
Conan Documentation
Release 1.31.4

The Conan team

Jun 30, 2025

CONTENTS

1 Introduction 3
1.1 Open Source . 3
1.2 Decentralized package manager . 3
1.3 Binary management . 4
1.4 All platforms, all build systems and compilers . 5
1.5 Stable . 5
1.6 Community . 6

2 Training Courses 7

3 Install 9
3.1 Install with pip (recommended) . 9
3.2 Install from brew (OSX) . 10
3.3 Install from AUR (Arch Linux) . 10
3.4 Install the binaries . 11
3.5 Initial configuration . 11
3.6 Install from source . 11
3.7 Update . 12
3.8 Python 2 Deprecation Notice . 12

4 Getting Started 13
4.1 An MD5 hash calculator using the Poco Libraries . 13
4.2 Installing Dependencies . 17
4.3 Inspecting Dependencies . 18
4.4 Searching Packages . 20
4.5 Building with other configurations . 21

5 Using packages 23
5.1 Installing dependencies . 23
5.2 Using profiles . 28
5.3 Workflows . 30
5.4 Debugging packages . 32

6 Creating Packages 33
6.1 Getting Started . 33
6.2 Recipe and Sources in a Different Repo . 39
6.3 Recipe and Sources in the Same Repo . 40
6.4 Packaging Existing Binaries . 43
6.5 Understanding Packaging . 45
6.6 Defining Package ABI Compatibility . 47
6.7 Define the package information . 61

i

6.8 Toolchains . 63
6.9 Inspecting Packages . 73
6.10 Packaging Approaches . 74
6.11 Package Creator Tools . 79

7 Uploading Packages 81
7.1 Remotes . 81
7.2 Uploading Packages to Remotes . 83
7.3 Using Bintray . 84
7.4 Artifactory Community Edition for C/C++ . 85
7.5 Running conan_server . 87

8 Developing packages 93
8.1 Package development flow . 93
8.2 Packages in editable mode . 98
8.3 Workspaces . 102

9 Package apps and devtools 109
9.1 Running and deploying packages . 109
9.2 Creating conan packages to install dev tools . 116
9.3 Build requirements . 119

10 Versioning 125
10.1 Introduction to versioning . 125
10.2 Version ranges . 129
10.3 Package Revisions . 130
10.4 Lockfiles . 132

11 Mastering Conan 149
11.1 Use conanfile.py for consumers . 149
11.2 Conditional settings, options and requirements . 151
11.3 Build policies . 153
11.4 Environment variables . 154
11.5 Virtual Environments . 155
11.6 Logging . 157
11.7 Sharing the settings and other configuration . 159
11.8 Conan local cache: concurrency, Continuous Integration, isolation 160

12 Systems and cross building 163
12.1 Cross building . 163
12.2 Windows Subsystems . 175

13 Extending Conan 179
13.1 Customizing settings . 179
13.2 Python requires . 182
13.3 Python requires (legacy) . 187
13.4 Creating a custom build helper for Conan . 191
13.5 Hooks . 193
13.6 Template system . 197

14 Integrations 205
14.1 Compilers . 205
14.2 Build systems . 205
14.3 IDEs . 235
14.4 CI Platforms . 250

ii

14.5 Other Systems . 266
14.6 Version Control System . 289
14.7 Custom integrations . 290
14.8 Linting . 294
14.9 Deployment . 295

15 Configuration 301
15.1 Download cache . 301

16 Howtos 303
16.1 How to package header-only libraries . 303
16.2 How to launch conan install from cmake . 305
16.3 How to create and reuse packages based on Visual Studio . 306
16.4 Creating and reusing packages based on Makefiles . 310
16.5 How to manage the GCC >= 5 ABI . 312
16.6 Using Visual Studio 2017 - CMake integration . 313
16.7 Working with Intel compiler . 316
16.8 How to manage C++ standard [EXPERIMENTAL] . 317
16.9 How to use Docker to create and cross-build C and C++ Conan packages 318
16.10 How to reuse Python code in recipes . 321
16.11 How to create and share a custom generator with generator packages 324
16.12 How to manage shared libraries . 329
16.13 How to reuse cmake install for package() method . 334
16.14 How to collaborate with other users’ packages . 335
16.15 How to link with Apple Frameworks . 335
16.16 How to package Apple Frameworks . 336
16.17 How to collect licenses of dependencies . 336
16.18 How to extract licenses from headers . 337
16.19 How to dynamically define the name and version of a package . 337
16.20 How to capture package version from SCM: git . 337
16.21 How to capture package version from SCM: svn . 338
16.22 How to capture package version from text or build files . 338
16.23 How to use Conan as other language package manager . 339
16.24 How to manage SSL (TLS) certificates . 344
16.25 How to check the version of the Conan client inside a conanfile . 345
16.26 Use a generic CI with Conan and Artifactory . 346
16.27 Compiler sanitizers . 348

17 Reference 353
17.1 Commands . 353
17.2 conanfile.txt . 425
17.3 conanfile.py . 427
17.4 Generators . 476
17.5 Profiles . 515
17.6 Build helpers . 520
17.7 Tools . 546
17.8 Configuration files . 579
17.9 Environment variables . 593
17.10 Hooks . 603
17.11 CONAN_V2_MODE . 608

18 Videos and links 611

19 FAQ 613
19.1 General . 613

iii

19.2 Using Conan . 615
19.3 Troubleshooting . 619

20 Glossary 623

21 Changelog 627
21.1 1.31.4 (25-Nov-2020) . 627
21.2 1.31.3 (17-Nov-2020) . 627
21.3 1.31.2 (11-Nov-2020) . 627
21.4 1.31.1 (10-Nov-2020) . 628
21.5 1.31.0 (30-Oct-2020) . 628
21.6 1.30.2 (15-Oct-2020) . 629
21.7 1.30.1 (09-Oct-2020) . 629
21.8 1.30.0 (05-Oct-2020) . 630
21.9 1.29.2 (21-Sept-2020) . 631
21.10 1.29.1 (17-Sept-2020) . 631
21.11 1.29.0 (02-Sept-2020) . 631
21.12 1.28.2 (31-Aug-2020) . 632
21.13 1.28.1 (06-Aug-2020) . 632
21.14 1.28.0 (31-Jul-2020) . 633
21.15 1.27.1 (10-Jul-2020) . 634
21.16 1.27.0 (01-Jul-2020) . 634
21.17 1.26.1 (23-Jun-2020) . 635
21.18 1.26.0 (10-Jun-2020) . 635
21.19 1.25.2 (19-May-2020) . 636
21.20 1.25.1 (13-May-2020) . 636
21.21 1.25.0 (06-May-2020) . 637
21.22 1.24.1 (21-Apr-2020) . 638
21.23 1.24.0 (31-Mar-2020) . 638
21.24 1.23.0 (10-Mar-2020) . 639
21.25 1.22.3 (05-Mar-2020) . 640
21.26 1.22.2 (13-Feb-2020) . 640
21.27 1.22.1 (11-Feb-2020) . 640
21.28 1.22.0 (05-Feb-2020) . 640
21.29 1.21.3 (03-Mar-2020) . 642
21.30 1.21.2 (31-Jan-2020) . 642
21.31 1.21.1 (14-Jan-2020) . 642
21.32 1.21.0 (10-Dec-2019) . 643
21.33 1.20.5 (3-Dec-2019) . 644
21.34 1.20.4 (19-Nov-2019) . 644
21.35 1.20.3 (11-Nov-2019) . 644
21.36 1.20.2 (6-Nov-2019) . 644
21.37 1.20.1 (5-Nov-2019) . 645
21.38 1.20.0 (4-Nov-2019) . 645
21.39 1.19.3 (29-Oct-2019) . 646
21.40 1.19.2 (16-Oct-2019) . 646
21.41 1.19.1 (3-Oct-2019) . 647
21.42 1.19.0 (30-Sept-2019) . 647
21.43 1.18.5 (24-Sept-2019) . 648
21.44 1.18.4 (12-Sept-2019) . 648
21.45 1.18.3 (10-Sept-2019) . 648
21.46 1.18.2 (30-Aug-2019) . 648
21.47 1.18.1 (8-Aug-2019) . 648
21.48 1.18.0 (30-Jul-2019) . 649

iv

21.49 1.17.2 (25-Jul-2019) . 649
21.50 1.17.1 (22-Jul-2019) . 649
21.51 1.17.0 (9-Jul-2019) . 650
21.52 1.16.1 (14-Jun-2019) . 651
21.53 1.16.0 (4-Jun-2019) . 651
21.54 1.15.4 . 652
21.55 1.15.3 . 652
21.56 1.15.2 (31-May-2019) . 652
21.57 1.15.1 (16-May-2019) . 652
21.58 1.15.0 (6-May-2019) . 653
21.59 1.14.5 (30-Apr-2019) . 654
21.60 1.14.4 (25-Apr-2019) . 654
21.61 1.14.3 (11-Apr-2019) . 654
21.62 1.14.2 (11-Apr-2019) . 654
21.63 1.14.1 (1-Apr-2019) . 654
21.64 1.14.0 (28-Mar-2019) . 655
21.65 1.13.3 (27-Mar-2019) . 656
21.66 1.13.2 (21-Mar-2019) . 656
21.67 1.13.1 (15-Mar-2019) . 656
21.68 1.13.0 (07-Mar-2019) . 656
21.69 1.12.3 (18-Feb-2019) . 657
21.70 1.12.2 (8-Feb-2019) . 657
21.71 1.12.1 (5-Feb-2019) . 658
21.72 1.12.0 (30-Jan-2019) . 658
21.73 1.11.2 (8-Jan-2019) . 660
21.74 1.11.1 (20-Dec-2018) . 660
21.75 1.11.0 (19-Dec-2018) . 660
21.76 1.10.2 (17-Dec-2018) . 661
21.77 1.10.1 (11-Dec-2018) . 661
21.78 1.10.0 (4-Dec-2018) . 661
21.79 1.9.2 (20-Nov-2018) . 662
21.80 1.9.1 (08-Nov-2018) . 662
21.81 1.9.0 (30-October-2018) . 662
21.82 1.8.4 (19-October-2018) . 664
21.83 1.8.3 (17-October-2018) . 664
21.84 1.8.2 (10-October-2018) . 664
21.85 1.8.1 (10-October-2018) . 664
21.86 1.8.0 (9-October-2018) . 664
21.87 1.7.4 (18-September-2018) . 666
21.88 1.7.3 (6-September-2018) . 667
21.89 1.7.2 (4-September-2018) . 667
21.90 1.7.1 (31-August-2018) . 667
21.91 1.7.0 (29-August-2018) . 667
21.92 1.6.1 (27-July-2018) . 668
21.93 1.6.0 (19-July-2018) . 668
21.94 1.5.2 (5-July-2018) . 669
21.95 1.5.1 (29-June-2018) . 670
21.96 1.5.0 (27-June-2018) . 670
21.97 1.4.5 (22-June-2018) . 671
21.98 1.4.4 (11-June-2018) . 671
21.99 1.4.3 (6-June-2018) . 671
21.1001.4.2 (4-June-2018) . 671
21.1011.4.1 (31-May-2018) . 671
21.1021.4.0 (30-May-2018) . 672

v

21.1031.3.3 (10-May-2018) . 673
21.1041.3.2 (7-May-2018) . 673
21.1051.3.1 (3-May-2018) . 673
21.1061.3.0 (30-April-2018) . 673
21.1071.2.3 (10-Apr-2017) . 674
21.1081.2.1 (3-Apr-2018) . 674
21.1091.2.0 (28-Mar-2018) . 675
21.1101.1.1 (5-Mar-2018) . 676
21.1111.1.0 (27-Feb-2018) . 676
21.1121.0.4 (30-January-2018) . 678
21.1131.0.3 (22-January-2018) . 678
21.1141.0.2 (16-January-2018) . 678
21.1151.0.1 (12-January-2018) . 679
21.1161.0.0 (10-January-2018) . 679
21.1171.0.0-beta5 (8-January-2018) . 679
21.1181.0.0-beta4 (4-January-2018) . 679
21.1191.0.0-beta3 (28-December-2017) . 680
21.1201.0.0-beta2 (23-December-2017) . 680
21.1210.30.3 (15-December-2017) . 681
21.1220.30.2 (14-December-2017) . 681
21.1230.30.1 (12-December-2017) . 681
21.1240.29.2 (2-December-2017) . 682
21.1250.29.1 (23-November-2017) . 682
21.1260.29.0 (21-November-2017) . 682
21.1270.28.1 (31-October-2017) . 683
21.1280.28.0 (26-October-2017) . 684
21.1290.27.0 (20-September-2017) . 685
21.1300.26.1 (05-September-2017) . 686
21.1310.26.0 (31-August-2017) . 686
21.1320.25.1 (20-July-2017) . 687
21.1330.25.0 (19-July-2017) . 688
21.1340.24.0 (15-June-2017) . 689
21.1350.23.1 (05-June-2017) . 690
21.1360.23.0 (01-June-2017) . 690
21.1370.22.3 (03-May-2017) . 690
21.1380.22.2 (20-April-2017) . 691
21.1390.22.1 (18-April-2017) . 691
21.1400.22.0 (18-April-2017) . 691
21.1410.21.2 (04-April-2017) . 692
21.1420.21.1 (23-March-2017) . 692
21.1430.21.0 (21-March-2017) . 692
21.1440.20.3 (06-March-2017) . 693
21.1450.20.2 (02-March-2017) . 693
21.1460.20.1 (01-March-2017) . 693
21.1470.20.0 (27-February-2017) . 693
21.1480.19.3 (27-February-2017) . 694
21.1490.19.2 (15-February-2017) . 695
21.1500.19.1 (02-February-2017) . 695
21.1510.19.0 (31-January-2017) . 695
21.1520.18.1 (11-January-2017) . 696
21.1530.18.0 (3-January-2017) . 696
21.1540.17.2 (21-December-2016) . 697
21.1550.17.1 (15-December-2016) . 697
21.1560.17.0 (13-December-2016) . 697

vi

21.1570.16.1 (05-December-2016) . 698
21.1580.16.0 (19-November-2016) . 698
21.1590.15.0 (08-November-2016) . 698
21.1600.14.1 (20-October-2016) . 699
21.1610.14.0 (20-October-2016) . 699
21.1620.13.3 (13-October-2016) . 700
21.1630.13.0 (03-October-2016) . 700
21.1640.12.0 (13-September-2016) . 701
21.1650.11.1 (31-August-2016) . 702
21.1660.11.0 (3-August-2016) . 702
21.1670.10.0 (29-June-2016) . 703
21.1680.9.2 (11-May-2016) . 704
21.1690.9 (3-May-2016) . 704
21.1700.8.4 (28-Mar-2016) . 704
21.1710.8 (15-Mar-2016) . 705
21.1720.7 (5-Feb-2016) . 705
21.1730.6 (11-Jan-2016) . 706
21.1740.5 (18-Dec-2015) . 706

22 Road to Conan 2.0 709

Index 711

vii

viii

Conan Documentation, Release 1.31.4

Conan is a software package manager which is intended for C and C++ developers.

Conan is universal and portable. It works in all operating systems including Windows, Linux, OSX, FreeBSD, Solaris,
and others, and it can target any platform, including desktop, server, and cross-building for embedded and bare metal
devices. It integrates with other tools like Docker, MinGW, WSL, and with all build systems such as CMake, MSBuild,
Makefiles, Meson, SCons. It can even integrate with any proprietary build systems.

Conan is completely free and open source and fully decentralized. It has native integration with JFrog Artifactory,
including the free Artifactory Community Edition for Conan, enabling developers to host their own private packages
on their own server. The ConanCenter central repository contains hundreds of popular open source libraries packages,
with many pre-compiled binaries for mainstream compiler versions.

Conan can manage any number of different binaries for different build configurations, including different architectures,
compilers, compiler versions, runtimes, C++ standard library, etc. When binaries are not available for one configu-
ration, they can be built from sources on-demand. Conan can create, upload and download binaries with the same
commands and flows on every platform, saving lots of time in development and continuous integration. The binary
compatibility can even be configured and customized on a per-package basis.

Conan has a very large and active community, especially in Github repositories and Slack #conan channel. This com-
munity also creates and maintains packages in ConanCenter. Conan is used in production by thousands of companies,
and consequently, it has a commitment to stability, with no breaking changes across all Conan 1.X versions.

CONTENTS 1

https://conan.io
https://github.com/conan-io/conan
https://conan.io/center
https://github.com/conan-io/conan
https://cpplang-inviter.cppalliance.org/

Conan Documentation, Release 1.31.4

2 CONTENTS

CHAPTER

ONE

INTRODUCTION

Conan is a dependency and package manager for C and C++ languages. It is free and open-source, and it works in
all platforms: Windows, Linux, OSX, FreeBSD, Solaris, etc. and can be used to develop for all targets including
embedded, mobile (iOS, Android), bare metal. It also integrates with all build systems like CMake, Visual Studio
(MSBuild), Makefiles, SCons, etc., including proprietary ones.

It is specifically designed and optimized for accelerating the development and Continuous Integration of C and C++
projects. With full binary management, it can create and reuse any number of different binaries (for different config-
urations, like architectures, compiler versions, etc) for any number of different versions of a package, using exactly
the same process in all platforms. As it is decentralized, it is easy to run your own server to host your own packages
and binaries privately, without needing to share them. The free JFrog Artifactory Community Edition (CE) is the
recommended Conan server to host your own packages privately under your control.

Conan is mature and stable, with a strong commitment to forward compatibility (non-breaking policy), with a complete
team dedicated full time to its improvement and support. It is backed and used by a great community, from open source
contributors and package creators in ConanCenter to thousands of teams and companies using it.

1.1 Open Source

Conan is Free and Open Source, with a permissive MIT license. Check out the source code and issue tracking (for ques-
tions and support, reporting bugs and suggesting feature requests and improvements) at https://github.com/conan-io/
conan

1.2 Decentralized package manager

Conan is a decentralized package manager with a client-server architecture. This means that clients can fetch packages
from, as well as upload packages to, different servers (“remotes”), similar to the “git” push-pull model to/from git
remotes.

On a high level, the servers are just a package storage. They do not build nor create the packages. The packages are
created by the client, and if binaries are built from sources, that compilation is also done by the client application.

3

https://github.com/conan-io/conan
https://conan.io/downloads.html
https://conan.io/center
https://github.com/conan-io/conan
https://github.com/conan-io/conan

Conan Documentation, Release 1.31.4

The different applications in the image above are:

• The Conan client: this is a console/terminal command-line application, containing the heavy logic for package
creation and consumption. Conan client has a local cache for package storage, and so it allows you to fully create
and test packages offline. You can also work offline as long as no new packages are needed from remote servers.

• JFrog Artifactory Community Edition (CE) is the recommended Conan server to host your own packages pri-
vately under your control. It is a free community edition of JFrog Artifactory for Conan packages, including a
WebUI, multiple auth protocols (LDAP), Virtual and Remote repositories to create advanced topologies, a Rest
API and generic repositories to host any artifact.

• The conan_server is a small server distributed together with the Conan client. It is a simple open-source imple-
mentation, it provides the basic functionality but no WebUI or other advanced features.

• ConanCenter is a central public repository where the community contributes packages for popular open-source
libraries, like Boost, Zlib, OpenSSL, Poco, etc.

1.3 Binary management

One of the most powerful features of Conan is that it can create and manage pre-compiled binaries for any possible
platform and configuration. Using pre-compiled binaries and avoiding repeatedly building from source, save a lot of
time to developers and Continuous Integration servers, while also improving the reproducibility and traceability of
artifacts.

A package is defined by a “conanfile.py”, a file that defines the package dependencies, the sources, how to build the
binaries from sources, etc. One package “conanfile.py” recipe can generate any arbitrary number of binaries, one for
each different platform and configuration: operating system, architecture, compiler, build type, etc. Those binaries can
be created and uploaded to a server with the same commands in all platforms, having a single source of truth for all
packages and not requiring a different solution for every different operating system.

4 Chapter 1. Introduction

https://conan.io/downloads.html
https://conan.io/center

Conan Documentation, Release 1.31.4

Installation of packages from servers is also very efficient. Only the necessary binaries for the current platform and
configuration are downloaded, not all of them. If the compatible binary is not available, the package can be built from
sources in the client too.

1.4 All platforms, all build systems and compilers

Conan works on Windows, Linux (Ubuntu, Debian, RedHat, ArchLinux, Raspbian), OSX, FreeBSD, and SunOS, and,
as it is portable, it might work in any other platform that can run Python. It can target any existing platform, from bare
metal, to desktop, mobile, embedded, servers, cross-building.

Conan works with any build system too. There are built-in integrations with most popular ones, like CMake, Visual
Studio (MSBuild), Autotools and Makefiles, SCons, etc. But it is not a requirement to use any of them. It is not even
necessary that all packages use the same build system, every package can use their own build system, and depend on
other packages using different build systems. It is also possible to integrate with any build system, including proprietary
ones.

Likewise, Conan can manage any compiler and any version. There are defaults definitions for the most popular ones:
gcc, cl.exe, clang, apple-clang, intel, with different configurations of versions, runtimes, C++ standard library, etc. This
model is also extensible to any custom configuration.

1.5 Stable

From Conan 1.0, there is a commitment to stability, not breaking user space while evolving the tool and the platform.
This means:

• Moving forward to following minor versions 1.1, 1.2, . . . , 1.X should never break existing recipes, packages or
command line flows

• If something is breaking, it will be considered a bug and reverted

• Bug fixes will not be considered breaking, recipes and packages relying on the incorrect behavior of such bugs
will be considered already broken.

• Only documented features are considered part of the public interface of Conan. Private implementation details,
and everything not included in the documentation is subject to change.

• Configuration and automatic tools detection, like the detection of the default profile might be subject to change.
Users are encouraged to define their configurations in profiles for repeatability. New installations of Conan might
use different configurations.

1.4. All platforms, all build systems and compilers 5

Conan Documentation, Release 1.31.4

The compatibility is always considered forward. New APIs, tools, methods, helpers can be added in following 1.X
versions. Recipes and packages created with these features will be backwards incompatible with earlier Conan versions.

This means that public repositories, like ConanCenter assume the use of the latest version of the Conan client, and
using an older version may result in failure of packages and recipes created with a newer version of the client.

Conan needs Python 3 to run. It has supported Python 2 until 1 January 2020, when it was officially deprecated by the
Python maintainers. From Conan 1.22.0 release, Python 2 support is not guaranteed. See the deprecation notice for
more details

If you have any question regarding Conan updates, stability, or any clarification about this definition of stability, please
report in the documentation issue tracker: https://github.com/conan-io/docs.

1.6 Community

Conan is being used in production by hundreds of companies like Audi, Continental, Plex, Electrolux and Mercedes-
Benz and many thousands of developers around the world.

But an essential part of Conan is that many of those users will contribute back, creating an amazing and helpful com-
munity:

• The https://github.com/conan-io/conan project has more than 3.5K stars in Github and counts with contributions
of nearly 200 different users (this is just the client tool).

• Many other users contribute recipes for ConanCenter via the https://github.com/conan-io/conan-center-index
repo, creating packages for popular Open Source libraries.

• More than one thousand of Conan users hang around the CppLang Slack #conan channel, and help responding
to questions, discussing problems and approaches..

Have any questions? Please check out our FAQ section or .

6 Chapter 1. Introduction

https://github.com/conan-io/docs
https://github.com/conan-io/conan
https://github.com/conan-io/conan-center-index
https://cpplang-inviter.cppalliance.org/

CHAPTER

TWO

TRAINING COURSES

JFrog has created the JFrog Academy to host a broad range of free online courses surrounding Devops. The Conan
team has created the “Conan series” on JFrog Academy, which includes several levels of courses covering both beginner
concepts and advanced scenarios.

The courses are completely free and self-paced. They feature interactive exercises which walk users through the running
of commands, exploring and editing of important Conan-related files and directories, and quizzes to invoke critical
thinking after each section.

For additional information about the Conan training series, see the original blog post announcement here:

• https://blog.conan.io/2020/09/24/New-conan-training-series.html

For the complete list of dedicated Conan courses, see the Conan series page here:

• https://academy.jfrog.com/path/conan

Finally, here is a brief video introducing the series:

7

https://blog.conan.io/2020/09/24/New-conan-training-series.html
https://academy.jfrog.com/path/conan

Conan Documentation, Release 1.31.4

8 Chapter 2. Training Courses

CHAPTER

THREE

INSTALL

Conan can be installed in many Operating Systems. It has been extensively used and tested in Windows, Linux (different
distros), OSX, and is also actively used in FreeBSD and Solaris SunOS. There are also several additional operating
systems on which it has been reported to work.

There are three ways to install Conan:

1. The preferred and strongly recommended way to install Conan is from PyPI, the Python Package Index, using
the pip command.

2. There are other available installers for different systems, which might come with a bundled python interpreter,
so that you don’t have to install python first. Note that some of these installers might have some limitations,
especially those created with pyinstaller (such as Windows exe & Linux deb).

3. Running Conan from sources.

3.1 Install with pip (recommended)

To install Conan using pip, you need Python >= 3.5 distribution installed on your machine. Python 3.4 support has
been dropped and Python 2 is being deprecated. Modern Python distros come with pip pre-installed. However, if
necessary you can install pip by following the instructions in pip docs.

Warning: Python 2 has been deprecated on January 1st, 2020 by the Python maintainers and Conan project
will completely stop working with it in the following releases. See Python 2 Deprecation Notice for details.

Install Conan:

$ pip install conan

Important: Please READ carefully

• Make sure that your pip installation matches your Python (2.7 or >= 3.5) version. Python 3.4 support has been
dropped.

• In Linux, you may need sudo permissions to install Conan globally.

• We strongly recommend using virtualenvs (virtualenvwrapper works great) for everything related to Python.
(check https://virtualenvwrapper.readthedocs.io/en/stable/, or https://pypi.org/project/virtualenvwrapper-win/
in Windows) With Python 3, the built-in module venv can also be used instead (check https://docs.python.org/3/
library/venv.html). If not using a virtualenv it is possible that conan dependencies will conflict with previously
existing dependencies, especially if you are using Python for other purposes.

9

https://pip.pypa.io/en/stable/installing/
https://virtualenvwrapper.readthedocs.io/en/stable/
https://pypi.org/project/virtualenvwrapper-win/
https://docs.python.org/3/library/venv.html
https://docs.python.org/3/library/venv.html

Conan Documentation, Release 1.31.4

• In Windows and Python 2.7, you may need to use 32bit python distribution (which is the Windows default),
instead of 64 bit.

• In OSX, especially the latest versions that may have System Integrity Protection, pip may fail. Try using
virtualenvs, or install with another user $ pip install --user conan.

• Some Linux distros, such as Linux Mint, require a restart (shell restart, or logout/system if not enough) after
installation, so Conan is found in the path.

• In Windows, Python 3 installation can fail installing the wrapt dependency because of a bug in pip. Information
about this issue and workarounds is available here: https://github.com/GrahamDumpleton/wrapt/issues/112.

• Conan works with Python 2.7, but not all features are available when not using Python 3.x starting with version
1.6

3.1.1 Known installation issues with pip

• When Conan is installed with pip install --user <username>, usually a new directory is created for it.
However, the directory is not appended automatically to the PATH and the conan commands do not work. This
can usually be solved restarting the session of the terminal or running the following command:

$ source ~/.profile

3.2 Install from brew (OSX)

There is a brew recipe, so in OSX, you can install Conan as follows:

$ brew update
$ brew install conan

3.3 Install from AUR (Arch Linux)

The easiest way to install Conan on Arch Linux is by using one of the Arch User Repository (AUR) helpers, e.g., yay,
aurman, or pakku. For example, the following command installs Conan using yay:

$ yay -S conan

Alternatively, build and install Conan manually using makepkg and pacman as described in the Arch Wiki. Conan
build files can be downloaded from AUR: https://aur.archlinux.org/packages/conan/. Make sure to first install the three
Conan dependencies which are also found in AUR:

• python-patch-ng

• python-node-semver

• python-pluginbase

10 Chapter 3. Install

https://github.com/GrahamDumpleton/wrapt/issues/112
https://wiki.archlinux.org/index.php/AUR_helpers
https://wiki.archlinux.org/index.php/Arch_User_Repository#Installing_and_upgrading_packages
https://aur.archlinux.org/packages/conan/

Conan Documentation, Release 1.31.4

3.4 Install the binaries

Go to the conan website and download the installer for your platform!

Execute the installer. You don’t need to install python.

3.5 Initial configuration

Check if Conan is installed correctly. Run the following command in your console:

$ conan

The response should be similar to:

Consumer commands
install Installs the requirements specified in a recipe (conanfile.py or conanfile.

→˓txt).
config Manages Conan configuration.
get Gets a file or list a directory of a given reference or package.
info Gets information about the dependency graph of a recipe.
...

Tip: If you are using Bash, there is a bash autocompletion project created by the community for Conan commands:
https://gitlab.com/akim.saidani/conan-bashcompletion

3.6 Install from source

You can run Conan directly from source code. First, you need to install Python and pip.

Clone (or download and unzip) the git repository and install its requirements:

$ git clone https://github.com/conan-io/conan.git
$ cd conan
$ pip install -r conans/requirements.txt

Create a script to run Conan and add it to your PATH.

#!/usr/bin/env python

import sys

conan_repo_path = "/home/your_user/conan" # ABSOLUTE PATH TO CONAN REPOSITORY FOLDER

sys.path.append(conan_repo_path)
from conans.client.command import main
main(sys.argv[1:])

Test your conan script.

3.4. Install the binaries 11

https://conan.io/downloads.html
https://gitlab.com/akim.saidani/conan-bashcompletion

Conan Documentation, Release 1.31.4

$ conan

You should see the Conan commands help.

3.7 Update

If installed via pip, Conan can be easily updated:

$ pip install conan --upgrade # Might need sudo or --user

If installed via the installers (.exe, .deb), download the new installer and execute it.

The default <userhome>/.conan/settings.yml file, containing the definition of compiler versions, etc., will be upgraded
if Conan does not detect local changes, otherwise it will create a settings.yml.new with the new settings. If you want to
regenerate the settings, you can remove the settings.yml file manually and it will be created with the new information
the first time it is required.

The upgrade shouldn’t affect the installed packages or cache information. If the cache becomes inconsistent somehow,
you may want to remove its content by deleting it (<userhome>/.conan).

3.8 Python 2 Deprecation Notice

All features of Conan until version 1.6 are fully supported in both Python 2 and Python 3. However, new features in
upcoming Conan releases that are only available in Python 3 or more easily available in Python 3 will be implemented
and tested only in Python 3, and versions of Conan using Python 2 will not have access to that feature. This will be
clearly described in code and documentation.

Starting in Conan 1.22, Python 2 is no longer supported and Conan will stop working with it in the following releases.

Conan 2.x won’t support Python 2.

We encourage you to upgrade to Python 3 as soon as possible. However, if this is impossible for you or your team, we
would like to know it. Please give feedback in the Conan issue tracker or write us to info@conan.io.

12 Chapter 3. Install

https://github.com/conan-io/conan/issues/3334
mailto:info@conan.io

CHAPTER

FOUR

GETTING STARTED

Let’s get started with an example: We are going to create an MD5 hash calculator app that uses one of the most popular
C++ libraries: Poco.

We’ll use CMake as build system in this case but keep in mind that Conan works with any build system and is not
limited to using CMake.

Make sure you are running the latest Conan version. Read the Conan update section to get more information.

4.1 An MD5 hash calculator using the Poco Libraries

Note: The source files to recreate this project are available in the example repository in GitHub. You can skip the
manual creation of the folder and sources with this command:

$ git clone https://github.com/conan-io/examples.git && cd examples/libraries/poco/md5

1. Create the following source file inside a folder. This will be the source file of our application:

Listing 1: md5.cpp

#include "Poco/MD5Engine.h"
#include "Poco/DigestStream.h"

#include <iostream>

int main(int argc, char** argv){
Poco::MD5Engine md5;
Poco::DigestOutputStream ds(md5);
ds << "abcdefghijklmnopqrstuvwxyz";
ds.close();
std::cout << Poco::DigestEngine::digestToHex(md5.digest()) <<␣

→˓std::endl;
return 0;

}

2. We know that our application relies on the Poco libraries. Let’s look for it in the ConanCenter remote, going to
https://conan.io/center, and typing “poco” in the search box. We will see that there are some different versions
available:

13

https://pocoproject.org/
https://github.com/conan-io/examples
https://conan.io/center

Conan Documentation, Release 1.31.4

poco/1.8.1
poco/1.9.3
poco/1.9.4
...

Note: The Conan client contains a command to search in remote repositories, and we could try $ conan
search poco --remote=conan-center. You can perfectly use this command to search in your own reposi-
tories, but note that at the moment this might timeout in ConanCenter. The infrastructure is being improved to
support this command too, but meanwhile using the ConanCenter UI is recommended.

3. We got some interesting references for Poco. Let’s inspect the metadata of the 1.9.4 version:

$ conan inspect poco/1.9.4
name: poco
version: 1.9.4
url: https://github.com/conan-io/conan-center-index
homepage: https://pocoproject.org
license: BSL-1.0
author: None
description: Modern, powerful open source C++ class libraries for building␣
→˓network- and internet-based applications that run on desktop, server,␣
→˓mobile and embedded systems.
topics: ('conan', 'poco', 'building', 'networking', 'server', 'mobile',
→˓'embedded')
generators: cmake
exports: None
exports_sources: CMakeLists.txt
short_paths: False
apply_env: True
build_policy: None
revision_mode: hash
settings: ('os', 'arch', 'compiler', 'build_type')
options:

cxx_14: [True, False]
enable_apacheconnector: [True, False]
enable_cppparser: [True, False]
enable_crypto: [True, False]
[...]

default_options:
cxx_14: False
enable_apacheconnector: False
enable_cppparser: False
enable_crypto: True
[...]

4. Let’s use this poco/1.9.4 version for our MD5 calculator app, creating a conanfile.txt inside our project’s folder
with the following content:

Listing 2: conanfile.txt

[requires]
poco/1.9.4

(continues on next page)

14 Chapter 4. Getting Started

https://conan.io/center/

Conan Documentation, Release 1.31.4

(continued from previous page)

[generators]
cmake

In this example we are using CMake to build the project, which is why the cmake generator is specified.
This generator creates a conanbuildinfo.cmake file that defines CMake variables including paths and
library names that can be used in our build. Read more about Generators.

5. Next step: We are going to install the required dependencies and generate the information for the build system:

Important: If you are using GCC compiler >= 5.1, Conan will set the compiler.libcxx to the
old ABI for backwards compatibility. You can change this with the following commands:

$ conan profile new default --detect # Generates default profile detecting␣
→˓GCC and sets old ABI
$ conan profile update settings.compiler.libcxx=libstdc++11 default # Sets␣
→˓libcxx to C++11 ABI

You will find more information in How to manage the GCC >= 5 ABI .

$ mkdir build && cd build
$ conan install ..
...
Requirements

bzip2/1.0.8 from 'conan-center' - Downloaded
expat/2.2.9 from 'conan-center' - Downloaded
openssl/1.1.1g from 'conan-center' - Downloaded
pcre/8.41 from 'conan-center' - Downloaded
poco/1.9.4 from 'conan-center' - Cache
sqlite3/3.31.1 from 'conan-center' - Downloaded
zlib/1.2.11 from 'conan-center' - Downloaded

Packages
bzip2/1.0.8:5be2b7a2110ec8acdbf9a1cea9de5d60747edb34 - Download
expat/2.2.9:6cc50b139b9c3d27b3e9042d5f5372d327b3a9f7 - Download
openssl/1.1.1g:6cc50b139b9c3d27b3e9042d5f5372d327b3a9f7 - Download
pcre/8.41:20fc3dfce989c458ac2372442673140ea8028c06 - Download
poco/1.9.4:73e83a21ea6817fa9ef0f7d1a86ea923190b0205 - Download
sqlite3/3.31.1:4559c5d4f09161e1edf374b033b1d6464826db16 - Download
zlib/1.2.11:6cc50b139b9c3d27b3e9042d5f5372d327b3a9f7 - Download

zlib/1.2.11: Retrieving package f74366f76f700cc6e991285892ad7a23c30e6d47␣
→˓from remote 'conan-center'
Downloading conanmanifest.txt completed [0.25k]
Downloading conaninfo.txt completed [0.44k]
Downloading conan_package.tgz completed [83.15k]
Decompressing conan_package.tgz completed [0.00k]
zlib/1.2.11: Package installed f74366f76f700cc6e991285892ad7a23c30e6d47
zlib/1.2.11: Downloaded package revision 0
...
poco/1.9.4: Retrieving package 645aaff0a79e6036c77803601e44677556109dd9␣
→˓from remote 'conan-center'

(continues on next page)

4.1. An MD5 hash calculator using the Poco Libraries 15

Conan Documentation, Release 1.31.4

(continued from previous page)

Downloading conanmanifest.txt completed [48.75k]
Downloading conaninfo.txt completed [2.44k]
Downloading conan_package.tgz completed [5128.39k]
Decompressing conan_package.tgz completed [0.00k]
poco/1.9.4: Package installed 645aaff0a79e6036c77803601e44677556109dd9
poco/1.9.4: Downloaded package revision 0
conanfile.txt: Generator cmake created conanbuildinfo.cmake
conanfile.txt: Generator txt created conanbuildinfo.txt
conanfile.txt: Generated conaninfo.txt
conanfile.txt: Generated graphinfo

Conan installed our Poco dependency but also the transitive dependencies for it: OpenSSL, zlib, sqlite and
others. It has also generated a conanbuildinfo.cmake file for our build system.

