading, building) binaries...

z1ib/1.2.11: Retrieving package cdc9a35e010al17fc90bb845108cf86cfcbce64bf from remote
< 'conancenter'

Downloading conanmanifest.txt

(continues on next page)

22 Chapter 4. Tutorial

Conan Documentation, Release 2.14.0

(continued from previous page)

Downloading conaninfo.txt

Downloading conan_package.tgz

Decompressing conan_package.tgz

zlib/1.2.11: Package installed cdc9a35e010a17fc90bb845108cf86cfcbcebdbf
z1ib/1.2.11: Downloaded package revision dd7bf2alab4eb5d1943598c09b616121

———————— Finalizing install (deploy, generators) ----------
conanfile.txt: Generator 'CMakeToolchain' calling 'generate()'
conanfile.txt: Generator 'CMakeDeps' calling 'generate()'
conanfile.txt: Generating aggregated env files

As you can see in the output, there are a couple of things that happened:

* Conan installed the ZIib library from the remote server, which should be the Conan Center server by default if
the library is available. This server stores both the Conan recipes, which are the files that define how libraries
must be built, and the binaries that can be reused so we don’t have to build from sources every time.

* Conan generated several files under the build folder. Those files were generated by both the CMakeToolchain
and CMakeDeps generators we set in the conanfile.txt. CMakeDeps generates files so that CMake finds the Zlib
library we have just downloaded. On the other side, CMakeToolchain generates a toolchain file for CMake so
that we can transparently build our project with CMake using the same settings that we detected for our default
profile.

Now we are ready to build and run our compressor app:

Listing 4: Windows

$ cd build

assuming Visual Studio 15 2017 is your VS version and that it matches your default.
—profile

$ cmake .. -G "Visual Studio 15 2017" -DCMAKE_TOOLCHAIN_FILE="conan_toolchain.cmake"
$ cmake --build . --config Release

[100%] Built target compressor
$ Release\compressor.exe
Uncompressed size is: 233
Compressed size is: 147

ZLIB VERSION: 1.2.11

Listing 5: Linux, macOS

$ cd build
$ cmake .. -DCMAKE_TOOLCHAIN_FILE=conan_toolchain.cmake -DCMAKE_BUILD_TYPE=Release
$ cmake --build .

[100%] Built target compressor
$./compressor

Uncompressed size is: 233
Compressed size is: 147

ZLIB VERSION: 1.2.11

Note that CMakeToolchain might generate CMake presets files, that allows users with a modern CMake (>=3.23) to
use them with cmake --preset instead of passing the toolchain file argument. See Building with CMake presets

See also:

4.1. Consuming packages 23

Conan Documentation, Release 2.14.0

* Building with CMake presets
* Getting started with Autotools
* Getting started with Meson

* Getting started with Bazel

* Getting started with Bazel 7.x

4.1.2 Using build tools as Conan packages

In the previous example, we built our CMake project and used Conan to install and locate the Zlib library. We used
the CMake already installed in our system to build our compressor binary. However, what happens if you want to build
your project with a specific CMake version, different from the one already installed system-wide? Conan can also
help you install these tools and use them to compile consumer projects or other Conan packages. In this case, you can
declare this dependency in Conan using a type of requirement named tool_requires. Let’s see an example of how
to add a tool_requires to our project and use a different CMake version to build it.

Please, first clone the sources to recreate this project. You can find them in the examples2 repository in GitHub:

$ git clone https://github.com/conan-io/examples2.git
$ cd examples2/tutorial/consuming_packages/tool_requires

The structure of the project is the same as the one of the previous example:

conanfile.txt
E CMakeLists.txt
src
L— main.c

The main difference is the addition of the [t00l_requires] section in the conanfile.txt file. In this section, we declare
that we want to build our application using CMake v3.22.6.

Listing 6: conanfile.txt

[requires]
z1lib/1.2.11

[tool_requires]
cmake/3.22.6

[generators]
CMakeDeps
CMakeToolchain

Important: Please note that this conanfile.txt will install zlib/1.2.11 and cmake/3.22.6 separately. However, if Conan
does not find a binary for Zlib in Conan Center and it needs to be built from sources, a CMake installation must already
be present in your system, because the cmake/3.22.6 declared in your conanfile.txt only applies to your current
project, not all dependencies. If you want to use that cmake/3.22.6 to also build Zlib, when installing if necessary, you
may add the [tool_requires] section to the profile you are using. Please check the profile doc for more information.

We also added a message to the CMakeLists.txt to output the CMake version:

24 Chapter 4. Tutorial

https://github.com/conan-io/examples2

Conan Documentation, Release 2.14.0

Listing 7: CMakeLists.txt

cmake_minimum_required(VERSION 3.15)
project(compressor C)

find_package (ZLIB REQUIRED)
message("Building with CMake version: ${CMAKE_VERSION}")

add_executable (${PROJECT_NAME} src/main.c)
target_link_libraries(${PROJECT_NAME} ZLIB::ZLIB)

Now, as in the previous example, we will use Conan to install Zlib and CMake 3.22.6 and generate the files to find
both of them. We will generate those files the folder build. To do that, just run:

[$ conan install . --output-folder=build --build=missing

Note: PowerShell users need to add --conf=tools.env.virtualenv:powershell=<executable> (e.g.,
powershell.exe or pwsh) to the previous command to generate .ps1 files instead of .bat files. Setting this config-
uration to True or False is deprecated as of Conan 2.11.0.

To avoid the need to add this line every time, we recommend configuring it in the [conf] section of your profile. For
detailed information, please refer to the profiles section.

You can check the output:

———————— Computing dependency graph ----------
cmake/3.22.6: Not found in local cache, looking in remotes...
cmake/3.22.6: Checking remote: conancenter
cmake/3.22.6: Trying with 'conancenter'...
Downloading conanmanifest.txt
Downloading conanfile.py
cmake/3.22.6: Downloaded recipe revision 3e3d8f3a848b2a60afafbe7a®0955085a
Graph root
conanfile.txt: /Users/user/Documents/developer/conan/examples2/tutorial/consuming_
—.packages/tool_requires/conanfile.txt
Requirements
z1lib/1.2.11#£f1fadf0d3b196dc0332750354ad8ab7b - Cache
Build requirements
cmake/3.22.6#3e3d8f3a848b2a60afafbe7a®0955085a - Downloaded (conancenter)

———————— Computing necessary packages ----------
Requirements
z1lib/1.2.11#£1fadf0d3b196dc0332750354ad8ab7b:2a823£fda5c9d8b4£682ch27c30caf4124c5726c8
—#48bc7191ecleed467£1e951033d7d41b2 - Cache
Build requirements
cmake/3.22.6
—#3e3d8f3a848b2a60afafbe7a0955085a: £2£48d9745706caf77ea883a5855538256e7£2d4
—#6c519070£013da19afd56b52c465b596 - Download (conancenter)

(continues on next page)

4.1. Consuming packages 25

Conan Documentation, Release 2.14.0

(continued from previous page)

Installing (downloading, building) binaries...

cmake/3.22.6: Retrieving package £f2f48d9745706caf77ea883a5855538256e7f2d4 from remote
— 'conancenter'

Downloading conanmanifest.txt

Downloading conaninfo.txt

Downloading conan_package.tgz

Decompressing conan_package.tgz

cmake/3.22.6: Package installed £f2f48d9745706caf77ea883a5855538256e7f2d4
cmake/3.22.6: Downloaded package revision 6c519070f013dal9afd56b52c465b596
z1lib/1.2.11: Already installed!

———————— Finalizing install (deploy, generators) ----------
conanfile.txt: Generator 'CMakeToolchain' calling 'generate()'
conanfile.txt: Generator 'CMakeDeps' calling 'generate()'
conanfile.txt: Generating aggregated env files

Now, if you check the folder you will see that Conan generated a new file called conanbuild.sh/bat. This is the result
of automatically invoking a VirtualBuildEnv generator when we declared the tool_requires in the conanfile.txt.
This file sets some environment variables like a new PATH that we can use to inject to our environment the location of
CMake v3.22.6.

Activate the virtual environment, and run cmake --version to check that you have installed the new CMake version
in the path.

Listing 8: Windows

$ cd build
$ conanbuild.bat
conanbuild.psl if using Powershell

Listing 9: Linux, macOS

$ cd build

$ source conanbuild.sh

Capturing current environment in deactivate_conanbuildenv-release-x86_64.sh
Configuring environment variables

Run cmake and check the version:

$ cmake --version
cmake version 3.22.6

As you can see, after activating the environment, the CMake v3.22.6 binary folder was added to the path and is the
currently active version now. Now you can build your project as you previously did, but this time Conan will use CMake
3.22.6 to build it:

Listing 10: Windows

assuming Visual Studio 15 2017 is your VS version and that it matches your default.

—.profile
$ cmake .. -G "Visual Studio 15 2017" -DCMAKE_TOOLCHAIN_FILE=conan_toolchain.cmake
$ cmake --build . --config Release

(continues on next page)

26 Chapter 4. Tutorial

Conan Documentation, Release 2.14.0

(continued from previous page)

Building with CMake version: 3.22.6

[100%] Built target compressor
$ Release\compressor.exe
Uncompressed size is: 233
Compressed size is: 147

ZLIB VERSION: 1.2.11

Listing 11: Linux, macOS

$ cmake .. -DCMAKE_TOOLCHAIN_FILE=conan_toolchain.cmake -DCMAKE_BUILD_TYPE=Release
$ cmake --build .

Building with CMake version: 3.22.6

[100%] Built target compressor
$./compressor

Uncompressed size is: 233
Compressed size is: 147

ZLIB VERSION: 1.2.11

Note that when we activated the environment, a new file named deactivate_conanbuild.sh/bat was created in
the same folder. If you source this file you can restore the environment as it was before.

Listing 12: Windows

[$ deactivate_conanbuild.bat

Listing 13: Linux, macOS

$ source deactivate_conanbuild.sh
Restoring environment

Run cmake and check the version, it will be the version that was installed previous to the environment activation:

$ cmake --version
cmake version 3.22.0

Note: Best practice

tool_requires and tool packages are intended for executable applications, like cmake or ninja. Do not use
tool_requires to depend on library or library-like dependencies.

See also:
e Using [system_tools] in your profiles.
* Creating recipes for tool_requires: packaging build tools.
* Using the same requirement as a requires and as a tool_requires

* Using a MinGW as tool_requires to build with gcc in Windows

4.1. Consuming packages 27

Conan Documentation, Release 2.14.0

 Using tool_requires in profiles

* Using conf to set a toolchain from a tool requires

4.1.3 Building for multiple configurations: Release, Debug, Static and Shared

Please, first clone the sources to recreate this project. You can find them in the examples2 repository in GitHub:

$ git clone https://github.com/conan-io/examples2.git
$ cd examples2/tutorial/consuming_packages/different_configurations

So far, we built a simple CMake project that depended on the zlib library and learned about tool_requires, a special
type of requirements for build-tools like CMake. In both cases, we did not specify anywhere that we wanted to build
the application in Release or Debug mode, or if we wanted to link against static or shared libraries. That is because
Conan, if not instructed otherwise, will use a default configuration declared in the ‘default profile’. This default profile
was created in the first example when we run the conan profile detect command. Conan stores this file in the
/profiles folder, located in the Conan user home. You can check the contents of your default profile by running the
conan config home command to get the location of the Conan user home and then showing the contents of the
default profile in the /profiles folder:

$ conan config home
Current Conan home: /Users/tutorial_user/.conan2

output the file contents
$ cat /Users/tutorial_user/.conan2/profiles/default
[settings]

os=Macos

arch=x86_64
compiler=apple-clang
compiler.version=14.0
compiler.libcxx=libc++
compiler.cppstd=gnull
build_type=Release
[options]

[tool_requires]

[env]

The default profile can also be checked with the command "conan profile show"

As you can see, the profile has different sections. The [settings] section is the one that has information about things
like the operating system, architecture, compiler, and build configuration.

When you call a Conan command setting the --profile argument, Conan will take all the information from the profile
and apply it to the packages you want to build or install. If you don’t specify that argument it’s equivalent to call it with
--profile=default. These two commands will behave the same:

$ conan install . --build=missing
$ conan install . --build=missing --profile=default

You can store different profiles and use them to build for different settings. For example, to use a build_type=Debug,
or adding a tool_requires to all the packages you build with that profile. We will create a debug profile to try
building with different configurations:

28 Chapter 4. Tutorial

https://github.com/conan-io/examples2

Conan Documentation, Release 2.14.0

Listing 14: <conan home>/profiles/debug

[settings]

os=Macos

arch=x86_64
compiler=apple-clang
compiler.version=14.0
compiler.libcxx=1libc++
compiler.cppstd=gnull
build_type=Debug

Modifying settings: use Debug configuration for the application and its dependencies

Using profiles is not the only way to set the configuration you want to use. You can also override the profile settings
in the Conan command using the --settings argument. For example, you can build the project from the previous
examples in Debug configuration instead of Release.

Before building, please check that we modified the source code from the previous example to show the build configu-
ration the sources were built with:

#include <stdlib.h>

int main(void) {

#1ifdef NDEBUG

printf("Release configuration!\n");
#else

printf("Debug configuration!\n");
#endif

return EXIT_SUCCESS;

Now let’s build our project for Debug configuration:

[$ conan install . --output-folder=build --build=missing --settings=build_type=Debug

As we explained above, this is the equivalent of having debug profile and running these command using the
--profile=debug argument instead of the --settings=build_type=Debug argument.

This conan install command will check if we already have the required libraries in the local cache (Zlib) for Debug
configuration and obtain them if not. It will also update the build configuration in the conan_toolchain.cmake and
CMakePresets. json files that the CMakeToolchain generator creates so that when we build the application it’s built
in Debug configuration. Now build your project as you did in the previous examples and check in the output how it
was built in Debug configuration:

Listing 15: Windows

assuming Visual Studio 15 2017 is your VS version and that it matches your default.
—profile

$ cd build

$ cmake .. -G "Visual Studio 15 2017" -DCMAKE_TOOLCHAIN_FILE=conan_toolchain.cmake

(continues on next page)

4.1. Consuming packages 29

Conan Documentation, Release 2.14.0

(continued from previous page)

$ cmake --build . --config Debug
$ Debug\compressor.exe
Uncompressed size is: 233
Compressed size is: 147

ZLIB VERSION: 1.2.11

Debug configuration!

Listing 16: Linux, macOS

$ cd build

$ cmake .. -DCMAKE_TOOLCHAIN_FILE=conan_toolchain.cmake -DCMAKE_BUILD_TYPE=Debug
$ cmake --build .

$./compressor

Uncompressed size is: 233

Compressed size is: 147

ZLIB VERSION: 1.2.11

Debug configuration!

Modifying options: linking the application dependencies as shared libraries

So far, we have been linking Zlib statically in our application. That’s because in the Zlib’s Conan package there’s an
attribute set to build in that mode by default. We can change from static to shared linking by setting the shared option
to True using the --options argument. To do so, please run:

[$ conan install . --output-folder=build --build=missing ——options:zlib/l.z.11:shared=True]

Doing this, Conan will install the Zlib shared libraries, generate the files to build with them and, also the necessary
files to locate those dynamic libraries when running the application.

Note: Options are defined per-package. In this case we were defining that we wanted that specific version of zlib/1.2.11
as a shared library. If we had other dependencies and we want all of our dependencies (whenever possible) as shared
libraries, we would use -0 *:shared=True, with the * pattern that matches all package references.

Let’s build the application again after configuring it to link ZIib as a shared library:

Listing 17: Windows

$ cd build

assuming Visual Studio 15 2017 is your VS version and that it matches your default.,
—profile

$ cmake .. -G "Visual Studio 15 2017" -DCMAKE_TOOLCHAIN_FILE=conan_toolchain.cmake

$ cmake --build . --config Release

[100%] Built target compressor

Listing 18: Linux, Macos

$ cd build
$ cmake .. -DCMAKE_TOOLCHAIN_FILE=conan_toolchain.cmake -DCMAKE_BUILD_TYPE=Release
$ cmake --build .

(continues on next page)

30 Chapter 4. Tutorial

Conan Documentation, Release 2.14.0

(continued from previous page)

[100%] Built target compressor

Now, if you try to run the compiled executable you will see an error because the executable can’t find the shared libraries
for ZIib that we just installed.

Listing 19: Windows

$ Release\compressor.exe

(on a pop-up window) The code execution cannot proceed because zlibl.dll was not found..
—Reinstalling the program may fix this problem.

This error depends on the console being used and may not always pop up.

It could run correctly if the console gets the zlib dll1 from a different path.

Listing 20: Linux

$./compressor
./compressor: error while loading shared libraries: libz.so.l: cannot open shared object.
—file: No such file or directory

Listing 21: Macos

$./compressor
./compressor: dyld[41259]: Library not loaded: @rpath/libz.1.dylib

This is because shared libraries (.dll in windows, .dylib in OSX and .so in Linux), are loaded at runtime. That means
that the application executable needs to know where are the required shared libraries when it runs. On Windows, the
dynamic linker will search in the same directory then in the PATH directories. On OSX, it will search in the directories
declared in DYLD_LIBRARY PATH as on Linux will use the LD_LIBRARY PATH.

Conan provides a mechanism to define those variables and make it possible, for executables, to find and load these
shared libraries. This mechanism is the VirtualRunEnv generator. If you check the output folder you will see that Co-
nan generated a new file called conanrun. sh/bat. This is the result of automatically invoking that VirtualRunEnv
generator when we activated the shared option when doing the conan install. This generated script will set the
PATH, LD_LIBRARY_PATH, DYLD_LIBRARY_PATH and DYLD_FRAMEWORK_PATH environment vari-
ables so that executables can find the shared libraries.

Activate the virtual environment, and run the executables again:

Listing 22: Windows

$ conanrun.bat

$ Release\compressor.exe
Uncompressed size is: 233
Compressed size is: 147

Listing 23: Linux, macOS

$ source conanrun.sh

$./compressor
Uncompressed size is: 233
Compressed size is: 147

4.1. Consuming packages 31

Conan Documentation, Release 2.14.0

Just as in the previous example with the VirtualBuildEnv generator, when we run the conanrun.sh/bat script a
deactivation script called deactivate_conanrun.sh/bat is created to restore the environment. Source or run it to
do so:

Listing 24: Windows

[$ deactivate_conanrun.bat]

Listing 25: Linux, macOS

[$ source deactivate_conanrun.sh J

Difference between settings and options

You may have noticed that for changing between Debug and Release configuration we used a Conan setting, but when
we set shared mode for our executable we used a Conan option. Please, note the difference between settings and
options:

* settings are typically a project-wide configuration defined by the client machine. Things like the operating
system, compiler or build configuration that will be common to several Conan packages and would not make
sense to define one default value for only one of them. For example, it doesn’t make sense for a Conan package
to declare “Visual Studio” as a default compiler because that is something defined by the end consumer, and
unlikely to make sense if they are working in Linux.

* options are intended for package-specific configuration that can be set to a default value in the recipe. For
example, one package can define that its default linkage is static, and this is the linkage that should be used if
consumers don’t specify otherwise.

Introducing the concept of Package ID
When consuming packages like Zlib with different settings and options, you might wonder how Conan determines
which binary to retrieve from the remote. The answer lies in the concept of the package_id.

The package_id is an identifier that Conan uses to determine the binary compatibility of packages. It is computed based
on several factors, including the package’s settings, options, and dependencies. When you modify any of these factors,
Conan computes a new package_id to reference the corresponding binary.

Here’s a breakdown of the process:

1. Determine Settings and Options: Conan first retrieves the user’s input settings and options. These can come
from the command line or profiles like —settings=build_type=Debug or —profile=debug.

2. Compute the Package ID: With the current values for settings, options, and dependencies, Conan computes a
hash. This hash serves as the package_id, representing the binary package’s unique identity.

3. Fetch the Binary: Conan then checks its cache or the specified remote for a binary package with the computed
package_id. 1If it finds a match, it retrieves that binary. If not, Conan can build the package from source or
indicate that the binary is missing.

In the context of our tutorial, when we consumed Zlib with different settings and options, Conan used the package_id
to ensure that it fetched the correct binary that matched our specified configuration.

See also:
e VirtualRunEny reference

* Cross-compiling using —profile:build and —profile:host

32 Chapter 4. Tutorial

Conan Documentation, Release 2.14.0

e Conan packages binary compatibility: the package ID
* Installing configurations with conan config install

* VS Multi-config

* How settings and options influence the package id

* Using patterns for settings and options

4.1.4 Understanding the flexibility of using conanfile.py vs conanfile.txt

In the previous examples, we declared our dependencies (Zlib and CMake) in a conanfile.txt file. Let’s have a look at
that file:

Listing 26: conanfile.txt

[requires]
z1lib/1.2.11

[tool_requires]
cmake/3.22.6

[generators]
CMakeDeps
CMakeToolchain

Using a conanfile.txt to build your projects using Conan it’s enough for simple cases, but if you need more flexibility you
should use a conanfile.py file where you can use Python code to make things such as adding requirements dynamically,
changing options depending on other options or setting options for your requirements. Let’s see an example on how to
migrate to a conanfile.py and use some of those features.

Please, first clone the sources to recreate this project. You can find them in the examples2 repository in GitHub:

$ git clone https://github.com/conan-io/examples2.git
$ cd examples2/tutorial/consuming_packages/conanfile_py

Check the contents of the folder and note that the contents are the same that in the previous examples but with a
conanfile.py instead of a conanfile.txt.

CMakeLists.txt
E conanfile.py
src
L— main.c

Remember that in the previous examples the conanfile.txt had this information:

Listing 27: conanfile.txt

[requires]
z1lib/1.2.11

[tool_requires]
cmake/3.22.6

(continues on next page)

4.1. Consuming packages 33

https://github.com/conan-io/examples2

Conan Documentation, Release 2.14.0

(continued from previous page)
[generators]

CMakeDeps
CMakeToolchain

We will translate that same information to a conanfile.py. This file is what is typically called a “Conan recipe”. It
can be used for consuming packages, like in this case, and also to create packages. For our current case, it will define
our requirements (both libraries and build tools) and logic to modify options and set how we want to consume those
packages. In the case of using this file to create packages, it can define (among other things) how to download the
package’s source code, how to build the binaries from those sources, how to package the binaries, and information for
future consumers on how to consume the package. We will explain how to use Conan recipes to create packages in the
Creating Packages section later.

The equivalent of the conanfile.txt in form of Conan recipe could look like this:

Listing 28: conanfile.py

from conan import ConanFile

class CompressorRecipe(ConanFile):
settings = "os", "compiler", "build_type", "arch"
generators = "CMakeToolchain", "CMakeDeps"

def requirements(self):
self.requires("zlib/1.2.11")

def build_requirements(self):
self.tool_requires("cmake/3.22.6")

To create the Conan recipe we declared a new class that inherits from the ConanFile class. This class has different
class attributes and methods:

* settings this class attribute defines the project-wide variables, like the compiler, its version, or the OS itself that
may change when we build our project. This is related to how Conan manages binary compatibility as these
values will affect the value of the package ID for Conan packages. We will explain how Conan uses this value
to manage binary compatibility later.

¢ generators this class attribute specifies which Conan generators will be run when we call the conan install
command. In this case, we added CMakeToolchain and CMakeDeps as in the conanfile.txt.

* requirements() in this method we use the self.requires() method to declare the z/ib/1.2.11 dependency.

¢ build_requirements() in this method we use the self.tool_requires() method to declare the cmake/3.22.6
dependency.

Note: It’s not strictly necessary to add the dependencies to the tools in build_requirements(), as in theory every-
thing within this method could be done in the requirements () method. However, build_requirements() provides
a dedicated place to define tool_requires and test_requires, which helps in keeping the structure organized and
clear. For more information, please check the requirements() and build_requirements() docs.

You can check that running the same commands as in the previous examples will lead to the same results as before.

34 Chapter 4. Tutorial

Conan Documentation, Release 2.14.0

Listing 29: Windows

$ conan install . --output-folder=build --build=missing

$ cd build

$ conanbuild.bat

assuming Visual Studio 15 2017 is your VS version and that it matches your default.,

—profile
$ cmake .. -G "Visual Studio 15 2017" -DCMAKE_TOOLCHAIN_FILE=conan_toolchain.cmake
$ cmake --build . --config Release

Building with CMake version: 3.22.6
[100%] Built target compressor

$ Release\compressor.exe
Uncompressed size is: 233
Compressed size is: 147
ZLIB VERSION: 1.2.11

$ deactivate_conanbuild.bat

Listing 30: Linux, macOS

$ conan install . --output-folder build --build=missing

$ cd build

$ source conanbuild.sh

Capturing current environment in deactivate_conanbuildenv-release-x86_64.sh
Configuring environment variables

$ cmake .. -DCMAKE_TOOLCHAIN_FILE=conan_toolchain.cmake -DCMAKE_BUILD_TYPE=Release
$ cmake --build .

Building with CMake version: 3.22.6
[100%] Built target compressor

$./compressor

Uncompressed size is: 233
Compressed size is: 147

ZLIB VERSION: 1.2.11

$ source deactivate_conanbuild.sh

So far we have achieved the same functionality we had using a conanfile.txt, let’s see how we can take advantage of
the capabilities of the conanfile.py to define the project structure we want to follow and also to add some logic using
Conan settings and options.

4.1. Consuming packages 35

Conan Documentation, Release 2.14.0

Use the layout() method

In the previous examples, every time we executed a conan install command, we had to use the —output-folder argument
to define where we wanted to create the files that Conan generates. There’s a neater way to decide where we want
Conan to generate the files for the build system that will allow us to decide, for example, if we want different output
folders depending on the type of CMake generator we are using. You can define this directly in the conanfile.py inside
the layout() method and make it work for every platform without adding more changes.

Listing 31: conanfile.py

import os

from conan import ConanFile

class CompressorRecipe(ConanFile):
settings = "os", "compiler", "build_type", "arch"
generators = "CMakeToolchain", "CMakeDeps"

def requirements(self):
self.requires("zlib/1.2.11")
if self.settings.os == "Windows":
self.requires("base64/0.4.0")

def build_requirements(self):
if self.settings.os != "Windows":
self.tool_requires("cmake/3.22.6")

def layout(self):
We make the assumption that if the compiler is msvc the
CMake generator is multi-config

multi = True if self.settings.get_safe("compiler") == "msvc" else False
if multi:
self.folders.generators = os.path.join("build", "generators")
self.folders.build = "build"
else:

self.folders.generators = os.path.join("build", str(self.settings.build_
—type), '"generators")
self.folders.build = os.path.join("build", str(self.settings.build_type))

As you can see, we defined the self.folders.generators attribute in the layout() method. This is the folder where all the
auxiliary files generated by Conan (CMake toolchain and cmake dependencies files) will be placed.

Note that the definitions of the folders is different if it is a multi-config generator (like Visual Studio), or a single-config
generator (like Unix Makefiles). In the first case, the folder is the same irrespective of the build type, and the build
system will manage the different build types inside that folder. But single-config generators like Unix Makefiles, must
use a different folder for each different configuration (as a different build_type Release/Debug). In this case we added
a simple logic to consider multi-config if the compiler name is msvc.

Check that running the same commands as in the previous examples without the —output-folder argument will lead to
the same results as before:

36 Chapter 4. Tutorial

Conan Documentation, Release 2.14.0

Listing 32: Windows

$ conan install . --build=missing

$ cd build

$ generators\conanbuild.bat

assuming Visual Studio 15 2017 is your VS version and that it matches your default.,

—profile

$ cmake .. -G "Visual Studio 15 2017" -DCMAKE_TOOLCHAIN_FILE=generators\conan_toolchain.
—cmake

$ cmake --build . --config Release

Building with CMake version: 3.22.6
[100%] Built target compressor

$ Release\compressor.exe

Uncompressed size is: 233

Compressed size is: 147

ZLIB VERSION: 1.2.11

$ generators\deactivate_conanbuild.bat

Listing 33: Linux, macOS

$ conan install . --build=missing

$ cd build/Release

$ source ./generators/conanbuild.sh

Capturing current environment in deactivate_conanbuildenv-release-x86_64.sh
Configuring environment variables

$ cmake ../.. -DCMAKE_TOOLCHAIN_FILE=generators/conan_toolchain.cmake -DCMAKE_BUILD_
— TYPE=Release

$ cmake --build .

Building with CMake version: 3.22.6
[100%] Built target compressor

$./compressor

Uncompressed size is: 233

Compressed size is: 147

ZLIB VERSION: 1.2.11

$ source ./generators/deactivate_conanbuild.sh

There’s no need to always write this logic in the conanfile.py. There are some pre-defined layouts you can import and
directly use in your recipe. For example, for the CMake case, there’s a cmake_layout() already defined in Conan:

Listing 34: conanfile.py

from conan import ConanFile
from conan.tools.cmake import cmake_layout

class CompressorRecipe(ConanFile):
settings = "os", "compiler", "build_type", "arch"
(continues on next page)

4.1. Consuming packages 37

Conan Documentation, Release 2.14.0

(continued from previous page)

generators = "CMakeToolchain", "CMakeDeps"

def requirements(self):
self.requires("'zlib/1.2.11")

def build_requirements(self):
self.tool_requires("cmake/3.22.6")

def layout(self):
cmake_layout(self)

Use the validate() method to raise an error for non-supported configurations

The validate() method is evaluated when Conan loads the conanfile.py and you can use it to perform checks of the input
settings. If, for example, your project does not support armv8 architecture on macOS you can raise the Conanlnvalid-
Configuration exception to make Conan return with a special error code. This will indicate that the configuration used
for settings or options is not supported.

Listing 35: conanfile.py

from conan.errors import ConanInvalidConfiguration
class CompressorRecipe(ConanFile):
def validate(self):

if self.settings.os == "Macos" and self.settings.arch == "armv8":
raise ConanInvalidConfiguration("ARM v8 not supported in Macos")

Conditional requirements using a conanfile.py
You could add some logic to the requirements() method to add or remove requirements conditionally. Imagine, for
example, that you want to add an additional dependency in Windows or that you want to use the system’s CMake

installation instead of using the Conan fool_requires:

Listing 36: conanfile.py

from conan import ConanFile

class CompressorRecipe(ConanFile):
Binary configuration

settings = "os", "compiler", "build_type", "arch"
generators = "CMakeToolchain", "CMakeDeps"

def requirements(self):
self.requires('zlib/1.2.11")

Add base64 dependency for Windows

(continues on next page)

38 Chapter 4. Tutorial

Conan Documentation, Release 2.14.0

(continued from previous page)

if self.settings.os == "Windows":
self.requires("base64/0.4.0")

def build_requirements(self):
Use the system's CMake for Windows
if self.settings.os != "Windows":
self.tool_requires("cmake/3.22.6")

Use the generate() method to copy resources from packages

In some scenarios, Conan packages include files that are useful or even necessary for the consumption of the libraries
they package. These files can range from configuration files, assets, to specific files required for the project to build
or run correctly. Using the generate() method you can copy these files from the Conan cache to your project’s folder,
ensuring that all required resources are directly available for use.

Here’s an example that shows how to copy all resources from a dependency’s resdirs directory to an assets directory
within your project:

import os
from conan import ConanFile
from conan.tools.files import copy

class MyProject(ConanFile):

def generate(self):
Copy all resources from the dependency's resource directory
to the "assets" folder in the source directory of your project
dep = self.dependencies["dep_name"]
copy(self, "*", dep.cpp_info.resdirs[0], os.path.join(self.source_folder, "assets
="))

Then, after the conan install step, all those resource files will be copied locally, allowing you to use them in your
project’s build process. For a complete example of how to import files from a package in the generate () method, you
can refer to the blog post about using the Dear ImGui library <https://blog.conan.io/2019/06/26/An-introduction-to-
the-Dear-ImGui-library.html>, which demonstrates how to import bindings for the library depending on the graphics
APL

Note: It’s important to clarify that copying libraries, whether static or shared, is not necessary. Conan is designed to
use the libraries from their locations in the Conan local cache using generators and environment tools without the need
to copy them to the local folder.

See also:
e Using “cmake_layout” + “CMakeToolchain” + “CMakePresets feature” to build your project.
* Understanding the Conan Package layout.
* Documentation for all conanfile.py available methods.

 Conditional generators in configure()

4.1. Consuming packages 39

Conan Documentation, Release 2.14.0

4.1.5 How to cross-compile your applications using Conan: host and build contexts

Please, first clone the sources to recreate this project. You can find them in the examples2 repository on GitHub:

$ git clone https://github.com/conan-io/examples2.git
$ cd examples2/tutorial/consuming_packages/cross_building

In the previous examples, we learned how to use a conanfile.py or conanfile.txt to build an application that compresses
strings using the Zlib and CMake Conan packages. Also, we explained that you can set information like the operating
system, compiler or build configuration in a file called the Conan profile. You can use that profile as an argument
(--profile) to invoke the conan install. We also explained that not specifying that profile is equivalent to using
the --profile=default argument.

For all those examples, we used the same platform for building and running the application. But, what if you want to
build the application on your machine running Ubuntu Linux and then run it on another platform like a Raspberry Pi?
Conan can model that case using two different profiles, one for the machine that builds the application (Ubuntu Linux)
and another for the machine that runs the application (Raspberry Pi). We will explain this “two profiles” approach in
the next section.

Conan two profiles model: build and host profiles

Even if you specify only one --profile argument when invoking Conan, Conan will internally use two profiles. One
for the machine that builds the binaries (called the build profile) and another for the machine that runs those binaries
(called the host profile). Calling this command:

[$ conan install . --build=missing --profile=someprofile

Is equivalent to:

[$ conan install . --build=missing --profile:host=someprofile --profile:build=default

As you can see we used two new arguments:

» profile:host: This is the profile that defines the platform where the built binaries will run. For our string
compressor application this profile would be the one applied for the Z/ib library that will run in a Raspberry Pi.

e profile:build: This is the profile that defines the platform where the binaries will be built. For our string
compressor application, this profile would be the one used by the CMake tool that will compile it on the Ubuntu
Linux machine.

Note that when you just use one argument for the profile --profile is equivalent to --profile:host. If you don’t
specify the --profile:build argument, Conan will use the default profile internally.

So, if we want to build the compressor application in the Ubuntu Linux machine but run it in a Raspberry Pi, we should
use two different profiles. For the build machine we could use the default profile, that in our case looks like this:

Listing 37: <conan home>/profiles/default

[settings]

os=Linux

arch=x86_64
build_type=Release
compiler=gcc
compiler.cppstd=gnuléd
compiler.libcxx=libstdc++11
compiler.version=9

40 Chapter 4. Tutorial

https://github.com/conan-io/examples2

Conan Documentation, Release 2.14.0

And the profile for the Raspberry Pi that is the host machine:

Listing 38: <local folder>/profiles/raspberry

[settings]

os=Linux

arch=armv7hf

compiler=gcc
build_type=Release
compiler.cppstd=gnuléd
compiler.libcxx=1libstdc++11
compiler.version=9
[buildenv]
CC=arm-linux-gnueabihf-gcc-9
CXX=arm-linux-gnueabihf-g++-9
LD=arm-linux-gnueabihf-1d

Important: Please, take into account that in order to build this example successfully, you should have installed a
toolchain that includes the compiler and all the tools to build the application for the proper architecture. In this case
the host machine is a Raspberry Pi 3 with armv7hf architecture operating system and we have the arm-linux-gnueabihf
toolchain installed in the Ubuntu machine.

If you have a look at the raspberry profile, there is a section named [buildenv]. This section is used to set the
environment variables that are needed to build the application. In this case we declare the CC, CXX and LD variables
pointing to the cross-build toolchain compilers and linker, respectively. Adding this section to the profile will invoke the
VirtualBuildEnv generator everytime we do a conan install. This generator will add that environment information
to the conanbuild. shscript that we will source before building with CMake so that it can use the cross-build toolchain.

Note: In some cases, you don’t have the toolchain available on the build platform. For those cases, you can use a
Conan package for the cross-compiler and add it to the [tool_requires] section of the profile. For an example of
cross-building using a toolchain package, please check this example.

Build and host contexts

Now that we have our two profiles prepared, let’s have a look at our conanfile.py:

Listing 39: conanfile.py

from conan import ConanFile
from conan.tools.cmake import cmake_layout

class CompressorRecipe(ConanFile):
settings = "os", "compiler", "build_type", "arch"
generators = "CMakeToolchain", "CMakeDeps"

def requirements(self):
self.requires("zlib/1.2.11")

def build_requirements(self):
self.tool_requires("cmake/3.22.6")

(continues on next page)

4.1. Consuming packages 41

Conan Documentation, Release 2.14.0

(continued from previous page)

def layout(self):
cmake_layout(self)

As you can see, this is practically the same conanfile.py we used in the previous example. We will require zlib/1.2.11
as a regular dependency and cmake/3.22.6 as a tool needed for building the application.

We will need the application to build for the Raspberry Pi with the cross-build toolchain and also link the zlib/1.2.11
library built for the same platform. On the other side, we need the cmake/3.22.6 binary to run in Ubuntu Linux. Conan
manages this internally in the dependency graph differentiating between what we call the “build context” and the “host
context”:

¢ The host context is populated with the root package (the one specified in the conan install or conan create
command) and all its requirements added via self.requires(). In this case, this includes the compressor
application and the zlib/1.2.11 dependency.

* The build context contains the tool requirements used in the build machine. This category typically includes all
the developer tools like CMake, compilers and linkers. In this case, this includes the cmake/3.22.6 tool.

These contexts define how Conan will manage each one of the dependencies. For example, as zlib/1.2.11 belongs to the
host context, the [buildenv] build environment we defined in the raspberry profile (profile host) will only apply to
the zlib/1.2.11 library when building and won’t affect anything that belongs to the build context like the cmake/3.22.6
dependency.

Now, let’s build the application. First, call conan install with the profiles for the build and host platforms. This
will install the zlib/1.2.11 dependency built for armv7hf architecture and a cmake/3.22.6 version that runs for 64-bit
architecture.

[$ conan install . --build missing -pr:b=default -pr:h=./profiles/raspberry

Then, let’s call CMake to build the application. As we did in the previous example we have to activate the build envi-
ronment running source Release/generators/conanbuild.sh. That will set the environment variables needed
to locate the cross-build toolchain and build the application.

$ cd build

$ source Release/generators/conanbuild.sh

Capturing current environment in deactivate_conanbuildenv-release-armv7hf.sh

Configuring environment variables

$ cmake .. -DCMAKE_TOOLCHAIN_FILE=Release/generators/conan_toolchain.cmake -DCMAKE_BUILD_
. TYPE=Release

$ cmake --build .

-- Conan toolchain: C++ Standard 14 with extensions ON

-- The C compiler identification is GNU 9.4.0

-- Detecting C compiler ABI info

-- Detecting C compiler ABI info - done

-- Check for working C compiler: /usr/bin/arm-linux-gnueabihf-gcc-9 - skipped
-- Detecting C compile features

-- Detecting C compile features - done [100%] Built target compressor

$ source Release/generators/deactivate_conanbuild.sh

You could check that we built the application for the correct architecture by running the file Linux utility:

42 Chapter 4. Tutorial

Conan Documentation, Release 2.14.0

$ file compressor

compressor: ELF 32-bit LSB shared object, ARM, EABI5 version 1 (SYSV), dynamically
linked, interpreter /lib/ld-linux-armhf.so.3,
BuildID[shal]=2a216076864alb1£f30211debf297ac37a9195196, for GNU/Linux 3.2.0, not
stripped

See also:
* Creating a Conan package for a toolchain
* Cross building to Android with the NDK
* VirtualBuildEnv reference
* Cross-build using a tool_requires
* How to require test frameworks like gtest: using test_requires

* Using Conan to build for iOS

4.1.6 Introduction to versioning
So far we have been using requires with fixed versions like requires = "zlib/1.2.12". But sometimes dependen-
cies evolve, new versions are released and consumers want to update to those versions as easy as possible.

Itis always possible to edit the conanfiles and explicitly update the versions to the new ones, but there are mechanisms
in Conan to allow such updates without even modifying the recipes.

Version ranges

A requires can express a dependency to a certain range of versions for a given package, with the syntax pkgname/
[version-range-expression]. Let’s see an example, please, first clone the sources to recreate this project. You
can find them in the examples?2 repository in GitHub:

$ git clone https://github.com/conan-io/examples2.git
$ cd examples2/tutorial/consuming_packages/versioning

‘We can see that we have there:

Listing 40: conanfile.py

from conan import ConanFile

class CompressorRecipe(ConanFile):
settings = "os", "compiler", "build_type", "arch"
generators = "CMakeToolchain", "CMakeDeps"

def requirements(self):
self.requires("zlib/[~1.2]")

That requires contains the expression z1ib/[~1.2], which means “approximately” 1.2 version, that means, it can
resolve to any z1ib/1.2.8, z1ib/1.2.11 or z1ib/1.2.12, but it will not resolve to something like z1ib/1.3.0.
Among the available matching versions, a version range will always pick the latest one.

If we do a conan install, we would see something like:

4.1. Consuming packages 43

https://github.com/conan-io/examples2

Conan Documentation, Release 2.14.0

$ conan install .

Graph root

conanfile.py: .../conanfile.py
Requirements

z1ib/1.2.12#87a7211557b6690ef5bf7£c599dd8349 - Downloaded
Resolved version ranges

zlib/[~1.2]: zlib/1.2.12

If we tried instead to use z1ib/[<1.2.12], that means that we would like to use a version lower than 1.2. 12, but that
one is excluded, so the latest one to satisfy the range would be z1ib/1.2.11:

$ conan install .

Resolved version ranges
zlib/[<1.2.12]: zlib/1.2.11

The same applies to other type of requirements, like tool_requires. If we add now to the recipe:

Listing 41: conanfile.py

from conan import ConanFile

class CompressorRecipe(ConanFile):
settings = "os", "compiler", "build_type", "arch"
generators = "CMakeToolchain", "CMakeDeps"

def requirements(self):
self.requires("zlib/[~1.2]")

def build_requirements(self):
self.tool_requires("cmake/[>3.10]")

Then we would see it resolved to the latest available CMake package, with at least version 3.11:

$ conan install .
Graph root
conanfile.py: .../conanfile.py
Requirements
z1ib/1.2.12#87a7211557b6690ef5bf7£c599dd8349 - Cache
Build requirements
cmake/3.22.6#£305019023c2db74d1001c5afa5cf362 - Downloaded
Resolved version ranges

cmake/[>3.10]: cmake/3.22.6
zlib/[~1.2]: zlib/1.2.12

44 Chapter 4. Tutorial

Conan Documentation, Release 2.14.0

Revisions

What happens when a package creator does some change to the package recipe or to the source code, but they don’t
bump the version to reflect those changes? Conan has an internal mechanism to keep track of those modifications,
and it is called the revisions.

The recipe revision is the hash that can be seen together with the package name and version in the form pkgname/
version#recipe_revision or pkgname/version@user/channel#recipe_revision. The recipe revision is a
hash of the contents of the recipe and the source code. So if something changes either in the recipe, its associated files
or in the source code that this recipe is packaging, it will create a new recipe revision.

You can list existing revisions with the conan list command:

$ conan list "zlib/1.2.12#*" -r=conancenter
conancenter
zlib
zlib/1.2.12
revisions
82202701ea360c0863£1db5008067122 (2022-03-29 15:47:45 UTC)
bd533fb124387a214816ab72c8d1df28 (2022-05-09 0©6:59:58 UTC)
3b9%9e037aelc615d045a06c67d88491ae (2022-05-13 13:55:39 UTO)

Revisions always resolve to the latest (chronological order of creation or upload to the server) revision. Though it is
not a common practice, it is possible to explicitly pin a given recipe revision directly in the conanfile, like:

def requirements(self):
self.requires("zlib/1.2.12#87a7211557b6690ef5bf7£c599dd8349")

This mechanism can however be tedious to maintain and update when new revisions are created, so probably in the
general case, this shouldn’t be done.

Lockfiles

The usage of version ranges, and the possibility of creating new revisions of a given package without bumping the
version allows to do automatic faster and more convenient updates, without need to edit recipes.

But in some occasions, there is also a need to provide an immutable and reproducible set of dependencies. This process
is known as “locking”, and the mechanism to allow it is “lockfile” files. A lockfile is a file that contains a fixed list of
dependencies, specifying the exact version and exact revision. So, for example, a lockfile will never contain a version
range with an expression, but only pinned dependencies.

A lockfile can be seen as a snapshot of a given dependency graph at some point in time. Such snapshot must be
“realizable”, that is, it needs to be a state that can be actually reproduced from the conanfile recipes. And this lockfile
can be used at a later point in time to force that same state, even if there are new created package versions.

Let’s see lockfiles in action. First, let’s pin the dependency to z1ib/1.2.11 in our example:

def requirements(self):
self.requires("zlib/1.2.11")

And let’s capture a lockfile:

conan lock create .

(continues on next page)

4.1. Consuming packages 45

Conan Documentation, Release 2.14.0

(continued from previous page)
Graph root
conanfile.py: .../conanfile.py
Requirements
z1lib/1.2.11#4524fcdd41f33e8df88ecebe755a5dcc - Cache

Generated lockfile: .../conan.lock

Let’s see what the lockfile conan.lock contains:

{
"version": "0.5",
"requires": [
"zlib/1.2.11#4524fcdd41£33e8df88ecebe755a5dcc%1650538915.154"
i
"build_requires": [],
"python_requires": []
}

Now, let’s restore the original requires version range:

def requirements(self):
self.requires("zlib/[~1.2]")

And run conan install ., which by default will find the conan. lock, and run the equivalent conan install .
--lockfile=conan.lock

conan install .

Graph root
conanfile.py: .../conanfile.py

Requirements
z1ib/1.2.11#4524fcdd41£f33e8df88ecebe755a5dcc - Cache

Note how the version range is no longer resolved, and it doesn’t get the z1ib/1.2.12 dependency, even if it is the
allowed range z1ib/[~1.2], because the conan.lock lockfile is forcing it to stay in z1ib/1.2.11 and that exact
revision too.

See also:

e Introduction to Versioning

4.2 Creating packages

This section shows how to create Conan packages using a Conan recipe. We begin by creating a basic Conan recipe to
package a simple C++ library that you can scaffold using the conan new command. Then, we will explain the different
methods that you can define inside a Conan recipe and the things you can do inside them:

* Using the source () method to retrieve sources from external repositories and apply patches to those sources.
* Add requirements to your Conan packages inside the requirements () method.
» Use the generate () method to prepare the package build, and customize the toolchain.

» Configure settings and options in the configure() and config_options() methods and how they affect the
packages’ binary compatibility.

46 Chapter 4. Tutorial

Conan Documentation, Release 2.14.0

 Use the build () method to customize the build process and launch the tests for the library you are packaging.
* Select which files will be included in the Conan package using the package () method.

* Define the package information in the package_info () method so that consumers of this package can use it.
» Use a test_package to test that the Conan package can be consumed correctly.

After this walkthrough around some Conan recipe methods, we will explain some peculiarities of different types of
Conan packages like, for example, header-only libraries, packages for pre-built binaries, packaging tools for building
other packages or packaging your own applications.

4.2.1 Create your first Conan package

In previous sections, we consumed Conan packages (like the ZIib one), first using a conanfile.txt and then with a
conanfile.py. But a conanfile.py recipe file is not only meant to consume other packages, it can be used to create your
own packages as well. In this section, we explain how to create a simple Conan package with a conanfile.py recipe and
how to use Conan commands to build those packages from sources.

Important: This is a tutorial section. You are encouraged to execute these commands. For this concrete example,
you will need CMake installed in your path. It is not strictly required by Conan to create packages, you can use other
build systems (such as VS, Meson, Autotools, and even your own) to do that, without any dependency on CMake.

Use the conan new command to create a “Hello World” C++ library example project:

[$ conan new cmake_lib -d name=hello -d version=1.0

This will create a Conan package project with the following structure.

— CMakeLists.txt
— conanfile.py
— include
L— hello.h
— src
L hello.cpp
L— test_package
CMakeLists.txt
E conanfile.py
src
L example.cpp

The generated files are:

 conanfile.py: On the root folder, there is a conanfile.py which is the main recipe file, responsible for defining
how the package is built and consumed.

e CMakelLists.txt: A simple generic CMakeLists.txt, with nothing specific about Conan in it.
« src and include folders: the folders that contains the simple C++ “hello” library.

* test_package folder: contains an example application that will require and link with the created package. It is
not mandatory, but it is useful to check that our package is correctly created.

Let’s have a look at the package recipe conanfile.py:

4.2. Creating packages 47

Conan Documentation, Release 2.14.0

from conan import ConanFile
from conan.tools.cmake import CMakeToolchain, CMake, cmake_layout, CMakeDeps

class helloRecipe(ConanFile):
name = "hello"
version = "1.0"

Optional metadata

license = "<Put the package license here>"

author = "<Put your name here> <And your email here>"

url = "<Package recipe repository url here, for issues about the package>"
description = "<Description of hello package here>"

topics = ("<Put some tag here>", '<here>", "<and here>")

Binary configuration

settings = "os", "compiler", "build_type", "arch"

options = {"shared": [True, False], "fPIC": [True, False]}
default_options = {"shared": False, "fPIC": True}

Sources are located in the same place as this recipe, copy them to the recipe
exports_sources = "CMakelLists.txt", "src/*", "include/*"

def config_options(self):
if self.settings.os == "Windows":
del self.options.fPIC

def layout(self):
cmake_layout(self)

def generate(self):
deps = CMakeDeps(self)
deps.generate()
tc = CMakeToolchain(self)
tc.generate()

def build(self):
cmake = CMake(self)
cmake.configure()
cmake.build()

def package(self):
cmake = CMake(self)
cmake.install ()

def package_info(self):
self.cpp_info.libs = ["hello"]

Let’s explain the different sections of the recipe briefly:
First, you can see the name and version of the Conan package defined:

* name: astring, with a minimum of 2 and a maximum of 100 lowercase characters that defines the package name.
It should start with alphanumeric or underscore and can contain alphanumeric, underscore, +, ., - characters.

48 Chapter 4. Tutorial

Conan Documentation, Release 2.14.0

e version: It is a string, and can take any value, matching the same constraints as the name attribute. In case the
version follows semantic versioning in the form X.Y.Z-prel+build2, that value might be used for requiring
this package through version ranges instead of exact versions.

Then you can see, some attributes defining metadata. These are optional but recommended and define things like
a short description for the package, the author of the packaged library, the 1icense, the url for the package
repository, and the topics that the package is related to.

After that, there is a section related with the binary configuration. This section defines the valid settings and options
for the package. As we explained in the consuming packages section:

* settings are project-wide configuration that cannot be defaulted in recipes. Things like the operating system,
compiler or build configuration that will be common to several Conan packages

* options are package-specific configuration and can be defaulted in recipes, in this case, we have the option of
creating the package as a shared or static library, being static the default.

After that, the exports_sources attribute is set to define which sources are part of the Conan package. These are the
sources for the library you want to package. In this case the sources for our “hello” library.

Then, several methods are declared:

* The config_options() method (together with the configure() one) allows fine-tuning the binary configu-
ration model, for example, in Windows, there is no £PIC option, so it can be removed.

e The layout () method declares the locations where we expect to find the source files and destinations for the
files generated during the build process. Example destination folders are those for the generated binaries and all
the files that the Conan generators create in the generate () method. In this case, as our project uses CMake as
the build system, we call to cmake_layout (). Calling this function will set the expected locations for a CMake
project.

* The generate() method prepares the build of the package from source. In this case, it could be simplified to
an attribute generators = "CMakeToolchain", but it is left to show this important method. In this case, the
execution of CMakeToolchain generate () method will create a conan_toolchain.cmake file that translates the
Conan settings and options to CMake syntax. The CMakeDeps generator is added for completeness, but it
is not strictly necessary until requires are added to the recipe.

e The build() method uses the CMake wrapper to call CMake commands, it is a thin layer that will manage to
pass in this case the -DCMAKE_TOOLCHAIN_FILE=conan_toolchain.cmake argument. It will configure the
project and build it from source.

¢ The package () method copies artifacts (headers, libs) from the build folder to the final package folder. It can be
done with bare “copy” commands, but in this case, it is leveraging the already existing CMake install functionality
(if the CMakeLists.txt didn’t implement it, it is easy to write an equivalent using the copy() tool in the package O
method.

* Finally, the package_info() method defines that consumers must link with a “hello” library when using this
package. Other information as include or lib paths can be defined as well. This information is used for files
created by generators (as CMakeDeps) to be used by consumers. This is generic information about the current
package, and is available to the consumers irrespective of the build system they are using and irrespective of the
build system we have used in the build () method

The test_package folder is not critical now for understanding how packages are created. The important bits are:

* test_package folder is different from unit or integration tests. These tests are “package” tests, and validate that
the package is properly created and that the package consumers will be able to link against it and reuse it.

* Itis a small Conan project itself, it contains its conanfile.py, and its source code including build scripts, that
depends on the package being created, and builds and executes a small application that requires the library in the
package.

* It doesn’t belong in the package. It only exists in the source repository, not in the package.

4.2. Creating packages 49

Conan Documentation, Release 2.14.0

Let’s build the package from sources with the current default configuration, and then let the test_package folder test
the package:

$ conan create .

======== Exporting recipe to the cache ========
hello/1.0: Exporting package recipe

hello/1.0: Exported: hello/1.0#dcbfe21e5250264b26595d151796be70 (2024-03-04 17:52:39 UTC)

======== Installing packages ========

———————— Installing package hello/1.0 (1 of 1) ---—--—--—-
hello/1.0: Building from source

hello/1.0: Calling build(Q)

hello/1.0: Package '9bdee485ef71cl4ac5£8a657202632bdb8b4482b' built
======== Testing the package: Building ========

[50%] Building CXX object CMakeFiles/example.dir/src/example.cpp.o
[100%] Linking CXX executable example
[100%] Built target example

======== Testing the package: Executing test ========
hello/1.0 (test package): Running test()

hello/1.0 (test package): RUN: ./example

hello/1.0: Hello World Release!

hello/1.0: __aarch64__ defined

hello/1.0: __cplusplus201703

hello/1.0: __GNUC__4

hello/1.0: __GNUC_MINOR__2

hello/1.0: __clang_major__15

hello/1.0: __apple_build_version__15000309

If “Hello world Release!” is displayed, it worked. This is what has happened:

* The conanfile.py together with the contents of the src folder have been copied (exported, in Conan terms) to the
local Conan cache.

* A new build from source for the hello/1.0 package starts, calling the generate(), build() and package()
methods. This creates the binary package in the Conan cache.

¢ Conan then moves to the test_package folder and executes a conan install + conan build + test () method,
to check if the package was correctly created.

We can now validate that the recipe and the package binary are in the cache:

$ conan list hello
Local Cache
hello
hello/1.0

The conan create command receives the same parameters as conan install, so you can pass to it the same settings
and options. If we execute the following lines, we will create new package binaries for Debug configuration or to build
the hello library as shared:

50 Chapter 4. Tutorial

Conan Documentation, Release 2.14.0

$ conan create . -s build_type=Debug
hello/1.0: Hello World Debug!
$ conan create . -o hello/1.0:shared=True

hello/1.0: Hello World Release!

These new package binaries will be also stored in the Conan cache, ready to be used by any project in this computer.
We can see them with:

list all the binaries built for the hello/1.0 package in the cache
$ conan list "hello/1.0:*"
Local Cache
hello
hello/1.0
revisions
dcbfe21e5250264b26595d151796be70 (2024-05-10 09:40:15 UTC)
packages
2505f7ebb5a4ccal56b2d6b8534f415a4a48b5¢c9
info
settings
arch: armv8
build_type: Release
compiler: apple-clang
compiler.cppstd: gnul7?
compiler.libcxx: libc++
compiler.version: 15
os: Macos
options
shared: True
39f48664£195e0847£59889d8a4cdfcbbca84bfl
info
settings
arch: armv8
build_type: Release
compiler: apple-clang
compiler.cppstd: gnul?
compiler.libcxx: libc++
compiler.version: 15
os: Macos
options
fPIC: True
shared: False
814ddaac84bc84£35952a076660133b88e49fb11
info
settings
arch: armv8
build_type: Debug
compiler: apple-clang
compiler.cppstd: gnul7?
compiler.libcxx: libc++
compiler.version: 15

(continues on next page)

4.2. Creating packages 51

Conan Documentation, Release 2.14.0

(continued from previous page)
os: Macos
options
fPIC: True
shared: False

Now that we have created a simple Conan package, we will explain each of the methods of the Conanfile in more detail.
You will learn how to modify those methods to achieve things like retrieving the sources from an external repository,
adding dependencies to our package, customising our toolchain and much more.

A note about the Conan cache

When you did the conan create command, the build of your package did not take place in your local folder but in
other folder inside the Conan cache. This cache is located in the user home folder under the .conan2 folder. Conan
will use the ~/.conan2 folder to store the built packages and also different configuration files. You already used the
conan list command to list the recipes and binaries stored in the local cache.

An important note: the Conan cache is private to the Conan client - modifying, adding, removing or changing files
inside the Conan cache is undefined behaviour likely to cause breakages.

See also:
* Create your first Conan package with Visual Studio/MSBuild.
* Create your first Conan package with Meson.

* Create your first Conan package with Autotools (only Linux).

CMake built-in integrations reference.

* conan create command reference and Conan list command reference.

4.2.2 Handle sources in packages

In the previous tutorial section we created a Conan package for a “Hello World” C++ library. We used the
exports_sources attribute of the Conanfile to declare the location of the sources for the library. This method is
the simplest way to define the location of the source files when they are in the same folder as the Conanfile. However,
sometimes the source files are stored in a repository or a file in a remote server, and not in the same location as the
Conanfile. In this section, we will modify the recipe we created previously by adding a source () method and explain
how to:

 Retrieve the sources from a zip file stored in a remote repository.
* Retrieve the sources from a branch of a gir repository.

Please, first clone the sources to recreate this project. You can find them in the examples2 repository on GitHub:

$ git clone https://github.com/conan-io/examples2.git
$ cd examples2/tutorial/creating_packages/handle_sources

The structure of the project is the same as the one in the previous example but without the library sources:

test_package

CMakeLists.txt
conanfile.py
— CMakeLists.txt

(continues on next page)

52 Chapter 4. Tutorial

https://github.com/conan-io/examples2

Conan Documentation, Release 2.14.0

|: conanfile.py
src

L example.cpp

(continued from previous page)

Sources from a zip file stored in a remote repository

Let’s have a look at the changes in the conanfile.py:

from conan import ConanFile

from conan.tools.cmake import CMakeToolchain, CMake, cmake_layout

from conan.tools.files import get

class helloRecipe(ConanFile):

name = "hello"
version = "1.0"

Binary configuration
settings = "os", "compiler", "build_type", "arch"

options = {"shared": [True, False], "fPIC":

[True, False]}

default_options = {"shared": False, "fPIC": True}

def

def

def

def

def

source(self):

Please, be aware that using the head of the branch instead of an immutable tag

or commit is a bad practice and not allowed by Conan

get(self, "https://github.com/conan-io/libhello/archive/refs/heads/main.zip",
strip_root=True)

config_options(self):
if self.settings.os == "Windows":
del self.options.fPIC

layout (self):
cmake_layout(self)

generate(self):
tc = CMakeToolchain(self)
tc.generate()

build(self):

cmake = CMake(self)
cmake.configure()
cmake.build()

def package(self):

cmake = CMake(self)
cmake.install)

def package_info(self):

(continues on next page)

4.2. Creating packages 53

Conan Documentation, Release 2.14.0

(continued from previous page)

{ self.cpp_info.libs = ["hello"]

As you can see, the recipe is the same but instead of declaring the exports_sources attribute as we did previously,
ie.

w0

[exports_sources = "(CMakeLists.txt", "src/*", "include/*"

we declare a source () method with this information:

def source(self):
Please, be aware that using the head of the branch instead of an immutable tag
or commit is strongly discouraged, unsupported by Conan and likely to cause issues
get(self, "https://github.com/conan-io/libhello/archive/refs/heads/main.zip",
strip_root=True)

We used the conan.tools.files.get() tool that will first download the zip file from the URL that we pass as an argument
and then unzip it. Note that we pass the strip_root=True argument so that if all the unzipped contents are in a single
folder, all the contents are moved to the parent folder (check the conan.tools.files.unzip() reference for more details).

Warning: It is expected that retrieving the sources in the future produces the same results. Using mutable source
origins, like a moving reference in git (e.g HEAD branch), or the URL to a file where the contents may change over
time, is strongly discouraged and not supported. Not following this practice will result in undefined behavior likely
to cause breakages

The contents of the zip file are the same as the sources we previously had beside the Conan recipe, so if you do a conan
create the results will be the same as before.

$ conan create .

Installing (downloading, building) binaries...
hello/1.0: Calling source() in /Users/user/.conan2/p/0fcb5f£fd11025446/s/.
Downloading update_source.zip

hello/1.0: Unzipping 3.7KB

Unzipping 100 %

hello/1.0: Copying sources to build folder

hello/1.0: Building your package in /Users/user/.conan2/p/tmp/369786d0fb355069/b

———————— Testing the package: Running test() ----------

hello/1.0 (test package): Running test()
hello/1.0 (test package): RUN: ./example
hello/1.0: Hello World Release!
hello/1.0: __x86_64__ defined

hello/1.0: __cplusplus199711

hello/1.0: __GNUC__4

(continues on next page)

54 Chapter 4. Tutorial

Conan Documentation, Release 2.14.0

(continued from previous page)
hello/1.0: __GNUC_MINOR__2
hello/1.0: __clang_major__13
hello/1.0: __clang_minor__1
hello/1.0: __apple_build_version__13160021

Please, check the highlighted lines with the messages about the download and unzip operation.

Sources from a branch in a git repository

Now, let’s modify the source () method to bring the sources from a git repository instead of a zip file. We show just
the relevant parts:

from conan.tools.scm import Git

class helloRecipe(ConanFile):
name = "hello"
version = "1.0"

def source(self):
git = Git(self)
git.clone(url="https://github.com/conan-io/libhello.git", target=".")

Here, we use the conan.tools.scm.Git() tool. The Git class implements several methods to work with git repositories.
In this case, we call the clone method to clone the https://github.com/conan-io/libhello.git repository in the default

branch using the same folder for cloning the sources instead of a subfolder (passing the target="." argument).

Warning: As above, this is only a simple example. The source origin for Git() also has to be immutable, it
is necessary to checkout out an immutable tag or a specific commit to guarantee the correct behavior. Using the
HEAD of the repository is not allowed and can cause undefined behavior and breakages.

To checkout a commit or tag in the repository we use the checkout () method of the Git tool:

def source(self):
git = Git(self)
git.clone(url="https://github.com/conan-io/libhello.git", target=".")
git.checkout("<tag> or <commit hash>")

For more information about the Git class methods, please check the conan.tools.scm.Git() reference.

Note that it’s also possible to run other commands by invoking the self.run() method.

4.2. Creating packages 55

https://github.com/conan-io/libhello.git

Conan Documentation, Release 2.14.0

Using the conandata.yml file

We can write a file named conandata.yml in the same folder of the conanfile.py. This file will be automatically
exported and parsed by Conan and we can read that information from the recipe. This is handy for example to extract
the URLSs of the external sources repositories, zip files etc. This is an example of conandata.yml:

sources:

"1.0":
url: "https://github.com/conan-io/libhello/archive/refs/heads/main.zip"
sha256: "7bc71c682895758a996ccf33b70b91611£51252832b01ef3b4675371510ee466"
strip_root: true

"1.1":
url:
sha256:

The recipe doesn’t need to be modified for each version of the code. We can pass all the keys of the specified ver-
sion (url, sha256, and strip_root) as arguments to the get function, that, in this case, allow us to verify that the
downloaded zip file has the correct sha256. So we could modify the source method to this:

def source(self):
get(self, **self.conan_data["sources"][self.version])
Similar to:
data = self.conan_data['"sources"][self.version]
get(self, data["url"], sha256=data['sha256"], strip_root=data["strip_root"])

See also:
* Patching sources
* Capturing Git SCM source information instead of copying sources with exports_sources.

* source() method reference

4.2.3 Add dependencies to packages

In the previous tutorial section we created a Conan package for a “Hello World” C++ library. We used the co-
nan.tools.scm.Git() tool to retrieve the sources from a git repository. So far, the package does not have any dependency
on other Conan packages. Let’s explain how to add a dependency to our package in a very similar way to how we did
in the consuming packages section. We will add some fancy colour output to our “Hello World” library using the fmt
library.