Warning: There are prebuilt binaries for several mainstream compilers and versions available in Conan
Center repository, such as Visual Studio 14, 15, Linux GCC 4.9 and Apple Clang 3.5. Up to >130 different
binaries for different configurations can be available in ConanCenter. But if your current configuration is
not pre-built in ConanCenter, Conan will raise a “BinaryMissing” error. Please read carefully the error
messages. You can build the binary package from sources using conan install .. --build=missing,
it will succeed if your configuration is supported by the recipe (it is possible that some ConanCenter recipes
fail to build for some platforms). You will find more info in the Building with other configurations section.

6. Now let’s create our build file. To inject the Conan information, include the generated conanbuildinfo.cmake file
like this:

Listing 3: CMakeLists.txt

cmake_minimum_required(VERSION 2.8.12)
project(MD5Encrypter)

add_definitions("-std=c++11")

include(${CMAKE_BINARY_DIR}/conanbuildinfo.cmake)
conan_basic_setup()

add_executable(md5 md5.cpp)
target_link_libraries(md5 ${CONAN_LIBS})

Note: There are other integrations with CMake, like the cmake_find_package generators, that will
use the find_package() CMake syntax.

7. Now we are ready to build and run our MD5 app:

(win)
$ cmake .. -G "Visual Studio 16"
$ cmake --build . --config Release

(linux, mac)
$ cmake .. -G "Unix Makefiles" -DCMAKE_BUILD_TYPE=Release
$ cmake --build .

(continues on next page)

16 Chapter 4. Getting Started

Conan Documentation, Release 1.31.4

(continued from previous page)

...
[100%] Built target md5
$./bin/md5
c3fcd3d76192e4007dfb496cca67e13b

4.2 Installing Dependencies

The conan install command downloads the binary package required for your configuration (detected the first time
you ran the command), together with other (transitively required by Poco) libraries, like OpenSSL and Zlib. It
will also create the conanbuildinfo.cmake file in the current directory, in which you can see the CMake variables, and
a conaninfo.txt in which the settings, requirements and optional information is saved.

Note: Conan generates a default profile with your detected settings (OS, compiler, architecture. . .) and that configu-
ration is printed at the top of every conan install command. However, it is strongly recommended to review it and
adjust the settings to accurately describe your system as shown in the Building with other configurations section.

It is very important to understand the installation process. When the conan install command runs, settings specified
on the command line or taken from the defaults in <userhome>/.conan/profiles/default file are applied.

For example, the command conan install .. --settings os="Linux" --settings compiler="gcc", per-
forms these steps:

• Checks if the package recipe (for poco/1.9.4 package) exists in the local cache. If we are just starting, the
cache is empty.

4.2. Installing Dependencies 17

Conan Documentation, Release 1.31.4

• Looks for the package recipe in the defined remotes. Conan comes with conan-center remote as the default,
but can be changed.

• If the recipe exists, the Conan client fetches and stores it in your local Conan cache.

• With the package recipe and the input settings (Linux, GCC), Conan looks for the corresponding binary in the
local cache.

• As the binary is not found in the cache, Conan looks for it in the remote and fetches it.

• Finally, it generates an appropriate file for the build system specified in the [generators] section.

4.3 Inspecting Dependencies

The retrieved packages are installed to your local user cache (typically .conan/data), and can be reused from this location
for other projects. This allows to clean your current project and continue working even without network connection.
To search for packages in the local cache run:

$ conan search "*"
Existing package recipes:

openssl/1.0.2t
poco/1.9.4
zlib/1.2.11
...

To inspect the different binary packages of a reference run:

$ conan search poco/1.9.4@
Existing packages for recipe poco/1.9.4:

Package_ID: 645aaff0a79e6036c77803601e44677556109dd9
[options]

cxx_14: False
enable_apacheconnector: False
enable_cppparser: False
enable_crypto: True
enable_data: True

...

The @ symbol at the end of the package name is important to search for a specific package. If you don’t add the @,
Conan will interpret the argument as a pattern search and return all the packages that match the poco/1.9.4 pattern
and may have different user and channel.

To inspect all your current project’s dependencies use the conan info command by pointing it to the location of the
conanfile.txt folder:

$ conan info ..
conanfile.txt

ID: db91af4811b080e02ebe5a626f1d256bb90d5223
BuildID: None
Requires:

poco/1.9.4
openssl/1.0.2t

ID: eb50d18a5a5d59bd0c332464a4c348ab65e353bf
(continues on next page)

18 Chapter 4. Getting Started

Conan Documentation, Release 1.31.4

(continued from previous page)

BuildID: None
Remote: conan-center=https://api.bintray.com/conan/conan/conan-center
URL: https://github.com/conan-io/conan-center-index
Homepage: https://github.com/openssl/openssl
License: OpenSSL
Description: A toolkit for the Transport Layer Security (TLS) and Secure Sockets␣

→˓Layer (SSL) protocols
Topics: conan, openssl, ssl, tls, encryption, security
Recipe: Cache
Binary: Cache
Binary remote: conan-center
Creation date: 2019-11-13 23:14:37
Required by:

poco/1.9.4
Requires:

zlib/1.2.11
poco/1.9.4

ID: 645aaff0a79e6036c77803601e44677556109dd9
BuildID: None
Remote: conan-center=https://api.bintray.com/conan/conan/conan-center
URL: https://github.com/conan-io/conan-center-index
Homepage: https://pocoproject.org
License: BSL-1.0
Description: Modern, powerful open source C++ class libraries for building network-␣

→˓and internet-based applications that run on desktop, server, mobile and embedded␣
→˓systems.

Topics: conan, poco, building, networking, server, mobile, embedded
Recipe: Cache
Binary: Cache
Binary remote: conan-center
Creation date: 2020-01-07 17:29:24
Required by:

conanfile.txt
Requires:

openssl/1.0.2t
zlib/1.2.11

ID: f74366f76f700cc6e991285892ad7a23c30e6d47
BuildID: None
Remote: conan-center=https://api.bintray.com/conan/conan/conan-center
URL: https://github.com/conan-io/conan-center-index
Homepage: https://zlib.net
License: Zlib
Description: A Massively Spiffy Yet Delicately Unobtrusive Compression Library (Also␣

→˓Free, Not to Mention Unencumbered by Patents)
Recipe: Cache
Binary: Cache
Binary remote: conan-center
Creation date: 2020-01-07 17:01:29
Required by:

openssl/1.0.2t

Or generate a graph of your dependencies using Dot or HTML formats:

4.3. Inspecting Dependencies 19

Conan Documentation, Release 1.31.4

$ conan info .. --graph=file.html
$ file.html # or open the file, double-click

4.4 Searching Packages

The remote repository where packages are installed from is configured by default in Conan. It is called Conan Center
(configured as conan-center remote).

If we search for something like open in ConanCenter we could find different packages like:

openal/1.18.2@bincrafters/stable
openal/1.19.1
opencv/2.4.13.5@conan/stable
opencv/3.4.3@conan/stable
opencv/4.1.1@conan/stable
openexr/2.3.0
openexr/2.3.0@conan/stable
openexr/2.4.0
openjpeg/2.3.0@bincrafters/stable
openjpeg/2.3.1
openjpeg/2.3.1@bincrafters/stable
openssl/1.0.2s
...

As you can see, some of the libraries end with a @ symbol followed by two strings separated by a slash. These fields are
the user and channel for the Conan package, and they are useful if you want to make specific changes and disambiguate
your modified recipe from the one in the Conan Center or any other remote. These are legacy packages, and the ones
without user and channel are the ones strongly recommended to use from ConanCenter.

ConanCenter is the central public repository for Conan packages. You can contribute packages to it in the conan-
center-index Github repository. If you want to store your own private packages, you can download the free Artifactory
Community Edition (CE) directly from the Conan downloads page.

20 Chapter 4. Getting Started

https://conan.io/center/
https://github.com/conan-io/conan-center-index
https://github.com/conan-io/conan-center-index
https://conan.io/downloads.html

Conan Documentation, Release 1.31.4

4.5 Building with other configurations

In this example, we have built our project using the default configuration detected by Conan. This configuration is
known as the default profile.

A profile needs to be available prior to running commands such as conan install. When running the command,
your settings are automatically detected (compiler, architecture. . .) and stored as the default profile. You can edit these
settings ~/.conan/profiles/default or create new profiles with your desired configuration.

For example, if we have a profile with a 32-bit GCC configuration in a file called gcc_x86, we can run the following:

$ conan install .. --profile=gcc_x86

Tip: We strongly recommend using Profiles and managing them with conan config install.

However, the user can always override the profile settings in the conan install command using the --settings
parameter. As an exercise, try building the 32-bit version of the hash calculator project like this:

$ conan install .. --settings arch=x86

The above command installs a different package, using the --settings arch=x86 instead of the one of the default
profile used previously. Note you might need to install extra compilers or toolchains in some platforms, as for example,
Linux distributions no longer install 32bits toolchains by default.

To use the 32-bit binaries, you will also have to change your project build:

• In Windows, change the CMake invocation to Visual Studio 14.

• In Linux, you have to add the -m32 flag to your CMakeLists.txt by running SET(CMAKE_CXX_FLAGS
"${CMAKE_CXX_FLAGS} -m32"), and the same applies to CMAKE_C_FLAGS, CMAKE_SHARED_LINK_FLAGS
and CMAKE_EXE_LINKER_FLAGS. This can also be done more easily, by automatically using Conan, as we’ll
show later.

• In macOS, you need to add the definition -DCMAKE_OSX_ARCHITECTURES=i386.

Got any doubts? Check our FAQ, or join the community in Cpplang Slack #conan channel!

4.5. Building with other configurations 21

https://cpplang-inviter.cppalliance.org/

Conan Documentation, Release 1.31.4

22 Chapter 4. Getting Started

CHAPTER

FIVE

USING PACKAGES

This section shows how to setup your project and manage dependencies (i.e., install existing packages) with Conan.

5.1 Installing dependencies

In Getting started we used the conan install command to download the Poco library and build an example.

If you inspect the conanbuildinfo.cmake file that was created when running conan install, you can see there
that there are many CMake variables declared. For example CONAN_INCLUDE_DIRS_ZLIB, that defines the include
path to the zlib headers, and CONAN_INCLUDE_DIRS that defines include paths for all dependencies headers.

If you check the full path that each of these variables defines, you will see that it points to a folder under your
<userhome> folder. Together, these folders are the local cache. This is where package recipes and binary packages
are stored and cached, so they don’t have to be retrieved again. You can inspect the local cache with conan search,
and remove packages from it with conan remove command.

23

Conan Documentation, Release 1.31.4

If you navigate to the folders referenced in conanbuildinfo.cmake you will find the headers and libraries for each
package.

If you execute a conan install poco/1.9.4@ command in your shell, Conan will download the Poco package and
its dependencies (openssl/1.0.2t and zlib/1.2.11) to your local cache and print information about the folder where they
are installed. While you can install each of your dependencies individually like that, the recommended approach for
handling dependencies is to use a conanfile.txt file. The structure of conanfile.txt is described below.

5.1.1 Requires

The required dependencies should be specified in the [requires] section. Here is an example:

[requires]
mypackage/1.0.0@company/stable

Where:

• mypackage is the name of the package which is usually the same as the project/library.

• 1.0.0 is the version which usually matches that of the packaged project/library. This can be any string; it does
not have to be a number, so, for example, it could indicate if this is a “develop” or “master” version. Packages can
be overwritten, so it is also OK to have packages like “nightly” or “weekly”, that are regenerated periodically.

• company is the owner of this package. It is basically a namespace that allows different users to have their own
packages for the same library with the same name.

• stable is the channel. Channels provide another way to have different variants of packages for the same library
and use them interchangeably. They usually denote the maturity of the package as an arbitrary string such as
“stable” or “testing”, but they can be used for any purpose such as package revisions (e.g., the library version has
not changed, but the package recipe has evolved).

Optional user/channel

Warning: This is an experimental feature subject to breaking changes in future releases.

If the package was created and uploaded without specifying the user and channel you can omit the user/channel
when specifying a reference:

[requires]
packagename/1.2.0

Overriding requirements

You can specify multiple requirements and override transitive “require’s requirements”. In our example, Conan in-
stalled the Poco package and all its requirements transitively:

• openssl/1.0.2t

• zlib/1.2.11

Tip: This is a good example of overriding requirements given the importance of keeping the OpenSSL library updated.

24 Chapter 5. Using packages

Conan Documentation, Release 1.31.4

Consider that a new release of the OpenSSL library has been released, and a new corresponding Conan package is
available. In our example, we do not need to wait until pocoproject (the author) generates a new package of POCO that
includes the new OpenSSL library.

We can simply enter the new version in the [requires] section:

[requires]
poco/1.9.4
openssl/1.0.2u

The second line will override the openssl/1.0.2t required by POCO with the currently non-existent openssl/1.0.2u.

Another example in which we may want to try some new zlib alpha features: we could replace the zlib requirement
with one from another user or channel.

[requires]
poco/1.9.4
openssl/1.0.2u
zlib/1.2.11@otheruser/alpha

Note: You can use environment variable CONAN_ERROR_ON_OVERRIDE to raise an error for every overriden
requirement not marked explicitly with the override keyword.

5.1.2 Generators

Conan reads the [generators] section from conanfile.txt and creates files for each generator with all the informa-
tion needed to link your program with the specified requirements. The generated files are usually temporary, created
in build folders and not committed to version control, as they have paths to local folders that will not exist in another
machine. Moreover, it is very important to highlight that generated files match the given configuration (Debug/Release,
x86/x86_64, etc) specified when running conan install. If the configuration changes, the files will change accord-
ingly.

For a full list of generators, please refer to the complete generators reference.

5.1.3 Options

We have already seen that there are some settings that can be specified during installation. For example, conan
install .. -s build_type=Debug. These settings are typically a project-wide configuration defined by the client
machine, so they cannot have a default value in the recipe. For example, it doesn’t make sense for a package recipe to
declare “Visual Studio” as a default compiler because that is something defined by the end consumer, and unlikely to
make sense if they are working in Linux.

On the other hand, options are intended for package specific configuration that can be set to a default value in the
recipe. For example, one package can define that its default linkage is static, and this is the linkage that should be used
if consumers don’t specify otherwise.

Note: You can see the available options for a package by inspecting the recipe with conan get <reference>
command:

$ conan get poco/1.9.4@

To see only specific fields of the recipe you can use the conan inspect command instead:

5.1. Installing dependencies 25

https://bintray.com/pocoproject/conan/Poco%3Apocoproject

Conan Documentation, Release 1.31.4

$ conan inspect poco/1.9.4@ -a=options
$ conan inspect poco/1.9.4@ -a=default_options

For example, we can modify the previous example to use dynamic linkage instead of the default one, which was static,
by editing the [options] section in conanfile.txt:

[requires]
poco/1.9.4

[generators]
cmake

[options]
poco:shared=True # PACKAGE:OPTION=VALUE
openssl:shared=True

Install the requirements and compile from the build folder (change the CMake generator if not in Windows):

$ conan install ..
$ cmake .. -G "Visual Studio 14 Win64"
$ cmake --build . --config Release

As an alternative to defining options in the conanfile.txt file, you can specify them directly in the command line:

$ conan install .. -o poco:shared=True -o openssl:shared=True
or even with wildcards, to apply to many packages
$ conan install .. -o *:shared=True

Conan will install the binaries of the shared library packages, and the example will link with them. You can again
inspect the different binaries installed. For example, conan search zlib/1.2.11@.

Finally, launch the executable:

$./bin/md5

What happened? It fails because it can’t find the shared libraries in the path. Remember that shared libraries are used
at runtime, so the operating system, which is running the application, must be able to locate them.

We could inspect the generated executable, and see that it is using the shared libraries. For example, in Linux, we could
use the objdump tool and see the Dynamic section:

$ cd bin
$ objdump -p md5
...
Dynamic Section:
NEEDED libPocoUtil.so.31
NEEDED libPocoXML.so.31
NEEDED libPocoJSON.so.31
NEEDED libPocoMongoDB.so.31
NEEDED libPocoNet.so.31
NEEDED libPocoCrypto.so.31
NEEDED libPocoData.so.31
NEEDED libPocoDataSQLite.so.31
NEEDED libPocoZip.so.31

(continues on next page)

26 Chapter 5. Using packages

Conan Documentation, Release 1.31.4

(continued from previous page)

NEEDED libPocoFoundation.so.31
NEEDED libpthread.so.0
NEEDED libdl.so.2
NEEDED librt.so.1
NEEDED libssl.so.1.0.0
NEEDED libcrypto.so.1.0.0
NEEDED libstdc++.so.6
NEEDED libm.so.6
NEEDED libgcc_s.so.1
NEEDED libc.so.6

5.1.4 Imports

There are some differences between shared libraries on Linux (*.so), Windows (*.dll) and MacOS (*.dylib). The shared
libraries must be located in a folder where they can be found, either by the linker, or by the OS runtime.

You can add the libraries’ folders to the path (LD_LIBRARY_PATH environment variable in Linux,
DYLD_LIBRARY_PATH in OSX, or system PATH in Windows), or copy those shared libraries to some system folder
where they can be found by the OS. But these operations are only related to the deployment or installation of apps;
they are not relevant during development. Conan is intended for developers, so it avoids such manipulation of the OS
environment.

In Windows and OSX, the simplest approach is to copy the shared libraries to the executable folder, so they are found
by the executable, without having to modify the path.

This is done using the [imports] section in conanfile.txt.

To demonstrate this, edit the conanfile.txt file and paste the following [imports] section:

[requires]
poco/1.9.4

[generators]
cmake

[options]
poco:shared=True
openssl:shared=True

[imports]
bin, *.dll -> ./bin # Copies all dll files from packages bin folder to my "bin" folder
lib, *.dylib* -> ./bin # Copies all dylib files from packages lib folder to my "bin"␣
→˓folder

Note: You can explore the package folder in your local cache (~/.conan/data) and see where the shared libraries are.
It is common that *.dll are copied to /bin. The rest of the libraries should be found in the /lib folder, however, this is
just a convention, and different layouts are possible.

Install the requirements (from the build folder), and run the binary again:

$ conan install ..
$./bin/md5

5.1. Installing dependencies 27

Conan Documentation, Release 1.31.4

Now look at the build/bin folder and verify that the required shared libraries are there.

As you can see, the [imports] section is a very generic way to import files from your requirements to your project.

This method can be used for packaging applications and copying the resulting executables to your bin folder, or for
copying assets, images, sounds, test static files, etc. Conan is a generic solution for package management, not only for
(but focused on) C/C++ libraries.

See also:

To learn more about working with shared libraries, please refer to Howtos/Manage shared libraries.

5.2 Using profiles

So far, we have used the default settings stored in ~/.conan/profiles/default and defined custom values for some
of them as command line arguments.

However, in large projects, configurations can get complex, settings can be very different, and we need an easy way to
switch between different configurations with different settings, options etc. An easy way to switch between configura-
tions is by using profiles.

A profile file contains a predefined set of settings, options, environment variables, and build_requires
specified in the following structure:

[settings]
setting=value

[options]
MyLib:shared=True

[env]
env_var=value

[build_requires]
tool1/0.1@user/channel
tool2/0.1@user/channel, tool3/0.1@user/channel
*: tool4/0.1@user/channel

Options allow the use of wildcards letting you apply the same option value to many packages. For example:

[options]
*:shared=True

Here is an example of a configuration that a profile file may contain:

Listing 1: clang_3.5

[settings]
os=Macos
arch=x86_64
compiler=clang
compiler.version=3.5
compiler.libcxx=libstdc++11
build_type=Release

(continues on next page)

28 Chapter 5. Using packages

Conan Documentation, Release 1.31.4

(continued from previous page)

[env]
CC=/usr/bin/clang
CXX=/usr/bin/clang++

A profile file can be stored in the default profile folder, or anywhere else in your project file structure. To use the
configuration specified in a profile file, pass in the file as a command line argument as shown in the example below:

$ conan create . demo/testing -pr=clang_3.5

Continuing with the example of Poco, instead of passing in a long list of command line arguments, we can define a
handy profile that defines them all and pass that to the command line when installing the project dependencies.

A profile to install dependencies as shared and in debug mode would look like this:

Listing 2: debug_shared

include(default)

[settings]
build_type=Debug

[options]
poco:shared=True
poco:enable_apacheconnector=False
openssl:shared=True

To install dependencies using the profile file, we would use:

$ conan install .. -pr=debug_shared

We could also create a new profile to use a different compiler version and store that in our project directory. For
example:

Listing 3: poco_clang_3.5

include(clang_3.5)

[options]
poco:shared=True
poco:enable_apacheconnector=False
openssl:shared=True

To install dependencies using this new profile, we would use:

$ conan install .. -pr=../poco_clang_3.5

You can specify multiple profiles in the command line. The applied configuration will be the composition of all the
profiles applied in the order they are specified:

$ conan install .. -pr=../poco_clang_3.5 -pr=my_build_tool1 -pr=my_build_tool2

See also:

Read more about Profiles for full reference. There is a Conan command, conan profile, that can help inspecting and
managing profiles. Profiles can be also shared and installed with the conan config install command.

5.2. Using profiles 29

Conan Documentation, Release 1.31.4

5.3 Workflows

This section summarizes some possible layouts and workflows when using Conan together with other tools as an end-
user for installing and consuming existing packages. To create your own packages, please refer to Creating Packages.

Whether you are working on a single configuration or a multi configuration project, in both cases, the recommended
approach is to have a conanfile (either .py or .txt) at the root of your project.

5.3.1 Single configuration

When working with a single configuration, your conanfile will be quite simple as shown in the examples and tutorials
we have used so far in this user guide. For example, in Getting started, we showed how you can run the conan install
.. command inside the build folder resulting in the conaninfo.txt and conanbuildinfo.cmake files being generated there
too. Note that the build folder is temporary, so you should exclude it from version control to exclude these temporary
files.

Out-of-source builds are also supported. Let’s look at a simple example:

$ git clone git@github.com:conan-io/examples
$ cd libraries/poco
$ conan install ./md5 --install-folder=md5_build

This will result in the following layout:

md5_build
conaninfo.txt
conanbuildinfo.txt
conanbuildinfo.cmake

md5
CMakeLists.txt # If using cmake, but can be Makefile, sln...
README.md
conanfile.txt
md5.cpp

Now you are ready to build:

$ cd md5_build
$ cmake ../md5 -G "Visual Studio 15 Win64" # or other generator
$ cmake --build . --config Release
$./bin/md5
> c3fcd3d76192e4007dfb496cca67e13b

We have created a separate build configuration of the project without affecting the original source directory in any way.
The benefit is that we can freely experiment with the configuration: We can clear the build folder and build another.
For example, changing the build type to Debug:

$ rm -rf *
$ conan install ../md5 -s build_type=Debug
$ cmake ../md5 -G "Visual Studio 15 Win64"
$ cmake --build . --config Debug
$./bin/md5
> c3fcd3d76192e4007dfb496cca67e13b

30 Chapter 5. Using packages

Conan Documentation, Release 1.31.4

5.3.2 Multi configuration

You can also manage different configurations, whether in-source or out of source, and switch between them without
having to re-issue the conan install command (Note however, that even if you did have to run conan install
again, since subsequent runs use the same parameters, they would be very fast since packages would already have been
installed in the local cache rather than in the project)

$ git clone git@github.com:conan-io/examples
$ cd libraries/poco
$ conan install md5 -s build_type=Debug -if md5_build_debug
$ conan install md5 -s build_type=Release -if md5_build_release

$ cd md5_build_debug && cmake ../md5 -G "Visual Studio 15 Win64" && cd ../..
$ cd md5_build_release && cmake ../md5 -G "Visual Studio 15 Win64" && cd ../..

Note: You can either use the --install-folder or -if flags to specify where to generate the output files, or
manually create the output directory and navigate to it before executing the conan install command.

So the layout will be:

md5_build_debug
conaninfo.txt
conanbuildinfo.txt
conanbuildinfo.cmake
CMakeCache.txt # and other cmake files

md5_build_release
conaninfo.txt
conanbuildinfo.txt
conanbuildinfo.cmake
CMakeCache.txt # and other cmake files

example-poco-timer
CMakeLists.txt # If using cmake, but can be Makefile, sln...
README.md
conanfile.txt
md5.cpp

Now you can switch between your build configurations in exactly the same way you do for CMake or other build
systems, by moving to the folder in which the build configuration is located, because the Conan configuration files for
that build configuration will also be there.

$ cd md5_build_debug && cmake --build . --config Debug && cd ../..
$ cd md5_build_release && cmake --build . --config Release && cd ../..

Note that the CMake include() of your project must be prefixed with the current cmake binary directory, otherwise
it will not find the necessary file:

include(${CMAKE_BINARY_DIR}/conanbuildinfo.cmake)
conan_basic_setup()

See also:

There are two generators, cmake_multi and visual_studio_multi that could help to avoid the context switch
and using Debug and Release configurations simultaneously. Read more about them in cmake_multi and vi-
sual_studio_multi

5.3. Workflows 31

Conan Documentation, Release 1.31.4

5.4 Debugging packages

In order to run a debug session and step into the source code, the debugger needs to find the source files (or pdb files
ones for Visual Studio), for Mac and Unix system the location of these files is stored inside the library itself.

Usually Conan packages don’t include these files and if they do, the path to the local cache might be different: in a
typical scenario the packages are generated in a CI machine and the debug session will take place in the developers
one, so the path to the sources won’t be the same.

The only rule of thumb is to compile the library we want to debug in the developer machine, and thanks to Conan
this is straightforward:

conan install <reference> --build <name> --profile <debug_profile>

This command will trigger the build of the library locally in the developer’s machine, so the binaries will point to the
sources where they are actually located and the debugger will find them.

Note: Keep updated as we are investigating more integrated solutions using hooks and for the major IDEs, Visual
Studio and CLion.

32 Chapter 5. Using packages

https://en.wikipedia.org/wiki/Program_database
https://github.com/conan-io/conan/issues/4736

CHAPTER

SIX

CREATING PACKAGES

This section shows how to create, build and test your packages.

6.1 Getting Started

To start learning about creating packages, we will create a package from the existing source code repository: https:
//github.com/conan-io/hello. You can check that project, it is a very simple “hello world” C++ library, using CMake
as the build system to build a library and an executable. It does not contain any association with Conan.

We are using a similar GitHub repository as an example, but the same process also applies to other source code origins,
like downloading a zip or tarball from the internet.

Note: For this concrete example you will need, besides a C++ compiler, both CMake and git installed and in your
path. They are not required by Conan, so you could use your own build system and version control instead.

6.1.1 Creating the Package Recipe

First, let’s create a folder for our package recipe, and use the conan new helper command that will create a working
package recipe for us:

$ mkdir mypkg && cd mypkg
$ conan new hello/0.1 -t

This will generate the following files:

conanfile.py
test_package
CMakeLists.txt
conanfile.py
example.cpp

On the root level, there is a conanfile.py which is the main recipe file, responsible for defining our package. Also, there
is a test_package folder, which contains a simple example consuming project that will require and link with the created
package. It is useful to make sure that our package is correctly created.

Let’s have a look at the root package recipe conanfile.py:

33

https://github.com/conan-io/hello
https://github.com/conan-io/hello

Conan Documentation, Release 1.31.4

from conans import ConanFile, CMake, tools

class HelloConan(ConanFile):
name = "hello"
version = "0.1"
license = "<Put the package license here>"
url = "<Package recipe repository url here, for issues about the package>"
description = "<Description of hello here>"
settings = "os", "compiler", "build_type", "arch"
options = {"shared": [True, False]}
default_options = {"shared": False}
generators = "cmake"

def source(self):
self.run("git clone https://github.com/conan-io/hello.git")
This small hack might be useful to guarantee proper /MT /MD linkage
in MSVC if the packaged project doesn't have variables to set it
properly
tools.replace_in_file("hello/CMakeLists.txt", "PROJECT(MyHello)",

'''PROJECT(MyHello)
include(${CMAKE_BINARY_DIR}/conanbuildinfo.cmake)
conan_basic_setup()''')

def build(self):
cmake = CMake(self)
cmake.configure(source_folder="hello")
cmake.build()

Explicit way:
self.run('cmake %s/hello %s'
% (self.source_folder, cmake.command_line))
self.run("cmake --build . %s" % cmake.build_config)

def package(self):
self.copy("*.h", dst="include", src="hello")
self.copy("*hello.lib", dst="lib", keep_path=False)
self.copy("*.dll", dst="bin", keep_path=False)
self.copy("*.so", dst="lib", keep_path=False)
self.copy("*.dylib", dst="lib", keep_path=False)
self.copy("*.a", dst="lib", keep_path=False)

def package_info(self):
self.cpp_info.libs = ["hello"]

This is a complete package recipe. Without going into detail, these are the basics:

• The settings field defines the configuration of the different binary packages. In this example, we defined that
any change to the OS, compiler, architecture or build type will generate a different binary package. Please note
that Conan generates different binary packages for different introduced configuration (in this case settings) for
the same recipe.

Note that the platform on which the recipe is running and the package being built differ from the final platform
where the code will be running (self.settings.os and self.settings.arch) if the package is being cross-
built. So if you want to apply a different build depending on the current build machine, you need to check it:

34 Chapter 6. Creating Packages

Conan Documentation, Release 1.31.4

def build(self):
if platform.system() == "Windows":

cmake = CMake(self)
cmake.configure(source_folder="hello")
cmake.build()

else:
env_build = AutoToolsBuildEnvironment(self)
env_build.configure()
env_build.make()

Learn more in the Cross building section.

• This package recipe is also able to create different binary packages for static and shared libraries with the shared
option, which is set by default to False (i.e. by default it will use static linkage).

• The source() method executes a git clone to retrieve the sources from Github. Other origins, such as down-
loading a zip file are also available. As you can see, any manipulation of the code can be done, such as checking
out any branch or tag, or patching the source code. In this example, we are adding two lines to the existing CMake
code, to ensure binary compatibility. Don’t worry about it now, we’ll deal with it later.

• The build() configures the project, and then proceeds to build it using standard CMake commands. The CMake
object just assists to translate the Conan settings to CMake command line arguments. Please note that CMake is
not strictly required. You can build packages directly by invoking make, MSBuild, SCons or any other build
system.

See also:

Check the existing build helpers.

• The package() method copies artifacts (headers, libs) from the build folder to the final package folder.

• Finally, the package_info() method defines that the consumer must link with the “hello” library when using
this package. Other information as include or lib paths can be defined as well. This information is used for files
created by generators to be used by consumers, as conanbuildinfo.cmake.

Note: When writing your own conanfile.py references, please bear in mind that you should follow the rules in conan-
file.py

6.1.2 The test_package Folder

Note: The test_package differs from the library unit or integration tests, which should be more comprehensive. These
tests are “package” tests, and validate that the package is properly created, and that the package consumers will be able
to link against it and reuse it.

If you look at the test_package folder, you will realize that the example.cpp and the CMakeLists.txt files don’t
have unique characteristics. The test_package/conanfile.py file is just another recipe, that can be perceived as a con-
sumer conanfile.txt that has been displayed in previous sections:

from conans import ConanFile, CMake
import os

class HelloTestConan(ConanFile):
(continues on next page)

6.1. Getting Started 35

Conan Documentation, Release 1.31.4

(continued from previous page)

settings = "os", "compiler", "build_type", "arch"
generators = "cmake"

def build(self):
cmake = CMake(self)
cmake.configure()
cmake.build()

def imports(self):
self.copy("*.dll", dst="bin", src="bin")
self.copy("*.dylib*", dst="bin", src="lib")

def test(self):
os.chdir("bin")
self.run(".%sexample" % os.sep)

The conanfile.py described above has the following characteristics:

• It doesn’t have a name and version, as we are not creating a package so they are not necessary.

• The package() and package_info() methods are not required since we are not creating a package.

• The test() method specifies which binaries need to run.

• The imports() method is set to copy the shared libraries to the bin folder. When dynamic linking is applied,
and the test() method launches the example executable, they are found causing the example to run.

Note: An important difference with respect to standard package recipes is that you don’t have to declare a requires
attribute to depend on the tested hello/0.1@demo/testing package as the requires will automatically be injected
by Conan during the run. However, if you choose to declare it explicitly, it will work, but you will have to remember
to bump the version, and possibly also the user and channel if you decide to change them.

6.1.3 Creating and Testing Packages

You can create and test the package with our default settings simply by running:

$ conan create . demo/testing
...
Hello world Release!

If “Hello world Release!” is displayed, it worked.

The conan create command does the following:

• Copies (“export” in Conan terms) the conanfile.py from the user folder into the local cache.

• Installs the package, forcing it to be built from the sources.

• Moves to the test_package folder and creates a temporary build folder.

• Executes the conan install .., to install the requirements of the test_package/conanfile.py. Note that it will
build “hello” from the sources.

• Builds and launches the example consuming application, calling the test_package/conanfile.py build() and
test() methods respectively.

36 Chapter 6. Creating Packages

Conan Documentation, Release 1.31.4

Using Conan commands, the conan create command would be equivalent to:

$ conan export . demo/testing
$ conan install hello/0.1@demo/testing --build=hello
package is created now, use test to test it
$ conan test test_package hello/0.1@demo/testing

The conan create command receives the same command line parameters as conan install so you can pass to it the
same settings, options, and command line switches. If you want to create and test packages for different configurations,
you could:

$ conan create . demo/testing -s build_type=Debug
$ conan create . demo/testing -o hello:shared=True -s arch=x86
$ conan create . demo/testing -pr my_gcc49_debug_profile
...
$ conan create ...

Omitting user/channel

Warning: This is an experimental feature subject to breaking changes in future releases.

You can create a package omitting the user and the channel:

$ conan create .

To reference that package, you have to omit also the user and the channel.

Examples

• Specifying requirements in your recipes:

class HelloTestConan(ConanFile):
settings = "os", "compiler", "build_type", "arch"
requires = "packagename/1.0"

...

• Installing individual packages. The conan install command we have to use the syntax (always valid) of
packagename/1.0@ to disambiguate the argument that also can be used to specify a path:

$ conan install packagename/1.0@

• Searching for the binary packages of a reference. The conan search command requires to use the syntax
(always valid) of packagename/1.0@ to disambiguate the usage of a pattern:

$ conan search packagename/1.0@

Existing packages for recipe packagename/1.0:

(continues on next page)

6.1. Getting Started 37

Conan Documentation, Release 1.31.4

(continued from previous page)

Package_ID: 9bfdcfa2bb925892ecf42e2a018a3f3529826676
[settings]

arch: x86_64
build_type: Release
compiler: gcc
compiler.libcxx: libstdc++11
compiler.version: 7
os: Linux

Outdated from recipe: False

• Removing packages:

$ conan remove packagename/1.0

• Uploading packages:

$ conan upload packagename/1.0

6.1.4 Settings vs. Options

We have used settings such as os, arch and compiler. Note the above package recipe also contains a shared option
(defined as options = {"shared": [True, False]}). What is the difference between settings and options?

Settings are a project-wide configuration, something that typically affects the whole project that is being built. For
example, the operating system or the architecture would be naturally the same for all packages in a dependency graph,
linking a Linux library for a Windows app, or mixing architectures is impossible.

Settings cannot be defaulted in a package recipe. A recipe for a given library cannot say that its default is os=Windows.
The os will be given by the environment in which that recipe is processed. It is a mandatory input.

Settings are configurable. You can edit, add, remove settings or subsettings in your settings.yml file. See the settings.yml
reference.

On the other hand, options are a package-specific configuration. Static or shared library are not settings that apply to all
packages. Some can be header only libraries while others packages can be just data, or package executables. Packages
can contain a mixture of different artifacts. shared is a common option, but packages can define and use any options
they want.

Options are defined in the package recipe, including their supported values, while other can be defaulted by the package
recipe itself. A package for a library can well define that by default it will be a static library (a typical default). If not
specified other. the package will be static.

There are some exceptions to the above. For example, settings can be defined per-package using the command line:

$ conan install . -s MyPkg:compiler=gcc -s compiler=clang ..

This will use gcc for MyPkg and clang for the rest of the dependencies (extremely rare case).

There are situations whereby many packages use the same option, thereby allowing you to set its value once using
patterns, like:

$ conan install . -o *:shared=True

Any doubts? Please check out our FAQ section or .

38 Chapter 6. Creating Packages

Conan Documentation, Release 1.31.4

6.2 Recipe and Sources in a Different Repo

In the previous section, we fetched the sources of our library from an external repository. It is a typical workflow for
packaging third party libraries.

There are two different ways to fetch the sources from an external repository:

1. Using the source() method as we displayed in the previous section:

from conans import ConanFile, CMake, tools

class HelloConan(ConanFile):
...

def source(self):
self.run("git clone https://github.com/conan-io/hello.git")
...

You can also use the tools.Git class:

from conans import ConanFile, CMake, tools

class HelloConan(ConanFile):
...

def source(self):
git = tools.Git(folder="hello")
git.clone("https://github.com/conan-io/hello.git", "master")
...

2. Using the scm attribute of the ConanFile:

Warning: This is an experimental feature subject to breaking changes in future releases.

from conans import ConanFile, CMake, tools

class HelloConan(ConanFile):
scm = {

"type": "git",
"subfolder": "hello",
"url": "https://github.com/conan-io/hello.git",
"revision": "master"

}
...

Conan will clone the scm url and will checkout the scm revision. Head to creating package documentation to
know more details about SCM feature.

The source() method will be called after the checkout process, so you can still use it to patch something or retrieve
more sources, but it is not necessary in most cases.

6.2. Recipe and Sources in a Different Repo 39

Conan Documentation, Release 1.31.4

6.3 Recipe and Sources in the Same Repo

Sometimes it is more convenient to have the recipe and source code together in the same repository. This is true
especially if you are developing and packaging your own library, and not one from a third-party.

There are two different approaches:

• Using the exports sources attribute of the conanfile to
export the source code together with the recipe. This way the recipe is self-contained and will not need to
fetch the code from external origins when building from sources. It can be considered a “snapshot” of the
source code.

• Using the scm attribute of the conanfile to capture the remote and commit of your repository automatically.

6.3.1 Exporting the Sources with the Recipe: exports_sources

This could be an appropriate approach if we want the package recipe to live in the same repository as the source code
it is packaging.

First, let’s get the initial source code and create the basic package recipe:

$ conan new hello/0.1 -t -s

A src folder will be created with the same “hello” source code as in the previous example. You can have a look at it
and see that the code is straightforward.

Now let’s have a look at conanfile.py:

from conans import ConanFile, CMake

class HelloConan(ConanFile):
name = "hello"
version = "0.1"
license = "<Put the package license here>"
url = "<Package recipe repository url here, for issues about the package>"
description = "<Description of hello here>"
settings = "os", "compiler", "build_type", "arch"
options = {"shared": [True, False]}
default_options = {"shared": False}
generators = "cmake"
exports_sources = "src/*"

def build(self):
cmake = CMake(self)
cmake.configure(source_folder="src")
cmake.build()

Explicit way:
self.run('cmake "%s/src" %s' % (self.source_folder, cmake.command_line))
self.run("cmake --build . %s" % cmake.build_config)

def package(self):
self.copy("*.h", dst="include", src="src")
self.copy("*.lib", dst="lib", keep_path=False)
self.copy("*.dll", dst="bin", keep_path=False)

(continues on next page)

40 Chapter 6. Creating Packages

Conan Documentation, Release 1.31.4

(continued from previous page)

self.copy("*.dylib*", dst="lib", keep_path=False)
self.copy("*.so", dst="lib", keep_path=False)
self.copy("*.a", dst="lib", keep_path=False)

def package_info(self):
self.cpp_info.libs = ["hello"]

There are two important changes:

• Added the exports_sources field, indicating to Conan to copy all the files from the local src folder into the
package recipe.

• Removed the source() method, since it is no longer necessary to retrieve external sources.

Also, you can notice the two CMake lines:

include(${CMAKE_BINARY_DIR}/conanbuildinfo.cmake)
conan_basic_setup()

They are not added in the package recipe, as they can be directly added to the src/CMakeLists.txt file.

And simply create the package for user and channel demo/testing as described previously:

$ conan create . demo/testing
...
hello/0.1@demo/testing test package: Running test()
Hello world Release!

6.3.2 Capturing the Remote and Commit: scm

Warning: This is an experimental feature subject to breaking changes in future releases. Although this is an
experimental feature, the use of the feature using scm_to_conandata is considered stable.

You can use the scm attribute with the url and revision field set to auto. When you export the recipe (or when
conan create is called) the exported recipe will capture the remote and commit of the local repository:

import os
from conans import ConanFile, CMake, tools

class HelloConan(ConanFile):
scm = {

"type": "git", # Use "type": "svn", if local repo is managed using SVN
"subfolder": "hello",
"url": "auto",
"revision": "auto",
"password": os.environ.get("SECRET", None)

}
...

You can commit and push the conanfile.py to your origin repository, which will always preserve the auto values. When
the file is exported to the Conan local cache (except you have uncommitted changes, read below), these data will be

6.3. Recipe and Sources in the Same Repo 41

Conan Documentation, Release 1.31.4

stored in the conanfile.py itself (Conan will modify the file) or in a special file conandata.yml that will be stored together
with the recipe, depending on the value of the configuration parameter scm_to_conandata.

• If the scm_to_conandata is not activated (default behavior in Conan v1.x) Conan will store a modified version
of the conanfile.py with the values of the fields in plain text:

import os
from conans import ConanFile, CMake, tools

class HelloConan(ConanFile):
scm = {

"type": "git",
"subfolder": "hello",
"url": "https://github.com/conan-io/hello.git",
"revision": "437676e15da7090a1368255097f51b1a470905a0",
"password": "MY_SECRET"

}
...

So when you upload the recipe to a Conan remote, the recipe will contain the “resolved” URL and commit.

• If scm_to_conandata is activated, the value of these fields (except username and password) will be stored in
the conandata.yml file that will be automatically exported with the recipe.

Whichever option you choose, the data resolved will be asigned by Conan to the corresponding field when the recipe
file is loaded, and they will be available for all the methods defined in the recipe. Also, if building the package from
sources, Conan will fetch the code in the captured url/commit before running the method source() in the recipe (if
defined).

As SCM attributes are evaluated in the local directory context (see scm attribute), you can write more complex functions
to retrieve the proper values, this source conanfile.py will be valid too:

import os
from conans import ConanFile, CMake, tools

def get_remote_url():
""" Get remote url regardless of the cloned directory """
here = os.path.dirname(__file__)
svn = tools.SVN(here)
return svn.get_remote_url()

class HelloConan(ConanFile):
scm = {

"type": "svn",
"subfolder": "hello",
"url": get_remote_url(),
"revision": "auto"

}
...

Tip: When doing a conan create or conan export, Conan will capture the sources of the local scm project folder
in the local cache.

This allows building packages making changes to the source code without the need of committing them and pushing
them to the remote repository. This convenient to speed up the development of your packages when cloning from a
local repository.

42 Chapter 6. Creating Packages

Conan Documentation, Release 1.31.4

So, if you are using the scm feature, with some auto field for url and/or revision and you have uncommitted changes
in your repository a warning message will be printed:

$ conan export . hello/0.1@demo/testing

hello/0.1@demo/testing: WARN: There are uncommitted changes, skipping the replacement␣
→˓of 'scm.url'
and 'scm.revision' auto fields. Use --ignore-dirty to force it.
The 'conan upload' command will prevent uploading recipes with 'auto' values in these␣
→˓fields.

As the warning message explains, the auto fields won’t be replaced unless you specify --ignore-dirty, and by
default, the conan upload will block the upload of the recipe. This prevents recipes to be uploaded with incorrect
scm values exported. You can use conan upload --force to force uploading the recipe with the auto values un-
replaced.

6.4 Packaging Existing Binaries

There are specific scenarios in which it is necessary to create packages from existing binaries, for example from 3rd
parties or binaries previously built by another process or team that are not using Conan. Under these circumstances
building from sources is not what you want. You should package the local files in the following situations:

• When you cannot build the packages from sources (when only pre-built binaries are available).

• When you are developing your package locally and you want to export the built artifacts to the local cache. As
you don’t want to rebuild again (clean copy) your artifacts, you don’t want to call conan create. This method
will keep your build cache if you are using an IDE or calling locally to the conan build command.

6.4.1 Packaging Pre-built Binaries

Running the build()method, when the files you want to package are local, results in no added value as the files copied
from the user folder cannot be reproduced. For this scenario, run conan export-pkg command directly.

A Conan recipe is still required, but is very simple and will only include the package meta information. A basic recipe
can be created with the conan new command:

$ conan new hello/0.1 --bare

This will create and store the following package recipe in the local cache:

class HelloConan(ConanFile):
name = "hello"
version = "0.1"
settings = "os", "compiler", "build_type", "arch"

def package(self):
self.copy("*")

def package_info(self):
self.cpp_info.libs = self.collect_libs()

The provided package_info() method scans the package files to provide end-users with the name of the libraries to
link to. This method can be further customized to provide additional build flags (typically dependent on the settings).

6.4. Packaging Existing Binaries 43

Conan Documentation, Release 1.31.4

The default package_info() applies as follows: it defines headers in the “include” folder, libraries in the “lib” folder,
and binaries in the “bin” folder. A different package layout can be defined in the package_info() method.

This package recipe can be also extended to provide support for more configurations (for example, adding options:
shared/static, or using different settings), adding dependencies (requires), and more.

Based on the above, We can assume that our current directory contains a lib folder with a number binaries for this
“hello” library libhello.a, compatible for example with Windows MinGW (gcc) version 4.9:

$ conan export-pkg . hello/0.1@myuser/testing -s os=Windows -s compiler=gcc -s compiler.
→˓version=4.9 ...

Having a test_package folder is still highly recommended for testing the package locally before upload. As we don’t
want to build the package from the sources, the flow would be:

$ conan new hello/0.1 --bare --test
customize test_package project
customize package recipe if necessary
$ cd my/path/to/binaries
$ conan export-pkg PATH/TO/conanfile.py hello/0.1@myuser/testing -s os=Windows -s␣
→˓compiler=gcc -s compiler.version=4.9 ...
$ conan test PATH/TO/test_package/conanfile.py hello/0.1@myuser/testing -s os=Windows -s␣
→˓compiler=gcc -s ...

The last two steps can be repeated for any number of configurations.

6.4.2 Downloading and Packaging Pre-built Binaries

In this scenario, creating a complete Conan recipe, with the detailed retrieval of the binaries could be the preferred
method, because it is reproducible, and the original binaries might be traced. Follow our sample recipe for this purpose:

class HelloConan(ConanFile):
name = "hello"
version = "0.1"
settings = "os", "compiler", "build_type", "arch"

def build(self):
if self.settings.os == "Windows" and self.settings.compiler == "Visual Studio":

url = ("https://<someurl>/downloads/hello_binary%s_%s.zip"
% (str(self.settings.compiler.version), str(self.settings.build_

→˓type)))
elif ...:

url = ...
else:

raise Exception("Binary does not exist for these settings")
tools.get(url)

def package(self):
self.copy("*") # assume package as-is, but you can also copy specific files or␣

→˓rearrange

def package_info(self): # still very useful for package consumers
self.cpp_info.libs = ["hello"]

44 Chapter 6. Creating Packages

Conan Documentation, Release 1.31.4

Typically, pre-compiled binaries come for different configurations, so the only task that the build() method has to
implement is to map the settings to the different URLs.

Note:

• This is a standard Conan package even if the binaries are being retrieved from elsewhere. The recommended
approach is to use conan create, and include a small consuming project in addition to the above recipe, to
test locally and then proceed to upload the Conan package with the binaries to the Conan remote with conan
upload.

• The same building policies apply. Having a recipe fails if no Conan packages are created, and the
--build argument is not defined. A typical approach for this kind of packages could be to define a
build_policy="missing", especially if the URLs are also under the team control. If they are external (on
the internet), it could be better to create the packages and store them on your own Conan server, so that the builds
do not rely on third party URL being available.

6.5 Understanding Packaging

6.5.1 Creating and Testing Packages Manually

The previous create approach using test_package subfolder, is not strictly necessary, though very strongly recom-
mended. If we didn’t want to use the test_package functionality, we could just write our recipe ourselves or use the
conan new command without the -t. command line argument.

$ mkdir mypkg && cd mypkg
$ conan new hello/0.1

This will create just the conanfile.py recipe file. Now we can create our package:

$ conan create . demo/testing

This is equivalent to:

$ conan export . demo/testing
$ conan install hello/0.1@demo/testing --build=hello

Once the package is created, it can be consumed like any other package, by adding hello/0.1@demo/testing to a
project conanfile.txt or conanfile.py requirements and running:

$ conan install .
build and run your project to ensure the package works

6.5. Understanding Packaging 45

Conan Documentation, Release 1.31.4

6.5.2 Package Creation Process

It is very useful for package creators and Conan users in general to understand the flow for creating a package inside
the conan local cache, and all about its layout.

Each package recipe contains five important folders in the local cache:

• export: The folder in which the package recipe is stored.

• export_source: The folder in which code copied with the recipe exports_sources attribute is stored.

• source: The folder in which the source code for building from sources is stored.

• build: The folder in which the actual compilation of sources is done. There will typically be one subfolder for
each different binary configuration

• package: The folder in which the final package artifacts are stored. There will be one subfolder for each different
binary configuration

The source and build folders only exist when the packages have been built from sources.

The process starts when a package is “exported”, via the conan export command or more typically, with the conan
create command. The conanfile.py and files specified by the exports_sources field are copied from the user space
to the local cache.

The export and export_source files are copied to the source folder, and then the source() method is executed (if it

46 Chapter 6. Creating Packages

Conan Documentation, Release 1.31.4

exists). Note that there is only one source folder for all the binary packages. If when generating the code, there is source
code that varies for the different configurations, it cannot be generated using the source() method, but rather needs
to be generated using the build() method.

Then, for each different configuration of settings and options, a package ID will be computed in the form of a SHA-1
hash for this configuration. Sources will be copied to the build/hashXXX folder, and the build() method will be
triggered.

After that, the package() method will be called to copy artifacts from the build/hashXXX folder to the pack-
age/hashXXX folder.

Finally, the package_info() methods of all dependencies will be called and gathered so you can generate files for
the consumer build system, as the conanbuildinfo.cmake for the cmake generator. Also the imports feature will copy
artifacts from the local cache into user space if specified.

Any doubts? Please check out our FAQ section or .

6.6 Defining Package ABI Compatibility

Each package recipe can generate N binary packages from it, depending on these three items: settings, options
and requires.

When any of the settings of a package recipe changes, it will reference a different binary:

class MyLibConanPackage(ConanFile):
name = "mylib"
version = "1.0"
settings = "os", "arch", "compiler", "build_type"

When this package is installed by a conanfile.txt, another package conanfile.py, or directly:

$ conan install mylib/1.0@user/channel -s arch=x86_64 -s ...

The process is:

1. Conan gets the user input settings and options. Those settings and options can come from the command line,
profiles or from the values cached in the latest conan install execution.

2. Conan retrieves the mylib/1.0@user/channel recipe, reads the settings attribute, and assigns the necessary
values.

3. With the current package values for settings (also options and requires), it will compute a SHA1 hash that
will serve as the binary package ID, e.g., c6d75a933080ca17eb7f076813e7fb21aaa740f2.

4. Conan will try to find the c6d75... binary package. If it exists, it will be retrieved. If it cannot be found, it will
fail and indicate that it can be built from sources using conan install --build.

If the package is installed again using different settings, for example, on a 32-bit architecture:

$ conan install mylib/1.0@user/channel -s arch=x86 -s ...

The process will be repeated with a different generated package ID, because the arch setting will have a different value.
The same applies to different compilers, compiler versions, build types. When generating multiple binaries - a separate
ID is generated for each configuration.

When developers using the package use the same settings as one of those uploaded binaries, the computed package ID
will be identical causing the binary to be retrieved and reused without the need of rebuilding it from the sources.

6.6. Defining Package ABI Compatibility 47

Conan Documentation, Release 1.31.4

The options behavior is very similar. The main difference is that options can be more easily defined at the package
level and they can be defaulted. Check the options reference.

Note this simple scenario of a header-only library. The package does not need to be built, and it will not have any ABI
issues at all. The recipe for such a package will be to generate a single binary package, no more. This is easily achieved
by not declaring settings nor options in the recipe as follows:

class MyLibConanPackage(ConanFile):
name = "MyLib"
version = "1.0"
no settings defined!

No matter the settings are defined by the users, including the compiler or version, the package settings and options will
always be the same (left empty) and they will hash to the same binary package ID. That package will typically contain
just the header files.

What happens if we have a library that can be built with GCC 4.8 and will preserve the ABI compatibility with GCC
4.9? (This kind of compatibility is easier to achieve for example for pure C libraries).

Although it could be argued that it is worth rebuilding with 4.9 too -to get fixes and performance improvements-. Let’s
suppose that we don’t want to create 2 different binaries, but just a single built with GCC 4.8 which also needs to be
compatible for GCC 4.9 installations.

6.6.1 Defining a Custom package_id()

The default package_id() uses the settings and options directly as defined, and assumes the semantic versioning
for dependencies is defined in requires.

This package_id() method can be overridden to control the package ID generation. Within the package_id(), we
have access to the self.info object, which is hashed to compute the binary ID and contains:

• self.info.settings: Contains all the declared settings, always as string values. We can access/modify the settings,
e.g., self.info.settings.compiler.version.

• self.info.options: Contains all the declared options, always as string values too, e.g., self.info.options.
shared.

Initially this info object contains the original settings and options, but they can be changed without constraints to any
other string value.

For example, if you are sure your package ABI compatibility is fine for GCC versions > 4.5 and < 5.0, you could do
the following:

from conans import ConanFile, CMake, tools
from conans.model.version import Version

class PkgConan(ConanFile):
name = "pkg"
version = "1.0"
settings = "compiler", "build_type"

def package_id(self):
v = Version(str(self.settings.compiler.version))
if self.settings.compiler == "gcc" and (v >= "4.5" and v < "5.0"):

self.info.settings.compiler.version = "GCC version between 4.5 and 5.0"

48 Chapter 6. Creating Packages

https://semver.org

Conan Documentation, Release 1.31.4

We have set the self.info.settings.compiler.version with an arbitrary string, the value of which is not im-
portant (could be any string). The only important thing is that it is the same for any GCC version between 4.5 and 5.0.
For all those versions, the compiler version will always be hashed to the same ID.

Let’s try and check that it works properly when installing the package for GCC 4.5:

$ conan create . pkg/1.0@myuser/mychannel -s compiler=gcc -s compiler.version=4.5 ...

Requirements
pkg/1.0@myuser/mychannel from local

Packages
pkg/1.0@myuser/mychannel:af044f9619574eceb8e1cca737a64bdad88246ad

...

We can see that the computed package ID is af04...46ad (not real). What happens if we specify GCC 4.6?

$ conan install pkg/1.0@myuser/mychannel -s compiler=gcc -s compiler.version=4.6 ...

Requirements
pkg/1.0@myuser/mychannel from local

Packages
pkg/1.0@myuser/mychannel:af044f9619574eceb8e1cca737a64bdad88246ad

The required package has the same result again af04...46ad. Now we can try using GCC 4.4 (< 4.5):

$ conan install Pkg/1.0@myuser/mychannel -s compiler=gcc -s compiler.version=4.4 ...

Requirements
pkg/1.0@myuser/mychannel from local

Packages
pkg/1.0@myuser/mychannel:7d02dc01581029782b59dcc8c9783a73ab3c22dd

The computed package ID is different which means that we need a different binary package for GCC 4.4.

The same way we have adjusted the self.info.settings, we could set the self.info.options values if needed.
If you want to make packages independent on build_type removing the build_type from the package settings in the
package_id() will work for OSX and Linux. However when building with Visual studio the compiler.runtime
field will change based on the build_type value so in that case you will also want to delete the compiler runtime field
like so:

def package_id(self):
if self.settings.os in ["Windows","WindowsStore"] and self.settings.compiler ==

→˓"Visual Studio":
del self.info.settings.build_type
del self.info.settings.compiler.runtime

See also:

Check package_id() to see the available helper methods and change its behavior for things like:

• Recipes packaging header only libraries.

• Adjusting Visual Studio toolsets compatibility.

6.6. Defining Package ABI Compatibility 49

Conan Documentation, Release 1.31.4

6.6.2 Compatible packages

Warning: This is an experimental feature subject to breaking changes in future releases.

The above approach defined 1 package ID for different input configurations. For example, all gcc versions in the range
(v >= "4.5" and v < "5.0") will have exactly the same package ID, no matter what was the gcc version used to
build it. It worked like an information erasure, once the binary is built, it is not possible to know which gcc was used
to build it.

But it is possible to define compatible binaries that have different package IDs. For instance, it is possible to have a
different binary for each gcc version, so the gcc 4.8 package will be a different one with a different package ID than
the gcc 4.9 one, and still define that you can use the gcc 4.8 package when building with gcc 4.9.

We can define an ordered list of compatible packages, that will be checked in order if the package ID that our profile
defines is not available. Let’s see it with an example:

Lets say that we are building with a profile of gcc 4.9. But for a given package we want to fallback to binaries built
with gcc 4.8 or gcc 4.7 if we cannot find a binary built with gcc 4.9. That can be defined as:

from conans import ConanFile

class Pkg(ConanFile):
settings = "os", "compiler", "arch", "build_type"

def package_id(self):
if self.settings.compiler == "gcc" and self.settings.compiler.version == "4.9":

for version in ("4.8", "4.7"):
compatible_pkg = self.info.clone()
compatible_pkg.settings.compiler.version = version
self.compatible_packages.append(compatible_pkg)

Note that if the input configuration is gcc 4.8, it will not try to fallback to binaries of gcc 4.7 as the condition is not
met.

The self.info.clone() method copies the values of settings, options and requires from the current instance
of the recipe so they can be modified to model the compatibility.

It is the responsibility of the developer to guarantee that such binaries are indeed compatible. For example in:

from conans import ConanFile
class Pkg(ConanFile):

options = {"optimized": [1, 2, 3]}
default_options = {"optimized": 1}
def package_id(self):

for optimized in range(int(self.options.optimized), 0, -1):
compatible_pkg = self.info.clone()
compatible_pkg.options.optimized = optimized
self.compatible_packages.append(compatible_pkg)

This recipe defines that the binaries are compatible with binaries of itself built with a lower optimization value. It
can have up to 3 different binaries, one for each different value of optimized option. The package_id() defines
that a binary built with optimized=1 can be perfectly linked and will run even if someone defines optimized=2, or
optimized=3 in their configuration. But a binary built with optimized=2 will not be considered if the requested one
is optimized=1.

50 Chapter 6. Creating Packages

Conan Documentation, Release 1.31.4

The binary should be interchangeable at all effects. This also applies to other usages of that configuration. If this
example used the optimized option to conditionally require different dependencies, that will not be taken into account.
The package_id() step is processed after the whole dependency graph has been built, so it is not possible to define
how dependencies are resolved based on this compatibility model, it only applies to use-cases where the binaries can
be interchanged.

Note: Compatible packages are a match for a binary in the dependency graph. When a compatible package is found,
the --build=missing build policy will not build from sources that package.

Check the Compatible Compilers section to see another example of how to take benefit of compatible packages.

6.6.3 Compatible Compilers

Some compilers make use of a base compiler to operate, for example, the intel compiler uses the Visual Studio
compiler in Windows environments and gcc in Linux environments.

The intel compiler is declared this way in the settings.yml:

intel:
version: ["11", "12", "13", "14", "15", "16", "17", "18", "19"]
base:

gcc:
<<: *gcc
threads: [None]
exception: [None]

Visual Studio:
<<: *visual_studio

Remember, you can extend Conan to support other compilers.

You can use the package_id() method to define the compatibility between the packages generated by the base com-
piler and the parent one. You can use the following helpers together with the compatible packages feature to:

• Consume native Visual Studio packages when the input compiler in the profile is intel (if no intel package
is available).

• The opposite, consume an intel compiler package when a consumer profile specifies Visual Studio as the
input compiler (if no Visual Studio package is available).

• base_compatible(): This function will transform the settings used to calculate the package ID into the “base”
compiler.

def package_id(self):

if self.settings.compiler == "intel":
p = self.info.clone()
p.base_compatible()
self.compatible_packages.append(p)

Using the above package_id() method, if a consumer specifies a profile with a intel profile (-s com-
piler==”intel”) and there is no binary available, it will resolve to a Visual Studio package ID corresponding
to the base compiler.

• parent_compatible(compiler="compiler", version="version"): This function transforms the set-
tings of a compiler into the settings of a parent one using the specified one as the base compiler. As the details

6.6. Defining Package ABI Compatibility 51

Conan Documentation, Release 1.31.4

of the “parent” compatible cannot be guessed, you have to provide them as keyword args to the function. The
“compiler” argument is mandatory, the rest of keyword arguments will be used to initialize the info.settings.
compiler.XXX objects to calculate the correct package ID.

def package_id(self):

if self.settings.compiler == "Visual Studio":
compatible_pkg = self.info.clone()
compatible_pkg.parent_compatible(compiler="intel", version=16)
self.compatible_packages.append(compatible_pkg)

In this case, for a consumer specifying Visual Studio compiler, if no package is found, it will search for an “intel”
package for the version 16.

Take into account that you can use also these helpers without the “compatible packages” feature:

def package_id(self):

if self.settings.compiler == "Visual Studio":
self.info.parent_compatible(compiler="intel", version=16)

In the above example, we will transform the package ID of the Visual Studio package to be the same as the intel
16, but you won’t be able to differentiate the packages built with intelwith the ones built by Visual Studio because
both will have the same package ID, and that is not always desirable.

6.6.4 Dependency Issues

Let’s define a simple scenario whereby there are two packages: my_other_lib/2.0 and my_lib/1.0 which depends
on my_other_lib/2.0. Let’s assume that their recipes and binaries have already been created and uploaded to a
Conan remote.

Now, a new release for my_other_lib/2.1 is released with an improved recipe and new binaries. The my_lib/1.0
is modified and is required to be upgraded to my_other_lib/2.1.

Note: This scenario will be the same in the case that a consuming project of my_lib/1.0 defines a dependency to
my_other_lib/2.1, which takes precedence over the existing project in my_lib/1.0.

The question is: Is it necessary to build new my_lib/1.0 binary packages? or are the existing packages still valid?

The answer: It depends.

Let’s assume that both packages are compiled as static libraries and that the API exposed by my_other_lib to my_lib/
1.0 through the public headers, has not changed at all. In this case, it is not required to build new binaries for my_lib/
1.0 because the final consumer will link against both my_lib/1.0 and my_other_lib/2.1.

On the other hand, it could happen that the API exposed by my_other_lib in the public headers has changed, but without
affecting the my_lib/1.0 binary for any reason (like changes consisting on new functions not used by my_lib). The
same reasoning would apply if MyOtherLib was only the header.

But what if a header file of my_other_lib -named myadd.h- has changed from 2.0 to 2.1:

Listing 1: myadd.h header file in version 2.0

int addition (int a, int b) { return a - b; }

52 Chapter 6. Creating Packages

Conan Documentation, Release 1.31.4

Listing 2: myadd.h header file in version 2.1

int addition (int a, int b) { return a + b; }

And the addition() function is called from the compiled .cpp files of my_lib/1.0?

Then, a new binary for my_lib/1.0 is required to be built for the new dependency version. Otherwise it will
maintain the old, buggy addition() version. Even in the case that my_lib/1.0 doesn’t have any change in its code
lines neither in the recipe, the resulting binary rebuilding my_lib requires my_other_lib/2.1 and the package to be
different.

6.6.5 Using package_id() for Package Dependencies

The self.info object has also a requires object. It is a dictionary containing the necessary information for each
requirement, all direct and transitive dependencies. For example, self.info.requires["my_other_lib"] is a
RequirementInfo object.

• Each RequirementInfo has the following read only reference fields:

– full_name: Full require’s name, e.g., my_other_lib

– full_version: Full require’s version, e.g., 1.2

– full_user: Full require’s user, e.g., my_user

– full_channel: Full require’s channel, e.g., stable

– full_package_id: Full require’s package ID, e.g., c6d75a. . .

• The following fields are used in the package_id() evaluation:

– name: By default same value as full_name, e.g., my_other_lib.

– version: By default the major version representation of the full_version. E.g., 1.Y for a 1.2
full_version field and 1.Y.Z for a 1.2.3 full_version field.

– user: By default None (doesn’t affect the package ID).

– channel: By default None (doesn’t affect the package ID).

– package_id: By default None (doesn’t affect the package ID).

When defining a package ID for model dependencies, it is necessary to take into account two factors:

• The versioning schema followed by our requirements (semver?, custom?).

• The type of library being built or reused (shared (.so, .dll, .dylib), static).

Versioning Schema

By default Conan assumes semver compatibility. For example, if a version changes from minor 2.0 to 2.1, Conan will
assume that the API is compatible (headers not changing), and that it is not necessary to build a new binary for it. This
also applies to patches, whereby changing from 2.1.10 to 2.1.11 doesn’t require a re-build.

If it is necessary to change the default behavior, the applied versioning schema can be customized within the
package_id() method:

6.6. Defining Package ABI Compatibility 53

https://semver.org

Conan Documentation, Release 1.31.4

from conans import ConanFile, CMake, tools
from conans.model.version import Version

class PkgConan(ConanFile):
name = "my_lib"
version = "1.0"
settings = "os", "compiler", "build_type", "arch"
requires = "my_other_lib/2.0@lasote/stable"

def package_id(self):
myotherlib = self.info.requires["my_other_lib"]

Any change in the MyOtherLib version will change current Package ID
myotherlib.version = myotherlib.full_version

Changes in major and minor versions will change the Package ID but
only a MyOtherLib patch won't. E.g., from 1.2.3 to 1.2.89 won't change.
myotherlib.version = myotherlib.full_version.minor()

Besides version, there are additional helpers that can be used to determine whether the channel and user of one
dependency also affects the binary package, or even the required package ID can change your own package ID.

You can determine if the following variables within any requirement change the ID of your binary package using the
following modes:

Modes / Variables name version user channel package_id RREV PREV
semver_direct_mode() Yes Yes, only > 1.0.0 (e.g.,

1.2.Z+b102)
No No No No No

semver_mode() Yes Yes, only > 1.0.0 (e.g.,
1.2.Z+b102)

No No No No No

major_mode() Yes Yes (e.g., 1.2.Z+b102) No No No No No
minor_mode() Yes Yes (e.g., 1.2.Z+b102) No No No No No
patch_mode() Yes Yes (e.g., 1.2.3+b102) No No No No No
base_mode() Yes Yes (e.g., 1.7+b102) No No No No No
full_version_mode() Yes Yes (e.g., 1.2.3+b102) No No No No No
full_recipe_mode() Yes Yes (e.g., 1.2.3+b102) Yes Yes No No No
full_package_mode() Yes Yes (e.g., 1.2.3+b102) Yes Yes Yes No No
unrelated_mode() No No No No No No No
recipe_revision_mode()Yes Yes Yes Yes Yes Yes No
package_revision_mode()Yes Yes Yes Yes Yes Yes Yes

All the modes can be applied to all dependencies, or to individual ones:

def package_id(self):
apply semver_mode for all the dependencies of the package
self.info.requires.semver_mode()
use semver_mode just for MyOtherLib
self.info.requires["MyOtherLib"].semver_mode()

• semver_direct_mode(): This is the default mode. It uses semver_mode() for direct dependencies (first level
dependencies, directly declared by the package) and unrelated_mode() for indirect, transitive dependencies
of the package. It assumes that the binary will be affected by the direct dependencies, which they will already

54 Chapter 6. Creating Packages

Conan Documentation, Release 1.31.4

encode how their transitive dependencies affect them. This might not always be true, as explained above, and
that is the reason it is possible to customize it.

In this mode, if the package depends on “MyLib”, which transitively depends on “MyOtherLib”, the mode means:

my_lib/1.2.3@user/testing => my_lib/1.Y.Z
my_other_lib/2.3.4@user/testing =>

So the direct dependencies are mapped to the major version only. Changing its channel, or using version my_lib/
1.4.5 will still produce my_lib/1.Y.Z and thus the same package-id. The indirect, transitive dependency
doesn’t affect the package-id at all.

• semver_mode(): In this mode, only a major release version (starting from 1.0.0) changes the package ID. Every
version change prior to 1.0.0 changes the package ID, but only major changes after 1.0.0 will be applied.

def package_id(self):
self.info.requires["my_other_lib"].semver_mode()

This results in:

my_lib/1.2.3@user/testing => my_lib/1.Y.Z
my_other_lib/2.3.4@user/testing => my_other_lib/2.Y.Z

In this mode, versions starting with 0 are considered unstable and mapped to the full version:

my_lib/0.2.3@user/testing => my_lib/0.2.3
my_other_lib/0.3.4@user/testing => my_other_lib/0.3.4

• major_mode(): Any change in the major release version (starting from 0.0.0) changes the package ID.

def package_id(self):
self.info.requires["MyOtherLib"].major_mode()

This mode is basically the same as semver_mode, but the only difference is that major versions 0.Y.Z, which
are considered unstable by semver, are still mapped to only the major, dropping the minor and patch parts.

• minor_mode(): Any change in major or minor (not patch nor build) version of the required dependency changes
the package ID.

def package_id(self):
self.info.requires["my_other_lib"].minor_mode()

• patch_mode(): Any changes to major, minor or patch (not build) versions of the required dependency change
the package ID.

def package_id(self):
self.info.requires["my_other_lib"].patch_mode()

• base_mode(): Any changes to the base of the version (not build) of the required dependency changes the package
ID. Note that in the case of semver notation this may produce the same result as patch_mode(), but it is actually
intended to dismiss the build part of the version even without strict semver.

def package_id(self):
self.info.requires["my_other_lib"].base_mode()

• full_version_mode(): Any changes to the version of the required dependency changes the package ID.

6.6. Defining Package ABI Compatibility 55

Conan Documentation, Release 1.31.4

def package_id(self):
self.info.requires["my_other_lib"].full_version_mode()

my_other_lib/1.3.4-a4+b3@user/testing => my_other_lib/1.3.4-a4+b3

• full_recipe_mode(): Any change in the reference of the requirement (user & channel too) changes the pack-
age ID.

def package_id(self):
self.info.requires["my_other_lib"].full_recipe_mode()

This keeps the whole dependency reference, except the package-id of the dependency.

my_other_lib/1.3.4-a4+b3@user/testing => my_other_lib/1.3.4-a4+b3@user/testing

• full_package_mode(): Any change in the required version, user, channel or package ID changes the package
ID.

def package_id(self):
self.info.requires["my_other_lib"].full_package_mode()

Any change to the dependency, including its binary package-id, will in turn produce a new package-id for the
consumer package.

MyOtherLib/1.3.4-a4+b3@user/testing:73b..fa56 => MyOtherLib/1.3.4-a4+b3@user/
→˓testing:73b..fa56

• unrelated_mode(): Requirements do not change the package ID.

def package_id(self):
self.info.requires["MyOtherLib"].unrelated_mode()

• recipe_revision_mode(): The full reference and the package ID of the dependencies,
pkg/version@user/channel#RREV:pkg_id (including the recipe revision), will be taken into account to
compute the consumer package ID

mypkg/1.3.4@user/testing#RREV1:73b..fa56#PREV1 => mypkg/1.3.4-a4+b3@user/
→˓testing#RREV1

.. code-block:: python

def package_id(self):
self.info.requires["mypkg"].recipe_revision_mode()

• package_revision_mode(): The full package reference pkg/version@user/channel#RREV:ID#PREV of the
dependencies, including the recipe revision, the binary package ID and the package revision will be taken into
account to compute the consumer package ID

This is the most strict mode. Any change in the upstream will produce new consumers package IDs, becoming
a fully deterministic binary model.

The full reference of the dependency package binary will be used as-is
mypkg/1.3.4@user/testing#RREV1:73b..fa56#PREV1 => mypkg/1.3.4@user/testing

→˓#RREV1:73b..fa56#PREV1
(continues on next page)

56 Chapter 6. Creating Packages

Conan Documentation, Release 1.31.4

(continued from previous page)

.. code-block:: python

def package_id(self):
self.info.requires["mypkg"].package_revision_mode()

Given that the package ID of consumers depends on the package revision PREV␣
→˓of the dependencies, when
one of the upstream dependencies doesn't have a package revision yet (for␣
→˓example it is going to be
built from sources, so its PREV cannot be determined yet), the consumers␣
→˓package ID will be unknown and
marked as such. These dependency graphs cannot be built in a single␣
→˓invocation, because they are intended
for CI systems, in which a package creation/built is called for each package␣
→˓in the graph.

You can also adjust the individual properties manually:

def package_id(self):
myotherlib = self.info.requires["MyOtherLib"]

Same as myotherlib.semver_mode()
myotherlib.name = myotherlib.full_name
myotherlib.version = myotherlib.full_version.stable() # major(), minor(), patch(),␣

→˓base, build
myotherlib.user = myotherlib.channel = myotherlib.package_id = None

Only the channel (and the name) matters
myotherlib.name = myotherlib.full_name
myotherlib.user = myotherlib.package_id = myotherlib.version = None
myotherlib.channel = myotherlib.full_channel

The result of the package_id() is the package ID hash, but the details can be checked in the generated conaninfo.txt
file. The [requires], [options] and [settings] are taken into account when generating the SHA1 hash for the
package ID, while the [full_xxxx] fields show the complete reference information.

The default behavior produces a conaninfo.txt that looks like:

[requires]
MyOtherLib/2.Y.Z

[full_requires]
MyOtherLib/2.2@demo/testing:73bce3fd7eb82b2eabc19fe11317d37da81afa56

6.6. Defining Package ABI Compatibility 57

Conan Documentation, Release 1.31.4

Changing the default package-id mode

It is possible to change the default semver_direct_mode package-id mode, in the conan.conf file:

Listing 3: conan.conf configuration file

[general]
default_package_id_mode=full_package_mode

Possible values are the names of the above methods: full_recipe_mode, semver_mode, etc.

Note: The default_package_id_mode is a global configuration. It will change how all the package-ids are
computed, for all packages. It is impossible to mix different default_package_id_mode values. The same
default_package_id_mode must be used in all clients, servers, CI, etc., and it cannot be changed without rebuilding
all packages.

Note that the default package-id mode is the mode that is used when the package is initialized and before
package_id() method is called. You can still define full_package_mode as default in conan.conf, but if a recipe
declare that it is header-only, with:

def package_id(self):
self.info.header_only() # clears requires, but also settings if existing
or if there are no settings/options, this would be equivalent
self.info.requires.clear() # or self.info.requires.unrelated_mode()

That would still be executed, changing the “default” behavior, and leading to a package that only generates 1 package-id
for all possible configurations and versions of dependencies.

Remember that conan.conf can be shared and installed with conan config install.

Take into account that you can combine the compatible packages with the package-id modes.

For example, if you are generating binary packages with the default recipe_revision_mode, but you want these
packages to be consumed from a client with a different mode activated, you can create a compatible package trans-
forming the mode to recipe_revision_mode so the package generated with the recipe_revision_mode can be
resolved if no package for the default mode is found:

from conans import ConanFile

class Pkg(ConanFile):
...

def package_id(self):
p = self.info.clone()
p.requires.recipe_revision_mode()
self.compatible_packages.append(p)

58 Chapter 6. Creating Packages

Conan Documentation, Release 1.31.4

Enabling full transitivity in package_id modes

Warning: This will become the default behavior in the future (Conan 2.0). It is recommended to activate it when
possible (it might require rebuilding some packages, as their package IDs will change)

When a package declares in its package_id() method that it is not affected by its dependencies, that will prop-
agate down to the indirect consumers of that package. There are several ways this can be done, self.info.
header_only(), self.info.requires.clear(), self.info.requires.remove["dep"] and self.info.
requires.unrelated_mode(), for example.