Please, first clone the sources to recreate this project. You can find them in the examples2 repository on GitHub:

$ git clone https://github.com/conan-io/examples2.git
$ cd examples2/tutorial/creating_packages/add_requires

You will notice some changes in the conanfile.py file from the previous recipe. Let’s check the relevant parts:

from conan.tools.build import check_max_cppstd, check_min_cppstd

class helloRecipe(ConanFile):
name = "hello"
version = "1.0"

(continues on next page)

56 Chapter 4. Tutorial

https://conan.io/center/fmt
https://github.com/conan-io/examples2

Conan Documentation, Release 2.14.0

(continued from previous page)

generators = "CMakeDeps"

def validate(self):
check_min_cppstd(self, "11")
check_max_cppstd(self, "20")

def requirements(self):
self.requires("fmt/8.1.1")

def source(self):
git = Git(self)
git.clone(url="https://github.com/conan-io/libhello.git", target=".")
Please, be aware that using the head of the branch instead of an immutable tag
or commit is not a good practice in general
git.checkout("require_fmt")

* First, we set the generators class attribute to make Conan invoke the CMakeDeps generator. This was not
needed in the previous recipe as we did not have dependencies. CMakeDeps will generate all the config files
CMake needs to find the fmt library.

* Next, we use the requires() method to add the fmt dependency to our package.

¢ Also, check that we added an extra line in the source() method. We use the Git().checkout method to checkout
the source code in the require_fmt branch. This branch contains the changes in the source code to add colours
to the library messages, and also in the CMakeLists. txt to declare that we are using the fmt library.

¢ Finally, note we added the validate() method to the recipe. We already used this method in the consuming
packages section to raise an error for non-supported configurations. Here, we call the check_min_cppstd() and
check_max_cppstd() to check that we are using at least C++11 and at most C++20 standards in our settings.

You can check the new sources, using the fmt library in the require_fmt. You will see that the hello.cpp file adds colours
to the output messages:

#include <fmt/color.h>
#include "hello.h"

void hello(){

#1fdef NDEBUG

fmt: :print(fg(fmt::color::crimson) | fmt::emphasis::bold, "hello/1.0: Hello World.
—Release!\n");

#else

fmt: :print(fg(fmt::color: :crimson) | fmt::emphasis::bold, "hello/1.0: Hello World.
—Debug!\n");

#endif

Let’s build the package from sources with the current default configuration, and then let the test_package folder test
the package. You should see the output messages with colour now:

4.2. Creating packages 57

https://conan.io/center/fmt
https://github.com/conan-io/libhello/tree/require_fmt
https://github.com/conan-io/libhello/tree/require_fmt
https://github.com/conan-io/libhello/blob/require_fmt/src/hello.cpp

Conan Documentation, Release 2.14.0

$ conan create . --build=missing
———————— Exporting the recipe ----------

———————— Testing the package: Running test() ----------
hello/1.0 (test package): Running test()

hello/1.0 (test package): RUN: ./example

hello/1.0: Hello World Release!

hello/1.0: __x86_64__ defined

hello/1.0: __cplusplus 201103

hello/1.0: __GNUC__ 4

hello/1.0: __GNUC_MINOR__ 2

hello/1.0: __clang major__ 13

hello/1.0: __clang minor__ 1

hello/1.0: __apple_build_version__ 13160021
See also:

* Reference for requirements() method.

e Introduction to versioning.

4.2.4 Preparing the build

In the previous tutorial section, we added the fmt requirement to our Conan package to provide colour output to our
“Hello World” C++ library. In this section, we focus on the generate () method of the recipe. The aim of this method
generating all the information that could be needed while running the build step. That means things like:

» Write files to be used in the build step, like scripts that inject environment variables, files to pass to the build
system, etc.

¢ Configuring the toolchain to provide extra information based on the settings and options or removing information
from the toolchain that Conan generates by default and may not apply for certain cases.

We explain how to use this method for a simple example based on the previous tutorial section. We add a with_fmt
option to the recipe, depending on the value we require the fint library or not. We use the generate() method to modify
the toolchain so that it passes a variable to CMake so that we can conditionally add that library and use fmt or not in
the source code.

Please, first clone the sources to recreate this project. You can find them in the examples2 repository on GitHub:

$ git clone https://github.com/conan-io/examples2.git
$ cd examples2/tutorial/creating_packages/preparing_the_build

You will notice some changes in the conanfile.py file from the previous recipe. Let’s check the relevant parts:

from conan.tools.build import check_max_cppstd, check_min_cppstd

class helloRecipe(ConanFile):
name = "hello"
version = "1.0"

options = {"shared": [True, False],

(continues on next page)

58 Chapter 4. Tutorial

https://conan.io/center/fmt
https://github.com/conan-io/examples2

Conan Documentation, Release 2.14.0

(continued from previous page)

"fPIC": [True, False],
"with_fmt": [True, False]l}

default_options = {"shared": False,
"fPIC": True,
"with_fmt": True}

def validate(self):
if self.options.with_fmt:
check_min_cppstd(self, "11")
check_max_cppstd(self, "14")

def source(self):
git = Git(self)
git.clone(url="https://github.com/conan-io/libhello.git", target=".")
Please, be aware that using the head of the branch instead of an immutable tag
or commit is not a good practice in general
git.checkout("optional_fmt")

def requirements(self):
if self.options.with_fmt:
self.requires("fmt/8.1.1")

def generate(self):
tc = CMakeToolchain(self)
if self.options.with_fmt:
tc.variables["WITH_FMT"] = True
tc.generate()

As you can see:
* We declare a new with_£fmt option with the default value set to True
* Based on the value of the with_fmt option:
— We install or not the fmt/8.1.1 Conan package.

— We require or not a minimum and a maximum C++ standard as the fint library requires at least C++11 and it
will not compile if we try to use a standard above C++14 (just an example, fint can build with more modern
standards)

— We inject the WITH_FMT variable with the value True to the CMakeToolchain so that we can use it in the
CMakeLists.txt of the hello library to add the CMake fmt::fmt target conditionally.

* We are cloning another branch of the library. The optional_fmt branch contains some changes in the code. Let’s
see what changed on the CMake side:

Listing 42: CMakeLists.txt

cmake_minimum_required (VERSION 3.15)
project(hello CXX)

(continues on next page)

4.2. Creating packages 59

Conan Documentation, Release 2.14.0

(continued from previous page)

add_library(hello src/hello.cpp)
target_include_directories(hello PUBLIC include)
set_target_properties(hello PROPERTIES PUBLIC_HEADER "include/hello.h")

if (WITH_FMT)
find_package (fmt)
target_link_libraries(hello fmt::fmt)
target_compile_definitions(hello PRIVATE USING_FMT=1)
endif()

install (TARGETS hello)

As you can see, we use the WITH_FMT we injected in the CMakeToolchain. Depending on the value we will try to find
the fmt library and link our hello library with it. Also, check that we add the USING_FMT=1 compile definition that we
use in the source code depending on whether we choose to add support for fmt or not.

Listing 43: hello.cpp

#include <iostream>
#include "hello.h"

#1f USING_FMT ==
#include <fmt/color.h>
#endif

void hello(){
#if USING_FMT ==
#1ifdef NDEBUG
fmt: :print(fg(fmt::color: :crimson) | fmt::emphasis::bold, "hello/1.0: Hello.
—World Release! (with color!)\n");
#else
fmt::print(fg(fmt::color::crimson) | fmt::emphasis::bold, "hello/1.0: Hello.
—World Debug! (with color!)\n");
#endif
#else
#1fdef NDEBUG
std::cout << "hello/1.0: Hello World Release! (without color)" << std::endl;
#else
std::cout << "hello/1.0: Hello World Debug! (without color)" << std::endl;
#endif
#endif

Let’s build the package from sources first using with_fmt=True and then with_fmt=False. When test_package runs
it will show different messages depending on the value of the option.

$ conan create . --build=missing -o with_fmt=True
———————— Exporting the recipe ----------

———————— Testing the package: Running test() ----------
hello/1.0 (test package): Running test()
hello/1.0 (test package): RUN: ./example

(continues on next page)

60 Chapter 4. Tutorial

Conan Documentation, Release 2.14.0

(continued from previous page)

hello/1.0: Hello World Release! (with color!)

$ conan create . --build=missing -o with_fmt=False
———————— Exporting the recipe ----------

———————— Testing the package: Running test() ---------—-
hello/1.0 (test package): Running test()

hello/1.0 (test package): RUN: ./example

hello/1.0: Hello World Release! (without color)

This is just a simple example of how to use the generate () method to customize the toolchain based on the value of
one option, but there are lots of other things that you could do in the generate () method like:

* Create a complete custom toolchain based on your needs to use in your build.
¢ Access to certain information about the package dependencies, like:

— The configuration accessing the defined conf_info.

— Accessing the dependencies options.

— Import files from dependencies using the copy fool. You could also import the files create manifests
for the package, collecting all dependencies versions and licenses.

» Use the Environment tools to generate information for the system environment.

* Adding custom configurations besides Release and Debug, taking into account the settings, like ReleaseShared
or DebugShared.

See also:
* Use the generate() to import files from dependencies.
* More based on the examples mentioned above ...

e generate() method reference

4.2.5 Configure settings and options in recipes

We already explained Conan settings and options and how to use them to build your projects for different configurations
like Debug, Release, with static or shared libraries, etc. In this section, we explain how to configure these settings and
options in the case that one of them does not apply to a Conan package. We will introduce briefly how Conan models
binary compatibility and how that relates to options and settings.

Please, first clone the sources to recreate this project. You can find them in the examples2 repository on GitHub:

$ git clone https://github.com/conan-io/examples2.git
$ cd examples2/tutorial/creating_packages/configure_options_settings

You will notice some changes in the conanfile.py file from the previous recipe. Let’s check the relevant parts:

class helloRecipe(ConanFile):
name = "hello"
version = "1.0"

(continues on next page)

4.2. Creating packages 61

https://github.com/conan-io/examples2

Conan Documentation, Release 2.14.0

(continued from previous page)
options = {"shared": [True, False],
"fPIC": [True, False],
"with_fmt": [True, False]}

default_options = {"shared": False,
"fPIC": True,
"with_fmt": True}

def config_options(self):
if self.settings.os == "Windows":
del self.options.fPIC

def configure(self):
if self.options.shared:
If os=Windows, fPIC will have been removed in config_options()
use rm_safe to avoid double delete errors
self.options.rm_safe("fPIC")

You can see that we added a configure() method to the recipe. Let’s explain what’s the objective of this method and
how it’s different from the config_options() method we already had defined in the recipe:

e configure(): use this method to configure which options or settings of the recipe are available. For example,
in this case, we delete the fPIC option, because it should only be True if we are building the library as shared
(in fact, some build systems will add this flag automatically when building a shared library).

e config_options(): This method is used to constrain the available options in a package before they take a
value. If a value is assigned to a setting or option that is deleted inside this method, Conan will raise an error.
In this case we are deleting the fPIC option in Windows because that option does not exist for that operating
system. Note that this method is executed before the configure () method.

Be aware that deleting an option using the config_options() method has a different result from using the
configure() method. Deleting the option in config_options() is like we never declared it in the recipe which
will raise an exception saying that the option does not exist. However, if we delete it in the configure () method we
can pass the option but it will have no effect. For example, if you try to pass a value to the fPIC option in Windows,
Conan will raise an error warning that the option does not exist:

62 Chapter 4. Tutorial

Conan Documentation, Release 2.14.0

Listing 44: Windows

$ conan create . --build=missing -o fPIC=True

———————— Computing dependency graph --------
ERROR: option 'fPIC' doesn't exist
Possible options are ['shared', 'with_fmt']

As you have noticed, the configure() and config_options() methods delete an option if certain conditions are
met. Let’s explain why we are doing this and the implications of removing that option. It is related to how Conan
identifies packages that are binary compatible with the configuration set in the profile. In the next section, we introduce
the concept of the Conan package ID.

Conan packages binary compatibility: the package ID

We used Conan in previous examples to build for different configurations like Debug and Release. Each time you create
the package for one of those configurations, Conan will build a new binary. Each of them is related to a generated
hash called the package ID. The package ID is just a way to convert a set of settings, options and information about
the requirements of the package to a unique identifier.

Let’s build our package for Release and Debug configurations and check the generated binaries package IDs.

$ conan create . --build=missing -s build_type=Release -tf="" # -tf="" will skip ng the.
— test_package

[50%] Building CXX object CMakeFiles/hello.dir/src/hello.cpp.o
[100%] Linking CXX static library libhello.a

[100%] Built target hello

hello/1.0: Package '738feca714b7251063cc51448da®cf4811424e7c' built

hello/1.0: Build folder /Users/user/.conan2/p/tmp/7fe7f5af0ef27552/b/build/Release
hello/1.0: Generated conaninfo.txt

hello/1.0: Generating the package

hello/1.0: Temporary package folder /Users/user/.conan2/p/tmp/7fe7f5af0ef27552/p
hello/1.0: Calling package()

hello/1.0: CMake command: cmake --install "/Users/user/.conan2/p/tmp/7fe7f5af0ef27552/b/
—build/Release" --prefix "/Users/user/.conan2/p/tmp/7fe7f5af0ef27552/p"

hello/1.0: RUN: cmake --install "/Users/user/.conan2/p/tmp/7fe7f5af0ef27552/b/build/
—Release" --prefix "/Users/user/.conan2/p/tmp/7fe7f5af0ef27552/p"

-- Install configuration: "Release"

-- Installing: /Users/user/.conan2/p/tmp/7fe7f5af®ef27552/p/1lib/libhello.a

-- Installing: /Users/user/.conan2/p/tmp/7fe7f5af0ef27552/p/include/hello.h
hello/1.0 package(): Packaged 1 '.h' file: hello.h

hello/1.0 package(): Packaged 1 '.a' file: libhello.a

hello/1.0: Package '738feca714b7251063cc51448da®cf4811424e7c' created

hello/1.0: Created package revision 3bd9faedc711cbb4fdf10b295268246e

hello/1.0: Full package reference: hello/1.0
—.#e6b11fb0ch64e3777£8d62£f4543cd6b3:738feca714b7251063cc51448dal®cf4811424e7c
—#3bd9faedc711cbb4£df10b295268246e

hello/1.0: Package folder /Users/user/.conan2/p/5c497cbb5421cbda/p

$ conan create . --build=missing -s build_type=Debug -tf="" # -tf="" will skip building.,
—the test_package

(continues on next page)

4.2. Creating packages 63

Conan Documentation, Release 2.14.0

(continued from previous page)

[50%] Building CXX object CMakeFiles/hello.dir/src/hello.cpp.o
[100%] Linking CXX static library libhello.a

[100%] Built target hello

hello/1.0: Package '3d27635e4dd04a258d180fe0®3cfa®7aell86a828"' built

hello/1.0: Build folder /Users/user/.conan2/p/tmp/19a2e552db727a2b/b/build/Debug
hello/1.0: Generated conaninfo.txt

hello/1.0: Generating the package

hello/1.0: Temporary package folder /Users/user/.conan2/p/tmp/19a2e552db727a2b/p
hello/1.0: Calling package()

hello/1.0: CMake command: cmake --install "/Users/user/.conan2/p/tmp/19a2e552db727a2b/b/
—build/Debug" --prefix "/Users/user/.conan2/p/tmp/19a2e552db727a2b/p"

hello/1.0: RUN: cmake --install "/Users/user/.conan2/p/tmp/19a2e552db727a2b/b/build/Debug
" --prefix "/Users/user/.conan2/p/tmp/19a2e552db727a2b/p"

-- Install configuration: "Debug"

-- Installing: /Users/user/.conan2/p/tmp/19a2e552db727a2b/p/1lib/libhello.a

-- Installing: /Users/user/.conan2/p/tmp/19a2e552db727a2b/p/include/hello.h

hello/1.0 package(): Packaged 1 '.h' file: hello.h

hello/1.0 package(): Packaged 1 '.a' file: libhello.a

hello/1.0: Package '3d27635e4dd04a258d180fe03cfa®7aell86a828' created

hello/1.0: Created package revision 67b887a0805c2a535b58be404529clfe

hello/1.0: Full package reference: hello/1.0
—#e6b11fb0cb64e3777£8d62£f4543cd6b3:3d27635e4dd04a258d180fe®03cfal®7ael1186a828
—#67b887a0805c2a535b58be404529c1fe

hello/1.0: Package folder /Users/user/.conan2/p/c7796386fcad5369/p

As you can see Conan generated two package IDs:
e Package 738feca714b7251063cc51448da0cf4811424e7c for Release
 Package 3d27635e4dd04a258d180fe03cfa07ael186a828 for Debug

These two package IDs are calculated by taking the set of settings, options and some information about the require-
ments (we will explain this later in the documentation) and calculating a hash with them. So, for example, in this
case, they are the result of the information depicted in the diagram below.

64 Chapter 4. Tutorial

Conan Documentation, Release 2.14.0

hello/1.0

—‘ 738feca714b7251063cc51448dabcf4811424e7c

T

_—{ 3d27635e4dd@4a258d180Fef3efadTae1 1862828 |

%

“Package ID's"

settings:

- arch=x86_64

- build_type=Release
- compiler=apple-clang
- compiler.cppstd=gnu11
- compiler.libexx=libc++
- compiler.version=13

- os=Macos

options:

- shared=False

- fPIC=True

- with_fmt=True
requirements:

- fmtig.1.1

™

settings:

- arch=x86_64

- build_type=Debug

- compiler=apple-clang
- compiler.cppstd=gnuii
- compiler.libexx=libc++
- compiler.version=13

- os=Macos

options:

- shared=False

- fPIC=True

- with_fmt=True
requirements:

- fmtig.1.1

Those package IDs are different because the build_type is different. Now, when you want to install a package, Conan

will:

* Collect the settings and options applied, along with some information about the requirements and calculate the

hash for the corresponding package ID.

« If that package ID matches one of the packages stored in the local Conan cache Conan will use that. If not, and
we have any Conan remote configured, it will search for a package with that package ID in the remotes.

* If that calculated package ID does not exist in the local cache and remotes, Conan will fail with a “missing
binary” error message, or will try to build that package from sources (this depends on the value of the --build

argument). This build will generate a new package ID in the local cache.

These steps are simplified, there is far more to package ID calculation than what we explain here, recipes themselves
can even adjust their package ID calculations, we can have different recipe and package revisions besides package IDs
and there’s also a built-in mechanism in Conan that can be configured to declare that some packages with a certain

package ID are compatible with other.

Maybe you have now the intuition of why we delete settings or options in Conan recipes. If you do that, those values
will not be added to the computation of the package ID, so even if you define them, the resulting package ID will be the
same. You can check this behaviour, for example with the fPIC option that is deleted when we build with the option
shared=True. Regardless of the value you pass for the fPIC option the generated package ID will be the same for the

hello/1.0 binary:
Listing 45: Windows
[$ conan create . --build=missing -o shared=True -o fPIC=True -tf=""
Listing 46: Linux, macOS
[$ conan create . --build=missing -o shared=True -o -tf=""

4.2. Creating packages

65

Conan Documentation, Release 2.14.0

hello/1.0 package(): Packaged 1 '.h' file: hello.h

hello/1.0 package(): Packaged 1 '.dylib' file: libhello.dylib

hello/1.0: Package '2a899fd0da3125064b£9328b8db681cd82899d56"' created
hello/1.0: Created package revision f0d1385f4f90ae465341c15740552d7e
hello/1.0: Full package reference: hello/1.0
—.#e6b11fb0ch64e3777£8d62£4543cd6b3:2a899fd0da3125064b£9328b8db681cd82899d56
—#£0d1385f4f90ae465341c15740552d7e

hello/1.0: Package folder /Users/user/.conan2/p/8a55286c6595£662/p

$ conan create . --build=missing -o shared=True -o fPIC=False -tf=""

———————— Computing dependency graph --------

Graph root
virtual

Requirements
fmt/8.1.1#601209640bd378c906638a8de90070f7 - Cache
hello/1.0#e6bl11fb0cb64e3777£8d62f4543cd6b3 - Cache

———————— Computing necessary packages --------

Requirements
fmt/8.1.1#601209640bd378c906638a8de90070£f7:d1b3£3666400710fec06446a697f9eeddd1235aa

—#24a2edf207deeed4151bd87bcad4af51c - Skip
hello/1.0#e6b11fb0cb64e3777£8d62f4543cd6b3:2a899£fd0da3125064bf9328b8db681cd82899d56

—#£0d1385f4f90ae465341c15740552d7e - Cache

———————— Installing (downloading, building) binaries... --------
hello/1.0: Already installed!

As you can see, the first run created the 2a899fd0da3125064bf9328b8db681cd82899d56 package,
and the second one, regardless of the different value of the fPIC option, said we already had the
2a899fd0da3125064bf9328b8db681cd82899d56 package installed.

C libraries

There are other typical cases where you want to delete certain settings. Imagine that you are packaging a C library.
When you build this library, there are settings like the compiler C++ standard (self.settings.compiler.cppstd)
or the standard library used (self.settings.compiler.libcxx) that won’t affect the resulting binary at all. Then
it does not make sense that they affect to the package ID computation, so a typical pattern is to delete them in the
configure() method:

def configure(self):
self.settings.rm_safe("compiler.cppstd")
self.settings.rm_safe("compiler.libcxx")

Please, note that deleting these settings in the configure () method will modify the package ID calculation but will
also affect how the toolchain, and the build system integrations work because the C++ settings do not exist.

Note: From Conan 2.4, the above configure() is not necessary if defined languages = "C" recipe attribute

66 Chapter 4. Tutorial

Conan Documentation, Release 2.14.0

(experimental).

Header-only libraries

A similar case happens with packages that package header-only libraries. In that case, there’s no binary code we
need to link with, but just some header files to add to our project. In this cases the package ID of the Conan package
should not be affected by settings or options. For that case, there’s a simplified way of declaring that the generated
package ID should not take into account settings, options or any information from the requirements, which is using the
self.info.clear () method inside another recipe method called package_id():

def package_id(self):
self.info.clear()

We will explain the package_id () method later and explain how you can customize the way the package ID for the
package is calculated. You can also check the Conanfile’s methods reference if you want to know how this method
works in more detail.

See also:
* Header-only packages.
* Check the binary compatibility compatibility.py extension.
* Conan package types.
» Setting package_id_mode for requirements.

* Read the binary model reference for a full view of the Conan binary model.

4.2.6 Build packages: the build() method
We already used a Conan recipe that has a build() method and learned how to use that to invoke a build system and
build our packages. In this tutorial, we will modify that method and explain how you can use it to do things like:

* Building and running tests

» Conditional patching of the source code

* Select the build system you want to use conditionally

Please, first clone the sources to recreate this project. You can find them in the examples2 repository on GitHub:

$ git clone https://github.com/conan-io/examples2.git
$ cd examples2/tutorial/creating_packages/build_method

Build and run tests for your project

You will notice some changes in the conanfile.py file from the previous recipe. Let’s check the relevant parts:

4.2. Creating packages 67

https://github.com/conan-io/examples2

Conan Documentation, Release 2.14.0

Changes introduced in the recipe

Listing 47: conanfile.py

class helloRecipe(ConanFile):
name = "hello"
version = "1.0"

def source(self):
git = Git(self)
git.clone(url="https://github.com/conan-io/libhello.git", target=".")
Please, be aware that using the head of the branch instead of an immutable tag
or commit is not a good practice in general
git.checkout("with_tests")

def requirements(self):
if self.options.with_fmt:
self.requires("fmt/8.1.1")
self.test_requires("gtest/1.11.0")

def generate(self):
tc = CMakeToolchain(self)
if self.options.with_fmt:
tc.variables["WITH_FMT"] = True
tc.generate()

def build(self):
cmake = CMake(self)
cmake.configure()
cmake.build()
if not self.conf.get("tools.build:skip_test", default=False):
test_folder = os.path.join("tests")
if self.settings.os == "Windows":
test_folder = os.path.join("tests", str(self.settings.build_type))
self.run(os.path.join(test_folder, "test_hello"))

* We added the gtest/1.11.0 requirement to the recipe as a test_requires(). It’s a type of requirement intended
for testing libraries like Catch2 or gtest.

e We use the tools.build:skip_test configuration (False by default), to tell CMake whether to build and run
the tests or not. A couple of things to bear in mind:

— If we set the tools.build:skip_test configuration to True Conan will automatically inject the
BUILD_TESTING variable to CMake set to OFF. You will see in the next section that we are using this
variable in our CMakeLists.txt to decide whether to build the tests or not.

— We use the tools.build:skip_test configuration in the build () method, after building the package

68 Chapter 4. Tutorial

Conan Documentation, Release 2.14.0

and tests, to decide if we want to run the tests or not.

— In this case we are using gtest for testing and we have to check if the build method is to run the tests or not.
This configuration also affects the execution of CMake.test () if you are using CTest and Meson. test()
for Meson.

Changes introduced in the library sources

First, please note that we are using another branch from the libhello library. This branch has two novelties on the library
side:

* We added a new function called compose_message () to the library sources so we can add some unit tests over
this function. This function is just creating an output message based on the arguments passed.

* As we mentioned in the previous section the CMakeLists.txt for the library uses the BUILD_TESTING CMake
variable that conditionally adds the fests directory.

Listing 48: CMakeLists.txt

cmake_minimum_required (VERSION 3.15)
project(hello CXX)

if (NOT BUILD_TESTING STREQUAL OFF)
add_subdirectory(tests)
endif()

The BUILD_TESTING CMake variable is declared and set to OFF by Conan (if not already defined) whenever the tools.
build:skip_test configuration is set to value True. This variable is typically declared by CMake when you use
CTest but using the tools.build:skip_test configuration you can use it in your CMakeLists.txt even if you are
using another testing framework.

* We have a CMakeLists.txt in the fests folder using googletest for testing.

Listing 49: tests/CMakeLists.txt

cmake_minimum_required (VERSION 3.15)
project(PackageTest CXX)

find_package(GTest REQUIRED CONFIG)

add_executable(test_hello test.cpp)
target_link_libraries(test_hello GTest::gtest GTest::gtest_main hello)

With basic tests on the functionality of the compose_message () function:

Listing 50: tests/test.cpp

#include "../include/hello.h"
#include "gtest/gtest.h"

namespace {
(continues on next page)

4.2. Creating packages 69

https://github.com/conan-io/libhello/tree/with_tests
https://github.com/conan-io/libhello/blob/with_tests/src/hello.cpp#L9-L12
https://github.com/conan-io/libhello/blob/with_tests/CMakeLists.txt#L15-L17
https://cmake.org/cmake/help/latest/module/CTest.html
https://github.com/conan-io/libhello/blob/with_tests/tests/CMakeLists.txt
https://github.com/google/googletest

Conan Documentation, Release 2.14.0

(continued from previous page)

TEST(HelloTest, ComposeMessages) {
EXPECT_EQ(std::string("hello/1.0: Hello World Release! (with color!)\n"), compose_
—message("Release", "with color!™));

}

Now that we have gone through all the changes in the code, let’s try them out:

$ conan create . --build=missing -tf=

[25%] Building CXX object CMakeFiles/hello.dir/src/hello.cpp.o

[50%] Linking CXX static library libhello.a

[50%] Built target hello

[75%] Building CXX object tests/CMakeFiles/test_hello.dir/test.cpp.o

[100%] Linking CXX executable test_hello

[100%] Built target test_hello

hello/1.0: RUN: ./tests/test_hello

Capturing current environment in /Users/user/.conan2/p/tmp/c51d80ef47661865/b/build/
—.generators/deactivate_conanbuildenv-release-x86_64.sh

Configuring environment variables

Running main() from /Users/user/.conan2/p/tmp/3ad4c6873a47059c/b/googletest/src/gtest_
—.main.cc

[==========] Running 1 test from 1 test suite.
[---=-=—----] Global test environment set-up.
[-----—----] 1 test from HelloTest

[RUN] HelloTest.ComposelMessages

[OK] HelloTest.ComposeMessages (0 ms)
[----=—----] 1 test from HelloTest (0 ms total)
[--—===——--] Global test environment tear-down
[z=========] 1 test from 1 test suite ran. (0 ms total)

[PASSED] 1 test.
hello/1.0: Package '82b6c0c858e739929f74£59c25c187b927d514£f3"' built

As you can see, the tests were built and run. Let’s use now the tools.build: skip_test configuration in the command
line to skip the test building and running:

$ conan create . -c tools.build:skip_test=True -tf=""

[50%] Building CXX object CMakeFiles/hello.dir/src/hello.cpp.o
[100%] Linking CXX static library libhello.a

[100%] Built target hello

hello/1.0: Package '82b6c0c858e739929f74£59c25c187b927d514£3" built

You can see now that only the library target was built and that no tests were built or run.

70 Chapter 4. Tutorial

Conan Documentation, Release 2.14.0

Conditionally patching the source code

If you need to patch the source code the recommended approach is to do that in the source() method. Sometimes,
if that patch depends on settings or options, you have to use the build() method to apply patches to the source code
before launching the build. There are several ways to do this in Conan. One of them would be using the replace_in_file
tool:

import os
from conan import ConanFile
from conan.tools.files import replace_in_file

class helloRecipe(ConanFile):
name = "hello"
version = "1.0"

Binary configuration

settings = "os", "compiler", "build_type", "arch"

options = {"shared": [True, False], "fPIC": [True, False]}
default_options = {"shared": False, "fPIC": True}

def build(self):
replace_in_file(self, os.path.join(self.source_folder,
"Hello World",
"Hello {} Friends".format("Shared" if self.options.shared else

n "

src", "hello.cpp"),

~"Static"))

Please, note that patching in build () should be avoided if possible and only be done for very particular cases as it will
make more difficult to develop your packages locally (we will explain more about this in the local development flow
section later)

Conditionally select your build system

It’s not uncommon that some packages need one build system or another depending on the platform we are building
on. For example, the hello library could build in Windows using CMake and in Linux and MacOS using Autotools.
This can be easily handled in the build () method like this:

class helloRecipe(ConanFile):
name = "hello"
version = "1.0"

Binary configuration

settings = "os", "compiler", "build_type", "arch"

options = {"shared": [True, False], "fPIC": [True, False]}
default_options = {"shared": False, "fPIC": True}

def generate(self):
if self.settings.os == "Windows":
tc = CMakeToolchain(self)

(continues on next page)

4.2. Creating packages 71

Conan Documentation, Release 2.14.0

(continued from previous page)

tc.generate()
deps = CMakeDeps(self)
deps.generate()

else:
tc = AutotoolsToolchain(self)
tc.generate()
deps = PkgConfigDeps(self)
deps.generate()

def build(self):

if self.settings.os == "Windows":
cmake = CMake(self)
cmake.configure()
cmake.build()

else:
autotools = Autotools(self)
autotools.autoreconf()
autotools.configure()
autotools.make()

See also:

* Patching sources

4.2.7 Package files: the package() method
We already used the package () method in our hello package to invoke CMake’s install step. In this tutorial, we will
explain the use of the CMake.install() in more detail and also how to modify this method to do things like:

e Using conan.tools.files utilities to copy the generated artifacts from the build folder to the package folder

» Copying package licenses

¢ Manage how to package symlinks

Please, first clone the sources to recreate this project. You can find them in the examples2 repository on GitHub:

$ git clone https://github.com/conan-io/examples2.git
$ cd examples2/tutorial/creating_packages/package_method

72 Chapter 4. Tutorial

https://github.com/conan-io/examples2

Conan Documentation, Release 2.14.0

Using CMake install step in the package() method

This is the simplest choice when you have already defined in your CMakeLists.txt the functionality of extracting the
artifacts (headers, libraries, binaries) from the build and source folder to a predetermined place and maybe do some
post-processing of those artifacts. This will work without changes in your CMakeLists.txt because Conan will set the
CMAKE_INSTALL_PREFIX CMake variable to point to the recipe’s package_folder attribute. Then, just calling install()
in the CMakeLists.txt over the created target is enough for Conan to move the built artifacts to the correct location in
the Conan local cache.

Listing 51: CMakeLists.txt

cmake_minimum_required (VERSION 3.15)
project(hello CXX)

add_library(hello src/hello.cpp)

target_include_directories(hello PUBLIC include)
set_target_properties(hello PROPERTIES PUBLIC_HEADER "include/hello.h")

install (TARGETS hello)

Listing 52: conanfile.py

def package(self):
cmake = CMake(self)
cmake.install ()

Let’s build our package again and pay attention to the lines regarding the packaging of files in the Conan local cache:

$ conan create . --build=missing -tf=""

hello/1.0: Build folder /Users/user/.conan2/p/tmp/b5857f2e70d1b2fd/b/build/Release
hello/1.0: Generated conaninfo.txt

hello/1.0: Generating the package

hello/1.0: Temporary package folder /Users/user/.conan2/p/tmp/b5857f2e70d1b2£fd/p
hello/1.0: Calling package()

hello/1.0: CMake command: cmake --install "/Users/user/.conan2/p/tmp/b5857f2e70d1b2£fd/b/
—build/Release" --prefix "/Users/user/.conan2/p/tmp/b5857£f2e70d1b2fd/p"

hello/1.0: RUN: cmake --install "/Users/user/.conan2/p/tmp/b5857f2e70d1b2fd/b/build/
—Release" --prefix "/Users/user/.conan2/p/tmp/b5857f2e70d1b2£fd/p"

-- Install configuration: "Release"

-- Installing: /Users/user/.conan2/p/tmp/b5857f2e70d1b2fd/p/1lib/libhello.a

-- Installing: /Users/user/.conan2/p/tmp/b5857f2e70d1b2fd/p/include/hello.h
hello/1.0 package(): Packaged 1 '.h' file: hello.h

hello/1.0 package(): Packaged 1 '.a' file: libhello.a

hello/1.0: Package 'fd7c4113dad406£f7d8211b3470c16627b54ff3af’' created

hello/1.0: Created package revision bf7f5b9a3bb2c957742bedbe216dfchbb

hello/1.0: Full package reference: hello/1.0

—#25e0b5c00aedlef9fbfbbble5ac86ele: £fd7c4113dad406£7d8211b3470c16627b54ff3af
—#bf7£5b9a3bb2c957742bedbe216d£fcbb

hello/1.0: Package folder /Users/user/.conan2/p/47b4c4c61c8616e5/p

As you can see both the include and library files were copied to the package folder after calling to the cmake.

4.2. Creating packages 73

Conan Documentation, Release 2.14.0

install () method.

Use conan.tools.files.copy() in the package() method and packaging licenses

For the cases that you don’t want to rely on CMake’s install functionality or that you are using another build-system,
Conan provides the tools to copy the selected files to the package_folder. In this case, you can use the rools.files.copy
function to make that copy. We can replace the previous cmake.install () step with a custom copy of the files and
the result would be the same.

Note that we are also packaging the LICENSE file from the library sources in the licenses folder. This is a common
pattern in Conan packages and could also be added to the previous example using cmake.install () as the CMake-
Lists.txt will not copy this file to the package folder.

Listing 53: conanfile.py

def package(self):

copy(self, "LICENSE", src=self.source_folder, dst=os.path.join(self.package_folder,
—"licenses"))

copy(self, pattern="*.h", src=os.path.join(self.source_folder, "include"), dst=os.
—path.join(self.package_folder, "include™))

copy(self, pattern="*.a", src=self.build_folder, dst=os.path.join(self.package_
—.folder, "1lib"), keep_path=False)

copy(self, pattern="*.so", src=self.build_folder, dst=os.path.join(self.package_
—folder, "1lib"), keep_path=False)

copy(self, pattern="*.1lib", src=self.build_folder, dst=os.path.join(self.package_
—folder, "1lib"), keep_path=False)

copy(self, pattern="*.dl11", src=self.build_folder, dst=os.path.join(self.package_
—.folder, "bin"), keep_path=False)

copy(self, pattern="*.dylib", src=self.build_folder, dst=os.path.join(self.package_
—.folder, "1lib"), keep_path=False)

Let’s build our package one more time and pay attention to the lines regarding the packaging of files in the Conan local
cache:

$ conan create . --build=missing -tf=""

hello/1.0: Build folder /Users/user/.conan2/p/tmp/222db0532bba7cbc/b/build/Release
hello/1.0: Generated conaninfo.txt

hello/1.0: Generating the package

hello/1.0: Temporary package folder /Users/user/.conan2/p/tmp/222db0532bba7cbc/p
hello/1.0: Calling package()

hello/1.0: Copied 1 file: LICENSE

hello/1.0: Copied 1 '.h' file: hello.h

hello/1.0: Copied 1 '.a' file: libhello.a

hello/1.0 package(): Packaged 1 file: LICENSE

hello/1.0 package(): Packaged 1 '.h' file: hello.h

hello/1.0 package(): Packaged 1 '.a' file: libhello.a

hello/1.0: Package 'fd7c4113dad406f7d8211b3470c16627b54ff3af’' created

hello/1.0: Created package revision 50f91e204d09b64b24b29df3b87a2f3a

hello/1.0: Full package reference: hello/1.0

—#96ed9fb1£78bc96708b1abf4841523b0: fd7c4113dad406£7d8211b3470c16627b54ff3af
—#501f91e204d09b64b24b29df3b87a2f3a
hello/1.0: Package folder /Users/user/.conan2/p/2lec37b931782de8/p

74 Chapter 4. Tutorial

Conan Documentation, Release 2.14.0

Check how the include and library files are packaged. The LICENSE file is also copied as we explained above.

Managing symlinks in the package() method

Another thing you can do in the package method is managing how to package symlinks. Conan won’t manipulate
symlinks by default, so we provide several fools to convert absolute symlinks to relative ones and removing external or
broken symlinks.

Imagine that some of the files packaged in the latest example were symlinks that point to an absolute location inside
the Conan cache. Then, calling to conan.tools.files.symlinks.absolute_to_relative_symlinks() would
convert those absolute links into relative paths and make the package relocatable.

Listing 54: conanfile.py

from conan.tools.files.symlinks import absolute_to_relative_symlinks

def package(self):

copy(self, "LICENSE", src=self.source_folder, dst=os.path.join(self.package_folder,
—"licenses"))

copy(self, pattern="*.h", src=os.path.join(self.source_folder, "include"), dst=os.
—path. join(self.package_folder, "include"))

copy(self, pattern="*.a", src=self.build_folder, dst=os.path.join(self.package_
—folder, "1lib"), keep_path=False)

absolute_to_relative_symlinks(self, self.package_folder)

See also:

* package() method reference

4.2.8 Define information for consumers: the package_info() method

In the previous tutorial section, we explained how to store the headers and binaries of a library in a Conan package
using the package method. Consumers that depend on that package will reuse those files, but we have to provide some
additional information so that Conan can pass that to the build system and consumers can use the package.

For instance, in our example, we are building a static library named hello that will result in a libhello.a file in Linux and
macOS or a hello.lib file in Windows. Also, we are packaging a header file hello.h with the declaration of the library
functions. The Conan package ends up with the following structure in the Conan local cache:

include

L— hello.h
1ib

L libhello.a

Then, consumers that want to link against this library will need some information:
* The location of the include folder in the Conan local cache to search for the hello.h file.
¢ The name of the library file to link against it (/ibhello.a or hello.lib)

* The location of the /ib folder in the Conan local cache to search for the library file.

4.2. Creating packages 75

Conan Documentation, Release 2.14.0

Conan provides an abstraction over all the information consumers may need in the cpp_info attribute of the ConanFile.
The information for this attribute must be set in the package_info() method. Let’s have a look at the package_info()
method of our hello/1.0 Conan package:

Listing 55: conanfile.py

class helloRecipe(ConanFile):
name = "hello"
version = "1.0"

def package_info(self):
self.cpp_info.libs = ["hello"]

We can see a couple of things:

* We are adding a hello library to the 1ibs property of the cpp_info to tell consumers that they should link the
libraries from that list.

* We are not adding information about the /ib or include folders where the library and headers files are packaged.
The cpp_info object provides the .includedirs and .1ibdirs properties to define those locations but Conan
sets their value as 1ib and include by default so it’s not needed to add those in this case. If you were copying the
package files to a different location then you have to set those explicitly. The declaration of the package_info
method in our Conan package would be equivalent to this one:

Listing 56: conanfile.py

class helloRecipe(ConanFile):
name = "hello"
version = "1.0"

def package_info(self):
self.cpp_info.libs = ["hello"]
conan sets libdirs = ["1ib"] and includedirs = ["include"] by default
self.cpp_info.libdirs = ["1ib"]
self.cpp_info.includedirs = ["include"]

Setting information in the package_info() method
Besides what we explained above about the information you can set in the package_info() method, there are some
typical use cases:

¢ Define information for consumers depending on settings or options

* Customizing certain information that generators provide to consumers, like the target names for CMake or the
generated files names for pkg-config for example

* Propagating configuration values to consumers

* Propagating environment information to consumers

76 Chapter 4. Tutorial

Conan Documentation, Release 2.14.0

* Define components for Conan packages that provide multiple libraries

Let’s see some of those in action. First, clone the project sources if you haven’t done so yet. You can find them in the
examples2 repository on GitHub:

$ git clone https://github.com/conan-io/examples2.git
$ cd examples2/tutorial/creating_packages/package_information

Define information for consumers depending on settings or options
For this section of the tutorial we introduced some changes in the library and recipe. Let’s check the relevant parts:
Changes introduced in the library sources

First, please note that we are using another branch from the libhello library. Let’s check the library’s CMakeLists.txt:

Listing 57: CMakeLists.txt

cmake_minimum_required (VERSION 3.15)
project(hello CXX)

add_library(hello src/hello.cpp)

if (BUILD_SHARED_LIBS)

set_target_properties(hello PROPERTIES OUTPUT_NAME hello-shared)
else()

set_target_properties(hello PROPERTIES OUTPUT_NAME hello-static)
endif()

As you can see, we are setting the output name for the library depending on whether we are building the library as static
(hello-static) or as shared (hello-shared). Now let’s see how to translate these changes to the Conan recipe.

Changes introduced in the recipe

To update our recipe according to the changes in the library’s CMakeLists.txt we have to conditionally set the library
name depending on the self.options.shared option in the package_info() method:

Listing 58: conanfile.py

class helloRecipe(ConanFile):

def source(self):
git = Git(self)
git.clone(url="https://github.com/conan-io/libhello.git", target=".")
Please, be aware that using the head of the branch instead of an immutable tag
or commit is not a good practice in general

(continues on next page)

4.2. Creating packages 77

https://github.com/conan-io/examples2
https://github.com/conan-io/libhello/tree/package_info

Conan Documentation, Release 2.14.0

(continued from previous page)

git.checkout("package_info")

def package_info(self):
if self.options.shared:
self.cpp_info.libs = ["hello-shared"]
else:
self.cpp_info.libs = ["hello-static"]

Now, let’s create the Conan package with shared=False (that’s the default so no need to set it explicitly) and check
that we are packaging the correct library (libhello-static.a or hello-static.lib) and that we are linking the correct library
in the fest_package.

$ conan create . --build=missing

-- Install configuration: "Release"

-- Installing: /Users/user/.conan2/p/tmp/a311fcf8a63£f3206/p/1lib/libhello-static.a
-- Installing: /Users/user/.conan2/p/tmp/a311fcf8a63£3206/p/include/hello.h
hello/1.0 package(): Packaged 1 '.h' file: hello.h

hello/1.0 package(): Packaged 1 '.a' file: libhello-static.a

hello/1.0: Package '£fd7c4113dad406£7d8211b3470c16627b54ff3af' created

-- Build files have been written to: /Users/user/.conan2/p/tmp/a311fcf8a63£3206/b/build/
—Release

hello/1.0: CMake command: cmake --build "/Users/user/.conan2/p/tmp/a311fcf8a63£3206/b/
—build/Release" -- -j16

hello/1.0: RUN: cmake --build "/Users/user/.conan2/p/tmp/a311fcf8a63£3206/b/build/Release
" -- -jl16

[25%] Building CXX object CMakeFiles/hello.dir/src/hello.cpp.o

[50%] Linking CXX static library libhello-static.a

[50%] Built target hello

[75%] Building CXX object tests/CMakeFiles/test_hello.dir/test.cpp.o

[100%] Linking CXX executable test_hello

[100%] Built target test_hello

hello/1.0: RUN: tests/test_hello

[50%] Building CXX object CMakeFiles/example.dir/src/example.cpp.o
[100%] Linking CXX executable example
[100%] Built target example

———————— Testing the package: Running test() --------
hello/1.0 (test package): Running test()

hello/1.0 (test package): RUN: ./example

hello/1.0: Hello World Release! (with color!)

As you can see both the tests for the library and the Conan test_package linked against the libhello-static.a library
successfully.

78 Chapter 4. Tutorial

Conan Documentation, Release 2.14.0

Properties model: setting information for specific generators

The CppInfo object provides the set_property method to set information specific to each generator. For example,
in this tutorial, we use the CMakeDeps generator to generate the information that CMake needs to build a project that
requires our library. CMakeDeps, by default, will set a target name for the library using the same name as the Conan
package. If you have a look at that CMakeLists.txt from the test_package:

Listing 59: test_package CMakeLists.txt

cmake_minimum_required(VERSION 3.15)
project(PackageTest CXX)

find_package(hello CONFIG REQUIRED)

add_executable(example src/example.cpp)
target_link libraries(example hello::hello)

You can see that we are linking with the target name hello: :hello. Conan sets this target name by default, but we
can change it using the properties model. Let’s try to change it to the name hello: :myhello. To do this, we have to
set the property cmake_target_name in the package_info method of our hello/1.0 Conan package:

Listing 60: conanfile.py

class helloRecipe(ConanFile):

def package_info(self):
if self.options.shared:
self.cpp_info.libs
else:
self.cpp_info.libs

["hello-shared"]

["hello-static"]

self.cpp_info.set_property("cmake_target_name", "hello::myhello")

Then, change the target name we are using in the CMakeLists.txt in the test_package folder to hello: :myhello:

Listing 61: test_package CMakeLists.txt

cmake_minimum_required (VERSION 3.15)
project(PackageTest CXX)
target_link libraries(example hello: :myhello)

And re-create the package:

$ conan create . --build=missing

Exporting the recipe

hello/1.0: Exporting package recipe

hello/1.0: Using the exported files summary hash as the recipe revision:..
—44d78a68b16b25c5e6d7e8884b8£58b8

hello/1.0: A new conanfile.py version was exported

hello/1.0: Folder: /Users/user/.conan2/p/a8cb81b31dc10d96/e

hello/1.0: Exported revision: 44d78a68b16b25c5e6d7e8884b8f58b8

(continues on next page)

4.2. Creating packages 79

Conan Documentation, Release 2.14.0

(continued from previous page)

hello/1.0 (test package): Calling build()

-- Detecting CXX compile features
-- Detecting CXX compile features - done
-- Conan: Target declared 'hello::myhello’

[100%] Linking CXX executable example
[100%] Built target example

———————— Testing the package: Running test() --------
hello/1.0 (test package): Running test()

hello/1.0 (test package): RUN: ./example

hello/1.0: Hello World Release! (with color!)

You can see how Conan now declares the hello: :myhello instead of the default hello: :hello and the test_package
builds successfully.

The target name is not the only property you can set in the CMakeDeps generator. For a complete list of properties that
affect the CMakeDeps generator behaviour, please check the reference.

Propagating environment or configuration information to consumers
You can provide environment information to consumers in the package_info (). To do so, you can use the ConanFile’s
runenv_info and buildenv_info properties:

e runenv_info Environment object that defines environment information that consumers that use the package
may need when running.

* buildenv_info Environment object that defines environment information that consumers that use the package
may need when building.

Please note that it’s not necessary to add cpp_info.bindirs to PATH or cpp_info.libdirs to LD_LIBRARY_PATH,
those are automatically added by the VirtualBuildEnv and VirtualRunEnv.

You can also define configuration values in the package_info() so that consumers can use that information. To do
this, set the conf_info property of the ConanFile.

To know more about this use case, please check the corresponding example.

Define components for Conan packages that provide multiple libraries
There are cases in which a Conan package may provide multiple libraries, for these cases you can set the separate
information for each of those libraries using the components attribute from the Cppinfo object.
To know more about this use case, please check the components example in the examples section.
See also:
* Propagating environment and configuration information to consumers example
* Define components for Conan packages that provide multiple libraries example

* package_info() reference

80 Chapter 4. Tutorial

Conan Documentation, Release 2.14.0

4.2.9 Testing Conan packages

In all the previous sections of the tutorial, we used the fest_package. It was invoked automatically at the end of the
conan create command after building our package verifying that the package is created correctly. Let’s explain the
test_package in more detail in this section:

Please, first clone the sources to recreate this project. You can find them in the examples2 repository on GitHub:

$ git clone https://github.com/conan-io/examples2.git
$ cd examples2/tutorial/creating_packages/testing_packages

Some important notes to have in mind about the test_package:

* The test_package folder is different from unit or integration tests. These tests are “package” tests, and validate
that the package is properly created, and that the package consumers will be able to link against it and reuse it.

* Itis a small Conan project itself, it contains its own conanfile.py, and its source code including build scripts, that
depends on the package being created, and builds and execute a small application that requires the library in the
package.

It doesn’t belong to the package. It only exist in the source repository, not in the package.

e The test_package folder is the default one, but a different one can be defined in command line --test-folder
argument or with the test_package_folder recipe attribute.

The test_package folder for our hello/1.0 Conan package has the following contents:

test_package
CMakeLists.txt
E conanfile.py
src
L example.cpp

Let’s have a look at the different files that are part of the fest_package. First, example.cpp is just a minimal example of
how to use the libhello library that we are packaging:

Listing 62: test_package/src/example.cpp

#include "hello.h"

int main() {
hello(Q);
}

Then the CMakeLists.txt file to tell CMake how to build the example:

Listing 63: test_package/CMakeLists.txt

cmake_minimum_required (VERSION 3.15)
project(PackageTest CXX)

find_package(hello CONFIG REQUIRED)

add_executable(example src/example.cpp)
target_link libraries(example hello::hello)

Finally, the recipe for the fest_package that consumes the hello/1.0 Conan package:

4.2. Creating packages 81

https://github.com/conan-io/examples2

Conan Documentation, Release 2.14.0

Listing 64: test_package/conanfile.py

import os

from conan import ConanFile
from conan.tools.cmake import CMake, cmake_layout
from conan.tools.build import can_run

class helloTestConan(ConanFile):
settings = "os", "compiler", "build_type", "arch"
generators = "CMakeDeps", "CMakeToolchain"

def requirements(self):
self.requires(self.tested_reference_str)

def build(self):
cmake = CMake(self)
cmake.configure()
cmake.build()

def layout(self):
cmake_layout (self)

def test(self):
if can_run(self):
cnd = os.path.join(self.cpp.build.bindir, "example")
self.run(cmd, env="conanrun")

Let’s go through the most relevant parts:

* We add the requirements in the requirements () method, but in this case we use the tested_reference_str
attribute that Conan sets to pass to the test_package. This is a convenience attribute to avoid hardcoding the
package name in the test_package so that we can reuse the same test_package for several versions of the same
Conan package. In our case, this variable will take the hello/1.0 value.

* We define a test () method. This method will only be invoked in the test_package recipes. It executes imme-
diately after build() is called, and it’s meant to run some executable or tests on binaries to prove the package
is correctly created. A couple of comments about the contents of our test () method:

— We are using the conan.tools.build.cross_building tool to check if we can run the built executable in our
platform. This tool will return the value of the tools.build.cross_building:can_run in case it’s set.
Otherwise it will return if we are cross-building or not. It’s an useful feature for the case your architecture
can run more than one target. For instance, Mac M1 machines can run both armv8 and x86_64.

— We run the example binary, that was generated in the self.cpp.build.bindir folder using the environ-
ment information that Conan put in the run environment. Conan will then invoke a launcher containing
the runtime environment information, anything that is necessary for the environment to run the compiled
executables and applications.

Now that we have gone through all the important bits of the code, let’s try our test_package. Although we already
learned that the fest_package is invoked when we call to conan create, you can also just create the fest_package if
you have already created the hello/1.0 package in the Conan cache. This is done with the conan test command:

($ conan test test_package hello/1.0

(continues on next page)

82 Chapter 4. Tutorial

Conan Documentation, Release 2.14.0

(continued from previous page)

———————— test_package: Computing necessary packages --------

Requirements
fmt/8.1.1#cd132b054c£999£31bd2£d2424053ddc: ££7a496f48fca9a88dc478962881e015f4a5b98f

—#1d9bb4c015de50bcb4a338c07229b3bc - Cache
hello/1.0#25e0b5c00aed4lef9fbfbbble5ac86ele:£fd7c4113dad406£7d8211b3470c16627b54ff3af
—#4££3£fd65a1d37b52436bf62eabeaac®4 - Cache
Test requirements
gtest/1.11.0
—#d136b3379£fdb29bdfe31404b916b29e1:656efb9d626073d4ffa®dda2cc8178bc408blbee

—#ee8cbd2bf32d1c89e553bdd9d5606127 - Skip

[50%] Building CXX object CMakeFiles/example.dir/src/example.cpp.o
[100%] Linking CXX executable example
[100%] Built target example

———————— Testing the package: Running test() --------
hello/1.0 (test package): Running test()

hello/1.0 (test package): RUN: ./example

hello/1.0: Hello World Release! (with color!)

As you can see in the output, our fest_package builds successfully testing that the hello/1.0 Conan package can be
consumed with no problem.

See also:

o Test tool_requires packages

4.2.10 Other types of packages

In the previous sections, we saw how to create a new recipe for a classic C++ library but there are other types of
packages rather than libraries.

In this section, we will review how to create a recipe for header-only libraries, how to package already built
libraries, and how to create recipes for tool requires and applications.

Header-only packages

In this section, we are going to learn how to create a recipe for a header-only library.

Please, first clone the sources to recreate this project. You can find them in the examples2 repository on GitHub:

$ git clone https://github.com/conan-io/examples2.git
$ cd examples2/tutorial/creating_packages/other_packages/header_only

A header-only library is composed only of header files. That means a consumer doesn’t link with any library but
includes headers, so we need only one binary configuration for a header-only library.

4.2. Creating packages 83

https://github.com/conan-io/examples2

Conan Documentation, Release 2.14.0

In the Create your first Conan package section, we learned about the settings, and how building the recipe applying
different build_type (Release/Debug) generates a new binary package.

As we only need one binary package, we don’t need to declare the settings attribute. This is a basic recipe for a header-
only recipe:

Listing 65: conanfile.py

from conan import ConanFile
from conan.tools.files import copy

class SumConan(ConanFile):

name = "sum

version = "0.1"

No settings/options are necessary, this is header only
exports_sources = "include/*"

We can avoid copying the sources to the build folder in the cache
no_copy_source = True

def package(self):
This will also copy the "include" folder
copy(self, "*.h", self.source_folder, self.package_folder)

def package_info(self):
For header-only packages, libdirs and bindirs are not used
so it's necessary to set those as empty.
self.cpp_info.bindirs = []
self.cpp_info.libdirs = []

Please, note that we are setting cpp_info.bindirs and cpp_info.libdirsto [] because header-only libraries don’t
have compiled libraries or binaries, but they default to ["bin"], and ["1ib"], then it is necessary to change it.

Also check that we are setting the no_copy_source attribute to True so that the source code will not be copied from the
source_folder to the build_folder. This is a typical optimization for header-only libraries to avoid extra copies.

Our header-only library is this simple function that sums two numbers:

Listing 66: include/sum.h

inline int sum(int a, int b){
return a + b;

}

The folder examples2/tutorial/creating_packages/other_packages/header_only in the cloned project contains a
test_package folder with an example of an application consuming the header-only library. So we can run a conan
create . command to build the package and test the package:

$ conan create .

[50%] Building CXX object CMakeFiles/example.dir/src/example.cpp.o
[100%] Linking CXX executable example
[100%] Built target example

———————— Testing the package: Running test() ----------
sum/0.1 (test package): Running test()

(continues on next page)

84 Chapter 4. Tutorial

Conan Documentation, Release 2.14.0

(continued from previous page)
sum/0.1 (test package): RUN: ./example
1+3=4

After running the conan create a new binary package is created for the header-only library, and we can see how the
test_package project can use it correctly.

We can list the binary packages created running this command:

$ conan list "sum/®.1#:*"
Local Cache
sum
sum/0.1
revisions
c1a714a086933b067bcbf12002fb0780 (2024-05-09 15:28:51 UTC)
packages
da39a3ee5e6b4b0d3255bfef95601890afd80709
info

We get one package with the package ID da39a3ee5e6b4b0d3255bfef95601890afd80709. Let’s see what happen
if we run the conan create but specifying -s build_type=Debug:

$ conan create . -s build_type=Debug
$ conan list "sum/0.1#:*"
Local Cache
sum
sum/0.1
revisions
c1a714a086933b067bcb£12002£fb0780 (2024-05-09 15:28:51 UTC)
packages
da39a3ee5e6b4b0d3255bfef95601890afd80709
info

Even in the test_package executable is built for Debug, we get the same binary package for the header-only li-
brary. This is because we didn’t specify the settings attribute in the recipe, so the changes in the input settings (-s
build_type=Debug) do not affect the recipe and therefore the generated binary package is always the same.

Header-only library with tests

In the previous example, we saw why a recipe header-only library shouldn’t declare the settings attribute, but some-
times the recipe needs them to build some executable, for example, for testing the library. Nonetheless, the binary
package of the header-only library should still be unique, so we are going to review how to achieve that.

Please, first clone the sources to recreate this project. You can find them in the examples2 repository on GitHub:

$ git clone https://github.com/conan-io/examples2.git
$ cd examples2/tutorial/creating_packages/other_packages/header_only_gtest

We have the same header-only library that sums two numbers, but now we have this recipe:

import os

from conan import ConanFile

from conan.tools.files import copy

from conan.tools.cmake import cmake_layout, CMake

(continues on next page)

4.2. Creating packages 85

https://github.com/conan-io/examples2

Conan Documentation, Release 2.14.0

(continued from previous page)

class SumConan(ConanFile):

name = "sum

version = "0.1"

settings = "os", "arch", "compiler", "build_type"
exports_sources = "include/*", "test/*"
no_copy_source = True

generators = "CMakeToolchain", "CMakeDeps"

def requirements(self):
self.test_requires("gtest/1.11.0")

def validate(self):
check_min_cppstd(self, 11)

def layout(self):
cmake_layout (self)

def build(self):
if not self.conf.get("tools.build:skip_test", default=False):
cmake = CMake(self)
cmake.configure(build_script_folder="test")
cmake.build()
self.run(os.path.join(self.cpp.build.bindir, "test_sum™))

def package(self):
This will also copy the "include" folder
copy(self, "*.h", self.source_folder, self.package_folder)

def package_info(self):
For header-only packages, libdirs and bindirs are not used
so it's necessary to set those as empty.
self.cpp_info.bindirs = []
self.cpp_info.libdirs = []

def package_id(self):
self.info.clear()

These are the changes introduced in the recipe:

We are introducing a test_require to gtest/1.11.0. A test_require is similar to a regular requirement
but it is not propagated to the consumers and cannot conflict.

gtest needs at least C++11 to build. So we introduced a validate () method calling check_min_cppstd.

As we are building the gtest examples with CMake, we use the generators CMakeToolchain and CMakeDeps,
and we declared the cmake_layout () to have a known/standard directory structure.

We have a build () method, building the tests, but only when the standard conf tools.build:skip_test is
not True. Use that conf as a standard way to enable/disable the testing. It is used by the helpers like ClMake to
skip the cmake.test() in case we implement the tests in CMake.

We have a package_id () method calling self.info.clear(). This is internally removing all the information
(settings, options, requirements) from the package_id calculation so we generate only one configuration for our

86

Chapter 4. Tutorial

Conan Documentation, Release 2.14.0

header-only library.

We can call conan create to build and test our package.

$ conan create . -s compiler.cppstd=14 --build missing

Running main() from /Users/luism/.conan2/p/tmp/9bf83ef65d5ff0d6/b/googletest/
—ssrc/gtest_main.cc

[==========] Running 1 test from 1 test suite.
[--——————--] Global test environment set-up.
[---———----] 1 test from SumTest

[RUN] SumTest.BasicSum

[OK] SumTest.BasicSum (® ms)

[---—==——--] 1 test from SumTest (0 ms total)
[--——————--] Global test environment tear-down
[==========] 1 test from 1 test suite ran. (0 ms total)

[PASSED] 1 test.
sum/0.1: Package 'da39a3ee5e6b4b0d3255bfef95601890afd80709' built

We can run conan create again specifying a different compiler.cppstd and the built package would be the same:

$ conan create . -s compiler.cppstd=17

sum/0.1: RUN: ./test_sum
Running main() from /Users/luism/.conan2/p/tmp/9b£83ef65d5ff0d6/b/googletest/
—,src/gtest_main.cc

[==========] Running 1 test from 1 test suite.
[--——=———--] Global test environment set-up.
[--—————---] 1 test from SumTest

[RUN] SumTest.BasicSum

[OK] SumTest.BasicSum (0 ms)

[--—===——--] 1 test from SumTest (0 ms total)
[--——————--] Global test environment tear-down
[==========] 1 test from 1 test suite ran. (0 ms total)

[PASSED] 1 test.
sum/0.1: Package 'da39a3ee5e6b4b0d3255bfef95601890afd80709' built

Note: Once we have the sum/0. 1 binary package available (in a server, after a conan upload, or in the
local cache), we can install it even if we don’t specify input values for os, arch, ... etc. This is a new
feature of Conan 2.X.

We could call conan install --require sum/0.1 with an empty profile and would get the binary
package from the server. But if we miss the binary and we need to build the package again, it will fail
because of the lack of settings.

4.2. Creating packages 87

Conan Documentation, Release 2.14.0

Package prebuilt binaries

There are specific scenarios in which it is necessary to create packages from existing binaries, for example from 3rd
parties or binaries previously built by another process or team that is not using Conan. Under these circumstances,
building from sources is not what you want.

You can package the local files in the following scenarios:

1. When you are developing your package locally and you want to quickly create a package with the built artifacts,
but as you don’t want to rebuild again (clean copy) your artifacts, you don’t want to call conan create. This
method will keep your local project build if you are using an IDE.

2. When you cannot build the packages from sources (when only pre-built binaries are available) and you have them
in a local directory.

3. Same as 2 but you have the precompiled libraries in a remote repository.

Locally building binaries

Use the conan new command to create a “Hello World” C++ library example project:

[$ conan new cmake_lib -d name=hello -d version=0.1

This will create a Conan package project with the following structure.

— CMakeLists.txt
—— conanfile.py
—— include
L— hello.h
— src
L— hello.cpp
L— test_package
CMakeLists.txt
E conanfile.py
src
L example.cpp

We have a CMakeLists.txt file in the root, an src folder with the cpp files and, an include folder for the headers.
They also have a test_package/ folder to test that the exported package is working correctly.
Now, for every different configuration (different compilers, architectures, build_type...):

1. We call conan install to generate the conan_toolchain.cmake file and the CMakeUserPresets. json
that can be used in our IDE or calling CMake (only >= 3.23).

[$ conan install . -s build_type=Release

2. We build our project calling CMake, our IDE, ... etc:

Listing 67: Linux, macOS

$ mkdir -p build/Release
$ cd build/Release
$ cmake ../.. -DCMAKE_BUILD_TYPE=Release -DCMAKE_TOOLCHAIN_FILE=../Release/

(continues on next page)

88 Chapter 4. Tutorial

Conan Documentation, Release 2.14.0

(continued from previous page)

—.generators/conan_toolchain.cmake
$ cmake --build .

Listing 68: Windows

$ mkdir -p build

$ cd build
$ cmake .. -DCMAKE_TOOLCHAIN_FILE=generators/conan_toolchain.cmake
$ cmake --build . --config Release

Note: As we are directly using our IDE or CMake to build the library, the build() method of the recipe is
never called and could be removed.

3. We call conan export-pkg to package the built artifacts.

($ cd ../..
$ conan export-pkg . -s build_type=Release

hello/0.1: Calling package()
hello/0.1 package(): Packaged 1 '.h' file: hello.h
hello/0.1 package(): Packaged 1 '.a' file: libhello.a

hello/0.1: Package '54a3ab9b777a90a13e500dd311d9cd70316e9d55"' created

L

Let’s deep a bit more in the package method. The generated package () method is using cmake.install() to
copy the artifacts from our local folders to the Conan package.

There is an alternative and generic package () method that could be used for any build system:

def package(self):
local_include_folder = os.path.join(self.source_folder, self.cpp.source.

—includedirs[0])
local_lib_folder = os.path.join(self.build_folder, self.cpp.build.libdirs[0])
copy(self, "*.h", local_include_folder, os.path.join(self.package_folder,

~"include"), keep_path=False)

copy(self, "*.1ib", local_lib_folder, os.path.join(self.package_folder, "lib"),.
—.keep_path=False)

copy(self, "*.a", local_lib_folder, os.path.join(self.package_folder, "1lib"),.
—keep_path=False)

L

This package () method is copying artifacts from the following directories that, thanks to the layout(), will
always point to the correct places:

* os.path.join(self.source_folder, self.cpp.source.includedirs[0]) will always point to our local include
folder.