Let’s assume for the discussion that it is a header only library, using the self.info.header_only() helper. This
header only package has a single dependency, which is a static library. Then, downstream consumers of the header
only library that uses a package mode different from the default, should be also affected by the upstream transitivity
dependency. Lets say that we have the following scenario:

• app/1.0 depends on pkgc/1.0 and pkga/1.0

• pkgc/1.0 depends only on pkgb/1.0

• pkgb/1.0 depends on pkga/1.0, and defines self.info.header_only() in its package_id()

• We are using full_version_mode

• Now we create a new pkga/2.0 that has some changes in its header, that would require to rebuild pkgc/1.0
against it.

• app/1.0 now depends on `pkgc/1.0 and pkga/2.0

With the default behavior, the header only pkgb is isolating pkgc from the upstream changes effects. The package-id
PIDC1 we get for pkgc/1.0 is exactly the same when depending on pkga/1.0 and pkga/2.0.

If we want to have the full_version_mode to be fully transitive, irrespective of the local package-
id modes of the packages, we can configure it in the conan.conf section. To summarize, you can ac-
tivate the general.full_transitive_package_id configuration ($ conan config set general.
full_transitive_package_id=1).

If we do this, then pkgc/1.0 will compute 2 different package-ids, one for pkga/1.0 (PIDC1) and the other to link
with pkga/2.0 (PIDC2).

6.6. Defining Package ABI Compatibility 59

Conan Documentation, Release 1.31.4

Library Types: Shared, Static, Header-only

Let’s see some examples, corresponding to common scenarios:

• my_lib/1.0 is a shared library that links with a static library my_other_lib/2.0 package. When a new
my_other_lib/2.1 version is released: Do I need to create a new binary for my_lib/1.0 to link with it?

Yes, always, as the implementation is embedded in the my_lib/1.0 shared library. If we always want to rebuild
our library, even if the channel changes (we assume a channel change could mean a source code change):

def package_id(self):
Any change in the my_other_lib version, user or
channel or Package ID will affect our package ID
self.info.requires["my_other_lib"].full_package_mode()

• my_lib/1.0 is a shared library, requiring another shared library my_other_lib/2.0 package. When a new
my_other_lib/2.1 version is released: Do I need to create a new binary for my_lib/1.0 to link with it?

It depends. If the public headers have not changed at all, it is not necessary. Actually it might be necessary to
consider transitive dependencies that are shared among the public headers, how they are linked and if they cross
the frontiers of the API, it might also lead to incompatibilities. If the public headers have changed, it would
depend on what changes and how are they used in my_lib/1.0. Adding new methods to the public headers will
have no impact, but changing the implementation of some functions that will be inlined when compiled from
my_lib/1.0 will definitely require re-building. For this case, it could make sense to have this configuration:

def package_id(self):
Any change in the my_other_lib version, user or channel
or Package ID will affect our package ID
self.info.requires["my_other_lib"].full_package_mode()

Or any change in the my_other_lib version, user or
channel will affect our package ID
self.info.requires["my_other_lib"].full_recipe_mode()

• my_lib/1.0 is a header-only library, linking with any kind (header, static, shared) of library in my_other_lib/
2.0 package. When a new my_other_lib/2.1 version is released: Do I need to create a new binary for my_lib/
1.0 to link with it?

Never. The package should always be the same as there are no settings, no options, and in any way a dependency
can affect a binary, because there is no such binary. The default behavior should be changed to:

def package_id(self):
self.info.requires.clear()

• my_lib/1.0 is a static library linking to a header only library in my_other_lib/2.0 package. When a new
my_other_lib/2.1 version is released: Do I need to create a new binary for my_lib/1.0 to link with it? It
could happen that the my_other_lib headers are strictly used in some my_lib headers, which are not com-
piled, but transitively included. But in general, it is more likely that my_other_lib headers are used in MyLib
implementation files, so every change in them should imply a new binary to be built. If we know that changes in
the channel never imply a source code change, as set in our workflow/lifecycle, we could write:

def package_id(self):
self.info.requires["my_other_lib"].full_package()
self.info.requires["my_other_lib"].channel = None # Channel doesn't change out␣

→˓package ID

60 Chapter 6. Creating Packages

Conan Documentation, Release 1.31.4

6.7 Define the package information

When creating a recipe to package a library, it is important to define the information about the package so consumers
can get the information correctly. Conan achieves this by decoupling the information of the package from the format
needed using Generators, that translate the generic information into the appropriate format file.

This generic information is defined inside the recipe, using the package_info() method. There you can declare package
information like the location of the header files, library names, defines, flags. . .

from conans import ConanFile

class MyConan(ConanFile):
name = "cool_library"
...

def package_info(self):
self.cpp_info.includedirs = ["include/cool"]
self.cpp_info.libs = ["libcool"]
self.cpp_info.defines= ["DEFINE_COOL=1"]

The package information is done using the attributes of the cpp_info object. This information will be aggregated by
Conan and exposed via self.deps_cpp_info to consumers and generators.

Important: This information is important as it describes the package contents in a generic way with a pretty straight-
forward syntax that can later be translated to a suitable format. The advantage of having this information here, is that
the package could be consumed from a different build system that the one used to compile the library. For example,
a library that builds using Autotools can be consumed later in CMake with this information using any of the CMake
generators.

See also:

Read package_info() to learn more about this method.

6.7.1 Using Components

If your package contains more than one library or you want to define separated components so consumers can have
more granular information, you can use components in your package_info() method.

Warning: This is a experimental feature subject to breaking changes in future releases.

When you are creating a Conan package, it is recommended to have only one library (.lib, .a, .so, .dll. . .) per package.
However, especially with third-party projects like Boost, Poco or OpenSSL, they would contain several libraries inside.

Usually those libraries inside the same package depend on each other and modelling the relationship among them is
required.

With components, you can model libraries and executables inside the same package and how one depends on the other.
Each library or executable will be one component inside cpp_info like this:

def package_info(self):
self.cpp_info.name = "OpenSSL"
self.cpp_info.components["crypto"].names["cmake_find_package"] = "Crypto"

(continues on next page)

6.7. Define the package information 61

Conan Documentation, Release 1.31.4

(continued from previous page)

self.cpp_info.components["crypto"].libs = ["libcrypto"]
self.cpp_info.components["crypto"].defines = ["DEFINE_CRYPTO=1"]
self.cpp_info.components["ssl"].names["cmake"] = "SSL"
self.cpp_info.components["ssl"].includedirs = ["include/headers_ssl"]
self.cpp_info.components["ssl"].libs = ["libssl"]
self.cpp_info.components["ssl"].requires = ["crypto"]

You can define dependencies among different components using the requires attribute and the name of the component.
The dependency graph for components will be calculated and values will be aggregated in the correct order for each
field.

def package_info(self):
self.cpp_info.components["LibA"].libs = ["liba"] # Name of the library for the

→˓'LibA' component
self.cpp_info.components["LibA"].requires = ["LibB"] # Requires point to the name␣

→˓of the component

self.cpp_info.components["LibB"].libs = ["libb"]

self.cpp_info.components["LibC"].libs = ["libc"]
self.cpp_info.components["LibC"].requires = ["LibA"]

self.cpp_info.components["LibD"].libs = ["libD"]
self.cpp_info.components["LibD"].requires = ["LibA"]

self.cpp_info.components["LibE"].libs = ["libe"]
self.cpp_info.components["LibE"].requires = ["LibB"]

self.cpp_info.components["LibF"].libs = ["libf"]
self.cpp_info.components["LibF"].requires = ["LibD", "LibE"]

For consumers and generators, the order of the libraries from this components graph will be:

self.deps_cpp_info.libs == ["libf", "libe", "libd", "libc", "liba", "libb"]

Declaration of requires from other packages is also allowed:

class MyConan(ConanFile):
...
requires = "zlib/1.2.11", "openssl/1.1.1g"

def package_info(self):
self.cpp_info.components["comp1"].requires = ["zlib::zlib"] # Depends on all␣

→˓components in zlib package
self.cpp_info.components["comp2"].requires = ["comp1", "openssl::ssl"] #␣

→˓Depends on ssl component in openssl package

By default, components won’t link against any other package required by the recipe. The requires list has to be pop-
ulated explicitly with the list of components from other packages to use: it can be the full requirement (zlib::zlib)
or a single component (openssl::ssl).

Important: The information of components is aggregated to the global cpp_info scope and the usage of components

62 Chapter 6. Creating Packages

Conan Documentation, Release 1.31.4

should be transparent.

Consumers can get this information via self.deps_cpp_info as usual and use it in the build() method of any
dependent recipe:

class PocoTimerConan(ConanFile):
...
requires = "zlib/1.2.11", "openssl/1.0.2u"
...

def build(self):
Get the include directories of the SSL component of openssl package
self.deps_cpp_info["openssl"].components["ssl"].include_paths

Recipes that require packages that declare components can also take advantage of this granularity, they can declare in
the cpp_info.requires attribute the list of components from the requirements they want to link with:

class Library(ConanFile):
name = 'library'
requires = "openssl/1.0.2u"

def package_info(self):
self.cpp_info.requires = ['openssl::ssl']

In the previous example, the ‘library’ package and transitively all its consumers will link only with the component ssl
from the openssl package.

See also:

Read components reference for more information.

6.8 Toolchains

Toolchains are the new, experimental way to integrate with build systems in Conan. Recipes can define a toolchain()
method that will return an object which can generate files from the current configuration that can be used by the build
systems. Conan generators provide information about dependencies, while toolchains provide a “translation” from the
Conan settings and options, and the recipe defined configuration to something that the build system can understand. A
recipe that does not have dependencies does not need a generator, but can still use a toolchain.

A toolchain can be defined, among the built-ins toolchains, with an attribute:

toolchain = "cmake"

Note: At the moment (Conan 1.26), the only available built-in toolchain is the CMake one.

But in the more general case, and if it needs any specific configuration beyond the default one:

from conans import CMakeToolchain

def toolchain(self):
tc = CMakeToolchain(self)

(continues on next page)

6.8. Toolchains 63

Conan Documentation, Release 1.31.4

(continued from previous page)

customize toolchain "tc"
tc.write_toolchain_files()

It is possible to use the toolchain()method to create your own files, which will typically be deduced from the current
configuration of self.settings and self.options.

from conans import CMakeToolchain
from conans.tools import save

def toolchain(self):
Based on the self.settings, self.options, the user
can generate their own files:
save("mytoolchain.tool", "my own toolchain contents, deduced from the settings and␣

→˓options")
The "mytoolchain.tool" file can be used by the build system to
define the build

And as usual, you can create your own toolchain helpers, put them in a python_requires package and reuse them in
all your recipes.

Toolchains have some important advantages:

• They execute at conan install time. They generate files, not command line arguments, providing better re-
producibility and debugging of builds.

• They provide a better developer experience. The command line used by developers locally, like cmake ... will
achieve the same build, with the same flags, as the conan build or the build that is done in the cache with a
conan create.

• They are more extensible and configurable.

The toolchains implement most of the build system logic, leaving the build helpers, like CMake(), doing less work,
and acting basically as a high level wrapper of the build system. Many of the existing arguments, attributes or methds
of those build helpers will not be available. Check the documentation of each toolchain to check the associated build
helper available functionality.

from conans import CMakeToolchain, CMake

def toolchain(self):
tc = CMakeToolchain(self)
customize toolchain "tc"
tc.write_toolchain_files()

def build(self):
NOTE: This is a simplified helper
Not all arguments attributes and methods might be available
cmake = CMake(self)

64 Chapter 6. Creating Packages

Conan Documentation, Release 1.31.4

6.8.1 Built-in toolchains

CMakeToolchain

Warning: This is an experimental feature subject to breaking changes in future releases.

The CMakeToolchain can be used in the toolchain() method:

from conans import ConanFile, CMake, CMakeToolchain

class App(ConanFile):
settings = "os", "arch", "compiler", "build_type"
requires = "hello/0.1"
generators = "cmake_find_package_multi"
options = {"shared": [True, False], "fPIC": [True, False]}
default_options = {"shared": False, "fPIC": True}

def toolchain(self):
tc = CMakeToolchain(self)
tc.write_toolchain_files()

The CMakeToolchain will generate 2 files, after a conan install command (or before calling the build() method
when the package is being built in the cache):

• The main conan_toolchain.cmake file, that can be used in the command line.

• A conan_project_include.cmake file, that will automatically be called right after the project() call for
cmake>=3.15, containing definitions that only take effect after such call. For older cmake versions you should
explicitly call include(.../conan_project_include.cmake) in your CMakeLists.txt.

These file will automatically manage the definition of cmake values according to current Conan settings:

• Definition of the CMake generator platform and generator toolset

• Definition of the CMake build_type

• Definition of the CMAKE_POSITION_INDEPENDENT_CODE, based on fPIC option.

• Definition of the C++ standard as necessary

• Definition of the standard library used for C++

• Deactivation of rpaths in OSX

Most of these things will be configurable, please provide feedback at: https://github.com/conan-io/conan/issues

constructor

def __init__(self, conanfile, generator=None, generator_platform=None, build_type=None,
cmake_system_name=True, toolset=None, parallel=True, make_program=None):

Most of the arguments are optional and will be deduced from the current settings, and not necessary to define them.

6.8. Toolchains 65

https://github.com/conan-io/conan/issues

Conan Documentation, Release 1.31.4

preprocessor_definitions

This attribute allows defining CMake variables, for multiple configurations (Debug, Release, etc).

def toolchain(self):
tc = CMakeToolchain(self)
tc.preprocessor_definitions["MYVAR"] = "MyValue"
tc.preprocessor_definitions.debug["MYCONFIGVAR"] = "MyDebugValue"
tc.preprocessor_definitions.release["MYCONFIGVAR"] = "MyReleaseValue"
tc.write_toolchain_files()

This will be translated to:

• One set() definition for MYVAR in conan_toolchain.cmake file.

• One set() definition, using a cmake generator expression in conan_project_include.cmake file, using the
different values for different configurations. It is important to recall that things that depend on the build type
cannot be directly set in the toolchain.

generators

The CMakeToolchain only works with the cmake_find_package and cmake_find_package_multi generators.
Using others will raise, as they can have overlapping definitions that can conflict.

Using the toolchain in developer flow

One of the advantages of using Conan toolchains is that they can help to achieve the exact same build with local
development flows, than when the package is created in the cache.

With the CMakeToolchain it is possible to do, for multi-configuration systems like Visual Studio (assuming we are
using the cmake_find_package_multi generator):

Lets start in the folder containing the conanfile.py
$ mkdir build && cd build
Install both debug and release deps and create the toolchain
$ conan install ..
$ conan install .. -s build_type=Debug
the conan_toolchain.cmake is common for both configurations
Need to pass the generator WITHOUT the platform, that matches your default settings
$ cmake .. -G "Visual Studio 15" -DCMAKE_TOOLCHAIN_FILE=conan_toolchain.cmake
Now you can open the IDE, select Debug or Release config and build
or, in the command line
$ cmake --build . --config Release
$ cmake --build . --config Debug

NOTE: The platform (Win64), is already encoded in the toolchain. The command line shouldn’t pass it, so using -G
"Visual Studio 15" instead of the -G "Visual Studio 15 Win64"

For single-configuration build systems:

Lets start in the folder containing the conanfile.py
$ mkdir build_release && cd build_release
$ conan install ..

(continues on next page)

66 Chapter 6. Creating Packages

Conan Documentation, Release 1.31.4

(continued from previous page)

the build type Release is encoded in the toolchain already.
This conan_toolchain.cmake is specific for release
$ cmake .. -G "Unix Makefiles" -DCMAKE_TOOLCHAIN_FILE=conan_toolchain.cmake
$ cmake --build . # or just "make"

debug build requires its own folder
$ cd .. && mkdir build_debug && cd build_debug
$ conan install .. -s build_type=Debug
the build type Debug is encoded in the toolchain already.
This conan_toolchain.cmake is specific for debug
$ cmake .. -G "Unix Makefiles" -DCMAKE_TOOLCHAIN_FILE=conan_toolchain.cmake
$ cmake --build . # or just "make"

CMake build helper

The CMake() build helper that works with the CMakeToolchain is also experimental, and subject to breaking change
in the future. It will evolve to adapt and complement the toolchain functionality.

The helper is intended to be used in the build() method, to call CMake commands automatically when a package is
being built directly by Conan (create, install)

from conans import CMake

def build(self):
cmake = CMake(self)
cmake.configure(source_folder="src")
cmake.build()

It supports the following methods:

constructor

def __init__(self, conanfile, generator=None, build_folder=None, parallel=True,
msbuild_verbosity="minimal"):

• conanfile: the current recipe object. Always use self.

• generator: CMake generator. Define it only to override the default one (like Visual Studio 15). Note that
as the platform (x64, Win32. . .) is now defined in the toolchain it is not necessary to specify it here.

• build_folder: Relative path to a folder to contain the temporary build files

• parallel: Set it to False to deactivate using parallel builds. If activated, it will use cpu_count configuration
as the number of parallel jobs to use.

• msbuild_verbosity: Used to define the output of MSBuild builds.

6.8. Toolchains 67

Conan Documentation, Release 1.31.4

configure()

def configure(self, source_folder=None):

Calls cmake, with the given generator and passing -DCMAKE_TOOLCHAIN_FILE=conan_toolchain.cmake. It will
also provide the CMake generator in the command like, like -G "Visual Studio 15". Note that it is not necessary
to specify the platform, like -G "Visual Studio 15 Win64", as the platform is already defined in the toolchain file.

• source_folder: Relative path to the folder containing the root CMakeLists.txt

build()

def build(self, build_type=None, target=None):

Calls the build system. Equivalent to cmake --build . in the build folder.

• build_type: Use it only to override the value defined in the settings.build_type for a multi-configuration
generator (e.g. Visual Studio, XCode). This value will be ignored for single-configuration generators, they will
use the one defined in the toolchain file during the install step.

• target: name of the build target to run.

install()

def install(self, build_type=None):

Equivalent to run cmake --build . --target=install

• build_type: Use it only to override the value defined in the settings.build_type. It can fail if the build is
single configuration (e.g. Unix Makefiles), as in that case the build type must be specified at configure time, not
build type.

test()

def test(self, build_type=None, target=None, output_on_failure=False):

Equivalent to running cmake --build . --target=RUN_TESTS.

• build_type: Use it only to override the value defined in the settings.build_type. It can fail if the build is
single configuration (e.g. Unix Makefiles), as in that case the build type must be specified at configure time, not
build type.

• target: name of the build target to run, by default RUN_TESTS or test.

68 Chapter 6. Creating Packages

Conan Documentation, Release 1.31.4

Examples

Conan is able to generate a toolchain file for some configurations. In the following sections you can find more infor-
mation about them:

• Android.

• iOS.

Warning: This is an experimental feature subject to breaking changes in future releases.

MakeToolchain

The MakeToolchain can be used in the toolchain() method of conanfile.py:

from conans import ConanFile, MakeToolchain

class App(ConanFile):
settings = "os", "arch", "compiler", "build_type"
requires = "hello/0.1"
options = {"shared": [True, False], "fPIC": [True, False]}
default_options = {"shared": False, "fPIC": True}

def toolchain(self):
tc = Make(self)
tc.write_toolchain_files()

The MakeToolchainwill generate the following file during conan install command (or before calling the build()
method when the package is being built in the cache): conan_toolchain.mak. To use the variables generated by
Conan, include this file in your existing Makefile such as:

include conan_toolchain.mak

Or to make it optional:

-include conan_toolchain.mak

conan_toolchain.mak will contain the definitions of all the Make variables related to the Conan options and settings
for the current package, platform, etc. This includes but is not limited to the following:

• Detection of target type: “executable”, “shared” or “static”

– Based on existance/value of a option named shared

– Based on result, defines -shared linker flag

• Detection of fPIC

– Based on existance/value of a option named fPIC

– Combines with detection of target type above

– Sets -fPIC flag for compiler

– Sets -fPIC flag for linker when building shared library

– Sets -pie flag for linker when building executable

6.8. Toolchains 69

Conan Documentation, Release 1.31.4

• Detection of build_type from Conan settings

– Sets -DNDEBUG flag for Release builds

• Definition of the C++ standard as necessary

• Definition of the standard library used for C++

• Definition of rpaths based on libpaths in conan cache

NOTE: Simply including this file will have no effect on your Makefile build.

All variables in this file are prefixed with CONAN_TC_ and so existing makefiles will robably makes no references to
variables with these names. Users can modify their makefiles to make use of these variables by name. That is certainly
supported, however such a process tighly couples Makefiles to Conan which can be undesirable, so Conan provides an
alternative. There is list of well-known “standard”/”conventional” variables used within GnuMake, Autotools, and
other related tools:

Gnu Make Well-Known Variables

The relevant content from the GnuMake manual is provided here for convenience:

CFLAGS Extra flags to give to the C compiler.

CXXFLAGS Extra flags to give to the C++ compiler.

CPPFLAGS Extra flags to give to the C preprocessor and programs that use it (the C and Fortran compilers).

LDFLAGS Extra flags to give to compilers when they are supposed to invoke the linker, ‘ld’, such as -L.
Libraries (-lfoo) should be added to the LDLIBS variable instead.

LDLIBS Library flags or names given to compilers when they are supposed to invoke the linker, ‘ld’.
LOADLIBES is a deprecated (but still supported) alternative to LDLIBS. Non-library linker flags, such as
-L, should go in the LDFLAGS variable.

To have the CONAN_TC_ variables appended to these standard GnuMake variables, simply add the following function
call to your Makefile somewhere after the include statement:

• $(call CONAN_TC_SETUP)

To be clear, this only has the desired “automatic” effect if your Makefile(s) all use of these standard variables in the
conventional way. If your Makefile(s) use custom variables, you would need to teach them to append/include/use
the CONAN_TC_ variables manually.

Also, while we are appending “standard” variables in a seemingly sensible way, this function makes a lot of assumptions
which are likely not going to hold true in many environments. The goal is to make as much of the behavior configurable
as possible. Based on user requests, we will continue to add parameters to the constructor. If you would like a behavior
added to the list of configurable items, please provide feedback at: https://github.com/conan-io/conan/issues

definitions

This attribute allows defining preprocessor definitions the same way that build helpers do:

def toolchain(self):
tc = MakeToolchain(self)
tc.definitions["MYVAR"] = "MyValue"
tc.write_toolchain_files()

This will be translated to:

• -DMYVAR=MYVAL being appended to the CONAN_TC_CPPFLAGS variable

70 Chapter 6. Creating Packages

https://www.gnu.org/software/make/manual/html_node/Implicit-Variables.html
https://github.com/conan-io/conan/issues

Conan Documentation, Release 1.31.4

generators

The MakeGenerator is being developed in-tandem with this toolchain because ideally they would be used in the
same recipes and workflows. They have consistent conventions and strategy, however they are currently completely
independent from each other. Thus, you can use this toolchain without using the MakeGenerator.

Using the toolchain in developer flow

One of the advantages of using Conan toolchains is that it provides exact same “toolchain-related” variables that Conan
will have within a recipe’s build() method to the build system when the user calls the build system directly in their
workspace. This was not possible prior to Conan’s toolchain feature. Here’s an example:

Lets start in the folder containing a conanfile.py
Add the toolchain method with the MakeToolchain as shown in the example
$ mkdir build && cd build
Install both debug and release deps and create the toolchain
$ conan install ..
Add the following lines to Makefile:
-include build/conan_toolchain.mak
$(call CONAN_TC_SETUP)
$ make

NOTE As stated previously, this will only have the desired effect if the Makefile makes conventional use of the
standard variables.

We can actually achieve the same goal without modifying the Makefile at all, it simply requires passing a few more
parameters to GnuMake.

$ conan install ..
$ make -E='include build/conan_toolchain.mak' -E='$(call CONAN_TC_SETUP)'

Autotools Build Helper

This toolchain should not be used together with the existing AutoToolsBuildEnvironment build helper in Co-
nan at this time. They perform a number of similar and probably conflicting operations on the standard Gnu-
Make variables. There is a goal to continue adding features to this toolchain until is achieves feature parity with
AutoToolsBuildEnvironment which will take some time. During that process, we’ll be trying to determine if it’s
desirable and feasible to make the two co-exist and/or even work together. At this time, it’s unclear.

MSBuildToolchain

Warning: This is an experimental feature subject to breaking changes in future releases.

The MSBuildToolchain can be used in the toolchain() method:

from conans import ConanFile, MSBuildToolchain

class App(ConanFile):
settings = "os", "arch", "compiler", "build_type"

(continues on next page)

6.8. Toolchains 71

Conan Documentation, Release 1.31.4

(continued from previous page)

requires = "hello/0.1"
generators = "msbuild"
options = {"shared": [True, False]}
default_options = {"shared": False}

def toolchain(self):
tc = MSBuildToolchain(self)
tc.write_toolchain_files()

The MSBuildToolchain will generate two files after a conan install command or before calling the build()
method when the package is building in the cache:

• The main conan_toolchain.props file, that can be used in the command line.

• A conan_toolchain_<config>.props file, that will be conditionally included from the previ-
ous conan_toolchain.props file based on the configuration, platform and toolset, e.g.: co-
nan_toolchain_Release_x86_v140.props

Every invocation to conan install with different configuration will create a new properties .props file, that will
also be conditionally included. This allows to install different sets of dependencies, then switch among them directly
from the Visual Studio IDE.

The toolchain files can configure:

• The Visual Studio runtime (MT/MD/MTd/MDd), obtained from Conan input settings

• The C++ standard, obtained from Conan input settings

Generators

The MSBuildToolchain only works with the msbuild generator. Please, do not use other generators, as they can have
overlapping definitions that can conflict.

Using the toolchain in developer flow

One of the advantages of using Conan toolchains is that they can help to achieve the exact same build with local
development flows, than when the package is created in the cache.

With the MSBuildToolchain it is possible to do:

Lets start in the folder containing the conanfile.py
$ mkdir build && cd build
Install both debug and release deps and create the toolchain
$ conan install ..
$ conan install .. -s build_type=Debug
Add ``conan_toolchain.props`` in your IDE to the project properties
No need to add the configuration .props files. This needs to be done only once
If you have dependencies, you will need to add the .props files of the dependencies
too, check the "msbuild" generator
Open Visual Studio IDE and build, switching configurations directly in the IDE

72 Chapter 6. Creating Packages

Conan Documentation, Release 1.31.4

MSBuild build helper

When using the toolchain feature, the MSBuild helper that is used in the build() method will be a new, different one
with new behavior.

Warning: The new MSBuild helper that is used with toolchains is experimental and subject to breaking changes
in the future

The MSBuild helper can be used like:

from conans import ConanFile, MSBuildToolchain, MSBuild

class App(ConanFile):
settings = "os", "arch", "compiler", "build_type"
def toolchain(self):

...

def build(self):
msbuild = MSBuild(self)
msbuild.build("MyProject.sln")

The MSBuild.build() method internally implements a call to msbuild like:

$ <vcvars-cmd> && msbuild "MyProject.sln" /p:Configuration=<conf> /p:Platform=<platform>

Where:

• vcvars-cmd is calling the Visual Studio prompt that matches the current recipe settings

• conf is the configuration, typically Release, Debug, which will be obtained from settings.build_type but
this will be configurable. Please open a Github issue if you want to define custom configurations.

• platform is the architecture, a mapping from the settings.arch to the common ‘x86’, ‘x64’, ‘ARM’,
‘ARM64’. If your platform is unsupported, please report in Github issues as well:

6.9 Inspecting Packages

You can inspect the uploaded packages and also the packages in the local cache by running the conan get command.

• List the files of a local recipe folder:

$ conan get zlib/1.2.11@ .

Listing directory '.':
conandata.yml
conanfile.py
conanmanifest.txt

• Print the conaninfo.txt file of a binary package:

$ conan get zlib/1.2.11@:2144f833c251030c3cfd61c4354ae0e38607a909

• Print the conanfile.py from a remote package:

6.9. Inspecting Packages 73

https://github.com/conan-io/conan/issues
https://github.com/conan-io/conan/issues

Conan Documentation, Release 1.31.4

$ conan get zlib/1.2.11@ -r conan-center

import os
import stat
from conans import ConanFile, tools, CMake, AutoToolsBuildEnvironment
from conans.errors import ConanException

class ZlibConan(ConanFile):
name = "zlib"
version = "1.2.11"
url = "https://github.com/conan-io/conan-center-index"
homepage = "https://zlib.net"

#...

Check the conan get command command reference and more examples.

6.10 Packaging Approaches

Package recipes have three methods for controlling the package’s binary compatibility and for implementing different
packaging approaches: package_id(), build_id() and package_info().

These methods let package creators select the method most suitable for each library.

6.10.1 1 config (1 build) -> 1 package

A typical approach is to have one configuration for each package containing the artifacts. Using this approach, for
example, the debug pre-compiled libraries will be in a different package than the release pre-compiled libraries.

So if there is a package recipe that builds a “hello” library, there will be one package containing the release version
of the “hello.lib” library and a different package containing a debug version of that library (in the figure denoted as
“hello_d.lib”, to make it clear, it is not necessary to use different names).

74 Chapter 6. Creating Packages

Conan Documentation, Release 1.31.4

Using this approach, the package_info() method, allows you to set the appropriate values for consumers, letting
them know about the package library names, necessary definitions and compile flags.

class HelloConan(ConanFile):

settings = "os", "compiler", "build_type", "arch"

def package_info(self):
self.cpp_info.libs = ["mylib"]

It is very important to note that it is declaring the build_type as a setting. This means that a different package will
be generated for each different value of such setting.

The values declared by the packages (the include, lib and bin subfolders are already defined by default, so they define the
include and library path to the package) are translated to variables of the respective build system by the used generators.
That is, running the cmake generator will translate the above definition in the conanbuildinfo.cmake to something like:

set(CONAN_LIBS_MYPKG mylib)
...
set(CONAN_LIBS mylib ${CONAN_LIBS})

Those variables, will be used in the conan_basic_setup() macro to actually set the relevant cmake variables.

If the developer wants to switch configuration of the dependencies, they will usually switch with:

$ conan install -s build_type=Release ...
when need to debug
$ conan install -s build_type=Debug ...

These switches will be fast, since all the dependencies are already cached locally.

This process offers a number of advantages: - It is quite easy to implement and maintain. - The packages are of
minimal size, so disk space and transfers are faster, and builds from sources are also kept to the necessary minimum.
- The decoupling of configurations might help with isolating issues related to mixing different types of artifacts, and
also protecting valuable information from deploy and distribution mistakes. For example, debug artifacts might contain
symbols or source code, which could help or directly provide means for reverse engineering. So distributing debug
artifacts by mistake could be a very risky issue.

6.10. Packaging Approaches 75

Conan Documentation, Release 1.31.4

Read more about this in package_info().

6.10.2 N configs -> 1 package

You may want to package both debug and release artifacts in the same package, so it can be consumed from IDEs
like Visual Studio. This will change the debug/release configuration from the IDE, without having to specify it in
the command line. This type of package can contain different artifacts for different configurations and can be used to
include both the release and debug version of a library in the same package.

Note: A complete working example of the following code can be found in the examples repo: https://github.com/
conan-io/examples

$ git clone https://github.com/conan-io/examples.git
$ cd features/multi_config
$ conan create . user/channel

Creating a multi-configuration debug/release package is simple

The first step will be to remove build_type from the settings. It will not be an input setting and the generated package
will always contain both debug and release artifacts.

The Visual Studio runtime is different for debug and release (MDd or MD) and is set using the default runtime (MD/MDd).
If this meets your needs, we recommend removing the compiler.runtime subsetting in the configure() method:

class HelloConan(ConanFile):
build_type has been omitted. It is not an input setting.
settings = "os", "compiler", "arch"
generators = "cmake"

Remove runtime and use always default (MD/MDd)
def configure(self):

if self.settings.compiler == "Visual Studio":
del self.settings.compiler.runtime

(continues on next page)

76 Chapter 6. Creating Packages

https://github.com/conan-io/examples
https://github.com/conan-io/examples

Conan Documentation, Release 1.31.4

(continued from previous page)

def build(self):
cmake_release = CMake(self, build_type="Debug")
cmake_release.configure()
cmake_release.build()

cmake_debug = CMake(self, build_type="Release")
cmake_debug.configure()
cmake_debug.build()

In this example, the binaries will be differentiated with a suffix in the CMake syntax, so we have to add this information
to the data provided to the consumers in the package_info function:

set_target_properties(mylibrary PROPERTIES DEBUG_POSTFIX _d)

Such a package can define its information for consumers as:

def package_info(self):
self.cpp_info.release.libs = ["mylibrary"]
self.cpp_info.debug.libs = ["mylibrary_d"]

This will translate to the CMake variables:

set(CONAN_LIBS_MYPKG_DEBUG mylibrary_d)
set(CONAN_LIBS_MYPKG_RELEASE mylibrary)
...
set(CONAN_LIBS_DEBUG mylibrary_d ${CONAN_LIBS_DEBUG})
set(CONAN_LIBS_RELEASE mylibrary ${CONAN_LIBS_RELEASE})

And these variables will be correctly applied to each configuration by conan_basic_setup() helper.

In this case you can still use the general and not config-specific variables. For example, the include directory when
set by default to include remains the same for both debug and release. Those general variables will be applied to all
configurations.

Important: The above code assumes that the package will always use the default Visual Studio runtime (MD/MDd). To
keep the package configurable for supporting static(MT)/dynamic(MD) linking with the VS runtime library, you can
do the following:

• Keep the compiler.runtime setting, e.g. do not implement the configure() method removing it.

• Don’t let the CMake helper define the CONAN_LINK_RUNTIME variable to define the runtime and define
CONAN_LINK_RUNTIME_MULTI instead.

• In CMakeLists.txt, use the CONAN_LINK_RUNTIME_MULTI variable to correctly setup up the runtime for debug
and release flags.

• Write a separate package_id() methods for MD/MDd and for MT/MTd defining the packages to be built.

All these steps are already coded in the repo https://github.com/conan-io/examples/tree/master/features/multi_config
and commented out as “Alternative 2”.

Note: The automatic conversion of multi-config variables to generators is currently implemented in the cmake,

6.10. Packaging Approaches 77

https://github.com/conan-io/examples/tree/master/features/multi_config

Conan Documentation, Release 1.31.4

visual_studio, txt, and cmake_find_package generators (and also for their corresponding _multi implementa-
tions). If you want to have support for them in another build system, please open a GitHub issue.

6.10.3 N configs (1 build) -> N packages

It’s possible that an existing build script is simultaneously building binaries for different configurations, like de-
bug/release, or different architectures (32/64bits), or library types (shared/static). If such a build script is used in
the previous “Single configuration packages” approach, it will definitely work without problems. However, we’ll be
wasting precious build time, as we’ll be rebuilding the project for each package, then extracting the relevant artifacts
for the relevant configuration, while ignoring the others.

It is more efficient to build the logic, whereby the same build can be reused to create different packages:

This can be done by defining a build_id() method in the package recipe that will specify the logic.

settings = "os", "compiler", "arch", "build_type"

def build_id(self):
self.info_build.settings.build_type = "Any"

def package(self):
if self.settings.build_type == "Debug":

#package debug artifacts
else:

package release

Note that the build_id() method uses the self.info_build object to alter the build hash. If the method doesn’t
change it, the hash will match the package folder one. By setting build_type="Any", we are forcing that for both
the Debug and Release values of build_type, the hash will be the same (the particular string is mostly irrelevant, as
long as it is the same for both configurations). Note that the build hash sha3 will be different of both sha1 and sha2
package identifiers.

This does not imply that there will be strictly one build folder. There will be a build folder for every configuration
(architecture, compiler version, etc). So if we just have Debug/Release build types, and we’re producing N packages

78 Chapter 6. Creating Packages

Conan Documentation, Release 1.31.4

for N different configurations, we’ll have N/2 build folders, saving half of the build time.

Read more about this in build_id().

6.11 Package Creator Tools

Using Python (or just pure shell or bash) scripting, allows you to easily automate the whole package creation and testing
process, for many different configurations. For example you could put the following script in the package root folder.
Name it build.py:

import os, sys
import platform

def system(command):
retcode = os.system(command)
if retcode != 0:

raise Exception("Error while executing:\n\t %s" % command)

if __name__ == "__main__":
params = " ".join(sys.argv[1:])

if platform.system() == "Windows":
system('conan create . demo/testing -s compiler="Visual Studio" -s compiler.

→˓version=14 %s' % params)
system('conan create . demo/testing -s compiler="Visual Studio" -s compiler.

→˓version=12 %s' % params)
system('conan create . demo/testing -s compiler="gcc" -s compiler.version=4.8 %s

→˓' % params)
else:

pass

This is a pure Python script, not related to Conan, and should be run as such:

$ python build.py

We have developed another FOSS tool for package creators, the Conan Package Tools to help you generate multiple
binary packages from a package recipe. It offers a simple way to define the different configurations and to call conan
test. In addition to offering CI integration like Travis CI, Appveyor and Bamboo, for cloud-based automated binary
package creation, testing, and uploading.

This tool enables the creation of hundreds of binary packages in the cloud with a simple $ git push and supports:

• Easy generation of multiple Conan packages with different configurations.

• Automated/remote package generation in Travis/Appveyor server with distributed builds in CI jobs for big/slow
builds.

• Docker: Automatic generation of packages for several versions of gcc and clang in Linux, and in Travis CI.

• Automatic creation of OSX packages with apple-clang, and in Travis-CI.

• Visual Studio: Automatic configuration of the command line environment with detected settings.

It’s available in pypi:

$ pip install conan_package_tools

6.11. Package Creator Tools 79

Conan Documentation, Release 1.31.4

For more information, read the README.md in the Conan Package Tools repository.

80 Chapter 6. Creating Packages

https://github.com/conan-io/conan-package-tools

CHAPTER

SEVEN

UPLOADING PACKAGES

This section shows how to upload packages using remotes and specifies the different binary repositories you can use.