« os.path.join(self.build_folder, self.cpp.build.libdirs[0]) will always point to the location of the libraries
when they are built, no matter if using a single-config CMake Generator or a multi-config one.

4. We can test the built package calling conan test:

$ conan test test_package/conanfile.py hello/0.1 -s build_type=Release

(continues on next page)

4.2. Creating packages 89

Conan Documentation, Release 2.14.0

(continued from previous page)

———————— Testing the package: Running test() ----------
hello/0.1 (test package): Running test()

hello/0.1 (test package): RUN: ./example

hello/0.1: Hello World Release!

hello/®.1: __x86_64__ defined

hello/0®.1: __cplusplus199711

hello/®.1: __GNUC__4

hello/0.1: __GNUC_MINOR__2

hello/0.1: __clang_major__13

hello/®.1: __clang minor__1

hello/0.1: __apple_build_version__13160021

Now you can try to generate a binary package for build_type=Debug running the same steps but changing the
build_type. You can repeat this process any number of times for different configurations.

Packaging already Pre-built Binaries

Please, first clone the sources to recreate this project. You can find them in the examples2 repository on GitHub:

$ git clone https://github.com/conan-io/examples2.git
$ cd examples2/tutorial/creating_packages/other_packages/prebuilt_binaries

This is an example of scenario 2 explained in the introduction. If you have a local folder containing the binaries for
different configurations you can package them using the following approach.

These are the files of our example, (be aware that the library files are only empty files so not valid libraries):

|: conanfile.py
vendor_hello_library
— linux
armv8

— include

L— hello.h
L— libhello.a
x86_64
— include

L— hello.h
L— libhello.a
— macos

armv8

— include
L— hello.h
L— libhello.a
x86_64
— include
L— hello.h
L— libhello.a
L— windows
armv8
— hello.lib
L— include

(continues on next page)

90 Chapter 4. Tutorial

https://github.com/conan-io/examples2

Conan Documentation, Release 2.14.0

(continued from previous page)

L L— hello.h
x86_64
hello.1lib
include
L— hello.h

We have folders with os and subfolders with arch. This the recipe of our example:

import os
from conan import ConanFile
from conan.tools.files import copy

class helloRecipe(ConanFile):

name = "hello"
version = "0.1"
settings = "os", "arch"

def layout(self):
_os = str(self.settings.os).lower()
_arch = str(self.settings.arch).lower()
self.folders.build = os.path.join("vendor_hello_library", _os, _arch)
self.folders.source = self.folders.build
self.cpp.source.includedirs = ["include"]
self.cpp.build.libdirs = ["."]

def package(self):

local_include_folder = os.path.join(self.source_folder, self.cpp.source.
—includedirs[0])

local_lib_folder = os.path.join(self.build_folder, self.cpp.build.libdirs[0])

copy(self, "*.h", local_include_folder, os.path.join(self.package_folder,
—"include"), keep_path=False)

copy(self, "*.1ib", local_lib_folder, os.path.join(self.package_folder, "1lib"),.
—keep_path=False)

copy(self,
—keep_path=False)

*.a", local_lib_folder, os.path.join(self.package_folder, "1lib"),.

def package_info(self):
self.cpp_info.libs = ["hello"]

* We are not building anything, so the build method is not useful here.

* We can keep the same package method from the previous example because the location of the artifacts is declared
by the 1ayout Q).

* Both the source folder (with headers) and the build folder (with libraries) are in the same location, in a path that
follows:

vendor_hello_library/{os}/{arch}

¢ The headers are in the include subfolder of the self. source_folder (we declare it in self.cpp.source.
includedirs).

¢ The libraries are in the root of the self.build_folder folder (we declare self.cpp.build.libdirs = [".
Il])'

4.2. Creating packages 91

Conan Documentation, Release 2.14.0

* We removed the compiler and the build_type because we only have different libraries depending on the
operating system and the architecture (it might be a pure C library).

Now, for each different configuration we call conan export-pkg command, later we can list the binaries so we can
check we have one package for each precompiled library:

L

LG R - s - -

$

conan
conan
conan
conan
conan
conan

conan

export-pkg . -s os="Linux" -s arch="x86_64"
export-pkg . -s os="Linux" -s arch="armv8"
export-pkg . -s os="Macos" -s arch="x86_64"
export-pkg . -s os="Macos" -s arch="armv8"
export-pkg . -s os="Windows" -s arch="x86_64"
export-pkg . -s os="Windows" -s arch="armv8"
list "hello/0.1#:*"

Local Cache

hello

hello/0.1
revisions

9¢7634d£e®369907£569c4e583f9bc50 (2024-05-10 08:28:31 UTC)
packages
522dcea5982a3f8a5b624c16477e47195da2£84f
info
settings
arch: x86_64
os: Windows
63fead0844576fc02943e16909£f08fcdddd6£f44b
info
settings
arch: x86_64
os: Linux
82339cc4d6db7990c1830d274cd12e7c91abl8al
info
settings
arch: x86_64
os: Macos
a0cd51c51£fe9010370187244a£885b0efcc5b69b
info
settings
arch: armv8
os: Windows
€93719558c£197£1d£f5a7£1d071093e26f0e44a0
info
settings
arch: armv8
os: Linux
dc£f68e€932572755309a5£69f3ceelbede410e907
info
settings
arch: armv8
os: Macos

J

In this example, we don’t have a test_package/ folder but you can provide one to test the packages like in the previous

example.

92

Chapter 4. Tutorial

Conan Documentation, Release 2.14.0

Downloading and Packaging Pre-built Binaries

This is an example of scenario 3 explained in the introduction. If we are not building the libraries we likely have them
somewhere in a remote repository. In this case, creating a complete Conan recipe, with the detailed retrieval of the
binaries could be the preferred method, because it is reproducible, and the original binaries might be traced.

Please, first clone the sources to recreate this project. You can find them in the examples2 repository on GitHub:

$ git clone https://github.com/conan-io/examples2.git
$ cd examples2/tutorial/creating_packages/other_packages/prebuilt_remote_binaries

Listing 69: conanfile.py

import os
from conan.tools.files import get, copy
from conan import ConanFile

class HelloConan(ConanFile):

name = "hello"
version = "0.1"
settings = "os", "arch"

def build(self):
base_url = "https://github.com/conan-io/libhello/releases/download/®.0.1/"
_os = {"Windows": "win", "Linux": "linux", "Macos": "macos"}.get(str(self.
-,settings.os))
_arch = str(self.settings.arch).lower()
url = "{}/{}_{}.tgz".format(base_url, _os, _arch)
get(self, url)

def package(self):
copy(self, "*.h", self.build_folder, os.path.join(self.package_folder,
~"include™))
copy(self, "*.1ib", self.build_folder, os.path.join(self.package_folder, "lib
<4,"))
copy(self, "*.a", self.build_folder, os.path.join(self.package_folder, "1lib"))

def package_info(self):
self.cpp_info.libs = ["hello"]

Typically, pre-compiled binaries come for different configurations, so the only task that the build () method has to
implement is to map the settings to the different URLs.

We only need to call conan create with different settings to generate the needed packages:

$ conan create . -s os="Linux" -s arch="x86_64"

$ conan create . -s os="Linux" -s arch="armv8"

$ conan create . -s os="Macos" -s arch="x86_64"

$ conan create . -s os="Macos" -s arch="armv8"

$ conan create . -s os="Windows" -s arch="x86_64"
$ conan create . -s os="Windows" -s arch="armv8"

(continues on next page)

4.2. Creating packages 93

https://github.com/conan-io/examples2

Conan Documentation, Release 2.14.0

(continued from previous page)

$ conan list "hello/®.1#:*"
Local Cache
hello
hello/0.1
revisions
d8e4debf31f0b7b5ec7ff910f76fle2a (2024-05-10 09:13:16 UTC)
packages
522dcea5982a3f8a5b624c16477e47195da2£84f
info
settings
arch: x86_64
os: Windows
63fead0844576fc02943e16909f08fcdddd6f44b
info
settings
arch: x86_64
os: Linux
82339cc4d6db7990c1830d274cd12e7c91abl8al
info
settings
arch: x86_64
os: Macos
a0cd51c51£fe9010370187244a£f885b0efcc5b69b
info
settings
arch: armv8
os: Windows
c93719558c£197£f1df5a7£1d071093e26f0e44a0
info
settings
arch: armv8
os: Linux
dcf68e932572755309a5f69f3ceelbede410e907
info
settings
arch: armv8
os: Macos

Itis recommended to include also a small consuming projectin a test_package folder to verify the package is correctly

built, and then upload it to a Conan remote with conan upload.

The same building policies apply. Having a recipe fails if no Conan packages are created, and the --build argument is
not defined. A typical approach for this kind of package could be to define a build_policy="missing", especially if
the URLSs are also under the team’s control. If they are external (on the internet), it could be better to create the packages
and store them on your own Conan repository, so that the builds do not rely on third-party URLSs being available.

94

Chapter 4. Tutorial

Conan Documentation, Release 2.14.0

Tool requires packages

In the “Using build tools as Conan packages” section we learned how to use a tool require to build (or help building)
our project or Conan package. In this section we are going to learn how to create a recipe for a tool require.

Note: Best practice

tool_requires and tool packages are intended for executable applications, like cmake or ninja that can be used as
tool_requires("cmake/[>=3.25]") by other packages to put those executables in their path. They are not intended
for library-like dependencies (use requires for them), for test frameworks (use test_requires) or in general for
anything that belongs to the “host” context of the final application. Do not abuse tool_requires for other purposes.

Please, first clone the sources to recreate this project. You can find them in the examples2 repository on GitHub:

$ git clone https://github.com/conan-io/examples2.git
$ cd examples2/tutorial/creating_packages/other_packages/tool_requires/tool

A simple tool require recipe

This is a recipe for a (fake) application that receiving a path returns O if the path is secure. We can check how the
following simple recipe covers most of the tool-require use-cases:

Listing 70: conanfile.py

import os

from conan import ConanFile

from conan.tools.cmake import CMakeToolchain, CMake, cmake_layout
from conan.tools.files import copy

class secure_scannerRecipe(ConanFile):
name = "secure_scanner"
version = "1.0"
package_type = "application"

Binary configuration

n "

settings = "os", "compiler", "build_type", "arch"

Sources are located in the same place as this recipe, copy them to the recipe
exports_sources = "CMakeLists.txt", "src/*"

def layout(self):
cmake_layout(self)

def generate(self):
tc = CMakeToolchain(self)
tc.generate()

def build(self):
cmake = CMake(self)
cmake.configure()
cmake.build()

(continues on next page)

4.2. Creating packages 95

https://github.com/conan-io/examples2

Conan Documentation, Release 2.14.0

(continued from previous page)

def package(self):
extension = ".exe" if self.settings_build.os == "Windows" else ""
copy(self, "*secure_scanner{}".format(extension),
self.build_folder, os.path.join(self.package_folder, "bin"), keep_

—.path=False)

def package_info(self):
self.buildenv_info.define("MY_VAR", "23")

There are few relevant things in this recipe:

1. It declares package_type = "application", this is optional but convenient, it will indicate conan that the
current package doesn’t contain headers or libraries to be linked. The consumers will know that this package is
an application.

2. The package () method is packaging the executable into the bin/ folder, that is declared by default as a bindir:
self.cpp_info.bindirs = ["bin"].

3. Inthe package_info() method, we are using self.buildenv_info to define a environment variable MY_VAR
that will also be available in the consumer.

Let’s create a binary package for the tool_require:

$ conan create .
secure_scanner/1.0: Calling package()
secure_scanner/1.0: Copied 1 file: secure_scanner

secure_scanner/1.0 package(): Packaged 1 file: secure_scanner

Security Scanner: The path 'mypath' is secure!

Let’s review the test_package/conanfile.py:

from conan import ConanFile

class secure_scannerTestConan(ConanFile):

settings = "os", "compiler", "build_type", "arch"
def build_requirements(self):
self.tool_requires(self.tested_reference_str)

def test(self):
extension = ".exe" if self.settings_build.os == "Windows" else ""
self.run("secure_scanner{} mypath".format(extension))

We are requiring the secure_scanner package as tool_require doing self.tool_requires(self.
tested_reference_str). Inthe test () method we are running the application, because it is available in the PATH.
In the next example we are going to see why the executables from a tool_require are available in the consumers.

So, let’s create a consumer recipe to test if we can run the secure_scanner application of the tool_require and read

the environment variable. Go to the examples2/tutorial/creating_packages/other_packages/tool_requires/consumer
folder:

96 Chapter 4. Tutorial

Conan Documentation, Release 2.14.0

Listing 71: conanfile.py

from conan import ConanFile

class MyConsumer (ConanFile):

name = "my_consumer"

version = "1.0"

settings = "os", "arch", "compiler", "build_type"
tool_requires = "secure_scanner/1.0"

def build(self):

extension = ".exe" if self.settings_build.os == "Windows" else ""
self.run("secure_scanner{} {}".format(extension, self.build_folder))
if self.settings_build.os != "Windows":

self.run("echo MY_VAR=$MY_VAR™)
else:

self.run("set MY_VAR")

In this simple recipe we are declaring a tool_require to secure_scanner/1.0 and we are calling directly the
packaged application secure_scanner in the build() method, also printing the value of the MY_VAR env variable.

If we build the consumer:

$ conan build .

———————— Installing (downloading, building) binaries... -----—---
secure_scanner/1.0: Already installed!

———————— Finalizing install (deploy, generators) --------

conanfile.py (my_consumer/1.0): RUN: secure_scanner /Users/luism/workspace/examples2/
—tutorial/creating_packages/other_packages/tool_requires/consumer

Security Scanner: The path '/Users/luism/workspace/examples2/tutorial/creating_packages/
—other_packages/tool_requires/consumer' is secure!

MY_VAR-23

We can see that the executable returned O (because our folder is secure) and it printed Security Scanner: The
path is secure! message. It also printed the “23” value assigned to MY_VAR but, why are these automatically
available?

* The generators VirtualBuildEnv and VirtualRunEnv are automatically used.

e The VirtualRunEnv is reading the tool-requires and is «creating a launcher like
conanbuildenv-release-x86_64.sh appending all cpp_info.bindirs to the PATH, all the cpp_info.
libdirs to the LD_LIBRARY_PATH environment variable and declaring each variable of self.buildenv_info.

* Every time conan executes the self.run, by default, activates the conanbuild. sh file before calling any com-
mand. The conanbuild. sh is including the conanbuildenv-release-x86_64.sh, so the application is in
the PATH and the enviornment variable “MY VAR” has the value declared in the tool-require.

4.2. Creating packages 97

Conan Documentation, Release 2.14.0

Removing settings in package_id()

With the previous recipe, if we call conan create with different setting like different compiler versions, we will
get different binary packages with a different package ID. This might be convenient to, for example, keep better
traceability of our tools. In this case, the compatibility.py plugin can help to locate the best matching binary in case
Conan doesn’t find the binary for our specific compiler version.

But in some cases we might want to just generate a binary taking into account only the os, arch or at most adding the
build_type to know if the application is built for Debug or Release. We can add a package_id () method to remove
them:

Listing 72: conanfile.py

import os

from conan import ConanFile

from conan.tools.cmake import CMakeToolchain, CMake, cmake_layout
from conan.tools.files import copy

class secure_scannerRecipe(ConanFile):

name = "secure_scanner"
version = "1.0"
settings = "os", "compiler", "build_type", "arch"

def package_id(self):
del self.info.settings.compiler
del self.info.settings.build_type

So, if we call conan create with different build_type we will get exactly the same package_id.

$ conan create .
Package '82339cc4d6db7990c1830d274cdl2e7c91abl8al' created
$ conan create . -s build_type=Debug

Package '82339cc4d6db7990c1830d274cdl12e7c91abl8al' created

We got the same binary package_id. The second conan create . -s build_type=Debug created and overwrote
(created a newer package revision) of the previous Release binary, because they have the same package_id identifier. It
is typical to create only the Release one, and if for any reason managing both Debug and Release binaries is intended,
then the approach would be not removing the del self.info.settings.build_type

See also:
. — Using the same requirement as a requires and as a tool_requires
* Toolchains (compilers)
» Usage of runenv_info

* More info on settings_target

98 Chapter 4. Tutorial

Conan Documentation, Release 2.14.0

4.3 Working with Conan repositories

We already learned how to download and use packages from Conan Center that is the official repository for open source
Conan packages. We also learned how to create our own packages and store them in the Conan local cache for reusing
later. In this section we cover how you can use the Conan repositories to upload your recipes and binaries and store
them for later use on another machine, project, or for sharing purposes.

First we will cover how you can setup a Conan repository locally (you can skip this part if you already have a Conan
remote configured). Then we will explain how to upload packages to your own repositories and how to operate when
you have multiple Conan remotes configured. Finally, we will briefly cover how you can contribute to the Conan Center
central repository.

Finally, we will explain the local_recipes_index, a special type of remote that allows the use of a source folder with
recipes as a Conan remote repository.

4.3.1 Setting up a Conan remote

There are several options to set-up a Conan repository:
For private development:

* Artifactory Community Edition for C/C++: Artifactory Community Edition (CE) for C/C++ is a completely
free Artifactory server that implements both Conan and generic repositories. It is the recommended server for
companies and teams wanting to host their own private repository. It has a web UI, advanced authentication and
permissions, very good performance and scalability, a REST API, and can host generic artifacts (tarballs, zips,
etc). Check Artifactory Community Edition for C/C++ for more information.

* Conan server: Simple, free and open source, MIT licensed server that is part of the conan-io organization project.
Check Setting-up a Conan Server for more information.

Enterprise solutions:

* Artifactory Pro: Artifactory is the binary repository manager for all major packaging formats. It is the recom-
mended remote type for enterprise and professional package management. Check the Artifactory Documentation
for more information. For a comparison between Artifactory editions, check the Artifactory Comparison Matrix.

Artifactory Community Edition for C/C++

Artifactory Community Edition (CE) for C/C++ is the recommended server for development and hosting private pack-
ages for a team or company. It is completely free, and it features a WebUI, advanced authentication and permissions,
great performance and scalability, a REST API, a generic CLI tool and generic repositories to host any kind of source
or binary artifact.

This is a very brief introduction to Artifactory CE. For the complete Artifactory CE documentation, visit Artifactory
docs.

4.3. Working with Conan repositories 99

https://conan.io/center
https://github.com/conan-io
https://www.jfrog.com/confluence/display/JFROG/JFrog+Artifactory
https://www.jfrog.com/confluence/display/JFROG/Artifactory+Comparison+Matrix
https://jfrog.com/help/
https://jfrog.com/help/

Conan Documentation, Release 2.14.0

Running Artifactory CE

The recommended way of running Artifactory CE is using docker, the latest image is releases-docker. jfrog.io/
jfrog/artifactory-cpp-ce:latest:

$ docker run --name artifactory -d -e JF_SHARED_DATABASE_TYPE=derby -e JF_SHARED_
-.DATABASE_ALLOWNONPOSTGRESQL=true -p 8081:8081 -p 8082:8082 releases-docker.jfrog.io/
—.jfrog/artifactory-cpp-ce:latest

This is running ArtifactoryCE with an embedded Derby database. For better performance in production you might
want to check the Single node Artifactory installation and the full Artifactory installation guide

For versions older than Artifactory 7.77 it was possible to run it with other installation methods, like downloading
installers from Download Page. Those installers can be unzipped, then Artifactory can be launched by double clicking
the artifactory.bat on Windows or artifactory.sh script in the app/bin subfolder, depending on the OS.

Once Artifactory has started, navigate to the default URL http.//localhost:8081, where the Web Ul should be running.
The default user and password are admin:password.

Creating and Using a Conan Repo

Navigate to Administration -> Repositories -> Repositories, then click on the “Add Repositories” button and select
“Local Repository”. A dialog for selecting the package type will appear, select Conan, then type a “Repository Key”
(the name of the repository you are about to create), for example “conan-local” and click on “Create Local Repository”.
You can create multiple repositories to serve different flows, teams, or projects.

New Local Repository

General Settings Include / Exclude Patterns

Repository Layout Include Patterns (]

conan-default

Public Description

Exclude Patterns

Internal Description

Getting Started Cancel Create Local Repository

Now, let’s configure the Conan client to connect with the “conan-local” repository. First add the remote to the Conan
remote registry:

[$ conan remote add artifactory http://localhost:8081/artifactory/api/conan/conan-local J

Then configure the credentials for the remote:

100 Chapter 4. Tutorial

https://jfrog.com/help/r/jfrog-installation-setup-documentation/install-artifactory-single-node-with-docker
https://jfrog.com/help/r/jfrog-installation-setup-documentation
https://conan.io/downloads.html

Conan Documentation, Release 2.14.0

[$ conan remote login artifactory <user> -p <password> J

From now, you can upload, download, search, etc. the remote repos similarly to the other repo types.

$ conan upload <package_name> -r=artifactory
$ conan search "*" -r=artifactory

Setting-up a Conan Server

Important: This server is mainly used for testing (though it might work fine for small teams). We recommend using
the free Artifactory Community Edition for C/C++ for private development or Artifactory Pro as Enterprise solution.

The Conan Server is a free and open source server that implements Conan remote repositories. It is a very simple
application, used for testing inside the Conan client and distributed as a separate pip package.

Install the Conan Server using pip:

[$ pip install conan-server]

Then you can run the server:

$ conan_server

Fedhdhddedhfhddhfhh NNk hhdhdhht

Using config: /Users/user/.conan_server/server.conf

Storage: /Users/user/.conan_server/data

Public URL: http://localhost:9300/v2

PORT: 9300

Bottle v0.12.24 server starting up (using WSGIRefServer())...
Listening on http://0.0.0.0:9300/

Hit Ctrl-C to quit.

Note: On Windows, you may experience problems with the server if you run it under bash/msys. It is better to launch
it in a regular cmd window.

See also:

* Conan Server reference

4.3.2 Uploading Packages

In the previous section we learned how to sef up a Conan repository. Now we will go through the process of uploading
both recipes and binaries to this remote and store them for later use on another machine, project, or for sharing purposes.

First, check if the remote you want to upload to is already in your current remote list:

[$ conan remote list }

You can search any remote in the same way you search your Conan local cache. Actually, many Conan commands can
specify a specific remote.

4.3. Working with Conan repositories 101

Conan Documentation, Release 2.14.0

[$ conan search "*" -r=my_local_server J

Now, upload the package recipe and all the packages to your remote. In this example, we are using our
my_local_server remote, but you could use any other.

[$ conan upload hello -r=my_local_server }

Now try again to read the information from the remote. We refer to it as remote, even if it is running on your local
machine, as it could be running on another server in your LAN:

[$ conan search hello -r=my_local_server]

Now we can check if we can download and use them in a project. For that purpose, we first have to remove the local
copies, otherwise the remote packages will not be downloaded. Since we have just uploaded them, they are identical
to the local ones.

$ conan remove hello -c
$ conan list hello

Now, to install the uploaded package from the Conan repository just do:

[$ conan install --requires=hello/1.0 -r=my_local_server]

You can check the package existence on your local computer again with:

[$ conan list hello J

See also:
* conan upload command reference
* conan remote command reference

* conan search command reference

4.3.3 Contributing to Conan Center

Note: Default Remote Update in Conan 2.9.2

Starting from Conan version 2.9.2, the default remote has been changed to https.://center2.conan.io. The previous
default remote https.//center.conan.io is now frozen and will no longer receive updates. It is recommended to update
your remote configuration to use the new default remote to ensure access to the latest recipes and package updates (for
more information, please read this post).

If you still have the deprecated remote configured as the default, please update using the following command:

[conan remote update conancenter --url="https://center2.conan.io" J

Contribution of packages to ConanCenter is done via pull requests to the Github repository in https://github.com/
conan-io/conan-center-index. The C3I (ConanCenter Continuous Integration) service will build binaries automatically
from those pull requests, and once merged, will upload them to ConanCenter package repository.

Read more about how to submit a pull request to conan-center-index source repository.

102 Chapter 4. Tutorial

https://blog.conan.io/2024/09/30/Conan-Center-will-stop-receiving-updates-for-Conan-1.html
https://github.com/conan-io/conan-center-index
https://github.com/conan-io/conan-center-index
https://github.com/conan-io/conan-center-index/tree/master/docs/adding_packages

Conan Documentation, Release 2.14.0

4.3.4 Local Recipes Index Repository

The local_recipes_index repository is an experimental special type of repository to which you cannot upload packages
or store binaries. The purpose of this remote is:

* Enable contributors to share package recipes with the community, particularly for libraries that might not be
suitable for ConanCenter.

* It also simplifies the process of building binaries from a private conan-center-index fork, allowing absolute
control over recipes, customization, and maintaining a stable repository snapshot. This ensures robustness against
upstream changes in ConanCenter. For detailed setup and usage instructions, see the dedicated section in the
Conan DevOps Guide Local Recipes Index Repository.

Setup

To set up a local recipes index repository to share your own recipes, you need to organize your recipes in a folder
structure that mimics that of conan-center-index. To start you can use the local_recipes_index template for the conan
new command. For demonstration purposes, let’s create a local-recipes-index repository for a hypothetical hello library,
with a license incompatible with Conan Center, using the local_recipes_index template for the conan new command:

$ mkdir repo && cd repo
$ conan new local_recipes_index -d name=hello -d version=0.1 \
-d url=https://github.com/conan-io/libhello/archive/refs/tags/0.0.1.zip \
-d sha256=1dfb66cfd1e2fb7640c88cc4798fe25853a51b628ed9372ffcOca285fe5belbb
$ cd ..

The conan new local_recipes_index command creates a template that assumes CMake as the build system alongside
other heavy assumptions. In practice, it will require customizing it, but for this demo, it works as-is. It will create a
folder layout equal to the conan-center-index GitHub repository:

L— repo
L— recipes
L— hello
— all
conandata.yml
E conanfile.py
test_package
CMakeLists.txt
E conanfile.py
src

L example.cpp
L— config.yml

After setting up the repository, we add it as a local remote to Conan:

[$ conan remote add mylocalrepo ./repo --allowed-packages="hello/*"]

Please pay special attention to the —allowed-packages argument. This argument ensures that all packages other than
hello are discarded by Conan. This can be used to minimize the surface area for a potential supply chain attack.

Now you can list and install packages from this new repository:

nyen

$ conan list -r=mylocalrepo
$ conan install --requires=hello/0.1 -r=mylocalrepo --build=missing

4.3. Working with Conan repositories 103

Conan Documentation, Release 2.14.0

At this point, you could push this repository to your GitHub account and share it with the community. Now, users
simply need to clone the GitHub repository and add the cloned folder as a local repository themselves.

Note: Please be aware that, as we commented earlier, this feature is specifically tailored for scenarios where certain
libraries are not suitable for ConanCenter. Remember, a “local-recipes-index” repository has limitations: it is not fully
reproducible as it models only versions and not revisions, and it does not provide binaries. Therefore, outside of these
cases, it is advised to use a remote package server such as Artifactory.

See also:
* DevOps guide

¢ Introducing the Local-Recipes-Index Post

4.4 Developing packages locally

As we learned in previous sections of the tutorial, the most straightforward way to work when developing a Conan
package is to run a conan create. This means that every time it is run, Conan performs a series of costly operations
in the Conan cache, such as downloading, decompressing, copying sources, and building the entire library from scratch.
Sometimes, especially with large libraries, while we are developing the recipe, these operations cannot be performed
every time.

This section will first show the Conan local development flow, that is, working on packages in your local project
directory without having to export the contents of the package to the Conan cache first.

We will also cover how other packages can consume packages under development using the editable mode.

Finally, we will explain the Conan package layouts in depth, the key feature that makes it possible to work with Conan
packages in the Conan cache or locally without making any changes.

4.4.1 Package Development Flow
This section introduces the Conan local development flow, which allows you to work on packages in your local project
directory without having to export the contents of the package to the Conan cache first.

This local workflow encourages users to perform trial-and-error in a local sub-directory relative to their recipe, much
like how developers typically test building their projects with other build tools. The strategy is to test the conanfile.py
methods individually during this phase.

Let’s use this flow for the hello package we created in the previous section.

Please clone the sources to recreate this project. You can find them in the examples2.0 repository on GitHub:

$ git clone https://github.com/conan-io/examples2.git
$ cd examples2/tutorial/developing_packages/local_package_development_£flow

You can check the contents of the folder:

|: conanfile.py
test_package

CMakeLists.txt
conanfile.py

(continues on next page)

104 Chapter 4. Tutorial

https://blog.conan.io/2024/04/23/Introducing-local-recipes-index-remote.html
https://github.com/conan-io/examples2

Conan Documentation, Release 2.14.0

(continued from previous page)

L— src
L example.cpp

conan source

You will generally want to start with the conan source command. The strategy here is that you’re testing your source
method in isolation and downloading the files to a temporary sub-folder relative to the conanfile.py. This relative
folder is defined by the self.folders.source property in the layout() method. In this case, as we are using the pre-defined
cmake_layout we set the value with the src_folder argument.

Note: In this example we are packaging a third-party library from a remote repository. In the case you have your
sources beside your recipe in the same repository, running conan source will not be necessary for most of the cases.

Let’s have a look at the recipe’s source() and layout() method:

def source(self):
Please be aware that using the head of the branch instead of an immutable tag
or commit is not a good practice in general.
get(self, "https://github.com/conan-io/libhello/archive/refs/heads/main.zip",
strip_root=True)

def layout(self):
cmake_layout(self, src_folder="src")

Now run the conan source command and check the results:

$ conan source .

conanfile.py (hello/1.8): Calling source() in /Users/.../local_package_development_£flow/
—Src

Downloading main.zip

conanfile.py (hello/1.0): Unzipping 3.7KB

Unzipping 100%

You can see that a new src folder has appeared containing all the hello library sources.

— conanfile.py
— src
CMakeLists.txt
LICENSE
README . md
include
L— hello.h
src
L— hello.cpp
L test_package

(continues on next page)

4.4. Developing packages locally 105

Conan Documentation, Release 2.14.0

(continued from previous page)

CMakeLists.txt
E conanfile.py
src

L example.cpp

Now it’s easy to check the sources and validate them. Once you’ve got your source method right and it contains the
files you expect, you can move on to testing the various attributes and methods related to downloading dependencies.

conan install

After running the conan source command, you can run the conan install command. This command will install all
the recipe requirements if needed and prepare all the files necessary for building by running the generate () method.

We can check all the parts from our recipe that are involved in this step:

class helloRecipe(ConanFile):

generators = "CMakeDeps"

def layout(self):
cmake_layout(self, src_folder="src")

def generate(self):
tc = CMakeToolchain(self)
tc.generate()

Now run the conan install command and check the results:

$ conan install .

———————— Finalizing install (deploy, generators) --------
conanfile.py (hello/1.0): Writing generators to ...

conanfile.py (hello/1.08): Generator 'CMakeDeps' calling 'generate()'
conanfile.py (hello/1.0): Calling generate()

conanfile.py (hello/1.0): Generating aggregated env files

You can see that a new build folder appeared with all the files that Conan needs for building the library like a toolchain
for CMake and several environment configuration files.

build
L Release
L— generators

(continues on next page)

106 Chapter 4. Tutorial

Conan Documentation, Release 2.14.0

(continued from previous page)

— CMakePresets. json
— cmakedeps_macros.cmake
—— conan_toolchain.cmake
— conanbuild.sh
— conanbuildenv-release-x86_64.sh
— conanrun.sh
— conanrunenv-release-x86_64.sh
— deactivate_conanbuild.sh
L— deactivate_conanrun.sh
—— conanfile.py
— src
— CMakeLists.txt
— CMakeUserPresets. json
—— LICENSE
— README.md
— include
L— hello.h
L— src
L— hello.cpp
L— test_package
— CMakeLists.txt
— conanfile.py
L— src

L— example.cpp

Now that all the files necessary for building are generated, you can move on to testing the build() method.

conan build

Running the After conan build command will invoke the build() method:

class helloRecipe(ConanFile):

def build(self):
cmake = CMake(self)
cmake.configure()
cmake.build()

Let’s run conan build

$ conan build .

-- Conan toolchain: C++ Standard 11 with extensions ON
-- Conan toolchain: Setting BUILD_SHARED_LIBS = OFF

-- Configuring done

-- Generating done

(continues on next page)

4.4. Developing packages locally 107

Conan Documentation, Release 2.14.0

(continued from previous page)

-- Build files have been ...

conanfile.py (hello/1.0): CMake command: cmake --build ...
conanfile.py (hello/1.0): RUN: cmake --build ...

[100%] Built target hello

For most of the recipes, the build() method should be very simple, and you can also invoke the build system directly,
without invoking Conan, as you have all the necessary files available for building. If you check the contents of the src
folder, you’ll find a CMakeUserPresets.json file that you can use to configure and build the conan-release preset. Let’s
try it:

$ cd src
$ cmake --preset conan-release

-- Configuring done
-- Generating done

$ cmake --build --preset conan-release

[100%] Built target hello

You can check that the results of invoking CMake directly are equivalent to the ones we got using the conan build
command.

Note: We use CMake presets in this example. This requires CMake >= 3.23 because the “include” from
(CMakeUserPresets. json to CMakePresets. json is only supported since that version. If you prefer not to use
presets you can use something like:

cmake <path> -G <CMake generator> -DCMAKE_TOOLCHAIN_FILE=<path to
conan_toolchain.cmake> -DCMAKE_BUILD_TYPE=Release

Conan will show the exact CMake command everytime you run conan install in case you can’t use the presets
feature.

conan export-pkg

Now that we built the package binaries locally we can also package those artifacts in the Conan local cache using the
conan export-pkg command. Please note that this command will create the package in the Conan cache and test it
running the fest_package after that.

$ conan export-pkg .

conanfile.py (hello/1.0) package(): Packaged 1 '.h' file: hello.h

conanfile.py (hello/1.0) package(): Packaged 1 '.a' file: libhello.a

conanfile.py (hello/1.08): Package 'b1d267f77ddd5d10d06d2ecf5a6bc433fbb7eeed’ created
conanfile.py (hello/1.08): Created package revision f09ef573c22f3919ba26ee9laed44eaa

conanfile.py (hello/1.0): Package folder /Users/...
conanfile.py (hello/1.08): Exported package binary

[50%] Building CXX object CMakeFiles/example.dir/src/example.cpp.o
[100%] Linking CXX executable example

(continues on next page)

108 Chapter 4. Tutorial

Conan Documentation, Release 2.14.0

(continued from previous page)

[100%] Built target example

———————— Testing the package: Running test() --------

hello/1.0 (test package): Running test()
hello/1.0 (test package): RUN: ./example
hello/1.0: Hello World Release!

hello/1.0: __x86_64__ defined

hello/1.0: __cplusplus201103

hello/1.0: __GNUC__4

hello/1.0: __GNUC_MINOR__2

hello/1.0: __clang major__14

hello/1.0: __apple_build_version__14000029

Now you can list the packages in the local cache and check that the hello/1.0 package was created.

$ conan list hello/1.0
Local Cache
hello
hello/1.0

See also:
¢ Reference for conan source, install, build, export-pkg and test commands.
* Packaging prebuilt binaries example

* When you are locally developing packages, at some poing you might need to step-into dependencies code while
debugging. Please read this example how to debug and step-into dependencies for more information about this
use case.

4.4.2 Packages in editable mode

The normal way of working with Conan packages is to run a conan create or conan export-pkg to store them in
the local cache, so that consumers use the packages stored in the cache. In some cases, when you want to consume
these packages while developing them, it can be tedious to run conan create each time you make changes to the
package. For those cases, you can put your package in editable mode, and consumers will be able to find the headers
and artifacts in your local working directory, eliminating the need for packaging.

Let’s see how we can put a package in editable mode and consume it from the local working directory.

Please, first of all, clone the sources to recreate this project. You can find them in the examples2 repository in GitHub:

$ git clone https://github.com/conan-io/examples2.git
$ cd examples2/tutorial/developing_packages/editable_packages

There are 2 folders inside this project:

hello
CMakeLists.txt
E conanfile.py
src
L— hello.cpp

say

(continues on next page)

4.4. Developing packages locally 109

https://github.com/conan-io/examples2

Conan Documentation, Release 2.14.0

(continued from previous page)
CMakeLists.txt
conanfile.py
include
L— say.h
src
L— say.cpp

* A “say” folder containing a fully fledged package, with its conanfile.py and its source code.

* A “hello” folder containing a simple consumer project with a conanfile.py and its source code, which depends
on the say/1.0 requirement.

We will put say/1.0 in editable mode and show how the hello consumer can find say/1.0 headers and binaries in
its local working directory.

Put say/1.0 package in editable mode

To avoid creating the package say/1.0 in the cache for every change, we are going to put that package in editable
mode, creating a link from the reference in the cache to the local working directory:

$ conan editable add say
$ conan editable list
say/1.0
Path: /Users/.../examples2/tutorial/developing_packages/editable_packages/say/
—,conanfile.py

From now on, every usage of say/1.0 by any other Conan package or project will be redirected to the /Users/.../
examples2/tutorial/developing_packages/editable_packages/say/conanfile.py user folder instead of
using the package from the Conan cache.

Note that the key of editable packages is a correct definition of the 1ayout () of the package. Read the package layout()
section to learn more about this method.

In this example, the say conanfile.py recipe is using the predefined cmake_layout () which defines the typical
CMake project layout that can be different depending on the platform and generator used.

Now that the say/1.0 package is in editable mode, let’s build it locally:

Note: We use CMake presets in this example. This requires CMake >= 3.23 because the “include” from
(MakeUserPresets. json to CMakePresets. json is only supported since that version. If you prefer not to use
presets you can use something like:

cmake <path> -G <CMake generator> -DCMAKE_TOOLCHAIN_FILE=<path to
conan_toolchain.cmake> -DCMAKE_BUILD_TYPE=Release

Conan will show the exact CMake command everytime you run conan install in case you can’t use the presets
feature.

$ cd say

Windows: we will build 2 configurations to show multi-config
$ conan install . -s build_type=Release
$ conan install . -s build_type=Debug

(continues on next page)

110 Chapter 4. Tutorial

Conan Documentation, Release 2.14.0

(continued from previous page)

$ cmake --preset conan-default

$ cmake --build --preset conan-release

$ cmake --build --preset conan-debug

Linux, MacOS: we will only build 1 configuration
$ conan install .

$ cmake --preset conan-release

$ cmake --build --preset conan-release

Using say/1.0 package in editable mode

Consuming a package in editable mode is transparent from the consumer perspective. In this case we can build the
hello application as usual:

$ cd ../hello

Windows: we will build 2 configurations to show multi-config
$ conan install . -s build_type=Release

$ conan install . -s build_type=Debug

$ cmake --preset conan-default

$ cmake --build --preset conan-release

$ cmake --build --preset conan-debug

$ build\Release\hello.exe

say/1.0: Hello World Release!

$ build\Debug\hello.exe
say/1.0: Hello World Debug!

Linux, MacOS: we will only build 1 configuration
$ conan install .

$ cmake --preset conan-release

$ cmake --build --preset conan-release

$./build/Release/hello

say/1.0: Hello World Release!

As you can see, hello can successfully find say/1.0 header and library files.

Working with editable packages

Once the above steps have been completed, you can work with your build system or IDE without involving Conan and
make changes to the editable packages. The consumers will use those changes directly. Let’s see how this works by
making a change in the say source code:

$ cd ../say
Edit src/say.cpp and change the error message from "Hello" to "Bye"

Windows: we will build 2 configurations to show multi-config
$ cmake --build --preset conan-release
$ cmake --build --preset conan-debug
(continues on next page)

4.4. Developing packages locally 111

Conan Documentation, Release 2.14.0

Linux, MacOS: we will only build 1 configuration
$ cmake --build --preset conan-release

(continued from previous page)

And build and run the “hello” project:

$ cd ../hello

Windows

$ cd build

$ cmake --build --preset conan-release
$ cmake --build --preset conan-debug

$ Release\hello.exe

say/1.0: Bye World Release!
$ Debug\hello.exe
say/1.0: Bye World Debug!

Linux, MacOS

$ cmake --build --preset conan-release
$./hello

say/1.0: Bye World Release!

In this manner, you can develop both the say library and the hello application simultaneously without executing any
Conan command in between. If you have both open in your IDE, you can simply build one after the other.

Building editable dependencies

If there are many editable dependencies, it might be inconvenient to go one by one, building them in the right order. It

is possible to do an ordered build of the editable dependencies with the --build argument.

Let’s clean the previous local executables:

[$ git clean -xdf

]

And using the build() method in the hello/conanfile.py recipe that we haven’t really used so far (because we
have been building directly calling cmake, not by calling conan build command), we can do such build with just:

[$ conan build hello

)

Note that all we had to do to do a full build of this project is these two commands. Starting from scratch in a different

folder:

$ git clone https://github.com/conan-io/examples2.git
$ cd examples2/tutorial/developing_packages/editable_packages

$ conan editable add say
$ conan build hello --build=editable

Note that if we don’t pass the --build=editable to conan build hello, the binaries for say/0. 1 that s in editable
mode won’t be available and it will fail. With the --build=editable, first a build of the say binaries is done locally
and incrementally, and then another incremental build of hello will be done. Everything will still happen locally,
with no packages built in the cache. If there are multiple editable dependencies, with nested transitive dependencies,

Conan will build them in the right order.

112

Chapter 4. Tutorial

Conan Documentation, Release 2.14.0

If editable packages have dependants in the Conan cache, it is possible to force the rebuild from source of the cache
dependants by using --build=editable --build=cascade. In general this should be avoided, and the recommen-
dation if it is needed to rebuild those dependencies is to put them in editable mode too.

Note that it is possible to build and test a package in editable with with its own test_package folder. If a package is
put in editable mode, and if it contains a test_package folder, the conan create command will still do a local
build of the current package.

Revert the editable mode

In order to revert the editable mode just remove the link using:

[$ conan editable remove --refs=say/1.0

It will remove the link (the local directory won’t be affected) and all the packages consuming this requirement will get
it from the cache again.

Warning: Packages that are built while consuming an editable package in their upstreams can generate binaries and
packages that are incompatible with the released version of the editable package. Avoid uploading these packages
without re-creating them with the in-cache version of all the libraries.

4.4.3 Understanding the Conan Package layout

In the previous section, we introduced the concept of editable packages and mentioned that the reason they work out
of the box when put in editable mode is due to the current definition of the information in the 1ayout () method. Let’s
examine this feature in more detail.

In this tutorial, we will continue working with the say/1.0 package and the hello/1.0 consumer used in the editable
packages tutorial.

Please, first of all, clone the sources to recreate this project. You can find them in the examples2 repository in GitHub:

$ git clone https://github.com/conan-io/examples2.git
$ cd examples2/tutorial/developing_packages/package_layout

Note: We use CMake presets in this example. This requires CMake >= 3.23 because the “include” from
CMakeUserPresets. json to CMakePresets. json is only supported since that version. If you prefer not to use
presets you can use something like:

cmake <path> -G <CMake generator> -DCMAKE_TOOLCHAIN_FILE=<path to
conan_toolchain.cmake> -DCMAKE_BUILD_TYPE=Release

Conan will show the exact CMake command everytime you run conan install in case you can’t use the presets
feature.

As you can see, the main folder structure is the same:

hello
CMakeLists.txt
conanfile.py

4.4. Developing packages locally 113

(continues on next page)

https://github.com/conan-io/examples2

Conan Documentation, Release 2.14.0

(continued from previous page)

L— src

L— hello.cpp
say

CMakeLists.txt

conanfile.py

include

L say.h

src

L— say.cpp

The main difference here is that we are not using the predefined cmake_layout() in the say/1.0 ConanFile, but instead,
we are declaring our own custom layout. Let’s see how we describe the information in the layout () method so that it
works both when we create the package in the Conan local cache and also when the package is in editable mode.

Listing 73: say/conanfile.py

import os
from conan import ConanFile
from conan.tools.cmake import CMake

class SayConan(ConanFile):
name = "say"
version = "1.0"

exports_sources = "CMakelLists.txt", "src/*", "include/*"

def layout(self):

define project folder structure
self.folders.source = "."

self.folders.build = os.path.join("build", str(self.settings.build_type))
self.folders.generators = os.path.join(self.folders.build, "generators")

cpp.package information is for consumers to find the package contents in the.
—Conan cache

self.cpp.package.libs = ["say"]
self.cpp.package.includedirs = ["include"] # includedirs is already set to
< 'include' by
default, but declared for completion
self.cpp.package.libdirs = ["1ib"] # libdirs is already set to 'lib' by
default, but declared for completion

cpp.source and cpp.build information is specifically designed for editable.
—packages:

this information is relative to the source folder that is '.'
self.cpp.source.includedirs = ["include"] # maps to ./include

(continues on next page)

114 Chapter 4. Tutorial

Conan Documentation, Release 2.14.0

(continued from previous page)

this information is relative to the build folder that is './build/<build_type>',
< so it will
self.cpp.build.libdirs = ["."] # map to ./build/<build_type> for libdirs

def build(self):
cmake = CMake(self)
cmake.configure()
cmake.build()

Let’s review the 1layout () method. You can see that we are setting values for self. folders and self.cpp. Let’s
explain what these values do.

self.folders

Defines the structure of the say project for the source code and the folders where the files generated by Conan and the
built artifacts will be located. This structure is independent of whether the package is in editable mode or exported and
built in the Conan local cache. Let’s define the folder structure for the say package:

say
— (MakeLists.txt
— conanfile.py
— include
L— say.h
—— src
L— say.cpp
L— build
Debug --> Built artifacts for Debug
L generators --> Conan generated files for Debug config
Release --> Built artifacts for Release
L— generators --> Conan generated files for Release config

¢ As we have our CMakeLists.txt in the . folder, self.folders.source is set to ..

e We set self.folders.build to be ./build/Release or ./build/Debug depending on the build_type setting.
These are the folders where we want the built binaries to be located.

* The self. folders.generators folder is the location we set for all the files created by the Conan generators.
In this case, all the files generated by the CMakeToolchain generator will be stored there.

Note: Please note that the values above are for a single-configuration CMake generator. To support multi-configuration
generators, such as Visual Studio, you should make some changes to this layout. For a complete layout that supports
both single-config and multi-config, please check the cmake_layout() in the Conan documentation.

4.4. Developing packages locally 115

Conan Documentation, Release 2.14.0

self.cpp

This attribute is used to define where consumers will find the package contents (headers files, libraries, etc.) de-
pending on whether the package is in editable mode or not.

cpp-package

First, we set the information for cpp.package. This defines the contents of the package and its location relative to the
folder where the package is stored in the local cache. Please note that defining this information is equivalent to defining
self.cpp_info in the package_info() method. This is the information we defined:

* self.cpp.package.libs: we add the say library so that consumers know that they should link with it. This
is equivalent to declaring self.cpp_info.libs in the package_info () method.

e self.cpp.package.libdirs: we add the 1ib folder so that consumers know that they should search there
for the libraries. This is equivalent to declaring self.cpp_info.libdirs in the package_info() method.
Note that the default value for 1ibdirs in both the cpp_info and cpp.packageis ["1ib"] so we could have
omitted that declaration.

* self.cpp.package.includedirs: we add the include folder so that consumers know that they should
search there for the library headers. This is equivalent to declaring self.cpp_info.includedirs in the
package_info() method. Note that the default value for includedirs in both the cpp_info and cpp.
package is ["include"] so we could have omitted that declaration.

To check how this information affects consumers we are going to do first do a conan create on the say package:

$ cd say
$ conan create . -s build_type=Release

When we call conan create, Conan moves the recipe and sources declared in the recipe to be exported to the local
Cache to a recipe folder and after that, it will create a separate package folder to build the binaries and store the actual
package contents. If you check in the [YOUR_CONAN_HOME] /p folder, you will find two new folders similar to these:

Tip: You could get the exact locations for this folders using the conan cache command or checking the output of
the conan create command.

<YOUR_CONAN_HOME>/p

sayb3ea744527a91 --> folder for sources
L

say830097e941e10 --> folder for building and storing the package binaries
— b
build
L— Release
include
L— say.h
src
hello.cpp
say.cpp

— D
include --> defined in cpp.package.includedirs
L say.h

(continues on next page)

116 Chapter 4. Tutorial

Conan Documentation, Release 2.14.0

(continued from previous page)

L— 1ib --> defined in cpp.package.libdirs
L libsay.a --> defined in self.cpp.package.libs

You can identify there the structure we defined in the layout () method. If you build the hello consumer project
now, it will search for all the headers and libraries of say in that folder inside the local Cache in the locations defined
by cpp.package:

$ cd ../hello

$ conan install . -s build_type=Release

Linux, MacOS

$ cmake --preset conan-release --log-level=VERBOSE
Windows

$ cmake --preset conan-default --log-level=VERBOSE

-- Conan: Target declared 'say::say'

-- Conan: Library say found <YOUR_CONAN_HOME>p/say8938ceae2l6fc/p/lib/libsay.a
-- Created target CONAN_LIB::say_say_RELEASE STATIC IMPORTED

-- Conan: Found: <YOUR_CONAN_HOME>p/p/say8938ceae2l6fc/p/lib/libsay.a

-- Configuring done

$ cmake --build --preset conan-release

[50%] Building CXX object CMakeFiles/hello.dir/src/hello.cpp.o
[100%] Linking CXX executable hello

[100%] Built target hello

cpp-source and cpp.build

We also defined cpp.source and cpp.build attributes in our recipe. These are only used when the package is in
editable mode and point to the locations that consumers will use to find headers and binaries. We defined:

e self.cpp.source.includedirs set to ["include"]. This location is relative to the self.folders.
source that we defined to .. In the case of editable packages, this location will be the local folder where we
have our project.

e self.cpp.build.libdirs set to ["."]. This location is relative to the self.folders.build that
we defined to ./build/<build_type>. In the case of editable packages, this location will point to <lo-
cal_folder>/build/<build_type>.

Note that other cpp. source and cpp.build definitions are also possible, with different meanings and purposes, for
example:

e self.cpp.source.libdirs and self.cpp.source.libs could be used if we had pre-compiled libraries in
the source repo, committed to git, for example. They are not a product of the build, but rather part of the sources.

e self.cpp.build.includedirs could be use for folders containing headers generated at build time, as it usu-
ally happens by some code generators that are fired by the build before starting to compile the project.

To check how this information affects consumers, we are going to first put the say package in editable mode and build
it locally.

4.4. Developing packages locally 117

Conan Documentation, Release 2.14.0

cd ../say
conan editable add . --name=say --version=1.0
conan install . -s build_type=Release

cmake --preset conan-release
cmake --build --preset conan-release

A A o A

You can check the contents of the say project’s folder now, you can see that the output folders match the ones we defined
with self. folders:

— (MakeLists.txt
— CMakeUserPresets. json
— build
L— Release --> defined in cpp.build.libdirs
generators
E CMakePresets. json
deactivate_conanrun.sh
libsay.a --> no need to define
— conanfile.py
— include --> defined in cpp.source.includedirs
L— say.h
L— src
hello.cpp
say.cpp

Now that we have the say package in editable mode, if we build the hello consumer project, it will search for all the
headers and libraries of say in the folders defined by cpp.source and cpp.build

$ cd ../hello

$ conan install . -s build_type=Release

Linux, MacOS

$ cmake --preset conan-release --log-level=VERBOSE
Windows

$ cmake --preset conan-default --log-level=VERBOSE

-- Conan: Target declared 'say::say'

-- Conan: Library say found <local_folder>/examples2/tutorial/developing_packages/
—package_layout/say/build/Release/libsay.a

-- Conan: Found: <local_folder>/examples2/tutorial/developing_packages/package_layout/
—»say/build/Release/libsay.a

-- Configuring done

$ cmake --build --preset conan-release

[50%] Building CXX object CMakeFiles/hello.dir/src/hello.cpp.o
[100%] Linking CXX executable hello

[100%] Built target hello

$ conan editable remove --refs=say/1.0

118 Chapter 4. Tutorial

Conan Documentation, Release 2.14.0

Note: Please, note that we did not define self.cpp.build.libs = ["say"]. This is because the information set
in self.cpp.source and self.cpp.build will be merged with the information set in self. cpp.package so that
you only have to define things that change for the editable package. For the same reason, you could also omit setting
self.cpp.source.includedirs = ["include"] but we left it there to show the use of cpp.source.

See also:
* Define the layout() when you package third-party libraries
¢ Define the layout() when you have the conanfile in a subfolder

* Define the layout() when you want to handle multiple subprojects

4.5 Versioning

This section of the tutorial introduces several concepts about versioning of packages.
First, explicit version updates and how to define versions of packages is explained.
Then, it will be introduced how requires with version ranges can help to automate updating to the latest versions.

There are some situations when recipes or source code are changed, but the version of the package is not increased.
For those situations, Conan uses automatic revisions to be able to provide traceability and reproducibility of those
changes.

Lockfiles are a common mechanism in package managers to be able to reproduce the same dependency graph later in
time, even when new versions or revisions of dependencies are uploaded. Conan also provides lockfiles to be able to
guarantee this reproducibility.

Finally, when different branches of a dependency graph requires different versions of the same package, that is called
a “version conflict”. The tutorial will also introduce these errors and how to address them.

4.5.1 Versions

This section explains how different versions of a given package can be created, first starting with manually changing
the version attribute in the conanfile.py recipe, and then introducing the set_version() method as a mechanism
to automate the definition of the package version.

Note: This section uses very simple, empty recipes without building any code, so without build(), package(), etc.,
to illustrate the versioning with the simplest possible recipes, and allowing the examples to run easily and to be very
fast and simple. Inreal life, the recipes would be full-blown recipes as seen in previous sections of the tutorial, building
actual libraries and packages.

Let’s start with a very simple recipe:

Listing 74: conanfile.py

from conan import ConanFile

class pkgRecipe(ConanFile):
name = "pkg"
version = "1.0"

(continues on next page)

4.5. Versioning 119

Conan Documentation, Release 2.14.0

(continued from previous page)

The recipe would export files and package them, but not really
necessary for the purpose of this part of the tutorial

exports_sources = "include/*"

def package(self):

#

That we can create pkg/1.0 package with:

$ conan create .
pkg/1.0 .

$ conan list "pkg/*"
Local Cache
pkg
pkg/1.0

If we now did some changes to the source files of this library, this would be a new version, and we could change the
conanfile.py version to version = "1.1" and create the new pkg/1.1 version:

Make sure you modified conanfile.py to version=1.1
$ conan create .

pkg/1.1 .

$ conan list "pkg/*"
Local Cache
pkg
pkg/1.0
pkg/1.1

As we can see, now we see in our cache both pkg/1.0 and pkg/1.1. The Conan cache can store any number of
different versions and configurations for the same pkg package.

Automating versions

Instead of manually changing the version in conanfile.py, it is possible to automate it with 2 different approaches.

First it is possible to provide the version directly in the command line. In the example above, we could remove the
version attribute from the recipe and do:

Make sure you removed the version attribute in conanfile.py
$ conan create . --version=1.2

pkg/1.2 .
$ conan list "pkg/*"

Local Cache

(continues on next page)

120 Chapter 4. Tutorial

Conan Documentation, Release 2.14.0

(continued from previous page)
pkg
pkg/1.0
pkg/1.1
pkg/1.2

The other possibility is to use the set_version() method to define the version dynamically, for example, if the version
already exists in the source code or in a text file, or it should be deduced from the git version.

Let’s assume that we have a version. txt file in the repo, that contains just the version string 1.3. Then, this can be
done:

Listing 75: conanfile.py

from conan import ConanFile
from conan.tools.files import load

class pkgRecipe(ConanFile):
name = "pkg"

def set_version(self):
self.version = load(self, "version.txt")

No need to specify the version in CLI arg or in recipe attribute
$ conan create .

pkg/1.3 .

$ conan list "pkg/*"
Local Cache
pkg
pkg/1.0
pkg/1.1
pkg/1.2
pkg/1.3

It is also possible to combine the command line version definition, falling back to reading from file if the command
line argument is not provided with the following syntax:

Listing 76: conanfile.py

def set_version(self):
if self.version is already defined from CLI --version arg, it will
not load version.txt
self.version = self.version or load(self, "version.txt")

This will create the "1.4" version even if the version.txt file contains "1.3"
$ conan create . --version=1.4

pkg/1.4 .

(continues on next page)

4.5. Versioning 121

Conan Documentation, Release 2.14.0

(continued from previous page)

$ conan list "pkg/*"
Local Cache
pkg
pkg/1.0
pkg/1.1
pkg/1.2
pkg/1.3
pkg/1.4

Likewise, it is possible to obtain the version from a Git tag:

Listing 77: conanfile.py

from conan import ConanFile
from conan.tools.scm import Git

class pkgRecipe(ConanFile):
name = "pkg"

def set_version(self):
git = Git(self)
tag = git.run("describe --tags')
self.version = tag

assuming this is a git repo, and it was tagged to 1.5
git init .

git add .

git commit -m "initial commit"

git tag 1.5

conan create .

A Y Y WY

pkg/1.5

$ conan list "pkg/*"
Local Cache
pkg

pkg/1.
pkg/1.
pkg/1.
pkg/1.
pkg/1.
pkg/1.

i D W N R

Note: Best practices

* We could try to use something like the branch name or the commit as the version number. However this might
have some disadvantages, for example, when this package is being required, it will need a explicit requires =
"pkg/commit" in every other package recipe requiring this one, and it might be difficult to update consumers
consistently, and to know if a newer or older dependency is being used.

122 Chapter 4. Tutorial

Conan Documentation, Release 2.14.0

Requiring the new versions

When a new package version is created, if other package recipes requiring this one contain a explicit requires, pinning
the exact version like:

Listing 78: app/conanfile.py

from conan import ConanFile

class AppRecipe(ConanFile):
name = "app"
version = "1.0"
requires = "pkg/1.0"

Then, installing or creating the app recipe will keep requiring and using the pkg/1.0 version and not the newer ones.
To start using the new pkg versions, it is necessary to explicitly update the requires like:

Listing 79: app/conanfile.py

from conan import ConanFile

class AppRecipe(ConanFile):
name = "app"
version = "1.0"
requires = "pkg/1.5"

This process, while it achieves very good reproducibility and traceability, can be a bit tedious if we are managing a large
dependency graph and we want to move forward to use the latest dependencies versions faster and with less manual
intervention. To automate this, the version-ranges explained in the next section can be used.

4.5.2 Version ranges

In the previous section, we ended with several versions of the pkg package. Let’s remove them and create the following
simple project:

Listing 80: pkg/conanfile.py

from conan import ConanFile

class pkgRecipe(ConanFile):
name = "pkg"

Listing 81: app/conanfile.py

from conan import ConanFile

class appRecipe(ConanFile):

name = "app
requires = "pkg/1.0"

Let’s create pkg/1.0 and install app, to see it requires pkg/1.0:

$ conan remove "pkg*" -c

$ conan create pkg --version=1.0
(continues on next page)

4.5. Versioning 123

Conan Documentation, Release 2.14.0

(continued from previous page)

. pkg/1.0 ...
$ conan install app

Requirements
pkg/1.0

Then, if we create a new version of pkg/1. 1, it will not automatically be used by app:

$ conan create pkg --version=1.1

. pkg/1.0 ...
Note how this still uses the previous 1.0 version
$ conan install app

Requirements
pkg/1.0

So we could modify app conanfile to explicitly use the new pkg/1. 1 version, but instead of that, let’s use the following
version-range expression (introduced by the [expression] brackets):

Listing 82: app/conanfile.py

from conan import ConanFile

class appRecipe(ConanFile):

name = "app
requires = "pkg/[>=1.0 <2.0]"

When we now install the dependencies of app, it will automatically use the latest version in the range, even if we create
a new one, without needing to modify the app conanfile:

this will now use the newer 1.1
$ conan install app

Requirements
pkg/1.1

$ conan create pkg --version=1.2

. pkg/1.2 ...
Now it will automatically use the newest 1.2
$ conan install app

Requirements
pkg/1.2

This holds as long as the newer version lies within the defined range, if we create a pkg/2 .0 version, app will not use
it:

$ conan create pkg --version=2.0

. pkg/2.0 ...
Conan will use the latest in the range
$ conan install app

Requirements

(continues on next page)

124 Chapter 4. Tutorial

Conan Documentation, Release 2.14.0

(continued from previous page)

pkg/1.2

When using version ranges, versions in the cache are preferred over remote ones, so if you have a local pkg/1.2
package, it will be used instead of the remote one, even if the remote one is newer. To ensure you use the latest available
one, you can use the --update argument in the install/create command. Note that the --update argument will
look into all the remotes specified in the command for possible newer versions, and won’t stop at the first newer one
found.

Version ranges can be defined in several places:
* In conanfile.py recipes requires, tool_requires, test_requires, python_requires
¢ In conanfile. txt files in [requires], [tool_requires], [test_requires] sections
* In command line arguments like --requires= and --tool_requires.

¢ In profiles [tool_requires] section

Semantic versioning

The semantic versioning specification or semver, specifies that packages should be versioned using always 3 dot-
separated digits like MAJOR.MINOR.PATCH, with very specific meanings for each digit.

Conan extends the semver specification to any number of digits, and also allows to include lowercase letters in it. This
was done because during 1.X a lot of experience and feedback from users was gathered, and it became evident than in
C++ the versioning scheme is often more complex, and users were demanding more flexibility, allowing versions like
1.2.3.a.8 if necessary.

Conan versions non-digit identifiers follow the same rules as package names, they can only contain lowercase letters.
This is to avoid 1.2.3-Beta to be a different version than 1.2.3-beta which can be problematic, even a security
risk.

The ordering of versions when necessary (for example to decide which is the latest version in a version range) is done by
comparing individually each dot-separated entity in the version, from left to right. Digits will be compared numerically,
so 2 < 11, and entries containing letters will be compared alphabetically (even if they also contain some numbers).

Similarly to the semver specification, Conan can manage prereleases and builds in the form:
VERSION-prerelease+build. Conan will also order pre-releases and builds according to the same rules, and
each one of them can also contain an arbitrary number of items, like 1.2.3-pre.1.2.1+build.45.a. Note that the
semver standard does not apply any ordering to builds, but Conan does, with the same logic that is used to order the
main version and the pre-releases.

Important: Note that the ordering of pre-releases can be confusing at times. A pre-release happens earlier in time
than the release it is qualifying. So 1.1-alpha. 1 is older than 1.1, not newer.

4.5. Versioning 125

https://semver.org/

Conan Documentation, Release 2.14.0

Range expressions

Range expressions can have comparison operators for the lower and higher bounds, separated with a space. Also,
lower bounds and upper bounds in isolation are permitted, though they are generally not recommended under normal
versioning schemes, specially the lower bound only. requires = "pkg/[>=1.0 <2.0]" will include versions like
1.0, 1.2.3 and 1.9, but will not include 0.3, 2.0 or 2.1 versions.

The tilde ~ operator can be used to define an “approximately” equal version range. requires = "pkg/[~1]" will
include versions 1.3 and 1.8.1, but will exclude versions like 0.8 or 2.0. Likewise requires = "pkg/[~2.5]" will
include 2.5.0 and 2.5.3, but exclude 2.1, 2.7, 2.8.

The caret * operator is very similar to the tilde, but allowing variability over the last defined digit. requires =
"pkg/[*1.2]" will include 1.2.1, 1.3 and 1.51, but will exclude 1.0, 2, 2.0.

It is also possible to apply multiple conditions with the OR operator, like requires = "pkg/[>1 <2.0 || 43.2]"
but this kind of complex expressions is not recommended in practice and should only be used in very extreme cases.

Finally, note that pre-releases are not resolved by default. The way to include them in the range is to explicitly enable
them with either the include_prerelease option (requires = "pkg/[>1 <2, include_prerelease]"), or via
the core.version_ranges:resolve_prereleases=True configuration. In this example, 1.0-pre.1 and 1.5.1-prel
will be included, but 2.0-prel would be excluded.

Note: While it is possible to hardcode the include_prerelease in the requires version range, it is not recom-
mended generally. Pre-releases should be opt-in, and controlled by the user, who decides if they want to use pre-releases.
Also, note that the include_prereleases receives no argument, hence it’s not possible to deactivate prereleases with
include_prerelease=False.

For more information about valid range expressions go to Requires reference

4.5.3 Revisions

This sections introduces how doing modifications to a given recipe or source code without explicitly creating new
versions, will still internally track those changes with a mechanism called revisions.

Creating different revisions

Let’s start with a basic “hello” package:

$ mkdir hello && cd hello

$ conan remove hello* -c # clean possible existing ones
$ conan new cmake_lib -d name=hello -d version=1.0

$ conan create .

hello/1.0: Hello World Release!

We can now list the existing recipe revisions in the cache:

$ conan list "hello/1.0#*"
Local Cache
hello
hello/1.0
revisions
2475ece651£666£42c155623228c75d2 (2023-01-31 23:08:08 UTC)

126 Chapter 4. Tutorial

Conan Documentation, Release 2.14.0

If we now edit the src/hello.cpp file, to change the output message from “Hello” to “Bye”

Listing 83: hello/src/hello.cpp

void hello(){

#1ifdef NDEBUG
std::cout << "hello/1.0: Bye World Release!\n";

So if we create the package again, without changing the version hello/1.0, we will get a new output:

$ conan create .
hello/1.0: Bye World Release!

But even if the version is the same, internally a new revision 2b547b7£20£5541c16d0b5cbcf207502 has been cre-
ated.

$ conan list "hello/1.0#*"
Local Cache
hello
hello/1.0
revisions
2475ece651£666f42c155623228c75d2 (2023-01-31 23:08:08 UTC)
2b547b7£20£5541c16d0b5cbcf207502 (2023-01-31 23:08:25 UTC)

This recipe revision is the hash of the contents of the recipe, including the conanfile.py, and the exported sources
(src/main.cpp, CMakeLists.txt, etc., that is, all files exported in the recipe).

We can now edit the conanfile.py, to define the 1icence value:

Listing 84: hello/conanfile.py

class helloRecipe(ConanFile):
name = "hello"
version = "1.0"

Optional metadata
license = "MIT"

So if we create the package again, the output will be the same, but we will also get a new revision, as the conanfile.py
changed:

$ conan create .
hello/1.0: Bye World Release!

$ conan list "hello/1.0#*"
Local Cache
hello
hello/1.0
revisions
2475ece651£f666f42c155623228c75d2 (2023-01-31 23:08:08 UTC)
2b547b7£20£5541c16d0b5cbcf207502 (2023-01-31 23:08:25 UTC)

(continues on next page)

4.5. Versioning 127

Conan Documentation, Release 2.14.0

(continued from previous page)

1d674b4349d2blea®6aab6419£5£99dd9 (2023-01-31 23:08:34 UTC)

Important: The recipe revision is the hash of the contents. It can be changed to be the Git commit hash with
revision_mode = "scm". Butin any case it is critical that every revision represents an immutable source, including
the recipe and the source code:

« If the sources are managed with exports_sources, then they will be automatically be part of the hash

* If the sources are retrieved from a external location, like a downloaded tarball or a git clone, that should guarantee
uniqueness, by forcing the checkout of a unique immutable tag, or a commit. Moving targets like branch names
or HEAD would be broken, as revisions are considered immutable.

Any change in source code or in recipe should always imply a new revision.

Warning: Line Endings Issue

Git, by default, will checkout files on Windows systems using CRLF line endings. This results in different files
compared to Linux systems where files will use LF line endings. Since the files are different, the Conan recipe
revision computed on Windows will differ from the revisions on other platforms like Linux. Please, check more
about this issue and how to solve it in the FAQ dedicated section.

Using revisions

The recipe revisions are resolved by default to the latest revision for every given version. In the case above, we could
have a chat/1.0 package that consumes the above hello/1.0 package:

$ cd ..

$ mkdir chat && cd chat

$ conan new cmake_lib -d name=chat -d version=1.0 -d requires=hello/1.0
$ conan create .

Requirements
chat/1.0#17b45a168519b8e0ed178d822b7ad8c8 - Cache
hello/1.0#1d674b4349d2b1ea®6aa6419£5£99dd9 - Cache

hello/1.0: Bye World Release!
chat/1.0: Hello World Release!

We can see that by default, it is resolving to the latest revision 1d674b4349d2blea®6aa6419£5£99dd9, so we also
see the hello/1.0: Bye World modified message.

It is possible to explicitly depend on a given revision in the recipes, so it is possible to modify the chat/1.0 recipe to
define it requires the first created revision:

Listing 85: chat/conanfile.py

def requirements(self):
self.requires("hello/1.0#2475ece651£666£f42c155623228c75d2")

So creating chat will now force the first revision:

128 Chapter 4. Tutorial

Conan Documentation, Release 2.14.0

$ conan create .

Requirements
chat/1.0#12f87e1b8a881dabb19cc7£229e16c76 - Cache
hello/1.0#2475ece651£666f42c155623228c75d2 - Cache

hello/1.0: Hello World Release!
chat/1.0: Hello World Release!

Uploading revisions

The upload command will upload only the latest revision by default:

upload latest revision only, all package binaries
$ conan upload hello/1.0 -c -r=myremote

If for some reason we want to upload all existing revisions, it is possible with:

upload all revisions, all binaries for each revision
$ conan upload hello/1.0#* -c -r=myremote

In the server side, the latest uploaded revision becomes the latest one, and the one that will be resolved by default. For
this reason, the above command uploads the different revisions in order (from older revision to latest revision), so the
relative order of revisions is respected in the server side.

Note that if another machine decides to upload a revision that was created some time ago, it will still become the latest
in the server side, because it is created in the server side with that time.

Package revisions

Package binaries when created also compute the hash of their contents, forming the package revision. But they are very
different in nature to recipe revisions. Recipe revisions are naturally expected, every change in source code or in the
recipe would cause a new recipe revision. But package binaries shouldn’t have more than one package revision, because
binaries variability would be already encoded in a unique package_id. Put in other words, if the recipe revision is
the same (exact same input recipe and source code) and the package_id is the same (exact same configuration profile,
settings, etc.), then that binary should be built only once.

As C and C++ build are not deterministic, it is possible that subsequents builds of the same package, without modifying
anything will be creating new package revisions:

Build again 2 times the latest
$ conan create .
$ conan create .

In some OSs like Windows, this build will not be reproducible, and the resulting artifacts will have different checksums,
resulting in new package revisions:

$ conan list "hello/1.0:*#*"
Local Cache
hello
hello/1.0
revisions
(continues on next page)

4.5. Versioning 129

Conan Documentation, Release 2.14.0

(continued from previous page)

1d674b4349d2blea0®6aa6419£5£99dd9 (2023-02-01 00:03:29 UTC)
packages
2401fal1d188d289bb25c37cfa3317el13e377a351
revisions
8b8c3deef5ef47a8009d4afaebfe952e (2023-01-31 23:08:40 UTC)
8e8d380347e6d067240c4c00132d42b1 (2023-02-01 00:03:12 UTC)
c347faaedcle7e3282d3bfed31700019 (2023-02-01 00:03:35 UTC)

info
settings
arch: x86_64

build_type: Release

By default, the package revision will also be resolved to the latest one. However, it is not possible to pin a package
revision explicitly in recipes, recipes can only require down to the recipe revision as we defined above.

Warning: Best practices

Having more than 1 package revision for any given recipe revision + package_id is a smell or a potential bad
practice. It means that something was rebuilt when it was not necessary, wasting computing and storage resources.
There are ways to avoid doing it, like conan create . --build=missing:hello* will only build that package
binary if it doesn’t exist already (or running conan graph info can also return information of what needs to be
built.)

4.5.4 Lockfiles

Lockfiles are a mechanism to achieve reproducible dependencies, even when new versions or revisions of those depen-
dencies are created. Let’s see it with a practical example, start cloning the examples2 repository:

$ git clone https://github.com/conan-io/examples2.git
$ cd examples2/tutorial/versioning/lockfiles/intro

In this folder we have a small project, consisting in 3 packages: a matrix package, emulating some mathematical
library, an engine package emulating some game engine, and a sound32 package, emulating a sound library for some
32bits systems. These packages are actually most empty, they do not build any code, but they are good to learn the
concepts of lockfiles.

130 Chapter 4. Tutorial

https://github.com/conan-io/examples2

Conan Documentation, Release 2.14.0

matrix/1.0 sound32/1.0

if arch==x86

engine/1.0

We will start by creating the first matrix/1.0 version:

[$ conan create matrix --version=1.0 }

Now we can check in the engine folder its recipe:

class Engine(ConanFile):
name = "engine"
settings = "arch"

def requirements(self):
self.requires("matrix/[>=1.0 <2.0]")
if self.settings.arch == "x86":
self.requires("sound32/[>=1.0 <2.0]")

Lets move to the engine folder and install its dependencies:

$ cd engine
$ conan install .

Requirements
matrix/1.0#905c3f0babc520684c84127378fefdd® - Cache
Resolved version ranges
matrix/[>=1.0 <2.0]: matrix/1.0

As the matrix/1.0 version is in the valid range, it is resolved and used. But if someone creates a new matrix/1.1
or 1.X version, it would also be automatically used, because it is also in the valid range. To avoid this, we will capture
a “snapshot” of the current dependencies creating a conan. lock lockfile:

$ conan lock create .
$ cat conan.lock

{

(continues on next page)

4.5. Versioning 131

Conan Documentation, Release 2.14.0

(continued from previous page)
"version": "0.5",
"requires": [
"matrix/1.0#905c3f0babc520684c84127378fefdd0%1675278126.0552447"
1,
"build_requires": [],
"python_requires": []

‘We can see how the created conan. lock lockfile contains the matrix/1.0 version and its revision. But sound32/1.0
is not in the lockfile, because for the default configuration profile (not x86), this sound32 is not a dependency.

Now, a new matrix/1.1 version is created:

$ cd ..
$ conan create matrix --version=1.1
$ cd engine

And see what happens when we issue a new conan install command for the engine:

$ conan install .

equivalent to conan install . --lockfile=conan.lock

Requirements
matrix/1.0#905c3f0babc520684c84127378fefdd® - Cache

As we can see, the new matrix/1.1 was not used, even if it is in the valid range! This happens because by default
the --lockfile=conan.lock will be used if the conan.lock file is found. The locked matrix/1.0 version and
revision will be used to resolve the range, and the matrix/1.1 will be ignored.

Likewise, it is possible to issue other Conan commands, and if the conan. lock is there, it will be used:

$ conan graph info . --filter=requires # --lockfile=conan.lock is implicit
display info for matrix/1.0
$ conan create . --version=1.0 # --lockfile=conan.lock is implicit

creates the engine/1.0 package, using matrix/1.0 as dependency

If using a lockfile is intended, like in CI, it is better that the argument --lockfile=conan. lock explicit.

Multi-configuration lockfiles

We saw above that the engine has a conditional dependency to the sound32 package, in case the architecture is x86.
That also means that such sound32 package version was not captured in the above lockfile.

Lets create the sound32/1.0 package first, then try to install engine:

$ cd ..

$ conan create sound32 --version=1.0
$ cd engine

$ conan install . -s arch=x86 # FAILS!

ERROR: Requirement 'sound32/[>=1.0 <2.0]' not in lockfile

This happens because the conan.lock lockfile doesn’t contain a locked version for sound32. By default lockfiles
are strict, if we are locking dependencies, a matching version inside the lockfile must be found. We can relax this
assumption with the --lockfile-partial argument:

132 Chapter 4. Tutorial

Conan Documentation, Release 2.14.0

$ conan install . -s arch=x86 --lockfile-partial

Requirements
matrix/1.0#905c3£f0babc520684c84127378fefdd®d - Cache
sound32/1.0#83d4b7bf607b3b60a6546£8b58b5cdd7 - Cache

Resolved version ranges
sound32/[>=1.0 <2.0]: sound32/1.0

This will manage to partially lock tomatrix/1.0, and resolve sound32 version range as usual. But we can do better,
we can extend our lockfile to also lock sound32/1.0 version, to avoid possible disruptions caused by new sound32
unexpected versions:

$ conan lock create . -s arch=x86
$ cat conan.lock
{

"version": "0.5",

"requires": [
"sound32/1.0#83d4b7bf607b3b60a6546£8b58b5cdd7%1675278904.0791488",
"matrix/1.0#905c3£f0babc520684c84127378fefdd0%1675278900.0103245"

i

"build_requires": [],

"python_requires": []

Now, both matrix/1.0 and sound32/1.0 are locked inside our conan. lock lockfile. It is possible to use this lock-
file for both configurations (64bits, and x86 architectures), having versions in a lockfile that are not used for a given
configuration is not an issue, as long as the necessary dependencies for that configuration find a matching version in it.

Important: Lockfiles contains sorted lists of requirements, ordered by versions and revisions, so latest versions and
revisions are the ones that are prioritized when resolving against a lockfile. A lockfile can contain two or more different
versions of the same package, just because different version ranges require them. The sorting will provide the right
logic so each range resolves to each valid versions.

If a version in the lockfile doesn’t fit in a valid range, it will not be used. It is not possible for lockfiles to force
a dependency that goes against what conanfile requires define, as they are “snapshots” of an existing/realizable
dependency graph, but cannot define an “impossible” dependency graph.

Evolving lockfiles

Even if lockfiles enforce and constraint the versions that can be resolved for a graph, it doesn’t mean that lockfiles cannot
evolve. Actually, controlled evolution of lockfiles is paramount to important processes like Continuous Integration,
when the effect of one change in the graph wants to be tested in isolation of other possible concurrent changes.

In this section we will introduce some of the basic functionality of lockfiles that allows such evolution.

First, if we would like now to introduce and test the new matrix/1.1 version in our engine, without necessarily
pulling many other dependencies that could have got new versions too, we could manually add matrix/1.1 to the
lockfile:

$ Running: conan lock add --requires=matrix/1.1
$ cat conan.lock

{

(continues on next page)

4.5. Versioning 133

Conan Documentation, Release 2.14.0

(continued from previous page)

"version": "0.5",
"requires": [

"sound32/1.0#83d4b7bf607b3b60a6546f8b58b5cdd7%1675278904.0791488",

"matrix/1.1",

"matrix/1.0#905c3f0babc520684c84127378fefdd0%1675278900.0103245"
1,
"build_requires": [],
"python_requires": []

}

To be clear: manually adding with conan lock add is not necessarily a recommended flow, it is possible to automate
the task with other approaches, that will be explained later. This is just an introduction to the principles and concepts.

The important idea is that now we got 2 versions of matrix in the lockfile, and matrix/1.1 is before matrix/1.0,
so for the range matrix/[>=1.0 <2.0], the first one (matrix/1. 1) would be prioritized. That means that when now
the new lockfile is used, it will resolve to matrix/1.1 version (even if amatrix/1.2 or higher version existed in the
system):

$ conan install . -s arch=x86 --lockfile-out=conan.lock
Requirements
matrix/1.1#905c3£f0babc520684c84127378fefdd®d - Cache
sound32/1.0#83d4b7b£f607b3b60a6546£8b58b5cdd7 - Cache
$ cat conan.lock

{

"version": "0.5",

"requires": [
"sound32/1.0#83d4b7bf607b3b60a6546£f8b58b5cdd7%1675278904.0791488",
"matrix/1.1#905c3f0babc520684c84127378fefdd0%1675278901.7527816",
"matrix/1.0#905c3f0babc520684c84127378fefdd0%1675278900.0103245"

1,

"build_requires": [],

"python_requires": []

}

Note that now matrix/1.1 was resolved, and it also got its revision stored in the lockfile (because
--lockfile-out=conan. lock was passed as argument).

It is true that the former matrix/1.0 version was not used. As said above, having old versions in the lockfile that
are not used is not harmful. However, if we want to prune the unused versions and revisions, we could use the
--lockfile-clean for that purpose:

$ conan install . -s arch=x86 --lockfile-out=conan.lock --lockfile-clean

Requirements
matrix/1.1#905c3£f0babc520684c84127378fefdd® - Cache
sound32/1.0#83d4b7b£f607b3b60a6546£8b58b5cdd7 - Cache

$ cat conan.lock
{
"version": "0.5",
"requires": [
"sound32/1.0#83d4b7b£607b3b60a6546£8b58b5cdd7%1675278904.0791488",
"matrix/1.1#905c3£f0babc520684c84127378£fefdd0%1675278901.7527816"

(continues on next page)

134 Chapter 4. Tutorial

Conan Documentation, Release 2.14.0

(continued from previous page)
1,
"build_requires": [],
"python_requires": []

It is relevant to note that the -lockfile-clean could remove locked versions in given configurations. For example,
if instead of the above, the x86_64 architecture is used, the --lockfile-clean will prune the “unused” sound32,
because in that configuration is not used. It is possible to evaluate new lockfiles for every different configuration, and
then merge them:

$ conan lock create . --lockfile-out=64.lock --lockfile-clean
$ conan lock create . -s arch=x86 --lockfile-out=32.lock --lockfile-clean
$ cat 64.lock
{
"version": "0.5",

"requires": [
"matrix/1.1#905c3£f0babc520684c84127378fefdd0%1675294635.6049662"

i

"build_requires": [],

"python_requires": []

}
$ cat 32.lock
{

"version": "0.5",

"requires": [
"sound32/1.0#83d4b7bf607b3b60a6546£8b58b5cdd7%1675294637.9775107",
"matrix/1.1#905c3£f0babc520684c84127378fefdd0%1675294635.6049662"

i

"build_requires": [],

"python_requires": []

}

$ conan lock merge --lockfile=32.lock --lockfile=64.lock --lockfile-out=conan.lock
$ cat conan.lock

{

"version": "0.5",

"requires": [
"sound32/1.0#83d4b7b£607b3b60a6546£f8b58b5cdd7%1675294637.9775107",
"matrix/1.1#905c3f0babc520684c84127378fefdd0%1675294635.6049662"

1,

"build_requires": [],

"python_requires": []

}

This multiple-clean + merge operation is not something that developers should do, only CI scripts, and for some ad-
vanced CI flows that will be explained later.

See also:

e CI tutorial.

4.5. Versioning 135

Conan Documentation, Release 2.14.0

4.5.5 Dependencies conflicts

In a dependency graph, when different packages depends on different versions of the same package, this is called a
dependency version conflict. It is relatively easy to produce one. Let’s see it with a practical example, start cloning the
examples? repository:

$ git clone https://github.com/conan-io/examples2.git
$ cd examples2/tutorial/versioning/conflicts/versions

In this folder we have a small project, consisting in several packages: matrix (a math library), engine/1.0 video
game engine that depends onmatrix/1.0, intro/1.0, a package implementing the intro credits and functionality for
the videogame that depends on matrix/1.1 and finally the game recipe that depends simultaneously on engine/1.0
and intro/1.0. All these packages are actually empty, but they are enough to produce the conflicts.

matrix/1.0 matrix/1.1

engine/1.0 intro/1.0

N\ /

game/1.0

Let’s create the dependencies:

conan create matrix --version=1.0

conan create matrix --version=1.1 # note this is 1.1!
conan create engine --version=1.0 # depends on matrix/1.0
conan create intro --version=1.0 # depends on matrix/1.1

A A o

And when we try to install game, we will get the error:

$ conan install game

Requirements
engine/1.0#0fe4e68907661f7b8e21£764£0049%9aec7 - Cache
intro/1.0#d639998c2e55cf36d261ab319801c322 - Cache

(continues on next page)

136 Chapter 4. Tutorial

https://github.com/conan-io/examples2

Conan Documentation, Release 2.14.0

(continued from previous page)

matrix/1.0#905c3f0babc520684c84127378fefdd® - Cache
Graph error

Version conflict: intro/1.0->matrix/1.1, game/1.0->matrix/1.0.
ERROR: Version conflict: intro/l1.0->matrix/1.1, game/1.0->matrix/1.0.

This is a version conflict, and Conan will not decide automatically how to resolve the conflict, but the user should
explicitly resolve such conflict.

Resolving conflicts

Of course, the most direct and straightforward way to solve such a conflict is going to the dependencies conanfile.py
and upgrading their requirements() so they point now to the same version. However this might not be practical in
some cases, or it might be even impossible to fix the dependencies conanfiles.

For that case, it should be the consuming conanfile.py the one that can resolve the conflict (in this case, game) by
explicitly defining which version of the dependency should be used, with the following syntax:

Listing 86: game/conanfile.py

class Game(ConanFile):
name = "game"
version = "1.0"

def requirements(self):
self.requires("engine/1.0")
self.requires("intro/1.0")
self.requires("matrix/1.1", override=True)

This is called an override. The game package do not directly depend on matrix, this requires declaration will not
introduce such a a direct dependency. But the matrix/1.1 version will be propagated upstream in the dependency
graph, overriding the requires of packages that do depend on any matrix version, forcing the consistency of the
graph, as all upstream packages will now depend on matrix/1.1:

$ conan install game

Requirements
engine/1.0#0fe4e6890766£f7b8e21f764£f0049%9aec7 - Cache
intro/1.0#d639998c2e55cf36d261ab319801c322 - Cache
matrix/1.1#905c3£f0babc520684c84127378fefdd® - Cache

4.5. Versioning 137

Conan Documentation, Release 2.14.0

matrix/1.1 matrix/1.0

/N

engine/1.0 intro/1.0

N

game/1.0

Note: In this case, a new binary for engine/1.0 was not necessary, but in some situations the above could fail with a
engine/1.0 “binary missing error”’. Because previously engine/1.0 binaries were built against matrix/1.0. If the
package_id rules and configuration define that engine should be rebuilt when minor versions of the dependencies
change, then it will be necessary to build a new binary for engine/1.0 that builds and links against the new matrix/
1.1 dependency.

What happens if game had a direct dependency to matrix/1.2? Lets create the version:

[$ conan create matrix --version=1.2

Now let’s modify game/conanfile.py to introduce this as a direct dependency:

138 Chapter 4. Tutorial

Conan Documentation, Release 2.14.0

Listing 87: game/conanfile.py

class Game(ConanFile):
name = "game"
version = "1.0"

def requirements(self):
self.requires("engine/1.0")
self.requires("intro/1.0")
self.requires("matrix/1.2")

matrix/1.0 matrix/1.1 matrix/1.2

engine/1.0 intro/1.0

game/1.0

So installing it will raise a conflict error again:

$ conan install game

ERROR: Version conflict: engine/l1.0->matrix/1.0, game/1.0->matrix/1.2.

As this time, we want to respect the direct dependency between game and matrix, we will define the force=True
requirement trait, to indicate that this dependency version will also be forcing the overrides upstream:

Listing 88: game/conanfile.py

class Game(ConanFile):
name = "game"
version = "1.0"

(continues on next page)

4.5. Versioning 139

Conan Documentation, Release 2.14.0

(continued from previous page)
def requirements(self):
self.requires("engine/1.0")
self.requires("intro/1.0")
self.requires("matrix/1.2", force=True)

And that will now solve again the conflict (as commented above, note that in real applications this could mean that
binaries for engine/1.0 and intro/1.0 would be missing, and need to be built to link against the new forced matrix/
1.2 version):

$ conan install game

Requirements
engine/1.0#0fe4e6890766f7b8e21£764£f0049%9aec7 - Cache
intro/1.0#d639998c2e55cf36d261ab319801c322 - Cache
matrix/1.2#905c3f0babc520684c84127378fefdd® - Cache

matrix/1.2 matrix/1.0 matrix/1.1
A

engine/1.0 intro/1.0

game/1.0

Note: Best practices

* Resolving version conflicts by overrides/forces should in general be the exception and avoided when possible,
applied as a temporary workaround. The real solution is to move forward the dependencies requires so they
naturally converge to the same versions of upstream dependencies.

* A key takeaway is that the force trait will create a direct dependency between the consumer and the required
package, while the override won’t, it will only instruct Conan to prefer the required version if the package is
already in the dependency graph.

* Version-ranges can also produce some version conflicts, even if Conan tries to reduce them. This FAQ about
version conflicts discusses the graph resolution algorithm and strategies to minimize the conflicts.

140 Chapter 4. Tutorial

Conan Documentation, Release 2.14.0

Overriding options

It is possible that when there are diamond structures in a dependency graph, like the one seen above, different recipes
might be defining different values for the upstream options. In this case, this is not directly causing a conflict, but
instead the first value to be defined is the one that will be prioritized and will prevail.

In the above example, if matrix/1.0 can be both a static and a shared library, and engine decides to define that it
should be a static library (not really necessary, because that is already the default):

Listing 89: engine/conanfile.py

class Engine(ConanFile):
name = "engine"
version = "1.0"
Not strictly necessary because this is already the matrix default
default_options = {"matrix*:shared": False}

Warning: Defining options values in recipes does not have strong guarantees, please check this FAQ about options
values for dependencies. The recommended way to define options values is in profile files.

And also intro recipe would do the same, but instead define that it wants a shared library, and adds a validate()
method, because for some reason the intro package can only be built against shared libraries and otherwise crashes:

Listing 90: intro/conanfile.py

class Intro(ConanFile):
name = "intro"
version = "1.0"
default_options = {"matrix*:shared": True}

def requirements(self):
self.requires("matrix/1.0")

def validate(self):
if not self.dependencies["matrix"].options.shared:
raise ConanInvalidConfiguration("Intro package doesn't work with static.
—matrix library")

Then, this will cause an error, because as the first one to define the option value is engine (it is declared first in the
game conanfile requirements() method). In the examples2 repository, go to the “options” folder, and create the
different packages:

cd ../options

conan create matrix

conan create matrix -o matrix/*:shared=True
conan create engine

conan create intro

conan install game # FAILS!

P A A A B A

———————— Installing (downloading, building) binaries... --------

(continues on next page)

4.5. Versioning 141

Conan Documentation, Release 2.14.0

(continued from previous page)

ERROR: There are invalid packages (packages that cannot exist for this configuration):
intro/1.0: Invalid: Intro package doesn't work with static matrix library

Following the same principle, the downstream consumer recipe, in this case game conanfile.py can define the options
values, and those will be prioritized:

Listing 91: game/conanfile.py

class Game(ConanFile):
name = "game"
version = "1.0"
default_options = {"matrix*:shared": True}

def requirements(self):
self.requires("engine/1.0")
self.requires("intro/1.0")

And that will force now matrix being a shared library, no matter if engine defined shared=False, because the
downstream consumers always have priority over the upstream dependencies.

$ conan install game

———————— Installing (downloading, building) binaries... --------
matrix/1.0: Already installed!

matrix/1.0: I am a shared-library library!!!

engine/1.0: Already installed!

intro/1.0: Already installed!

Note: Best practices

As a general rule, avoid modifying or defining values for dependencies options in consumers conanfile.py. The
declared options defaults should be good for the majority of cases, and variations from those defaults can be defined
better in profiles better.

4.6 Other important Conan features

4.6.1 python_requires

It is possible to reuse code from other recipes using the python_requires feature.

If you maintain many recipes for different packages that share some common logic and you don’t want to repeat the
code in every recipe, you can put that common code in a Conan conanfile.py, upload it to your server, and have
other recipe conanfiles do a python_requires = "mypythoncode/version" to depend on it and reuse it.

142 Chapter 4. Tutorial

Conan Documentation, Release 2.14.0

4.6.2 Packages lists

It is possible to manage a list of packages, recipes and binaries together with the “packages-list” feature. Several
commands like upload, download, and remove allow receiving a list of packages file as an input, and they can do
their operations over that list. A typical use case is to “upload to the server the packages that have been built in the last
conan create”, which can be done with:

$ conan create . --format=json > build.json
$ conan list --graph=build.json --graph-binaries=build --format=json > pkglist.json
$ conan upload --list=pkglist.json -r=myremote -c

See the examples in this section.

4.6.3 Removing unused packages from the cache

Warning: The least recently used feature is in preview. See the Conan stability section for more information.

The Conan cache does not implement any automatic expiration policy, so its size will be always increasing unless
packages are removed or the cache is removed from time to time. It is possible to remove recipes and packages that
haven’t been used recently, while keeping those that have been used in a given time period (Least Recently Used LRU
policy). This can be done with the --1ru argument to conan remove and conan list commands:

remove all binaries (but not recipes) not used in the last 4 weeks

$ conan remove "*:*" --lru=4w -cC

remove all recipes that have not been used in the last 4 weeks (with their binaries)
$ conan remove "*" --lru=4w -c

e n

Note that the LRU time follows the rules of the remove command. If we are removing recipes with a pattern, only
the LRU times for recipes will be checked. If a recipe has been recently used, it will keep all the binaries, and if the
recipe has not been recently used, it will remove itself and all its binaries. If we use a "*:*" pattern, it will check for
binaries only, and remove those unused, but always leaving the recipe.

Using conan list first (take into account that conan 1list do not default to list all revisions, as opposed to remove,
so it is necessary to explicit the #* to select all revisions if that is the intention) it is possible to create a list of least
recently used packages:

List all unused (last 4 weeks) recipe revisions

$ conan list "*#*" --lru=4w --format=json > old.json
Remove those recipe revisions (and their binaries)
$ conan remove --list=old.json -c

See commands help conan remove and conan list.

4.6. Other important Conan features 143

Conan Documentation, Release 2.14.0

144 Chapter 4. Tutorial

CHAPTER
FIVE

CONTINUOUS INTEGRATION (CI) TUTORIAL

Note:

* This is an advanced topic, previous knowledge of Conan is necessary. Please read and practice the user tutorial
first.

 This section is intended for devops and build engineers designing and implementing a CI pipeline involving
Conan packages, if it is not the case, you can skip this section.

Continuous Integration has different meanings for different users and organizations. In this tutorial we will cover the
scenarios when users are doing changes to the source code of their packages and want to automatically build new
binaries for those packages and also compute if those new package changes integrate cleanly or break the organization
main products.

In this tutorial we will use this small project that uses several packages (static libraries by default) to build a couple
of applications, a video game and a map viewer utility. The game and mapviewer are our final “products”, what we
distribute to our users:

145

Conan Documentation, Release 2.14.0

mathlib/1.0

AN

ai/1.0 graphics/1.0

engine/1.0

game/1.0 mapviewer/1.0

All of the packages in the dependency graph have a requires to its direct dependencies using version ranges, for
example, game contains a requires("engine/[>=1.0 <2]") so new patch and minor versions of the dependencies
will automatically be used without needing to modify the recipes.

Note: Important notes

* This section is written as a hands-on tutorial. It is intended to be reproduced by copying the commands in your
machine.

* The tutorial presents some of the tools, good practices and common approaches to the CI problem. But there are
no silver bullets. This tutorial is not the unique way that things should be done. Different organizations might
have different needs and priorities, different build services power and budget, different sizes, etc. The principles
and practices presented in the tutorial might need to be adapted.

* If you have any questions or feedback, please submit a new issue in https://github.com/conan-io/conan/issues

» However some of the principles and best practices would be general for all approaches. Things like package im-
mutability, using promotions between repositories and not using the channel for that purpose are good practices
that should be followed.

146 Chapter 5. Continuous Integration (Cl) tutorial

https://github.com/conan-io/conan/issues

Conan Documentation, Release 2.14.0

5.1 Packages and products pipelines

When a developer is doing some changes to a package source code, we will consider 2 different parts or pipelines of
the overall system CI: the packages pipeline and the products pipeline

* The packages pipeline takes care of building one single package when its code is changed. If necessary it will
build it for different configurations.

* The products pipeline takes care of building the main organization “products” (the packages that implement
the final applications or deliverables), and making sure that changes and new versions in dependencies integrate
correctly, rebuilding any intermediate packages in the graph if necessary.

The idea is that if some developer does changes to the ai package, producing a new ai/1. 1.0 version, the packages
pipeline will first build this new version. But this new version might accidentally break or require rebuilding some
consumer packages. If our organization main products are game/1.0 and mapviewer/1.0, then the products pipeline
can be triggered, in this case it would rebuild engine/1.0 and game/1.0 as they are affected by the change.

5.2 Repositories and promotions

The concept of multiple server side repositories is very important for CI. In this tutorial we will use 3 repositories:

» develop: This repository is the main one that developers have configured in their machines to be able to conan
install dependencies and work. As such it is expected to be quite stable, similar to a shared “develop” branch
in git, and the repository should contain pre-compiled binaries for the organization’s pre-defined platforms, so
developers and CI don’t need to do --build=missing and build again and again from source.

* packages: This repository will be used to temporarily upload the packages built by the “packages pipeline”, to
not upload them directly to the develop repo and avoid disruption until these packages are fully validated.

* products: This repository will be used to temporarily upload the packages built by the “products pipeline”,
while building and testing that new dependencies changes do not break the main “products”.

Packages server

packages promotion
repository

products promotion
repository

develop
repository

P

P

Promotions are the mechanism used to make packages available from one pipeline to the other. Connecting the above
packages and product pipelines with the repositories, there will be 2 promotions:

* When all the different binaries for the different configurations have been built for a single package with the
packages pipeline, and uploaded to the packages repository, the new version and changes to the package
can be considered “correct” and promoted (copied) to the products repository.

* When the products pipeline has built from source all the necessary packages that need a re-build because
of the new package versions in the products repository and has checked that the organization “products” (such
game/1.0 and mapviewer/1.0) are not broken, then the packages can be promoted (copied) from the products
repo to the develop repo, to make them available for all other developers and CI.

5.1. Packages and products pipelines 147

Conan Documentation, Release 2.14.0

Note:

* The concept of immutability is important in package management and devops. Modifying channel is strongly
discouraged, see Package promotions.

* The versioning approach is important. This tutorial will be following the default Conan versioning approach,
see details here

This tutorial is just modeling the development flow. In production systems, there will be other repositories and promo-
tions, like a testing repository for the QA team, and a final release repository for final users, such that packages can
be promoted from develop to testing to release as they pass validation. Read more about promotions in Package
promotions.

Let’s start with the tutorial, move to the next section to do the project setup:

5.2.1 Project setup

The code necessary for this tutorial is found in the examples2 repo, clone it and move to the folder:

$ git clone https://github.com/conan-io/examples2.git
$ cd examples2/ci/game

Server repositories setup

We need 3 different repositories in the same server. Make sure to have an Artifactory running and available. You can
download the free Artifactory CE from the downloads page and run it in your own computer, or you can use docker:

$ docker run --name artifactory -d -p 8081:8081 -p 8082:8082 releases-docker.jfrog.io/
—jfrog/artifactory-cpp-ce:7.63.12
Can be stopped with "docker stop artifactory"

When you launch it, you can go to http://localhost:8081/ to check it (user: “admin”, password: “password”). If you
have another available Artifactory, it can be used too if you can create new repositories there.

As afirst step, log into the web Ul and create 3 different local repositories called develop, packages and products.

Then according to the project_setup.py file, these are the necessary environment variables to configure the server.
Please define ARTIFACTORY_URL, ARTIFACTORY_USER and/or ARTIFACTORY_PASSWORD if necessary to adapt to your
setup:

TODO: This must be configured by users

SERVER_URL = os.environ.get("ARTIFACTORY_URL", "http://localhost:8081/artifactory/api/
—conan')

USER = os.environ.get("ARTIFACTORY_USER", "admin")

PASSWORD = os.environ.get("ARTIFACTORY_PASSWORD", "password")

148 Chapter 5. Continuous Integration (Cl) tutorial

https://conan.io/downloads.html
http://localhost:8081/

Conan Documentation, Release 2.14.0

Initial dependency graph

Warning:

 The initialization of the project will remove the contents of the 3 develop, products and packages repos-
itories in the server.

¢ The examples2/ci/game folder contains a . conanrc file that defines a local cache, so commands executed
in this tutorial do not pollute or alter your main Conan cache.

[$ python project_setup.py

This will do several tasks, clean the server repos, create initial Debug and Release binaries for the dependency graph
and upload them to the develop repo, then clean the local cache. Note in this example we are using Debug and
Release as our different configurations for convenience, but in real cases these would be different configurations such
as Windows/X86_64, Linux/x86_64, Linux/armv8, etc., running in different computers.

After the setup, it can be checked that the 3 remotes are defined, but only develop remote is enabled, and there are no
packages in the local cache:

$ conan remote list

products: http://localhost:8081/artifactory/api/conan/products [Verify SSL: True,.
—.Enabled: False]

develop: http://localhost:8081/artifactory/api/conan/develop [Verify SSL: True, Enabled:.
—True]

packages: http://localhost:8081/artifactory/api/conan/packages [Verify SSL: True,..
—Enabled: False]

$ conan list *

Found 0 pkg/version recipes matching *
Local Cache

WARN: There are no matching recipe references

in local cache

Important: The order of the remotes is important. If the products repository is enabled, it will have higher priority
than the develop one, so if it contains new versions, they will be picked from there.

This dependency graph of packages in the develop repo is the starting point for our tutorial, assumed as a functional
and stable “develop” state of the project that developers can conan install to work in any of the different packages.

Packages server

packages products develop repository
repository repository
game/1.0 —>] engine/1.0 ai/1.0 — '
mathlib/1.0
W
mapviewer/1.0 graphics/1.0

5.2. Repositories and promotions 149

Conan Documentation, Release 2.14.0

5.2.2 Packages pipeline

The packages pipeline will build, create and upload the package binaries for the different configurations and platforms,
when some developer is submitting some changes to one of the organization repositories source code. For example
if a developer is doing some changes to the ai package, improving some of the library functionality, and bumping
the version to ai/1.1.0. If the organization needs to support both Windows and Linux platforms, then the package
pipeline will build the new ai/1. 1.0 both for Windows and Linux, before considering the changes are valid. If some
of the configurations fail to build under a specific platform, it is common to consider the changes invalid and stop the
processing of those changes, until the code is fixed.

For the package pipeline we will start with a simple source code change in the ai recipe, simulating some improve-
ments in the ai package, providing some better algorithms for our game.

Let’s do the following changes in the ai package:

e Let’s change the implementation of the ai/src/ai.cpp function and change the message from Some
Artificial to SUPER BETTER Artificial

* Let’s change the default intelligence=0 value in ai/include/ai.h to a new intelligence=50 default.

* Finally, let’s bump the version. As we did some changes to the package public headers, it would be adviced to
bump the minor version, so let’s edit the ai/conanfile.py file and define version = "1.1.0" there (instead
of the previous 1.0). Note that if we did some breaking changes to the ai public API, the recommendation would
be to change the major instead and create a new 2.0 version.

The packages pipeline will take care of building the different packages binaries for the new ai/1.1.0 and upload
them to the packages binary repository to avoid disrupting or causing potential issues to other developers and CI jobs.
If the pipeline succeed it will promote (copy) them to the products binary repository, and stop otherwise.

There are different aspects that need to be taken into account when building these binary packages for ai/1.1.0. The
following tutorial sections do the same job, but under different hypothesis. They are explained in increasing complexity.

Note all of the commands can be found in the repository run_example.py file. This file is mostly intended for main-
tainers and testing, but it might be useful as a reference in case of issues.

Package pipeline: single configuration
We will start with the most simple case, in which we only had to build 1 configuration, and that configuration can be
built in the current CI machine.

As we described before while presenting the different server binary repositories, the idea is that package builds will
use by default the develop repo only, which is considered the stable one for developer and CI jobs.

This pipeline starts from a clean state, with no packages in the cache, and only the develop repository enabled.

With this configuration the CI job could just do:

$ cd ai
$ conan create . --build="missing:ai/*"

ai/1.1.0: SUPER BETTER Artificial Intelligence for aliens (Release)!
ai/1.1.0: Intelligence level=50

Bl

Note the --build="missing:ai/*" might not be fully necessary in some cases, but it can save time in other situations.
For example, if the developer did some changes just to the repo README, and didn’t bump the version at all, Conan
will not generate anew recipe revision, and detect this as a no-op, avoiding having to unnecessarily rebuild binaries
from source.

150 Chapter 5. Continuous Integration (Cl) tutorial

Conan Documentation, Release 2.14.0

If we are in a single-configuration scenario and it built correctly, for this simple case we don’t need a promotion, and
just uploading directly the built packages to the products repository will be enough, where the products pipeline
will pick it later.

We don't want to disrupt developers or CI, upload to products
conan remote enable products

conan upload "ai*" -r=products -c

conan remote disable products

©” A o

As the cache was initially clean, all ai packages would be the ones that were built in this pipeline.

Packages server

packages products
repository repository develop repository
game/1.0 » engine/1.0 » ai/l.0
" i
mathlib/1.0
ai/1.1.0 mapviewer/1.0 graphics/1.0
(single config) : :

This was a very simple scenario, let’s move to a more realistic one: having to build more than one configuration.

Package pipeline: multi configuration

In the previous section we were building just 1 configuration. This section will cover the case in which we need to
build more than 1 configuration. We will use the Release and Debug configurations here for convenience, as it is
easier to follow, but in real case these configurations will be more like Windows, Linux, OSX, building for different
architectures, cross building, etc.

Let’s begin cleaning our cache:

nygn

[$ conan remove -c # Make sure no packages from last run

We will create the packages for the 2 configurations sequentially in our computer, but note these will typically run in
different computers, so it is typical for CI systems to launch the builds of different configurations in parallel.

Listing 1: Release build

"

$ cd ai # If you were not inside "ai" folder already
conan create . --build="missing:ai/*" -s build_type=Release --format=json > graph.json
$ conan list --graph=graph.json --graph-binaries=build --format=json > built.json

&

$ conan remote enable packages
conan upload -1=built.json -r=packages -c --format=json > uploaded_release.json
$ conan remote disable packages

“

We have done a few changes and extra steps:

* First step is similar to the one in the previous section, a conan create, just making it explicit our configuration
-s build_type=Release for clarity, and capturing the output of the conan create in a graph. json file.

5.2. Repositories and promotions 151

Conan Documentation, Release 2.14.0

* The second step is create from the graph. json a built. json package list file, with the packages that needs
to be uploaded, in this case, only the packages that have been built from source (--graph-binaries=build)
will be uploaded. This is done for efficiency and faster uploads.

 Third step is to enable the packages repository. It was not enabled to guarantee that all possible dependencies
came from develop repo only.

e Then, we will upload the built.json package list to the packages repository, creating the
uploaded_release. json package list with the new location of the packages (the server repository).

* Finally, we will disable again the packages repository

Likewise, the Debug build will do the same steps:

Listing 2: Debug build

$ conan create . --build="missing:ai/*" -s build_type=Debug --format=json > graph.json
$ conan list --graph=graph.json --graph-binaries=build --format=json > built.json

$ conan remote enable packages
conan upload -1=built.json -r=packages -c --format=json > uploaded_debug. json
$ conan remote disable packages

&

When both Release and Debug configuration finish successfully, we would have these packages in the repositories:

Packages server

packages products
repository repository develop repository

game/1.0 » engine/1.0 ai/1.0

mathlib/1.0

ai/1.1.0 mapviewer/1.0 raphics/1.0
(Release) P . grap .
ai/1.1.0
(Debug)

When all the different binaries for ai/1.1.0 have been built correctly, the package pipeline can consider its job
succesfull and decide to promote those binaries. But further package builds and checks are necessary, so instead
of promoting them to the develop repository, the package pipeline can promote them to the products binary
repository. As all other developers and CI use the develop repository, no one will be broken at this stage either:

Listing 3: Promoting from packages->product

aggregate the package list
$ conan pkglist merge -1 uploaded_release.json -1 uploaded_debug.json --format=json >.
—uploaded. json

$ conan remote enable packages
$ conan remote enable products
Promotion using Conan download/upload commands
(slow, can be improved with art:promote custom command)
$ conan download --list=uploaded.json -r=packages --format=json > promote.json
(continues on next page)

152 Chapter 5. Continuous Integration (Cl) tutorial

Conan Documentation, Release 2.14.0

(continued from previous page)
$ conan upload --list=promote.json -r=products -c
$ conan remote disable packages
$ conan remote disable products

The first step uses the conan pkglist merge command to merge the package lists from the “Release” and “Debug”
configurations and merge it into a single uploaded. json package list. This list is the one that will be used to run the
promotion.

In this example we are using a slow conan download + conan upload promotion. This can be way more efficient
with the conan art:promote extension command.

After running the promotion we will have the following packages in the server:

Packages server

packages products
repository repository develop repository
game/1.0 » engine/1.0 ai/1.0
— :
mathlib/1.0

(%lé }e}is %) (afgé %egs %) mapviewer/1.0 graphics/1.0

ai/1.1.0 ai/1.1.0

(Debug) (Debug)

To summarize:

* We built 2 different configurations, Release and Debug (could have been Windows/Linux or others), and up-
loaded them to the packages repository.

* When all package binaries for all configurations were successfully built, we promoted them from the packages
to the products repository, to make them available for the products pipeline.

» Package lists were captured in the package creation process and merged into a single one to run the promotion.

There is still an aspect that we haven’t considered yet, the possibility that the dependencies of ai/1.1.0 change during
the build. Move to the next section to see how to use lockfiles to achieve more consistent multi-configuration builds.

Package pipeline: multi configuration using lockfiles

In the previous example, we built both Debug and Release package binaries for ai/1.1.0. In real world scenarios
the binaries to build would be different platforms (Windows, Linux, embedded), different architectures, and very often
it will not be possible to build them in the same machine, requiring different computers.

The previous example had an important assumption: the dependencies of ai/1.1.0 do not change at all during the
building process. In many scenarios, this assumption will not hold, for example if there are any other concurrent CI
jobs, and one succesfull job publishes a new mathlib/1.1 version in the develop repo.

Then it is possible that one build of ai/1.1.0, for example, the one running in the Linux servers starts earlier and
uses the previous mathlib/1.0 version as dependency, while the Windows servers start a bit later, and then their build
will use the recent mathlib/1.1 version as dependency. This is a very undesirable situation, having binaries for the
same ai/1.1.0 version using different dependencies versions. This can lead in later graph resolution problems, or
even worse, get to the release with different behavior for different platforms.

5.2. Repositories and promotions 153

Conan Documentation, Release 2.14.0

The way to avoid this discrepancy in dependencies is to force the usage of the same dependencies versions and revisions,
something that can be done with /ockfiles.

Creating and applying lockfiles is relatively straightforward. The process of creating and promoting the configurations
will be identical to the previous section, but just applying the lockfiles.

Creating the lockfile

Let’s make sure as usual that we start from a clean state:

nen

[$ conan remove -c # Make sure no packages from last run J

Then we can create the lockfile conan. lock file:

Capture a lockfile for the Release configuration

$ conan lock create . -s build_type=Release --lockfile-out=conan.lock

extend the lockfile so it also covers the Debug configuration

in case there are Debug-specific dependencies

$ conan lock create . -s build_type=Debug --lockfile=conan.lock --lockfile-out=conan.lock

Note that different configurations, using different profiles or settings could result in different dependency graphs.
A lockfile file can be used to lock the different configurations, but it is important to iterate the different configura-
tions/profiles and capture their information in the lockfile.

Note: The conan.lock is the default argument, and if a conan.lock file exists, it might be automatically used by
conan install/create and other graph commands. This can simplify many of the commands, but this tutorial is
showing the full explicit commands for clarity and didactical reasons.

The conan. lock file can be inspected, it will be something like:

{
"version": "0.5",
"requires": [
"mathlib/1.0#£f2b05681ed843bf50d8b7b7bdb5163ea%1724319985.398"
1,
"build_requires": [],
"python_requires": [],
"config_requires": []
3

As we can see, it is locking the mathlib/1.0 dependency version and revision.

With the lockfile, creating the different configurations is exactly the same, but providing the --lockfile=conan.lock
argument to the conan create step, it will guarantee that mathlib/1.0#£2b05681ed843b£50d8b7b7bdb5163ea
will always be the exact dependency used, irrespective if there exist new mathlib/1.1 versions or new revisions
available. The following builds could be launched in parallel but executed at different times, and still they will always
use the same mathlib/1.0 dependency:

Listing 4: Release build

"

$ cd ai # If you were not inside "ai" folder already
$ conan create . --build="missing:ai/*" --lockfile=conan.lock -s build_type=Release --
—format=json > graph.json

(continues on next page)

154 Chapter 5. Continuous Integration (Cl) tutorial

Conan Documentation, Release 2.14.0

(continued from previous page)
conan list --graph=graph.json --graph-binaries=build --format=json > built.json
conan remote enable packages
conan upload -1=built.json -r=packages -c --format=json > uploaded_release.json
conan remote disable packages

©a A A o

Listing 5: Debug build

$ conan create . --build="missing:ai/*" --lockfile=conan.lock -s build_type=Debug --
—format=json > graph.json

conan list --graph=graph.json --graph-binaries=build --format=json > built.json
conan remote enable packages

conan upload -1=built.json -r=packages -c --format=json > uploaded_debug. json
conan remote disable packages

P A A A

Note the only modification to the previous example is the addition of --lockfile=conan.lock. The promotion will
also be identical to the previous one:

Listing 6: Promoting from packages->product

aggregate the package list
$ conan pkglist merge -1 uploaded_release.json -1 uploaded_debug.json --format=json >
—uploaded. json

conan remote enable packages

conan remote enable products

Promotion using Conan download/upload commands

(slow, can be improved with art:promote custom command)

conan download --list=uploaded.json -r=packages --format=json > promote.json
conan upload --list=promote.json -r=products -c

conan remote disable packages

conan remote disable products

I Y Y N N T

And the final result will be the same as in the previous section, but this time just with the guarantee that both Debug
and Release binaries were built using exactly the same mathlib version:

Packages server

packages products
repository repository develop repository
game/1.0 engine/1.0 ai/1.0
— :
mathlib/1.0

(%lé }e:las Oe) (%zé %egs %) mapviewer/1.0 » graphics/1.0

ai/1.1.0 ai/1.1.0

(Debug) (Debug)

Now that we have the new ai/1. 1.0 binaries in the products repo, we can consider the packages pipeline finished
and move to the next section, and build and check our products to see if this new ai/1.1.0 version integrates correctly.

5.2. Repositories and promotions 155

Conan Documentation, Release 2.14.0

5.2.3 Products pipeline

The products pipeline responds to a more challenging question: do my “products” build correctly with the new versions
of the packages? to the packages and their dependencies? This is the real “Continuous Integration” part, in which
changes in different packages are really tested against the organization important products to check if things integrate
cleanly or break.

Let’s continue with the example above, if we now have anew ai/1. 1.0 package, is it going to break the existing game/
1.0 and/or mapviewer/1.0 applications? Is it necessary to re-build from source some of the existing packages that
depend directly or indirectly on ai package? In this tutorial we use game/1.0 and mapviewer/1.0 as our “products”,
but this concept will be further explained later, and specially why it is important to think in terms of “products” instead
of trying to explicitly model the dependencies top-bottom in the CI.

The essence of this products pipeline in our example is that the new ai/1.1.0 version that was uploaded to the
products repository automatically falls into the valid version ranges, and our versioning approach means that such a
minor version increase will require building from source its consumers, in this case engine/1.0 and game/1.0 and in
that specific sequential order, while all the other packages will remain the same. Knowing which packages need to be
built from source and in which order, and executing that build to check if the main organization products keep working
correctly with the new dependencies versions is the responsibility of the products pipeline.

What are the products

The products are the main software artifact that a organization (a company, a team, a project) is delivering as final result
and provide some value for users of those artifacts. In this example we will consider game/1.0 and mapviewer/1.0
the “products”. Note that it is possible to define different versions of the same package as products, for example, if we
had to maintain different versions of the game for different customers, we could have game/1.0 and game/2. 3 as well
as different versions of mapviewer as products.

The “products” approach, besides the advantage of focusing on the business value, has another very important ad-
vantage: it avoids having to model the dependency graph at the CI layer. It is a frequent attempt trying to model the
inverse dependency model, that is, representing at the CI level the dependants or consumers of a given package. In our
example, if we had configured a job for building the ai package, we could have another job for the engine package,
that is triggered after the ai one, configuring such topology somehow in the CI system.

But this approach does not scale at all and have very important limitations:

» The example above is relatively simple, but in practice dependency graphs can have many more packages, even
several hundreds, making it very tedious and error prone to define all dependencies among packages in the CI

* Dependencies evolve over time, and new versions are used, some dependencies are removed and newer depen-
dencies are added. The simple relationship between repositories modeled at the CI level can result in a very
inefficient, slow and time consuming CI, if not a fragile one that continuously breaks because some dependen-
cies change.

* The combinatorial nature that happens downstream a dependency graph, where a relatively stable top depen-
dency, lets say mathlib/1.® might be used by multiple consumers such as ai/1.0,ai/1.1, ai/1.2 which in
turn each one might be used by multiple engine different versions and so on. Building only the latest version of
the consumers would be insufficient in many cases and building all of them would be extremely costly.

» The “inverse” dependency model, that is, asking what are the “dependants” of a given package is extremely
challeging in practice, specially in a decentralized approach like Conan in which packages can be stored in
different repositories, including different servers, and there isn’t a central database of all packages and their
relations. Also, the “inverse” dependency model is, similar to the direct one, conditional. As a dependency can
be conditional on any configuration (settings, options), the inverse is also conditioned to the same logic, and such
logic also evolves and changes with every new revision and version.

156 Chapter 5. Continuous Integration (Cl) tutorial

Conan Documentation, Release 2.14.0

In C and C++ projects the “products” pipeline becomes more necessary and critical than in other languages due to
the compilation model with headers textual inclusions becoming part of the consumers’ binary artifacts and due to the
native artifacts linkage models.

Building intermediate packages new binaries

A frequently asked question is what would be the version of a consumer package when it builds against a new depen-
dency version. Put it explicitly for our example, where we have defined that we need to build again the engine/1.0
package because now it is depending on ai/1. 1.0 new version:

* Should we create a new engine/1.1 version to build against the new ai/1.1.07?
* Or should we keep the engine/1.0 version?

The answer lies in the binary model and how dependencies affect the package_id. Conan has a binary model that takes
into account both the versions, revisions and package_id of the dependencies, as well as the different package types
(package_type attribute).

The recommendation is to keep the package versions aligned with the source code. If engine/1.0 is building from a
specific commit/tag of its source repository, and the source of that repository doesn’t change at all, then it becomes very
confusing to have a changing package version that deviate from the source version. With the Conan binary model what
we will have is 2 different binaries for engine/1.0, with 2 different package_id. One binary will be built against the
ai/1.0 version and the other binary will be built against the ai/1.1.0, something like:

$ conan list engine:* -r=develop
engine/1.0
revisions
fba6659c9dd04a4bbdc7a375£22143ch (2024-08-22 09:46:24 UTC)
packages
2c5842e5aa3ed21b74ed7d8a0a637eb89068916e
info
settings

requires
ai/1.0.z
graphics/1.0.Z
mathlib/1.0.Z
de738££5d09£0359b81dal7c58256c619814a765
info
settings

requires
ai/l1.1.2
graphics/1.0.Z
mathlib/1.0.Z

Let’s see how a product pipeline can build such engine/1.0 and game/1.0 new binaries using the new dependencies
versions. In the following sections we will present a products pipeline in an incremental way, the same as the packages
pipeline.

5.2. Repositories and promotions 157

Conan Documentation, Release 2.14.0

Products pipeline: single configuration

In this section we will implement a very basic products pipeline, without distributing the build, without using lockfiles
or building multiple configurations.

The main idea is to illustrate the need to rebuild some packages because there is a new ai/1.1.0 version that can be
integrated by our main products. This new ai version is in the products repository, as it was already succesfully built
by the “packages pipeline”. Let’s start by making sure we have a clean environment with the right repositories defined:

First clean the local "build" folder

$ pwd # should be <path>/examples2/ci/game

$ rm -rf build # clean the temporary build folder

$ mkdir build && cd build # To put temporary files

Now clean packages and define remotes

$ conan remove "*" -c # Make sure no packages from last run

NOTE: The products repo is first, it will have higher priority.
$ conan remote enable products

Recall that the products repo has higher priority than the develop repo. It means Conan will resolve first in the
products repo, if it finds a valid version for the defined version ranges, it will stop there and return that version,
without checking the develop repo (checking all repositories can be done with --update, but that would be slower
and with the right repository ordering, it is not necessary).

As we have already defined, our main products are game/1.0 and mapviewer/1.0, let’s start by trying to install and
use mapviewer/1.0:

$ conan install --requires=mapviewer/1.0

Requirements
graphics/1.0#24b395bal17da96288766cc83accc98f5 - Downloaded (develop)
mapviewer/1.0#c4660fde®083ald581ac554e8a026d4ea - Downloaded (develop)
mathlib/1.0#£2b05681ed843bf50d8b7b7bdb5163ea - Downloaded (develop)

Install finished successfully
Activate the environment and run the executable
Use "conanbuild.bat && mapviewer'" in Windows

$ source conanrun.sh && mapviewer

graphics/1.0: Checking if things collide (Release)!
mapviewer/1.0:serving the game (Release)!

As we can see, mapviewer/1.0 doesn’t really depend on ai package at all, not any version. So if we install it, we
would already have a pre-compiled binary for it and everything works.

But if we now try the same with game/1.0:

$ conan install --requires=game/1.0
======== Computing necessary packages ========
ERROR: Missing binary: game/1.0:bac7cd2fe1592075ddc715563984bbe®00059d4c

game/1.0: WARN: Cant find a game/1.0 package binary..

(continues on next page)

158 Chapter 5. Continuous Integration (Cl) tutorial

Conan Documentation, Release 2.14.0

(continued from previous page)

—bac7cd2£e1592075ddc715563984bbe®00059d4c for the configuration:

[requires]
ai/1.1.0#01a885b003190704£f7617£f8c13baab30

It will fail, because it will get ai/1.1.0 from the products repo, and there will be no pre-compiled binary for game/
1.0 against this new version of ai. This is correct, ai is a static library, so we need to re-build game/1.0 against it,
let’s do it using the --build=missing argument:

$ conan install --requires=game/1.0 --build=missing

======== Computing necessary packages ========

Requirements
ai/1.1.0:8b108997a4947ec6a0487a0bbbcbc0®d1072e95f3 - Download (products)
engine/1.0:de738££5d09£0359b81dal7c58256c619814a765 - Build
game/1.0:bac7cd2£fe1592075ddc715563984bbe®00059d4c - Build
graphics/1.0:8b108997a4947ec6a0487a0b6bcbc0®d1072e95f3 - Download (develop)
mathlib/1.0:4d8ab52ebb49f51e63d5193ed580b5a7672e23d5 - Download (develop)

———————— Installing package engine/1.0 (4 of 5) ----———-—-
engine/1.0: Building from source

engine/1.0: Package de738£ff5d09f0359b81dal7c58256c619814a765 created
———————— Installing package game/1.0 (5 of 5) --------
game/1.0: Building from source

game/1.0: Package bac7cd2£fel592075ddc715563984bbe0®00059d4c created
Install finished successfully

Note the --build=missing knows that engine/1.0 also needs a new binary as a result of its dependency to the new
ai/1.1.0 version. Then, Conan proceeds to build the packages in the right order, first engine/1.0 has to be built,
because game/1.0 depends on it. After the build we can list the new built binaries and see how they depend on the
new versions:

$ conan list engine:*
Local Cache
engine
engine/1.0
revisions
fba6659c9dd04adbbdc7a375£22143ch (2024-09-30 12:19:54 UTC)
packages
de738££5d09£0359b81dal7c58256c619814a765
info
requires
ai/1.1.2
graphics/1.0.Z
mathlib/1.0.Z

$ conan list game:*
Local Cache
game
(continues on next page)

5.2. Repositories and promotions 159

Conan Documentation, Release 2.14.0

(continued from previous page)
game/1.0
revisions
1715574045610£faa2705017c71d0000e (2024-09-30 12:19:55 UTC)
packages
bac7cd2£e1592075ddc715563984bbe®00059d4c
info
requires
ai/1.1.0
—#01a885b003190704£7617£8c13baa630:8b108997a4947ec6a0487a0bb6bcbc0d1072e95f3
engine/1.0
—#£fba6659c9dd04a4bbdc7a375£22143cb:de738££5d09f0359b81dal7c58256c619814a765
graphics/1.0
—#24b395ba17da96288766cc83accc98f5:8b108997a4947ec6a0487a0bbbcbc0d1072e95£3
mathlib/1.0
—#£2b05681ed843bf50d8b7b7bdb5163ea:4d8ab52ebb49f51e63d5193ed580b5a7672e23d5

The new engine/1.0:de738££5d09£0359b81dal7c58256c619814a765 binary depends on ai/1.1.Z, because as
it is a static library it will only require re-builds for changes in the minor version, but not patches. While the game/
1.0 new binary will depend on the full exact ai/1.1.0#revision:package_id, and also on the new engine/1.
0:de738££5d09£0359b81dal7c58256c619814a765 new binary that depends on ai/1.1.Z.

Now the game can be executed:

Activate the environment and run the executable

Use "conanbuild.bat && game" in Windows

$ source conanrun.sh && game

mathlib/1.0: mathlib maths (Release)!

ai/1.1.0: SUPER BETTER Artificial Intelligence for aliens (Release)!
ai/1.1.0: Intelligence level=50

graphics/1.0: Checking if things collide (Release)!

engine/1.0: Computing some game things (Release)!

game/1.0: fun game (Release)!

We can see that the new game/1.0 binary incorporates the improvements in ai/1.1.0, and links correctly with the
new binary for engine/1.0.

And this is a basic “products pipeline”, we manage to build and test our main products when necessary (recall that
mapviewer wasn’t really affected, so no rebuilds were necessary at all). In general, a production “products pipeline”
will finish uploading the built packages to the repository and running a new promotion to the develop repo. But as
this was a very basic and simple pipeline, let’s wait a bit for that, and let’s continue with more advanced scenarios.

Products pipeline: the build-order

The previous section used --build=missing to build all the necessary packages in the same CI machine. This is
not always desired, or even possible, and in many situations it is preferable to do a distributed build, to achieve faster
builds and better usage the CI resources. The most natural distribution of the build load is to build different packages
in different machines. Let’s see how this is possible with the conan graph build-order command.

Let’s start as usual making sure we have a clean environment with the right repositories defined:

First clean the local "build" folder
$ pwd # should be <path>/examples2/ci/game

(continues on next page)

160 Chapter 5. Continuous Integration (Cl) tutorial

Conan Documentation, Release 2.14.0

(continued from previous page)

$ rm -rf build # clean the temporary build folder
$ mkdir build && cd build # To put temporary files
$ conan remove "*" -c # Make sure no packages from last run

NOTE: The products repo is first, it will have higher priority.
$ conan remote enable products

We will obviate by now the mapviewer/1.0 product and focus this section in the game/1.0 product. The first step is
to compute the “build-order”, that is, the list of packages that need to be built, and in what order. This is done with the
following conan graph build-order command:

$ conan graph build-order --requires=game/1.0 --build=missing --order-by=recipe --reduce.
—--format=json > game_build_order. json

Note a few important points:

e It is necessary to use the --build=missing, in exactly the same way than in the previous section. Failing to
provide the intended --build policy and argument will result in incomplete or erroneous build-orders.

* The --reduce argument eliminates all elements in the resulting order that don’t have the binary: Build
policy. This means that the resulting “build-order” cannot be merged with other build order files for aggregating
them into a single one, which is important when there are multiple configurations and products.

* The --order-by argument allows to define different orders, by “recipe” or by “configuration”. In this case, we
are using --order-by=recipe which is intended to parallelize builds per recipe, that means, that all possible
different binaries for a given package like engine/1. 0 should be built first before any consumer of engine/1.0
can be built.

The resulting game_build_order. json looks like:

Listing 7: game_build_order.json

{
"order_by": "recipe",
"reduced": true,
"order": [
[
{
"ref": "engine/1.0#fba6659c9dd®4a4bbdc7a375£22143ch",
"packages": [
[
{

"package_id": "de738f£f5d09f0359b81dal7c58256c619814a765",
"binary": "Build",
"build_args": "--requires=engine/1.0 --build=engine/1.0",

"ref": "game/1.0#1715574045610f2a2705017c71d0000e",
"depends": [
"engine/1.0#fba6659c9dd04a4bbdc7a375£22143ch"

(continues on next page)

5.2. Repositories and promotions 161

Conan Documentation, Release 2.14.0

(continued from previous page)
1,
"packages": [
[
{

"package_id": "bac7cd2fe1592075ddc715563984bbe®00059d4c",

"binary": "Build",

"build_args": "--requires=game/1.0 --build=game/1.0",

For convenience, in the same way that conan graph info ... --format=html > graph.html can generate
a file with an HTML interactive dependency graph, the conan graph build-order ... --format=html >
build_order.html can generate an HTML visual representation of the above json file:

All packages need to be built . 1.0
Some packages need to be built englnE'/ *
Cache
Download
[] Requirements in the fost context
() Requirements in the build context
depends: []
packages: [
1
"binary®: "Build",
"puild_srgs": "--requires=engines1.8 -- game/l = a
build=engine/1.8",
"context™: "host",
"depends™: [1,
"filenames": [],

The resulting json contains an order element which is a list of lists. This arrangement is important, every element in
the top list is a set of packages that can be built in parallel because they do not have any relationship among them. You
can view this list as a list of “levels”, in level O, there are packages that have no dependencies to any other package
being built, in level 1 there are packages that contain dependencies only to elements in level O and so on.

Then, the order of the elements in the outermost list is important and must be respected. Until the build of all the
packages in one list item has finished, it is not possible to start the build of the next “level”.