7.1 Remotes

In the previous sections, we built several packages on our computer that were stored in the local cache, typically under
~/.conan/data. Now, you might want to upload them to a Conan server for later use on another machine, project, or for
sharing purposes.

Conan packages can be uploaded to different remotes previously configured with a name and a URL. The remotes are
just servers used as binary repositories that store packages by reference.

There are several possibilities when uploading packages to a server:

For private development:

• Artifactory Community Edition for C/C++: Artifactory Community Edition (CE) for C/C++ is a completely
free Artifactory server that implements both Conan and generic repositories. It is the recommended server for
companies and teams wanting to host their own private repository. It has a web UI, advanced authentication and
permissions, very good performance and scalability, a REST API, and can host generic artifacts (tarballs, zips,
etc). Check Artifactory Community Edition for C/C++ for more information.

• Artifactory Pro: Artifactory is the binary repository manager for all major packaging formats. It is the recom-
mended remote type for enterprise and professional package management. Check the Artifactory documentation
for more information. For a comparison between Artifactory editions, check the Artifactory Comparison Matrix.

• Conan server: Simple, free and open source, MIT licensed server that comes bundled with the Conan client.
Check Running conan_server for more information.

For distribution:

• Bintray: Bintray is a cloud platform that gives you full control over how you publish, store, promote, and dis-
tribute software. You can create binary repositories in Bintray to share Conan packages or even create an or-
ganization. It is free for open source packages, and the recommended server to distribute to the C and C++
communities. Check Using Bintray for more information.

81

https://www.jfrog.com/confluence/display/JFROG/JFrog+Artifactory
https://www.jfrog.com/confluence/display/JFROG/Artifactory+Comparison+Matrix

Conan Documentation, Release 1.31.4

7.1.1 Conan-center

Conan-center (https://conan.io/center) is the main official repository for open source Conan packages. It is configured
as the default remote in the Conan client, but if you want to add it manually:

$ conan remote add conan-center https://conan.bintray.com

There are 2 different types of packages right now in Conan-center:

• Packages with full reference: Packages like pkg/version@user/channel. These packages binaries were created
by users in their own Bintray repositories, and included here. This flow of contributing packages to Conan-center
is deprecated now. These packages are not recommended and should be considered as legacy.

• Packages without “user/channel”: Can be used directly as pkg/version: These packages are created automati-
cally from the central Github repository conan-center-index, with an automated build service: C3I (Conan-Center
Continuous Integration). These packages are the recommended ones to use from ConanCenter.

To contribute packages to Conan-center, read the conan-center guide for more information.

7.1.2 Bintray Community Repositories

There are a number of popular community repositories that may be of interest for Conan users for retrieving open
source packages. These repositories are not affiliated with the Conan team.

Bincrafters

bincrafters : https://bintray.com/bincrafters/public-conan

The Bincrafters team builds binary software packages for the OSS community. This repository contains a
wide and growing variety of Conan packages from contributors.

Use the following command to add this remote to Conan:

$ conan remote add bincrafters https://api.bintray.com/conan/bincrafters/
→˓public-conan

Conan Community

Warning: The conan community repository is deprecated and no longer maintained. Packages in this repository
have been moved or are in the process of being added to conan-center-index and served in ConanCenter.

Note: If you are working in a team, you probably want to use the same remotes everywhere: developer machines,
CI. The conan config install command can automatically define the remotes in a Conan client, as well as other
resources as profiles. Have a look at the conan config install command.

82 Chapter 7. Uploading Packages

https://conan.io/center
https://github.com/conan-io/conan-center-index
https://bintray.com/bincrafters/public-conan
https://bincrafters.github.io
https://github.com/conan-io/conan-center-index
https://conan.io/center

Conan Documentation, Release 1.31.4

7.2 Uploading Packages to Remotes

First, check if the remote you want to upload to is already in your current remote list:

$ conan remote list

You can easily add any remote. To run a remote on your machine:

$ conan remote add my_local_server http://localhost:9300

You can search any remote in the same way you search your computer. Actually, many Conan commands can specify
a specific remote.

$ conan search -r=my_local_server

Now, upload the package recipe and all the packages to your remote. In this example, we are using our
my_local_server remote, but you could use any other.

$ conan upload hello/0.1@demo/testing --all -r=my_local_server

You might be prompted for a username and password. The default Conan server remote has a demo/demo account we
can use for testing.

The --all option will upload the package recipe plus all the binary packages. Omitting the --all option will upload
the package recipe only. For fine-grained control over which binary packages are upload to the server, consider using
the --packages/-p or --query/-q flags. --packages allows you to explicitly declare which package gets uploaded
to the server by specifying the package ID. --query accepts a query parameter, e.g. arch=armv8 and os=Linux,
and only uploads binary packages which match this query. When using the --query flag, ensure that your query
string is enclosed in quotes to make the parameter explicit to your shell. For example, conan upload <package>
-q 'arch=x86_64 and os=Linux' ... is appropriate use of the --query flag.

Now try again to read the information from the remote. We refer to it as remote, even if it is running on your local
machine, as it could be running on another server in your LAN:

$ conan search hello/0.1@demo/testing -r=my_local_server

Note: If package upload fails, you can try to upload it again. Conan keeps track of the upload integrity and will only
upload missing files.

Now we can check if we can download and use them in a project. For that purpose, we first have to remove the local
copies, otherwise the remote packages will not be downloaded. Since we have just uploaded them, they are identical
to the local ones.

$ conan remove "hello*"
$ conan search

Since we have our test setup from the previous section, we can just use it for our test. Go to your package folder and
run the tests again, now saying that we don’t want to build the sources again. We just want to check if we can download
the binaries and use them:

$ conan create . demo/testing --not-export --build=never

You will see that the test is built, but the packages are not. The binaries are simply downloaded from your local server.
You can check their existence on your local computer again with:

7.2. Uploading Packages to Remotes 83

Conan Documentation, Release 1.31.4

$ conan search

7.3 Using Bintray

In Bintray, you can create and manage as many free, personal Conan repositories as you like. On an OSS account, all
packages you upload are public, and anyone can use them by simply adding your repository to their Conan remotes.

To allow collaboration on open source projects, you can also create Organizations in Bintray and add members who
will be able to create and edit packages in your organization’s repositories.

7.3.1 Uploading to Bintray

Conan packages can be uploaded to Bintray under your own users or organizations. To create a repository follow these
steps:

1. Create a Bintray Open Source account

Browse to https://bintray.com/signup/oss and submit the form to create your account. Note that you don’t have
to use the same username that you use for your Conan account.

Warning: Please make sure you use the Open Source Software OSS account. Follow this link: https:
//bintray.com/signup/oss. Bintray provides free Conan repositories for OSS projects, so there is no need to
open a Pro or Enterprise Trial account.

2. Create a Conan repository

If you intend to collaborate with other users, you first need to create a Bintray organization, and create your
repository under the organization’s profile rather than under your own user profile.

In your user profile (or organization profile), click “Add new repository” and fill in the Create Repository form.
Make sure to select Conan as the Type.

3. Add your Bintray repository

Add a Conan remote in your Conan client pointing to your Bintray repository

$ conan remote add <REMOTE> <YOUR_BINTRAY_REPO_URL>

Use the Set Me Up button on your repository page on Bintray to get its URL.

4. Get your API key

Your API key is the “password” used to authenticate the Conan client to Bintray, NOT your Bintray password.
To get your API key, go to “Edit Your Profile” in your Bintray account and check the API Key section.

5. Set your user credentials

Add your Conan user with the API Key, your remote and your Bintray user name:

$ conan user -p <APIKEY> -r <REMOTE> <USERNAME>

Setting the remotes in this way will cause your Conan client to resolve packages and install them from repositories in
the following order of priority:

1. conan-center

84 Chapter 7. Uploading Packages

https://www.jfrog.com/confluence/display/BT/Bintray+Organizations
https://bintray.com/signup/oss
https://bintray.com/signup/oss
https://bintray.com/signup/oss
https://bintray.com/conan/conan-center

Conan Documentation, Release 1.31.4

2. Your own repository

If you want to have your own repository first, please use the --insert command line option when adding it:

$ conan remote add <your_remote> <your_url> --insert 0
$ conan remote list
<your remote>: <your_url> [Verify SSL: True]
conan-center: https://conan.bintray.com [Verify SSL: True]

Tip: Check the full reference of $ conan remote command.

7.3.2 Contributing Packages to Conan-center

Contribution of packages to Conan-center is done via pull requests to the Github repository in https://github.com/
conan-io/conan-center-index. The C3I (Conan-Center Continuous Integration) service will build binaries automati-
cally from those pull requests, and once merged, will upload them to Bintray Conan-center.

Read more about how to submit a pull request to Conan-center-index

Warning: The previous process to contribute to Conan-center, known as “inclusion requests” from Bintray is
deprecated. It is not longer needed to create your own packages and upload them to your Bintray personal repo.
Only the Github pull request will be needed.

7.4 Artifactory Community Edition for C/C++

Artifactory Community Edition (CE) for C/C++ is the recommended server for development and hosting private pack-
ages for a team or company. It is completely free, and it features a WebUI, advanced authentication and permissions,
great performance and scalability, a REST API, a generic CLI tool and generic repositories to host any kind of source
or binary artifact.

This is a very brief introduction to Artifactory CE. For the complete Artifactory CE documentation, visit Artifactory
docs.

7.4.1 Running Artifactory CE

There are several ways to download and run Artifactory CE. The simplest one might be to download and unzip the
designated zip file, though other installers, including also installing from a Docker image. When the file is unzipped,
launch Artifactory by double clicking the .bat or .sh script in the bin subfolder, depending on the OS. Java 8 update 45
or later runtime is required. If you don’t have it, please install it first (newer Java versions preferred).

7.4. Artifactory Community Edition for C/C++ 85

https://github.com/conan-io/conan-center-index
https://github.com/conan-io/conan-center-index
https://github.com/conan-io/conan-center-index/wiki
https://www.jfrog.com/confluence/
https://www.jfrog.com/confluence/

Conan Documentation, Release 1.31.4

Once Artifactory has started, navigate to the default URL http://localhost:8081, where the Web UI should be running.
The default user and password are admin:password.

7.4.2 Creating and Using a Conan Repo

Navigate to Admin -> Repositories -> Local, then click on the “New” button. A dialog for selecting the package type
will appear, select Conan, then type a “Repository Key” (the name of the repository you are about to create), for example
“conan-local”. You can create multiple repositories to serve different flows, teams, or projects.

Now, it is necessary to configure the client. Go to Artifacts, and click on the created repository. The “Set Me Up”
button in the top right corner provides instructions on how to configure the remote in the Conan client:

$ conan remote add artifactory http://localhost:8081/artifactory/api/conan/conan-local

From now, you can upload, download, search, etc. the remote repos similarly to the other repo types.

$ conan upload "*" --all -r=artifactory
$ conan search "*" -r=artifactory

7.4.3 Migrating from Other Servers

If you are already running another server, for example, the open source conan_server, it is easy to migrate your packages,
using the Conan client to download the packages and re-upload them to the new server.

This Python script might be helpful, given that it already defines the respective local and artifactory remotes:

import os
import subprocess

def run(cmd):
ret = os.system(cmd)
if ret != 0:

raise Exception("Command failed: %s" % cmd)
(continues on next page)

86 Chapter 7. Uploading Packages

Conan Documentation, Release 1.31.4

(continued from previous page)

Assuming local = conan_server and artifactory remotes
output = subprocess.check_output("conan search -r=local --raw")
packages = output.splitlines()

for package in packages:
print("Downloading %s" % package)
run("conan download %s -r=local" % package)

run("conan upload \"*\" --all --confirm -r=artifactory")

7.5 Running conan_server

The conan_server is a free and open source server that implements Conan remote repositories. It is a very simple appli-
cation, bundled with the regular Conan client installation. In most cases, it is recommended to use the free Artifactory
Community Edition for C/C++ server, check Artifactory Community Edition for C/C++ for more information.

Running the simple open source conan_server that comes with the Conan installers (or pip packages) is simple. Just
open a terminal and type:

$ conan_server

Note: On Windows, you may experience problems with the server if you run it under bash/msys. It is better to launch
it in a regular cmd window.

This server is mainly used for testing (though it might work fine for small teams). If you need a more stable, responsive
and robust server, you should run it from source:

7.5.1 Running from Source (linux)

The Conan installer includes a simple executable conan_server for a server quick start. But you can use the conan
server through the WSGI application, which means that you can use gunicorn to run the app, for example.

First, clone the Conan repository from source and install the requirements:

$ git clone https://github.com/conan-io/conan.git
$ cd conan
$ git checkout master
$ pip install -r conans/requirements.txt
$ pip install -r conans/requirements_server.txt
$ pip install gunicorn

Run the server application with gunicorn. In the following example, we run the server on port 9300 with four workers
and a timeout of 5 minutes (300 seconds, for large uploads/downloads, you can also decrease it if you don’t have very
large binaries):

$ gunicorn -b 0.0.0.0:9300 -w 4 -t 300 conans.server.server_launcher:app

7.5. Running conan_server 87

Conan Documentation, Release 1.31.4

Note: Please note the timeout of -t 300 seconds, resulting in a 5 minute parameter. If your transfers are very large
or on a slow network, you might need to increase that value.

You can also bind to an IPv6 address or specify both IPv4 and IPv6 addresses:

$ gunicorn -b 0.0.0.0:9300 -b [::1]:9300 -w 4 -t 300 conans.server.server_launcher:app

7.5.2 Server Configuration

Your server configuration is saved under ~/.conan_server/server.conf. You can change values there, prior to
launching the server. Note that the server is not reloaded when the values are changed. You have to stop and restart it
manually.

The server configuration file is by default:

[server]
jwt_secret: MnpuzsExftskYGOMgaTYDKfw
jwt_expire_minutes: 120

ssl_enabled: False
port: 9300
public_port:
host_name: localhost

store_adapter: disk
authorize_timeout: 1800

Just for disk storage adapter
disk_storage_path: ~/.conan_server/data
disk_authorize_timeout: 1800

updown_secret: NyiSWNWnwumTVpGpoANuyyhR

[write_permissions]
"opencv/2.3.4@lasote/testing": default_user,default_user2

[read_permissions]
opencv/1.2.3@lasote/testing: default_user default_user2
By default all users can read all blocks
/@*/*: *

[users]
demo: demo

88 Chapter 7. Uploading Packages

Conan Documentation, Release 1.31.4

Server Parameters

• port: Port where conan_server will run.

• The client server authorization is done with JWT. jwt_secret is a random string used to generate authentication
tokens. You can change it safely anytime (in fact it is a good practice). The change will just force users to log in
again. jwt_expire_minutes is the amount of time that users remain logged-in within the client without having
to introduce their credentials again.

Other parameters (not recommended from Conan 1.1, but necessary for previous versions):

• host_name: If you set host_name, you must use the machine’s IP where you are running your server (or domain
name), something like host_name: 192.168.1.100. This IP (or domain name) has to be visible (and resolved)
by the Conan client, so take it into account if your server has multiple network interfaces.

• public_port: Might be needed when running virtualized, Docker or any other kind of port redirection. File
uploads/downloads are served with their own URLs, generated by the system, so the file storage backend is
independent. Those URLs need the public port they have to communicate from the outside. If you leave it blank,
the port value is used.

Example: Use conan_server in a Docker container that internally runs in the 9300 port but exposes the 9999
port (where the clients will connect to):

docker run ... -p9300:9999 ... # Check Docker docs for that

server.conf

[server]

ssl_enabled: False
port: 9300
public_port: 9999
host_name: localhost

• ssl_enabled Conan doesn’t handle the SSL traffic by itself, but you can use a proxy like Nginx to redirect the
SSL traffic to your Conan server. If your Conan clients are connecting with “https”, set ssl_enabled to True. This
way the conan_server will generate the upload/download urls with “https” instead of “http”.

Note: Important: The Conan client, by default, will validate the server SSL certificates and won’t connect if it’s
invalid. If you have self signed certificates you have two options:

1. Use the conan remote command to disable the SSL certificate checks. E.g., conan remote add/update myremote
https://somedir False

2. Append the server .crt file contents to ~/.conan/cacert.pem file.

To learn more, see How to manage SSL (TLS) certificates.

Conan has implemented an extensible storage backend based on the abstract class StorageAdapter. Currently, the
server only supports storage on disk. The folder in which the uploaded packages are stored (i.e., the folder you would
want to backup) is defined in the disk_storage_path.

The storage backend might use a different channel, and uploads/downloads are authorized up to a maximum of
authorize_timeout seconds. The value should sufficient so that large downloads/uploads are not rejected, but not
too big to prevent hanging up the file transfers. The value disk_authorize_timeout is not currently used. File trans-
fers are authorized with their own tokens, generated with the secret updown_secret. This value should be different
from the above jwt_secret.

7.5. Running conan_server 89

Conan Documentation, Release 1.31.4

Running the Conan Server with SSL using Nginx

server.conf

[server]
port: 9300

nginx conf file

server {
listen 443;
server_name myservername.mydomain.com;

location / {
proxy_pass http://0.0.0.0:9300;

}
ssl on;
ssl_certificate /etc/nginx/ssl/server.crt;
ssl_certificate_key /etc/nginx/ssl/server.key;

}

remote configuration in Conan client

$ conan remote add myremote https://myservername.mydomain.com

Running the Conan Server with SSL using Nginx in a Subdirectory

server.conf

[server]
port: 9300

nginx conf file

server {

listen 443;
ssl on;
ssl_certificate /usr/local/etc/nginx/ssl/server.crt;
ssl_certificate_key /usr/local/etc/nginx/ssl/server.key;
server_name myservername.mydomain.com;

location /subdir/ {
proxy_pass http://0.0.0.0:9300/;

}
}

remote configuration in Conan client

$ conan remote add myremote https://myservername.mydomain.com/subdir/

90 Chapter 7. Uploading Packages

Conan Documentation, Release 1.31.4

Running Conan Server using Apache

You need to install mod_wsgi. If you want to use Conan installed from pip, the conf file should be similar
to the following example:

Apache conf file (e.g., /etc/apache2/sites-available/0_conan.conf)

<VirtualHost *:80>
WSGIScriptAlias / /usr/local/lib/python2.7/dist-packages/conans/server/

→˓server_launcher.py
WSGICallableObject app
WSGIPassAuthorization On

<Directory /usr/local/lib/python2.7/dist-packages/conans>
Require all granted

</Directory>
</VirtualHost>

If you want to use Conan checked out from source in, for example in /srv/conan, the conf file should be as
follows:

Apache conf file (e.g., /etc/apache2/sites-available/0_conan.conf)

<VirtualHost *:80>
WSGIScriptAlias / /srv/conan/conans/server/server_launcher.py
WSGICallableObject app
WSGIPassAuthorization On

<Directory /srv/conan/conans>
Require all granted

</Directory>
</VirtualHost>

The directive WSGIPassAuthorization On is needed to pass the HTTP basic authentication to Conan.

Also take into account that the server config files are located in the home of the configured Apache user,
e.g., var/www/.conan_server, so remember to use that directory to configure your Conan server.

Permissions Parameters

By default, the server configuration when set to Read can be done anonymous, but uploading requires you to be regis-
tered users. Users can easily be registered in the [users] section, by defining a pair of login: password for each
one. Plain text passwords are used at the moment, but as the server is on-premises (behind firewall), you just need to
trust your sysadmin :)

If you want to restrict read/write access to specific packages, configure the [read_permissions] and
[write_permissions] sections. These sections specify the sequence of patterns and authorized users, in the form:

use a comma-separated, no-spaces list of users
package/version@user/channel: allowed_user1,allowed_user2

E.g.:

/@*/*: * # allow all users to all packages
PackageA/*@*/*: john,peter # allow john and peter access to any PackageA
/@project/*: john # Allow john to access any package from the "project" user

7.5. Running conan_server 91

Conan Documentation, Release 1.31.4

The rules are evaluated in order. If the left side of the pattern matches, the rule is applied and it will not continue
searching for matches.

Authentication

By default, Conan provides a simple user: password users list in the server.conf file.

There is also a plugin mechanism for setting other authentication methods. The process to install any of them is a
simple two-step process:

1. Copy the authenticator source file into the .conan_server/plugins/authenticator folder.

2. Add custom_authenticator: authenticator_name to the server.conf [server] section.

This is a list of available authenticators, visit their URLs to retrieve them, but also to report issues and collaborate:

• htpasswd: Use your server Apache htpasswd file to authenticate users. Get it: https://github.com/d-schiffner/
conan-htpasswd

• LDAP: Use your LDAP server to authenticate users. Get it: https://github.com/uilianries/
conan-ldap-authentication

Create Your Own Custom Authenticator

If you want to create your own Authenticator, create a Python module in ~/.conan_server/plugins/
authenticator/my_authenticator.py

Example:

def get_class():
return MyAuthenticator()

class MyAuthenticator(object):
def valid_user(self, username, plain_password):

return username == "foo" and plain_password == "bar"

The module has to implement:

• A factory function get_class() that returns a class with a valid_user() method instance.

• The class containing the valid_user() that has to return True if the user and password are valid or False
otherwise.

Got any doubts? Please check out our FAQ section or .

92 Chapter 7. Uploading Packages

https://github.com/d-schiffner/conan-htpasswd
https://github.com/d-schiffner/conan-htpasswd
https://github.com/uilianries/conan-ldap-authentication
https://github.com/uilianries/conan-ldap-authentication

CHAPTER

EIGHT

DEVELOPING PACKAGES

This section shows how to work on packages with source code continuously being modified.

8.1 Package development flow

In the previous examples, we used the conan create command to create a package of our library. Every time it is
run, Conan performs the following costly operations:

1. Copy the sources to a new and clean build folder.

2. Build the entire library from scratch.

3. Package the library once it is built.

4. Build the test_package example and test if it works.

But sometimes, especially with big libraries, while we are developing the recipe, we cannot afford to perform these
operations every time.

The following section describes the local development flow, based on the Bincrafters community blog.

The local workflow encourages users to perform trial-and-error in a local sub-directory relative to their recipe, much
like how developers typically test building their projects with other build tools. The strategy is to test the conanfile.py
methods individually during this phase.

We will use this conan flow example to follow the steps in the order below.

8.1.1 conan source

You will generally want to start off with the conan source command. The strategy here is that you’re testing your
source method in isolation, and downloading the files to a temporary sub-folder relative to the conanfile.py. This just
makes it easier to get to the sources and validate them.

This method outputs the source files into the source-folder.

Input folders Output folders
– source-folder

93

https://bincrafters.github.io
https://github.com/memsharded/example_conan_flow

Conan Documentation, Release 1.31.4

$ cd example_conan_flow
$ conan source . --source-folder=tmp/source

PROJECT: Configuring sources in C:\Users\conan\example_conan_flow\tmp\source
Cloning into 'hello'...
...

Once you’ve got your source method right and it contains the files you expect, you can move on to testing the various
attributes and methods related to downloading dependencies.

8.1.2 conan install

Conan has multiple methods and attributes which relate to dependencies (all the ones with the word “require” in the
name). The command conan install activates all them.

Input folders Output folders
– install-folder

$ conan install . --install-folder=tmp/build [--profile XXXX]

PROJECT: Installing C:\Users\conan\example_conan_flow\conanfile.py
Requirements
Packages
...

This also generates the conaninfo.txt and conanbuildinfo.xyz files (extensions depends on the generator you’ve used) in
the temp folder (install-folder), which will be needed for the next step. Once you’ve got this command working
with no errors, you can move on to testing the build() method.

8.1.3 conan build

The build method takes a path to a folder that has sources and also to the install folder to get the information of the
settings and dependencies. It uses a path to a folder where it will perform the build. In this case, as we are including
the conanbuildinfo.cmake file, we will use the folder from the install step.

Input folders Output folders
source-folder
install-folder

build-folder

$ conan build . --source-folder=tmp/source --build-folder=tmp/build

Project: Running build()
...
Build succeeded.

0 Warning(s)
0 Error(s)

Time Elapsed 00:00:03.34

94 Chapter 8. Developing packages

Conan Documentation, Release 1.31.4

Here we can avoid the repetition of --install-folder=tmp/build and it will be defaulted to the --build-folder
value.

This is pretty straightforward, but it does add a very helpful new shortcut for people who are packaging their own library.
Now, developers can make changes in their normal source directory and just pass that path as the --source-folder.

8.1.4 conan package

Just as it sounds, this command now simply runs the package() method of a recipe. It needs all the information of the
other folders in order to collect the needed information for the package: header files from source folder, settings and
dependency information from the install folder and built artifacts from the build folder.

Input folders Output folders
source-folder
install-folder
build-folder

package-folder

$ conan package . --source-folder=tmp/source --build-folder=tmp/build --package-
→˓folder=tmp/package

PROJECT: Generating the package
PROJECT: Package folder C:\Users\conan\example_conan_flow\tmp\package
PROJECT: Calling package()
PROJECT package(): Copied 1 '.h' files: hello.h
PROJECT package(): Copied 2 '.lib' files: greet.lib, hello.lib
PROJECT: Package 'package' created

8.1.5 conan export-pkg

When you have checked that the package is done correctly, you can generate the package in the local cache. Note that
the package is generated again to make sure this step is always reproducible.

This parameters takes the same parameters as package().

Input folders Output folders
source-folder
install-folder
build-folder
package-folder

–

There are 2 modes of operation:

• Using source-folder and build-folder will use the package() method to extract the artifacts from those
folders and create the package, directly in the Conan local cache. Strictly speaking, it doesn’t require executing
a conan package before, as it packages directly from these source and build folders, though conan package
is still recommended in the dev-flow to debug the package() method.

• Using the package-folder argument (incompatible with the above 2), will not use the package() method,
it will create an exact copy of the provided folder. It assumes the package has already been created by a previ-
ous conan package command or with a conan build command with a build() method running a cmake.
install().

8.1. Package development flow 95

Conan Documentation, Release 1.31.4

$ conan export-pkg . user/channel --source-folder=tmp/source --build-folder=tmp/build --
→˓profile=myprofile

Packaging to 6cc50b139b9c3d27b3e9042d5f5372d327b3a9f7
hello/1.1@user/channel: Generating the package
hello/1.1@user/channel: Package folder C:\Users\conan\.conan\data\hello\1.1\user\channel\
→˓package\6cc50b139b9c3d27b3e9042d5f5372d327b3a9f7
hello/1.1@user/channel: Calling package()
hello/1.1@user/channel package(): Copied 2 '.lib' files: greet.lib, hello.lib
hello/1.1@user/channel package(): Copied 2 '.lib' files: greet.lib, hello.lib
hello/1.1@user/channel: Package '6cc50b139b9c3d27b3e9042d5f5372d327b3a9f7' created

8.1.6 conan test

The final step to test the package for consumers is the test command. This step is quite straight-forward:

$ conan test test_package hello/1.1@user/channel

hello/1.1@user/channel (test package): Installing C:\Users\conan\repos\example_conan_
→˓flow\test_package\conanfile.py
Requirements

hello/1.1@user/channel from local
Packages

hello/1.1@user/channel:6cc50b139b9c3d27b3e9042d5f5372d327b3a9f7

hello/1.1@user/channel: Already installed!
hello/1.1@user/channel (test package): Generator cmake created conanbuildinfo.cmake
hello/1.1@user/channel (test package): Generator txt created conanbuildinfo.txt
hello/1.1@user/channel (test package): Generated conaninfo.txt
hello/1.1@user/channel (test package): Running build()
...

There is often a need to repeatedly re-run the test to check the package is well generated for consumers.

As a summary, you could use the default folders and the flow would be as simple as:

$ git clone https://github.com/conan-io/examples.git
$ cd features/package_development_flow
$ conan source .
$ conan install . -pr=default
$ conan build .
$ conan package .
So far, this is local. Now put the local binaries in cache
$ conan export-pkg . hello/1.1@user/testing -pr=default
And test it, to check it is working in the local cache
$ conan test test_package hello/1.1@user/testing
...
hello/1.1@user/testing (test package): Running test()
Hello World Release!

96 Chapter 8. Developing packages

Conan Documentation, Release 1.31.4

8.1.7 conan create

Now we know we have all the steps of a recipe working. Thus, now is an appropriate time to try to run the recipe all
the way through, and put it completely in the local cache.

The usual command for this is conan create and it basically performs the previous commands with conan test for
the test_package folder:

$ conan create . user/channel

Even with this command, the package creator can iterate over the local cache if something does not work. This could
be done with --keep-source and --keep-build flags.

If you see in the traces that the source() method has been properly executed but the package creation finally failed,
you can skip the source() method the next time issue conan create using --keep-source:

$ conan create . user/channel --keep-source

hello/1.1@user/channel: A new conanfile.py version was exported
hello/1.1@user/channel: Folder: C:\Users\conan\.conan\data\hello\1.1\user\channel\export
hello/1.1@user/channel (test package): Installing C:\Users\conan\repos\features\package_
→˓development_flow\test_package\conanfile.py
Requirements

hello/1.1@user/channel from local
Packages

hello/1.1@user/channel:6cc50b139b9c3d27b3e9042d5f5372d327b3a9f7

hello/1.1@user/channel: WARN: Forced build from source
hello/1.1@user/channel: Building your package in C:\Users\conan\.conan\data\hello\1.1\
→˓user\channel\build\6cc50b139b9c3d27b3e9042d5f5372d327b3a9f7
hello/1.1@user/channel: Configuring sources in C:\Users\conan\.conan\data\hello\1.1\user\
→˓channel\source
Cloning into 'hello'...
remote: Counting objects: 17, done.
remote: Total 17 (delta 0), reused 0 (delta 0), pack-reused 17
Unpacking objects: 100% (17/17), done.
Switched to a new branch 'static_shared'
Branch 'static_shared' set up to track remote branch 'static_shared' from 'origin'.
hello/1.1@user/channel: Copying sources to build folder
hello/1.1@user/channel: Generator cmake created conanbuildinfo.cmake
hello/1.1@user/channel: Calling build()
...

If you see that the library is also built correctly, you can also skip the build() step with the --keep-build flag:

$ conan create . user/channel --keep-build

8.1. Package development flow 97

Conan Documentation, Release 1.31.4

8.2 Packages in editable mode

Warning: This is an experimental feature subject to breaking changes in future releases.

When working in big projects with several functionalities interconnected it is recommended to avoid the one-and-only
huge project approach in favor of several libraries, each one specialized in a set of common tasks, even maintained by
dedicated teams. This approach helps to isolate and reusing code helps with compiling times and reduces the likelihood
of including files that not correspond to the API of the required library.

Nevertheless, in some case, it is useful to work in several libraries at the same time and see how the changes in one of
them are propagated to the others. Following the local workflow an user can execute the commands conan source,
conan install, conan build and conan package, but in order to get the changes ready for a consumer library,
it is needed the conan create that will actually trigger a build to generate the binaries in the cache or to run conan
export-pkg to copy locally built artifacts into the conan cache and make them available to consumers.

With the editable packages, you can tell Conan where to find the headers and the artifacts ready for consumption in
your local working directory. There is no need to package.

Let’s see this feature over an practical example; the code can be found in the conan examples repository:

$ git clone https://github.com/conan-io/examples.git

In the project examples/features/editable/cmake a developer is creating the app hello but at the same time they want
to work on say/0.1@user/channel library which is tightly coupled to the app.

The package say/0.1@user/channel is already working, the developer has the sources in a local folder and they are
using whatever method to build and develop locally and can perform a conan create . say/0.1@user/channel
to create the package.

Also, there is a conanfile.txt (or a more complex recipe) for the application hello that has say/0.1@user/channel
among its requirements. When building this application, the resources of say are used from the Conan local cache.

8.2.1 Put a package in editable mode

To avoid creating the package say/0.1@user/channel in the cache for every change, we are going to put that package
in editable mode, creating a link from the reference in the cache to the local working directory:

$ conan editable add examples/features/editable/cmake/say say/0.1@user/channel
you could do "cd <examples/features/editable/cmake/say> && conan editable add . say/0.
→˓1@user/channel"

That is it. Now, every usage of say/0.1@user/channel, by any other Conan package or project, will be redirected
to the examples/features/editable/cmake/say user folder instead of using the package from the conan cache.

The Conan package recipes define a package “layout” in their package_info() methods. The default one, if nothing
is specified is equivalent to:

def package_info(self):
default behavior, doesn't need to be explicitly defined in recipes
self.cpp_info.includedirs = ["include"]
self.cpp_info.libdirs = ["lib"]
self.cpp_info.bindirs = ["bin"]
self.cpp_info.resdirs = ["res"]

98 Chapter 8. Developing packages

Conan Documentation, Release 1.31.4

That means that conan will use the path examples/features/editable/cmake/say/include for locating the
headers of the say package, the examples/features/editable/cmake/say/lib to locate the libraries of the pack-
age, and so on.

That might not be very useful, as typically while editing the source code and doing incremental builds, the development
layout is different from that final “package” layout. While it is possible to run a conan package local command to
execute the packaging in the user folder and it will achieve that final layout, that is not very elegant as it should be run
after every modification.

In order to populate cpp_info.libs, the usage of tools.collect_libs() is discouraged as it won’t find any library
when the package is in editable mode and it hasn’t been compiled yet. This empty list will be written to files by
generators and it won’t be updated after working on the editable package.

8.2.2 Editable packages layouts

The custom layout of a package while it is in editable mode can be defined in different ways:

Recipe defined layout

A recipe can define a custom layout when it is not living in the local cache, in its package_info() method, something
like:

from conans import ConanFile

class Pkg(ConanFile):
settings = "build_type"
def package_info(self):

if not self.in_local_cache:
d = "include_%s" % self.settings.build_type
self.cpp_info.includedirs = [d.lower()]

That will map the include directories to examples/features/editable/cmake/say/include_debug when
working with build_type=Debug conan setting, and to examples/features/editable/cmake/say/
include_release if build_type=Release. In the same way, other directories (libdirs, bindirs, etc) can be
customized, with any logic, different for different OS, build systems, etc.

from conans import ConanFile

class Pkg(ConanFile):
settings = "os", "compiler", "arch", "build_type"
def package_info(self):

if not self.in_local_cache:
if self.settings.compiler == "Visual Studio":

NOTE: Use the real layout used in your VS projects, this is just an␣
→˓example

self.cpp_info.libdirs = ["%s_%s" % (self.settings.build_type, self.
→˓settings.arch)]

That will define the libraries directories to examples/features/editable/cmake/say/Release_x86_64, for ex-
ample. That is only an example, the real layout used by VS would be different.

8.2. Packages in editable mode 99

Conan Documentation, Release 1.31.4

Layout files

Instead of changing the recipe file to match the local layout, it’s possible to define the layout in a separate file. This is
especially useful if you have a large number of libraries with the same structure so you can write it once and use it for
several packages.

Layout files are ini files, but before parsing them Conan uses the Jinja2 template engine passing the settings, options
and current reference objects, so you can add logic to the files:

[build_folder]
build/{{settings.build_type}}

[source_folder]
src

[includedirs]
src

[libdirs]
build/{{settings.build_type}}/lib

You can have a look at the Jinja2 documentation to know more about its powerful syntax.

This file can use the package reference to customize logic for a specific package:

[say/0.1@user/channel:build_folder]
{% if settings.compiler == "Visual Studio" %}
build
{% else %}
build/{{settings.build_type}}
{% endif %}

[build_folder]
build/{{settings.arch}}/{{settings.build_type}}

[source_folder]
src

[includedirs]
src

[libdirs]
build/{{settings.build_type}}/lib

[bindirs]
build/{{settings.build_type}}/bin

This layout will define the src include directory for the say and for other packages in editable mode. Also, the
build_folder has a condition only for say/0.1@user/channel package. It will use a specific path, according the
compiler.

In every case the directories that will be affected by the editable mode will be includedirs, libdirs, bindirs,
resdirs, srcdirs and builddirs, all of them declared in the cpp_info dictionary; the rest of values in that dictionary
won’t be modified. So cflags, defines, library names in libs defined in package_info() will still be used.

By default all folders paths are relative to the directory where the conanfile.py of the editable package is (which is the

100 Chapter 8. Developing packages

https://palletsprojects.com/p/jinja/

Conan Documentation, Release 1.31.4

path used to create the link), though they also allow absolute paths.

Specifying layout files

Layout files are specified in the conan editable add command, as an extra argument:

$ cd examples/features/editable/cmake/say
$ conan editable add . say/0.1@user/channel --layout=layout_vs

That layout_vs file will be first looked for relative to the current directory (the path can be absolute too). If it is found,
that will be used. It is possible to add those layouts in the source repositories, so they are always easy to find after a
clone.

If the specified layout is not found relative to the current directory, it will be looked for in the conan cache, in the
.conan/layouts folder. This is very convenient to have a single definition of layouts that can be shared with the team
and installed with conan config install.

If no argument is specified, the conan editable add command will try to use a .conan/layouts/default layout from
the local cache.

You can switch layout files by passing a different argument to new calls to conan editable add.

Evaluation order and priority

It is important to understand the evaluation order and priorities regarding the definitions of layouts:

• The first thing that will always execute is the recipe package_info(). That will define the flags, definitions, as
well as some values for the layout folders: includedirs, libdirs, etc.

• If a layout file is defined, either explicitly or using the implicit .conan/layouts/default, conan will look for
matches, based on its package reference.

• If a match is found, either because of global definitions like [includedirs] or because a match like [pkg/
version@user/channel:includedirs], then the layout folders (includedirs, libdirs, resdirs, builddirs,
bindirs), will be invalidated and replaced by the ones defined in the file.

• If a specific match like [pkg/version@user/channel:includedirs] is found, it is expected to have defined
also its specific [pkg/version@user/channel:libdirs], etc. The global layout folders specified without
package reference won’t be applied once a match is found.

• It no match is found, the original values for the layout folders defined in package_info() will be respected.