Using the information in the graph_build_order. json file, it is possible to execute the build of the necessary pack-
ages, in the same way that the previous section’s --build=missing did, but not directly managed by us.

Taking the arguments from the json, the commands to execute would be:

$ conan install --requires=engine/1.0 --build=engine/1.0
$ conan install --requires=game/1.0 --build=game/1.0

We are executing these commands manually, but in practice, it would be a for loop in CI executing over the json output.
We will see some Python code later for this. At this point we wanted to focus on the conan graph build-order
command, but we haven’t really explained how the build is distributed.

162 Chapter 5. Continuous Integration (Cl) tutorial

Conan Documentation, Release 2.14.0

Also note that inside every element there is an inner list of lists, the "packages" section, for all the binaries that must
be built for a specific recipe for different configurations.

Let’s move now to see how a multi-product, multi-configuration build order can be computed.

Products pipeline: multi-product multi-configuration builds

In the previous section we computed a conan graph build-order with several simplifications, we didn’t take the
mapviewer product into account, and we processed only 1 configuration.

In real scenarios, it will be necessary to manage more than one product and the most common case is that there is
more than one configuration for every product. If we build these different cases sequentially it will be much slower and
inefficient, and if we try to build them in parallel there will easily be many duplicated and unnecessary builds of the
same packages, wasting resources and even producing issues as race conditions or traceability problems.

To avoid this issue, it is possible to compute a single unified “build-order” that aggregates all the different build-orders
that are computed for the different products and configurations.

Let’s start as usual cleaning the local cache and defining the correct repos:

First clean the local "build" folder

pwd # should be <path>/examples2/ci/game

rm -rf build # clean the temporary build folder
mkdir build && cd build # To put temporary files

” A o

nyen

$ conan remove -c # Make sure no packages from last run
NOTE: The products repo is first, it will have higher priority.
$ conan remote enable products

Now, we will start computing the build-order for game/1.0 for the 2 different configurations that we are building in
this tutorial, debug and release:

$ conan graph build-order --requires=game/1.0 --build=missing --order-by=recipe --
—format=json > game_release. json

$ conan graph build-order --requires=game/1.0 --build=missing --order-by=recipe -s build_
—.type=Debug --format=json > game_debug. json

These commands are basically the same as in the previous section, each one with a different configuration and creating
a different output file game_release. json and game_debug. json. These files will be similar to the previous ones,
but as we haven’t used the --reduce argument (this is important!) they will actually contain a “build-order” of all ele-
ments in the graph, even if only some contain the binary: Build definition, and others will contain other binary:
Download|Cache|etc.

Now, let’s compute the build-order for mapviewer/1.0:

$ conan graph build-order --requires=mapviewer/1.0 --build=missing --order-by=recipe --
—.format=json > mapviewer_release.json

$ conan graph build-order --requires=mapviewer/1.0 --build=missing --order-by=recipe -s.
—build_type=Debug --format=json > mapviewer_debug.json

Note that in the generated mapviewer_xxx. json build-order files, there will be only 1 element for mapviewer/1.0
that contains a binary: Download, because there is really no other package to be built, and as mapviewer is an
application linked statically, Conan knows that it can “skip” its dependencies binaries. If we had used the --reduce
argument we would have obtained an empty order. But this is not an issue, as the next final step will really compute
what needs to be built.

Let’s take all the 4 different “build-order” files (2 products x 2 configurations each), and merge them together:

5.2. Repositories and promotions 163

Conan Documentation, Release 2.14.0

$ conan graph build-order-merge --file=game_release.json --file=game_debug.json --
—.file=mapviewer_release.json --file=mapviewer_debug.json --reduce --format=json > build_
—order. json

Now we have applied the --reduce argument to produce a final build_order. json that is ready for distribution to
the build agents and it only contains those specific packages that need to be built:

{
"order_by": "recipe",
"reduced": true,
"order": [
[
{
"ref": "engine/1.0#fba6659c9dd0®4a4bbdc7a375f22143ch",
"packages": [
[
{

"package_id": "de738ff5d09f0359b81dal7c58256c619814a765",
"filenames": ["game_release"],

"build_args": "--requires=engine/1.0 --build=engine/1.0",
3,
{
"package_id": "cbeb3ac76e3d890c630dae5c068bcl78e538b090",
"filenames": ["game_debug"],
"build_args": "--requires=engine/1.0 --build=engine/1.0",
}
]
1
}
ie
[
{
"ref": "game/1.0#1715574045610£f2a2705017c71d0000e",
"packages": [
[
{
"package_id": "bac7cd2fe1592075ddc715563984bbe®00059d4c",
"filenames": ["game_release"],
"build_args": "--requires=game/1.0 --build=game/1.0",
1,
{
"package_id": "01fbc27d2c156886244dafd0804eeflfff13440b",
"filenames": ["game_debug"],
"build_args": "--requires=game/1.0 --build=game/1.0",
}
1
1
}
]
1,
"profiles": {
"game_release": {"args": ""},

(continues on next page)

164 Chapter 5. Continuous Integration (Cl) tutorial

Conan Documentation, Release 2.14.0

(continued from previous page)

"game_debug": {"args": "-s:h=\"build_type=Debug\""},
"mapviewer_release": {"args": ""},
"mapviewer_debug": {"args": "-s:h=\"build_type=Debug\""}

This build order summarizes the necessary builds. First it is necessary to build all different binaries for engine/1.0.
This recipe contains 2 different binaries, one for Release and the other for Debug. These binaries belong to the same
element in the packages list, which means they do not depend on each other and can be built in parallel. Each binary
tracks its own original build-order file with "filenames": ["game_release"], so it is possible to deduce the
necessary profiles to apply to it. The build_order. json file contains a profiles section that helps recovering the
profile and settings command line arguments that were used to create the respective original build-order files.

Then, after all binaries of engine/1.0 have been built, it is possible to proceed to build the different binaries for
game/1.0. It also contains 2 different binaries for its debug and release configurations, which can be built in parallel.

In practice, this would mean something like:

This 2 could be executed in parallel

(in different machines, or different Conan caches)

$ conan install --requires=engine/1.0 --build=engine/1.0

$ conan install --requires=engine/1.0 --build=engine/1.0 -s build_type=Debug
Once engine/1.0 builds finish, it is possible

to build these 2 binaries in parallel (in different machines or caches)

$ conan install --requires=game/1.0 --build=game/1.0

$ conan install --requires=game/1.0 --build=game/1.0 -s build_type=Debug

In this section we have still omitted some important implementation details that will follow in next sections. The goal
was to focus on the conan graph build-order-merge command and how different products and configurations can
be merged in a single “build-order”. The next section will show with more details how this build-order can be really
distributed in CI, using lockfiles to guarantee constant dependencies.

Products pipeline: distributed full pipeline with lockfiles

This section will present the full and complete implementation of a multi-product, multi-configuration distributed CI
pipeline. It will cover important implementation details:

 Using lockfiles to guarantee a consistent and fixed set of dependencies for all configurations.
 Uploading built packages to the products repository.

» Capturing “package lists” and using them to run the final promotion.

* How to iterate the “build-order” programmatically

Let’s start as usual cleaning the local cache and defining the correct repos:

First clean the local "build" folder

$ pwd # should be <path>/examples2/ci/game

$ rm -rf build # clean the temporary build folder
$ mkdir build && cd build # To put temporary files

$ conan remove -c # Make sure no packages from last run

(continues on next page)

5.2. Repositories and promotions 165

Conan Documentation, Release 2.14.0

(continued from previous page)

NOTE: The products repo is first, it will have higher priority.
$ conan remote enable products

Similarly to what we did in the packages pipeline when we wanted to ensure that the dependencies are exactly the
same when building the different configurations and products, the first necessary step is to compute a conan. lock
lockfile that we can pass to the different CI build agents to enforce the same set of dependencies everywhere. This
can be done incrementally for the different products and configurations, aggregating it in the final single conan.
lock lockfile. This approach assumes that both game/1.0 and mapviewer/1.0 will be using the same versions and
revisions of the common dependencies.

$ conan lock create --requires=game/1.0 --lockfile-out=conan.lock

$ conan lock create --requires=game/1.0 -s build_type=Debug --lockfile=conan.lock --
—~lockfile-out=conan.lock

$ conan lock create --requires=mapviewer/1.0 --lockfile=conan.lock --lockfile-out=conan.
—lock

$ conan lock create --requires=mapviewer/1.0 -s build_type=Debug --lockfile=conan.lock --
—lockfile-out=conan.lock

Note: Recall that the conan.lock arguments are mostly optional, as that is the default lockfile name. The
first command can be typed as conan lock create --requires=game/1.0. Also, all commands, includ-
ing conan install, if they find a existing conan.lock file they will use it automatically, without an explicit
--lockfile=conan.lock. The commands in this tutorial are shown explicitly complete for completeness and di-
dactical reasons.

Then, we can compute the build order for each product and configuration. These commands are identical to the ones
in the previous section, with the only difference of adding a --lockfile=conan.lock argument:

$ conan graph build-order --requires=game/1.0 --lockfile=conan.lock --build=missing --
—,order-by=recipe --format=json > game_release.json

$ conan graph build-order --requires=game/1.0 --lockfile=conan.lock --build=missing -s.
—build_type=Debug --order-by=recipe --format=json > game_debug. json

$ conan graph build-order --requires=mapviewer/1.® --lockfile=conan.lock --build=missing..
—--order-by=recipe --format=json > mapviewer_release.json

$ conan graph build-order --requires=mapviewer/1.0 --lockfile=conan.lock --build=missing..
—.-s build_type=Debug --order-by=recipe --format=json > mapviewer_debug.json

Likewise the build-order-merge command will be identical to the previous one. In this case, as this command
doesn’t really compute a dependency graph, a conan.lock argument is not necessary, dependencies are not being
resolved:

$ conan graph build-order-merge --file=game_release.json --file=game_debug.json --
—.file=mapviewer_release.json --file=mapviewer_debug.json --reduce --format=json > build_
—order. json

So far, this process has been almost identical to the previous section one, just with the difference of capturing and using
a lockfile. Now, we will explain the “core” of the products pipeline: iterating the build-order and distributing the
build, and gathering the resulting built packages.

This would be an example of some Python code that performs the iteration sequentially (a real CI system would dis-
tribute the builds to different agents in parallel):

166 Chapter 5. Continuous Integration (Cl) tutorial

Conan Documentation, Release 2.14.0

build_order open("build_order.json", "r").read()
build_order = json.loads(build_order)
to_build = build_order["order"]

pkg_lists = [] # to aggregate the uploaded package-lists
for level in to_build:
for recipe in level: # This could be executed in parallel
ref = recipe["ref"]
For every ref, multiple binary packages are being built.
This can be done in parallel too. Often it is for different platforms
they will need to be distributed to different build agents
for packages_level in recipe["packages"]:
This could be executed in parallel too
for package in packages_level:
build_args = package["build_args"]
filenames = package["filenames"]
build_type = "-s build_type=Debug" if any("debug" in f for f in.
—.filenames) else ""
run(f"conan install {build_args} {build_type} --lockfile=conan.lock --
—format=json", file_stdout="graph.json")
run("conan list --graph=graph.json --format=json", file_stdout="built.
—json")
filename = f"uploaded{len(pkg_lists)}.json"
run(f"conan upload -1=built.json -r=products -c --format=json", file_
—stdout=filename)
pkg_lists.append(filename)

Note:

 This code is specific for the --order-by=recipe build-order, if chosing the --order-by=configuration,
the json is different and it would require a different iteration.

These are the tasks that the above Python code is doing:

* For every package in the build-order, a conan install --require=<pkg> --build=<pkg> is issued, and
the result of this command is stored in a graph. json file

e The conan list command transform this graph. json into a package list called built. json. Note that this
package list actually stores both the built packages and the necessary transitive dependencies. This is done for
simplicity, as later these package lists will be used for running a promotion, and we also want to promote the
dependencies such as ai/1.1.0 that were built in the packages pipeline and not by this job.

* The conan upload command uploads the package list to the products repo. Note that the upload first checks
what packages already exist in the repo, avoiding costly transfers if they already exist.

* The result of the conan upload command is captured in a new package list called uploaded<index>. json,
that we will accumulate later, that will serve for the final promotion.

In practice this translates to the following commands (that you can execute to continue the tutorial):

engine/1.0 release

$ conan install --requires=engine/1.0 --build=engine/1.0 --lockfile=conan.lock --
—.format=json > graph.json

$ conan list --graph=graph.json --format=json > built.json

(continues on next page)

5.2. Repositories and promotions 167

Conan Documentation, Release 2.14.0

(continued from previous page)

$ conan upload -1=built.json -r=products -c --format=json > uploadedl.json

engine/1.0 debug

$ conan install --requires=engine/1.0 --build=engine/1.0 --lockfile=conan.lock -s build_
—.type=Debug --format=json > graph.json

$ conan list --graph=graph.json --format=json > built.json

$ conan upload -1=built.json -r=products -c --format=json > uploaded2.json

game/1.0 release

$ conan install --requires=game/1.0 --build=game/1.0 --lockfile=conan.lock --format=json..
<> graph. json

$ conan list --graph=graph.json --format=json > built.json

$ conan upload -1=built.json -r=products -c --format=json > uploaded3.json

game/1.0 debug

$ conan install --requires=game/1.0 --build=game/1.0 --lockfile=conan.lock -s build_
—.type=Debug --format=json > graph.json

$ conan list --graph=graph.json --format=json > built.json

$ conan upload -1l=built.json -r=products -c --format=json > uploaded4.json

After this step the newly built packages will be in the products repo and we will have 4 uploadedl. json -
uploaded4. json files.

Simplifying the different release and debug configurations, the state of our repositories would be something like:

Packages server

develop repository

engine/1.0 ai/1.0
"] -
game/1.0 mathlib/1.0
ki
%)ezjlp?o:i%gsy mapviewer/1.0 graphics/1.0

products

repository
ai/1.1.0
(Release)
ai/1.1.0 game/1.0 engine/1.0 ai/1.1.0
(Debug) (new binary) (new binary) (new version)

We can now accumulate the different uploadedX. json files into a single package list uploaded. json that contains
everything:

$ conan pkglist merge -1 uploaded®.json -1 uploadedl.json -1 uploaded2.json -1 uploaded3.
—json --format=json > uploaded.json

And finally, if everything worked well, and we consider this new set of versions and new package binaries is ready
to be used by developers and other CI jobs, then we can run the final promotion from the products to the develop
repository:

168 Chapter 5. Continuous Integration (Cl) tutorial

Conan Documentation, Release 2.14.0

Listing 8: Promoting from products->develop

Promotion using Conan download/upload commands
(slow, can be improved with art:promote custom command)
$ conan download --list=uploaded.json -r=products --format=json > promote.json
$ conan upload --list=promote.json -r=develop -c

And our final develop repository state will be:

packages products
repository repository

ai/1.1.0
(Release)

ai/1.1.0
(Debug)

Packages server

develop repository

mathlib/1.0

(new binary)

(new binary)

game/1.0 » engine/1.0 ai/1.0
mapviewer/1.0 graphics/1.0
game/1.0 engine/1.0 ai/1.1.0

(new version)

This state of the develop repository will have the following behavior:

* Developers installing game/1.0 or engine/1.0 will by default resolve to latest ai/1.1.0 and use it. They
will find pre-compiled binaries for the dependencies too, and they can continue developing using the latest set of

dependencies.

* Developers and CI that were using a lockfile that was locking ai/1.0 version, will still be able to keep working
with that dependency without anything breaking, as the new versions and package binaries do not break or
invalidate the previous existing binaries.

At this point, the question of what to do with the lockfile used in the Ci could arise. Note that the conan.lock now
contains the ai/1.1.0 version locked. There could be different strategies, like storing this lockfile in the “products”
git repositories, making it easily available when developers checkout those repos. Note, however, that this lockfile
matches the latest state of the develop repo, so developers checking out one of the “products” git repositories and
doing a conan install against the develop server repository will naturally resolve to the same dependencies stored

in the lockfile.

It is a good idea to at least store this lockfile in any release bundle, if the “products” are bundled somehow (a installer,
a debian/rpm/choco/etc package), to include or attach to this bundled release for the final users of the software, the
lockfile used to produce it, so no matter what changes in development repositories, those lockfiles can be recovered
from the release information later in time.

5.2. Repositories and promotions

169

Conan Documentation, Release 2.14.0

Final remarks

As commented in this CI tutorial introduction, this doesn’t pretend to be a silver bullet, a CI system that you can
deploy as-is in your organization. This tutorial so far presents a “happy path” of a Continuous Integration process for
developers, and how their changes in packages that are part of larger products can be tested and validated as part of
those products.

The focus of this CI tutorial is to introduce some important concepts, good practices and tools such as:

* The importance of defining the organization “products”, the main deliverables that need to be checked and built
against new dependencies versions created by developers.

* How new dependencies versions of developers shouldn’t be uploaded to the main development repositories until
validated, to not break other developers and CI jobs.

* How multiple repositories can be used to build a CI pipeline that isolate non validated changes and new versions.

* How large dependency graphs can be built efficiently in CI with the conan graph build-order, and how
build-orders for different configurations and products can be merged together.

* Why lockfiles are necessary in CI when there are concurrent CI builds.

* The importance of versioning, and the role of package_id to re-build only what is necessary in large dependency
graphs.

* Not using user/channel as variable and dynamic qualifiers of packages that change accross the CI pipeline,
but using instead different server repositories.

* Running package promotions (copies) accross server repositories when new package versions are validated.

There are still many implementation details, strategies, use cases, and error scenarios that are not covered in this tutorial
yet:

* How to integrate breaking changes of a package that requires a new breaking major version.

« Different versioning strategies, using pre-releases, using versions or relying on recipe revisions in certain cases.
* How lockfiles can be stored and used accross different builds, if it is good to persist them and where.

* Different branching and merging strategies, nightly builds, releases flows.

We plan to extend this CI tutorial, including more examples and use cases. If you have any question or feedback, please
create a ticket in https://github.com/conan-io/conan/issues.

170 Chapter 5. Continuous Integration (Cl) tutorial

https://github.com/conan-io/conan/issues

CHAPTER
SIX

DEVOPS GUIDE

The previous rutorial section was aimed at users in general and developers.

The Continuous Integration tutorial explained the basics on how to implement Continuous Integration involving Conan
packages.

This section is intended for DevOps users, build and CI engineers, administrators, and architects adopting, designing
and implementing Conan in production in their teams and organizations. If you plan to use Conan in production in
your project, team, or organization, this section contains the necessary information.

6.1 Using ConanCenter packages in production environments

Note: Default Remote Update in Conan 2.9.2

Starting from Conan version 2.9.2, the default remote has been changed to https://center2.conan.io. The previous
default remote https.//center.conan.io is now frozen and will no longer receive updates. It is recommended to update
your remote configuration to use the new default remote to ensure access to the latest recipes and package updates (for
more information, please read this post).

If you still have the deprecated remote configured as the default, please update using the following command:

[conan remote update conancenter --url="https://center2.conan.io"

ConanCenter is a fantastic resource that contains reference implementations of recipes for over 1500 libraries and
applications contributed by the community. As such, it is a great knowledge base on how to create and build Conan
packages for open source dependencies.

ConanCenter also builds and provides binary packages for a wide range of configurations: multiple operating systems
(Windows, Linux, macOS), compilers, compiler versions, and library variants (shared, static). On top of this, for a lot
of libraries community contributors ensure that recipes are compatible for additional operating systems (Android, iOS,
FreeBSD, QNX) and CPU architectures. The recipes in Conan Center are the greatest example of Conan’s universality
promise.

Unlike other package managers or repositories, ConanCenter does not maintain a fixed snapshot of versions. On the
contrary, for a given library (e.g. OpenCV), multiple versions are actively maintained at the same time. This gives
users greater control of which versions to use, rather than having to remain fixed to an older version, or pushing them
to always be on the latest version.

In order to support this ecosystem, ConanCenter recipes are updated very frequently. Recipes themselves may be
updated to support a new platform, bug fixes, or to require newer versions of their dependencies. On the other hand,
each user of ConanCenter may have a different combination of versions in their requirements. This means that given
the same input list of requirements, Conan may resolve the graph differently at different points in time - resolving to

171

https://blog.conan.io/2024/09/30/Conan-Center-will-stop-receiving-updates-for-Conan-1.html

Conan Documentation, Release 2.14.0

different recipe revisions, versions, or packages. This is similar to the default behavior of package managers in other
languages (pip/PyPi, npm, cargo, etc). In production environments where reproducibility is important, it is therefore
discouraged to depend directly on Conan Center in an unconstrained manner.

The following guidelines contain a series of recommendations to ensure repeatability, reliability, compliance and, where
applicable, control to enable customization. As a summary, it is highly recommended to follow these approaches when
using packages from ConanCenter:

* Lock the versions and revisions you depend on using lockfiles

* Host your own copy of ConanCenter recipes and package binaries in a server under your control

6.1.1 Repeatability and reproducibility

As mentioned earlier - given a set of requirements, changes in ConanCenter can cause the Conan dependency solver
to resolve different graphs over time. This does not only apply to the actual versions of libraries (e.g. opencv/4.5.0
instead opencv/4.2.1) - but also the recipes themselves. That is, there may exist multiple revisions of the opencv/
4.5.0 recipe, which can have side effects for consumers. Changes in recipes typically address a problem (bugfixes),
target functionality (e.g. adding a conditional option, support for a new platform), or change versions of dependencies.

In order to ensure repeatability, the use of lockfiles on the consumer side is greatly encouraged: please check the lockfile
docs for more information.

Lockfiles ensure that Conan will resolve the same graph in a repeatable and consistent manner - thus making sure the
same versions are used across multiple systems (CI, developers, etc).

Lockfiles are also used in other package managers like Python pip, Rust Cargo, npm - these recommendations are in
line with the practices of these other technologies.

Additionally, it is highly recommended to host your recipes and packages in your own server (see below). Both of these
approaches help you achieve having control on when upstream changes from ConanCenter are propagated across your
team and systems.

6.1.2 Service reliability

Consuming recipes and packages from the ConanCenter remote can be impacted during periods of downtime (scheduled
or otherwise). While every effort is made to ensure that the ConanCenter is always available, and unscheduled downtime
is rare and treated with urgency - this can impact users that depend on ConanCenter directly. Additionally, when
building recipes from source, this requires retrieving the source packages (typically zip or tar files) from remote servers
outside of the control of ConanCenter. Occasionally, these too can suffer from unscheduled downtime.

In enterprise production environments with strong uptime is required, it is strongly recommended to host recipes and
binary packages in a server under your control.

e Read more: creating and hosting your own Conan Center binaries

This can also protect against transient network issues, and issues caused by transfer of binary data from external sources.
These recommendations also apply when consuming packages from external sources in any package manager.

172 Chapter 6. Devops guide

Conan Documentation, Release 2.14.0

6.1.3 Compliance and security

Some industries such as finance, robotics and embedded, have stronger requirements around change management, open
source licenses and reproducibility. For example, changes in recipes could result in a new version being resolved for
a dependency, in a way that the license for that version has changed and needs to be validated and audited by your
organization. In some industries like medical or automotive, you may be required to ensure all your dependencies can
be built from source in a repeatable way, and thus using binaries provided by Conan Center may not be advisable. In
these instances, we recommend building your own binary packages from source:

* Read more: creating and hosting your own Conan Center binaries

6.1.4 Control and customization

It is very common for users of dependencies to require custom changes to external libraries - typically to support specific
platform configurations not considered by either ConanCenter or the original library authors, backport bug fixes, etc.
Some of these changes may not be suitable to be merged in ConanCenter, and it may not happen until this has been
reviewed and validated by ConanCenter maintainers. For this reason, if you need tight control over the changes in
recipes, it is highly recommended to host not only a Conan remote, but your own fork of the conan-center-index recipe
repository.

* Read more: creating and hosting your own Conan Center binaries

The following subsections describe in more details the above strategies:

Creating and hosting your own ConanCenter binaries

Hosting your own copy of the packages you need in your server could be done by just downloading binaries from
ConanCenter and then uploading them to your own server. However, it is much better to fully own the complete supply
chain and create the binaries in your own CI systems. So the recommended flow to use ConanCenter packages in
production would be:

¢ Create a fork of the ConanCenter Github repository: https://github.com/conan-io/conan-center-index

* Create a list of the packages and versions you need for your projects. This list can be added to the fork too, and
maintained there (packages can be added and removed with PRs when the teams need them).

* Create a script that first conan export all the packages in your list, then conan create --build=missing
them. Do not add user/channel to these packages, it is way simpler to use them as z1ib/1.2.13 without
user-channel. The user/channel part would be mostly recommended for your own proprietary packages, but
not for open source ConanCenter packages.

 Upload your build packages to your own server, that you use in production, instead of ConanCenter.
This is the basic flow idea. We will be adding examples and tools to further automate this flow as soon as possible.
This flow is relatively straightforward, and has many advantages that mitigate the risks described before:

* No central repository outage can affect your builds.

* No changes in the central repository can break your projects, you are in full control when and how those changes
are updated in your packages (as explained below).

* You can customize, adapt, fix and perfectly control what versions are used, and release fixes in minutes, not
weeks. You can apply customizations that wouldn’t be accepted in the central repository.

* You fully control the binaries supply chain, from the source (recipes) to the binaries, eliminating in practice the
majority of potential supply chain attacks of central repositories.

6.1. Using ConanCenter packages in production environments 173

https://github.com/conan-io/conan-center-index

Conan Documentation, Release 2.14.0

Updating from upstream

Updating from the upstream conan-center-index Github repo is still possible, and it can be done in a fully controlled
way:

* Merge the latest changes in the upstream main fork of conan-center-index into your fork.

* You can check and audit those changes if you want to, analyzing the diffs (some automation that trims the diffs
of recipes that you don’t use could be useful)

* Firing the above process will efficiently rebuild the new binaries that are needed. If your recipes are not affected
by changes, the process will avoid rebuilding binaries (thanks to --build=missing).

* You can upload the packages to a secondary “test” server repository. Then test your project against that test
server, to check that your project is not broken by the new ConanCenter packages.

* Once you verify that everything is good with the new packages, you can copy them from the secondary “test”
repository to your main production repository to start using them.

6.2 Local Recipes Index Repository

The Local Recipes Index is an experimental repository type introduced in Conan to enhance flexibility in managing
C/C++ package recipes. This repository type allows users to use a local directory as a Conan remote, where the directory
structure mirrors that of the conan-center-index GitHub repository.

This setup is particularly useful for:
* Building binaries from a private conan-center-index fork.

 Sharing your own recipes for certain libraries or tools that, due to licensing restrictions or proprietary nature,
are not suitable for ConanCenter. Check how you can use it for this purpose in the dedicated section of the
documentation Local Recipes Index Repository.

6.2.1 Building Binaries from a private conan-center-index fork

As we already introduced in the previous section of the Conan DevOps Guide some organizations, particularly large
enterprises, prefer not to use binaries downloaded from the internet. Instead, they build their own binaries in-house
using the conan-center-index recipes. These organizations often need to customize these recipes to meet unique re-
quirements that are not applicable to the broader community, making such contributions unsuitable for the upstream
repository.

The local-recipes-index allows users to maintain a local folder with the same structure as the conan-center-index GitHub
repository, using it as a source for package recipes. This new type of repository is recipes-only, necessitating the
construction of package binaries from source on each machine where the package is used. For sharing binaries across
teams, we continue to recommend using a Conan remote server like Artifactory for production purposes.

174 Chapter 6. Devops guide

Conan Documentation, Release 2.14.0

Developers

% conan remote add myrepo ./local/folder

% conan install

JFrog Artifactory

T CI
N

local-recipes-index repo
fpath/to/local/folder

Community O

GitHub

Maintainers & Devops engineers

sync with $ git clone <url=
conan remote add myserver =url= upstream if % conan remote add myrepo ./local/folder
conan install needed $ conan install

w o

The local-recipes-index repository allows you to easily build binaries from a fork of conan-center-index, and then
hosting them on a Conan remote repository like Artifactory. The main difference with the process explained in the
previous section is the ability to immediately test multiple local changes without the need to export each time a recipe
is modified.

Note that in this case, mixing binaries from ConanCenter with locally built binaries is not recommended for several
reasons:

* Binary compatibility: There may be small differences in setup between the ConanCenter CI and the user’s CI.
Maintaining a consistent setup for all binaries can mitigate some issues.

« Full control over builds: Building all binaries yourself ensures you have complete control over the compilation
environment and dependency versions.

Instead, it’s recommended to build all your direct and transitive dependencies from the fork. To begin, remove the
upstream ConanCenter as it will not be used, everything will come from our own fork:

[$ conan remote remove conancenter]

Then we will clone our fork (in this case, we are cloning directly the upstream for demo purposes, but you would be
cloning your fork instead):

[$ git clone https://github.com/conan-io/conan-center-index]

Add this as our mycenter remote:

Add the mycenter remote pointing to the local folder
$ conan remote add mycenter ./conan-center-index

And that’s all! Now you’re set to list and use packages from your conan-center-index local folder:

$ conan list "zlib/*" -r=mycenter
mycenter

(continues on next page)

6.2. Local Recipes Index Repository 175

Conan Documentation, Release 2.14.0

(continued from previous page)
zlib
zlib/1.2.11
zlib/1.2.12
zlib/1.2.13
zlib/1.3
zlib/1.3.1

We can also install packages from this repo, for example we can do:

$ conan install --requires=zlib/1.3

======== Computing dependency graph ========
z1lib/1.3: Not found in local cache, looking in remotes...
z1lib/1.3: Checking remote: mycenter
z1ib/1.3: Downloaded recipe revision 5c0f3ala222eebb6bff34980bcd3e024
Graph root
cli
Requirements
zlib/1.3#5c0f3ala222eebb6bff34980bcd3e®024 - Downloaded (mycenter)

======== Computing necessary packages ========

Requirements
z1ib/1.3#5c0f3ala222eebb6bff34980bcd3e024:72c852c5f0ae27cal®bl741e5fd7c8b8be91a590a -..

—Missing

ERROR: Missing binary: zlib/1.3:72c852c5f0ae27ca®bl741e5fd7c8b8be91a590a

As we can see, Conan managed to get the recipe for zZ1ib/1.3 from mycenter, but then it failed because there is no
binary. This is expected, the repository only contains the recipes, but not the binaries. We can build the binary
from source with --build=missing argument:

$ conan install --requires=zlib/1.3 --build=missing

z1lib/1.

3: package(): Packaged 2 '.h' files: zconf.h, zlib.h
z1ib/1.3: package(): Packaged 1 file: LICENSE
z1lib/1.3: package(): Packaged 1 '.a' file: libz.a
z1lib/1.3: Created package revision 0466b3475bcac5c2ce37bb5deda835c3
z1ib/1.3: Package '72c852c5f0ae27ca®bl741e5£fd7c8b8be91a590a’ created

z1ib/1.3: Full package reference: zlib/1.3
—#5c0f3ala222eebb6bf£34980bcd3e®24:72c852c5f0ae27ca®bl741e5fd7c8b8be91a590a
—#0466b3475bcac5c2ce37bb5deda835c3

z1lib/1.3: Package folder /home/conan/.conan2/p/b/zlibled9fel3537a2/p

WARN: deprecated: Usage of deprecated Conan 1.X features that will be removed in Conan 2.
—X:

WARN: deprecated: 'cpp_info.names' used in: zlib/1.3

======== Finalizing install (deploy, generators) ========

cli: Generating aggregated env files

cli: Generated aggregated env files: ['conanbuild.sh', 'conanrun.sh']
Install finished successfully

We can see now the binary package in our local cache:

176 Chapter 6. Devops guide

Conan Documentation, Release 2.14.0

$ conan list "zlib:*"
Local Cache
zlib
zlib/1.3
revisions
5c0f3ala222eebb6bf£f34980bcd3e024 (2024-04-10 11:50:34 UTC)
packages
72c852c5f0ae27ca®bl741e5fd7c8b8be91a590a
info
settings
arch: x86_64
build_type: Release
compiler: gcc
compiler.version: 9
os: Linux
options
fPIC: True
shared: False

Finally, upload the binary package to our Artifactory repository to make it available for our organization, users and CI
jobs:

$ conan remote add myartifactoryrepo <artifactory_url>
$ conan upload zlib* -r=myartifactoryrepo -c

This way, consumers of the packages will not only enjoy the pre-compiled binaries and avoid having to always re-build
from source all dependencies, but that will also provide stronger guarantees that the dependencies build and work
correctly, that all dependencies and transitive dependencies play well together, etc. Decoupling the binary creation
process from the binary consumption process is the way to achieve faster and more reliable usage of dependencies.

Remember, in a production setting, the conan upload command should be executed by CI, not developers, following
the Conan guidelines. This approach ensures that package consumers enjoy pre-compiled binaries and consistency
across dependencies.

6.2.2 Modifying the local-recipes-index repository files

One of the advantages of this approach is that all the changes that we do in every single recipe are automatically available
for the Conan client. For example, changes to the recipes/zlib/config.yml file are immediately recognized by the Conan
client. If you edit that file and remove all versions but the latest and then we [list the recipes:

$ conan list "zlib/*" -r=mycenter
mycenter
z1lib
zlib/1.3.1

When some of the recipes change, then note that the current Conan home already contains a cached copy of the package,
so it will not update it unless we explicitly use the --update, as any other Conan remote.

So if we do a change in the z1ib recipe in recipes/zlib/all/conanfile.py and repeat:

[$ conan install --requires=zlib/1.3.1 -r=mycenter --update --build=missing]

We will immediately have the new package binary locally built from source from the new modified recipe in our Conan
home.

6.2. Local Recipes Index Repository 177

Conan Documentation, Release 2.14.0

6.2.3 Using local-recipes-index Repositories in Production

Several important points should be considered when using this new feature:

e It is designed for third-party packages, where recipes in one repository are creating packages with sources
located elsewhere. To package your own code, the standard practice of adding conanfile.py recipes along with
the source code and using the standard conan create flow is recommended.

¢ The local-recipes-index repositories point to local folders in the filesystem. While users may choose to sync
that folder with a git repository or other version control mechanisms, Conan is agnostic to this, as it is only aware
of the folder in the filesystem that points to the (current) state of the repository. Users may choose to run git
commands directly to switch branches/commit/tags and Conan will automatically recognise the changes

» This approach operates at the source level and does not generate package binaries. For deployment for devel-
opment and production environments, the use of a remote package server such as Artifactory is crucial. It’s
important to note that this feature is not a replacement for Conan’s remote package servers, which play a vital
role in hosting packages for regular use.

* Also, note that a server remote can retain a history of changes storing multiple recipe revisions. In contrast, a
local-recipes-index remote can only represent a single snapshot at any given time.

* ConanCenter does not use python-requires, as this is a mechanism more intended for first-party packages.
Using python-requires in a local-recipes-index repository is possible (and experimental) at this mo-
ment, but only if the python-requires are also in the same index repository. It is not intended or planned to
support having these python-requires in other repositories or in the user Conan cache.

Furthermore, this feature does not support placing server URLs directly in recipes; remote repositories must be explic-
itly added with conan remote add. Decoupling abstract package requirements, such as “zlib/1.3.1”, from their specific
origins is crucial to resolving dependencies correctly and leveraging Conan’s graph capabilities, including version con-
flict detection and resolution, version-ranges resolution, opting into pre-releases, platform_requires, replace_requires,
etc. This separation also facilitates the implementation of modern DevOps practices, such as package immutability,
full relocatability and package promotions.

See also:
» Using Local-Recipes-Index repositories to share your libraries

¢ Introducing the Local-Recipes-Index Post

6.3 Backing up third-party sources with Conan

For recipes and build scripts for open source, publicly available libraries, it is common practice to download the sources
from a canonical source, like Github releases, or project download web pages. Keeping a record of the origin of these
files is useful for traceability purposes, however, it is often not guaranteed that the files will be available in the long
term, and a user in the future building the same recipe from source may encounter a problem. Conan can thus be
configured to transparently retrieve sources from a configured mirror, without modifying the recipes or conandata.yml.
Additionally, these sources can be transparently uploaded alongside the packages via conan upload.

The sources backup feature is intended for storing the downloaded recipe sources in a file server in your own infrastruc-
ture, allowing future reproducibility of your builds even in the case where the original download URLs are no longer
accessible.

The backup is triggered for calls to the download and get methods when a sha256 file signature is provided.

178 Chapter 6. Devops guide

https://blog.conan.io/2024/04/23/Introducing-local-recipes-index-remote.html

Conan Documentation, Release 2.14.0

6.3.1 Configuration overview

This feature is controlled by a few global.conf items:

core.sources:download_cache: Local path to store the sources backups to. If not set, the default Conan
home cache path will be used.

core.sources:download_urls: Ordered list of URLs that Conan will try to download the sources from,
where origin represents the original URL passed to get/download from conandata.yml. This allows to control
the fetch order, either ["origin", "https://your.backup/remote/"] to look into and fetch from your
backup remote only if and when the original source is not present, or ["https://your.backup/remote/",
"origin"] to prefer your backup server ahead of the recipes’ canonical links. Being a list, multiple remotes are
also possible. ["origin"] by default

core.sources:upload_url: URL of the remote to upload the backups to when calling conan upload, which
might or might not be different from any of the URLs defined for download. Empty by default

core.sources:exclude_urls: List of origins to skip backing up. If the URL passed to get/download starts
with any of the origins included in this list, the source won’t be uploaded to the backup remote when calling
conan upload. Empty by default

6.3.2 Usage

Let’s overview how the feature works by providing an example usage from beginning to end:

In summary, it looks something like:

A remote backup repository is set up. This should allow PUT and GET HTTP methods to modify and fetch its
contents. If access credentials are desired (which is strongly recommended for uploading permissions), you can
use the source_credentials.json feature. See below if you are in need for configuring your own.

The remote’s URL can then be set in core.sources:download_urls and core.sources:upload_url.

In your recipe’s source () method, ensure the relevant get/download calls supply the sha256 signature of the
downloaded files.

Set core.sources:download_cache in your global.conf file if a custom location is desired, else the default
cache folder will be used

Run Conan normally, creating packages etc.

Once some sources have been locally downloaded, the folder pointed to by
core.sources:download_cache will contain, for each downloaded file:
— A blob file (no extensions) with the name of the sha256 signature provided in get/download.

— A . json file which will also have the name of the sha256 signature, that will contain information
about which references and which mirrors this blob belongs to.

Calling conan upload will now optionally upload the backups for the matching references if core.
sources:upload_url is set.

Note:

See below for a guide on how to configure your own backup server

6.3. Backing up third-party sources with Conan 179

Conan Documentation, Release 2.14.0

Setting up the necessary configs
The global.conf file should contain the core. sources:download_urls if downloading from a custom backup source
remote is desired, and core. sources:download_cache if a custom local cache path to download the backups to is

desired.

Listing 1: global.conf

core.sources:download_urls=["https://myteam.myorg.com/artifactory/backup-sources/",
~"origin"]
core.sources:download_cache=/path/to/backup/sources

Note: Either core.sources:download_urls or core.sources:download_cache should be defined for the fea-
ture to be enabled.

You might want to add extra confs based on your use case, as described in the beginning of this document.

Note: The recommended approach for dealing with the configuration of CI workers and developers in your organization
is to install the configs using the conan config install command on a repository. Read more /ere

Run Conan as normal

With the above steps completed, Conan can now be used as normal, and for every downloaded source, Conan
will first look into the folder indicated in core.sources:download_cache, and if not found there, will tra-
verse core.sources:download_urls until it find the file or fails, and store a local copy in the same core.
sources:download_cache location.

When the backup is fetched from the the backup remote, a message like what follows will be shown to the user:

Listing 2: The client will now print information regarding from which
remote it was capable of downloading the sources

$ conan create . --version=1.3

======== Installing packages ========
z1lib/1.3: Calling source() in /Users/ruben/.conan2/p/zlib0f4e45286ecdl/s/src
z1ib/1.3: Sources for ['https://zlib.net/fossils/zlib-1.3.tar.gz', 'https://github.com/
—madler/zlib/releases/download/v1.3/z1lib-1.3.tar.gz"]
found in remote backup https://myteam.myorg.com/artifactory/backup-sources

If we now again try to run this, we’ll find that no download is performed and the locally stored version of the files is
used.

180 Chapter 6. Devops guide

Conan Documentation, Release 2.14.0

Upload the packages

Once a package has been created as shown above, when a call to conan upload zlib/1.3 -cis performed to upload
the resulting binary to your Conan repository, it will also upload the source backups for that same reference to your
backups remote if configured to do so, and future source downloads of this recipe will use the newly updated contents
when necessary.

Note: See the packages list feature for a way to only upload the packages that have been built

In case there’s a need to upload backups for sources not linked to any package, or for packages that are already on the
remote and would therefore be skipped during upload, the conan cache backup-upload command can be used to
address this scenario.

Creating the backup repository

You can also set up your own remote backup repository instead of relying on an already available one. While an
Artifactory generic repository (available for free with Artifactory CE) is recommend for this purpose, any simple
server that allows PUT and GET HTTP methods to modify and fetch its contents is sufficient.

Read the following section for instructions on how to create a generic Artifactory backup repo and how to give it public
read permissions, while keeping write access only for authorized agents

Creating an Artifactory backup repo for your sources

For the backup repository, we’ll create a generic Artifactory repo using the free Community Edition version.

For this, in the repositories section of the administration tab, we’ll create a new generic repository, and in this example
we’ll imaginatively give it the name of backup-sources.

The URL of the remote should now be added to the global.conf file’s core.sources:upload_url conf

6.3. Backing up third-party sources with Conan 181

Conan Documentation, Release 2.14.0

Listing 3: global.conf

[core .sources:upload_url=https://myteam.myorg.com/artifactory/backup-sources/ }

Next, as we want this to be a public read repo, we’ll allow anonymous read access to our repo. See the official Artifactory
documentation for a step-by-step guide on how to create one.

Now, to be able to upload contents, we’ll also create a new user from the User Management section, called backup
uploader, and from the Access Tokens section, we’ll generate a reference token associated with the user

Generate Token

(® Scoped Token Pairing Token

Description

backup-upload

* Token scope * User

User backup-uploader

Service

Expiration time

MNever

[~] Create Reference Token &

Generate

The generated token should now live in the source_credentials.json file:

Listing 4: source_credentials.json

"credentials": [
{
"url": "https://myteam.myorg.com/artifactory/backup-sources/",
"token": "cmVmdGtul234567890abcdefghijklmnopgrstuvwxyz"

(continues on next page)

182 Chapter 6. Devops guide

https://jfrog.com/help/r/how-to-grant-an-anonymous-user-access-to-specific-repositories/artifactory-how-to-grant-an-anonymous-user-access-to-specific-repositories
https://jfrog.com/help/r/how-to-grant-an-anonymous-user-access-to-specific-repositories/artifactory-how-to-grant-an-anonymous-user-access-to-specific-repositories

Conan Documentation, Release 2.14.0

(continued from previous page)

And last but not least, from the Permissions section we’ll give the user manage access to the new repository (which
will automatically give it every other permission available, feel free to modify them according to your needs)

Al - Welcome, admin

Edit Permission backup-sources-uploader
Administration

Projects Name

Resources Users Groups

& User Management

Selected Users ™ Selected Users Repositories @

[¥) Read [~) Annotate [~] Deploy/Cache (] Delete/Overwrite

backup-uploader - —
[v] Manage Xray Metadata [~] Manage

Selected Users Builds @

With this, access to our remote backup is now configured to allow anonymous read but authenticated upload.

6.4 Managing package metadata files

Warning: This feature is experimental and subject to breaking changes. See the Conan stability section for more
information.

A Conan package is typically composed by several C and C++ artifacts, headers, compiled libraries and executables.
But there are other files that might not be necessary for the normal consumption of such a package, but which could be
very important for compliance, technical or business reasons, for example:

* Full build logs

* The tests executables

* The tests results from running the test suite

* Debugging artifacts like heavy .pdb files

» Coverage, sanitizers, or other source or binary analysis tools results

¢ Context and metadata about the build, exact machine, environment, author, CI data

6.4. Managing package metadata files 183

Conan Documentation, Release 2.14.0

* Other compliance and security related files

There are several important reasons to store and track these files like regulations, compliance, security, reproducibility
and traceability. The problem with these files is that they can be large/heavy, if we store them inside the package (just
copying the artifacts in the package () method), this will make the packages much larger, and it will affect the speed
of downloading, unzipping and using packages in general. And this typically happens a lot of times, both in developer
machines but also in CI, and it can have an impact on the developer experience and infrastructure costs. Furthermore,
packages are immutable, that is, once a package has been created, it shouldn’t be modified. This might be a problem if
we want to add extra metadata files after the package has been created, or even after the package has been uploaded.

The metadata files feature allows to create, upload, append and store metadata associated to packages in an integrated
and unified way, while avoiding the impact on developers and CI speed and costs, because metadata files are not
downloaded and unzipped by default when packages are used.

It is important to highlight that there are two types of metadata:

» Recipe metadata, associated to the conanfile. py recipe, the metadata should be common to all binaries created
from this recipe (package name, version and recipe revision). This metadata will probably be less common, but
for example results of some scanning of the source code, that would be common for all configurations and builds,
can be recipe metadata.

» Package binary metadata, associated to the package binary for a given specific configuration and represented by
a package_id. Build logs, tests reports, etc, that are specific to a binary configuration will be package metadata.

6.4.1 Creating metadata in recipes

Recipes can directly define metadata in their methods. A common use case would be to store logs. Using the self.
recipe_metadata_folder and self.package_metadata_folder, the recipe can store files in those locations.

import os
from conan import ConanFile
from conan.tools.files import save, copy

class Pkg(ConanFile):
name = "pkg"
version = "0.1"

def layout(self):
Or something else, like the "cmake_layout(self)" built-in layout
self.folders.build = "mybuild"
self.folders.generators = "mybuild/generators"

def export(self):
logs that might be generated in the recipe folder at "export" time.
these would be associated with the recipe repo and original source of the recipe.
—Iepo
copy(self, "*.log", src=self.recipe_folder,
dst=o0s.path.join(self.recipe_metadata_folder, "logs"))

def source(self):
logs originated in the source() step, for example downloading files, patches or.
—other stuff
save(self, os.path.join(self.recipe_metadata_folder, "logs", "src.log"), "srclog!!

!

(continues on next page)

184 Chapter 6. Devops guide

Conan Documentation, Release 2.14.0

(continued from previous page)

def build(self):
logs originated at build() step, the most common ones
save(self, "mylogs.txt", "some logs!!!")
copy(self, "mylogs.txt", src=self.build_folder,
dst=0s.path.join(self.package_metadata_folder, "logs"))

Note that “recipe” methods (those that are common for all binaries, like export() and source()) should use
self.recipe_metadata_folder, while “package” specific methods (build(), package()) should use the self.
package_metadata_folder.

Doing a conan create over this recipe, will create “metadata” folders in the Conan cache. We can have a look at
those folders with:

$ conan create .

$ conan cache path pkg/0.1 --folder=metadata

folder containing the recipe metadata

$ conan cache path pkg/0.1:package_id --folder=metadata

folder containing the specific "package_id" binary metadata

It is also possible to use the “local flow” commands and get local “metadata” folders. If we want to do this, it is very
recommended to use a layout () method like above to avoid cluttering the current folder. Then the local commands
will allow to test and debug the functionality:

$ conan source .

check local metadata/logs/src.log file

$ conan build .

check local mybuild/metadata/logs/mylogs.txt file

NOTE: Note that the locally created metadata will not be exported to the Conan cache during the conan export-pkg
command. Some metadata, as the one generated in export () method can be generated in the cache, as the conan
export-pkg command calls that method, but the metadata inside the “build” folder will not be exported. If you want
to add that metadata to the exported package, you can copy it after the conan export-pkg using the paths reported
by conan cache path, as described below in the “Adding metadata with commands” section.

6.4.2 Creating metadata with hooks

If there is some common metadata accross recipes, it is possible to capture it without modifying the recipes, using
hooks. Let’s say that we have a simpler recipe:

import os
from conan import ConanFile
from conan.tools.files import save, copy

class Pkg(ConanFile):
name = "pkg"
version = "0.1"
no_copy_source = True

def layout(self):
self.folders.build = "mybuild"

self.folders.generators = "mybuild/generators"

(continues on next page)

6.4. Managing package metadata files 185

Conan Documentation, Release 2.14.0

(continued from previous page)
def source(self):
save(self, "logs/src.log", "srclog!!")

def build(self):
save(self, "logs/mylogs.txt", "some logs!!!™)

As we can see, this is not using the metadata folders at all. Let’s define now the following hooks:

import os
from conan.tools.files import copy

def post_export(conanfile):
conanfile.output.info("'post_export")
copy(conanfile, "*.log", src=conanfile.recipe_folder,
dst=os.path.join(conanfile.recipe_metadata_folder, "logs"))

def post_source(conanfile):
conanfile.output.info("post_source")
copy(conanfile, "*", src=os.path.join(conanfile.source_folder, "logs"),
dst=os.path.join(conanfile.recipe_metadata_folder, "logs"))

def post_build(conanfile):
conanfile.output.info("post_build")
copy(conanfile, "*", src=os.path.join(conanfile.build_folder, "logs"),
dst=os.path.join(conanfile.package_metadata_folder, "logs"))

The usage of these hooks will have a very similar effect to the in-recipe approach: the metadata files will be created in
the cache when conan create executes, and also locally for the conan source and conan build local flow.

6.4.3 Adding metadata with commands

Metadata files can be added or modified after the package has been created. To achieve this, using the conan cache
path command will return the folders to do that operation, so copying, creating or modifying files in that location will
achieve this.

conan create . --name=pkg --version=0.1

conan cache path pkg/0.1 --folder=metadata

folder to put the metadata, initially empty if we didn't use hooks
and the recipe didn't store any metadata. We can copy and put files
in the folder

conan cache path pkg/®.1:package_id --folder=metadata

same as above, for the package metadata, we can copy and put files in
the returned folder

H T2 W H WA

This metadata is added locally, in the Conan cache. If you want to update the server metadata, uploading it from the
cache is necessary.

186 Chapter 6. Devops guide

Conan Documentation, Release 2.14.0

6.4.4 Uploading metadata

So far the metadata has been created locally, stored in the Conan cache. Uploading the metadata to the server is
integrated with the existing conan upload command:

$ conan upload "*" -c -r=default
Uploads recipes, packages and metadata to the "default" remote

pkg/0.1: Recipe metadata: 1 files
pkg/0.1:da39a3ee5e6b4b0d3255bfef95601890afd80709: Package metadata: 1 files

By default, conan upload will upload recipes and packages metadata when a recipe or a package is uploaded to the
server. But there are some situations that Conan will completely avoid this upload, if it detects that the revisions do
already exist in the server, it will not upload the recipes or the packages. If the metadata has been locally modified or
added new files, we can force the upload explicitly with:

We added some metadata to the packages in the cache
But those packages already exist in the server
$ conan upload "*" -c -r=default --metadata="*"

pkg/0.1: Recipe metadata: 1 files
pkg/0.1:da39a3ee5e6b4b0d3255bfef95601890afd80709: Package metadata: 1 files

The --metadata argument allows to specify the metadata files that we are uploading. If we structure them in folders,
we could specify --metadata="logs*" to upload only the logs metadata, but not other possible ones like test
metadata.

Upload only the logs metadata of the zlib/1.2.13 binaries
This will upload the logs even if zlib/1.2.13 is already in the server

$ conan upload "zlib/1.2.13:*" -r=remote -c --metadata="logs/*"
Multiple patterns are allowed:
$ conan upload "*" -r=remote -c --metadata="logs/*" --metadata="tests/*"

Sometimes it might be useful to upload packages without uploading the metadata, even if the metadata cache folders
contain files. To ignore uploading the metadata, use an empty argument as metadata pattern:

Upload only the packages, not the metadata
$ conan upload "*" -r=remote -c --metadata=""

nn nygn

The case of mixing --metadata="" with --metadata= is not allowed, and it will raise an error.

Invalid command, it will raise an error
$ conan upload "*" -r=remote -c --metadata="" --metadata="logs/*"
ERROR: Empty string and patterns can not be mixed for metadata.

nn

6.4. Managing package metadata files 187

Conan Documentation, Release 2.14.0

6.4.5 Downloading metadata

As described above, metadata is not downloaded by default. When packages are downloaded with a conan install
or conan create fetching dependencies from the servers, the metadata from those servers will not be downloaded.

The way to recover the metadata from the server is to explicitly specify it with the conan download command:

Get the metadata of the "pkg/0.1" package

$ conan download pkg/0.1 -r=default --metadata="*"

$ conan cache path pkg/0.1 --folder=metadata

Inspect the recipe metadata in the returned folder

$ conan cache path pkg/0.1l:package_id --folder=metadata
Inspect the package metadata for binary "package_id"

The retrieval of the metadata is done with download per-package. If we want to download the metadata for a whole
dependency graph, it is necessary to use “package-lists”:

$ conan install . --format=json -r=remote > graph.json

$ conan list --graph=graph.json --format=json > pkglist.json

the list will contain the "remote" origin of downloaded packages
$ conan download --list=pkglist.json --metadata="*" -r=remote

Note that the “package-list” will only contain associated to the “remote” origin the packages that were downloaded.
If they were previously in the cache, then, they will not be listed under the “remote” origin and the metadata will not
be downloaded. If you want to collect the dependencies metadata, recall to download it when the package is installed
from the server. There are other possibilities, like a custom command that can automatically collect and download
dependencies metadata from the servers.

6.4.6 Removing metadata

At the moment it is not possible to remove metadata from the server side using Conan, as the metadata are “additive”,
it is possible to add new data, but not to remove it (otherwise it would not be possible to add new metadata without
downloading first all the previous metadata, and that can be quite inefficient and more error prone, specially sensitive
to possible race conditions).

The recommendation to remove metatada from the server side would be to use the tools, web interface or APIs that the
server might provide.

Note:
Best practices

¢ Metadata shouldn’t be necessary for using packages. It should be possible to consume recipes and packages
without downloading their metadata. If metadata is mandatory for a package to be used, then it is not metadata
and should be packaged as headers and binaries.

* Metadata reading access should not be a frequent operation, or something that developers have to do. Metadata
read is intended for excepcional cases, when some build logs need to be recovered for compliance, or some test
executables might be needed for debugging or re-checking a crash.

* Conan does not do any compression or decompression of the metadata files. If there are a lot of metadata files,
consider zipping them yourself, otherwise the upload of those many files can take a lot of time. If you need to
handle different types of metadata (logs, tests, reports), zipping the files under each category might be better to
be able to filter with the --metadata=xxx argument.

188 Chapter 6. Devops guide

Conan Documentation, Release 2.14.0

6.4.7 test_package as metadata

This is an illustrative example of usage of metadata, storing the full test_package folder as metadata to later recover
it and execute it. Note that this is not necessarily intended for production.

Let’s start with a hook that automatically stores as recipe metadata the test_package folder

import os
from conan.tools.files import copy

def post_export(conanfile):
conanfile.output.info("Storing test_package")
folder = os.path.join(conanfile.recipe_folder, "test_package")
copy(conanfile, "*", src=folder,
dst=os.path. join(conanfile.recipe_metadata_folder, "test_package™))

Note that this hook doesn’t take into account that test_package can be dirty with tons of temporary build objects (it
should be cleaned before being added to metadata), and it doesn’t check that test_package might not exist at all and
crash.

When a package is created and uploaded, it will upload to the server the recipe metadata containing the test_package:

$ conan create ...
$ conan upload "*" -c -r=default # uploads metadata

pkg/0.1: Recipe metadata: 1 files

Let’s remove the local copy, and assume that the package is installed, but the metadata is not:

nygn

$ conan remove -c # lets remove the local packages
$ conan install --requires=pkg/0.1 -r=default # this will not download metadata

If at this stage the installed package is failing in our application, we could recover the test_package, downloading it,
and copying it to our current folder:

$ conan download pkg/0.1 -r=default --metadata="test_package*"

$ conan cache path pkg/0.1 --folder=metadata

copy the test_package folder from the cache, to the current folder
like 'cp -R ...

Execute the test_package
$ conan test metadata/test_package pkg/0.1
pkg/0.1 (test package): Running test()

See also:

e TODO: Examples how to collect the metadata of a complete dependency graph with some custom deployer or
command

This is an experimental feature. We are looking forward to hearing your feedback, use cases and needs, to keep
improving this feature. Please report it in Github issues

6.4. Managing package metadata files 189

https://github.com/conan-io/conan/issues

Conan Documentation, Release 2.14.0

6.5 Versioning

This section deals with different versioning topics:

6.5.1 Default versioning approach

When doing changes to the source code of a package, and creating such a package, one good practice is to increase the
version of the package to represent the scope and impact of those changes. The “semver” standard specification defines
a MAJOR.MINOR.PATCH versioning approach with a specific meaning for changing each digit.

Conan implements versioning based on the “semver” specification, but with some extended capabilities that were
demanded by the C and C++ ecosystems:

 Conan versions can have any number of digits, like MAJOR.MINOR.PATH.MICRO. SUBMICRO. ..

» Conan versions can contain also letters, not only digits, and they are also ordered in alphabetical order, so 1.a.2
is older tha 1.b. 1 for example.

* The version ranges can be equally defined for any number of digits, like dependency/[>=1.0.0.0 <1.0.0.
10]

Read the introduction to versioning in the tutorial.

But one very different aspect of C and C++ building model compared to other languages is how the dependencies affect
the binaries of the consumers requiring them. This is described in the Conan binary model reference.

Basically, when some package changes its version, this can have different effects on the “consumers” of this package,
requiring such “consumers” to do a rebuild from source or not to integrate the new dependency changes. This also
depends on the package types, as the logic changes when linking a shared library or a static library. Conan binary
model with dependency traits, package_type, and the package_id modes is able to represent this logic and
compute efficiently what needs to be rebuilt from source.

The default Conan behavior can give some hints of what version changes would be recommended when doing different
changes to the packages source code:

* Not modifying the version typically means that we want Conan automatic recipe revisions to handle that. A
common use case is when the C/C++ source code is not modified at all, and only changes to the conanfile.py
recipe are done. As the source code is the same, we might want to keep the same version number, and just have
a new revision of that version.

* Patch: Increasing the patch version of a package means that only internal changes were done, in practice it
means change to files that are not public headers of the package. This “patch” version can avoid having to re-
build consumers of this package, for example if the current package getting a new “patch” version is a static
library, all other packages that implement static libraries that depend on this one do not need to be re-built from
source, as depending on the same public interface headers guarantee the same binary.

* Minor: If changes are done to package public headers, in an API source compatible way, then the recommen-
dation would be to increase the minor verson of a package. That means that other packages that depend on it
will be able to compile without issues, but as there were modifications in public headers (that could contain C++
templates or other things that could be inlined in the consumer packages), then those consumer packages need
to be rebuilt from source to incorporate these changes.

* Major: If API breaking changes are done to the package public headers, then increasing the major version is
recommended. As the most common recommended version-range is something like dependency/[>1.0 <2],
where the next major is excluded, that means that publishing these new versions will not break existing consumers,
because they will not be used at all by those consumers, because their version ranges will exclude them. It will
be necessary to modify the consumers recipes and source code (to fix the API breaking changes) to be able to
use the new major version.

190 Chapter 6. Devops guide

Conan Documentation, Release 2.14.0

Note that while this is close to the standard “semver” definition of version and version ranges, the C/C++ compilation
model needs to introduce a new side effect, that of “needing to rebuild the consumers”, following the logic explained
above in the embed and non_embed cases.

This is just the default recommended versioning approach, but Conan allows to change these defaults, as it implements
an extension of the “semver” standard that allows any number of digits, letters, etc, and it also allows to change the
package_id modes to define how different versions of the dependencies affect the consumers binaries. See how o
customize the dependencies package_id modes.

Note: Best practices

* It is not recommended to use other package reference fields, as the user and channel to represent changes
in the source code, or other information like the git branch, as this becomes “viral” requiring changes in the
requires of the consumers. Furthermore, they don’t implement any logic in the build model with respect to
which consumers need to be rebuilt.

* The recommended approach is to use versioning and multiple server repositories to host the different packages,
so they don’t interfere with other builds, read the Continuous Integration tutorial for more details.

6.5.2 Handling version ranges and pre-releases

When developing a package and using version ranges for defining our dependencies, there might come a time when
a new version of a dependency gets a new pre-release version that we would like to test before it’s released to have a
change to validate the new version ahead of time.

At first glance, it could be expected that the new version matches our range if it intersect it, but as described in the
version ranges tutorial, by default Conan does not match pre-release versions to ranges that don’t specify it. Conan
provides the global.conf core.version_ranges:resolve_prereleases, which when set to True, enables pre-
release matching in version ranges. This avoids having to modify and export the recipes of your dependency graph,
which would become unfeasible for large ones.

This conf has the added benefit of affecting the whole dependency graph, so that if any of our dependencies also define
a requirement to our library of interest, the new version will also be picked up by it.

Let’s see this in action. Imagine we have the following (summarized) dependency graph, in which we depend on
libpng and 1libmysqlclient, both of which depend on z1ib via the [>1.2 <2] version range:

6.5. Versioning 191

Conan Documentation, Release 2.14.0

app

RN

libpng/1.6.40 libmysqlclient/8.1.0

\11.2 <21 /[>1.2 <2]

zlib/1.2.13

If zlib/1.3-pre is now published, using it is as easy as modifying your global.conf file and adding
the line core.version_ranges:resolve_prereleases=True (or adding the --core-conf core.
version_ranges:resolve_prereleases=True CLI argument to your command invocations), after which,
running conan create will now output the expected prerelease version of z1ib being used:

======== Computing dependency graph ========
Graph root
cli
Requirements
libmysqlclient/8.1.0#493d36bd9641e15993479706dea3c341 - Cache
libpng/1.6.40#2ba025f1324ff820cf68c9e9c94b7772 - Cache
1z4/1.9.4#b572cad582ca4d39c0fccb5185fbb691 - Cache
openssl/3.1.2#f2eb8e67d3£5513e8a9b5e3b62d87eal - Cache
z1lib/1.3-pre#f2eb8ebve24f£825bca32bead94b77dd - Cache
zstd/1.5.5#54d99a44717a7££82e9d37f9b6££f415c - Cache
Build requirements
cmake/3.27.1#de7930d308bf5edde100f2b1624841d9 - Cache
Resolved version ranges
cmake/[>=3.18 <4]: cmake/3.27.1
openssl/[>=1.1 <4]: openssl/3.1.2
zlib/[>1.2 <2]: zlib/1.3-pre

Now our package can be tested and validated against this new version, and the conf be afterwards removed once the
testing is over to go back to the usual Conan behaviour.

192 Chapter 6. Devops guide

Conan Documentation, Release 2.14.0

6.6 Save and restore packages from/to the cache

Warning: This feature is experimental and subject to breaking changes. See the Conan stability section for more
information.

With the conan cache saveand conan cache restorecommands, itis possible to create a .tgz from one or several
packages from a Conan cache and later restore those packages into another Conan cache. There are some scenarios
this can be useful:

* In Continuous Integration, specially if doing distributed builds, it might be very convenient to be able to move
temporary packages recently built. Most CI systems have the capability of transferring files between jobs for this
purpose. The Conan cache is not concurrent, sometimes for paralllel jobs different caches have to be used.

* For air-gapped setups, in which packages can only be transferred via client side.
» Developers directly sharing some packages with other developers for testing or inspection.

The process of saving the packages is using the conan cache save command. It can use a pattern, like the conan
list command, but it can also accept a package-list, like other commands like remove, upload, download. For
example:

$ conan cache save "pkg/*:*"

Saving pkg/1.0: p/pkgldf6édfla3b33c

Saving pkg/1.0:9a4eb3c8701508aa9458b1a73d0633783ecc2270: p/b/pkgd573962ec2c90/p

Saving pkg/1.0:9a4eb3c8701508aa9458b1a73d0633783ecc2270 metadata: p/b/pkgd573962ec2c90/p

creates conan_cache_save.tgz

The conan_cache_save. tgz file contains the packages named pkg (any version), the last recipe revision, and the
last package revision of all the package binaries. The name of the file can be changed with the optional --file=xxxx
argument. Some important considerations:

113

* The command saves the contents of the cache “recipe” folders, containing the subfolders “export”, “ex-
port_sources”, “download”, “source” and recipe “metadata”.

* The command saves the contents of the “package” and the package “metadata” folders, but not the binary “build”
or “download”, that are considered temporary folders.

* If the user doesn’t want any of those folders to be saved, they can be cleaned before saving them with conan
cache clean command

* The command saves the cache files and artifacts as well as the metadata (revisions, package_id) to be able to
restore those packages in another cache. But it doesn’t save any other cache state like settings.yml, global.
conf, remotes, etc. If the saved packages require any other specific configuration, it should be managed with
conan config install.