• The layout file to be used is defined at conan editable add time. If a .conan/layouts/default file is
added after the conan editable add, it will not be used at all.

8.2.3 Using a package in editable mode

Once a reference is in editable mode it is used system wide (for every set of settings and options) by Conan
(by every Conan client that uses the same cache), no changes are required in the consumers. Every conan install
command that requires our editable say/0.1@user/channel package will use the paths to the local directory and the
changes made to this project will be taken into account by the packages using its headers or linking against it.

To summarize, consumption of packages in editable mode is transparent to their consumers. To try that it is working,
the following flow should work:

• Get sources of say/0.1@user/channel: git/svn clone... && cd folder

• Put package in editable mode: conan editable add . say/0.1@user/channel --layout=layout_gcc

8.2. Packages in editable mode 101

Conan Documentation, Release 1.31.4

• Work with it and build using any tool. Check that your local layout is reflected in the layout file layout_gcc
specified in the previous step.

• Go to the consumer project: hello

• Build it using any local flow: conan install and build

• Go back to say/0.1@user/channel source folder, do some changes, and just build. No Conan commands
necessary

• Go to the consumer project: hello and rebuild. It should get the changes from the say library.

In that way, it is possible to be developing both the say library and the hello application, at the same time, without
any Conan command.

Note: When a package is in editable mode, most of the commands will not work. It is not possible to conan upload,
conan export or conan create when a package is in editable mode.

8.2.4 Revert the editable mode

In order to revert the editable mode just remove the link using:

$ conan editable remove say/0.1@user/channel

It will remove the link (the local directory won’t be affected) and all the packages consuming this requirement will get
it from the cache again.

Warning: Packages that are built consuming an editable package in its graph upstreams can generate binaries and
packages incompatible with the released version of the editable package. Avoid uploading these packages without
re-creating them with the in-cache version of all the libraries.

8.3 Workspaces

Warning: This is an experimental feature. This is actually a preview of the feature, with the main goal of receiving
feedbacks and improving it. Consider the file formats, commands and flows to be unstable and subject to changes
in the next releases.

Sometimes, it is necessary to work simultaneously on more than one package. In theory, each package should be
a “work unit”, and developers should be able to work on them in isolation. But sometimes, some changes require
modifications in more than one package at the same time. The local development flow can help, but it still requires
using export-pkg to put the artifacts in the local cache, where other packages under development will consume them.

The Conan workspaces allow to have more than one package in user folders, and have them directly use other packages
from user folders without needing to put them in the local cache. Furthermore, they enable incremental builds on large
projects containing multiple packages.

Lets introduce them with a practical example; the code can be found in the conan examples repository:

$ git clone https://github.com/conan-io/examples.git
$ cd features/workspace/cmake

102 Chapter 8. Developing packages

Conan Documentation, Release 1.31.4

Note that this folder contains two files conanws_gcc.yml and conanws_vs.yml, for gcc (Makefiles, single-configuration
build environments) and for Visual Studio (MSBuild, multi-configuration build environment), respectively.

8.3.1 Conan workspace definition

Workspaces are defined in a yaml file, with any user defined name. Its structure is:

editables:
say/0.1@user/testing:

path: say
hello/0.1@user/testing:

path: hello
chat/0.1@user/testing:

path: chat
layout: layout_gcc
workspace_generator: cmake
root: chat/0.1@user/testing

The first section editables defines the mapping between package references and relative paths. Each one is equivalent
to a conan editable add command (Do NOT do this – it is not necessary. It will be automatically done later. Just to
understand the behavior):

$ conan editable add say say/0.1@user/testing --layout=layout_gcc
$ conan editable add hello hello/0.1@user/testing --layout=layout_gcc
$ conan editable add chat chat/0.1@user/testing --layout=layout_gcc

The main difference is that this Editable state is only temporary for this workspace. It doesn’t affect other projects or
packages, which can still consume these say, hello, chat packages from the local cache.

Note that the layout: layout_gcc declaration in the workspace affects all the packages. It is also possible to define
a different layout per package, as:

editables:
say/0.1@user/testing:

path: say
layout: custom_say_layout

Layout files are explained in Editable layout files and in the Packages in editable mode sections.

The workspace_generator defines the file that will be generated for the top project. The only supported value so far
is cmake and it will generate a conanworkspace.cmake file that looks like:

set(PACKAGE_say_SRC "<path>/examples/workspace/cmake/say/src")
set(PACKAGE_say_BUILD "<path>/examples/workspace/cmake/say/build/Debug")
set(PACKAGE_hello_SRC "<path>/examples/workspace/cmake/hello/src")
set(PACKAGE_hello_BUILD "<path>/examples/workspace/cmake/hello/build/Debug")
set(PACKAGE_chat_SRC "<path>/examples/workspace/cmake/chat/src")
set(PACKAGE_chat_BUILD "<path>/examples/workspace/cmake/chat/build/Debug")

macro(conan_workspace_subdirectories)
add_subdirectory(${PACKAGE_say_SRC} ${PACKAGE_say_BUILD})
add_subdirectory(${PACKAGE_hello_SRC} ${PACKAGE_hello_BUILD})
add_subdirectory(${PACKAGE_chat_SRC} ${PACKAGE_chat_BUILD})

endmacro()

8.3. Workspaces 103

Conan Documentation, Release 1.31.4

This file can be included in your user-defined CMakeLists.txt (this file is not generated). Here you can see the CMake-
Lists.txt used in this project:

cmake_minimum_required(VERSION 3.0)

project(WorkspaceProject)

include(${CMAKE_BINARY_DIR}/conanworkspace.cmake)
conan_workspace_subdirectories()

The root: chat/0.1@user/testing defines which is the consumer node of the graph, typically some kind of
executable. You can provide a comma separated list of references, as a string, or a yaml list (abbreviated or full as
yaml items). All the root nodes will be in the same dependency graph, leading to conflicts if they depend on different
versions of the same library, as in any other Conan command.

editables:
say/0.1@user/testing:

path: say
hello/0.1@user/testing:

path: hello
chat/0.1@user/testing:

path: chat

root: chat/0.1@user/testing, say/0.1@user/testing
or
root: ["helloa/0.1@lasote/stable", "hellob/0.1@lasote/stable"]
or
root:

- helloa/0.1@lasote/stable
- hellob/0.1@lasote/stable

8.3.2 Single configuration build environments

There are some build systems, like Make, that require the developer to manage different configurations in different
build folders, and switch between folders to change configuration. The file described above is conan_gcc.yml file,
which defines a Conan workspace that works for a CMake based project for MinGW/Unix Makefiles gcc environments
(working for apple-clang or clang would be very similar, if not identical).

Lets use it to install this workspace:

$ mkdir build_release && cd build_release
$ conan workspace install ../conanws_gcc.yml --profile=my_profile

Here we assume that you have a my_profile profile defined which would use a single-configuration build system (like
Makefiles). The example is tested with gcc in Linux, but working with apple-clang with Makefiles would be the same).
You should see something like:

Configuration:
[settings]
...
build_type=Release
compiler=gcc
compiler.libcxx=libstdc++

(continues on next page)

104 Chapter 8. Developing packages

Conan Documentation, Release 1.31.4

(continued from previous page)

compiler.version=4.9
...

Requirements
chat/0.1@user/testing from user folder - Editable
hello/0.1@user/testing from user folder - Editable
say/0.1@user/testing from user folder - Editable

Packages
chat/0.1@user/testing:df2c4f4725219597d44b7eab2ea5c8680abd57f9 - Editable
hello/0.1@user/testing:b0e473ad8697d6069797b921517d628bba8b5901 - Editable
say/0.1@user/testing:80faec7955dcba29246085ff8d64a765db3b414f - Editable

say/0.1@user/testing: Generator cmake created conanbuildinfo.cmake
...
hello/0.1@user/testing: Generator cmake created conanbuildinfo.cmake
...
chat/0.1@user/testing: Generator cmake created conanbuildinfo.cmake
...

These conanbuildinfo.cmake files have been created in each package build/Release folder, as defined by the layout_gcc
file:

This helps to define the location of CMakeLists.txt within package
[source_folder]
src

This defines where the conanbuildinfo.cmake will be written to
[build_folder]
build/{{settings.build_type}}

Now we can configure and build our project as usual:

$ cmake .. -G "Unix Makefiles" -DCMAKE_BUILD_TYPE=Release
$ cmake --build . # or just $ make
$../chat/build/Release/app
Release: Hello World!
Release: Hello World!
Release: Hello World!

Now, go do a change in some of the packages, for example the “say” one, and rebuild. See how it does an incremental
build (fast).

Note that nothing will really be installed in the local cache, all the dependencies are resolved locally:

$ conan search say
There are no packages matching the 'say' pattern

Note: The package conanfile.py recipes do not contain anything special, they are standard recipes. But the packages
CMakeLists.txt have defined the following:

conan_basic_setup(NO_OUTPUT_DIRS)

This is because the default conan_basic_setup() does define output directories for artifacts such as bin, lib, etc,

8.3. Workspaces 105

Conan Documentation, Release 1.31.4

which is not what the local project layout expects. You need to check and make sure that your build scripts and recipe
matches both the expected local layout (as defined in layout files), and the recipe package() method logic.

Building for debug mode is done in its own folder:

$ cd .. && mkdir build_debug && cd build_debug
$ conan workspace install ../conanws_gcc.yml --profile=my_gcc_profile -s build_type=Debug
$ cmake .. -G "Unix Makefiles" -DCMAKE_BUILD_TYPE=Debug
$ cmake --build . # or just $ make
$../chat/build/Debug/app
Debug: Bye World!
Debug: Bye World!
Debug: Bye World!

8.3.3 Multi configuration build environments

Some build systems, like Visual Studio (MSBuild), use “multi-configuration” environments. That is, even if the project
is configured just once you can switch between different configurations (like Debug/Release) directly in the IDE and
build there.

The above example uses the Conan cmake generator, that creates a single conanbuildinfo.cmake file. This is not a prob-
lem if we have our configurations built in different folders. Each one will contain its own conanbuildinfo.cmake. For
Visual Studio that means that if we wanted to switch from Debug<->Release, we should issue a new conan workspace
install command with the right -s build_type and do a clean build, in order to get the right dependencies.

Conan has the cmake_multi generator generator, that allows this direct switch of Debug/Release configuration in the
IDE. The conanfile.py recipes they have defined the cmake generator, so the first step is to override that in our co-
nanws_vs.yml file:

editables:
say/0.1@user/testing:

path: say
hello/0.1@user/testing:

path: hello
chat/0.1@user/testing:

path: chat
layout: layout_vs
generators: cmake_multi
workspace_generator: cmake
root: chat/0.1@user/testing

Note the generators: cmake_multi line, that will define the generators to be used by our workspace packages.
Also, our CMakeLists.txt should take into account that now we won’t have a conanbuildinfo.cmake file, but a conan-
buildinfo_multi.cmake file. See for example the hello/src/CMakeLists.txt file:

project(Hello)

if(EXISTS ${CMAKE_CURRENT_BINARY_DIR}/conanbuildinfo_multi.cmake)
include(${CMAKE_CURRENT_BINARY_DIR}/conanbuildinfo_multi.cmake)

else()
include(${CMAKE_CURRENT_BINARY_DIR}/conanbuildinfo.cmake)

endif()

(continues on next page)

106 Chapter 8. Developing packages

Conan Documentation, Release 1.31.4

(continued from previous page)

conan_basic_setup(NO_OUTPUT_DIRS)

add_library(hello hello.cpp)
conan_target_link_libraries(hello)

The last conan_target_link_libraries(hello) is a helper that does the right linking with Debug/Release li-
braries (also works when using cmake targets).

Make sure to install both Debug and Release configurations straight ahead, if we want to later switch between them in
the IDE:

$ mkdir build && cd build
$ conan workspace install ../conanws_vs.yml
$ conan workspace install ../conanws_vs.yml -s build_type=Debug
$ cmake .. -G "Visual Studio 15 Win64"

With those commands you will get a Visual Studio solution, that you can open, select the app executable as StartUp
project, and start building, executing, debugging, switching from Debug and Release configurations freely from the
IDE, without needing to issue further Conan commands.

You can check in the project folders, how the following files have been generated:

hello
|- build

| - conanbuildinfo_multi.cmake
| - conanbuildinfo_release.cmake
| - conanbuildinfo_debug.cmake

Note that they are not located in build/Release and build/Debug subfolders; that is because of the multi-config envi-
ronment. To account for that the layout_vs define the [build_folder] not as build/{settings.build_type} but
just as:

[build_folder]
build

8.3.4 Out of source builds

The above examples are using a build folder in-source of the packages in editable mode. It is possible to define out-
of-source builds layouts, using relative paths and the reference argument. The following layout definition could be
used to locate the build artifacts of an editable package in a sibling build/<package-name> folder:

[build_folder]
../build/{{reference.name}}/{{settings.build_type}}

[includedirs]
src

[libdirs]
../build/{{reference.name}}/{{settings.build_type}}/lib

8.3. Workspaces 107

Conan Documentation, Release 1.31.4

8.3.5 Notes

Note that this way of developing packages shouldn’t be used to create the final packages (you could try to use conan
export-pkg), but instead, a full package creation with conan create (best in CI) is recommended.

So far, only the CMake super-project generator is implemented. A Visual Studio one is being considered, and seems
feasible, but not yet available.

Important: We really want your feedback. Please submit any issues to https://github.com/conan-io/conan/issues with
any suggestion, problem, idea, and using [workspaces] prefix in the issue title.

108 Chapter 8. Developing packages

https://github.com/conan-io/conan/issues

CHAPTER

NINE

PACKAGE APPS AND DEVTOOLS

With conan it is possible to package and deploy applications. It is also possible that these applications are also dev-tools,
like compilers (e.g. MinGW), or build systems (e.g. CMake).

This section describes how to package and run executables, and also how to package dev-tools. Also, how to apply
applications like dev-tools or even libraries (like testing frameworks) to other packages to build them from sources:
Build requirements

9.1 Running and deploying packages

Executables and applications including shared libraries can also be distributed, deployed and run with Conan. This
might have some advantages compared to deploying with other systems:

• A unified development and distribution tool, for all systems and platforms.

• Manage any number of different deployment configurations in the same way you manage them for development.

• Use a Conan server remote to store all your applications and runtimes for all Operating Systems, platforms and
targets.

There are different approaches:

9.1.1 Using virtual environments

We can create a package that contains an executable, for example from the default package template created by conan
new:

$ conan new hello/0.1

The source code used contains an executable called greet, but it is not packaged by default. Let’s modify the recipe
package() method to also package the executable:

def package(self):
self.copy("*greet*", src="bin", dst="bin", keep_path=False)

Now we create the package as usual, but if we try to run the executable it won’t be found:

$ conan create . user/testing
...
hello/0.1@user/testing package(): Copied 1 '.h' files: hello.h
hello/0.1@user/testing package(): Copied 1 '.exe' files: greet.exe
hello/0.1@user/testing package(): Copied 1 '.lib' files: hello.lib

(continues on next page)

109

Conan Documentation, Release 1.31.4

(continued from previous page)

$ greet
> ... not found...

By default, Conan does not modify the environment, it will just create the package in the local cache, and that is not in
the system PATH, so the greet executable is not found.

The virtualrunenv generator generates files that add the package’s default binary locations to the necessary paths:

• It adds the dependencies lib subfolder to the DYLD_LIBRARY_PATH environment variable (for OSX shared
libraries)

• It adds the dependencies lib subfolder to the LD_LIBRARY_PATH environment variable (for Linux shared li-
braries)

• It adds the dependencies bin subfolder to the PATH environment variable (for executables)

So if we install the package, specifying such virtualrunenv like:

$ conan install hello/0.1@user/testing -g virtualrunenv

This will generate a few files that can be called to activate and deactivate the required environment variables

$ activate_run.sh # $ source activate_run.sh in Unix/Linux
$ greet
> Hello World Release!
$ deactivate_run.sh # $ source deactivate_run.sh in Unix/Linux

9.1.2 Imports

It is possible to define a custom conanfile (either .txt or .py), with an imports() section, that can retrieve from local
cache the desired files. This approach requires a user conanfile.

For more details see the example below runtime packages.

9.1.3 Deployable packages

With the deploy() method, a package can specify which files and artifacts to copy to user space or to other locations
in the system. Let’s modify the example recipe adding the deploy() method:

def deploy(self):
self.copy("*", dst="bin", src="bin")

And run conan create

$ conan create . user/testing

With that method in our package recipe, it will copy the executable when installed directly:

$ conan install hello/0.1@user/testing
...
> hello/0.1@user/testing deploy(): Copied 1 '.exe' files: greet.exe
$ bin\greet.exe
> Hello World Release!

110 Chapter 9. Package apps and devtools

Conan Documentation, Release 1.31.4

The deploy will create a deploy_manifest.txt file with the files that have been deployed.

Sometimes it is useful to adjust the package ID of the deployable package in order to deploy it regardless of the compiler
it was compiled with:

def package_id(self):
del self.info.settings.compiler

See also:

Read more about the deploy() method.

9.1.4 Using the deploy generator

The deploy generator is used to have all the dependencies of an application copied into a single place. Then all the
files can be repackaged into the distribution format of choice.

For instance, if the application depends on boost, we may not know that it also requires many other 3rt-party libraries,
such as zlib, bzip2, lzma, zstd, iconv, etc.

$ conan install . -g deploy

This helps to collect all the dependencies into a single place, moving them out of the Conan cache.

9.1.5 Using the json generator

A more advanced approach is to use the json generator. This generator works in a similar fashion as the deploy one,
although it doesn’t copy the files to a directory. Instead, it generates a JSON file with all the information about the
dependencies including the location of the files in the Conan cache.

$ conan install . -g json

The conanbuildinfo.json file produced, is fully machine-readable and could be used by scripts to prepare the files and
recreate the appropriate format for distribution. The following code shows how to read the library and binary directories
from the conanbuildinfo.json:

import os
import json

data = json.load(open("conanbuildinfo.json"))

dep_lib_dirs = dict()
dep_bin_dirs = dict()

for dep in data["dependencies"]:
root = dep["rootpath"]
lib_paths = dep["lib_paths"]
bin_paths = dep["bin_paths"]

for lib_path in lib_paths:
if os.listdir(lib_path):

lib_dir = os.path.relpath(lib_path, root)
dep_lib_dirs[lib_path] = lib_dir

for bin_path in bin_paths:
(continues on next page)

9.1. Running and deploying packages 111

https://zlib.net/
https://sourceware.org/bzip2/
https://tukaani.org/xz/
https://facebook.github.io/zstd/
https://www.gnu.org/software/libiconv/

Conan Documentation, Release 1.31.4

(continued from previous page)

if os.listdir(bin_path):
bin_dir = os.path.relpath(bin_path, root)
dep_bin_dirs[bin_path] = bin_dir

While with the deploy generator, all the files were copied into a folder. The advantage with the json one is that you
have fine-grained control over the files and those can be directly copied to the desired layout.

In that sense, the script above could be easily modified to apply some sort of filtering (e.g. to copy only shared libraries,
and omit any static libraries or auxiliary files such as pkg-config .pc files).

Additionally, you could also write a simple startup script for your application with the extracted information like this:

executable = "MyApp" # just an example
varname = "$APPDIR"

def _format_dirs(dirs):
return ":".join(["%s/%s" % (varname, d) for d in dirs])

path = _format_dirs(set(dep_bin_dirs.values()))
ld_library_path = _format_dirs(set(dep_lib_dirs.values()))
exe = varname + "/" + executable

content = """#!/usr/bin/env bash
set -ex
export PATH=$PATH:{path}
export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:{ld_library_path}
pushd $(dirname {exe})
$(basename {exe})
popd
""".format(path=path,

ld_library_path=ld_library_path,
exe=exe)

9.1.6 Running from packages

If a dependency has an executable that we want to run in the conanfile, it can be done directly in code using the
run_environment=True argument. It internally uses a RunEnvironment() helper. For example, if we want to
execute the greet app while building the Consumer package:

from conans import ConanFile, tools, RunEnvironment

class ConsumerConan(ConanFile):
name = "Consumer"
version = "0.1"
settings = "os", "compiler", "build_type", "arch"
requires = "hello/0.1@user/testing"

def build(self):
self.run("greet", run_environment=True)

Now run conan install and conan build for this consumer recipe:

112 Chapter 9. Package apps and devtools

Conan Documentation, Release 1.31.4

$ conan install . && conan build .
...
Project: Running build()
Hello World Release!

Instead of using the environment, it is also possible to explicitly access the path of the dependencies:

def build(self):
path = os.path.join(self.deps_cpp_info["Hello"].rootpath, "bin")
self.run(["%s/greet" % path])

Note that this might not be enough if shared libraries exist. Using the run_environment=True helper above is a more
complete solution.

This example also demonstrates using a list to specify the command to run. This bypasses the system shell and works
correctly even when path contains special characters like whitespace or quotes that would otherwise be interpreted by
the shell. However, it also means that substituting environment variables or the output from other commands which are
normally done by the shell won’t work when using this method. Specify your command using a plain string as shown
above when you require this functionality.

Finally, there is another approach: the package containing the executable can add its bin folder directly to the PATH. In
this case the Hello package conanfile would contain:

def package_info(self):
self.cpp_info.libs = ["hello"]
self.env_info.PATH = os.path.join(self.package_folder, "bin")

We may also define DYLD_LIBRARY_PATH and LD_LIBRARY_PATH if they are required for the executable.

The consumer package is simple, as the PATH environment variable contains the greet executable:

def build(self):
self.run("greet")

Read the next section for a more comprenhensive explanation about using packaged executables in your recipe methods.

9.1.7 Runtime packages and re-packaging

It is possible to create packages that contain only runtime binaries, getting rid of all build-time dependencies. If we
want to create a package from the above “hello” one, but only containing the executable (remember that the above
package also contains a library, and the headers), we could do:

from conans import ConanFile

class HellorunConan(ConanFile):
name = "hello_run"
version = "0.1"
build_requires = "hello/0.1@user/testing"
keep_imports = True

def imports(self):
self.copy("greet*", src="bin", dst="bin")

(continues on next page)

9.1. Running and deploying packages 113

Conan Documentation, Release 1.31.4

(continued from previous page)

def package(self):
self.copy("*")

This recipe has the following characteristics:

• It includes the hello/0.1@user/testing package as build_requires. That means that it will be used to
build this hello_run package, but once the hello_run package is built, it will not be necessary to retrieve it.

• It is using imports() to copy from the dependencies, in this case, the executable

• It is using the keep_imports attribute to define that imported artifacts during the build() step (which is not
define, then using the default empty one), are kept and not removed after build

• The package() method packages the imported artifacts that will be created in the build folder.

To create and upload this package to a remote:

$ conan create . user/testing
$ conan upload hello_run* --all -r=my-remote

Installing and running this package can be done using any of the methods presented above. For example:

$ conan install hello_run/0.1@user/testing -g virtualrunenv
You can specify the remote with -r=my-remote
It will not install hello/0.1@...
$ activate_run.sh # $ source activate_run.sh in Unix/Linux
$ greet
> Hello World Release!
$ deactivate_run.sh # $ source deactivate_run.sh in Unix/Linux

Deployment challenges

When deploying a C/C++ application there are some specific challenges that have to be solved when distributing your
application. Here you will find the most usual ones and some recommendations to overcome them.

The C standard library

A common challenge for all the applications no matter if they are written in pure C or in C++ is the dependency on C
standard library. The most wide-spread variant of this library is GNU C library or just glibc.

Glibc is not a just C standard library, as it provides:

• C functions (like malloc(), sin(), etc.) for various language standards, including C99.

• POSIX functions (like posix threads in the pthread library).

• BSD functions (like BSD sockets).

• Wrappers for OS-specific APIs (like Linux system calls)

Even if your application doesn’t use directly any of these functions, they are often used by other libraries, so, in practice,
it’s almost always in actual use.

There are other implementations of the C standard library that present the same challenge, such as newlib or musl, used
for embedded development.

To illustrate the problem, a simple hello-world application compiled in a modern Ubuntu distribution will give the
following error when it is run in a Centos 6 one:

114 Chapter 9. Package apps and devtools

https://www.gnu.org/software/libc/
https://sourceware.org/newlib/
https://www.musl-libc.org

Conan Documentation, Release 1.31.4

$ /hello
/hello: /lib64/libc.so.6: version 'GLIBC_2.14' not found (required by /hello)

This is because the versions of the glibc are different between those Linux distributions.

There are several solutions to this problem:

• LibcWrapGenerator

• glibc_version_header

• bingcc

Some people also advice to use static of glibc, but it’s strongly discouraged. One of the reasons is that newer glibc
might be using syscalls that are not available in the previous versions, so it will randomly fail in runtime, which is much
harder to debug (the situation about system calls is described below).

It’s possible to model either glibc version or Linux distribution name in Conan by defining custom Conan sub-setting
in the settings.yml file (check out sections Adding new settings and Adding new sub-settings). The process will be
similar to:

• Define new sub-setting, for instance os.distro, as explained in the section Adding new sub-settings.

• Define compatibility mode, as explained by sections package_id() and build_id() (e.g. you may consider some
Ubuntu and Debian packages to be compatible with each other)

• Generate different packages for each distribution.

• Generate deployable artifacts for each distribution.

C++ standard library

Usually, the default C++ standard library is libstdc++, but libc++ and stlport are other well-known implementations.

Similarly to the standard C library glibc, running the application linked with libstdc++ in the older system may result
in an error:

$ /hello
/hello: /usr/lib64/libstdc++.so.6: version 'GLIBCXX_3.4.21' not found (required by /
→˓hello)
/hello: /usr/lib64/libstdc++.so.6: version 'GLIBCXX_3.4.26' not found (required by /
→˓hello)

Fortunately, this is much easier to address by just adding -static-libstdc++ compiler flag. Unlike C runtime, C++
runtime can be linked statically safely, because it doesn’t use system calls directly, but instead relies on libc to provide
required wrappers.

Compiler runtime

Besides C and C++ runtime libraries, the compiler runtime libraries are also used by applications. Those libraries
usually provide lower-level functions, such as compiler intrinsics or support for exception handling. Functions from
these runtime libraries are rarely referenced directly in code and are mostly implicitly inserted by the compiler itself.

$ ldd ./a.out
libgcc_s.so.1 => /lib/x86_64-linux-gnu/libgcc_s.so.1 (0x00007f6626aee000)

9.1. Running and deploying packages 115

https://github.com/AppImage/AppImageKit/tree/stable/v1.0/LibcWrapGenerator
https://github.com/wheybags/glibc_version_header
https://github.com/sulix/bingcc
https://gcc.gnu.org/onlinedocs/libstdc++/
https://libcxx.llvm.org
http://www.stlport.org

Conan Documentation, Release 1.31.4

you can avoid this kind of dependency by the using of the -static-libgcc compiler flag. However, it’s not always
sane thing to do, as there are certain situations when applications should use shared runtime. The most common is
when the application wishes to throw and catch exceptions across different shared libraries. Check out the GCC manual
for the detailed information.

System API (system calls)

New system calls are often introduced with new releases of Linux kernel. If the application, or 3rd-party libraries, want
to take advantage of these new features, they sometimes directly refer to such system calls (instead of using wrappers
provided by glibc).

As a result, if the application was compiled on a machine with a newer kernel and build system used to auto-detect
available system calls, it may fail to execute properly on machines with older kernels.

The solution is to either use a build machine with lowest supported kernel, or model supported operation system (just
like in case of glibc). Check out sections Adding new settings and Adding new sub-settings to get a piece of information
on how to model distribution in conan settings.

9.2 Creating conan packages to install dev tools

One of the most useful features of Conan is to package executables like compilers or build tools and distribute them
in a controlled way to the team of developers. This way Conan helps not only with the graph of dependencies of
the application itself, but also with all the ecosystem needed to generate the project, making it really easy to control
everything involved in the deployed application.

Those tools need to run in the working machine (the build machine) regardless of the host platform where the
generated binaries will run. If those platforms are different, we are cross building software.

In this section we cope with the general scenario where a library requires other tools to compile that are also packaged
with Conan. Read this section first, and get more information specific to cross compiling in the dedicated section of
the docs: Cross building.

Note: Conan v1.24 introduced a new feature to declare a full profile for the build and the host machine, it is
the preferred way to deal with this scenario. Older versions should rely on the deprecated settings os_build and
arch_build. There is a small section below about those settings, for a full explanation read the docs matching your
Conan client.

A Conan package for a tool is like any other package with an executable. Here it is a recipe for packaging the nasm
tool for building assembler:

import os
from conans import ConanFile, tools
from conans.errors import ConanInvalidConfiguration

class NasmConan(ConanFile):
name = "nasm"
version = "2.13.02"
license = "BSD-2-Clause"
url = "https://github.com/conan-community/conan-nasm-installer"
settings = "os", "arch"
description="Nasm for windows. Useful as a build_require."

(continues on next page)

116 Chapter 9. Package apps and devtools

https://gcc.gnu.org/onlinedocs/gcc/Link-Options.html
https://www.kernel.org

Conan Documentation, Release 1.31.4

(continued from previous page)

def configure(self):
if self.settings.os != "Windows":

raise ConanInvalidConfiguration("Only windows supported for nasm")

@property
def nasm_folder_name(self):

return "nasm-%s" % self.version

def build(self):
suffix = "win32" if self.settings.arch == "x86" else "win64"
nasm_zip_name = "%s-%s.zip" % (self.nasm_folder_name, suffix)
tools.download("http://www.nasm.us/pub/nasm/releasebuilds/"

"%s/%s/%s" % (self.version, suffix, nasm_zip_name), nasm_zip_name)
self.output.info("Downloading nasm: "

"http://www.nasm.us/pub/nasm/releasebuilds"
"/%s/%s/%s" % (self.version, suffix, nasm_zip_name))

tools.unzip(nasm_zip_name)
os.unlink(nasm_zip_name)

def package(self):
self.copy("*", src=self.nasm_folder_name, dst="bin", keep_path=True)
self.copy("license*", dst="", src=self.nasm_folder_name, keep_path=False, ignore_

→˓case=True)

def package_info(self):
self.env_info.PATH.append(os.path.join(self.package_folder, "bin"))

This recipe has nothing special: it doesn’t declare the compiler and build_type settings because it is downloading
already available binaries, and it is declaring the information for their consumers as usual in the package_info() method:

• The cpp_info is not declared, so it will take its default values: the bindirs will point to the bin folder where
the nasm.exe executable is packaged.

• In the env_info attribute, it is adding the bin folder to the PATH environment variable.

This two simple declarations are enough to reuse this tool in the scenarios we are detailing below.

9.2.1 Using the tool packages in other recipes

Warning: This section refers to the experimental feature that is activated when using --profile:build and
--profile:host in the command-line. It is currently under development, features can be added or removed in
the following versions.

These kind of tools are not usually part of the application graph itself, they are needed only to build the library, so you
should usually declare them as build requirements, in the recipe itself or in a profile.

For example, there are many recipes that can take advantage of the nasm package we’ve seen above, like flac or libx264
that are already available in ConanCenter. Those recipes will take advantage of nasm being in the PATH to run some
assembly optimizations.

9.2. Creating conan packages to install dev tools 117

https://conan.io/center/flac?tab=recipe
https://conan.io/center/libx264?tab=recipe
https://conan.io/center/

Conan Documentation, Release 1.31.4

class LibX264Conan(ConanFile):
name = "libx264"
...
build_requires = "nasm/2.13.02"

def build(self):
... # ``nasm.exe`` will be in the PATH here

def package_info(self):
self.cpp_info.libs = [...]

The consumer recipe needs only to declare the corresponding build_require and Conan will take care of adding the
required paths to the corresponding environment variables:

conan create path/to/libx264 --profile:build=windows --profile:host=profile_host

Here we are telling Conan to create the package for the libx264 for the host platform defined in the profile
profile_host file and to use the profile windows for all the build requirements that are in the build context. In
other words: in this example we are running a Windows machine and we need a version of nasm compatible with this
machine, so we are providing a windows profile for the build context, and we are generating the library for the host
platform which is declared in the profile_host profile (read more about build requires context).

Using two profiles forces Conan to make this distinction between recipes in the build context and those in the host
context. It has several advantages:

• Recipes for these tools are regular recipes, no need to adapt them (before 1.24 they require special settings and
some package ID customization).

• We provide a full profile for the build machine, so Conan is able to compile those build requirements from
sources if they are not already available.

• Conan will add to the environment not only the path to the bin folder, but also it will populate the
DYLD_LIBRARY_PATH and LD_LIBRARY_PATH variables that are needed to find the shared libraries that tool
could need during runtime.

118 Chapter 9. Package apps and devtools

Conan Documentation, Release 1.31.4

9.2.2 Using the tool packages in your system

A different scenario is when you want to use in your system the binaries generated by Conan, to achieve this objective
you can use the virtualrunenv generator to get your environment populated with the required variables.

For example: Working in Windows with the nasm package we’ve already defined:

1. Create a separate folder from your project, this folder will handle our global development environment.

$ mkdir my_cpp_environ
$ cd my_cpp_environ

2. Create a conanfile.txt file:

[requires]
nasm/2.13.02
You can add more tools here

[generators]
virtualrunenv

3. Install them. Here it doesn’t matter if you use only the host profile or the build one too because the environ-
ment that is going to be populated includes only the root of the graph and its dependencies, without any build
requirement. In any case, the profile:host needed is the one corresponding to the Windows machine where
we are running these tests.

$ conan install . --profile:host=windows [--profile:build=windows]

4. Activate the virtual environment in your shell:

$ activate_run
(my_cpp_environ)$

5. Check that the tools are in the path:

(my_cpp_environ)$ nasm --version

> NASM version 2.13.02 compiled on Dec 18 2019

6. You can deactivate the virtual environment with the deactivate.bat script

(my_cpp_environ)$ deactivate_run

9.3 Build requirements

There are some requirements that don’t feel natural to add to a package recipe. For example, imagine that you had a
cmake/3.4 package in Conan. Would you add it as a requirement to the zlib package, so it will install cmake first in
order to build zlib?

In short:

• There are requirements that are only needed when you need to build a package from sources, but if the binary
package already exists, you don’t want to install or retrieve them.

• These could be dev tools, compilers, build systems, code analyzers, testing libraries, etc.

9.3. Build requirements 119

Conan Documentation, Release 1.31.4

• They can be very orthogonal to the creation of the package. It doesn’t matter whether you build zlib with CMake
3.4, 3.5 or 3.6. As long as the CMakeLists.txt is compatible, it will produce the same final package.

• You don’t want to add a lot of different versions (like those of CMake) to be able to use them to build the package.
You want to easily change the requirements, without needing to edit the zlib package recipe.

• Some of them might not even be taken into account when a package like zlib is created, such as cross-compiling
it to Android (in which the Android toolchain would be a build requirement too).

To address these needs Conan implements build_requires.

9.3.1 Declaring build requirements

Build requirements can be declared in profiles, like:

Listing 1: my_profile

[build_requires]
tool1/0.1@user/channel
tool2/0.1@user/channel, tool3/0.1@user/channel
*: tool4/0.1@user/channel
my_pkg*: tool5/0.1@user/channel
&: tool6/0.1@user/channel
&!: tool7/0.1@user/channel

Build requirements are specified by a pattern:. If such pattern is not specified, it will be assumed to be *, i.e. to
apply to all packages. Packages can be declared in different lines or by a comma separated list. In this example, tool1,
tool2, tool3 and tool4 will be used for all packages in the dependency graph (while running conan install or
conan create).

If a pattern like my_pkg* is specified, the declared build requirements will only be applied to packages matching that
pattern: tool5 will not be applied to Zlib for example, but it will be applied to my_pkg_zlib.

The special case of a consumer conanfile (without name or version) it is impossible to match with a pattern, so it is
handled with the special character &:

• & means apply these build requirements to the consumer conanfile

• &! means apply the build requirements to all packages except the consumer one.

Remember that the consumer conanfile is the one inside the test_package folder or the one referenced in the conan
install command.

Build requirements can also be specified in a package recipe, with the build_requires attribute and the
build_requirements() method:

class MyPkg(ConanFile):
build_requires = "tool_a/0.2@user/testing", "tool_b/0.2@user/testing"

def build_requirements(self):
useful for example for conditional build_requires
This means, if we are running on a Windows machine, require ToolWin
if platform.system() == "Windows":

self.build_requires("tool_win/0.1@user/stable")

The above tool_a and tool_b will always be retrieved and used for building this recipe, while the tool_win one will
only be used only in Windows.

120 Chapter 9. Package apps and devtools

Conan Documentation, Release 1.31.4

If any build requirement defined inside build_requirements() has the same package name as the one defined in the
build_requires attribute, the one inside the build_requirements() method will prevail.

As a rule of thumb, downstream defined values always override upstream dependency values. If some build requirement
is defined in the profile, it will overwrite the build requirements defined in package recipes that have the same package
name.

9.3.2 Build and Host contexts

Warning: This section refers to the experimental feature that is activated when using --profile:build and
--profile:host in the command-line. It is currently under development, features can be added or removed in
the following versions.

Conan v1.24 differentiates between the build context and the host context in the dependency graph (read more about
the meaning of host and build platforms in the cross building section) when the user supplies two profiles to the
command line using the --profile:build and --profile:host arguments:

• The host context is populated with the root package (the one specified in the conan install or conan create
command), all its requirements and the build requirements forced to be in the host context.

• The build context contains the rest of build requirements and all of them in the profiles. This category typically
includes all the dev tools like CMake, compilers, linkers,. . .