We can move this conan_cache_save. tgz file to another Conan cache and restore it as:

$ conan cache restore conan_cache_save.tgz

Restore: pkg/1.0 in p/pkgldf6dfla3b33c

Restore: pkg/1.0:9a4eb3c8701508aa9458b1a73d0633783ecc2270 in p/b/pkg773791b8c97aa/p
Restore: pkg/1.0:9a4eb3c8701508aa9458b1a73d0633783ecc2270 metadata in p/b/
—.pkg773791b8c97aa/d/metadata

The restore process will overwrite existing packages if they already exist in the cache.

6.6. Save and restore packages from/to the cache 193

Conan Documentation, Release 2.14.0

Note: Best practices

» Saving and restoring packages is not a substitute for proper storage (upload) of packages in a Conan server
repository. It is only intended as a transitory mechanism, in CI systems, to save an air-gap, etc., but not as a
long-term storage and retrieval.

» Saving and restoring packages is not a substitute for proper backup of server repositories. The recommended
way to implement long term backup of Conan packages is using some server side backup strategy.

* The storage format and serialization is not guaranteed at this moment to be future-proof and stable. It is expected
to work in the same Conan version, but future Conan versions might break the storage format created with
previous versions. (this is aligned with the above recommendation to not use it as a backup strategy)

6.7 Vendoring dependencies in Conan packages

Warning: This feature is experimental and subject to breaking changes. See the Conan stability section for more
information.

From Conan 2.4 it is possible to create and use Conan packages that completely vendor their dependencies, that is, they
completely hide and isolate their dependencies from their consumers. This can be useful in some different cases:

* When sharing Conan packages with other organizations which vendor (copy, embed or link) the dependencies,
so it is not necessary for the consumers of their packages to have access to those dependencies and the intention
is that they always use the shared precompiled binaries.

¢ To introduce a hard decoupling between parts of a project.

To make a package vendor its dependencies, define in its recipe the following attribute:

class MyPkg(ConanFile):
name = "mypkg"
version = "0.1"

vendor = True

requires = "somedep/1.2"

When we have this recipe, we can create its binaries with a normal conan create .. But when we use this package as
arequirement for other packages, its dependencies will be fully invisible. The graph will not even expand the somedep/
1.2 requirement. This dependency doesn’t even need to be available in the remotes for the consumers, it will not be
checked.

Some important notes:
* A package that vendors its dependencies is intended to be consumed always in binary form.

» The dependencies of a vendoring package always form a fully private and isolated dependency graph, decoupled
from the rest of the dependency graph that uses this package.

« It is the responsibility of the vendoring package and its users to guarantee that vendored dependencies do not
collide. If a vendoring package vendors for example 1ibssl.a as a static library doing a regular copy of it in its
package, and there is another package in the graph that also provides 1ibssl, there will be a conflict that Conan
cannot detect as 1ibssl.a is vendored as an internal implementation detail of the package, but not explicitly

194 Chapter 6. Devops guide

Conan Documentation, Release 2.14.0

modeled. Mechanisms like provides can be used for this purpose, but it is the responsibility of the recipe
authors to take it into account.

» The package_id of a package that defines vendor=True is fully independent of its dependencies. The depen-
dencies versions will never affect the package_id of the vendoring package, so it is important to note that the
version of the vendoring package represents a full private dependency graph.

* The regular default_options or options values definitions from consumer conanfile.py recipes do not
propagate over vendoring packages, as they don’t even expand their dependencies.

« If a vendoring package binary is missing and/or the user request to build such a package from sources, Conan
will fail, raising an error that it is not possible to build it.

* To allow the expansion of the private dependency the tools.graph:vendor=build configuration can be acti-
vated. If that is the case, the private dependency graph of the package will be computed and expanded and the
package will be allowed to build.

6.8 Package promotions

Package promotions are the recommended devops practice to handle quality, maturity or stages of packages in different
technologies, and of course, also for Conan packages.

The principle of package promotions is that there are multiple server package repositories defined and packages are
uploaded and copied among repositories depending on the stage. For example we could have two different server
package repositories called “testing” and “release”:

Packages server

testing promotion - release
repository repository

Note: Best practices

» Using different user/channel to try to denote maturity is strongly discouraged. It was described in the early
Conan 1 days years ago, before the possibility of having multiple repositories, but it shouldn’t be used anymore.

» Packages should be completely immutable accross pipelines and stages, a package cannot rename or change
its user/channel, and re-building it from source to have a new user/channel is also a strongly discourage
devops practice.

Between those repositories there will be some quality gates. In our case, some packages will be put in the “testing”
repository, for the QA team to test them, for example z1ib/1.3.1 and openssl/3.2.2:

6.8. Package promotions 195

Conan Documentation, Release 2.14.0

Packages server

testing release
repository repository

zlib/1.3.1

openssl/3.2.2

When the QA team tests and approves these packages, they can be promoted to the “release” repository. Basically,
a promotion is a copy of the packages, including all the artifacts and metadata from the “testing” to the “release”
repository.

There are different ways to implement and execute a package promotion. Artifactory has some APIs that can be used
to move individual files or folders. The Conan extensions repository contains the conan art:promote command that
can be used to promote Conan “package lists” from one server repository to another repository.

If we have a package list pkglist. json that contains the above z1ib/1.3.1 and openssl1/3.2.2 packages, then the
command would look like:

Listing 5: Promoting from testing->release

$ conan art:promote pkglist.json --from=testing --to=release --url=https://<url>/
—.artifactory --user=<user> --password=<password>

Note that the conan art:promote command doesn’t work with ArtifactoryCE, Pro editions of Artifactory are needed.
The promote functionality can be implemented in these cases with a simple download+upload flow:

196 Chapter 6. Devops guide

https://github.com/conan-io/conan-extensions

Conan Documentation, Release 2.14.0

Listing 6: Promoting from testing->release

Promotion using Conan download/upload commands

(slow, can be improved with art:promote custom command)

$ conan download --list=promote.json -r=testing --format=json > downloaded.json
$ conan upload --list=downloaded.json -r=release -c

After the promotion from “testing” to “release” repository, the packages would be like:

Packages server

testing release
repository repository

openssl/3.2.2 PO o » openssl/3.2.2

zlib/1.3.1 » zlib/1.3.1

Note: Best practices

* In modern package servers such as Artifactory package artifacts are deduplicated, that is, they do not take any
extra storage when they are copied in different locations, including different repositories. The deduplication is
checksum based, so the system is also smart to avoid re-uploading existing artifacts. This is very important for
the “promotions” mechanism: this mechanism is only copying some metadata, so it can be very fast and it is
storage efficient. Pipelines can define as many repositories and promotions as necessary without concerns about
storage costs.

* Promotions can also be done in JFrog platform with Release Bundles. The Conan extensions repository also
contains one command to generate a release bundle (that can be promoted using the Artifatory API).

See also:
» Using package lists examples

* Promotions usage in CI

6.8. Package promotions 197

https://github.com/conan-io/conan-extensions

Conan Documentation, Release 2.14.0

198 Chapter 6. Devops guide

CHAPTER
SEVEN

INTEGRATIONS

Conan provides seamless integration with several platforms, build systems, and IDEs. Conan brings off-the-shelf
support for some of the most important operating systems, including Windows, Linux, macOS, Android, and iOS.
Some of the most important build systems supported by Conan include CMake, MSBuild, Meson, Autotools and Make.
In addition to build systems, Conan also provides integration with popular IDEs, such as Visual Studio and Xcode.

7.1 CMake

Conan provides different tools to integrate with CMake in a transparent way. Using these tools, the consuming
CMakeLists.txt file does not need to be aware of Conan at all. The CMake tools also provide better IDE integration
via cmake-presets.

To learn how to integrate Conan with your current CMake project you can follow the Conan tutorial that uses CMake
along all the sections.

Please also check the reference for the CMakeDeps, CMakeToolchain, and CMake tools:
* CMakeDeps: responsible for generating the CMake config files for all the required dependencies of a package.

* CMakeToolchain: generates all the information needed for CMake to build the packages according to the infor-
mation passed to Conan about things like the operating system, the compiler to use, architecture, etc. It will also
generate cmake-presets files for easy integration with some IDEs that support this CMake feature off-the-shelf.

* CMake build helper is the tool used by Conan to run CMake and will pass all the arguments that CMake needs
to build successfully, such as the toolchain file, build type file, and all the CMake definitions set in the recipe.

See also:
* Check the Building your project using CMakePresets example
» Reference for CMakeDeps, CMakeToolchain and CMake build helper

e Conan tutorial

199

Conan Documentation, Release 2.14.0

7.2

7.2.1 Introduction

There’s a plugin available in the JetBrains Marketplace that’s compatible with CLion versions higher than 2022.3.
With this plugin, you can browse Conan packages available in Conan Center, add them to your project, and install them
directly from the CLion IDE interface.

This plugin utilizes cmake-conan, a CMake dependency provider for Conan. It injects conan_provider.cmake using
the CMAKE_PROJECT_TOP_LEVEL_INCLUDES definition. This dependency provider translates the CMake configuration
to Conan. For instance, if you select a Debug profile in CLion, Conan will install and use the packages for Debug.

Bear in mind that cmake-conan activates the Conan integration every time CMake calls find_package (). This means
that no library will be installed until the CMake configure step runs. At that point, Conan will attempt to install the
required libraries and build them if necessary.

Also, note that dependency providers are a relatively new feature in CMake. Therefore, you will need CMake version
>=3.24 and Conan >= 2.0.5.

7.2.2 Installing the plugin

To install the new Conan CLion plugin, navigate to the JetBrains marketplace. Open CLion, go to Settings > Plugins,
then select the Marketplace tab. Search for the Conan plugin and click on the Install button.

200 Chapter 7. Integrations

https://plugins.jetbrains.com/plugin/11956-conan
https://conan.io/center
https://github.com/conan-io/cmake-conan/tree/develop2
https://cmake.org/cmake/help/latest/guide/using-dependencies/index.html#dependency-providers

Conan Documentation, Release 2.14.0

Settings

Q- Plugins Marketplace Installed <3

Appearance & Behavior Q- Conan|

Keymap Conan
Editor

Plugins ? Conan
Install 2.01

Version Control

Build, Execution, Deployment Overview What's New Reviews Additional Info
Languages & Frameworks

Tools

Settings Sync

Advanced Settings

= libeurl

g libcurl with CMake

ieurt

[]
Conan, the C and C++ package manager, now directly in
IDE. List available libraries, install and use them without I4
ClLion

Getting started

https://github.com/conan-io/conan-clion-plugin#using-t

Cancel (0] 4

After restarting CLion, a new “Conan” tool tab will appear at the bottom of the IDE.

7.2.3 Configuring the plugin

Open a CMake project or create a new one in CLion. Then, go to the “Conan” tool tab at the bottom of the IDE. The
only enabled action in the toolbar of the plugin will be the one with the “wheel” (configuration) symbol. Click on it.

7.2. CLion 201

Conan Documentation, Release 2.14.0

A ascii_image v Version control v

Project v P = CMakelLi t (Gt main.cpp

v [T ascii_image ~/Documents/develop 1 #include
> cmake-build-debug
2\ CMakelLists.txt main() {
{€ main.cpp
> (b External Libraries
> = Scratches and Consoles

std: :cout

ﬁ' Conan

Q-

CENCINN NG

ascii_image

ascii_image v T

std: :endl

.clang-tidy 11 LF UTF-8 4 spaces

The first thing you should do is configure the Conan client executable that will be used. You can point to a specific
installation in an arbitrary location on your system, or you can select “Use Conan installed in the system” to use the

system-level installation.

202

Chapter 7. Integrations

Conan Documentation, Release 2.14.0

A ascii_image v Version control v ascii_image v T

Project v : CMakeLists.txt (€ main.cpp

v [3 ascii_image 1 #include
> cmake-build-debug
: CMakelists.txt main() {
(€ main.cpp
> (b External Libraries
> = Scratches and Consoles

std: :cout std: :endl

Configuration
Conan executable s/carlosz/Documents/developer/conan/conan-virtual-env/bin/conan

Use Conan installed in the system

Use Conan for the following configurations:
v| Debug

v| Automatically add Conan support for all configurations
V| Let Conan manage the "Advanced Settings > Reload CMake profiles sequentially" option.

Conan needs to activate this option to avoid concurrency problems.
If you prefer Conan not to enable this option by default, please deselect this option.

@

Cancel OK

T e 0 e

ascii_image .clang-tidy 11 LF UTF-8 4 spaces

Several options are marked as default. Let’s review them:

* You’ll see checkboxes indicating which configurations Conan should manage. In our case, since we only have
the Debug configuration, it’s the only one checked. Below that, “Automatically add Conan support for all con-
figurations” is checked by default. This means you don’t need to manually add Conan support to new build
configurations; the plugin will do it automatically.

 There’s also a checkbox allowing Conan to modify the default CLion settings and run CMake sequentially instead
of in parallel. This is necessary because the Conan cache isn’t concurrent yet in Conan 2.

If you’re using the Conan plugin, you typically wouldn’t uncheck these options. After setting your preferences, click
the OK button to finalize the configuration.

Note: At this point, CLion will run the configure step for CMake automatically. Since the plugin sets up the
conan.cmake dependency provider, a warning will appear in the CMake output. This warning indicates that we
haven’t added a find_package() to our CMakeLists.txt yet. This warning will disappear once we add the necessary
find_package() calls to the CMakeLists.txt file.

After the initial configuration, you’ll notice that the list of libraries is enabled. The “update” and “inspect” buttons are
also active. We'll explain these in detail later.

7.2. CLion 203

Conan Documentation, Release 2.14.0

7.2.4 Using the plugin

With the plugin configured, you can browse available libraries and install them from CLion. For example, if you want
to use libcurl to download an image from the Internet, navigate to the library list and search for libcurl. Information on
how to add it to CMake will be displayed, along with a “Use in project” button. Select the version you want and click
the button.

A" ascii_image v Version control v v ascii_image v T

Project v CN sts.tx (C main.cpp

v (3 ascii_image std::string ASCII_CHARS =
> cmake-build-debug

2\ CMakelLists.txt
. .
2\ conan_provider.cmake
€ main.cpp

> (b External Libraries

> = Scratches and Consoles

map_luminance_to_ascii(luminance) {
size_t position = luminance * (ASCII_CHARS.size() - 1)

ASCII_CHARS[position
19 L

map_luminance_to_ascii

Conan

Q- fibeur] libcurl

Name ~ command line tool and library for transferring data with URLs
libcurl 85 curl

8.2.1 Use in project

B> &

Using libcurl with CMake

To use libeurl in your own project, you can use the global target for the package in the CMakel

First, tell CMake to find the package.
Conan will install the packages so that CMake can find it:

& @

find_package (CURL)
Then, link your executable or library with the corresponding package targets:

target_link libraries(your_exe or_lib name CURL::libcurl)

T ©

ascii_image > (€ main.cpp .clang-tidy 19:2 LF UTF-8 4 spaces

If you click on the “eye” (inspect) icon, you’ll see all the libraries added to the project (assuming you added more than
one). This view includes basic target information for CMake and the necessary code snippets to integrate them into
CMake.

204 Chapter 7. Integrations

https://curl.se/libcurl/

Conan Documentation, Release 2.14.0

Packages Used By The Project

Packages used by the project:

e libcurl/8.2.1
Global target: CURL::libcurl
Components targets: CURL::libcurl

« stb/cci.20220909
o Global target: stb::stb

Using libraries with CMake

To use the selected libraries in your own project, you can use the global targets for the packages in the
CMakelLists.txt:

First, tell CMake to find the packages.
Conan will install the packages so that CMake can find them:

find_package (CURL)
find_package(stb)

Then, link your executable or library with the corresponding package targets:
target link libraries(your exe or 1lib name

CURL: : libcurl
stb::stb)

Please, be aware that this information is generated automatically and it may contain some mistakes. If you
have any problem, you can check the upstream recipes to confirm the information. Also, for more detailed
information on how to consume Conan packages, please check the Conan documentation.

Cancel

Conan stores information about the used packages in a conandata.yml file in your project folder. This file is read by a
conanfile.py, which is also created during this process. You can customize these files for advanced plugin usage, but
ensure you read the information in the corresponding files to do this correctly. Modify your CMakeLists.txt according
to the instructions, which should look something like this:

cmake_minimum_required(VERSION 3.15) project(project_name) set(CMAKE_CXX_STANDARD 17)
find_package (CURL) add_executable(project_name main.cpp)
target_link_libraries(project_name CURL::libcurl)

After reloading the CMake project, you should see Conan installing the libraries in the CMake output tab.
See also:

* For more details, check the entry in the Conan blog about the plugin.

7.2. CLion 205

https://blog.conan.io/introducing-new-conan-clion-plugin/

Conan Documentation, Release 2.14.0

7.3 Visual Studio

7.3.1 Recipe tools for Visual Studio

Conan provides several tools to help manage your projects using Microsoft Visual Studio. These tools can be imported
from conan.tools.microsoft and allow for native integration with Microsoft Visual Studio, without the need to
use CMake and instead directly using Visual Studio solutions, projects, and property files. The most relevant tools are:

* MSBuildDeps: the dependency information generator for Microsoft MSBuild build system. It will generate
multiple xxxx . props properties files, one per dependency of a package, to be used by consumers using MSBuild
or Visual Studio, just by adding the generated properties files to the solution and projects.

* MSBuildToolchain: the toolchain generator for MSBuild. It will generate MSBuild properties files that can be
added to the Visual Studio solution projects. This generator translates the current package configuration, settings,
and options, into MSBuild properties files syntax.

* MSBuild build helper is a wrapper around the command line invocation of MSBuild. It will abstract
the calls like msbuild "MyProject.sln" /p:Configuration=<conf> /p:Platform=<platform> into
Python method calls.

For the full list of tools under conan. tools.microsoft please check the reference section.

7.3.2 Conan extension for Visual Studio

There’s an extension available in the VisualStudio Marketplace that’s compatible begining from Visual Studio version
2022. With this extension, you can browse Conan packages available in Conan Center, add them to your project, and
they will be automatically installed before building your projects.

Note: The Visual Studio extension is only compatible with C/C++ projects based on MSBuild. It will not work with
CMake-based projects or projects using other technologies. For CMake-based projects, please refer to the cmake-conan
dependency provider.

Installation

The Conan Visual Studio Extension can be installed directly from within Visual Studio:
* Open the Extensions menu.
* Select Manage Extensions.
* Search for “Conan” in the Online marketplace.
* Download and install the extension.

Alternatively, you can download the latest release from our releases page and install it manually.

206 Chapter 7. Integrations

https://marketplace.visualstudio.com/items?itemName=conan-io.conan-vs-extension
https://conan.io/center
https://github.com/conan-io/cmake-conan
https://github.com/conan-io/cmake-conan
https://github.com/conan-io/conan-vs-extension/releases/latest

Conan Documentation, Release 2.14.0

Initial Configuration

After installing the Conan extension, you can access it from the “Conan” tool window in Visual Studio. To do so, go
to View > Other Windows > Conan C/C++ Package Manager.

Edit

of Fie
i0-0|8

Solution E}-:ZFI|E|FEF
Flo-sE
Search Solution Ex

[Solution 'Cor

4 ConsoleA
P o0 Refere

b @0 Extern

£ Heade
EF Resou

b EF Source

Property Manager

Error List

Entire Solution

® Code

View | Git Project Build Debug Test Analyze Tools Extensions Window Help | £ Search -
¢ Code Fi ~| P Local Windows Debugger ~ [> v| ﬁ.| B -
C* Open
Open With... i + X
(R Solution Explorer Ctrl+Alt+L licationd T T . =
ConsoleApplicationtd.c : This file contain
51 Git Changes Cirl+0, Cirl+ G \[ﬁ PP PP
@ Git Repository Ctrl+0, Ctrl+R
A Team Explorer Ctrl+2, Ctrl+M #include <iostream>
B Sserver Explorer Ctrl+Alt+5
" ~~int main()
Il_i?_l Test Explorer Ctrl+E, T i
] Bookmark Window Ctrl+ K, Ctrl+W 1 std::cout << "Hello World!\n";
% Call Hierarchy Ctrl+Alt+K
3 Class View Ctrl+Shift+C .-// Run program: Ctrl + F5 or Debug > Start Wit
B3 Code Definition Window Ctrl+2, D | // Debug program: F5 or Debug > Start Debuggin
Object B Ctrl+Alt+) . .
= Ject Browser At - /f Tips for Getting Started:
e ErrorList Ctrl+2 E // 1. Use the Solution Explorer window to ad
[Z» Output Ctrl+Alt+Q /f 2. Use the Team EXP}OI‘EI‘ window tolconne(:
g) R // 3. Use the Output window to see build out
pa el /f U. Use the Error List window to view errc
9 Toolbox Ctrl+Alt+X // 5. Go to Project > Add New Item to create
[l Notifications Ctrl+®, Ctrl+N // 6. In the future, to open this project ag
Terminal Ctrl+fi
| Other Windows Command Window Crl+ Alt+A
Toolbars g_]." Load Test Runs
Full Screen Shift+Alt+Enter — .
i= Syntax Visualizer
All Windows Shift+Alt+M 2 Live Share
Mavigate Backward Ctrl+- & Web Publish Activity
Mavigate Forward Crl+Shift+- > Task Runner Explorer Ctrl+Alt+Bkspce
Mext Task Package Manager Conscle
Previous Task Stack Trace Explorer Ctrl+E, Ctrl+5
A Properties Window F4 K Conan C/C++ Package Manager
Property Pages Shift+F4 Browser Link Dashboard

5= Document Outline Ctrl+ Alt+T
Dev Tunnels
Property Manager
Resource View Ctrl+Shift+E

C# Interactive

Bl 1 ® %D i

Code Metrics Results

Initially, you will need to configure the Conan executable to be used by the extension. By clicking on the configure
button (gear icon) from the extension’s window, you can set up the path to the Conan client executable. You can either
specify a custom path or choose to use the Conan client installed at the system level.

7.3. Visual Studio

207

Conan Documentation, Release 2.14.0

Conan C/C++ Package Manager > I X § Options ? X
@ gﬁ Search Options (Ctrl+E) el v Misc
[[] List only installed libraries b Environment Executable Path C:\Users\barbarian\Documents\developer\ ..
= I- Projects and Solutions Use System Conan False
Tbitconf <
Tbitd I+ Source Control
.‘ : I Work Items
i b Text Editor
aaf
I» Debugging
saplus I» Performance Tools
abseil b CMake
absent A Trmem
acado General
accellera-uvm-systemc I Cross Platform
access_private | Database Tools
acl I Graphics Diagnostics
ada v I IntelliCode
B I» Live Share
I MuGet Package Manager Executable Path
b Test Path to the Conan executable.
I Test Adapter for Google Test

Once you have configured the Conan client, the extension is ready to use, and you can start adding libraries to your
project.

Searching and Adding Libraries

Once configured, the library list in the Conan tool window becomes active, and you can search for Conan packages
using the search bar. Selecting a library will allow you to view its details, including available versions and integration
options.

208 Chapter 7. Integrations

Conan Documentation, Release 2.14.0

Conan CfC++ Package Manager > 1 x
open @ ("

[] List only installed libraries

dd-opentracing-cpp -
llvm-openmp
oatpp-cpenss|
open-dis-cpp
open-simulation-interface
openbd34

openal

openal-soft
openapi-generator
openassetio

openblas

opencascade
opencl-clhpp-headers

opencl-headers
nnnnn | irdd lmadear

opencv 481 ¥ | |Add requirement

OpenCV (Open Source Computer Vision Library)
& Apache-2.0

Check conan.o/center for more info

You can also check the Conan recipe in GitHub

If you now click the Add requirement button, the extension will add a conanfile.py and a conandata.yml to your project
with the necessary information to install the selected Conan packages. It will also add a prebuild event to the project
to install those libraries on the next compilation of the project.

At any point, you can also use the refresh button (circular arrow icon) to update the list of available packages in Conan
Center.

Now, if you initiate the build process for your project, the pre-build event will trigger Conan to install the packages and
inject the necessary properties into the project, enabling Visual Studio to compile and link against those libraries.

7.3. Visual Studio 209

https://conan.io/center
https://conan.io/center

Conan Documentation, Release 2.14.0

w File Edit View Git Project Build Debug Test Analyze Tools Extensions Window Help

s - | P~ & | D .. | |Release v| |x64 v| P Local Windows Debugger ~ [>

ConsoleApplicationd.cpp & X
Consolefpplicationd

Solution Explorer

Alo-s@80 o F=]

‘ Search Solution Explorer (Ctrl+) P|v| 1 #include <fmt/core.h>
FR Solution 'ConsoleApplicationd' (1 of 1 pro 3 wint main() {
4 ConsoleApplication4 u fmt: :print("Hello, World!\n");
[o0 References 5 return 9;
b F0 External Dependencies 6 |}
7

EF Header Files
EF Resource Files
b EF SourceFiles

Property M... JESdiEGLYSSNE Conan C/C.. ERMET,

@ Mo issues found

Output

Show output from: | Build '|| i | = = | XE | 2 | 0

Build started at 12:39 PM...

Ip------ Build started: Project: Consolefpplicationd, Configuration: Release wGd ------
1*Arguments for conan install: . -pr:h .conanfRelease_x6d -pr:b default --build missing
1>

— Input prgfiles ========

1*Profile host:

1x[settings]

1»arch=x86_&4
1xbuild_type=Release
1xcompiler=mswvc
1»compiler.cppstd=14
lrcompiler.runtime=dynamic
1rcompiler.runtime_type=Release
l>compiler.version=193
1xos=Windows

1>

1:*Profile build:
1x[settings]

1>arch=x86 64

210 Chapter 7. Integrations

Conan Documentation, Release 2.14.0

Warning: The initial compilation might fail if Visual Studio does not have sufficient time to process the injected
properties. If this happens, simply rebuild the project, and it should build successfully.

For a more in-depth introduction to the Conan Visual Studio extension with a practical example, please check this
example in Conan blog.

See also:
e Reference for MSBuildDeps, MSBuildToolchain and MSBuild.

* CLion Conan plugin.

7.4 Autotools

Conan provides different tools to help manage your projects using Autotools. They can be imported from conan.
tools.gnu. The most relevant tools are:

* AutotoolsDeps: the dependencies generator for Autotools, which generates shell scripts containing environment
variable definitions that the Autotools build system can understand.

* AutotoolsToolchain: the toolchain generator for Autotools, which generates shell scripts containing environment
variable definitions that the Autotools build system can understand.

e Autotools build helper, a wrapper around the command line invocation of autotools that abstracts calls like ./con-
figure or make into Python method calls.

» PkgConfigDeps: the dependencies generator for pkg-config which generates pkg-config files for all the required
dependencies of a package.

For the full list of tools under conan. tools.gnu please check the reference section.
See also:

* Reference for AutotoolsDeps, AutotoolsToolchain, Autotools and PkgConfigDeps.

7.4. Autotools 211

https://blog.conan.io/2024/03/21/Introducing-new-conan-visual-studio-extension.html

Conan Documentation, Release 2.14.0

7.5 Bazel

Conan provides different tools to help manage your projects using Bazel. They can be imported from conan. tools.
google. The most relevant tools are:

* BazelDeps: the dependencies generator for Bazel, which generates a [DEPENDENCY|]/BUILD.bazel file for
each dependency and a dependencies.bzl file containing a Bazel function to load all those ones. That function
must be loaded by your WORKSPACE file.

e BazelToolchain: the toolchain generator for Bazel, which generates a conan_bz1 . rc file that contains a build
configuration conan-config to inject all the parameters into the bazel build command.

* Bazel: the Bazel build helper. It’s simply a wrapper around the command line invocation of Bazel.
See also:

¢ Reference for BazelDeps.

* Reference for BazelToolchain.

* Reference for Bazel.

* Build a simple Bazel project using Conan

* Build a simple Bazel 7.x project using Conan

7.6 Makefile

Conan provides different tools to help manage your projects using Make. They can be imported from conan. tools.
gnu. Besides the most popular variant, GNU Make, Conan also supports other variants like BSD Make. The most
relevant tools are:

e MakeDeps: the dependencies generator for Make, which generates a Makefile containing definitions that the
Make build tool can understand.

Currently, there is no MakeToolchain generator, it should be added in the future.
For the full list of tools under conan.tools.gnu please check the reference section.

See also:

212 Chapter 7. Integrations

Conan Documentation, Release 2.14.0

¢ Reference for MakeDeps.

Xcode

Conan provides different tools to integrate with Xcode IDE, providing all the necessary information about the depen-
dencies, build options and also to build projects created with Xcode in recipes. They can be imported from conan.
tools.apple. The most relevant tools are:

* XcodeDeps: the dependency information generator for Xcode. It will generate multiple .xcconfig configuration
files, that can be used by consumers using xcodebuild in the command line or adding them to the Xcode IDE.

* XcodeToolchain: the toolchain generator for Xcode. It will generate .xcconfig configuration files that can be
added to Xcode projects. This generator translates the current package configuration, settings, and options, into
Xcode .xcconfig files syntax.

* XcodeBuild build helper is a wrapper around the command line invocation of Xcode. It will abstract the calls
like xcodebuild -project app.xcodeproj -configuration <config> -arch <arch> ...

For the full list of tools under conan.tools.apple please check the reference section.
See also:

e Reference for XcodeDeps, XcodeToolchain and XcodeBuild build helper

£) MESON

Conan provides different tools to help manage your projects using Meson. They can be imported from conan. tools.
meson. The most relevant tools are:

Meson

* MesonToolchain: generates the .ini files for Meson with the definitions of all the Meson properties related to the
Conan options and settings for the current package, platform, etc. MesonToolchain normally works together with
PkgConfigDeps to manage all the dependencies.

* Meson build helper, a wrapper around the command line invocation of Meson.
See also:

» Reference for MesonToolchain and Meson.

* Build a simple Meson project using Conan example

Build a simple Meson project using Conan

7.7. Xcode 213

Conan Documentation, Release 2.14.0

o/
7.9 p) Premake

Conan provides different tools to help manage your projects using Premake. They can be imported from conan.
tools.premake. The most relevant tools are:

* PremakeDeps: the dependencies generator for Premake, to allow consuming dependencies from Premake
projects

e Premake: the Premake build helper. It’s simply a wrapper around the command line invocation of Premake.
See also:
» Reference for PremakeDeps.

e Reference for Premake.

710 AN d I"Oid Android

Conan provides support for cross-building for Android, and it’s easy to integrate with Android Studio. Please check
these examples for more information on how to build your binaries for Android:

* Cross building to Android with the NDK

e Integrating Conan in Android Studio

214 Chapter 7. Integrations

Conan Documentation, Release 2.14.0

N
]Frog

7.11 JFrog

7.11.1 Artifactory Build Info

Warning: The support of Artifactory Build Info via extension commands is not covered by the Conan stability
commitment.

The Artifactory build info is a recollection of the metadata of a build. This json-formatted file includes all the details
about the build broken down into segments like version history, artifacts, project modules, dependencies, and everything
that was required to create the build.

Build infos are identified with abuild name andabuild number, similar to how many CI services identify the builds.
They are conveniently stored in Artifactory to keep track of the build metadata to later perform different operations.

Conan does not offer built-in support for the build info format. However, we have developed some custom commands
at at the extensions repository using the feature, that provides support to create and manage the build info files.

How to install the build info extension commands

Using the dedicated repository for Conan extensions https://github.com/conan-io/conan-extensions, it is as easy as:

$ conan config install https://github.com/conan-io/conan-extensions.git -sf=extensions/
—.commands/art -tf=extensions/commands/art

Generating a Build Info

A Build Info can be generated from a create or install command:

[$ conan create . --format json -s build_type=Release > create_release.json]

Then upload the created package to your repository:

[$ conan upload ... -c -r ... }

Now, using the JSON output from the create/install commands, a build info file can be generated:

$ conan art:build-info create create_release.json mybuildname_release 1 <repo> --server.
—my_artifactory --with-dependencies > mybuildname_release.json

7.11. JFrog 215

https://www.buildinfo.org/
https://github.com/conan-io/conan-extensions
https://github.com/conan-io/conan-extensions

Conan Documentation, Release 2.14.0

And then uploaded to Artifactory:

[$ conan art:build-info upload mybuildname_aggregated.json --server my_artifactory

For more reference, see the full example at https://github.com/conan-io/conan-extensions/tree/main/extensions/
commands/art#how-to-manage-build-infos-in-artifactory

See also:

* JFrog Artifactory has a dedicated API to manage build infos that has been integrated into the custom commands
for Artifactory.

e Check the conan art:build-info documentation for reference: https://github.com/conan-io/
conan-extensions/blob/main/extensions/commands/art/readme_build_info.md

000
00
712 90 @ ROS

Warning: This feature is experimental and subject to breaking changes. See the Conan stability section for more
information.

Conan provides integration for your Robot Operating System (ROS) C/C++ based projects. This will allow you to
consume Conan packages inside your ROS package projects. The Conan packages can be installed and used in CMake
with the help of the ROSEnv generator created for the purpose.

It provides a clean integration that requires no Conan-specific modifications in your CMakeLists.txt.

Important: This integration supports ROS2, it has been developed using its Humble version and the aim is to support
newer versions going forward. If you have any issues with other ROS versions, please let us know by opening an issue
in our GitHub repository.

Note: Pre-requisites to run the example:

1. In order to run the example, it is expected that you have an Ubuntu environment (22.04 LTS preferred) with
ROS2 Humble version installed. For convenience, you can also use this Docker File instead:

FROM osrf/ros:humble-desktop

RUN apt-get update && apt-get install -y \

curl \

python3-pip \

git \

ros-humble-nav2-msgs \

&& rm -rf /var/lib/apt/lists/*

RUN pip3 install --upgrade pip && pip3 install conan==2.*
RUN conan profile detect

CMD ["bash"]

216 Chapter 7. Integrations

https://github.com/conan-io/conan-extensions/tree/main/extensions/commands/art#how-to-manage-build-infos-in-artifactory
https://github.com/conan-io/conan-extensions/tree/main/extensions/commands/art#how-to-manage-build-infos-in-artifactory
https://jfrog.com/help/r/jfrog-rest-apis/build-info
https://github.com/conan-io/conan-extensions/blob/main/extensions/commands/art/readme_build_info.md
https://github.com/conan-io/conan-extensions/blob/main/extensions/commands/art/readme_build_info.md
https://docs.ros.org/en/humble/Installation/Ubuntu-Install-Debs.html

Conan Documentation, Release 2.14.0

Simply copy the Dockerfile, build your image with docker build -t conanio/ros-humble ., and finally run it
with docker run -it conanio/ros-humble.

2. The files for this example can be found at our examples repository. Clone it like so to get started:

$ git clone https://github.com/conan-io/examples2.git
$ cd examples2/examples/tools/ros/rosenv

7.12.1 Consuming Conan packages using the ROSEnv generator

Imagine we have a ROS C++ package called str_printer that uses some functionality from the third party string for-
matting library fmt to print fancy strings.

We have the following project structure:

§ tree /f
workspace
——str_printer
CMakeLists.txt
conanfile.txt
package.xml
——include
L _str_printer
str_printer.h
L—src
str_printer.cpp
L—consumer
CMakeLists.txt
package.xml
L—src
main.cpp

Where:

e The str_printer is a ROS package that implements a function and depends on the fmt Conan package.

* The consumer is also a ROS package that depends on the str_printer ROS package and uses its functionality in
a final executable.

The only difference in the str_printer package with respect to a normal ROS package is that it includes a conanfile.txt
file. This is the file used by Conan to install the required dependencies and generate the files needed to perform the

build.

Listing 1: str_printer/conanfile.txt

[requires]
fmt/11.0.2

[generators]
CMakeDeps
CMakeToolchain
ROSEnv

In this case, we will install the 11.0.2 version of fimt and Conan will generate files for CMake and ROS so we can build
the str_printer package later.

7.12. ROS 217

https://github.com/conan-io/examples2/tree/main/examples/tools/ros/rosenv/workspace
https://conan.io/center/recipes/fmt

Conan Documentation, Release 2.14.0

To install the fint library using Conan we should do the following:

$ cd workspace
$ conan install str_printer/conanfile.txt --build missing --output-folder install/conan
======== Computing dependency graph ========
fmt/11.0.2: Not found in local cache, looking in remotes...
fmt/11.0.2: Checking remote: conancenter
fmt/11.0.2: Downloaded recipe revision 5c7438ef4d5d69abl06a41e460cellf3
Graph root
conanfile.txt: /home/user/examples2/examples/tools/ros/rosenv/workspace/str_printer/
—.conanfile.txt
Requirements
fmt/11.0.2#5c7438ef4d5d69ab106a41e460cellf3 - Downloaded (conancenter)

======== Computing necessary packages ========

Requirements
fmt/11.0.2#5c7438ef4d5d69ab106a41e460cell1£3:29da3£f322a17cc9826b294a7ab191c2£298a9f49

—#d8d27£de7061£89£7992¢c671d98ead71 - Download (conancenter)

———————— Downloading 1 package --------

fmt/11.0.2: Retrieving package 29da3£322a17cc9826b294a7ab191c2£298a9f49 from remote
— 'conancenter'

fmt/11.0.2: Package installed 29da3f322a17cc9826b294a7ab191c2£298a9f49

fmt/11.0.2: Downloaded package revision d8d27£fde7061£89£7992c671d98ead71

======== Finalizing install (deploy, generators) ========
conanfile.txt: Writing generators to /home/user/examples2/examples/tools/ros/rosenv/
—workspace/install/conan
conanfile.txt: Generator 'CMakeDeps' calling 'generate()'
conanfile.txt: CMakeDeps necessary find_package() and targets for your CMakeLists.txt
find_package (fmt)
target_link libraries(... fmt::fmt)
conanfile.txt: Generator 'ClMakeToolchain' calling 'generate()'
conanfile.txt: CMakeToolchain generated: conan_toolchain.cmake
conanfile.txt: Preset 'conan-release' added to CMakePresets.json. Invoke it manually..
—using 'cmake --preset conan-release' if using CMake>=3.23
conanfile.txt: If your CMake version is not compatible with CMakePresets (<3.23) call.
—.cmake like: 'cmake <path> -G "Unix Makefiles" -DCMAKE_TOOLCHAIN_FILE=/home/danimtb/
—,examples2/examples/tools/ros/rosenv/workspace/install/conan/conan_toolchain.cmake -
—DCMAKE_POLICY_DEFAULT_CMPOO91=NEW -DCMAKE_BUILD_TYPE=Release'
conanfile.txt: CMakeToolchain generated: CMakePresets.json
conanfile.txt: CMakeToolchain generated: ../../str_printer/CMakeUserPresets.json
conanfile.txt: Generator 'ROSEnv' calling 'generate()'
conanfile.txt: Generated ROSEnv Conan file: conanrosenv.sh
Use 'source /home/user/examples2/examples/tools/ros/rosenv/workspace/install/conan/
—~conanrosenv.sh' to set the ROSEnv Conan before 'colcon build'
conanfile.txt: Generating aggregated env files
conanfile.txt: Generated aggregated env files: ['conanrosenv.sh']
Install finished successfully

This will download the fint Conan package to the local cache and generate the CMake and ROS environment files in
the conan subfolder of the install directory.

218 Chapter 7. Integrations

Conan Documentation, Release 2.14.0

Now we can source our ROS environment, then source the Conan ROSEnv environment, so the conan-installed
package are found by CMake, and then we can build the str_printer package as usual with Colcon.

$ source /opt/ros/humble/setup.bash

$ source install/conan/conanrosenv.sh

$ colcon build --packages-select str_printer
Starting >>> str_printer

Finished <<< str_printer [10.8s]

Summary: 1 package finished [12.4s]

7.12.2 Bridging the Conan-provided transitive dependencies to another ROS pack-
age

As the consumer ROS package depends on str_printer, the targets of transitive dependencies should be exported. This
is done as usual in the str_printers’s CMakeLists.txt using ament_export_dependencies():

Listing 2: str_printer/CMakeLists.txt

cmake_minimum_required (VERSION 3.8)
project(str_printer)

if(CMAKE_COMPILER_IS_GNUCXX OR CMAKE_CXX_COMPILER_ID MATCHES "Clang")
add_compile_options(-Wall -Wextra -Wpedantic)
endif()

find dependencies
find_package(ament_cmake REQUIRED)
find_package(fmt REQUIRED) # Retrieved with Conan C/C++ Package Manager

add_library(str_printer src/str_printer.cpp)

target_include_directories(str_printer PUBLIC
$<BUILD_INTERFACE: $ {CMAKE_CURRENT_SOURCE_DIR}/include/str_printer>
$<INSTALL_INTERFACE:include>)

target_compile_features(str_printer PUBLIC c_std_99 cxx_std_17) # Require C99 and C++17
ament_target_dependencies(str_printer fmt)

ament_export_targets(str_printerTargets HAS_LIBRARY_TARGET)
ament_export_dependencies(fmt)

install(

DIRECTORY include/
DESTINATION include
)

install(

TARGETS str_printer
EXPORT str_printerTargets
LIBRARY DESTINATION lib
ARCHIVE DESTINATION 1lib

(continues on next page)

7.12. ROS 219

Conan Documentation, Release 2.14.0

(continued from previous page)

RUNTIME DESTINATION bin
INCLUDES DESTINATION include
D)

ament_package()

To build the consumer ROS package, you can proceed as usual (make sure that you have both the ROS environment
and the Conan ROSEnv environment sourced before building as in previous step):

$ colcon build --packages-select consumer
Starting >>> consumer
Finished <<< consumer [7.9s]

Summary: 1 package finished [9.4s]

And after this, our consumer application should be ready to run with just:

$ source install/setup.bash
$ ros2 run consumer main
Hi there! I am using fmt library fetched with Conan C/C++ Package Manager

See also:

 Reference for ROSEnv generator.

220 Chapter 7. Integrations

CHAPTER
EIGHT

EXAMPLES

8.1 ConanFile methods examples

8.1.1 ConanFile package_info() examples

Propagating environment or configuration information to consumers

TBD

Define components for Conan packages that provide multiple libraries

At the section of the tutorial about the package_info() method, we learned how to define information in a package
for consumers, such as library names or include and library folders. In the tutorial, we created a package with only
one library that consumers linked to. However, in some cases, libraries provide their functionalities separated into
different components. These components can be consumed independently, and in some cases, they may require other
components from the same library or others. For example, consider a library like OpenSSL that provides libcrypto and
libssl, where libssl depends on libcrypto.

Conan provides a way to abstract this information using the components attribute of the CppInfo object to define the
information for each separate component of a Conan package. Consumers can also select specific components to link
against but not the rest of the package.

Let’s take a game-engine library as an example, which provides several components such as algorithms, ai, rendering,
and network. Both ai and rendering depend on the algorithms component.

Please, first clone the sources to recreate this project. You can find them in the examples2 repository in GitHub:

$ git clone https://github.com/conan-io/examples2.git
$ cd examples2/examples/conanfile/package_info/components

You can check the contents of the project:

— CMakeLists.txt

— conanfile.py

—— include
ai.h
algorithms.h
network.h
rendering.h

— SIrc

(continues on next page)

221

https://github.com/conan-io/examples2

Conan Documentation, Release 2.14.0

— ai.cpp

test_package

—— SIrc

algorithms network
ai rendering

Fig. 1: components of the game-engine package

(continued from previous page)

— algorithms.cpp
— network.cpp
L— rendering.

cpp

— CMakeLists.txt
— CMakeUserPresets. json
— conanfile.

py

L example.cpp

As you can see, there are sources for each of the components and a CMakeLists.txt file to build them. We also have a
test_package that we are going to use to test the consumption of the separate components.

First, let’s have a look at package_info() method in the conanfile.py and how we declared the information for each
component that we want to provide to the consumers of the game-engine package:

def package_info(self):

self.cpp_info.
self.cpp_info.

=)

self.cpp_info.
self.cpp_info.

self.cpp_info.
self.cpp_info.
self.cpp_info.

self.cpp_info.
self.cpp_info.

components["algorithms"].libs = ["algorithms"]
components["algorithms"].set_property("cmake_target_name", "algorithms

components["network"].libs = ["network"]
components['"network"].set_property('cmake_target_name", "network")

components["ai"].libs = ["ai"]
components["ai"].requires = ["algorithms"]
components["ai"].set_property("cmake_target_name",

ai")

components["rendering"].libs = ["rendering"]
components["rendering"].requires = ["algorithms"]

(continues on next page)

222

Chapter 8. Examples

Conan Documentation, Release 2.14.0

(continued from previous page)

{ self.cpp_info.components["rendering"].set_property('cmake_target_name", "rendering")

There are a couple of relevant things:

e We declare the libraries generated by each of the components by setting information in the cpp_info.
components attribute. You can set the same information for each of the components as you would for the self.
cpp_info object. The cpp_info for components has some defaults defined, just like it does for self.cpp_info.
For example, the cpp_info.components object provides the .includedirs and .1libdirs properties to de-
fine those locations, but Conan sets their value as ["1ib"] and ["include"] by default, so it’s not necessary
to add them in this case.

* We are also declaring the components’ dependencies using the . requires attribute. With this attribute, you can
declare requirements at the component level, not only for components in the same recipe but also for components
from other packages that are declared as requires of the Conan package.

* We are changing the default target names for the components using the properties model. By default, Conan sets
a target name for components like <package_name: : component_name>, but for this tutorial we will set the
component target names just with the component names omitting the : :.

e When cpp_info has global build information (e.g. cpp_info.defines), it does not inherit to the components.
If you want to share this information with the components, you need to set it explicitly for each component.

You can have a look at the consumer part by checking the test_package folder. First the conanfile.py:

def generate(self):
deps = CMakeDeps(self)
deps.check_components_exist = True
deps.generate()

You can see that we are setting the check_components_exist property for CMakeDeps. This is not needed, just to show
how you can do if you want your consumers to fail if the component does not exist. So, the CMakeLists.txt could look
like this:

cmake_minimum_required (VERSION 3.15)
project(PackageTest CXX)

find_package(game-engine REQUIRED COMPONENTS algorithms network ai rendering)
add_executable(example src/example.cpp)
target_link libraries(example algorithms

network

ai
rendering)

And the find_package () call would fail if any of the components targets do not exist.

Let’s run the example:

$ conan create .

game-engine/1.0: RUN: cmake --build "/Users/barbarian/.conan2/p/t/game-d6e361d329116/b/
—build/Release" -- -j16
[12%] Building CXX object CMakeFiles/algorithms.dir/src/algorithms.cpp.o

(continues on next page)

8.1. ConanFile methods examples 223

Conan Documentation, Release 2.14.0

(continued from previous page)

25%] Building CXX object CMakeFiles/network.dir/src/network.cpp.o
37%] Linking CXX static library libnetwork.a

50%] Linking CXX static library libalgorithms.a

50%] Built target network

50%] Built target algorithms

62%] Building CXX object CMakeFiles/ai.dir/src/ai.cpp.o

75%] Building CXX object CMakeFiles/rendering.dir/src/rendering.cpp.o
[87%] Linking CXX static library libai.a

[100%] Linking CXX static library librendering.a

[100%] Built target ai

[100%] Built target rendering

(o N e T s T s I s Y s B |

-- Conan: Component target declared 'algorithms'
-- Conan: Component target declared 'network'

-- Conan: Component target declared 'ai'

-- Conan: Component target declared 'rendering'

[50%] Building CXX object CMakeFiles/example.dir/src/example.cpp.o
[100%] Linking CXX executable example
[100%] Built target example

======== Testing the package: Executing test ========
game-engine/1.0 (test package): Running test()
game-engine/1.0 (test package): RUN: ./example

I am the algorithms component!

I am the network component!

I am the ai component!

L > I am the algorithms component!

I am the rendering component!

L—> I am the algorithms component!

You could check that requiring a component that does not exist will raise an error. Add the nonexistent component to
the find_package() call:

cmake_minimum_required (VERSION 3.15)
project(PackageTest CXX)

find_package(game-engine REQUIRED COMPONENTS nonexistent algorithms network ai rendering)
add_executable(example src/example.cpp)
target_link_libraries(example algorithms

network

ai
rendering)

And test the package again:

224 Chapter 8. Examples

Conan Documentation, Release 2.14.0

$ conan test test_package game-engine/1.0

Conan: Component 'nonexistent' NOT found in package 'game-engine'
Call Stack (most recent call first):
CMakeLists.txt:4 (find_package)

-- Configuring incomplete, errors occurred!

ERROR: game-engine/1.0 (test package): Error in build() method, line 22
cmake.configure()
ConanException: Error 1 while executing

See also:

If you want to use recipes defining components in editable mode, check the example in Using components and
editable packages.

8.1.2 ConanFile layout() examples

Declaring the layout when the Conanfile is inside a subfolder

Please, first clone the sources to recreate this project. You can find them in the examples2 repository in GitHub:

$ git clone https://github.com/conan-io/examples2.git
$ cd examples2/examples/conanfile/layout/conanfile_in_subfolder

If we have a project intended to package the code that is in the same repo as the conanfile.py, but the conanfile.py
is not in the root of the project:

CMakeLists.txt
conan

L— conanfile.py
include

L— say.h

src

L— say.cpp

The conanfile.py would look like this:

import os

from conan import ConanFile

from conan.tools.files import load, copy
from conan.tools.cmake import CMake

class PkgSay(ConanFile):
name = "say"
version = "1.0"

(continues on next page)

8.1. ConanFile methods examples 225

https://github.com/conan-io/examples2

Conan Documentation, Release 2.14.0

(continued from previous page)

settings = "os", "compiler", "build_type", "arch"
generators = "CMakeToolchain"
def layout(self):

def

—above

def

def

The root of the project is one level above

self.folders.root = ".."

The source of the project (the root CMakeLists.txt) is the source folder
self.folders.source = "."

self.folders.build = "build"

export_sources(self):
The path of the CMakelLists.txt and sources we want to export are one level.,

folder = os.path.join(self.recipe_folder, "..")

copy(self, "*.txt", folder, self.export_sources_folder)
copy(self, "src/*.cpp", folder, self.export_sources_folder)
copy(self, "include/*.h", folder, self.export_sources_folder)

source(self):
Check that we can see that the CMakelLists.txt is inside the source folder
cmake_file = load(self, "CMakeLists.txt")

build(self):
Check that the build() method can also access the CMakelLists.txt in the source.

— folder

path = os.path.join(self.source_folder, "CMakeLists.txt")
cmake_file = load(self, path)

cmake = CMake(self)
cmake.configure()
cmake.build()

def package(self):

cmake = CMake(self)
cmake.install ()

You can try and create the say package:

$ cd conan
$ conan create .

See also:

* layout method

e how the package layout works.

226

Chapter 8. Examples

Conan Documentation, Release 2.14.0

Declaring the layout when creating packages for third-party libraries

Please, first clone the sources to recreate this project. You can find them in the examples2 repository in GitHub:

$ git clone https://github.com/conan-io/examples2.git
$ cd examples2/examples/conanfile/layout/third_party_libraries

If we have this project, intended to create a package for a third-party library whose code is located externally:

|: conanfile.py
patches
L— mypatch

The conanfile.py would look like this:

class Pkg(ConanFile):
name = "hello"
version = "1.0"
exports_sources = "patches*"

def

layout (self):
cmake_layout(self, src_folder="src")
if you are declaring your own layout, just declare:

self.folders.source = "src"
def source(self):
we are inside a "src" subfolder, as defined by layout
the downloaded soures will be inside the "src" subfolder
get(self, "https://github.com/conan-io/libhello/archive/refs/heads/main.zip",
strip_root=True)
Please, be aware that using the head of the branch instead of an immutable tag
or commit is not a good practice in general as the branch may change the.
—,contents
patching, replacing, happens here
patch(self, patch_file=os.path.join(self.export_sources_folder, "patches/mypatch
="))
def build(self):
If necessary, the build() method also has access to the export_sources_folder
for example if patching happens in build() instead of source()
#patch(self, patch_file=os.path.join(self.export_sources_folder, "patches/mypatch
="))

cmake = CMake(self)
cmake.configure()
cmake.build()

We can see that the ConanFile.export_sources_folder attribute can provide access to the root folder of the

sources:

8.1. ConanFile methods examples 227

https://github.com/conan-io/examples2

Conan Documentation, Release 2.14.0

* Locally it will be the folder where the conanfile.py lives

* In the cache it will be the “source” folder, that will contain a copy of CMakeLists.txt and patches, while the
“source/src” folder will contain the actual downloaded sources.

We can check that everything runs fine now:

$ conan create .

Downloading main.zip
hello/1.0: Unzipping 3.7KB
Unzipping 100 %

[50%] Building CXX object CMakeFiles/hello.dir/src/hello.cpp.o
[100%] Linking CXX static library libhello.a
[100%] Built target hello

$ conan list hello/1.0
Local Cache
hello

hello/1.0

See also:

* Read more about the layout method and how the package layout works.

Declaring the layout when we have multiple subprojects

Please, first clone the sources to recreate this project. You can find them in the examples2 repository in GitHub:

$ git clone https://github.com/conan-io/examples2.git
$ cd examples2/examples/conanfile/layout/multiple_subprojects

Let’s say that we have a project that contains two subprojects: hello and bye, that need to access some information that
is at their same level (sibling folders). Each subproject would be a Conan package. The structure could be something
similar to this:

— bye

— CMakeLists.txt
— bye.cpp # contains an #include "../common/myheader.h"
L— conanfile.py # contains include(../common/myutils.cmake)
— common
— myheader.h
L— myutils.cmake
L— hello
— CMakeLists.txt # contains include(../common/myutils.cmake)
— conanfile.py
L— hello.cpp # contains an #include "../common/myheader.h"

Both hello and bye subprojects needs to use some of the files located inside the common folder (that might be used and
shared by other subprojects too), and it references them by their relative location. Note that common is not intended to
be a Conan package. It is just some common code that will be copied into the different subproject packages.

"

We can use the self.folders.root = ".." layout specifier to locate the root of the project, then use the self.
folders.subproject = "subprojectfolder" to relocate back most of the layout to the current subproject folder,

228 Chapter 8. Examples

https://github.com/conan-io/examples2

Conan Documentation, Release 2.14.0

as it would be the one containing the build scripts, sources code, etc., so other helpers like cmake_layout() keep
working. Let’s see how the conanfile.py of hello could look like:

Listing 1: ./hello/conanfile.py

import os

from conan import ConanFile

from conan.tools.cmake import cmake_layout, CMake
from conan.tools.files import copy

class hello(ConanFile):

name = "hello"

version = "1.0"

settings = "os", "compiler", "build_type", "arch"
generators = "CMakeToolchain"

def layout(self):
self.folders.root =
self.folders.subproject = "hello"
cmake_layout(self)

" n

def export_sources(self):
source_folder = os.path.join(self.recipe_folder, "..")
copy(self, "hello/conanfile.py", source_folder, self.export_sources_folder)
copy(self, "hello/CMakelLists.txt", source_folder, self.export_sources_folder)
copy(self, "hello/hello.cpp", source_folder, self.export_sources_folder)
copy(self, "common*", source_folder, self.export_sources_folder)

def build(self):
cmake = CMake(self)
cmake.configure()
cmake.build()
self.run(os.path.join(self.cpp.build.bindirs[0], "hello"))

Let’s build hello and check that it’s building correctly, using the contents of the common folder.

$ conan install hello
$ conan build hello

[100%] Built target hello
conanfile.py (hello/1.0): RUN: ./hello
hello WORLD

You can also run a conan create and check that it works fine too:

$ conan create hello

[100%] Built target hello
conanfile.py (hello/1.0): RUN: ./hello
hello WORLD

Note: Note the importance of the export_sources () method, which is able to maintain the same relative layout of

8.1. ConanFile methods examples 229

Conan Documentation, Release 2.14.0

the hello and common folders, both in the local developer flow in the current folder, but also when those sources are
copied to the Conan cache, to be built there with conan create or conan install --build=hello. This is one
of the design principles of the 1ayout (), the relative location of things must be consistent in the user folder and in the
cache.

See also:

* Read more about the layout method and how the package layout works.

Using components and editable packages

It is possible to define components in the layout () method, to support the case of editable packages. That is,
if we want to put a package in editable mode, and that package defines components, it is necessary to define the
components layout correctly in the layout () method. Let’s see it in a real example.

Please, first clone the sources to recreate this project. You can find them in the examples2 repository in GitHub:

$ git clone https://github.com/conan-io/examples2.git
$ cd examples2/examples/conanfile/layout/editable_components

There we find a greetings subfolder and package, that contains 2 libraries, the hello library and the bye library.
Each one is modeled as a component inside the package recipe:

Listing 2: greetings/conanfile.py

class GreetingsConan(ConanFile):

name = "greetings"

version = "0.1"

settings = "os", "compiler", "build_type", "arch"
generators = "CMakeDeps", "CMakeToolchain"
exports_sources = "src/*"

def build(self):
cmake = CMake(self)
cmake.configure()
cmake.build()

def layout(self):
cmake_layout(self, src_folder="src")
This "includedirs" starts in the source folder, which is "src"
So the components include dirs is the "src" folder (includes are
intended to be included as " #include "hello/hello.h"™)
self.cpp.source.components["hello"].includedirs = ["."]
self.cpp.source.components["bye"].includedirs = ["."]
compiled libraries "libdirs" will be inside the "build" folder, depending
on the platform they will be in "build/Release" or directly in "build" folder
bt = "." if self.settings.os != "Windows" else str(self.settings.build_type)
self.cpp.build.components["hello"].libdirs = [bt]
self.cpp.build.components["bye"].libdirs = [bt]

def package(self):
copy(self, "*.h", src=self.source_folder,
dst=join(self.package_folder, "include"))
copy(self, "*.1ib", src=self.build_folder,

(continues on next page)

230 Chapter 8. Examples

https://github.com/conan-io/examples2

Conan Documentation, Release 2.14.0

(continued from previous page)
dst=join(self.package_folder, "1lib"), keep_path=False)
copy(self, "*.a", src=self.build_folder,
dst=join(self.package_folder, "lib"), keep_path=False)

def package_info(self):
self.cpp_info.components["hello"].libs = ["hello"]
self.cpp_info.components["bye"].libs = ["bye"]

self.cpp_info.set_property("cmake_file_name", "MYG")
self.cpp_info.set_property("cmake_target_name", "MyGreetings::MyGreetings")
self.cpp_info.components["hello"].set_property("cmake_target_name",
—"MyGreetings: :MyHello")
self.cpp_info.components["bye"].set_property("cmake_target_name",
- "MyGreetings: :MyBye")

While the location of the hello and bye libraries in the final package is in the final 1ib folder, then nothing special is
needed in the package_info() method, beyond the definition of the components. In this case, the customization of
the CMake generated filenames and targets is also included, but it is not necessary for this example.

The important part is the layout() definition. Besides the common cmake_layout, it is necessary to de-
fine the location of the components headers (self.cpp.source as they are source code) and the location of
the locally built libraries. As the location of the libraries depends on the platform, the final self.cpp.build.
components["component"].libdirs depends on the platform.

With this recipe we can put the package in editable mode and locally build it with:

$ conan editable add greetings
$ conan build greetings
we might want to also build the debug config

In the app folder we have a package recipe to build 2 executables, that link with the greeting package components.
The app/conanfile.py recipe there is simple, the build () method builds and runs both example and example2
executables that are built with CMakeLists.txt:

Note the MYG file name, not matching the package name,
because the recipe defined "cmake_file_name"
find_package (MYG)

add_executable(example example.cpp)

Note the MyGreetings::MyGreetings target name, not matching the package name,
because the recipe defined "cmake_target_name"

"example" is linking with the whole package, both "hello" and "bye'" components
target_link libraries(example MyGreetings: :MyGreetings)

add_executable(example2 example2.cpp)
"example2" is only using and linking "hello" component, but not "bye"
target_link_libraries(example2 MyGreetings: :MyHello)

$ conan build app
hello: Release!
bye: Release!

If you now go to the bye. cpp source file and modify the output message, then build greetings and app locally, the
final output message for the “bye” component library should change:

8.1. ConanFile methods examples 231

Conan Documentation, Release 2.14.0

$ conan build greetings
$ conan build app
hello: Release!

adios: Release!

8.2 Conan extensions examples

Note: Check the conan-extensions repository, which hosts useful extensions ready to use or to take inspiration from
for your custom ones

8.2.1 Custom commands

Custom command: Clean old recipe and package revisions

Note: This is mostly an example command. The built-in conan remove *#!latest syntax, meaning “all revisions
but the latest” would probably be enough for this use case, without needing this custom command.

Please, first clone the sources to recreate this project. You can find them in the examples2 repository in GitHub:

$ git clone https://github.com/conan-io/examples2.git
$ cd examples2/examples/extensions/commands/clean

In this example we are going to see how to create/use a custom command: conan clean. It removes every recipe and
its package revisions from the local cache or the remotes, except the latest package revision from the latest recipe one.

Note: To understand better this example, it is highly recommended to read previously the Custom commands reference.

Locate the command

Copy the command file cmd_clean. py into your [YOUR_CONAN_HOME] /extensions/commands/ folder (create it if
it’s not there). If you don’t know where [YOUR_CONAN_HOME] is located, you can run conan config home to check
it.

Run it

Now, you should be able to see the new command in your command prompt:

$ conan -h

Custom commands
clean Deletes (from local cache or remotes) all recipe and package revisions but.
—the
latest package revision from the latest recipe revision.
(continues on next page)

232 Chapter 8. Examples

https://github.com/conan-io/conan-extensions
https://github.com/conan-io/examples2

Conan Documentation, Release 2.14.0

(continued from previous page)

$ conan clean -h
usage: conan clean [-h] [-r REMOTE] [--forcel]

Deletes (from local cache or remotes) all recipe and package revisions but
the latest package revision from the latest recipe revision.

optional arguments:
-h, --help show this help message and exit
-r REMOTE, --remote REMOTE
Will remove from the specified remote
--force Remove without requesting a confirmation

Finally, if you execute conan clean:

$ conan clean

Do you want to remove all the recipes revisions and their packages ones, except the.
—.latest package revision from the latest recipe one? (yes/no): yes

other/1.0

Removed package revision: other/1.0
—#31da245c3399e4124e39bd4£77b5261f:da39a3ee5e6b4b0d3255bfef95601890afd80709
—#al16985deb2elaa73a8480faad22b722c [Local cache]

Removed recipe revision: other/1.0#721995a35b1a8d840ce634ealac71161 and all its package.
—revisions [Local cache]

hello/1.0

Removed package revision: hello/1.0
—#9a77cdcf£3a539b5b077dd811b2ae3b0®:da39a3ee5e6b4b0d3255bfef95601890afd80709
—#cee90a74944125e7e9b4£74210bfec3f [Local cache]

Removed package revision: hello/1.0
—#9a77cdcf£3a539b5b077dd811b2ae3b0:da39a3ee5e6b4b0®d3255bfef95601890afd80709
—#7cddd50952de9935d6c3b5b676a34c48 [Local cache]

libcxx/0.1

Nothing should happen if you run it again:

$ conan clean

Do you want to remove all the recipes revisions and their packages ones, except the.
-.latest package revision from the latest recipe one? (yes/no): yes

other/1.0

hello/1.0

libcxx/0.1

Code tour

The conan clean command has the following code:

Listing 3: cmd_clean.py

from conan.api.conan_api import ConanAPI
from conan.api.output import ConanOutput, Color
from conan.cli.command import OnceArgument, conan_command

(continues on next page)

8.2. Conan extensions examples 233

Conan Documentation, Release 2.14.0

(continued from previous page)

recipe_color = Color.BRIGHT_BLUE
removed_color = Color.BRIGHT_YELLOW

@conan_command (group="Custom commands")
def clean(conan_api: ConanAPI, parser, *args):
Deletes (from local cache or remotes) all recipe and package revisions but
the latest package revision from the latest recipe revision.
parser.add_argument('-r', '--remote', action=OnceArgument,
help="Will remove from the specified remote')
args = parser.parse_args(¥*args)

out = ConanOutput()
remote = conan_api.remotes.get(args.remote) if args.remote else None
output_remote = remote or "Local cache"

Getting all the recipes
recipes = conan_api.search.recipes("*/*", remote=remote)
for recipe in recipes:
out.writeln(f"{str(recipe)}", fg=recipe_color)
all_rrevs = conan_api.list.recipe_revisions(recipe, remote=remote)
latest_rrev = all_rrevs[0] if all_rrevs else None
for rrev in all_rrevs:
if rrev != latest_rrev:
conan_api.remove.recipe(rrev, remote=remote)
out.writeln(f"Removed recipe revision: {rrev.repr_notime()} "
f"and all its package revisions [{output_remotel}]",.
- fg=removed_color)
else:
packages = conan_api.list.packages_configurations(rrev, remote=remote)
for package_ref in packages:
all_prevs = conan_api.list.package_revisions(package_ref,..
—remote=remote)
latest_prev = all_prevs[0®] if all_prevs else None
for prev in all_prevs:
if prev != latest_prev:
conan_api.remove.package(prev, remote=remote)
out.writeln(f"Removed package revision: {prev.repr_notime()} [
—{output_remote}]", fg=removed_color)

Let’s analyze the most important parts.