Build requirements declared in the recipes can be forced to stay in the host context, this is needed for testing libraries
that will be linked to the generated library or other executable we want to deploy to the host platform, for example:

class MyPkg(ConanFile):
build_requires = "nasm/2.14" # 'build' context (nasm.exe will be available)

def build_requirements(self):
self.build_requires("protobuf/3.6.1") # 'build' context (protoc.exe will be␣

→˓available)
self.build_requires("gtest/0.1", force_host_context=True) # 'host' context (our␣

→˓library will link with it)

9.3. Build requirements 121

Conan Documentation, Release 1.31.4

Take into account that the same package (executable or library) can appear two times in the graph, in the host and in
the build context, with different package IDs. Conan will propagate the proper information to the consumers:

• Build requirements in the host context will propagate like any other requirement:

– cpp_info: all information will be available in the deps_cpp_info["xxx"] object.

– env_info: won’t be propagated.

– user_info: will be available using the deps_user_info["xxx"] object.

• Build requirements in the build context will propagate all the env_info and Conan will also populate the
environment variables DYLD_LIBRARY_PATH, LD_LIBRARY_PATH and PATHwith the corresponding information
from the cpp_info object. All this information will be available in the deps_env_info object.

Custom information declared in the user_info attribute will be available in the user_info_build["xxx"]
object in the consumer conanfile.

Important: If no --profile:build is provided, all build requirements will belong to the one and only context
and they will share their dependencies with the libraries we are building. In this scenario all the build require-
ments propagate user_info, cpp_info and env_info to the consumer’s deps_user_info, deps_cpp_info and
deps_env_info.

9.3.3 Properties of build requirements

The behavior of build_requires is the same irrespective if they are defined in the profile or if defined in the package
recipe.

• They will only be retrieved and installed if some package that has to be built from sources and matches the
declared pattern. Otherwise, they will not even be checked for existence.

• Options and environment variables declared in the profile as well as in the command line will affect the build
requirements for packages. In that way, you can define, for example, for the cmake/3.16.3 package which
CMake version will be installed.

122 Chapter 9. Package apps and devtools

Conan Documentation, Release 1.31.4

• Build requirements will be activated for matching packages, see the section above about build requires context
to know the information that this package will propagate to its consumers.

• Build requirements can also be transitive. They can declare their own requirements, both normal requirements
and their own build requirements. Normal logic for dependency graph resolution applies, such as conflict reso-
lution and dependency overriding.

• Each matching pattern will produce a different dependency graph of build requirements. These graphs are cached
so that they are only computed once. If a build requirement applies to different packages with the same configu-
ration it will only be installed once (same behavior as normal dependencies - once they are cached locally, there
is no need to retrieve or build them again).

• Build requirements do not affect the binary package ID. If using a different build requirement produces a different
binary, you should consider adding an option or a setting to model that (if not already modeled).

• Can also use version-ranges, like Tool/[>0.3]@user/channel.

• Build requirements are not listed in conan info nor are represented in the graph (with conan info --graph).

9.3.4 Example: testing framework and build tool

One example of build requirement is a testing framework implemented as a library, another good example is a build
tool used in the compile process. Let’s call them mytest_framework and cmake_turbo, and imagine we already
have a package available for both of them.

Build requirements can be checked for existence (whether they’ve been applied) in the recipes, which can be useful for
conditional logic in the recipes. In this example, we could have one recipe with the following build() method:

def build_requirements(self):
if self.options.enable_testing:

self.build_requires("mytest_framework/0.1@user/channel", force_host_context=True)

def build(self):
Use our own 'cmake_turbo' if it is available
use_cmake_turbo = "cmake_turbo" in self.deps_env_info.deps
cmake_executable = "cmake_turbo" if use_cmake_turbo else None
cmake = CMake(self, cmake_program=cmake_executable)
cmake.configure(defs={"ENABLE_TESTING": self.options.enable_testing})
cmake.build()
if enable_testing:

cmake.test()

And the package CMakeLists.txt:

project(PackageTest CXX)
cmake_minimum_required(VERSION 2.8.12)

include(${CMAKE_BINARY_DIR}/conanbuildinfo.cmake)
conan_basic_setup()
if(ENABLE_TESTING)

add_executable(example test.cpp)
target_link_libraries(example ${CONAN_LIBS})

enable_testing()
add_test(NAME example

WORKING_DIRECTORY ${CMAKE_BINARY_DIR}/bin
(continues on next page)

9.3. Build requirements 123

Conan Documentation, Release 1.31.4

(continued from previous page)

COMMAND example)
endif()

This package recipe won’t retrieve the cmake_turbo package for normal installation:

$ conan install .

But if the following profile is defined:

Listing 2: use_cmake_turbo_profile

[build_requires]
cmake_turbo/0.1@user/channel

then the install command will retrieve the cmake_turbo and use it:

$ conan install . --profile=use_cmake_turbo_profile

Although the previous line would work it is preferred to use the feature from Conan v1.24 and provide two profiles
to the command line, that way the build requirements in the build context won’t interfer with the host graph if they
share common requirements (see section about dev tools). It can also be needed if cross compiling (see section about
cross compiling).

$ conan install . --profile:host=use_cmake_turbo_profile --profile:build=build_machine

124 Chapter 9. Package apps and devtools

CHAPTER

TEN

VERSIONING

10.1 Introduction to versioning

10.1.1 Versioning approaches

Fixed versions

This is the standard, direct way to specify dependencies versions, with their exact version, for example in a conanfile.py
recipe:

requires = "zlib/1.2.11"

When doing a conan install, it will try to fetch from the remotes exactly that 1.2.11 version.

This method is nicely explicit and deterministic, and is probably the most used one. As a possible disadvantage, it
requires the consumers to explicitly modify the recipes to use updated versions, which could be tedious or difficult to
scale for large projects with many dependencies, in which those dependencies are frequently modified, and it is desired
to move the whole project forward to those updated dependencies.

To mitigate that issue, especially while developing the packages, you can use fixed versions with package revisions (see
below) to resolve automatically the latest revision for a given fixed version.

Version ranges

A conanfile can specify a range of valid versions that could be consumed, using brackets:

requires = "pkg/[>1.0 <1.8]@user/stable"

When a conan install is executed, it will check in the local cache first and if not in the remotes what pkg versions
are available and will select the latest one that satisfies the defined range.

By default, it is less deterministic, one conan install can resolve to pkg/1.1 and then pkg/1.2 is published, and
a new conan install (by users, or CI), will automatically pick the newer 1.2 version, with different results. On the
other hand it doesn’t require changes to consumer recipes to upgrade to use new versions of dependencies.

It is also true that the semver definition that comes from other programming languages doesn’t fit that well to C and
C++ packages, because of different reasons, because of open source libraries that don’t closely follow the semver
specification, but also because of the ABI compatibility issues and compilation model that is so characteristic of C and
C++ binaries.

Read more about it in Version ranges section.

125

Conan Documentation, Release 1.31.4

Package alias

It is possible to define a “proxy” package that references another one, using the syntax:

from conans import ConanFile

class AliasConanfile(ConanFile):
alias = "pkg/0.1@user/testing"

This package creation can be automatically created with the conan alias command, that can for example create a pkg/
latest@user/testing alias that will be pointing to that pkg/0.1@user/testing. Consumers can define requires
= "pkg/latest@user/testing" and when the graph is evaluated, it will be directly replaced by the pkg/0.1 one.
That is, the pkg/latest package will not appear in the dependency graph at all.

This is also less deterministic, and puts the control on the package creator side, instead of the consumer (version ranges
are controlled by the consumer). Package creators can control which real versions will their consumers be using. This
is probably not the recommended way for normal dependencies versions management.

Package revisions

Revisions are automatic internal versions to both recipes and binary packages. When revisions are enabled, when a
recipe changes and it is used to create a package, a new recipe revision is generated, with the hash of the contents of
the recipe. The revisioned reference of the recipe is:

pkg/version@user/channel#recipe_revision1
after the change of the recipe
pkg/version@user/channel#recipe_revision2

A conanfile can reference a specific revision of its dependencies, but in the general case that they are not specified, it
will fetch the latest revision available in the remote server:

[requires]
Use the latest revision of pkg1
pkg1/version@user/channel
use the specific revision RREV1 of pkg2
pkg2/version@user/channel#RREV1

Each binary package will also be revisioned. The good practice is to build each binary just once. But if for some reason,
like a change in the environment, a new build of exactly the same recipe with the same code (and the same recipe
revision) is fired again, a new package revision can be created. The package revision is the hash of the contents of the
package (headers, libraries. . .), so unless deterministic builds are achieved, new package revisions will be generated.

In general revisions are not intended to be defined explicitly in conanfiles, although they can for specific purposes like
debugging.

Read more about Package Revisions

126 Chapter 10. Versioning

Conan Documentation, Release 1.31.4

10.1.2 Version and configuration conflicts

When two different branches of the same dependency graph require the same package, this is known as “diamonds” in
the graph. If the two branches of a diamond require the same package but different versions, this is known as a conflict
(a version conflict).

Lets say that we are building an executable in pkgd/1.0, that depends on pkgb/1.0 and pkgc/1.0, which contain static
libraries. In turn, pkgb/1.0 depends on pkga/1.0 and finally pkgc/1.0 depends on pkga/2.0, which is also another static
library.

The executable in pkgd/1.0, cannot link with 2 different versions of the same static library in pkgc, and the dependency
resolution algorithm raises an error to let the user decide which one.

The same situation happens if the different packages require different configurations of the same upstream package,
even if the same version is used. In the example above, both PkgB and PkgC can be requiring the same version
pkga/1.0, but one of them will try to use it as a static library and the other one will try to use it as shared library. The
dependency resolution algorithm will also raise an error.

10.1.3 Dependencies overriding

The downstream consumer packages always have higher priority, so the versions they request, will be overridden up-
stream as the dependency graph is built, re-defining the possible requires that the packages could have. For example,
pkgb/1.0 could define in its recipe a dependency to pkga/1.0. But if a downstream consumer defines a requirement to
pkga/2.0, then that version will be used in the upstream graph:

10.1. Introduction to versioning 127

Conan Documentation, Release 1.31.4

This is what enables the users to have control. Even when a package recipe upstream defines an older version, the
downstream consumers can force to use an updated version. Note that this is not a diamond structure in the graph,
so it is not a conflict by default. This behavior can be also restricted defining the CONAN_ERROR_ON_OVERRIDE
environment variable to raise an error when these overrides happen, and then the user can go and explicitly modify the
upstream pkgb/1.0 recipe to match the version of PkgA and avoid the override.

In some scenarios, the downstream consumer pkgd/1.0 might not want to force a dependency on pkga. There are
several possibilities, for example that PkgA is a conditional requirement that only happens in some operating systems.
If pkgd defines a normal requirement to pkga, then, it will be introducing that edge in the graph, forcing pkga to be
used always, in all operating systems. For this purpose the override qualifier can be defined in requirement, see
requirements().

128 Chapter 10. Versioning

Conan Documentation, Release 1.31.4

10.1.4 Versioning and binary compatibility

It is important to note and this point that versioning approaches and strategies should also be consistent with the binary
management.

By default, Conan assumes semver compatibility, so it will not require to build a new binary for a package when its
dependencies change their minor or patch versions. This might not be enough for C or C++ libraries which version-
ing scheme doesn’t strictly follow semver. It is strongly suggested to read more about this in Defining Package ABI
Compatibility

10.2 Version ranges

Version range expressions are supported, both in conanfile.txt and in conanfile.py requirements.

The syntax uses brackets. The square brackets are the way to inform Conan that is a version range. Otherwise, versions
are plain strings. They can be whatever you want them to be (up to limitations of length and allowed characters).

class HelloConan(ConanFile):
requires = "Pkg/[>1.0 <1.8]@user/stable"

So when specifying Pkg/[expression]@user/stable, it means that expression will be evaluated as a version
range. Otherwise, it will be understood as plain text, so requires = "Pkg/version@user/stable" always means
to use the version version literally.

There are some packages that do not follow semver. A popular one would be the OpenSSL package with versions as
1.0.2n. They cannot be used with version-ranges. To require such packages you always have to use explicit versions
(without brackets).

The process to manage plain versions vs version-ranges is also different. The second one requires a “search” in the
remote, which is orders of magnitude slower than direct retrieval of the reference (plain versions). Take it into account
if you plan to use it for very large projects.

Expressions are those defined and implemented by https://pypi.org/project/node-semver/. Accepted expressions would
be:

[>1.1 <2.1] # In such range
[2.8] # equivalent to =2.8
[~=3.0] # compatible, according to semver
[>1.1 || 0.8] # conditions can be OR'ed
[1.2.7 || >=1.2.9 <2.0.0] # This range would match the versions 1.2.7, 1.2.9, and 1.4.6,
→˓ but not the versions 1.2.8 or 2.0.0.

There are two options for the version range:

• loose=True|False (default True): When using loose=False only valid Semantic Versioning strings are
accepted.

• include_prerelease=True|False (default False): If set to include_prerelease=True, Conan will in-
clude prerelease versions in the search range. Take into account that prerelease versions have lower precedence
than the associated normal one (e.g.: 1.0.0 > 1.0.0-beta).

[>1.1 <2.1, include_prerelease=True] # Would e.g. accept "2.0.0-pre.1" as␣
→˓match
[~1.2.3, loose=False] # Would only accept correct Semantic␣
→˓Versioning strings.

E.g. version "1.2.3.4" would not be␣
(continues on next page)

10.2. Version ranges 129

https://pypi.org/project/node-semver/

Conan Documentation, Release 1.31.4

(continued from previous page)

→˓accepted.
[~1.2.3, loose=False, include_prerelease=True] # Both options can be used for the same␣
→˓version range.

Version range expressions are evaluated at the time of building the dependency graph, from downstream to upstream
dependencies. No joint-compatibility of the full graph is computed. Instead, version ranges are evaluated when depen-
dencies are first retrieved.

This means, that if a package A depends on another package B (A->B), and A has a requirement for C/[>1.2 <1.8],
this requirement is evaluated first and it can lead to get the version C/1.7. If package B has the requirement to C/[>1.
3 <1.6], this one will be overwritten by the downstream one, it will output a version incompatibility error. But the
“joint” compatibility of the graph will not be obtained. Downstream packages or consumer projects can impose their
own requirements to comply with upstream constraints. In this case a override dependency to C/[>1.3 <1.6] can be
easily defined in the downstream package or project.

The order of search for matching versions is as follows:

• First, the local conan storage is searched for matching versions, unless the --update flag is provided to conan
install.

• If a matching version is found, it is used in the dependency graph as a solution.

• If no matching version is locally found, it starts to search in the remotes, in order. If some remote is specified
with -r=remote, then only that remote will be used.

• If the --update parameter is used, then the existing packages in the local conan cache will not be used, and the
same search of the previous steps is carried out in the remotes. If new matching versions are found, they will be
retrieved, so subsequent calls to install will find them locally and use them.

10.3 Package Revisions

The goal of the revisions feature is to achieve package immutability, the packages in a server are never overwritten.

Note: Revisions achieve immutability. For achieving reproducible builds and reproducible dependencies, lockfiles
are used. Lockfiles can capture an exact state of a dependency graph, down to exact versions and revisions, and use it
later to force their usage, even if new versions or revisions were uploaded to the servers.

Learn more about lockfiles here.

10.3.1 How it works

In the client

• When a recipe is exported, Conan calculates a unique ID (revision). For every change, a new recipe revision
(RREV) will be calculated. By default it will use the checksum hash of the recipe manifest.

Nevertheless, the recipe creator can explicitly declare the revision mode, it can be either scm (uses version control
system or raises) or hash (use manifest hash).

• When a package is created (by running conan create or conan export-pkg) a new package revision (PREV) will
be calculated always using the hash of the package contents. The packages and their revisions (PREVs) belongs
to a concrete recipe revision (RREV). The same package ID (for example for Linux/GCC5/Debug), can have
multiple revisions (PREVs) that belong to a concrete RREV.

130 Chapter 10. Versioning

Conan Documentation, Release 1.31.4

If a client requests a reference like lib/1.0@conan/stable, Conan will automatically retrieve the latest revision in
case the local cache doesn’t contain any revisions already. If a client needs to update an existing revision, they have
to ask for updates explicitly with -u, --update argument to conan install command. In the client cache there is
only one revision installed simultaneously.

The revisions can be pinned when you write a reference (in the recipe requires, a reference in a conan install
command,. . .) but if you don’t specify a revision, the server will retrieve the latest revision.

You can specify the references in the following formats:

Reference Meaning
lib/1.0@conan/stable Latest RREV for lib/1.0@conan/stable
lib/1.0@conan/stable#RREV Specific RREV for lib/1.0@conan/stable
lib/1.0@conan/stable#RREV:PACKAGE_ID A binary package belonging to the specific RREV
lib/1.0@conan/
stable#RREV:PACKAGE_ID#PREV

A binary package revision PREV belonging to the specific
RREV

In the server

By using a new folder layout and protocol it is able to store multiple revisions, both for recipes and binary packages.

10.3.2 How to activate the revisions

You have to explicitly activate the feature by either:

• Adding revisions_enabled=1 in the [general] section of your conan.conf file (preferred)

• Setting the CONAN_REVISIONS_ENABLED=1 environment variable.

Take into account that it changes the default Conan behavior. e.g:

• A client with revisions enabled will only find binary packages that belong to the installed recipe revision. For
example, If you create a recipe and run conan create . user/channel and then you modify the recipe and
export it (conan export . user/channel), the binary package generated in the conan create command
doesn’t belong to the new exported recipe. So it won’t be located unless the previous recipe is recovered.

• If you generate and upload N binary packages for a recipe with a given revision, then if you modify the recipe,
and thus the recipe revision, you need to build and upload N new binaries matching that new recipe revision.

10.3.3 Server support

• conan_server >= 1.13.

• Artifactory >= 6.9.

• Bintray.

10.3. Package Revisions 131

Conan Documentation, Release 1.31.4

10.4 Lockfiles

Warning: This is an experimental feature subject to breaking changes in future releases.

Lockfiles are files that store the information of a dependency graph, including the exact versions, revisions, options,
and configuration of that dependency graph. These files allow for later achieving reproducible results, and installing
or using the exact same dependencies even when the requirements are not fully reproducible, for example when using
version ranges or using package revisions.

10.4.1 Introduction

Warning: This is an experimental feature subject to breaking changes in future releases.

Let’s introduce lockfiles by example, with 2 packages, package pkgb that depends on package pkga.

Note: The code used in this section, including a build.py script to reproduce it, is in the examples repository:
https://github.com/conan-io/examples. You can go step by step reproducing this example while reading the below
documentation.

$ git clone https://github.com/conan-io/examples.git
$ cd features/lockfiles/intro
$ python build.py only to run the full example, but better go step by step

Locking dependencies

This example uses full_version_mode, that is, if a package changes any part of its version, its consumers will need
to build a new binary because a new package_id will be computed. This example will use version ranges, and it is
not necessary to have revisions enabled. It also do not require a server, everything can be reproduced locally.

$ conan config set general.default_package_id_mode=full_version_mode

Let’s start by creating from the recipe and source in the pkga folder, a first pkg/0.1@user/testing package in our
local cache:

$ conan create pkga pkga/0.1@user/testing

Now we want to start developing and testing the code for pkgb, but we want to create a “snapshot” of the dependency
graph, to isolate our development from possible changes (note that the recipe in pkgb/conanfile.py contains a require
like requires = "pkga/[>0.0]@user/testing").

$ cd pkgb
$ conan lock create conanfile.py --user=user --channel=testing --lockfile-out=locks/pkgb_
→˓deps.lock

This will create a pkgb_deps.lock file in the locks folder. Note that we have passed the user and channel of the future
package that we will create as --user=user --channel=testing.

Let’s have a look at the lockfile:

132 Chapter 10. Versioning

https://github.com/conan-io/examples

Conan Documentation, Release 1.31.4

{
"graph_lock": {

"nodes": {
"0": {

"ref": "pkgb/0.1@user/testing",
"options": "shared=False",
"requires": ["1"],
"path": "..\\conanfile.py",
"context": "host"

},
"1": {

"ref": "pkga/0.1@user/testing",
"options": "",
"package_id": "4024617540c4f240a6a5e8911b0de9ef38a11a72",
"prev": "0",
"context": "host"

}
},
"revisions_enabled": false

},
"version": "0.4",
"profile_host": "[settings]\narch=x86_64\narch_build=x86_64\nbuild_type=Release\

→˓ncompiler=Visual Studio\ncompiler.runtime=MD\ncompiler.version=15\nos=Windows\nos_
→˓build=Windows\n[options]\n[build_requires]\n[env]\n"
}

We can see the pkga/0.1@user/testing dependency in the lockfile, together with its package_id. This depen-
dency is fully locked. The pkgb/0.1@user/testing doesn’t have a package_id yet, because so far it is just a local
conanfile.py as a consumer, not a package. But the user/testing user and channel are already defined.

It is important to note that the pkgb_deps.lock lockfile contains the current profile for the current configuration.

At this moment we have captured the dependency graph for pkgb. Now, it would be possible that a new version of
pkga is created:

$ cd ..
The recipe generates different package code depending on the version, automatically
$ conan create pkga pkga/0.2@user/testing

If now we install and build our code in pkgb we would get:

$ mkdir pkgb/build
$ cd pkgb/build
$ conan install ..
> ... pkga/0.2@user/testing from local cache - Cache
Example for VS, use your compiler here
$ cmake ../src -G "Visual Studio 15 Win64"
$ cmake --build . --config Release
$./bin/greet
HelloA 0.2 Release
HelloB Release!
Greetings Release!

But as explained above, the purpose of the lockfile is to capture the dependencies and use them later. Let’s pass the
lockfile as an argument to guarantee the usage of the locked pkga/0.1@user/testing dependency:

10.4. Lockfiles 133

Conan Documentation, Release 1.31.4

$ conan install .. --lockfile=../locks/pkgb_deps.lock
> ... pkga/0.1@user/testing from local cache - Cache
$ cmake ../src -G "Visual Studio 15 Win64"
$ cmake --build . --config Release
$./bin/greet
HelloA 0.1 Release
HelloB Release!
Greetings Release!

That’s it. We managed to depend on pkga/0.1@user/testing instead of the pkga/0.2@user/testing although
the later satisfies the version range and is available in the cache. Using the same dependency was possible because we
used the information stored in the lockfile.

Immutability

A core concept of lockfiles is their immutability and the integrity of its data:

Important: The information stored in a lockfile cannot be changed. Any attempt to modify locked data will result in
an error.

For example, if now we try to do a conan install that also builds pkga from source:

$ conan install .. --lockfile=../locks/pkgb_deps.lock --build=pkga
ERROR: Cannot build 'pkga/0.1@user/testing' because it is already locked in the input␣
→˓lockfile

It is an error, because the pkga/0.1@user/testing dependency was fully locked. When the lockfile was created, the
pkga/0.1@user/testing was found, including a binary, and that information was stored. Everytime this lockfile is
used, it assumes this package and binary exist and it will try to get them, but it will never allow to re-build, because
that can violate the integrity of the lockfile. For example, if we were using package_revision_mode, a new binary
of pkga would produce new package-ids of all its consumers, that will not match the package-ids stored in the lockfile.

It is possible though to control what is being locked with the --build argument provided to the conan lock create
command.

The same principle applies if we try to create a package for pkgb and it tries to alter the user and channel user/testing
that were provided at the time of the conan lock create command used above.

$ cd ..
$ conan create . user/stable --lockfile=locks/pkgb_deps.locked
ERROR: Attempt to modify locked pkgb/0.1@user/testing to pkgb/0.1@user/stable

Again, it is important to keep the integrity. Package recipes can have conditional or parameterized dependencies, based
on user and channel for example. If we try to create the pkgb package with different user and channel, it could result in
a different dependency graph, totally incompatible with the one captured in the lockfile. If pkgb/0.1@user/testing
was stored in the lockfile, any command using this lockfile must respect and keep it without changes.

Note: A package in a lockfile is fully locked if it contains a prev (package revision) field defined. Fully locked packages
cannot be built from sources. Partially locked packages do not contain a prev defined. They lock the reference and the
package-id, and they can be built from sources.

134 Chapter 10. Versioning

Conan Documentation, Release 1.31.4

Reproducibility

That doesn’t mean that a lockfile cannot evolve at all. Using the --lockfile argument, we are able to create pkgb/0.
1@user/testing guaranteeing it is being created depending on pkga/0.1@user/testing. Additionally, if we use
the --lockfile-out argument, we can obtain an updated version of the lockfile:

$ conan create . user/testing --lockfile=locks/pkgb_deps.lock --lockfile-out=locks/pkgb.
→˓lock

And if we inspect the new locks/pkgb.lock file:

{
...
"0": {

"ref": "pkgb/0.1@user/testing",
"options": "shared=False",
"package_id": "2418b211603ca0a3858d9dd1fc1108d54a4cab99",
"prev": "0",
"modified": true,
"requires": ["1"],
"context": "host"

}
...

}

It can be appreciated in locks/pkgb.lock that now pkgb/0.1@user/testing is fully locked, as a package (not a local
conanfile.py), and contains a package_id. So if we try to use this new file for creating the package again, it will error,
as a package that is fully locked cannot be rebuilt:

$ conan create . user/testing --lockfile=locks/pkgb.lock
ERROR: Attempt to modify locked pkgb/0.1@user/testing to pkgb/0.1@user/testing

But we can reproduce the same set of dependencies and the creation of pkgb, using the pkgb_deps.lock lockfile:

$ conan create . user/testing --lockfile=locks/pkgb_deps.lock # OK

The pkgb.lock can be used later in time to install the pkgb application (the pkgb conanfile.py contains a deploy()
method for convenience for this example), and get the same package and dependencies:

$ cd ..
$ mkdir consume
$ cd consume
$ conan install pkgb/0.1@user/testing --lockfile=../pkgb/locks/pkgb.lock
$./bin/greet
HelloA 0.1 Release
HelloB Release!
Greetings Release!

As long as we have the pkgb.lock lockfile, we will be able to robustly reproduce this install, even if the packages were
uploaded to a server, if there are new versions that satisfy the version ranges, etc.

Important: All the examples and documentation of this section is done with version ranges and revisions disabled.
Lockfiles also work and can lock both recipe and package revisions, with the same behavior as version-ranges. All is

10.4. Lockfiles 135

Conan Documentation, Release 1.31.4

necessary is to enable revisions. The only current limitation is that the local cache cannot store more than one revision
at a time, but that is a limitation of the cache and unrelated to lockfiles.

10.4.2 Multiple configurations

Warning: This is an experimental feature subject to breaking changes in future releases.

In the previous section we managed just 1 configuration, for the default profile. In many applications, packages needs
to be built with several different configurations, typically managed by different profile files.

Note: This section continues with the previous example with the Introduction. The code used in this section, including
a build.py script to reproduce it, is in the examples repository: https://github.com/conan-io/examples. You can go step
by step reproducing this example while reading the below documentation.

$ git clone https://github.com/conan-io/examples.git
$ cd features/lockfiles/intro
$ python build.py only to run the full example, but better go step by step

Lets start in the features/lockfiles/intro of the examples repository, remove the previous packages, and create both
release and debug pkga packages:

$ conan remove "pkg*" -f
$ conan create pkga pkga/0.1@user/testing
$ conan create pkga pkga/0.1@user/testing -s build_type=Debug

Now, we could (don’t do it) create 2 different lockfiles, one for each configuration:

DO NOT type these commands, we'll do it better below
$ cd pkgb
$ conan lock create conanfile.py --user=user --channel=testing --lockfile-out=locks/pkgb_
→˓release.lock
$ conan lock create conanfile.py --user=user --channel=testing --lockfile-out=locks/pkgb_
→˓debug.lock -s build_type=Debug

Important: The dependency graph is different for each different configuration/profile. Not only the package-ids, but
also because of conditional requirements, the dependencies can be different. Then, it is necessary to create a lockfile
for every different configuration/profile.

But, what if a new pkga/0.2@user/testing version was created in the time between both commands? Although this
is unlikely to happen in this example, because everything is local. However, it could happen that pkga was in a server
and the CI uploads a new pkga/0.2@user/testing version while we are running the above commands.

136 Chapter 10. Versioning

https://github.com/conan-io/examples

Conan Documentation, Release 1.31.4

Base lockfiles

Conan proposes a “base” lockfile, with the --base argument, that will capture only the versions and topology of the
graph, but not the package-ids:

$ cd pkgb
$ conan lock create conanfile.py --user=user --channel=testing --lockfile-out=locks/pkgb_
→˓base.lock --base

Let’s inspect the locks/pkgb_base.lock lockfile:

{
"graph_lock": {

"nodes": {
"0": {

"ref": "pkgb/0.1@user/testing",
"requires": ["1"],
"path": "..\\conanfile.py",
"context": "host"

},
"1": {

"ref": "pkga/0.1@user/testing",
"context": "host"

}
},
"revisions_enabled": false

},
"version": "0.4"

}

This lockfile is different to the ones in the previous section. It does not store the profile, and it does not capture the
package-ids or the options of the nodes. It captures the topology of the graph, and the package references and versions.

At this point, the new pkga/0.2@user/testing version packages could be created:

$ cd ..
The recipe generates different package code depending on the version, automatically
$ conan create pkga pkga/0.2@user/testing
$ conan create pkga pkga/0.2@user/testing -s build_type=Debug

Using the “base” locks/pkgb_base.lock lockfile, now we can obtain a new lockfile for both debug and release configu-
rations, and it is guaranteed that both will use the pkga/0.1@user/testing dependency, and not the new one:

$ cd pkgb
$ conan lock create conanfile.py --user=user --channel=testing --lockfile=locks/pkgb_
→˓base.lock --lockfile-out=locks/pkgb_deps_debug.lock -s build_type=Debug
$ conan lock create conanfile.py --user=user --channel=testing --lockfile=locks/pkgb_
→˓base.lock --lockfile-out=locks/pkgb_deps_release.lock

Now, we will have 2 lockfiles, locks/pkgb_deps_debug.lock and locks/pkgb_deps_release.lock. Each one will lock
different profiles and different package-id of pkga/0.1@user/testing.

10.4. Lockfiles 137

Conan Documentation, Release 1.31.4

Locked configuration

The lockfiles store the effective configuration, settings, options, resulting from the used profiles and command line
arguments. That configuration arguments can be passed to the conan lock create command, but not when using
lockfiles. For example:

$ mkdir build && cd build
$ conan install .. --lockfile=../locks/pkgb_deps_debug.lock -s build_type=Debug
ERROR: Cannot use profile, settings, options or env 'host' when using lockfile

results in an error, because the locks/pkgb_deps_debug.lock already stores the settings.build_type and passing it
in the command line could only result in inconsistencies and errors.

Important: Lockfiles store the full effective profile configuration. It is not possible to pass configuration, settings,
options or profile arguments when using lockfiles (only when creating the lockfiles)

With the two captured lockfiles, now we can locally build and run our pkgb application for both configurations, guar-
anteeing the dependency to pkga/0.1@user/testing:

$ conan install .. --lockfile=../locks/pkgb_deps_release.lock
$ cmake ../src -G "Visual Studio 15 Win64"
$ cmake --build . --config Release
$./bin/greet
HelloA 0.1 Release
HelloB Release!
Greetings Release!
$ conan install .. --lockfile=../locks/pkgb_deps_debug.lock
$ cmake --build . --config Debug
$./bin/greet
HelloA 0.1 Debug
HelloB Debug!
Greetings Debug!

We can create pkgb package again for both configurations:

$ cd ..
$ conan create . user/testing --lockfile=locks/pkgb_deps_release.lock --lockfile-
→˓out=locks/pkgb_release.lock
$ conan create . user/testing --lockfile=locks/pkgb_deps_debug.lock --lockfile-out=locks/
→˓pkgb_debug.lock

And we could still use the lockfiles later in time to install the pkgb package with the same dependencies and configu-
ration that were used to create that package:

$ cd ..
$ mkdir consume
$ cd consume
$ conan install pkgb/0.1@user/testing --lockfile=../pkgb/locks/pkgb_release.lock
$./bin/greet
HelloA 0.1 Release
HelloB Release!
Greetings Release!
$ conan install pkgb/0.1@user/testing --lockfile=../pkgb/locks/pkgb_debug.lock

(continues on next page)

138 Chapter 10. Versioning

Conan Documentation, Release 1.31.4

(continued from previous page)

$./bin/greet
HelloA 0.1 Debug
HelloB Debug!
Greetings Debug!

As you can see, the immutability principle remains. If we try to use pkgb_release.lock to create the pkgb package again
instead of the pkgb_deps_release.lock lockfile, it will error, as pkgb would be already fully locked in the former.

10.4.3 Evolving lockfiles

Warning: This is an experimental feature subject to breaking changes in future releases.

As described before, lockfiles are immutable, they cannot change the information they contain. If some install or create
command tries to change some data in a lockfile, it will error. This doesn’t mean that operations on lockfiles cannot be
done, as it is possible to create a new lockfile from an existing one. We have already done this, obtaining a full lockfile
for a specific configuration from an initial “base” lockfile.

There are several scenarios you might want to create a new lockfile from an existing one.

Deriving a partial lockfile

Lets say that we have an application app/1.0 that depends on libc/1.0 that depends on libb/1.0 that finally depends
on liba/1.0. We could capture a “base” lockfile from it, and then several full lockfiles, one per configuration:

$ conan lock create --reference=app/1.0@ --base --lockfile-out=app_base.lock
$ conan lock create --reference=app/1.0@ --lockfile=app_base.lock -s build_type=Release -
→˓-lockfile-out=app_release.lock
$ conan lock create --reference=app/1.0@ --lockfile=app_base.lock -s build_type=Debug --
→˓lockfile-out=app_debug.lock

Now a developer wants to start testing some changes in libb, using the same dependencies versions defined in the
lockfile. As libb is locked, it will not be possible to create a new version libb/1.1 or build a new binary for it with
the existing lockfiles. But we can create a new lockfile for it in different ways. For example, we could derive directly
from the app_release.lock and app_debug.lock lockfiles:

$ git clone <libb-repo> && cd libb
$ conan lock create conanfile.py --lockfile=app_release.lock --lockfile-out=libb_deps_
→˓release.lock
$ conan lock create conanfile.py --lockfile=app_debug.lock --lockfile-out=libb_deps_
→˓debug.lock

This will create partial lockfiles, only for libb dependencies, i.e. locking liba/1.0, that can be used while installing,
building and testing libb.

But it is also possible to derive a new “base” profile from app_base.lock only for libb dependencies, and then compute
from it the configuration specific profiles.

These partial lockfiles will be smaller than the original app lockfiles, not containing information at all about app and
libc.

10.4. Lockfiles 139

Conan Documentation, Release 1.31.4

Integrating a partial lockfile

This would be the opposite flow. Lets take the previous libb_deps_release.lock and libb_deps_debug.lock lockfiles and
create new libb/1.1 packages with it, and obtaining new lockfiles:

in the libb source folder
$ conan create . --lockfile=libb_deps_release.lock --lockfile-out=libb_release.lock
$ conan create . --lockfile=libb_deps_debug.lock --lockfile-out=libb_debug.lock

These lockfiles will be containing locked information to liba/1.0 and a new libb/1.1 version. Now we would like
to check if app/1.0 will pick this new version, and in case it is used, we would like to rebuild whatever is necessary
(that is part of the next CI section).

Important: It is not possible to pick the old app_base.lock, app_release.lock or app_debug.lock lockfiles and inject the
new libb/1.1 version, as this would be violating the integrity of the lockfile. Nothing guarantees that the downstream
packages will effectively use the new version, as it might fall outside the valid range defined in libc/1.0, for example.
Also, downstream consumers app/1.0 and libc/1.0 could result in different package-ids as a result of having a new
dependency, and this goes against the immutability of the lockfile data, as the package-ids for them would be already
locked.

Let’s create new lockfiles that will use the existing libb_debug.lock and libb_release.lock information if pos-
sible:

$ conan lock create --reference=app/1.0@ --lockfile=libb_release.lock --lockfile-out=app_
→˓release.lock
$ conan lock create --reference=app/1.0@ --lockfile=libb_debug.lock --lockfile-out=app_
→˓debug.lock

This will create new app_release.lock and app_debug.lock that will have both libb/1.1 and liba/1.0 locked. If
for some reason, libc/1.0 had fixed a requires = "libb/1.0", then the resulting lockfile would resolve and lock
libb/1.0 instead. The build-order command (see next section) will tell us that there is nothing to build, as it is
effectively computing the same lockfile that existed before. It is also possible, and a CI pipeline could do it, to directly
check that libb/1.1 is defined inside the new lockfiles. If it is not there, it means that it didn’t integrate, and nothing
needs to be done downstream.

10.4.4 Build order in lockfiles

Warning: This is an experimental feature subject to breaking changes in future releases.

In this section we are going to use the following packages, defining this dependency graph.

140 Chapter 10. Versioning

Conan Documentation, Release 1.31.4

Note: The code used in this section, including a build.py script to reproduce it, is in the examples repository:
https://github.com/conan-io/examples. You can go step by step reproducing this example while reading the below
documentation.

$ git clone https://github.com/conan-io/examples.git
$ cd features/lockfiles/build_order
$ python build.py only to run the full example, but better go step by step

The example in this section uses full_version_mode, that is, if a package changes any part of its version, its con-
sumers will need to build a new binary because a new package_id will be computed. This example will use version
ranges, and it is not necessary to have revisions enabled. It also do not require a server, everything can be reproduced
locally.

$ conan config set general.default_package_id_mode=full_version_mode

Let’s start by creating the initial dependency graph, without binaries (just the exported recipes), in our local cache:

$ conan export liba liba/0.1@user/testing
$ conan export libb libb/0.1@user/testing
$ conan export libc libc/0.1@user/testing
$ conan export libd libd/0.1@user/testing
$ conan export app1 app1/0.1@user/testing
$ conan export app2 app2/0.1@user/testing

Now we will create a lockfile that captures the dependency graph for app1/0.1@user/testing. In the same way we
created lockfiles for a local conanfile.py in a user folder, we can also create a lockfile for a recipe in the Conan cache,
with the --reference argument:

$ conan lock create --reference=app1/0.1@user/testing --lockfile-out=app1.lock

The resulting app1.lock lockfile will not be able to completely lock the binaries because such binaries do not exist at
all. This can be checked in the app1.lock file, the packages do not contain a package revision (prev) field at all:

{
...
"4": {
"ref": "liba/0.1@user/testing",
"options": "",
"package_id": "5ab84d6acfe1f23c4fae0ab88f26e3a396351ac9",

(continues on next page)

10.4. Lockfiles 141

https://github.com/conan-io/examples

Conan Documentation, Release 1.31.4

(continued from previous page)

"context": "host"
}
...