234 Chapter 8. Examples

Conan Documentation, Release 2.14.0

parser

The parser param is an instance of the Python command-line parsing argparse.ArgumentParser, so if you want
to know more about its API, visit its official website.

User output

ConanOutput(): class to manage user outputs. In this example, we’re using only out.writeln(message,
fg=None, bg=None) where fg is the font foreground, and bg is the font background. Apart from that, you have
some predefined methods like out.info(), out.success(), out.error(), etc.

Conan public API

Warning: This feature is experimental and subject to breaking changes. See the Conan stability section for more
information.

The most important part of this example is the usage of the Conan API via conan_api parameter. These are some
examples which are being used in this custom command:

conan_api.remotes.get(args.remote)
conan_api.search.recipes("*/*", remote=remote)
conan_api.list.recipe_revisions(recipe, remote=remote)
conan_api.remove.recipe(rrev, remote=remote)
conan_api.list.packages_configurations(rrev, remote=remote)
conan_api.list.package_revisions(package_ref, remote=remote)
conan_api.remove.package(prev, remote=remote)

e conan_api.remotes.get(...): [RemotesAPI] Returns a RemoteRegistry given the remote name.

e conan_api.search.recipes(...): [SearchAPI] Returns a list with all the recipes matching the given pat-
tern.

e conan_api.list.recipe_revisions(...): [ListAPI] Returns a list with all the recipe revisions given a
recipe reference.

e conan_api.list.packages_configurations(...): [ListAPI] Returns the list of different configurations
(package_id’s) for a recipe revision.

e conan_api.list.package_revisions(...): [ListAPI] Returns the list of package revisions for a given
recipe revision.

e conan_api.remove.recipe(...): [RemoveAPI] Removes the given recipe revision.
* conan_api.remove.package(...): [RemoveAPI] Removes the given package revision.

Besides that, it deserves especial attention these lines:

all_rrevs = conan_api.list.recipe_revisions(recipe, remote=remote)
latest_rrev = all_rrevs[®] if all_rrevs else None

packages = conan_api.list.packages_configurations(rrev, remote=remote)

(continues on next page)

8.2. Conan extensions examples 235

https://docs.python.org/3/library/argparse.html

Conan Documentation, Release 2.14.0

(continued from previous page)

all_prevs = conan_api.list.package_revisions(package_ref, remote=remote)
latest_prev = all_prevs[0®] if all_prevs else None

Basically, these API calls are returning a list of recipe revisions and package ones respectively, but we’re saving the
first element as the latest one because these calls are getting an ordered list always.

If you want to know more about the Conan API, visit the ConanAPI section

8.2.2 Builtin deployers
Creating a Conan-agnostic deploy of dependencies for developer use

With the full_deploy deployer it is possible to create a Conan-agnostic copy of dependencies that can be used by
developers without even having Conan installed in their computers.

The common and recommended flow for most cases is using Conan packages directly from the Conan cache:

$ conan install .

<userhome=>/.conan2 (Conan cache) <userhome=>/myproject (User project)

— T
- N conanfile.py
w CMakelLists.txt User code
| src
mycode.cpp
zlib/1.2.13
\ build ¢ Conan
gengra ors generated
cmake/3.25.3 |[@——L | zlib-config.cmake ”
; files
conanbuild.bat

\\—////

Conan packages installed
in the cache

However, in some situations, it might be useful to be able to deploy a copy of the dependencies into a user folder, so
the dependencies can be located there instead of in the Conan cache. This is possible using the Conan deployers.

Let’s see it with an example. All the source code is in the examples2.0 Github repository

$ git clone https://github.com/conan-io/examples2.git
$ cd examples2/examples/extensions/deployers/development_deploy

In the folder we can find the following conanfile. txt:

236 Chapter 8. Examples

https://github.com/conan-io/examples2

Conan Documentation, Release 2.14.0

[requires]
z1lib/1.2.13

[tool_requires]
cmake/3.25.3

[generators]
CMakeDeps
CMakeToolchain

[layout]
cmake_layout

The folder also contains a standard CMakeLists.txt and a main.cpp source file that can create an executable that

links with z1ib library.

We can install the Debug and Release dependencies, and deploy a local copy of the packages with:

$ conan install . --deployer=full_deploy --build=missing
$ conan install . --deployer=full_deploy -s build_type=Debug --build=missing

This will create the following folders:

—src
—build

—generators
| L ZLibConfig.cmake

——full_deploy

—build
L—cmake
L—3.25.3
L —x86_64
I—bin
_—host
L_z1ib
L—1.2.13
Debug
L —x86_64
—include
—1ib
Release
L —x86_64
——include
—1ib

(Note that you could use the --deployer-folder argument to change the base folder output path for the deployer)

This folder is fully self-contained. It contains both the necessary tools (like cmake executable), the headers and com-
piled libraries of z1ib and the necessary files like ZLibConfig.cmake in the build/generators folder, that point

to the binaries inside full_deploy with a relative path.

8.2. Conan extensions examples

237

Conan Documentation, Release 2.14.0

$ conan install . --deployer=full_deploy

<userhome>/.conan2 (Conan cache) <userhome=>/myproject (User project)

— T
" ™ conanfile.py
w CMakelLists.txt User code
src
mycode.cpp
zlib/1.2.13
build Conan generated
generators files
cmake/3.25.3 conanbuild.bat
\ // zlib-config.cmake
1 full_deploy
host
> zlib/1.2.13/Debug/x86 <+—
Dependencies are build
deployed (copied) cmake/3.25.3/Release/x86 64

Deployed Conan-independent artifacts

The Conan cache can be removed, and even Conan uninstalled, then the folder could be moved elsewhere in the com-
puter or copied to another computer, assuming it has the same configuration of OS, compiler, etc.

$ cd ..
$ cp -R development_deploy /some/other/place
$ cd /some/other/place

And the files could be used by developers as:

Listing 4: Windows

$ cd build

Activate the environment to use CMake 3.25

$ generators\conanbuild.bat

$ cmake --version

cmake version 3.25.3

Configure, should match the settings used at install

$ cmake .. -G \"Visual Studio 17 2022\" -DCMAKE_TOOLCHAIN_FILE=generators/conan_
—»toolchain.cmake
$ cmake --build . --config Release

$ Release\compressor.exe
ZLIB VERSION: 1.2.13

The environment scripts in Linux and OSX are not relocatable, because they contain absolute paths and the sh shell
does not have any way to provide access to the current script directory for sourced files.

This shouldn’t be a big blocker, as a “search and replace” with sed in the generators folder can fix it:

238 Chapter 8. Examples

https://stackoverflow.com/questions/29832037/how-to-get-script-directory-in-posix-sh/29835459#29835459

Conan Documentation, Release 2.14.0

Listing 5: Linux

cd build/Release/generators

Fix folders in Linux

sed -i 's,{old_folder}, {new_folder},g' *
Fix folders in MacOS

sed -i '' 's,{old_folder}, {new_folder},g' *
source conanbuild.sh

cd ..

cmake --version

cmake version 3.25.3

$ cmake ../.. -DCMAKE_TOOLCHAIN_FILE=generators/conan_toolchain.cmake -DCMAKE_BUILD_
. TYPE=Release

$ cmake --build .

$./compressor

ZLIB VERSION: 1.2.13

Y Y Y I T R T

Note: Best practices
The fact that this flow is possible doesn’t mean that it is recommended for the majority of cases. It has some limitations:
* It is less efficient, requiring an extra copy of dependencies

* Only CMakeDeps and CMakeToolchain are relocatable at this moment. For other build system integrations,
please create a ticket in Github

* Linux and OSX shell scripts are not relocatable and require a manual sed

* The binary variability is limited to Release/Debug. The generated files are exclusively for the current configura-
tion, changing any other setting (os, compiler, architecture) will require a different deploy

In the general case, normal usage of the cache is recommended. This “relocatable development deployment” could be
useful for distributing final products that looks like an SDK, to consumers of a project not using Conan.

8.2.3 Custom deployers

Copy sources from all your dependencies

Please, first clone the sources to recreate this project. You can find them in the examples2 repository in GitHub:

$ git clone https://github.com/conan-io/examples2.git
$ cd examples2/examples/extensions/deployers/sources

In this example we are going to see how to create and use a custom deployer. This deployer copies all the source files
from your dependencies and puts them into a specific output folder

Note: To better understand this example, it is highly recommended to have previously read the Deployers reference.

8.2. Conan extensions examples 239

https://github.com/conan-io/examples2

Conan Documentation, Release 2.14.0

Locate the deployer

In this case, the deployer is located in the same directory as our example conanfile, but as shown in Deployers reference,
Conan will look for the specified deployer in a few extra places in order, namely:

1. Absolute paths

2. Relative to cwd

3. In the [CONAN_HOME]/extensions/deployers folder
4. Built-in deployers

Run it

For our example, we have a simple recipe that lists both z1ib and mcap as requirements. With the help of the tools.
build:download_source=True conf, we can force the invocation of its source () method, which will ensure that
sources are available even if no build needs to be carried out.

Now, you should be able to use the new deployer in both conan install and conan graph commands for any given
recipe:

[$ conan graph info . -c tools.build:download_source=True --deployer=sources_deploy]

Inspecting the command output we can see that it copied the sources of our direct dependencies z1ib and mcap, plus
the sources of our transitive dependencies, zstd and 1z4 to a dependencies_sources folder. After this is done,
extra preprocessing could be done to accomplish more specific needs.

Note that you can pass the --deployer-folder argument to change the base folder output path for the deployer.

Code tour

The source_deploy.py file has the following code:

Listing 6: sources_deploy.py

from conan.tools.files import copy
import os

def deploy(graph, output_folder, **kwargs):
Note the kwargs argument is mandatory to be robust against future changes.
for name, dep in graph.root.conanfile.dependencies.items():
if dep.folders is None or dep.folders.source_folder is None:
raise ConanException(f"Sources missing for {name} dependency.\n"
"This deployer needs the sources of every dependency.,
—present to work, either building from source, "
"or by using the 'tools.build:download_source' conf.")
copy(graph.root.conanfile, "*", dep.folders.source_folder, os.path.join(output_
—.folder, "dependency_sources", str(dep)))

240 Chapter 8. Examples

Conan Documentation, Release 2.14.0

deploy()

The deploy() method is called by Conan, and gets both a dependency graph and an output folder path as argu-
ments. It iterates all the dependencies of our recipe and copies every source file to their respective folders under
dependencies_sources using conan.tools.copy.

Note: If youre using this deployer as an example for your own, remember that tools.
build:download_source=True is necessary so that dep.folders.source_folder is defined for the de-
pendencies. Without the conf, said variable will not be defined for those dependencies that do not need to be built
from sources nor in those commands that do not require building, such as conan graph.

Note: If your custom deployer needs access to the full dependency graph, including those libraries that might be
skipped, use the tools.graph:skip_binaries=False conf. This is useful for collecting, for example, all the li-
censes in your graph.

8.3 Conan recipe tools examples

8.3.1 CMake

CMakeToolchain: Building your project using CMakePresets

In this example we are going to see how to use CMakeToolchain, predefined layouts like cmake_layout and the
CMakePresets CMake feature.

Let’s create a basic project based on the template cmake_exe as an example of a C++ project:

[$ conan new cmake_exe -d name=foo -d version=1.0

Generating the toolchain

The recipe from our project declares the generator “CMakeToolchain”.

We can call conan install to install both Release and Debug configurations. —Conan will generate a
conan_toolchain.cmake at the corresponding generators folder:

$ conan install .
$ conan install . -s build_type=Debug

8.3. Conan recipe tools examples 241

Conan Documentation, Release 2.14.0

Building the project using CMakePresets

A CMakeUserPresets. json file is generated in the same folder of your CMakeLists. txt file, so you can use the
--preset argument from cmake >= 3.23 or use an IDE that supports it.

The CMakeUserPresets. json is including the CMakePresets. json files located at the corresponding generators
folder.

The CMakePresets. json contain information about the conan_toolchain. cmake location and even the binaryDir
set with the output directory.

Note: We use CMake presets in this example. This requires CMake >= 3.23 because the “include” from
CMakeUserPresets. json to CMakePresets. json is only supported since that version. If you prefer not to use
presets you can use something like:

cmake <path> -G <CMake generator> -DCMAKE_TOOLCHAIN_FILE=<path to
conan_toolchain.cmake> -DCMAKE_BUILD_TYPE=Release

Conan will show the exact CMake command everytime you run conan install in case you can’t use the presets
feature.

If you are using a multi-configuration generator:

$ cmake --preset conan-default

$ cmake --build --preset conan-debug
$ build\Debug\foo.exe

foo/1.0: Hello World Release!

$ cmake --build --preset conan-release
$ build\Release\foo.exe
foo/1.0: Hello World Release!

If you are using a single-configuration generator:

$ cmake --preset conan-debug

$ cmake --build --preset conan-debug
$./build/Debug/foo

foo/1.0: Hello World Debug!

$ cmake --preset conan-release

$ cmake --build --preset conan-release
$./build/Release/foo

foo/1.0: Hello World Release!

Note that we didn’t need to create the build/Release or build/Debug folders, as we did in the tutorial. The output
directory is declared by the cmake_layout () and automatically managed by the CMake Presets feature.

This behavior is also managed automatically by Conan (with CMake >= 3.15) when you build a package in the Conan
cache (with conan create command). The CMake >= 3.23 is not required.

Read More:
e cmake_layout() reference

¢ Conanfile layout() method reference

242 Chapter 8. Examples

Conan Documentation, Release 2.14.0

* Package layout tutorial rutorial

 Understanding Conan package layouts

CMakeToolchain: Extending your CMakePresets with Conan generated ones

In this example we are going to see how to extend your own CMakePresets to include Conan generated ones.

Note: We use CMake presets in this example. This requires CMake >= 3.23 because the “include” from
CMakeUserPresets. json to CMakePresets. json is only supported since that version. If you prefer not to use
presets you can use something like:

cmake <path> -G <CMake generator> -DCMAKE_TOOLCHAIN_FILE=<path to
conan_toolchain.cmake> -DCMAKE_BUILD_TYPE=Release

Conan will show the exact CMake command everytime you run conan install in case you can’t use the presets
feature.

Please, first clone the sources to recreate this project. You can find them in the examples2 repository in GitHub:

$ git clone https://github.com/conan-io/examples2.git
$ cd examples2/examples/tools/cmake/cmake_toolchain/extend_own_cmake_presets

Please open the conanfile.py and check how it sets tc.user_presets_path = 'ConanPresets.json'. By modi-
fying this attribute of CMakeToolchain, you can change the default filename of the generated preset.

def generate(self):
tc = CMakeToolchain(self)
tc.user_presets_path = 'ConanPresets.json'
tc.generate()

Now you can provide your own CMakePresets. json, besides the CMakeLists. txt:

Listing 7: CMakePresets.json

{
"version": 4,
"include": ["./ConanPresets.json"],
"configurePresets": [
{
"name": "default",
"displayName": "multi config",
"inherits": "conan-default"
1
{
"name": "release",
"displayName": "release single config",
"inherits": "conan-release"
1
{
"name": "debug",
"displayName": "debug single config",

(continues on next page)

8.3. Conan recipe tools examples 243

https://github.com/conan-io/examples2

Conan Documentation, Release 2.14.0

(continued from previous page)

"inherits": "conan-debug"
}
1,
"buildPresets": [
{
"name": "multi-release",
"configurePreset": "default",
"configuration": "Release",
"inherits": "conan-release"
1
{
"name": "multi-debug",
"configurePreset": "default",
"configuration": "Debug",
"inherits": "conan-debug"
3
{
"name": "release",
"configurePreset": "release",
"configuration": "Release",
"inherits": "conan-release"
1
{
"name": "debug",
"configurePreset": "debug",
"configuration": "Debug",
"inherits": "conan-debug"
}
]
}
Note how the "include": ["./ConanPresets.json"], and thatevery preset inherits a Conan generated one.

We can now install for both Release and Debug (and other configurations also, with the help of build_folder_vars
if we want):

$ conan install .
$ conan install . -s build_type=Debug

And build and run our application, by using our own presets that extend the Conan generated ones:

Linux (single-config, 2 configure, 2 builds)
cmake --preset debug

cmake --build --preset debug
./build/Debug/foo

Hello World Debug!

V & & & H

cmake --preset release

cmake --build --preset release
./build/Release/foo

Hello World Release!

V a4 &4 o

Windows VS (Multi-config, 1 configure 2 builds)

(continues on next page)

244 Chapter 8. Examples

Conan Documentation, Release 2.14.0

(continued from previous page)

$ cmake --preset default

$ cmake --build --preset multi-debug
build\\Debug\\foo
> Hello World Debug!

&

$ cmake --build --preset multi-release
build\\Release\\foo
> Hello World Release!

2

CMakeToolchain: Inject arbitrary CMake variables into dependencies

You can find the sources to recreate this project in the examples2 repository in GitHub:

$ git clone https://github.com/conan-io/examples2.git
$ cd examples2/examples/tools/cmake/cmake_toolchain/user_toolchain_profile

In the general case, Conan package recipes provide the necessary abstractions via settings, confs, and options to control
different aspects of the build. Many recipes define options to activate or deactivate features, optional dependencies,
or binary characteristics. Configurations like tools.build:cxxflags can be used to inject arbitrary C++ compile
flags.

In some exceptional cases, it might be desired to inject CMake variables directly into dependencies doing CMake
builds. This is possible when these dependencies use the CMakeToolchain integration. Let’s check it in this simple
example.

If we have the following package recipe, with a simple conanfile.py and a CMakeLists.txt printing a variable:

Listing 8: conanfile.py

from conan import ConanFile
from conan.tools.cmake import CMake

class AppConan(ConanFile):

name = "foo"

version = "1.0"

settings = "os", "compiler", "build_type", "arch"
exports_sources = "CMakeLists.txt"

generators = "CMakeToolchain"

def build(self):
cmake = CMake(self)
cmake.configure()
cmake.build()

Listing 9: CMakeLists.txt

cmake_minimum_required (VERSION 3.15)
project(foo LANGUAGES NONE)
message (STATUS "MYVAR1 ${MY_USER_VAR1}!!"™)

We can define a profile file and a myvars. cmake file (both in the same folder) like the following:

8.3. Conan recipe tools examples 245

https://github.com/conan-io/examples2

Conan Documentation, Release 2.14.0

Listing 10: myprofile

include(default)
[conf]
tools.cmake.cmaketoolchain:user_toolchain+={{profile_dir}}/myvars.cmake

Note the {{profile_dir}} is a jinja template expression that evaluates to the current profile folder, allowing to
compute the necessary path to myvars. cmake file. The tools.cmake.cmaketoolchain:user_toolchainis a list
of files to inject to the generated conan_toolchain. cmake, so the += operator is used to append to it.

The myvars. cmake can define as many variables as we want:

Listing 11: myvars.cmake

[Set(MY_USER_VARl "MYVALUE1")]

Applying this profile, we can see that the package CMake build effectively uses the variable provided in the external
myvars.cmake file:

$ conan create . -pr=myprofile

-- MY_USER_VAR1 MYVALUE1

Note that using wuser_toolchain while defining values for confs like tools.cmake.
cmaketoolchain:system_name is supported.

Also, user_toolchain files can define variables for cross-building, such as CMAKE_SYSTEM_NAME,
CMAKE_SYSTEM_VERSION and CMAKE_SYSTEM_PROCESSOR. If these variables are defined in the user toolchain
file, they will be respected, and the conan_toolchain.cmake deduced ones will not overwrite the user defined ones.
If those variables are not defined in the user toolchain file, then the Conan automatically deduced ones will be used.

The tools.cmake.cmaketoolchain:user_toolchain conf value might also be passed in the command line -c
argument, but the location of the myvars. cmake needs to be absolute to be found, as jinja replacement doesn’t happen
in the command line.

CMakeToolchain: Using xxx-config.cmake files inside packages

Conan relies in the general case in the package_info () abstraction to allow packages built with any build system to
be usable from any other package built with any other build system. In the CMake case, Conan relies on the CMakeDeps
generator to generate xxxx-config.cmake files for every dependency, even if those dependencies didn’t generate one
or aren’t built with CMake at all.

ConanCenter users this abstraction, not packaging the xxx-config.cmake files, and using the information in
package_info(). This is very important to provide as build-system agnostic as possible packages and be fair with
different build systems, vendors and users. For example, there are many Conan users happily using native MSBuild
(VS) projects without any CMake at all. If ConanCenter packages were only built using the in-package config. cmake
files, this wouldn’t be possible.

But the fact that ConanCenter does that, doesn’t mean that this is not possible or mandatory. It is perfectly possible to
use the in-packages xxx-config.cmake files, dropping the usage of CMakeDeps generator.

You can find the sources to recreate this example in the examples2 repository in GitHub:

$ git clone https://github.com/conan-io/examples2.git
$ cd examples2/examples/tools/cmake/pkg_config_files

246 Chapter 8. Examples

https://github.com/conan-io/examples2

Conan Documentation, Release 2.14.0

If we have a look to the conanfile.py:

class pkgRecipe(ConanFile):
name = "pkg"
version = "0.1"

def package_info(self):
No information provided, only the in-package .cmake is used here
Other build systems or CMake via CMakeDeps will fail
self.cpp_info.builddirs = ["pkg/cmake"]
self.cpp_info.set_property("cmake_find_mode", "none")

This is a very typical recipe, the main difference is the package_info() method. Three important things to notice:

e It doesn’t define fields like self.cpp_info.libs = ["mypkg"]. Conan will not be propagating this infor-
mation to the consumer, the only place this information will be is inside the in-package xxx-config.cmake
file

* Just in case there are some users still instantiating CMakeDeps, it is disabling the client side generation of the
xxx-config.cmake file with set_property("cmake_find_mode", "none™)

* It is defining that it will contain the build scripts (like the xxx-config.cmake package) inside that folder, to be
located by consumers.

So the responsibility of defining the package details has been transferred to the CMakeLists.txt that contains:

add_library(mylib src/pkg.cpp) # Use a different name than the package, to make sure

set_target_properties(mylib PROPERTIES PUBLIC_HEADER "include/pkg.h")
target_include_directories(mylib PUBLIC
$<BUILD_INTERFACE: ${PROJECT_SOURCE_DIR}/include>
$<INSTALL_INTERFACE: $ {CMAKE_INSTALL_INCLUDEDIR}>
)

Use non default mypkgConfig name
install (TARGETS mylib EXPORT mypkgConfig)
export (TARGETS mylib
NAMESPACE mypkg:: # to simulate a different name and see it works
FILE "${CMAKE_CURRENT_BINARY_DIR}/mypkgConfig.cmake"
)
install (EXPORT mypkgConfig
DESTINATION "${CMAKE_INSTALL_PREFIX}/pkg/cmake"
NAMESPACE mypkg: :

With that information, when conan create is executed:
e The build () method will build the package
¢ The package () method will call cmake install, which will create the mypkgConfig.cmake file
* It will be created in the package folder pkg/cmake/mypkgConfig.cmake file
* It will contain enough information for the headers, and it will create a mypkg: :mylib target.

Note that the details of the config filename, the namespace and the target are also not known by Conan, so this is also
something that the consumer build scripts should know.

8.3. Conan recipe tools examples 247

Conan Documentation, Release 2.14.0

This is enough to have a package with an internal mypkgConfig.cmake file that can be used by consumers. In this
example code, the consumer is just the test_package/conanfile.py, but exactly the same wouldn apply to any
arbitrary consumer.

The consumer conanfile.py doesn’t need to use CMakeDeps at all, only generators = "CMakeToolchain". Note
that the CMakeToolchain generator is still necessary, because the mypkgConfig.cmake needs to be found inside the
Conan cache. The CMakeToolchain generated conan_toolchain.cmake file contains these paths defined.

The consumer CMakeLists.txt would be standard:

find_package (mypkg CONFIG REQUIRED)

add_executable(example src/example.cpp)
target_link libraries(example mypkg::mylib)

You can verify it works with:

$ conan create .

======== Testing the package: Executing test ========

pkg/0.1 (test package): Running test()
pkg/0.1 (test package): RUN: Release\example
pkg/0.1: Hello World Release!
pkg/0.1: _M_X64 defined
pkg/0.1: MSVC runtime: MultiThreadedDLL
pkg/0.1: _MSC_VER1939
pkg/0.1: _MSVC_LANG201402
pkg/0.1: __cplusplus199711

1

test_package

Important considerations

The presented approach has one limitation, it doesn’t work for multi-configuration IDEs. Implementing this approach
won’t allow developers to directly switch from IDEs like Visual Studio from Release to Debug and viceversa, and it
will require a conan install to change. It is not an issue at all for single-config setups, but for VS developers it
can be a bit inconvenient. The team is working on the VS plugin that might help to mitigate this. The reason is a
CMake limitation, find_package () can only find one configuration, and with CMakeDeps being dropped here, there
is nothing that Conan can do to avoid this limitation.

It is important to know that it is also the package author and the package CMakeLists. txt responsibility to correctly
manage transitivity to other dependencies, and this is not trivial in some cases. There are risks that if not done correctly
the in-package xxx-config.cmake file can locate its transitive dependencies elsewhere, like in the system, but not in
the transtive Conan package dependencies.

Finally, recall that these packages won’t be usable by other build systems rather than CMake.

248 Chapter 8. Examples

Conan Documentation, Release 2.14.0

Using CMakeToolchain with different generators: Ninja example

This guide demonstrates how to use CMakeToolchain with predefined generators like Ninja and how to configure it to
use different generators.

Note: We assume you have already installed Ninja in your system. In case you do not have Ninja installed in your
system, you can use the Ninja Conan package in your profile (default or custom) by adding tool-requires.

Understanding CMake generators

The CMake client offers a variety of generators to create build system files. If you want to use a generator other than
the default chosen by CMake, you can configure tools.cmake.cmaketoolchain:generator.

Note: Please, note that CMake client is not the same as the Conan CMake helper.

To see which generators are available on your system, run:

[$ cmake --help J

You can set this configuration in your profile, directly in the command line, or even in your global configuration.

Using the Ninja generator by default in a profile

First, let’s create a profile file name my_custom_profile, so we can set the Ninja generator as the default for all Conan
packages built with this profile.

[$ conan profile detect --name=my_custom_profile]

To set the Ninja generator as the default in my_custom_profile profile, add the entry [conf] with the generator
value in the file:

[settings]

os=Linux

arch=x86_64

compiler=gcc
compiler.version=13
compiler.libcxx=1libstdc++11
compiler.cppstd=20
build_type=Release

[conf]
tools.cmake.cmaketoolchain:generator=Ninja

Now, we will create a basic project based on the cmake_exe template as an example of a C++ project:

[$ conan new cmake_exe -d name=foo -d version=0.1.0]

Then, we can build your project using the profile we just created:

8.3. Conan recipe tools examples 249

https://ninja-build.org/
https://conan.io/center/recipes/ninja
https://cmake.org/
https://cmake.org/cmake/help/latest/manual/cmake-generators.7.html
https://cmake.org/

Conan Documentation, Release 2.14.0

[$ conan create . -pr=my_custom_profile

This configuration will be passed to the conan_toolchain. cmake file, generated by CMakeToolchain, then the Ninja
generator will be used. You should see the following output snippet indicating the Ninja generator is being used:

Profile host:
[settings]

[conf]
tools.cmake.cmaketoolchain:generator=Ninja
f00/0.1.0: Calling build(Q

f00/0.1.0: Running CMake.configure()
f00/0.1.0: RUN: cmake -G "Ninja" ...

Note that same configuration can be passed to the default profile, and used for all Conan packages built with that profile.

In case passing the generator configuration by command line, the same will override the profile configuration.

8.3.2 File interaction

Patching sources

In this example we are going to see how to patch the source code. This is necessary sometimes, specially when you are
creating a package for a third party library. A patch might be required in the build system scripts or even in the source
code of the library if you want, for example, to apply a security patch.

Please, first clone the sources to recreate this project. You can find them in the examples2 repository on GitHub:

$ git clone https://github.com/conan-io/examples2.git
$ cd examples/tools/files/patches

Patching using ‘replace_in_file’

The simplest way to patch a file is using the replace_in_file tool in your recipe. It searches in a file the specified
string and replaces it with another string.

in source() method

The source() method is called only once for all the configurations (different calls to conan create for different set-
tings/options) so you should patch only in the source () method if the changes are common for all the configurations.

Look at the source () method at the conanfile.py:

import os

from conan import ConanFile

from conan.tools.cmake import CMakeToolchain, CMake, cmake_layout
from conan.tools.files import get, replace_in_file

(continues on next page)

250 Chapter 8. Examples

https://github.com/conan-io/examples2

Conan Documentation, Release 2.14.0

(continued from previous page)

class helloRecipe(ConanFile):
name = "hello"
version = "1.0"

Binary configuration

settings = "os", "compiler", "build_type", "arch"

options = {"shared": [True, False], "fPIC": [True, Falsel}
default_options = {"shared": False, "fPIC": True}

def source(self):
get(self, "https://github.com/conan-io/libhello/archive/refs/heads/main.zip",.
—strip_root=True)
replace_in_file(self, os.path.join(self.source_folder, "src", "hello.cpp"),
—"Hello World", "Hello Friends!")

We are replacing the "Hello World" string with “Hello Friends!”. We can run conan create . and verify that if
the replace was done:

$ conan create .

———————— Testing the package: Running test() --------
hello/1.0: Hello Friends! Release!

in build() method

In this case, we need to apply a different patch depending on the configuration (self.settings, self.options...), so it has
to be done in the build () method. Let’s modify the recipe to introduce a change that depends on the self.options.
shared:

class helloRecipe(ConanFile):

def source(self):
get(self, "https://github.com/conan-io/libhello/archive/refs/heads/main.zip",.
—strip_root=True)

def build(self):

replace_in_file(self, os.path.join(self.source_folder, "src", "hello.cpp"),
"Hello World",
"Hello {} Friends!".format("Shared" if self.options.shared else

~"Static™))

cmake = CMake(self)

cmake.configure()

cmake.build()

If we call conan create with different option.shared we can check the output:

8.3. Conan recipe tools examples 251

Conan Documentation, Release 2.14.0

$ conan create .

hello/1.0: Hello Static Friends! Release!

$ conan create . -o shared=True

hello/1.0: Hello Shared Friends! Debug!

Patching using “patch” tool

If you have a patch file (diff between two versions of a file), you can use the conan. tools. files.patch tool to apply
it. The rules about where to apply the patch (source() or build() methods) are the same.

We have this patch file, where we are changing again the message to say “Hello Patched World Release!”:

--- a/src/hello.cpp
+++ b/src/hello.cpp
@@ _379 +379 @@

void hello(){
#ifdef NDEBUG

- std::cout << "hello/1.0: Hello World Release!\n";

+ std::cout << "hello/1.0: Hello Patched World Release!\n";
#else

- std::cout << "hello/1.0: Hello World Debug!\n";

+ std::cout << "hello/1.0: Hello Patched World Debug!\n";
#endif

// ARCHITECTURES

Edit the conanfile.py to:
1. Import the patch tool.
2. Add exports_sources to the patch file so we have it available in the cache.

3. Call the patch tool.

import os

from conan import ConanFile

from conan.tools.cmake import CMakeToolchain, CMake, cmake_layout
from conan.tools.files import get, replace_in_file, patch

class helloRecipe(ConanFile):
name = "hello"
version = "1.0"

Binary configuration
settings = "os", "compiler", "build_type", "arch"
options = {"shared": [True, False], "fPIC": [True, False]}

default_options = {"shared": False, "fPIC": True}
(continues on next page)

252 Chapter 8. Examples

Conan Documentation, Release 2.14.0

(continued from previous page)

exports_sources = "*.patch"

def source(self):
get(self, "https://github.com/conan-io/libhello/archive/refs/heads/main.zip",.
< strip_root=True)
patch_file = os.path.join(self.export_sources_folder, "hello_patched.patch™)
patch(self, patch_file=patch_file)

We can run “conan create” and see that the patch worked:

$ conan create .

———————— Testing the package: Running test() --------
hello/1.0: Hello Patched World Release!

We can also use the conandata.yml introduced in the tutorial so we can declare the patches to apply for each version:

patches:
"1.0":
- patch_file: "hello_patched.patch"

And there are the changes we introduce in the source () method:

. code-block:: python

def source(self):
get(self, "https://github.com/conan-io/libhello/archive/refs/heads/main.zip",.
—strip_root=True)
patches = self.conan_data["patches"][self.version]
for p in patches:
patch_file = os.path.join(self.export_sources_folder, p["patch_file"])
patch(self, patch_file=patch_file)

Check patch for more details.

If we run the conan create, the patch is also applied:

$ conan create .

———————— Testing the package: Running test() --------
hello/1.0: Hello Patched World Release!

8.3. Conan recipe tools examples 253

Conan Documentation, Release 2.14.0

Patching using “apply_conandata_patches” tool

The example above works but it is a bit complex. If you follow the same yml structure (check the ap-
ply_conandata_patches to see the full supported yml) you only need to call apply_conandata_patches:

from conan import ConanFile
from conan.tools.cmake import CMakeToolchain, CMake, cmake_layout
from conan.tools.files import get, apply_conandata_patches

class helloRecipe(ConanFile):
name = "hello"
version = "1.0"

def source(self):
get(self, "https://github.com/conan-io/libhello/archive/refs/heads/main.zip",.
< strip_root=True)
apply_conandata_patches(self)

Let’s check if the patch is also applied:

$ conan create .

———————— Testing the package: Running test() --------
hello/1.0: Hello Patched World Release!

8.3.3 Meson

Build a simple Meson project using Conan

In this example, we are going to create a string compressor application that uses one of the most popular C++ libraries:
Zlib.

Note: This example is based on the main Build a simple CMake project using Conan tutorial. So we highly recommend
reading it before trying out this one.

We’ll use Meson as build system and pkg-config as helper tool in this case, so you should get them installed before
going forward with this example.

Please, first clone the sources to recreate this project. You can find them in the examples2 repository in GitHub:

$ git clone https://github.com/conan-io/examples2.git
$ cd examples2/examples/tools/meson/mesontoolchain/simple_meson_project

We start from a very simple C language project with this structure:

‘ — meson.build

(continues on next page)

254 Chapter 8. Examples

https://zlib.net/
https://github.com/conan-io/examples2

Conan Documentation, Release 2.14.0

(continued from previous page)

This project contains a basic meson.build including the zlib dependency and the source code for the string compressor
program in main.c.

Let’s have a look at the main.c file:

Listing 12: main.c

#include <stdlib.h>
#include <stdio.h>
#include <string.h>

#include <zlib.h>
int main(void) {

char buffer_in [256]
—and C++ development "

{"Conan is a MIT-licensed, Open Source package manager for C.

"for C and C++ development, allowing development teams to.
—easily and efficiently "
"manage their packages and dependencies across platforms and.
—build systems."};

char buffer_out [256] = {0};

Z_stream defstream;

defstream.zalloc = Z_NULL;

defstream.zfree = Z_NULL;

defstream.opaque = Z_NULL;

defstream.avail_in = (uInt) strlen(buffer_in);
defstream.next_in = (Bytef *) buffer_in;
defstream.avail_out = (uInt) sizeof(buffer_out);
defstream.next_out = (Bytef *) buffer_out;

deflateInit(&defstream, Z_BEST_COMPRESSION);
deflate(&defstream, Z_FINISH);
deflateEnd(&defstream) ;

printf("Uncompressed size is: %lu\n", strlen(buffer_in));
printf("Compressed size is: %lu\n", strlen(buffer_out));

printf("ZLIB VERSION: %s\n", zlibVersion());

return EXIT_SUCCESS;

Also, the contents of meson.build are:

8.3. Conan recipe tools examples 255

Conan Documentation, Release 2.14.0

Listing 13: meson.build

project('tutorial', 'c')
z1lib = dependency('zlib', version : '1.2.11")
executable('compressor', 'src/main.c', dependencies: zlib)

Let’s create a conanfile.txt with the following content to install Zlib:

Listing 14: conanfile.txt

[requires]
z1lib/1.2.11

[generators]
PkgConfigDeps
MesonToolchain

In this case, we will use PkgConfigDeps to generate information about where the Zlib library files are installed thanks
to the *.pc files and MesonToolchain to pass build information to Meson using a conan_meson_[native|cross].ini file
that describes the native/cross compilation environment, which in this case is a conan_meson_native.ini one.

We will use Conan to install Zlib and generate the files that Meson needs to find this library and build our project. We
will generate those files in the folder build. To do that, run:

[$ conan install . --output-folder=build --build=missing J

Now we are ready to build and run our compressor app:

Listing 15: Windows

$ cd build

$ meson setup --native-file conan_meson_native.ini .. meson-src
$ meson compile -C meson-src

$ meson-src\compressor.exe

Uncompressed size is: 233

Compressed size is: 147

ZLIB VERSION: 1.2.11

256 Chapter 8. Examples

Conan Documentation, Release 2.14.0

Listing 16: Linux, macOS

$ cd build

$ meson setup --native-file conan_meson_native.ini .. meson-src
$ meson compile -C meson-src

$./meson-src/compressor

Uncompressed size is: 233

Compressed size is: 147

ZLIB VERSION: 1.2.11

Create your first Conan package with Meson

In the Create your first Conan package tutorial CMake was used as the build system. If you haven’t read that section,
read it first to familiarize yourself with the conanfile.py and test_package concepts, then come back to read about
the specifics of the Meson package creation.

Use the conan new command to create a “Hello World” C++ library example project:

[$ conan new meson_lib -d name=hello -d version=1.0]

This will create a Conan package project with the following structure.

—— conanfile.py
— meson.build
— hello.vcxproj
— src
hello.h
hello.cpp
L— test_package
conanfile.py
E meson.build
src
L example.cpp

The structure and files are very similar to the previous CMake example:

 conanfile.py: On the root folder, there is a conanfile.py which is the main recipe file, responsible for defining
how the package is built and consumed.

* meson.build: A Meson build script. This script doesn’t need to contain anything Conan-specific, it is completely
agnostic of Conan, because the integration is transparent.

* src folder: the folder that contains the simple C++ “hello” library.

* test_package folder: contains an example application that will require and link with the created package. In this
case the test_package also contains a meson.build, but it is possible to have the test_package using other
build system as CMake if desired. It is not mandatory that the test_package is using the same build system as the
package.

Let’s have a look at the package recipe conanfile.py (only the relevant new parts):

exports_sources = "meson.build", "src/*"

def layout(self):
basic_layout(self)
(continues on next page)

8.3. Conan recipe tools examples 257

Conan Documentation, Release 2.14.0

(continued from previous page)

def generate(self):
tc = MesonToolchain(self)
tc.generate()

def build(self):
meson = Meson(self)
meson.configure()
meson.build()

def package(self):
meson = Meson(self)
meson.install()

Let’s explain the different sections of the recipe briefly:

e The layout() defines a basic_layout(), this is less flexible than a CMake one, so it doesn’t allow any
parametrization.

e The generate() method calls MesonToolchain that can generate conan_meson_native.ini and
conan_meson_cross.ini Meson toolchain files for cross builds. If the project had dependencies with Co-
nan requires, it should add PkgConfigDeps too

e The build() method uses the Meson() helper to drive the build

* The package () method uses the Meson install functionality to define and copy to the package folder the final
artifacts.

The test_package folder also contains a meson.build file that declares a dependency to the tested package, and links
an application, to verify the package was correctly created and contains that library:

Listing 17: test_package/meson.build

project('Testhello', 'cpp')
hello = dependency('hello', version : '>=0.1"')
executable('example', 'src/example.cpp', dependencies: hello)

Note the test_package/conanfile.py contains also a generators = "PkgConfigDeps",
"MesonToolchain", because the test_package has the “hello” package as dependency, and PkgConfigDeps is
necessary to locate it.

Note: This example assumes Meson, Ninja and PkgConfig are installed in the system, which might not always be the
case. If they are not, you can create a profile myprofile with:

include(default)

[tool_requires]
meson/ [*]
pkgconf/[*]

We added Meson and pkg-config as tool requirements to the profile. By executing conan create . -pr=myprofile,
those tools will be installed and made available during the package’s build process.

Let’s build the package from sources with the current default configuration, and then let the test_package folder test
the package:

258 Chapter 8. Examples

Conan Documentation, Release 2.14.0

$ conan create .

======== Testing the package: Executing test ========
hello/1.0 (test package): Running test()
hello/1.0 (test package): RUN: .\example
hello/1.0: Hello World Release!
hello/1.0: _M_X64 defined
hello/1.0: MSVC runtime: MultiThreadedDLL
hello/1.0: _MSC_VER1939
hello/1.0: _MSVC_LANG201402
hello/1.0: __cplusplus201402
hello/1.0 test_package

We can now validate that the recipe and the package binary are in the cache:

$ conan list "hello/1.0:*"
Local Cache:
hello
hello/1.0
revisions
856c535669f78da11502a119b7d8a6c9 (2024-03-04 17:52:39 UTC)
packages
cl3a22a4lecd72caf9e556£68b406569547e0861
info
settings
arch: x86_64
build_type: Release
compiler: msvc
compiler.cppstd: 14
compiler.runtime: dynamic
compiler.runtime_type: Release
compiler.version: 193
os: Windows

See also:
* Meson built-in integrations reference.

* PkgConfigDeps built-in integrations reference.

8.3.4 Bazel

Build a simple Bazel project using Conan

Warning: This example is Bazel 6.x compatible.

In this example, we are going to create a Hello World program that uses one of the most popular C++ libraries: fmt.

Note: This example is based on the main Build a simple CMake project using Conan tutorial. So we highly recommend

8.3. Conan recipe tools examples 259

https://fmt.dev/latest/index.html/

Conan Documentation, Release 2.14.0

reading it before trying out this one.

We’ll use Bazel as the build system and helper tool in this case, so you should get it installed before going forward with
this example. See how to install Bazel.

Please, first clone the sources to recreate this project. You can find them in the examples2 repository in GitHub:

$ git clone https://github.com/conan-io/examples2.git
$ cd examples2/examples/tools/google/bazeltoolchain/6_x/string_formatter

We start from a very simple C++ language project with this structure:

WORKSPACE
E conanfile.txt
main
BUILD
demo. cpp

This project contains a WORKSPACE file loading the Conan dependencies (in this case only fmt) and a main/BUILD
file which defines the demo bazel target and it’s in charge of using fmt to build a simple Hello World program.

Let’s have a look at each file’s content:

Listing 18: main/demo.cpp

#include <cstdlib>
#include <fmt/core.h>

int main() {
fmt: :print("{} - The C++ Package Manager!\n", "Conan");
return EXIT_SUCCESS;

Listing 19: WORKSPACE

load("@//conan:dependencies.bzl", "load_conan_dependencies")
load_conan_dependencies()

Listing 20: main/BUILD

cc_binary(

name = "demo",

srcs = ["demo.cpp"],

deps = [

"@fmt//: fmt"

i

)
Listing 21: conanfile.txt

[requires]
fmt/10.1.1

(continues on next page)

260 Chapter 8. Examples

https://bazel.build/install
https://github.com/conan-io/examples2

Conan Documentation, Release 2.14.0

(continued from previous page)
[generators]
BazelDeps
BazelToolchain

[layout]
bazel_layout

Conan uses the BazelToolchain to generate a conan_bzl.rc file which defines the conan-config bazel-build con-
figuration. This file and the configuration are passed as parameters to the bazel build command. Apart from that,
Conan uses the BazelDeps generator to create all the bazel files ([DEP /BUILD.bazel and dependencies.bzl) which de-
fine all the dependencies as public bazel targets. The WORKSPACE above is already ready to load the dependencies.bzl
which will tell the main/BUILD all the information about the @fmt//: fmt bazel target.

As the first step, we should install all the dependencies listed in the conanfile.txt. The command conan install
does not only install the fmt package, it also builds it from sources in case your profile does not match with a pre-built
binary in your remotes. Furthermore, it will save all the files created by the generators listed in the conanfile. txt
in a folder named conan/ (default folder defined by the bazel_layout).

$ conan install . --build=missing

======== Finalizing install (deploy, generators) ========

conanfile.txt: Writing generators to /Users/user/develop/examples2/examples/tools/google/
—.bazeltoolchain/6_x/string_formatter/conan

conanfile.txt: Generator 'BazelDeps' calling 'generate()'

conanfile.txt: Generator 'BazelToolchain' calling 'generate()'

conanfile.txt: Generating aggregated env files

conanfile.txt: Generated aggregated env files: ['conanbuild.sh', 'conanrun.sh']

Install finished successfully

Now we are ready to build and run our application:

$ bazel --bazelrc=./conan/conan_bzl.rc build --config=conan-config //main:demo
Starting local Bazel server and connecting to it...
INFO: Analyzed target //main:demo (38 packages loaded, 272 targets configured).
INFO: Found 1 target...
INFO: From Linking main/demo:
1d: warning: ignoring duplicate libraries: '-lc++'
Target //main:demo up-to-date:
bazel-bin/main/demo
INFO: Elapsed time: 60.180s, Critical Path: 7.68s
INFO: 6 processes: 4 internal, 2 darwin-sandbox.
INFO: Build completed successfully, 6 total actions

$./bazel-bin/main/demo
Conan - The C++ Package Manager!

8.3. Conan recipe tools examples 261

Conan Documentation, Release 2.14.0

Build a simple Bazel 7.x project using Conan

Warning: This example is Bazel >= 7.1 compatible.

In this example, we are going to create a Hello World program that uses one of the most popular C++ libraries: fmt.

Note: This example is based on the Build a simple CMake project using Conan tutorial. So we highly recommend
reading it before trying out this one.

We’ll use Bazel as the build system and helper tool in this case, so you should get it installed before going forward with
this example. See how to install Bazel.

Please, first clone the sources to recreate this project. You can find them in the examples2 repository in GitHub:

$ git clone https://github.com/conan-io/examples2.git
$ cd examples2/examples/tools/google/bazeltoolchain/7_x/string_formatter

We start from a very simple C++ language project with this structure:

MODULE.bazel
E conanfile.txt
main
BUILD
demo. cpp

This project contains a MODULE.bazel file loading the Conan dependencies (in this case only fmt) and a main/BUILD
file which defines the demo bazel target and it’s in charge of using fmt to build a simple Hello World program.

Let’s have a look at each file’s content:

Listing 22: main/demo.cpp

#include <cstdlib>
#include <fmt/core.h>

int main() {
fmt: :print("{} - The C++ Package Manager!\n", "Conan");
return EXIT_SUCCESS;

Listing 23: MODULE.bazel

load_conan_dependencies = use_extension("//conan:conan_deps_module_extension.bzl",
< "conan_extension")
use_repo(load_conan_dependencies, "fmt")

Listing 24: main/BUILD

cc_binary(
name = "demo",
srcs = ["demo.cpp"],

(continues on next page)

262 Chapter 8. Examples

https://fmt.dev/latest/index.html/
https://bazel.build/install
https://github.com/conan-io/examples2

Conan Documentation, Release 2.14.0

(continued from previous page)
deps = [
"@fmt//: fmt"
1,

Listing 25: conanfile.txt

[requires]
fmt/10.1.1

[generators]
BazelDeps
BazelToolchain

[layout]
bazel_layout

Conan uses the BazelToolchain to generate a conan_bz1 . rc file which defines the conan-config bazel-build configu-
ration. This file and the configuration are passed as parameters to the bazel build command. Apart from that, Conan
uses the BazelDeps generator to create all the bazel files (/DEPJ/BUILD.bazel, conan_deps_module_extension.bzl and
conan_deps_repo_rules.bzl) which define the rule and all the dependencies to create/load them as Bazel repositories.
The MODULE.bazel above is ready to load the conan_deps_module_extension.bzl file which will tell the main/BUILD
all the information about the @fmt//: fmt bazel target.

As the first step, we should install all the dependencies listed in the conanfile.txt. The command conan install
does not only install the fmt package, it also builds it from sources in case your profile does not match with a pre-built
binary in your remotes. Furthermore, it will save all the files created by the generators listed in the conanfile.txt
in a folder named conan/ (default folder defined by the bazel_layout).

$ conan install . --build=missing

======== Finalizing install (deploy, generators) ========

conanfile.txt: Writing generators to /Users/user/develop/examples2/examples/tools/google/
—bazeltoolchain/7_x/string_formatter/conan

conanfile.txt: Generator 'BazelDeps' calling 'generate()'

conanfile.txt: Generator 'BazelToolchain' calling 'generate()'

conanfile.txt: Generating aggregated env files

conanfile.txt: Generated aggregated env files: ['conanbuild.sh', 'conanrun.sh']

Install finished successfully

Now we are ready to build and run our application:

$ bazel --bazelrc=./conan/conan_bzl.rc build --config=conan-config //main:demo
Computing main repo mapping:
Loading:
Loading: ® packages loaded
Analyzing: target //main:demo (1 packages loaded, 0 targets configured)
Analyzing: target //main:demo (1 packages loaded, 0 targets configured)
[0 / 1] [Prepa] BazelWorkspaceStatusAction stable-status.txt
INFO: Analyzed target //main:demo (69 packages loaded, 369 targets configured).
[5 / 7] Compiling main/demo.cpp; Os darwin-sandbox
INFO: Found 1 target...
Target //main:demo up-to-date:
(continues on next page)

8.3. Conan recipe tools examples 263

Conan Documentation, Release 2.14.0

(continued from previous page)
bazel-bin/main/demo
INFO: Elapsed time: 2.955s, Critical Path: 1.70s
INFO: 7 processes: 5 internal, 2 darwin-sandbox.
INFO: Build completed successfully, 7 total actions

$./bazel-bin/main/demo
Conan - The C++ Package Manager!

8.3.5 Autotools

Build a simple Autotools project with Conan dependencies

Warning: This example will only work for Linux and OSX environments and does not support Windows directly,
including msys2/cygwin subsystems. However, Windows Subsystem for Linux (WSL) should work since it provides
a Linux environment. While Conan offers win_bash = True for some level of support in Windows environments
with Autotools, it’s not applicable in this tutorial.

In this example, we are going to create a string formatter application that uses one of the most popular C++ libraries:
fmt.

We'll use Autotools as build system and pkg-config as a helper tool in this case, so you should get them installed on
Linux and Mac before going forward with this example.

Please, first clone the sources to recreate this project. You can find them in the examples2 repository on GitHub:

git clone https://github.com/conan-io/examples2.git
cd examples2/examples/tools/autotools/autotoolstoolchain/string_formatter

We start with a very simple C++ language project with the following structure:

configure.ac
Makefile.am
conanfile.txt
src

L— main.cpp

This project contains a basic configure.ac <https://www.gnu.org/software/autoconf/manual/autoconf-
2.60/html_node/Writing-configure_002eac.html>_ including the fmt pkg-config dependency and the source
code for the string formatter program in main.cpp.

Let’s have a look at the main.cpp file, it only prints a simple message but uses fmt: : print method for it.

Listing 26: main.cpp

#include <cstdlib>
#include <fmt/core.h>

int main() {
fmt: :print("{} - The C++ Package Manager!\n", "Conan");

(continues on next page)

264 Chapter 8. Examples

https://fmt.dev/latest/index.html/
https://www.gnu.org/software/automake/manual/html_node/Autotools-Introduction.html
https://www.freedesktop.org/wiki/Software/pkg-config/
https://github.com/conan-io/examples2

Conan Documentation, Release 2.14.0

(continued from previous page)

return EXIT_SUCCESS;

The configure.ac file checks for a C++ compiler using the AC_PROG_CXX macro and also checks for the fmt.pc
pkg-config module using the PKG_CHECK_MODULES macro.

Listing 27: configure.ac

AC_INIT([stringformatter], [0.1.0])
AM_TINIT_AUTOMAKE([1.10 -Wall no-define foreign])
AC_CONFIG_SRCDIR([src/main.cpp])
AC_CONFIG_FILES([Makefile])
PKG_CHECK_MODULES([fmt], [fmt])

AC_PROG_CXX

AC_OUTPUT

The Makefile.am specifies that string_formatter is the expected executable and that it should be linked to the fmt
library.

Listing 28: Makefile.am

AUTOMAKE_OPTIONS = subdir-objects
ACLOCAL_AMFLAGS = ${ACLOCAL_FLAGS}

bin_PROGRAMS = string_formatter
string_formatter_SOURCES = src/main.cpp
string_formatter_CPPFLAGS = $(fmt_CFLAGS)
string_formatter_LDADD = $(fmt_LIBS)

The conanfile.txt looks simple as it just installs the fmt package and uses two generators to build our project.

8.3. Conan recipe tools examples 265

Conan Documentation, Release 2.14.0

Listing 29: conanfile.txt

[requires]
fmt/9.1.0

[generators]
AutotoolsToolchain
PkgConfigDeps

In this case, we will use PkgConfigDeps to generate information about where the fmt library files are installed thanks
to the *.pc files and AutotoolsToolchain to pass build information to autotools using a conanbuild[.sh|.bat] file that
describes the compilation environment.

We will use Conan to install fmt library, generate a toolchain for Autotools, and, .pc files for find fmt by pkg-config.

Building on Linux and macOS

First, we should install some requirements. On Linux you need to have automake , pkgconf and make packages
installed, their packages names should vary according to the Linux distribution, but essentially, it should include all
tools (aclocal, automake, autoconf and make) that you will need to build the following example.

For this example, we will not consider a specific Conan profile, but fmt is highly compatible with many different
configurations. So it should work mostly with versions of GCC and Clang compiler.

As the first step, we should install all dependencies listed in the conanfile.txt. The command :ref: conan in-
stall<reference_commands_install> will not only install the fmt package, but also build it from sources in case your
profile does not match with a pre-built binary in your remotes. Plus, it will provide these generators listed in the
conanfile.txt

[conan install . --build=missing

After running conan install command, we should have new files present in the string_formatter folder:

L— string_formatter
— Makefile.am
— conanautotoolstoolchain.sh
— conanbuild.conf
— conanbuild.sh
— conanbuildenv-release-armv8.sh
— conanfile.txt
—— conanrun.sh
— conanrunenv-release-armv8.sh
— configure.ac
— deactivate_conanbuild.sh
— deactivate_conanrun.sh
— fmt-_fmt.pc
— fmt.pc
— run_example.sh
L— src
L— main.cpp

These files are the result of those generators listed in the conanfile. txt. Once all files needed to build the example
are generated and fmt is installed, now we can load the script conanbuild. sh.

266 Chapter 8. Examples

Conan Documentation, Release 2.14.0

[source conanbuild.sh J

The conanbuild. shis a default file generated by the VirtualBuildEnv and helps us to load other script files, so we don’t
need to execute more manual steps to load each generator file. It will load conanautotoolstoolchain. sh, generated
by AutotoolsToolchain, which defines environment variables according to our Conan profile, used when running conan
install command. Those environment variables configured are related to the compiler and autotools, like CFLAGS,
CPPFLAGS, LDFLAGS, and PKG_CONFIG_PATH.

As the next step, we can configure the project by running the following commands in sequence:

aclocal

automake --add-missing
autoconf

./configure

The aclocal command will read the file configure.ac and generate a new file named aclocal.m4, which contains
macros needed by the automake. As the second step, the automake command will read the Makefile.am, and will
generate the file Makefile.in. So the command autoconf will use those files and generate the configure file. Once
we run configure, all environment variables will be consumed. The fmt.pc will be loaded at this step too, as
autotools uses the custom PKG_CONFIG_PATH to find it.

Then, finally, we can build the project to generate the string formatter application. Now we run the make command,
which will consume the Makefile generated by autotools.

[make]

The make command will read the Makefile and invoke the compiler, then, build the main. cpp, generating the exe-
cutable string_formatter in the same folder.

Conan - The C++ Package Manager!

./string_formatter ’

The final output is the result of a new application, printing a message with the help of fmt library, and built by
Autotools.

Create your first Conan package with Autotools

Warning: This example will only work for Linux and OSX environments and does not support Windows directly,
including msys2/cygwin subsystems. However, Windows Subsystem for Linux (WSL) should work since it provides
a Linux environment. While Conan offers win_bash = True for some level of support in Windows environments
with Autotools, it’s not applicable in this tutorial.

In the Create your first Conan package tutorial CMake was used as the build system. If you haven’t read that section,
read it first to familiarize yourself with the conanfile.py and test_package concepts, then come back to read about
the specifics of the Autotools package creation.

Use the conan new command to create a “Hello World” C++ library example project:

[$ conan new autotools_lib -d name=hello -d version=0.1]

This will create a Conan package project with the following structure.

8.3. Conan recipe tools examples 267

https://www.gnu.org/software/automake/manual/html_node/aclocal-Invocation.html
https://www.gnu.org/software/automake/manual/automake.html
https://www.gnu.org/software/autoconf/

Conan Documentation, Release 2.14.0

conanfile.py
configure.ac
Makefile.am

src

— hello.h

— hello.cpp
L— Makefile.am
test_package

— conanfile.py
— configure.ac
— mainc.pp

L— Makefile.am

The structure and files are very similar to the previous CMake example:

conanfile.py: On the root folder, there is a conanfile.py which is the main recipe file, responsible for defining
how the package is built and consumed.

configure.ac: An autotools configuration script, that contains the necessary macros and references the
Makefiles it needs to configure.

Makefile.am: A Makefile configuration file, defining only SUBDIRS = src
src folder: the folder that contains the simple C++ “hello” library.

src/Makefile.am: Makefile configuration file containing the library definition and source files like
libhello_la_SOURCES = hello.cpp hello.h

test_package folder: contains an example application that will require and link with the created package. In this
case the test_package also contains an autotools project, but it is possible to have the test_package using
other build system as CMake if desired. It is not mandatory that the test_package is using the same build system
as the package.

Let’s have a look at the package recipe conanfile.py (only the relevant new parts):

exports_sources = "configure.ac", "Makefile.am", "src/*"

def layout(self):

basic_layout(self)

def generate(self):

def

at_toolchain = AutotoolsToolchain(self)
at_toolchain.generate()

build(self):

autotools = Autotools(self)
autotools.autoreconf()
autotools.configure()
autotools.make ()

def package(self):

autotools = Autotools(self)
autotools.install()
fix_apple_shared_install_name(self)

Let’s explain the different sections of the recipe briefly:

268

Chapter 8. Examples

Conan Documentation, Release 2.14.0

e The layout() defines a basic_layout(), this is less flexible than a CMake one, so it doesn’t allow any
parametrization.

* The generate () method calls AutotoolsToolchain that can generate a conanautotoolstoolchain envi-
ronment script defining environment variables like CXXFLAGS or LDFLAGS that will be used by the Makefiles
to map the Conan input settings into compile flags. If the project had dependencies with Conan requires, it
should add PkgConfigDeps too

e The build() method uses the Autotools() helper to drive the build, calling the different configure and build
steps.

* The package () method uses the Autotools install functionality to define and copy to the package folder the
final artifacts. Note the template also includes a call to fix_apple_shared_install_name() that uses OSX
install_name_tool utility to set @rpath” "to fix the " LC_ID_DYLIB and LC_LOAD_DYLIB fields on Apple
dylibs, because it is very unusual that autotools project will manage to do this (CMake can do it) .

Let’s build the package from sources with the current default configuration, and then let the test_package folder test
the package:

$ conan create .

======== Testing the package: Executing test ========
hello/0.1 (test package): Running test()
hello/0.1 (test package): RUN: ./main
hello/0.1: Hello World Release!
hello/®.1: __x86_64__ defined
hello/0.1: _GLIBCXX_USE_CXX11_ABI 1
hello/0.1: __cplusplus201703
hello/0.1: __GNUC__11
hello/0.1: __GNUC_MINOR__1
hello/0.1 test_package

We can now validate that the recipe and the package binary are in the cache:

$ conan list "hello/1.0:*"
Local Cache:
hello
hello/1.0
revisions
5b151b3f08144b£f25131266eb306ddff (2024-03-06 12:03:52 UTC)
packages
8631cf963dbbb4d7a378a64a6fdldc57558bc2fe
info
settings
arch: x86_64
build_type: Release
compiler: gcc
compiler.cppstd: gnul7?
compiler.libcxx: libstdc++11
compiler.version: 11
os: Linux
options
fPIC: True
shared: False

8.3. Conan recipe tools examples 269

Conan Documentation, Release 2.14.0

See also:

* GNU built-in integrations reference.

Create your first Conan package with Autotools in Windows (msys2)

in the default template will fail.

Warning: This example is intended for the Windows OS, using the msys2 subsystem to run the autotools build sys-
tem. The support is limited, the AutotoolsDeps generator still doesn’t work for Windows, so the test_package

Note this example is building with the MSVC compiler, not with MinGW/gcc. Even if the build system is autotools,
the example is targeting the MSVC compiler, and the resulting package will be binary compatible and can be used
from other packages using MSVC with other build systems. It is not necessary to force MinGW/gcc to use some
open source dependencies that use autotools, and ConanCenter builds all of them with MSVC.

In the Create your first Conan package with Autotools tutorial, the autotools integrations are presented. Please read
first that section, to understand them, as this section will only introduce the Windows/msys2 specific issues.

We will use the same the conan new command to create a “Hello World” C++ library example project:

[$ conan new autotools_lib -d name=mypkg -d version=0.1

Check the above tutorial to understand the created files.

Besides these files, we will create a profile file:

Listing 30: msys2_profile

include(default)

[conf]

tools.microsoft.bash:subsystem=msys2
tools.microsoft.bash:path=C:\ws\msys64\usr\bin\bash

since Conan 2.9, this "cl" compiler definition is not necessary
by default for the 'compiler=msvc'

tools.build:compiler_executables={"c": "cl", "cpp": "cl"}

Note that you might need to adapt the path to the bash system of msys2.

In the package recipe conanfile.py we will have:

[win_bash = True

)

This is very important, it tells Conan that when this package is to be built, it has to launch a bash shell to execute the

build in it.

Note: It is not necessary, and in fact it is not recommended for most cases to be already running inside an msys2
terminal. Conan will automatically run the build subprocess for autotools in the defined bash shell.

If already running in a bash shell, it is necessary to activate the tools.microsoft.bash:activate=True conf.

Let’s build the package from sources with the current default configuration, making sure to deactivate the

test_package, because otherwise it will fail.

270

Chapter 8. Examples

Conan Documentation, Release 2.14.0

Deactivating the test_package, as AutotoolsDeps doesn't work yet.

$ conan create . -pr=msys2_profile -tf=""

mypkg/0.1: package(): Packaged 1 '.h' file: mypkg.h

mypkg/0.1: package(): Packaged 1 '.la' file: libmypkg.la

mypkg/0.1: package(): Packaged 1 '.lib' file: mypkg.lib

mypkg/0.1: Created package revision fa661758835cf6£f7£311c857447393cc
mypkg/0.1: Package '9bdeed85ef71cl4ac5f8a657202632bdb8b4482b' created

We can now validate that the recipe and the package binary are in the cache:

$ conan list "mypkg:*"

Found 1 pkg/version recipes matching mypkg in local cache

Local Cache

mypkg
mypkg/0.1
revisions
6e85b0c27c7fbc8eddc1994dbb543b52 (2024-04-30 18:29:44 UTC)
packages
9bdee485ef71cl4ac5£8a657202632bdb8b4482b
info
settings
arch: x86_64
build_type: Release
compiler: msvc
compiler.cppstd: 14
compiler.runtime: dynamic
compiler.runtime_type: Release
compiler.version: 193
os: Windows
options

shared: False

Note how the binary is a compiler=msvc one.
See also:

* GNU built-in integrations reference.

8.3.6 Capturing Git scm information

There are 2 main strategies to handle source code in recipes:

* Third-party code: When the conanfile.py recipe is packaging third party code, like an open source library,
it is typically better to use the source() method to download or clone the sources of that library. This is the
approach followed by the conan-center-index repository for ConanCenter.

* Your own code: When the conanfile.py recipe is packaging your own code, it is typically better to have the
conanfile.py in the same repository as the sources. Then, there are 2 alternatives for achieving reproducibility:

— Using the exports_sources (or export_source() method) to capture a copy of the sources together
with the recipe in the Conan package. This is very simple and pragmatic and would be recommended for
the majority of cases.

8.3. Conan recipe tools examples 271

Conan Documentation, Release 2.14.0

— For cases when it is not possible to store the sources beside the Conan recipe, for example when the package
is to be consumed for someone that shouldn’t have access to the source code at all, then the current scm
capture method would be the way.

In the sem capture method, instead of capturing a copy of the code itself, the “coordinates” for that code are captured
instead, in the Git case, the url of the repository and the commit. If the recipe needs to build from source, it will use
that information to get a clone, and if the user who tries that is not authorized, the process will fail. They will still be
able to use the pre-compiled binaries that we distribute, but not build from source or have access to the code.

Let’s see how it works with an example. Please, first clone the sources to recreate this project. You can find them in
the examples2 repository on GitHub:

$ git clone https://github.com/conan-io/examples2.git
$ cd examples2/examples/tools/scm/git/capture_scm

There we will find a small “hello” project, containing this conanfile.py:

from conan import ConanFile
from conan.tools.cmake import CMake, cmake_layout
from conan.tools.scm import Git

class helloRecipe(ConanFile):
name = "hello"
version = "0.1"

Binary configuration

settings = "os", "compiler", "build_type", "arch"

options = {"shared": [True, False], "fPIC": [True, False]}
default_options = {"shared": False, "fPIC": True}
generators = "CMakeDeps", "CMakeToolchain"

def export(self):
git = Git(self, self.recipe_folder)
save the url and commit in conandata.yml
git.coordinates_to_conandata()

def source(self):
we recover the saved url and commit from conandata.yml and use them to get.
—,sources
git = Git(self)
git.checkout_from_conandata_coordinates()

‘We need this code to be in its own Git repository, to see how it works in the real case, so please create a folder outside
of the examples2 repository, and copy the contents of the current folder there, then:

$ mkdir /home/myuser/myfolder # or equivalent in other OS
$ cp -R . /home/myuser/myfolder # or equivalent in other OS
$ cd /home/myuser/myfolder # or equivalent in other O0S

Initialize the git repo
git init .
$ git add .

&

(continues on next page)

272 Chapter 8. Examples

https://github.com/conan-io/examples2

Conan Documentation, Release 2.14.0

(continued from previous page)
$ git commit . -m wip
Finally create the package
$ conan create .

======== Exporting recipe to the cache ========

hello/0.1: Exporting package recipe: /myfolder/conanfile.py

hello/0.1: Calling export()

hello/0.1: RUN: git status . --short --no-branch --untracked-files

hello/0.1: RUN: git rev-list HEAD -n 1 --full-history -- "."

hello/0.1: RUN: git remote -v

hello/0.1: RUN: git branch -r --contains cb7815a58529130b49da952362ce8b28117dee53

hello/0.1: RUN: git fetch origin --dry-run --depth=1..
—cb7815a58529130b49da952362ce8b28117dee53

hello/0.1: WARN: Current commit cb7815a58529130b49da952362ce8b28117dee53 doesn't exist.,
—in remote origin

This revision will not be buildable in other computer

hello/0.1: RUN: git rev-parse --show-toplevel

hello/0.1: Copied 1 '.py' file: conanfile.py

hello/0.1: Copied 1 '.yml' file: conandata.yml

hello/0.1: Exported to cache folder: /.conan2/p/hello237d6f9f65bba/e

== Installlng packages =

hello/0.1: Calling source() in /.conan2/p/hello237d6£f9f65bba/s
hello/0.1: Cloning git repo

hello/0.1: RUN: git clone "<hidden>" "."

hello/0.1: Checkout: cb7815a58529130b49da952362ce8b28117dee53
hello/0.1: RUN: git checkout cb7815a58529130b49da952362ce8b28117dee53

Let’s explain step by step what is happening:

e When the recipe is exported to the Conan cache, the export() method executes, git.
coordinates_to_conandata(), which stores the Git URL and commit in the conandata.yml file by
internally calling git.get_url_and_commit(). See the Git reference for more information about these
methods.

* This obtains the URL of the repo pointing to the local <local-path>/capture_scm and the commit
8e8764c40bebabbe3ec57f9a0816a2c8e691£559

* It warns that this information will not be enough to re-build from source this recipe once the package is uploaded
to the server and is tried to be built from source in other computer, which will not contain the path pointed by
<local-path>/capture_scm. This is expected, as the repository that we created doesn’t have any remote
defined. If our local clone had a remote defined and that remote contained the commit that we are building, the
scm_url would point to the remote repository instead, making the build from source fully reproducible.

* The export () method stores the url and commit information in the conandata.yml for future reproducibility.

e When the package needs to be built from sources and it calls the source () method, it recovers the information
from the conandata.yml file inside the git.checkout_from_conandata_coordinates() method, which
internally calls git.clone () with it to retrieve the sources. In this case, it will be cloning from the local checkout
in <local-path>/capture_scm, but if it had a remote defined, it will clone from it.

Warning: To achieve reproducibility, it is very important for this scm capture technique that the current check-
out is not dirty If it was dirty, it would be impossible to guarantee future reproducibility of the build, so git.
get_url_and_commit () can raise errors, and require to commit changes. If more than 1 commit is necessary, it

8.3. Conan recipe tools examples 273

Conan Documentation, Release 2.14.0

would be recommended to squash those commits before pushing changes to upstream repositories.

If we do now a second conan create ., as the repo is dirty we would get:

$ conan create .
hello/0.1: Calling export()
ERROR: hello/0.1: Error in export() method, line 19
scm_url, scm_commit = git.get_url_and_commit()
ConanException: Repo is dirty, cannot capture url and commit: .../capture_scm

This could be solved by cleaning the repo with git clean -xdf, or by adding a .gitignore file to the repo with the
following contents (which might be a good practice anyway for source control):

Listing 31: .gitignore

test_package/build
test_package/CMakeUserPresets. json

The capture of coordinates uses the Git.get_url_and_commit () method, that by default does:
* If the repository is dirty, it will raise an exception

* If the repository is not dirty, but the commit doesn’t exist in the remote, it will warn, but it will return the local
folder as repo url. This way, local commits can be tested without needing to push them to the server. The core.
scm: local_url=allow can silence the warning and the core.scm:local_url=block will immediately raise
an error: This last value can be useful for CI scenarios, to fail fast and save a build that would have been blocked
later in the conan upload.

» Packages built with local commit will fail if trying to upload them to the server with conan upload as those
local commits are not in the server and then the package might not be reproducible. This upload error can be
avoided by setting core.scm:local_url=allow.

* If the repository is not dirty, and the commit exists in the server, it will return the remote URL and the commit.

Credentials management

In the example above, credentials were not necessary, because our local repo didn’t require them. But in real world
scenarios, the credentials can be required.

The first important bit is that git.get_url_and_commit () will capture the url of the origin remote. This url must
not encode tokens, users or passwords, for several reasons. First because that will make the process not repeatable, and
different builds, different users would get different urls, and consequently different recipe revisions. The url should
always be the same. The recommended approach is to manage the credentials in an orthogonal way, for example using
ssh keys. The provided example contains a Github action that does this:

Listing 32: .github/workflows/hello-demo.yml

name: Build "hello" package capturing SCM in Github actions
run-name: ${{ github.actor }} checking hello-ci Git scm capture
on: [pushl]
jobs:
Build:

runs-on: ubuntu-latest

steps:

- name: Check out repository code

(continues on next page)

274 Chapter 8. Examples

Conan Documentation, Release 2.14.0

(continued from previous page)
uses: actions/checkout@v3
with:
ssh-key: ${{ secrets.SSH_PRIVATE_KEY }}
- uses: actions/setup-python@v4
with:
python-version: '3.10'
- uses: webfactory/ssh-agent@v®.7.0
with:
ssh-private-key: ${{ secrets.SSH_PRIVATE_KEY }}
- run: pip install conan
- run: conan profile detect
- run: conan create .

This hello-demo.yml takes care of the following:
¢ The checkout actions/checkout@v3 action receives the ssh-key to checkout as git@ instead of https

* The webfactory/ssh-agent@v0.7.0 action takes care that the ssh key is also activated during the execution
of the following tasks, not only during the checkout.

* Itis necessary to setup the SSH_PRIVATE_KEY secret in the Github interface, as well as the deploy key for the
repo (with the private and public parts of the ssh-key)

In this way, it is possible to keep completely separated the authentication and credentials from the recipe functionality,
without any risk to leaking credentials.

Note: Best practices

* Do not use an authentication mechanism that encodes information in the urls. This is risky, can easily disclose
credentials in logs. It is recommended to use system mechanisms like ssh keys.

* Doing conan create is not recommended for local development, but instead running conan install and
building locally, to avoid too many unnecessary commits. Only when everything works locally, it is time to start
checking the conan create flow.

8.3.7 MSBuild

Create your first Conan package with Visual Studio/MSBuild

In the Create your first Conan package tutorial CMake was used as the build system. If you haven’t read that section,
read it first to familiarize yourself with the conanfile.py and test_package concepts, then come back to read about
the specifics of the Visual Studio package creation.

Use the conan new command to create a “Hello World” C++ library example project:

[$ conan new msbuild_lib -d name=hello -d version=1.0

This will create a Conan package project with the following structure.

conanfile.py
hello.sln
hello.vcxproj

(continues on next page)

8.3. Conan recipe tools examples 275

Conan Documentation, Release 2.14.0

(continued from previous page)

include

L— hello.h

src

L— hello.cpp

test_package
conanfile.py
test_hello.sln
test_hello.vcxproj
src
L— test_hello.cpp

The structure and files are very similar to the previous CMake example:

* conanfile.py: On the root folder, there is a conanfile.py which is the main recipe file, responsible for defining
how the package is built and consumed.

* hello.sIn: A Visual Studio solution file that can be opened with the IDE.
¢ hello.vexproj: A Visual Studio C/C++ project, part of the solution above.
* src and include folders: the folders that contains the simple C++ “hello” library.

* test_package folder: contains an example application that will require and link with the created package. In
this case the test_package also contains a Visual Studio solution and project, but it is possible to have the
test_package using other build system as CMake if desired. It is not mandatory that the test_package is using
the same build system as the package.

Let’s have a look at the package recipe conanfile.py (only the relevant new parts):

Sources are located in the same place as this recipe, copy them to the recipe
exports_sources = "hello.sln", "hello.vcxproj", "src/*", "include/*"

def layout(self):
vs_layout (self)

def generate(self):
tc = MSBuildToolchain(self)
tc.generate()

def build(self):
msbuild = MSBuild(self)
msbuild.build("hello.sln™)

def package(self):
copy(self, "*.h", os.path.join(self.source_folder, "include"),
dst=os.path. join(self.package_folder, "include"))
copy(self, "*.1ib", src=self.build_folder, dst=os.path.join(self.package_folder, "lib
="),
keep_path=False)

Let’s explain the different sections of the recipe briefly:

* Note there are no options like the shared option in this recipe. The current project always builds a static
library, so it is not optional.

e The layout() defines a typical VS layout, this is less flexible than a CMake one, so it doesn’t allow any
parametrization.

276 Chapter 8. Examples

Conan Documentation, Release 2.14.0

* The generate() method calls MSBuildToolchain to generate a conantoolchain.props file, that the project
must add to its properties. If the project had dependencies with Conan requires, it should add MSBuildDeps
too and add the relevant generated files property sheets.

¢ The build() method uses the MSBuild() helper to drive the build of the solution

* As the project doesn’t have any “install” functionality in the build scripts, the package () method can manually
define which files must be copied.

The hello.vcxproj project file adds the generated property sheets like conantoolchain. props to the project, so
the build can receive the Conan input settings and act accordingly.

Listing 33: hello.vcxproj

<ImportGroup Label="PropertySheets">
<Import Project="conan\conantoolchain.props" />
</ImportGroup>

If the project had dependencies, it should add the dependencies generated .props files too.

The test_package folder also contains a test_hello.vcxproj file, that includes both the toolchain and the depen-
dencies property sheets:

Listing 34: test_package/test_hello.vcxproj

<ImportGroup Label="PropertySheets">
<Import Project="conan\conantoolchain.props" />
<Import Project="conan\conandeps.props" />
</ImportGroup>

Note the test_package/conanfile.py contains also a generators="MSBuildDeps".

Let’s build the package from sources with the current default configuration, and then let the test_package folder test
the package:

$ conan create .

======== Testing the package: Executing test ========
hello/1.0 (test package): Running test()

hello/1.0 (test package): RUN: x64\Release\test_hello
hello/1.0: Hello World Release!

hello/1.0: _M_X64 defined

hello/1.0: MSVC runtime: MultiThreadedDLL
hello/1.0: _MSC_VER1939

hello/1.0: _MSVC_LANG201402

hello/1.0: __cplusplus199711

hello/1.0 test_package

We can now validate that the recipe and the package binary are in the cache:

$ conan list hello/1.0:*
Local Cache:
hello
hello/1.0
revisions
856c535669£78da11502a119b7d8a6c9 (2024-03-04 17:52:39 UTC)

(continues on next page)

8.3. Conan recipe tools examples 277

Conan Documentation, Release 2.14.0

(continued from previous page)

packages
cl3a22a4lecd72caf9e556£68b406569547e0861
info
settings

arch: x86_64
build_type: Release
compiler: msvc
compiler.cppstd: 14
compiler.runtime: dynamic
compiler.runtime_type: Release
compiler.version: 193
os: Windows

See also:
e Check the Conan Visual Studio Extension.

* MSBuild built-in integrations reference.

8.3.8 System Packages

Wrapping system requirements in a Conan package

Conan can manage system packages, allowing you to install platform-specific dependencies easily. This is useful when
you need to install platform-specific system packages. For example, you may need to install a package that provides a
specific driver or graphics library that only works on a specific platform.

Conan provides a way to install system packages using the system package manager tool.

In this example, we are going to explore the steps needed to create a wrapper package around a system library and
what is needed to consume it in a Conan package. Note that the package will not contain the binary artifacts, it will
just manage to check/install them calling system_requirements () and the respective system package managers (e.g
Apt, Yum). In this example, we are going to create a Conan package to wrap the system ncurses requirement and then
show how to use this requirement in an application.

Please, first clone the sources to recreate this project. You can find them in the examples2 repository on GitHub:

$ git clone https://github.com/conan-io/examples2.git
$ cd examples2/examples/tools/system/package_manager/

You will find the following tree structure:

|: conanfile.py
consumer

CMakeLists.txt
conanfile.py

ncurses_version.c

The conanfile.py file is the recipe that wraps the ncurses system library. Finally, the consumer directory contains
a simple C application that uses the ncurses library, we will visit it later.

When wrapping a pre-built system library, we do not need to build the project from source, only install the system
library and package its information. In this case, we are going to check the conanfile.py file that packages the ncurses
library first:

278 Chapter 8. Examples

https://invisible-island.net/ncurses/
https://github.com/conan-io/examples2

Conan Documentation, Release 2.14.0

from
from
from
from

requ

clas

—SUu

conan import ConanFile

conan.tools.system import package_manager
conan.tools.gnu import PkgConfig

conan.errors import ConanInvalidConfiguration

ired_conan_version = ">=2.0"

s SysNcursesConan(ConanFile):

name = "ncurses"

version = "system"

description = "A textual user interfaces that work across a wide variety of terminals

topics = ("curses", "terminal", "toolkit")

homepage = "https://invisible-mirror.net/archives/ncurses/"
license = "MIT"

package_type = "shared-library"

settings = "os", "arch", "compiler", "build_type"

def package_id(self):
self.info.clear()

def validate(self):
supported_os = ["Linux", "Macos", "FreeBSD"]
if self.settings.os not in supported_os:
raise ConanInvalidConfiguration(f"{self.ref} wraps a system package only.
pported by {supported_os}.")

def system_requirements(self):
dnf = package_manager.Dnf(self)
dnf.install(["ncurses-devel"], update=True, check=True)

yum = package_manager.Yum(self)
yum.install(["ncurses-devel"], update=True, check=True)

apt = package_manager.Apt(self)
apt.install(["libncurses-dev"], update=True, check=True)

pacman = package_manager.PacMan(self)
pacman.install(["ncurses"], update=True, check=True)

zypper = package_manager.Zypper(self)
zypper.install(["ncurses"], update=True, check=True)

brew = package_manager.Brew(self)
brew.install(["ncurses"], update=True, check=True)

pkg = package_manager.Pkg(self)
pkg.install(["ncurses"], update=True, check=True)

def package_info(self):
self.cpp_info.bindirs = []

self.cpp_info.includedirs = []
(continues on next page)

8.3.

Conan recipe tools examples 279

Conan Documentation, Release 2.14.0

(continued from previous page)

self.cpp_info.libdirs = []

self.cpp_info.set_property('cmake_file_name", "Curses")
self.cpp_info.set_property("cmake_target_name", "Curses::Curses")
self.cpp_info.set_property("cmake_additional_variables_prefixes", ["CURSES",])

pkg_config = PkgConfig(self, 'ncurses')
pkg_config.fill_cpp_info(self.cpp_info, is_system=True)

In this conanfile.py file, we are using the system package manager tool to install the ncurses library based on different
package managers, under the system_requirements method. It’s important to note that the system_requirements
method is called always, when building, or even if the package is already installed. This is useful to ensure that the
package is installed in the system.

Each package manager may vary the package name used to install the ncurses library, so we need to check the package
manager documentation to find the correct package name first.

Another important detail is the package_info method. In this method, we are using the PkgConfig tool to fill the
cpp_info data, based on the file ncurses. pc installed by the system package manager.

Now, let’s install the ncurses library using the conanfile.py file:

$ conan create . --build=missing -c tools.system.package_manager:mode=install -c tools.
—system.package_manager:sudo=true

Note that we are using the Conan configuration tools.system.package_manager:mode as install, otherwise,
Conan will not install the system package, but check if it is installed only. The same for tools.system.
package_manager:sudo as True to run the package manager with root privileges. As a result of this command,
you should be able to see the ncurses library installed in your system, in case not been installed yet.

Now, let’s check the consumer directory. This directory contains a simple C application that uses the ncurses library.

The conanfile.py file in the consumer directory is:

from conan import ConanFile

from conan.tools.build import can_run

from conan.tools.cmake import cmake_layout, CMake
import os

class AppNCursesVersionConan(ConanFile):

settings = "os", "compiler", "build_type", "arch"
generators = "CMakeDeps", "CMakeToolchain"
package_type = "application"

exports_sources = "CMakelLists.txt", "ncurses_version.c"

def requirements(self):
if self.settings.os in ["Linux", "Macos", "FreeBSD"]:
self.requires(''ncurses/system")

def layout(self):
cmake_layout(self)

def build(self):
cmake = CMake(self)

(continues on next page)

280 Chapter 8. Examples

Conan Documentation, Release 2.14.0

(continued from previous page)

cmake.configure()
cmake.build()

app_path = os.path.join(self.build_folder, "ncurses_version")
self.output.info(f"The example application has been successfully built.\nPlease.
—run the executable using: '{app_path}'")

The recipe is simple. It requires the ncurses package we just created and uses the CMake tool to build the application.
Once the application is built, it shows the ncurses_version application path, so you can run it manually as you wish
and check its output.

The ncurses_version.c file is a simple C application that uses the ncurses library to print the ncurses version, but using
white background and blue text:

#include <stdlib.h>
#include <stdio.h>
#include <string.h>

#include <ncurses.h>

int main(void) {
int max_y, max_x;
char message [256] = {0};

initscrQ;

start_color();
init_pair(l, COLOR_BLUE, COLOR_WHITE);
getmaxyx(stdscr, max_y, max_x);

snprintf(message, sizeof(message), "Conan 2.x Examples - Installed ncurses version:
~%s\n", curses_version());

attron(COLOR_PAIR(1));

mvprintw(max_y / 2, max_x / 2 - (strlen(message) / 2), "%s'", message);

attroff(COLOR_PAIR(1));

refresh();

return EXIT_SUCCESS;

The CMakeLists.txt file is a simple CMake file that builds the ncurses_version application:

cmake_minimum_required (VERSION 3.15)
project(ncurses_version C)

find_package(Curses CONFIG REQUIRED)

add_executable(${PROJECT_NAME} ncurses_version.c)
target_link_libraries(${PROJECT_NAME} PRIVATE Curses::Curses)

The CMake target Curses::Curses is provided by the ncurses package we just created. It follows the official CMake
module for FindCurses. The information about libraries and include directories is now available in the cpp_info object,

8.3. Conan recipe tools examples 281

https://cmake.org/cmake/help/latest/module/FindCurses.html

Conan Documentation, Release 2.14.0

as we filled it using the PkgConfig tool.

Now, let’s build the application:

$ cd consumer/
$ conan build . --name=ncurses-version --version=0.1.0

conanfile.py (ncurses-version/0.1.0): The example application has been successfully..
~built.
Please run the executable using: '/tmp/consumer/build/Release/ncurses_version'

After building the application, it will show the executable path. You can run it to check the output:

$ /tmp/consumer/build/Release/ncurses_version

Conan 2.x Examples - Installed ncurses version: ncurses 6.0.20160213

Don’t worry if the displayed version is different from the one shown here or the executable path different. It depends
on the version installed in your system and where you built the application.

That’s it! You have successfully packaged a system library and consumed it in a Conan package.

Consuming system requirements only when building a package

In some cases, you may want to consume system requirements only when building a package, but not when installing
it. It can be useful when you want to build a package in a CI/CD pipeline, but you don’t want to run the system package

manager when installing the Conan package in a different environment. For those cases, there are few approaches that
can be used to achieve this goal.

Consume a Conan package wrapper for a system package as build requirement

In this approach, you can use a Conan package for a wrapped system package. Then, the package can be consumed
regularly by the method build_requirements().

from conan import ConanFile

class MyPackage(ConanFile):
name = "mypackage"
settings = "os", "compiler", "build_type", "arch"

def build_requirements(self):
self.tool_requires("ncurses/system")

This ensures that downstream consumers of the package mypackage will not directly invoke the system package manager
(e.g., apt-get). Only the direct package consumer of the system wrap package for ncurses will execute the system
package manager when building the package.

Centralizing and wrapping ncurses in a separated recipe makes it reusable across multiple cases and is good practice
to avoid code duplication.

282 Chapter 8. Examples

Conan Documentation, Release 2.14.0

Consume the system package directly in the build() method

In case wanting to run the system package manager only when building the package, but not having a Conan package
to wrap the system library information, it’s possible to run the system package manager in the build() method:

from conan import ConanFile
from conan.tools.system import package_manager

class MyPackage(ConanFile):

n "

settings = "os", "compiler", "build_type", "arch"

def build(self):
if self.settings.os == "Linux":
apt = package_manager.Apt(self)
apt.install(["libncurses-dev"], update=True, check=True)

This way, the system package manager will be called only when building the package, not when installing it. There is
the advantage of not needed to create a separated Conan package to wrap the system library information, this is a much
simpler case, when only a single recipe need to install the system package.

Still, this approach may lead to code duplication if multiple recipes consume the same system package. It is recom-
mended to use this method sparingly and only for well-contained cases.

8.4 Cross-building examples

8.4.1 Creating a Conan package for a toolchain

After learning how to create recipes for tool requires that package applications, we are going to show an example on
how to create a recipe that packages a precompiled toolchain or compiler for building other packages.

In the “How to cross-compile your applications using Conan: host and build contexts™ tutorial section, we discussed
the basics of cross-compiling applications using Conan with a focus on the “build” and “host” contexts. We learned
how to configure Conan to use different profiles for the build machine and the target host machine, enabling us to
cross-compile applications for platforms like Raspberry Pi from an Ubuntu Linux machine.

However, in that section, we assumed the existence of a cross-compiling toolchain or compiler as part of the build
environment, set up through Conan profiles. Now, we will take a step further by demonstrating how to create a Conan
package for such a toolchain. This package can then be used as a tool_require in other Conan recipes, simplifying the
process of setting up the environment for cross-compilation.

Please, first clone the sources to recreate this project. You can find them in the examples2 repository on GitHub:

$ git clone https://github.com/conan-io/examples2.git
$ cd examples2/examples/cross_build/toolchain_packages/toolchain

Here, you will find a Conan recipe (and the test_package) to package an ARM toolchain for cross-compiling to Linux
ARM for both 32 and 64 bits. To simplify a bit, we are assuming that we can just cross-build from Linux x86_64 to
Linux ARM, both 32 and 64 bits. If you're looking for another example, you can explore an additional MacOs to Linux
cross-build example right here .

‘ — conanfile.py

(continues on next page)

8.4. Cross-building examples 283

https://github.com/conan-io/examples2
https://github.com/conan-io/examples2/tree/main/examples/cross_build/toolchain_packages/toolchain_macos_linux_cross

Conan Documentation, Release 2.14.0

(continued from previous page)

L test_package

B

CMakeLists.txt
conanfile.py
test_package.cpp

Let’s check the recipe and go through the most relevant parts:

Listing 35: conanfile.py

import os

from conan import ConanFile

from conan.tools.files import get, copy, download
from conan.errors import ConanInvalidConfiguration
from conan.tools.scm import Version

class ArmToolchainPackage(ConanFile):

name = "arm-toolchain"
version = "13.2"
settings = "os", "arch"

package_type = "application"

def

def

def

def

—{self.

—.archs:

—Linux-

_archs32(self):

return ["armv6e", "armv7", "armvZhf"]
_archs64 (self):

return ["armv8", "armv8.3"]

_get_toolchain(self, target_arch):
if target_arch in self._archs32():
return ("arm-none-linux-gnueabihf",
"df0£4927a67d1£d366f£f81e40bd8c385a9324fbdde60437a512d106215f257b3")
else:
return ("aarch64-none-linux-gnu",
"12fcdf13a7430655229b20438a49e8566€26551ba08759922cdaf4695b0d4e23")

validate(self):
if self.settings.arch != "x86_64" or self.settings.os != "Linux":
raise ConanInvalidConfiguration(f"This toolchain is not compatible with
settings.os}-{self.settings.arch}. "
"It can only run on Linux-x86_64.")

valid_archs = self._archs32() + self._archs64()
if self.settings_target.os != "Linux" or self.settings_target.arch not in valid_

raise ConanInvalidConfiguration(f"This toolchain only supports building for.
{valid_archs.join(',')}. "
f"{self.settings_target.os}-{self.settings_

—target.arch} is not supported.")

if self.settings_target.compiler != "gcc":
raise ConanInvalidConfiguration(f"The compiler is set to '{self.settings_
(continues on next page)

284

Chapter 8. Examples

Conan Documentation, Release 2.14.0

(continued from previous page)

< target.compiler}', but this
"toolchain only supports building with gcc.")

if Version(self.settings_target.compiler.version) >= Version("14") or.
—Version(self.settings_target.compiler.version) < Version("13"):
raise ConanInvalidConfiguration(f"Invalid gcc version '{self.settings_target.
—,compiler.version}'. "
"Only 13.X versions are supported for.
—the compiler.")

def source(self):
download(self, "https://developer.arm.com/GetEula?Id=37988a7c-c40e-4b78-9fd1-
—62c20b507aa8", "LICENSE", verify=False)

def build(self):
toolchain, sha = self._get_toolchain(self.settings_target.arch)
get(self, f"https://developer.arm.com/-/media/Files/downloads/gnu/13.2.rell/
—binrel/arm-gnu-toolchain-13.2.rel1-x86_64-{toolchain}.tar.xz",
sha256=sha, strip_root=True)

def package_id(self):
self.info.settings_target = self.settings_target
We only want the “‘arch™ setting
self.info.settings_target.rm_safe("os")
self.info.settings_target.rm_safe("compiler")
self.info.settings_target.rm_safe("build_type")

def package(self):

toolchain, _ = self._get_toolchain(self.settings_target.arch)

dirs_to_copy [toolchain, "bin", "include", "lib", "libexec"]

for dir_name in dirs_to_copy:

copy(self, pattern=f"{dir_name}/*", src=self.build_folder, dst=self.package_

—.folder, keep_path=True)

copy(self, "LICENSE", src=self.build_folder, dst=os.path.join(self.package_
—folder, "licenses"), keep_path=False)

def package_info(self):
toolchain, _ = self._get_toolchain(self.settings_target.arch)
self.cpp_info.bindirs.append(os.path.join(self.package_folder, toolchain, "bin"))

self.conf_info.define("tools.build:compiler_executables", {

c": f"{toolchain}-gcc",

cpp": f"{toolchain}-g++",

asm": f"{toolchain}-as"

D)

8.4. Cross-building examples 285

Conan Documentation, Release 2.14.0

Validating the toolchain package: settings, settings_build and settings_target

As you may recall, the validate() method is used to indicate that a package is not compatible with certain configurations.
As mentioned earlier, we are limiting the usage of this package to a Linux x86_64 platform for cross-compiling to a
Linux ARM target, supporting both 32-bit and 64-bit architectures. Let’s check how we incorporate this information
into the validate () method and discuss the various types of settings involved:

Validating the build platform

settings = "os", "arch"

def validate(self):

if self.settings.arch != "x86_64" or self.settings.os != "Linux":
raise ConanInvalidConfiguration(f"This toolchain is not compatible with {self.
—.settings.os}-{self.settings.arch}. "
"It can only run on Linux-x86_64.")

First, it’s important to acknowledge that only the os and arch settings are declared. These settings represent the
machine that will compile the package for the toolchain, so we only need to verify that they correspond to Linux and
x86_64, as these are the platforms for which the toolchain binaries are intended.

It is important to note that for this package, which is to be used as a tool_requires, these settings do not relate to
the host profile but to the build profile. This distinction is recognized by Conan when creating the package with the
--build-require argument. This will make the settings and the settings_build to be equal within the context
of package creation.

Validating the target platform

In scenarios involving cross-compilation, validations regarding the target platform, where the executable generated
by the toolchain’s compilers will run, must refer to the settings_target. These settings come from the informa-
tion in the host profile. For instance, if compiling for a Raspberry Pi, that will be the information stored in the
settings_target. Again, Conan is aware that settings_target should be populated with the host profile infor-
mation due to the use of the --build-require flag during package creation.

def validate(self):

valid_archs = self._archs32() + self._archs64()
if self.settings_target.os != "Linux" or self.settings_target.arch not in valid_
—archs:
raise ConanInvalidConfiguration(f"This toolchain only supports building for.
—Linux-{valid_archs. join(',"')}. "
f"{self.settings_target.os}-{self.settings_target.
—~arch} is not supported.™)

if self.settings_target.compiler != "gcc":
raise ConanInvalidConfiguration(f"The compiler is set to '{self.settings_target.
—compiler}', but this "
"toolchain only supports building with gcc.")

(continues on next page)

286 Chapter 8. Examples

Conan Documentation, Release 2.14.0

(continued from previous page)

if Version(self.settings_target.compiler.version) >= Version("14") or Version(self.
—settings_target.compiler.version) < Version("13"):
raise ConanInvalidConfiguration(f"Invalid gcc version '{self.settings_target.
—,compiler.version}'. "
"Only 13.X versions are supported for the.
—compiler.")

As you can see, several verifications are made to ensure the validity of the operating system and architectures for the
resulting binaries’ execution environment. Additionally, it verifies that the compiler’s name and version align with the
expectations for the host context.

Here, the diagram shows both profiles and which settings are picked for the arm-toolchain recipe that is in the build
context.

build profile host profile

[settings] [settings]

arch=x86_64 arch=armv8
build_type=Release build_type=Release
compiler=gcc compiler=gcc
compiler.cppstd=gnul4 compiler.cppstd=gnul4
compiler.version=7 compiler.version=13
os=Linux os=Linux

buNd context

settings settings_target arm-toolchain/13.2

Downloading the binaries for the toolchain and packaging it

def _archs32(self):
return ["armv6e", "armv7", "armvZhf"]

def _archs64(self):
return ["armv8", "armv8.3"]

def _get_toolchain(self, target_arch):
if target_arch in self._archs32():
return ("arm-none-linux-gnueabihf",
"df0£f4927a67d1£d366f£81e40bd8c385a9324fbdde60437a512d106215f257b3")
else:
(continues on next page)

8.4. Cross-building examples 287

Conan Documentation, Release 2.14.0

(continued from previous page)

return ("aarch64-none-linux-gnu",
"12fcdf13a7430655229b20438a49e8566e26551ba®8759922cdaf4695b0d4e23")

def source(self):
download(self, "https://developer.arm.com/GetEula?Id=37988a7c-c40e-4b78-9£fd1-
-.62c20b507aa8", "LICENSE", verify=False)

def build(self):
toolchain, sha = self._get_toolchain(self.settings_target.arch)
get(self, f"https://developer.arm.com/-/media/Files/downloads/gnu/13.2.rell/binrel/
—arm-gnu-toolchain-13.2.rell1-x86_64-{toolchain}.tar.xz",
sha256=sha, strip_root=True)

def package(self):

toolchain, _ = self._get_toolchain(self.settings_target.arch)

dirs_to_copy = [toolchain, "bin", "include", "lib", "libexec"]

for dir_name in dirs_to_copy:

copy(self, pattern=f"{dir_name}/*", src=self.build_folder, dst=self.package_

—.folder, keep_path=True)

copy(self, "LICENSE", src=self.build_folder, dst=os.path.join(self.package_folder,
—"licenses"), keep_path=False)

The source() method is used to download the recipe license, as it’s found on the ARM toolchains’ download page.
However, this is the only action performed there. The actual toolchain binaries are fetched in the build() method.
This approach is necessary because the toolchain package is designed to support both 32-bit and 64-bit architectures,
requiring us to download two distinct sets of toolchain binaries. Which binary the package ends up with depends on the
settings_target architecture. This conditional downloading process can’t happen in the source() method, as it caches
the downloaded contents.

The package() method doesn’t have anything out of the ordinary; it simply copies the downloaded files into the package
folder, license included.

Adding settings_target to the Package ID information

In recipes designed for cross-compiling scenarios, particularly those involving toolchains that target specific architec-
tures or operating systems, and the binary package can be different based on the target platform we may need to modify
the package_id() to ensure that Conan correctly identifies and differentiates between binaries based on the target
platform they are intended for.

In this case, we extend the package_id() method to include settings_target, which encapsulates the target plat-
form’s configuration (in this case if it’s 32 or 64 bit):

def package_id(self):

Assign settings_target to the package ID to differentiate binaries by target.
—platform.

self.info.settings_target = self.settings_target

We only want the “‘arch™ setting
self.info.settings_target.rm_safe("os")
self.info.settings_target.rm_safe("compiler")
self.info.settings_target.rm_safe("build_type")

288 Chapter 8. Examples

Conan Documentation, Release 2.14.0

By specifying self.info.settings_target = self.settings_target, we explicitly instruct Conan to consider
the target platform’s settings when generating the package ID. In this case we remove os, compiler and build_type
settings as changing them will not be relevant for selecting the toolchain we will use for building and leave only the
arch setting that will be used to decide if want to produce binaries for 32 or 64 bits.

Define information for consumers

In the package_info() method we define all the information that consumers need to have available when using the
toolchain:

def package_info(self):
toolchain, _ = self._get_toolchain(self.settings_target.arch)
self.cpp_info.bindirs.append(os.path.join(self.package_folder, toolchain, "bin"))

self.conf_info.define("tools.build:compiler_executables", {

"c'" f"{toolchain}-gcc",
"cpp": f"{toolchain}-g++",
"asm": f"{toolchain}-as"

i)

In this case, we need to define the following information:

* Add directories containing toolchain tools that may be required during compilation. The toolchain we download
will store its tools in both bin and <toolchain_triplet>/bin. Since self.cpp_info.bindirs defaults to
bin, we only need to add the directory specific to the triplet. Note that it’s not necessary to define environment
information to add these directories to the PATH, as Conan will manage this through the VirtualRunEnv.

* We define the tools.build:compiler_executables configuration. This configuration will be considered in
several generators, like CMakeToolchain, MesonToolchain, or AutotoolsToolchain, to direct to the appropriate
compiler binaries.

Testing the Conan toolchain package
We also added a simple test_package to test the toolchain:

Listing 36: test_package/conanfile.py

import os
from io import StringIO

from conan import ConanFile
from conan.tools.cmake import CMake, cmake_layout

class TestPackageConan(ConanFile):
settings = "os", "arch", "compiler", "build_type"
generators = "CMakeToolchain", "VirtualBuildEnv"

def build_requirements(self):
self.tool_requires(self.tested_reference_str)

def layout(self):
cmake_layout(self)

(continues on next page)

8.4. Cross-building examples 289

Conan Documentation, Release 2.14.0

(continued from previous page)

def build(self):
cmake = CMake(self)
cmake.configure()
cmake.build()

def test(self):

if self.settings.arch in ["armv6", "armv7", "armv7Zhf"]:
toolchain = "arm-none-linux-gnueabihf"

else:
toolchain = "aarch64-none-linux-gnu"

self.run(f£"{toolchain}-gcc --version")
test_file = os.path.join(self.cpp.build.bindirs[0], "test_package")
stdout = StringI0Q)
self.run(f"file {test_file}", stdout=stdout)
if toolchain == "aarch64-none-linux-gnu":
assert "ELF 64-bit" in stdout.getvalue()
else:
assert "ELF 32-bit" in stdout.getvalue()

This test package ensures that the toolchain is functional, building a minimal hello world program and that binaries
produced with it are correctly targeted for the specified architecture.

Cross-build an application using the toolchain

Having detailed the toolchain recipe, it’s time to proceed with package creation:

$ conan create . -pr:b=default -pr:h=../profiles/raspberry-64 --build-require

======== Input profiles ========
Profile host:

[settings]

arch=armv8

build_type=Release

compiler=gcc
compiler.cppstd=gnuléd
compiler.libcxx=libstdc++11
compiler.version=13

os=Linux

Profile build:

[settings]

arch=x86_64
build_type=Release
compiler=gcc
compiler.cppstd=gnuléd
compiler.libcxx=libstdc++11
compiler.version=7
os=Linux

(continues on next page)

290 Chapter 8. Examples

Conan Documentation, Release 2.14.0

(continued from previous page)

======== Testing the package: Executing test ========

arm-toolchain/13.2 (test package): Running test()

arm-toolchain/13.2 (test package): RUN: aarch64-none-linux-gnu-gcc --version
aarch64-none-linux-gnu-gcc (Arm GNU Toolchain 13.2.rell (Build arm-13.7)) 13.2.1 20231009
Copyright (C) 2023 Free Software Foundation, Inc.

We employ two profiles for the build and host contexts, but the most important detail is the use of the —build-require
argument. This informs Conan that the package is intended as a build requirement, situating it within the build context.
Consequently, settings match those from the build profile, while settings_target aligns with the host profile’s settings.

With the toolchain package prepared, we proceed to build an actual application. This will be the same application
previously cross-compiled in the How fo cross-compile your applications using Conan: host and build contexts section.
However, this time, we incorporate the toolchain package as a dependency within the host profile. This ensures the
toolchain is used to build the application and all its dependencies

$ cd .. & cd consumer

$ conan install . -pr:b=default -pr:h=../profiles/raspberry-64 -pr:h=../profiles/arm-
—toolchain --build missing

$ cmake --preset conan-release

$ cmake --build --preset conan-release

§ file ./build/Release/compressor

compressor: ELF 64-bit LSB executable, ARM aarch64, version 1 (SYSV), dynamically
linked, interpreter /lib/ld-linux-aarch64.so.l, for GNU/Linux 3.7.0, with debug_info,
not stripped

We composed the already existing profile with another profile called arm-toolchain that just has the tool_requires
added:

[tool_requires]
arm-toolchain/13.2

During this procedure, the zlib dependency will also be compiled for ARM 64-bit architecture if it hasn’t already been.
Additionally, it’s important to verify the architecture of the resulting executable, confirming its alignment with the
targeted 64-bit architecture.

See also:
* More info on settings_target
* Cross-compile your applications using Conan

* Another example of cross-compilation from Macos to Linux

8.4.2 Cross building to Android with the NDK

In this example, we are going to see how to cross-build a Conan package to Android.

First of all, download the Android NDK from the download page and unzip it. In MacOS you can also install it with
brew install android-ndk.

Then go to the profiles folder in the conan config home directory (check it running conan config home) and create
a file named android with the following contents:

8.4. Cross-building examples 291

https://github.com/conan-io/examples2/tree/main/examples/cross_build/toolchain_packages/toolchain_macos_linux_cross
https://developer.android.com/ndk/downloads

Conan Documentation, Release 2.14.0

include(default)

[settings]

os=Android

os.api_level=21

arch=armv8

compiler=clang
compiler.version=12
compiler.libcxx=c++_static
compiler.cppstd=14

[conf]
tools.android:ndk_path=/usr/local/share/android-ndk

You might need to modify:

e compiler.version: Check the NDK documentation or find a bin folder containing the compiler executables
like x86_64-1inux-android31-clang. In a Macos installation it is found in the NDK path + toolchains/
1lvm/prebuilt/darwin-x86_64/bin. Run ./x86_64-1linux-android31-clang --versionto check the
running clang version and adjust the profile.

e compiler.libcxx: The supported values are c++_static and c++_shared.
e compiler.cppstd: The C++ standard version, adjust as your needs.

* os.api_level: You can check here the usage of each Android Version/API level and choose the one that fits
better with your requirements. This is typically a balance between new features and more compatible applications.

» arch: There are several architectures supported by Android: x86, x86_64, armv7, and armv8.
* tools.android:ndk_path conf: Write the location of the unzipped NDK.

If you are in Windows, it is necessary to have a make-like build system like MinGW-Make or Ninja. We can provision
for Ninja directly in our profile with [tool_requires]:

[conf]
tools.android:ndk_path=C:\ws\android\android-ndk-r23b # Use your path here
tools.cmake.cmaketoolchain:generator=Ninja

[tool_requires]
ninja/[*]

Use the conan new command to create a “Hello World” C++ library example project:

[$ conan new cmake_lib -d name=hello -d version=1.0

Then we can specify the android profile and our hello library will be built for Android:

$ conan create . --profile android

[50%] Building CXX object CMakeFiles/hello.dir/src/hello.cpp.o
[100%] Linking CXX static library libhello.a

[100%] Built target hello

[50%] Building CXX object CMakeFiles/example.dir/src/example.cpp.o

(continues on next page)

292 Chapter 8. Examples

https://apilevels.com/

Conan Documentation, Release 2.14.0

(continued from previous page)

[100%] Linking CXX executable example
[100%] Built target example

Both the library and the test_package executable are built for Android, so we cannot use them in our local computer.

Unless you have access to a root Android device, running the test application or using the built library is not possible
directly so it is more common to build an Android application that uses the hello library.

It is also possible to use the android-ndk from a Conan tool-requires. There is already a Conan package in
ConanCenter containing the AndroidNDK, so writing a profile like:

[settings]

os=Android

os.api_level=21

arch=armv8

compiler=clang
compiler.version=18
compiler.libcxx=c++_static
compiler.cppstd=14
build_type=Release

You might need Ninja conf and tool-requires in Windows too
[tool_requires]
android-ndk/[*]

And this will download automatically the latest android-ndk from ConanCenter and inject and apply it automatically to
build the package. Note that to use packages from ConanCenter in production the following approach is recommended

See also:

¢ Check the example Integrating Conan in Android Studio to know how to use your c++ libraries in a native Android
application.

* Check the tutorial How to cross-compile your applications using Conan.

8.4.3 Integrating Conan in Android Studio

At the Cross building to Android with the NDK we learned how to build a package for Android using the NDK. In
this example we are going to learn how to do it with the Android Studio and how to use the libraries in a real Android
application.

Creating a new project

First of all, download and install the Android Studio IDE.
Then create a new project selecting Native C++ from the templates.

In the next wizard window, select a name for your application, for example MyConanApplication, you can leave the
“Minimum SDK” with the suggested value (21 in our case), but remember the value as we are using it later in the
Conan profile at os.api_level®

In the “Build configuration language” you can choose between Groovy DSL (build.gradle) or Kotlin DSL
(build.gradle.kts) in order to use conanlnstall task bellow.

Select a “C++ Standard” in the next window, again, remember the choice as later we should use the same in the profile
at compiler.cppstd.

8.4. Cross-building examples 293

https://developer.android.com/studio

Conan Documentation, Release 2.14.0

In the project generated with the wizard we have a folder cpp with a native-1ib.cpp. We are going to modify that
file to use z1ib and print a message with the used z1ib version. Copy only the highlighted lines, it is important to
keep the function name.

Listing 37: native-lib.cpp

#include <jni.h>
#include <string>
#include "zlib.h"

extern "C" JINIEXPORT jstring JNICALL
Java_com_example_myconanapp_MainActivity_stringFromINI (
JNIEnv* env,
jobject /* this */) {
std::string hello = "Hello from C++, zlib version: ";
hello.append(zlibVersion());
return env->NewStringUTF (hello.c_str());

Now we are going to learn how to introduce a requirement to the z1ib library and how to prepare our project.
Introducing dependencies with Conan
conanfile.txt

We need to provide the z1ib package with Conan. Create a file conanfile. txt in the cpp folder:

Listing 38: conanfile.txt

[requires]
z1ib/1.2.12

[generators]
CMakeToolchain
CMakeDeps

[layout]
cmake_layout

build.gradle

We are going to automate calling conan install before building the Android project, so the requires are prepared,
open the build.gradle file in the My_Conan_App. app (Find it in the Gradle Scripts section of the Android project
view). Paste the task conanInstall contents after the plugins and before the android elements:

Groovy

Kotlin

Listing 39: build.gradle

plugins {

(continues on next page)

294 Chapter 8. Examples

Conan Documentation, Release 2.14.0

(continued from previous page)

}

task conanInstall {
def conanExecutable = "conan" // define the path to your conan installation
def buildDir = new File("app/build")
buildDir.mkdirs()
["Debug", "Release"].each { String build_type ->
["armv7", "armv8", "x86", "x86_64"].each { String arch ->
def cmd = conanExecutable + " install " +
"../src/main/cpp --profile android -s build_type="+ build_type +" -
s arch=" + arch +
" --build missing -c tools.cmake.cmake_layout:build_folder_vars=[
- 'settings.arch']"
print(">> ${cmd} \n")

def sout = new StringBuilder(), serr = new StringBuilder()
def proc = cmd.execute(null, buildDir)
proc.consumeProcessOutput (sout, serr)
proc.waitFor()
println "$sout $serr"
if (proc.exitValue() !'= 0) {
throw new Exception("out> $sout err> $serr" + "\nCommand: ${cmd}")

3

}

android {
compileSdk 32

defaultConfig {

Listing 40: build.gradle.kts

plugins {
3

tasks.register("conanInstall™) {
val conanExecutable = "conan" // define the path to your conan installation
val buildDir = file("app/build")
buildDir.mkdirs()

val buildTypes = 1istOf("Debug", "Release")
val architectures = 1listOf("armv7", "armv8", "x86", "x86_64")

doLast {
buildTypes. forEach { buildType ->
architectures. forEach { arch ->
val cmd = "$conanExecutable install ../../src/main/cpp --profile android-
(continues on next page)

8.4. Cross-building examples 295

Conan Documentation, Release 2.14.0

(continued from previous page)
—studio " +
"-s build_type=$buildType -s arch=$arch --build missing " +
"-c tools.cmake.cmake_layout:build_folder_vars=['settings.arch

(_‘l]ll
println(">> $cmd™)
val proc = ProcessBuilder(cmd.split(" "))

.directory(buildDir)
.start()

val result = proc.inputStream.bufferedReader().readText()
val errors = proc.errorStream.bufferedReader().readText()

proc.waitFor()

if (proc.exitValue() != 0) {
throw Exception("Execution failed! Output: $result Error: $errors")

}

println(result)

if (errors.isNotBlank()) {
println("Errors: $errors'")

3

}
tasks.named("preBuild").configure {
dependsOn("conanInstall")

}

android {
compileSdk 32

defaultConfig {

The conanInstall task is calling conan install for Debug/Release and for each architecture we want to build, you
can adjust these values to match your requirements.

If we focus on the conan install task we can see:

1. We are passing a --profile android, so we need to create the profile. Go to the profiles folder in the
conan config home directory (check it running conan config home) and create a file named android with the
following contents:

System NDK
Conan NDK package

include(default)

(continues on next page)

296 Chapter 8. Examples

Conan Documentation, Release 2.14.0

(continued from previous page)
[settings]
os=Android
os.api_level=21
compiler=clang
compiler.version=12
compiler.libcxx=c++_static
compiler.cppstd=14

[conf]
tools.android:ndk_path=/opt/homebrew/share/android-ndk

include(default)

[settings]

os=Android

o0s.api_level=21
compiler=clang
compiler.version=12
compiler.libcxx=c++_static
compiler.cppstd=14

[tool_requires]
*: android-ndk/r26d

You might need to modify:

* tools.android:ndk_path conf: The location of the NDK provided by Android Studio. You should be
able to see the path to the NDK if you open the cpp/includes folder in your IDE.

e compiler.version: Check the NDK documentation or find a bin folder containing the compiler exe-
cutables like x86_64-1inux-android31-clang. In a Macos installation it is found in the NDK path
+ toolchains/1lvm/prebuilt/darwin-x86_64/bin. Run ./x86_64-1linux-android31l-clang
--version to check the running clang version and adjust the profile.

e compiler.libcxx: The supported values are c++_static and c++_shared
e compiler.cppstd: The C++ standard version, this should be the value you selected in the Wizard.
e os.api_level: Use the same value you selected in the Wizard.

2. We are passing -c tools.cmake.cmake_layout:build_folder_vars=['settings.arch'], thanks to
that, Conan will create a different folder for the specified settings.arch so we can have all the configura-
tions available at the same time.

To make Conan work we need to pass CMake a custom toolchain. We can do it introducing a single line in the same
file, in the android/defaultConfig/externalNativeBuild/cmake element:

Listing 41: build.gradle

android {
compileSdk 32

defaultConfig {
applicationId "com.example.myconanapp"
minSdk 21
targetSdk 21

(continues on next page)

8.4. Cross-building examples 297

Conan Documentation, Release 2.14.0

(continued from previous page)

versionCode 1
versionName "1.0"

testInstrumentationRunner "androidx.test.runner.AndroidJUnitRunner"
externalNativeBuild {
cmake {
cppFlags '-v
arguments (" -DCMAKE_TOOLCHAIN_FILE=conan_android_toolchain.cmake")

conan_android_toolchain.cmake

Create a file called conan_android_toolchain. cmake in the cpp folder, that file will be responsible of including the
right toolchain depending on the ANDROID_ABI variable that indicates the build configuration that the IDE is currently
running:

Listing 42: conan_android_toolchain.cmake

During multiple stages of CMake configuration, the toolchain file is processed and.
—»command-1line

variables may not be always available. The script exits prematurely if essential,.,
—variables are absent.

if (NOT ANDROID_ABI OR NOT CMAKE_BUILD_TYPE)

return()
endif()
if(${ANDROID_ABI} STREQUAL "x86_64")

include (" ${CMAKE_CURRENT_LIST_DIR}/build/x86_64/${CMAKE_BUILD_TYPE}/generators/
—.conan_toolchain.cmake")
elseif(${ANDROID_ABI} STREQUAL "x86")

include (" ${CMAKE_CURRENT_LIST_DIR}/build/x86/${CMAKE_BUILD_TYPE}/generators/conan_
—toolchain.cmake")
elseif(${ANDROID_ABI} STREQUAL "arm64-v8a')

include (" ${CMAKE_CURRENT_LIST_DIR}/build/armv8/${CMAKE_BUILD_TYPE}/generators/conan_
—toolchain.cmake")
elseif(${ANDROID_ABI} STREQUAL "armeabi-v7a'")

include (" ${CMAKE_CURRENT_LIST_DIR}/build/armv7/${CMAKE_BUILD_TYPE}/generators/conan_
—toolchain.cmake")
else()

message (FATAL "Not supported configuration")
endif()

298 Chapter 8. Examples

Conan Documentation, Release 2.14.0

CMakelLists.txt

Finally, we need to modify the CMakeLists.txt to link with the z1ib library:

Listing 43: CMakeLists.txt

cmake_minimum_required (VERSION 3.18.1)
project("myconanapp")

add_library(myconanapp SHARED native-lib.cpp)
find_library(log-lib log)

find_package(ZLIB CONFIG)

target_link_libraries(myconanapp ${log-lib} ZLIB::ZLIB)

Building the application

If we build our project we can see that conan install is called multiple times building the different configurations of
zlib.

Then if we run the application in a Virtual Device or in a real device pairing it with the QR code we can see:

8.4. Cross-building examples 299

Conan Documentation, Release 2.14.0

MyConanApplication

Hello from C++, zlib version: 1.2.11

Once we have our project configured, it is very easy to change our dependencies and keep developing the application,
for example, we can edit the conanfile. txt file and change the z1ib to the version 1.12.2:

[requires]
zlib/1.2.12

[generators]
CMakeToolchain
CMakeDeps

[layout]
cmake_layout

If we click build and then run the application, we will see that the zlib dependency has been updated:

300 Chapter 8. Examples

Conan Documentation, Release 2.14.0

MyConanApplication

Hello from C++, zlib version: 1.2.12

8.4.4 Building packages for TriCore

Warning: This feature is experimental and subject to breaking changes. See the Conan stability section for more
information.

TriCore is an embedded microcontroller architecture used in multiple domains such as automotive. There are multiple
compilers for TriCore, some of which can be found here. There are also gcc implementations for TriCore; this is what
we will be using in the examples on this page.

Since Conan 2.7 there is some built-in support for this architecture:
¢ The default settings.yml contains architectures: 'tc131', 'tcl6', 'tcl6l', 'tcl62', 'tcl8'

e CMakeToolchain defines CMAKE_SYSTEM_NAME=Generic-ELF and CMAKE_SYSTEM_PROCESSOR=tricore
for these architectures

* The compiler flags -m<architecture>" are injected as compiler and linker flags in CMakeToolchain and
AutotoolsToolchain

That means that it is possible to define a profile like:

8.4. Cross-building examples 301

https://www.infineon.com/cms/en/tools/aurix-tools/Compilers/

Conan Documentation, Release 2.14.0

Listing 44: tricore.profile

[settings]

os=baremetal

arch=tc162

compiler=gcc
compiler.version=11
compiler.cppstd=20
compiler.libcxx=libstdc++11

[options]
*: fPIC=False
*:shared=False

[conf]
tools.build:compiler_executables={"c":"tricore-elf-gcc","cpp":"tricore-elf-g++"}

This assumes the compiler is installed in the system path, and its executables are called tricore-elf-gcc and
tricore-elf-g++. And then, cross-build and create a package for TriCore using this profile, for example the de-
fault cmake_lib:

$ conan new cmake_lib -d name=mypkg -d version=0.1
$ conan create . -pr=tricore.profile

Note:

* This support is new and experimental. Please create a ticket in https://github.com/conan-io/conan/issues for any
feedback or issues

 Linking applications (like if using conan new cmake_exe) requires a specific linker script, definition of entry-
points, etc. Trying to build it as above will produce linking errors. We will try to add further examples for this
case.

8.5 Configuration files examples

8.5.1 Customize your settings: create your settings_user.yml

Please, first clone the sources to recreate this project. You can find them in the examples2 repository in GitHub:

$ git clone https://github.com/conan-io/examples2.git
$ cd examples2/examples/config_files/settings_user

In this example we are going to see how to customize your settings without overwriting the original settings.yml file.

Note: To understand better this example, it is highly recommended to read previously the reference about settings.yml.

302 Chapter 8. Examples

https://github.com/conan-io/conan/issues
https://github.com/conan-io/examples2

Conan Documentation, Release 2.14.0

Locate the settings_user.yml
First of all, let’s have a look at the proposed source/settings_user.yml:

Listing 45: settings_user.yml

os:
webO0S:
sdk_version: [null, "7.0.0", "6.0.1", "6.0.0"]
arch: ["cortexal5t2hf"]
compiler:
gcc:
version: ["13.0-rc"]

As you can see, we don’t have to rewrite all the settings because they will be merged with the already defined in
settings.yml.

Then, what are we adding through that settings_user.yml file?
* New OS: web0S, and its sub-setting: sdk_version.
* New arch available: cortexal5t2hf.
e New gcc version: 13.0-rc.

Now, it’s time to copy the file source/settings_user.yml into your [CONAN_HOME]/ folder:

$ conan config install sources/settings_user.yml
Copying file settings_user.yml to /Users/myuser/.conan2/.

Use your new settings

After having copied the settings_user.yml, you should be able to use them for your recipes. Add this simple one
into your local folder:

Listing 46: conanfile.py

from conan import ConanFile

class PkgConan(ConanFile):

name = "pkg"
version = "1.0"
settings = "os", "compiler", "build_type", "arch"

Then, create several Conan packages (not binaries, as it does not have any source file for sure) to see that it’s working
correctly:

Listing 47: Using the new OS and its sub-setting

$ conan create . -s os=webOS -s os.sdk_version=7.0.0

Profile host:
[settings]
arch=x86_64
build_type=Release
compiler=apple-clang
(continues on next page)

8.5. Configuration files examples 303

Conan Documentation, Release 2.14.0

(continued from previous page)

compiler.cppstd=gnu98
compiler.libcxx=libc++
compiler.version=12.0
0s=web0S
os.sdk_version=7.0.0

Profile build:
[settings]

arch=x86_64
build_type=Release
compiler=apple-clang
compiler.cppstd=gnu98
compiler.libcxx=libc++
compiler.version=12.0

package(): WARN: No files in this package!

: Package 'a0d37d10fdb83a0414d7f4alfb73da2c210211c6' created

: Created package revision 6a947a7b5669d6fdela35ce5££f987£fc6

pkg/1.0: Full package reference: pkg/1.0
—#637fclc7080faaa7e2cdccdelbcdel118:a0d37d10fdb83a0414d7f4alfb73da2c210211c6
—#6a947a7b5669d6fdela35ce5££f987fc6

pkg/1.0: Package folder /Users/myuser/.conan2/p/pkgb3950b1043542/p

os=Macos
———————— Installing (downloading, building) binaries... ----—-—---
pkg/1.0: Copying sources to build folder
pkg/1.0: Building your package in /Users/myuser/.conan2/p/t/pkg929d53a5f06bl/b
pkg/1.0: Generating aggregated env files
pkg/1.0: Package 'a0d37d10fdb83a0414d7f4alfb73da2c210211c6’' built
pkg/1.0: Build folder /Users/myuser/.conan2/p/t/pkg929d53a5f06bl/b
pkg/1.0: Generated conaninfo.txt
pkg/1.0: Generating the package
pkg/1.0: Temporary package folder /Users/myuser/.conan2/p/t/pkg929d53a5f06bl/p
0
0
0

Listing 48: Using new gcc compiler version

$ conan create . -s compiler=gcc -s compiler.version=13.0-rc -s compiler.
—libcxx=1ibstdc++11

Profile host:

[settings]

arch=x86_64
build_type=Release
compiler=gcc
compiler.libcxx=1libstdc++11
compiler.version=13.0-rc
os=Macos

Profile build:
[settings]
arch=x86_64
build_type=Release
compiler=apple-clang
(continues on next page)

304 Chapter 8. Examples

Conan Documentation, Release 2.14.0

compiler.
compiler.
compiler.

os=Macos

pkg/1.0:
—#637fc
—#d913e

pkg/1.0:

(continued from previous page)

cppstd=gnu98
libcxx=1libc++
version=12.0

Installing (downloading, building) binaries... -----—---

Copying sources to build folder

Building your package in /Users/myuser/.conan2/p/t/pkg918904bbca9dc/b
Generating aggregated env files

Package '44a4588d3fe63ccc6e7480565d35be38d405718e' built

Build folder /Users/myuser/.conan2/p/t/pkg918904bbca9dc/b

Generated conaninfo.txt

Generating the package

: Temporary package folder /Users/myuser/.conan2/p/t/pkg918904bbca9dc/p
package(): WARN: No files in this package!

Package '44a4588d3fe63ccc6e7480565d35be38d405718e"' created

Created package revision d913ec060e71cc56b10768afh9620094

Full package reference: pkg/1.0
1c7080faaa7e2cdccdelbcdel18:44a4588d3fe63ccc6e7480565d35be38d405718e
c060e71cc56b10768afh9620094

Package folder /Users/myuser/.conan2/p/pkg789b624c93£fc0/p

Listing 49: Using the new OS and the new architecture

$ conan
Profile
[setting

arch=cor
build_ty

compiler=

create . -s os=web0S -s arch=cortexal5t2hf

host:

s]
texal5t2hf
pe=Release
apple-clang

compiler.cppstd=gnu98
compiler.libcxx=libc++
compiler.version=12.0
os=web0S

Profile build:
[settings]

arch=x86_64
build_type=Release
compiler=apple-clang
compiler.cppstd=gnu98
compiler.libcxx=libc++
compiler.version=12.0
os=Macos

———————— Installing (downloading, building) binaries... --------

pkg/1.0: Copying sources to build folder

pkg/1.0: Building your package in /Users/myuser/.conan2/p/t/pkgde9b63a6bed®a/b
pkg/1.0: Generating aggregated env files

pkg/1.0: Package '19cf3chb5842b18dc78e5b0c574cle71e7b0el7fc' built

pkg/1.0: Build folder /Users/myuser/.conan2/p/t/pkgde9b63a6bed®a/b

(continues on next page)

8.5. Configuration files examples 305

Conan Documentation, Release 2.14.0

(continued from previous page)
pkg/1.0: Generated conaninfo.txt
pkg/1.0: Generating the package
pkg/1.0: Temporary package folder /Users/myuser/.conan2/p/t/pkgde9b63a6bed®a/p
pkg/1.0 package(): WARN: No files in this package!
pkg/1.0: Package '19cf3cb5842b18dc78e5b0c574cle71e7b0el7fc' created
pkg/1.0: Created package revision £5739d5a25b3757254dead0®1b30d3af®
pkg/1.0: Full package reference: pkg/1.0
—#637fclc7080faaa7e2cdccdelbcdel18:19c£3ch5842b18dc78e5b0c574cle71e7b0el7 fc
—#£5739d5a25b3757254dead0®01b30d3af®
pkg/1.0: Package folder /Users/myuser/.conan2/p/pkgdl54182aac59e/p

As you could observe, each command has created a different package. That was completely right because we were
using different settings for each one. If you want to see all the packages created, you can use the conan list command:

Listing 50: List all the pkg/1.0’s packages

$ conan list pkg/1.0:*
Local Cache
pkg
pkg/1.0
revisions
637fclc7080faaa7e2cdccdelbcdel18 (2023-02-16 06:42:10 UTC)
packages
19cf3cb5842b18dc78e5b0c574cle71e7b0el7 fc
info
settings
arch: cortexal5t2hf
build_type: Release
compiler: apple-clang
compiler.cppstd: gnu98
compiler.libcxx: libc++
compiler.version: 12.0
os: webO0S
44a4588d3fe63ccc6e7480565d35be38d405718e
info
settings
arch: x86_64
build_type: Release
compiler: gcc
compiler.libcxx: libstdc++11
compiler.version: 13.0-rc
os: Macos
a0d37d10fdb83a0414d7f4alfb73da2c210211c6
info
settings
arch: x86_64
build_type: Release
compiler: apple-clang
compiler.cppstd: gnu98
compiler.libcxx: libc++
compiler.version: 12.0
os: webOS
os.sdk_version: 7.0.0

306 Chapter 8. Examples

Conan Documentation, Release 2.14.0

Try any other custom setting!
See also:
* profiles.

* Conan packages binary compatibility: the package ID

8.6 Graph examples

This section contains examples about different types of advanced graphs, using different types of requires and
tool_requires, advanced usage of requirement traits, etc.

8.6.1 Use a CMake macro packaged in a dependency
When a package recipe wants to provide a CMake functionality via a macro, it can be done as follows. Let’s say that
we have a pkg recipe, that will “export” and “package” a Macros.cmake file that contains a pkg_macro() CMake

macro:

Listing 51: pkg/conanfile.py

from conan import ConanFile
from conan.tools.files import copy

class Pkg(ConanFile):
name = "pkg"
version = "0.1"
package_type = "static-library"
Exporting, as part of the sources
exports_sources = "*.cmake"

def package(self):
Make sure the Macros.cmake is packaged

"o

copy(self, "*.cmake", src=self.source_folder, dst=self.package_folder)

def package_info(self):
We need to define that there are "build-directories", in this case
the current package root folder, containing build files and scripts
self.cpp_info.builddirs = ["."]

Listing 52: pkg/Macros.cmake

function(pkg_macro)
message (STATUS "PKG MACRO WORKING!!!'")
endfunction()

When this package is created (cd pkg & conan create .), it can be consumed by other package recipes, for ex-
ample this application:

Listing 53: app/conanfile.py

from conan import ConanFile
from conan.tools.cmake import CMake

(continues on next page)

8.6. Graph examples 307

Conan Documentation, Release 2.14.0

(continued from previous page)

class App(ConanFile):
package_type = "application"
generators = "CMakeToolchain"
settings = "os", "compiler", "arch", "build_type"
requires = "pkg/0.1"

def build(self):
cmake