}

We can now compute the “build-order” of the dependency graph. The “build-order” lists in order all the packages that
needs to be built from sources. The logic is the following:

• If a package is fully locked (it contains a package revision field prev in the lockfile), it will not be built from
sources and will never appear in the build-order list.

• If a package is not fully locked (it does not contain a package revision prev in the lockfile), it will appear in the
build-order list. This situation happens both when the package binary doesn’t exist yet, or when the --build
argument was used while creating the lockfile.

$ conan lock build-order app1.lock --json=build_order.json

The resulting build_order.json file is a list of lists, structured by levels of possible parallel builds:

[
First level liba
[["liba/0.1@user/testing", "5ab8...1ac9", "host", "4"]],
Second level libb and libc
[["libb/0.1@user/testing", "cfd1...ec23", "host", "3"],
["libc/0.1@user/testing", "cfd1...ec23", "host", "5"]],
Third level libd
[["libd/0.1@user/testing", "d075...5b9d", "host", "2"]],
Fourth level libd
[["app1/0.1@user/testing", "3bf2...5188", "host", "1"]]

]

Every item in the outer list is a “level” in the graph, a set of packages that needs to be built, and are independent of
every other package in the level, so they can be built in parallel. Levels in the build order must be respected, as the
second level cannot be built until all the packages in the first level are built and so on. In this example, once the build
of liba/0.1@user/testing finishes, as it is the only item in the first level, the second level can start, and it can build
both libb/0.1@user/testing and libc/0.1@user/testing in parallel. It is necessary that both of them finish
their build to be able to continue to the third level, that contains libd/0.1@user/testing, because this package
depends on them.

Every item in each level has 4 elements: [ref, package_id, context, id]. At the moment the only necessary
one is the first one. The ref value is the one that can be used for example in a conan install command like:

$ conan install <ref> --build=<ref> --lockfile=mylock.lock

Defining builds

The definition of what needs to be built comes from the existing binaries plus the --build argument in the conan
lock create.

Let’s build all the binaries for the exported packages first:

Build app1 and dependencies
$ conan install app1/0.1@user/testing --build=missing

142 Chapter 10. Versioning

Conan Documentation, Release 1.31.4

Now that there are binaries for all packages in the cache, let’s capture them in a new lockfile and compute the build
order:

Create a new lockfile now with all the package binaries
$ conan lock create --reference=app1/0.1@user/testing --lockfile-out=app1.lock
And check which one needs to be built
$ conan lock build-order app1.lock --json=build_order.json
The build order is emtpy, nothing to build
[]

The result of this build order is empty. As the conan lock create found existing binaries, everything is fully locked,
nothing needs to be built.

If we specify the --build flag, then the behavior is different:

$ conan lock create --reference=app1/0.1@user/testing --lockfile-out=app1.lock --build
the lockfile will not lock the binaries
And check which one needs to be built
$ conan lock build-order app1.lock --json=build_order.json
[[["liba/0.1@user/testing", "5ab8...1ac9", "host", "4"]], ...

This feature is powerful when combined with package_id_modes, because it can automatically define the minimum
set of packages that needs to be built for any change in the dependency graph.

Let’s say that a new version libb/1.1@user/testing is created. But if we check the libd conanfile.py requirement
libb/[>0.0 <1.0]@user/testing, we can see that this 1.1 version falls outside of the valid version range. Then,
it does not affect libd or app1 and nothing needs to be built:

$ conan create libb libb/1.1@user/testing
$ conan lock create --reference=app1/0.1@user/testing --lockfile-out=app1.lock
$ conan lock build-order app1.lock --json=build_order.json
[] # Empty, nothing to build, libb/1.1 does not become part of app1

If on the contrary, a new libb/0.2@user/testing is created, and we capture a new lockfile, it will contain such
new version. Other packages, like liba and libc are not affected by this new version, and will be fully locked in the
lockfile, but the dependents of libb now won’t be locked and it will be necessary to build them:

$ conan create libb libb/0.2@user/testing
$ conan lock create --reference=app1/0.1@user/testing --lockfile-out=app1.lock
$ conan lock build-order app1.lock --json=build_order.json
[[['libd/0.1@user/testing', '97e9...b7f4', 'host', '2']],
[['app1/0.1@user/testing', '2bf1...e405', 'host', '1']]]

So in this case the app1.lock is doing these things:

• Fully locking the non-affected packages (liba/0.1, libc/0.1)

• Fully locking the libb/0.2, as the binary that was just created is valid for our app1 (Note that this might not
always be true, and app1 build could require a different libb/0.2 binary).

• Partial locking (the version and package-id) of the affected packages that need to be built (libd/0.1 and app1/
0.1).

• Retrieving via build-order the right order in which the affected packages need to be built.

Recall that a package in a lockfile is fully locked if it contains a prev (package revision) field defined. Fully locked
packages cannot be built from sources. Partially locked packages do not contain a prev defined. They lock the reference
and the package-id, and they can be built from sources.

10.4. Lockfiles 143

Conan Documentation, Release 1.31.4

If we want to check if the new libb/0.2 version affects to the app2 and something needs to be rebuild, the process is
identical:

$ conan lock create --reference=app2/0.1@user/testing --lockfile-out=app2.lock
$ conan lock build-order app2.lock --json=build_order2.json
[]

As expected, nothing to build, as app2 does not depend on libb at all.

10.4.5 Lockfiles in Continuous Integration

Warning: This is an experimental feature subject to breaking changes in future releases.

This section provides an example of application of the lockfiles in a Continuous Integration case. It doesn’t aim to
present a complete solution or the only possible one, depending on the project, the team, the requirements, the con-
straints, etc., other approaches might be recommended.

In this section we are going to use the same packages than in the previous one, defining this
dependency graph.

The example scenario is a developer doing some changes in libb, that include bumping the version to libb/0.2. We
will structure the CI in two parts:

• Building libb/0.2@user/testing to check that it is working fine.

• Building the downstream applications app1/0.1@user/testing and app2/0.2@user/testing to check if
they build correctly, or if they are broken by those changes.

Note: The code used in this section, including a build.py script to reproduce it, is in the examples repository:
https://github.com/conan-io/examples. You can go step by step reproducing this example while reading the below
documentation.

$ git clone https://github.com/conan-io/examples.git
$ cd features/lockfiles/ci
$ python build.py only to run the full example, but better go step by step

The example in this section uses full_version_mode, that is, if a package changes any part of its version, its con-
sumers will need to build a new binary because a new package_id will be computed.

144 Chapter 10. Versioning

https://github.com/conan-io/examples

Conan Documentation, Release 1.31.4

$ conan config set general.default_package_id_mode=full_version_mode

This example will use version ranges, and it is not necessary to have revisions enabled. It also do not require a server,
everything can be reproduced locally, although the usage of different repositories will be introduced.

Repositories

When a developer does some changes, the CI wants to build those changes, create packages, and check if everything is
ok. But while checking it, it is better to not pollute the main Conan remote repository with temporary packages until
we are fully sure that it is not breaking anything. So we could use 2 repositories:

• conan-develop: this would be the team/project reference repository. Developers and CI will use this by default
to retrieve Conan packages with precompiled binaries. Similarly to a git “develop” branch, it could be assumed
that the packages in this repository work correctly, have been tested before being put there. It could also be
expected that the repository contains pre-compiled binaries, so building from sources shouldn’t be necessary.

• conan-build: a repository mainly for CI purposes. When CI is creating packages in a pipeline, it can put
those packages in this repository, so they can still be used in the CI pipelines, be fetched by some build agents to
build other packages. These temporary packages will not disrupt the operations and usage of conan-develop
repository used by other CI jobs and developers.

Let’s create the first version of the packages, for both Debug and Release configurations:

$ conan create liba liba/0.1@user/testing -s build_type=Release
$ conan create libb libb/0.1@user/testing -s build_type=Release
$ conan create libc libc/0.1@user/testing -s build_type=Release
$ conan create libd libd/0.1@user/testing -s build_type=Release
$ conan create app1 app1/0.1@user/testing -s build_type=Release
$ conan create app2 app2/0.1@user/testing -s build_type=Release
$ conan create liba liba/0.1@user/testing -s build_type=Debug
...

Now let’s say that one developer does some change to libb:

$ vim libb/conanfile.py
do some changes and save

These changes are local in this example, in reality they will be typically in the form of a Pull Request, wanting to merge
those changes in the main “develop” branch.

Package pipeline

The first thing the CI will do is to build libb/0.2@user/testing package, containing the developer changes, for
different configurations. As we want to make sure that all different configurations are built with the same versions of
the dependencies, the first thing is to capture a “base” lockfile of the dependencies of libb:

$ cd libb
$ conan lock create conanfile.py --name=libb --version=0.2 --user=user --channel=testing
--lockfile-out=../locks/libb_deps_base.lock --base

This will capture the libb_deps_base.lock file with the versions of libb dependencies, in this case liba/0.1@user/
testing. Now that we have this file, new versions of liba could be created, but they will not be used:

10.4. Lockfiles 145

Conan Documentation, Release 1.31.4

$ cd ..
$ conan create liba liba/0.2@user/testing

We want to test the changes for several different configurations, so the first step would be to derive a new lockfile for
each configuration/profile from the libb_deps_base.lock:

$ cd libb

Derive one lockfile per profile/configuration
$ conan lock create conanfile.py --name=libb --version=0.2
--user=user --channel=testing --lockfile=../locks/libb_base.lock
--lockfile-out=../locks/libb_deps_debug.lock -s build_type=Debug

$ conan lock create conanfile.py --name=libb --version=0.2
--user=user --channel=testing --lockfile=../locks/libb_base.lock
--lockfile-out=../locks/libb_deps_release.lock

Create the package binaries, one with each lockfile
$ conan create . libb/0.2@user/testing --lockfile=../locks/libb_deps_release.lock
$ conan create . libb/0.2@user/testing --lockfile=../locks/libb_deps_debug.lock

Note: It is important to note that it is not necessary to build all configurations in this build agent. One of the advantages
of using lockfiles is that the build can be delegated to other agents, as long as they get the right commit of libb repo
and the lockfile, they can build the desired package with the right dependencies.

Once everything is building ok, and libb/0.2@user/testing package is created correctly for all profiles, we want
to check if this new version can be integrated safely in its consumers. When using revisions (not this example), it is
important to capture the recipe revision, and lock it too. We can capture the recipe revision doing an export, creating
a new libb_base.lock lockfile:

$ conan export . libb/0.2@user/testing --lockfile=../locks/libb_deps_base.lock
--lockfile-out=../locks/libb_base.lock

Products pipeline

There is an important question to be addressed: when a package changes, what other packages consuming it should
be rebuild to account for this change?. The problem might be harder than it seems at first sight, or from the observa-
tion of the graph above. It shows that libd/0.1 has a dependency to libb/0.1, does it means that a new libb/0.2
should produce a re-build of libd/0.1 to link with the new version? Not always, if libd had a pinned dependency
and not a version range, it will never resolve to the new version, and then it doesn’t and it cannot be rebuilt unless some
developer makes some changes to libd and bumps the requirement.

In this example, libd contains a version range, and if we evaluate it, we will see that the new libb/0.2 version lies
within the range, and then yes, it needs a new binary to be built, otherwise our repository of packages will have missing
binaries.

One important problem is the combinatoric explosion that happens downstream. Projects evolve and packages will
eventually have many versions and even many revisions. In our example, we could have in our repository many libd/
0.0.1, libd/0.0.2, . . . , libd/0.0.34 versions, all of them with a requirement to libb. Each one could be in turn
consumed by multiple app1 versions.

We could think to consider as consumer only the latest version of libd. But it is also totally possible that some
developer has already uploaded a libd/2.0 version, with a breaking new API, aimed for the next major version of
app1.

146 Chapter 10. Versioning

Conan Documentation, Release 1.31.4

So the only alternative to be both efficient and have a robust Continuous Integration of changes in our core “products”
is to explictly define those “products”. In our case we will define that our products are app1/0.1@user/testing and
app2/0.1@user/testing. This product definition could change as we keep doing releases of our products to our
customers.

The first step in the products pipeline would be to capture the lockfiles for the different configurations we want to build
for our products. As explained above, we can first capture a “base” lockfile of app1/0.1@user/testing, using the
previous libb_base.lock, to make sure that we are using the locked versions for both libb/0.2@user/testing and
liba/0.1@user/testing, as this was the snapshot of existing versions when the CI pipeline started, even if later a
liba/0.2@user/testing was created.

$ conan lock create --reference=app1/0.1@user/testing --lockfile=locks/libb_base.lock
--lockfile-out=locks/app1_base.lock --base

The app1_base.lock lockfile will capture and lock libd/0.1@user/testing and libc/0.1@user/testing. Now,
even if those packages also got new versions, they will not be used, even if they fit in the version range. The
app1_base.lock lockfile can be in turn used to capture complete lockfiles, one per profile/configuration:

$ conan lock create --reference=app1/0.1@user/testing --lockfile=locks/app1_base.lock
--lockfile-out=locks/app1_release.lock

$ conan lock create --reference=app1/0.1@user/testing --lockfile=locks/app1_base.lock
--lockfile-out=locks/app1_debug.lock -s build_type=Debug

The build-order can now be computed, also for each configuration:

$ conan lock build-order locks/app1_release.lock --json=bo_release.json
[[['libd/0.1@user/testing', 'b03c813b34cfab7a095fd903f7e8df2114e2b858', 'host', '4']],
[['app1/0.1@user/testing', '15d2c695ed8d421c0d8932501fc654c8083e6582', 'host', '3']]]

$ conan lock build-order locks/app1_debug.lock --json=bo_debug.json
[[['libd/0.1@user/testing', '67a26cfbef78ad4905bec085664768c209d14fda', 'host', '4']],
[['app1/0.1@user/testing', '680239a70c97f93d4d3dba4dec1b148d45ed087a', 'host', '3']]]

The build order tells that we need to build libd/0.1@user/testing and app1/0.1@user/testing in that order,
for both Release and Debug configurations (again this can also be delegated to other build agents)

That build can be done with command:

$ conan install libd/0.1@user/testing --build=libd/0.1@user/testing --lockfile=locks/
→˓app1_release.lock
--lockfile-out=locks/app1_release_updated.lock

Note that we are creating a new temporary app1_release_updated.lock lockfile, that will contain and lock the binary
produced by the build of libd. If this was implemented in CI, the app1_release.lock would be sent to the build agent,
and it would return a modified app1_release_updated.lock. The way to integrate this information into the existing
lockfile, necessary to keep building other downstream packages is:

$ conan lock update locks/app1_release.lock locks/app1_release_updated.lock

Now that locks/app1_release.lock is updated we could launch in exactly the same way the build of app1:

$ conan install app1/0.1@user/testing --build=app1/0.1@user/testing --lockfile=locks/
→˓app1_release.lock
--lockfile-out=locks/app1_release_updated.lock

The process will be repeated (or it could also run in parallel) for the Debug configuration.

10.4. Lockfiles 147

Conan Documentation, Release 1.31.4

After the app1/0.1@user/testing product pipeline finishes, then the app2/0.2@user/testing one will be started.
With this setup and example, it is very important that the products pipelines are ran sequentially, otherwise it is possible
that the same binaries are unnecesarily built more than once.

When the products pipeline finishes it means that the changes proposed by the developer in their Pull Request that
would result in a new libb/0.2@user/testing package are safe to be merged and will be integrated in our product
packages without problems. When the Pull Request is merged there might be two alternatives:

• The merge is a merge commit, with a different revision and possible different source as the result of a real merge,
than the source used in this CI job. Then it is necessary to fire again a new job that will build these packages.

• If the merge is a clean fast-forward, then the packages that were built in this job would be valid, and could be
copied from the repository conan-build to the conan-develop.

148 Chapter 10. Versioning

CHAPTER

ELEVEN

MASTERING CONAN

This section provides an introduction to important productivity and useful features of Conan:

11.1 Use conanfile.py for consumers

You can use a conanfile.py for installing/consuming packages, even if you are not creating a package with it. You
can also use the existing conanfile.py in a given package while developing it to install dependencies. There’s no
need to have a separate conanfile.txt.

Let’s take a look at the complete conanfile.txt from the previous timer example with POCO library, in which we
have added a couple of extra generators

[requires]
poco/1.9.4

[generators]
gcc
cmake
txt

[options]
poco:shared=True
openssl:shared=True

[imports]
bin, *.dll -> ./bin # Copies all dll files from the package "bin" folder to my project
→˓"bin" folder
lib, *.dylib* -> ./bin # Copies all dylib files from the package "lib" folder to my␣
→˓project "bin" folder

The equivalent conanfile.py file is:

from conans import ConanFile, CMake

class PocoTimerConan(ConanFile):
settings = "os", "compiler", "build_type", "arch"
requires = "poco/1.9.4" # comma-separated list of requirements
generators = "cmake", "gcc", "txt"
default_options = {"poco:shared": True, "openssl:shared": True}

(continues on next page)

149

Conan Documentation, Release 1.31.4

(continued from previous page)

def imports(self):
self.copy("*.dll", dst="bin", src="bin") # From bin to bin
self.copy("*.dylib*", dst="bin", src="lib") # From lib to bin

Note that this conanfile.py doesn’t have a name, version, or build() or package() method, as it is not creating a
package. They are not required.

With this conanfile.py you can just work as usual. Nothing changes from the user’s perspective. You can install the
requirements with (from mytimer/build folder):

$ conan install ..

11.1.1 conan build

One advantage of using conanfile.py is that the project build can be further simplified, using the conanfile.py
build() method.

If you are building your project with CMake, edit your conanfile.py and add the following build() method:

from conans import ConanFile, CMake

class PocoTimerConan(ConanFile):
settings = "os", "compiler", "build_type", "arch"
requires = "poco/1.9.4"
generators = "cmake", "gcc", "txt"
default_options = {"poco:shared": True, "openssl:shared": True}

def imports(self):
self.copy("*.dll", dst="bin", src="bin") # From bin to bin
self.copy("*.dylib*", dst="bin", src="lib") # From lib to bin

def build(self):
cmake = CMake(self)
cmake.configure()
cmake.build()

Then execute, from your project root:

$ conan install . --install-folder build
$ conan build . --build-folder build

The conan install command downloads and prepares the requirements of your project (for the specified settings)
and the conan build command uses all that information to invoke your build() method to build your project, which
in turn calls cmake.

This conan buildwill use the settings used in the conan installwhich have been cached in the local conaninfo.txt
and file in your build folder. This simplifies the process and reduces the errors of mismatches between the installed
packages and the current project configuration. Also, the conanbuildinfo.txt file contains all the needed information
obtained from the requirements: deps_cpp_info, deps_env_info, deps_user_info objects.

If you want to build your project for x86 or another setting just change the parameters passed to conan install:

$ conan install . --install-folder build_x86 -s arch=x86
$ conan build . --build-folder build_x86

150 Chapter 11. Mastering Conan

Conan Documentation, Release 1.31.4

Implementing and using the conanfile.py build() method ensures that we always use the same settings both in the
installation of requirements and the build of the project, and simplifies calling the build system.

11.1.2 Other local commands

Conan implements other commands that can be executed locally over a consumer conanfile.py which is in user
space, not in the local cache:

• conan source <path>: Execute locally the conanfile.py source() method.

• conan package <path>: Execute locally the conanfile.py package() method.

These commands are mostly used for testing and debugging while developing a new package, before exporting such
package recipe into the local cache.

See also:

Check the section Reference/Commands to find out more.

11.2 Conditional settings, options and requirements

Remember, in your conanfile.py you also have access to the options of your dependencies, and you can use them to:

• Add requirements dynamically

• Change values of options

The configure method might be used to hardcode dependencies options values. It is strongly discouraged to use it
to change the settings values. Please remember that settings are a configuration input, so it doesn’t make sense to
modify it in the recipes.

Also, for options, a more flexible solution is to define dependencies options values in the default_options, not in
the configure() method, as this would allow to override them. Hardcoding them in the configure() method won’t
allow that and thus won’t easily allow conflict resolution. Use it only when it is absolutely necessary that the package
dependencies use those options.

Here is an example of what we could do in our configure method:

...
requires = "poco/1.9.4" # We will add OpenSSL dynamically "openssl/1.0.2t"
...

def configure(self):
We can control the options of our dependencies based on current options
self.options["openssl"].shared = self.options.shared

Maybe in windows we know that OpenSSL works better as shared (false)
if self.settings.os == "Windows":

self.options["openssl"].shared = True

Or adjust any other available option
self.options["poco"].other_option = "foo"

We could check the presence of an option
if "shared" in self.options:

pass
(continues on next page)

11.2. Conditional settings, options and requirements 151

Conan Documentation, Release 1.31.4

(continued from previous page)

def requirements(self):
Or add a new requirement!
if self.options.testing:

self.requires("OpenSSL/2.1@memsharded/testing")
else:

self.requires("openssl/1.0.2u")

11.2.1 Constrain settings and options

Sometimes there are libraries that are not compatible with specific settings like libraries that are not compatible with
an architecture, or options that only make sense for an operating system. It can also be useful when there are settings
under development.

There are two approaches for this situation:

• Use configure() to raise an error for non-supported configurations:

This approach is the first one evaluated when Conan loads the recipe so it is quite handy to perform checks of the
input settings. It relies on the set of possible settings inside your settings.yml file, so it can be used to constrain
any recipe.

from conans.errors import ConanInvalidConfiguration
...
def configure(self):

if self.settings.os == "Windows":
raise ConanInvalidConfiguration("This library is not compatible with Windows")

Tip: Use the Invalid configuration exception to make Conan return with a special error code. This will indicate
that the configuration used for settings or options is not supported.

This same method is also valid for options and config_options()method and it is commonly used to remove
options for one setting:

def config_options(self):
if self.settings.os == "Windows":

del self.options.fPIC

• Constrain settings inside a recipe:

This approach constrains the settings inside a recipe to a subset of them, and it is normally used in recipes that
are never supposed to work out of the restricted settings.

from conans import ConanFile

class MyConan(ConanFile):
name = "myconanlibrary"
version = "1.0.0"
settings = {"os": None, "build_type": None, "compiler": None, "arch": ["x86_64

→˓"]}

The disadvantage of this is that possible settings are hardcoded in the recipe, and in case new values are used in
the future, it will require the recipe to be modified explicitly.

152 Chapter 11. Mastering Conan

Conan Documentation, Release 1.31.4

Important: Note: the use of the None value in the os, compiler and build_type settings described above
will allow them to take the values from settings.yml file

We strongly recommend the use of the first approach whenever it is possible, and use the second one only for those
cases where a stronger constrain is needed for a particular recipe.

See also:

Check the reference section configure(), config_options() to find out more.

11.3 Build policies

By default, conan install command will search for a binary package (corresponding to our settings and defined
options) in a remote. If it’s not present the install command will fail.

As previously demonstrated, we can use the --build option to change the default conan install behavior:

• --build some_package will build only “some_package”.

• --build missing will build only the missing requires.

• --build will build all requirements from sources.

• --build outdated will try to build from code if the binary is not built with the current recipe or when missing
binary package.

• --build cascadewill build from code all the nodes with some dependency being built (for any reason). Can be
used together with any other build policy. Useful to make sure that any new change introduced in a dependency
is incorporated by building again the package.

• --build pattern* will build only the packages with the reference starting with “pattern”.

With the build_policy attribute in the conanfile.py the package creator can change the default Conan’s build behavior.
The allowed build_policy values are:

• missing: If no binary package is found, Conan will build it without the need to invoke Conan install with
--build missing option.

• always: The package will be built always, retrieving each time the source code executing the “source” method.

class PocoTimerConan(ConanFile):
settings = "os", "compiler", "build_type", "arch"
requires = "poco/1.9.4" # comma-separated list of requirements
generators = "cmake", "gcc", "txt"
default_options = {"poco:shared": True, "poco:shared": True}
build_policy = "always" # "missing"

These build policies are especially useful if the package creator doesn’t want to provide binary package; for example,
with header only libraries.

The always policy will retrieve the sources each time the package is installed, so it can be useful for providing a “latest”
mechanism or ignoring the uploaded binary packages.

The package pattern can be referred as a case-sensitive fnmatch pattern of the package name or the full package ref-
erence. e.g --build poco, --build poc*, --build zlib/*, --build *@conan/stable or --build zlib/1.
2.11.

11.3. Build policies 153

Conan Documentation, Release 1.31.4

11.4 Environment variables

There are several use cases for environment variables:

• Conan global configuration environment variables (e.g. CONAN_COMPRESSION_LEVEL). They can be configured
in conan.conf or as system environment variables, and control Conan behavior.

• Package recipes can access environment variables to determine their behavior. A typical example would be when
launching CMake. It will check for CC and CXX environment variables to define the compiler to use. These
variables are mostly transparent for Conan, and just used by the package recipes.

• Environment variables can be set in different ways:

– global, at the OS level, with export VAR=Value or in Windows SET VAR=Value.

– In the Conan command line: conan install -e VAR=Value.

– In profile files.

– In package recipes in the self.env_info field, so they are activated for dependent recipes.

11.4.1 Defining environment variables

You can use profiles to define environment variables that will apply to your recipes. You can also use -e parameter in
conan install, conan info and conan create commands.

[env]
CC=/usr/bin/clang
CXX=/usr/bin/clang++

If you want to override an environment variable that a package has inherited from its requirements, you can use either
profiles or -e to do it:

conan install . -e MyPackage:PATH=/other/path

If you want to define an environment variable, but you want to append the variables declared in your requirements, you
can use the [] syntax:

$ conan install . -e PATH=[/other/path]

This way the first entry in the PATH variable will be /other/path, but the PATH values declared in the requirements of
the project will be appended at the end using the system path separator.

11.4.2 Automatic environment variables inheritance

If your dependencies define some env_info variables in the package_info() method, they will be automatically
applied before calling the consumer conanfile.py methods source(), build(), package() and imports(). You can
read more about env_info object here.

For example, if you are creating a package for a tool, you can define the variable PATH:

class ToolExampleConan(ConanFile):
name = "my_tool_installer"
...

(continues on next page)

154 Chapter 11. Mastering Conan

Conan Documentation, Release 1.31.4

(continued from previous page)

def package_info(self):
self.env_info.path.append(os.path.join(self.package_folder, "bin"))

If another Conan recipe requires the my_tool_installer in the source(), build(), package() and imports(),
the bin folder of the my_tool_installer package will be automatically appended to the system PATH. If
my_tool_installer packages an executable called my_tool_executable in the bin of the package folder, we can
directly call the tool because it will be available in the path:

class MyLibExample(ConanFile):
name = "my_lib_example"
...

def build(self):
self.run(["my_tool_executable", "some_arguments"])

You could also set CC, CXX variables if we are packing a compiler to define what compiler to use or any other environ-
ment variable. Read more about tool packages here.

11.5 Virtual Environments

Conan offer three special Conan generators to create virtual environments:

• virtualenv: Declares the self.env_info variables of the requirements.

• virtualbuildenv: Special build environment variables for autotools/visual studio.

• virtualrunenv: Special environment variables to locate executables and shared libraries in the requirements.

These virtual environment generators create two executable script files (.sh or .bat depending on the current operating
system), one to activate the virtual environment (set the environment variables) and one to deactivate it.

You can aggregate two or more virtual environments, that means that you can activate a virtualenv and then acti-
vate a virtualrunenv so you will have available the environment variables declared in the env_info object of the
requirements plus the special environment variables to locate executables and shared libraries.

11.5.1 Virtualenv generator

Conan provides a virtualenv generator, able to read from each dependency the self.env_info variables declared in the
package_info()method and generate two scripts “activate” and “deactivate”. These scripts set/unset all env variables
in the current shell.

Example:

The recipe of cmake/3.16.3 appends to the PATH variable the package folder/bin.

You can check existing CMake conan package versions in conan-center with:

$ conan search cmake* -r=conan-center

In the bin folder there is a cmake executable:

def package_info(self):
self.env_info.path.append(os.path.join(self.package_folder, "bin"))

11.5. Virtual Environments 155

Conan Documentation, Release 1.31.4

Let’s prepare a virtual environment to have cmake available in the path. Open conanfile.txt and change (or add)
virtualenv generator:

[requires]
cmake/3.16.3

[generators]
virtualenv

Run conan install:

$ conan install .

You can also avoid the creation of the conanfile.txt completely and directly do:

$ conan install cmake/3.16.3 -g=virtualenv

Activate the virtual environment, and now you can run cmake --version to check that you have the installed CMake
in path.

$ source activate.sh # Windows: activate.bat without the source
$ cmake --version

Two sets of scripts are available on all platforms - activate.sh/deactivate.sh and activate.ps1/deactivate.
ps1 if you are using powershell. In addition Windows has activate.bat/deactivate.bat Deactivate the virtual
environment (or close the console) to restore the environment variables:

$ source deactivate.sh # Windows: deactivate.bat or deactivate.ps1 without the source

See also:

Read the Howto Create installer packages to learn more about the virtual environment feature. Check the section
Reference/virtualenv to see the generator reference.

11.5.2 Virtualbuildenv environment

Use the generator virtualbuildenv to activate an environment that will set the environment variables for Autotools
and Visual Studio.

The generator will create activate_build and deactivate_build files.

See also:

Read More about the building environment variables defined in the sections Building with autotools and Build with
Visual Studio.

Check the section Reference/virtualbuildenv to see the generator reference.

156 Chapter 11. Mastering Conan

Conan Documentation, Release 1.31.4

11.5.3 Virtualrunenv generator

Use the generator virtualrunenv to activate an environment that will:

• Append to PATH environment variable every bin folder of your requirements.

• Append to LD_LIBRARY_PATH and DYLD_LIBRARY_PATH environment variables each lib folder of your re-
quirements.

The generator will create activate_run and deactivate_run files. This generator is especially useful:

• If you are requiring packages with shared libraries and you are running some executable that needs those libraries.

• If you have a requirement with some tool (executable) and you need it in the path.

In the previous example of the cmake recipe, even if the cmake package doesn’t declare the self.env_info.path
variable, using the virtualrunenv generator, the bin folder of the package will be available in the PATH. So after
activating the virtual environment we could just run cmake in order to execute the package’s cmake.

See also:

• Reference/Tools/environment_append

11.6 Logging

11.6.1 How to log and debug a conan execution

You can use the CONAN_TRACE_FILE environment variable to log and debug several Conan command execution.
Set the CONAN_TRACE_FILE environment variable pointing to a log file.

Example:

export CONAN_TRACE_FILE=/tmp/conan_trace.log # Or SET in windows
conan install zlib/1.2.8@lasote/stable

The /tmp/conan_trace.log file:

{"_action": "COMMAND", "name": "install", "parameters": {"all": false, "build": null,
→˓"env": null, "file": null, "generator": null, "manifests": null, "manifests_interactive
→˓": null, "no_imports": false, "options": null, "package": null, "profile": null,
→˓"reference": "zlib/1.2.8@lasote/stable", "remote": null, "scope": null, "settings":␣
→˓null, "update": false, "verify": null, "werror": false}, "time": 1485345289.250117}
{"_action": "REST_API_CALL", "duration": 1.8255090713500977, "headers": {"Authorization
→˓": "**********", "X-Client-Anonymous-Id": "**********", "X-Client-Id": "lasote2", "X-
→˓Conan-Client-Version": "0.19.0-dev"}, "method": "GET", "time": 1485345291.092218, "url
→˓": "https://server.conan.io/v1/conans/zlib/1.2.8/lasote/stable/download_urls"}
{"_action": "DOWNLOAD", "duration": 0.4136989116668701, "time": 1485345291.506399, "url
→˓": "https://conanio-production.s3.amazonaws.com/storage/zlib/1.2.8/lasote/stable/
→˓export/conanmanifest.txt"}
{"_action": "DOWNLOAD", "duration": 0.10367798805236816, "time": 1485345291.610335, "url
→˓": "https://conanio-production.s3.amazonaws.com/storage/zlib/1.2.8/lasote/stable/
→˓export/conanfile.py"}
{"_action": "DOWNLOAD", "duration": 0.059114933013916016, "time": 1485345291.669744, "url
→˓": "https://conanio-production.s3.amazonaws.com/storage/zlib/1.2.8/lasote/stable/
→˓export/conan_export.tgz"}
{"_action": "DOWNLOADED_RECIPE", "_id": "zlib/1.2.8@lasote/stable", "duration": 2.

(continues on next page)

11.6. Logging 157

Conan Documentation, Release 1.31.4

(continued from previous page)

→˓40762996673584, "files": {"conan_export.tgz": "/home/laso/.conan/data/zlib/1.2.8/
→˓lasote/stable/export/conan_export.tgz", "conanfile.py": "/home/laso/.conan/data/zlib/1.
→˓2.8/lasote/stable/export/conanfile.py", "conanmanifest.txt": "/home/laso/.conan/data/
→˓zlib/1.2.8/lasote/stable/export/conanmanifest.txt"}, "remote": "conan.io", "time":␣
→˓1485345291.670017}
{"_action": "REST_API_CALL", "duration": 0.4844989776611328, "headers": {"Authorization
→˓": "**********", "X-Client-Anonymous-Id": "**********", "X-Client-Id": "lasote2", "X-
→˓Conan-Client-Version": "0.19.0-dev"}, "method": "GET", "time": 1485345292.160912, "url
→˓": "https://server.conan.io/v1/conans/zlib/1.2.8/lasote/stable/packages/
→˓c6d75a933080ca17eb7f076813e7fb21aaa740f2/download_urls"}
{"_action": "DOWNLOAD", "duration": 0.06388187408447266, "time": 1485345292.225308, "url
→˓": "https://conanio-production.s3.amazonaws.com/storage/zlib/1.2.8/lasote/stable/
→˓package/c6d75a933080ca17eb7f076813e7fb21aaa740f2/conaninfo.txt?
→˓Signature=c1KAOqvxtCUnnQOeYizZ9bgcwwY%3D&Expires=1485352492&
→˓AWSAccessKeyId=AKIAJXMWDMVCDMAZQK5Q"}
{"_action": "REST_API_CALL", "duration": 0.8182470798492432, "headers": {"Authorization
→˓": "**********", "X-Client-Anonymous-Id": "**********", "X-Client-Id": "lasote2", "X-
→˓Conan-Client-Version": "0.19.0-dev"}, "method": "GET", "time": 1485345293.044904, "url
→˓": "https://server.conan.io/v1/conans/zlib/1.2.8/lasote/stable/packages/
→˓c6d75a933080ca17eb7f076813e7fb21aaa740f2/download_urls"}
{"_action": "DOWNLOAD", "duration": 0.07849907875061035, "time": 1485345293.123831, "url
→˓": "https://conanio-production.s3.amazonaws.com/storage/zlib/1.2.8/lasote/stable/
→˓package/c6d75a933080ca17eb7f076813e7fb21aaa740f2/conanmanifest.txt"}
{"_action": "DOWNLOAD", "duration": 0.06638002395629883, "time": 1485345293.190465, "url
→˓": "https://conanio-production.s3.amazonaws.com/storage/zlib/1.2.8/lasote/stable/
→˓package/c6d75a933080ca17eb7f076813e7fb21aaa740f2/conaninfo.txt"}
{"_action": "DOWNLOAD", "duration": 0.3634459972381592, "time": 1485345293.554206, "url
→˓": "https://conanio-production.s3.amazonaws.com/storage/zlib/1.2.8/lasote/stable/
→˓package/c6d75a933080ca17eb7f076813e7fb21aaa740f2/conan_package.tgz"}
{"_action": "DOWNLOADED_PACKAGE", "_id": "zlib/1.2.8@lasote/
→˓stable:c6d75a933080ca17eb7f076813e7fb21aaa740f2", "duration": 1.3279249668121338,
→˓"files": {"conan_package.tgz": "/home/laso/.conan/data/zlib/1.2.8/lasote/stable/
→˓package/c6d75a933080ca17eb7f076813e7fb21aaa740f2/conan_package.tgz", "conaninfo.txt":
→˓"/home/laso/.conan/data/zlib/1.2.8/lasote/stable/package/
→˓c6d75a933080ca17eb7f076813e7fb21aaa740f2/conaninfo.txt", "conanmanifest.txt": "/home/
→˓laso/.conan/data/zlib/1.2.8/lasote/stable/package/
→˓c6d75a933080ca17eb7f076813e7fb21aaa740f2/conanmanifest.txt"}, "remote": "conan.io",
→˓"time": 1485345293.554466}

In the traces we can see:

1. A command install execution.

2. A REST API call to get some download_urls.

3. Three files downloaded (corresponding to the previously retrieved urls).

4. DOWNLOADED_RECIPE tells us that the recipe retrieving is finished. We can see that the whole retrieve process
took 2.4 seconds.

5. Conan client has computed the SHA for the needed binary package and will now retrieve it. So it will request
and download the package package_id file to perform some checks like outdated binaries.

6. Another REST API call to get some more download_urls, for the package files and download them.

7. Finally we get a DOWNLOADED_PACKAGE telling us that the package has been downloaded. The download took

158 Chapter 11. Mastering Conan

Conan Documentation, Release 1.31.4

1.3 seconds.

If we execute conan install again:

export CONAN_TRACE_FILE=/tmp/conan_trace.log # Or SET in windows
conan install zlib/1.2.8@lasote/stable

The /tmp/conan_trace.log file only three lines will be appended:

{"_action": "COMMAND", "name": "install", "parameters": {"all": false, "build": null,
→˓"env": null, "file": null, "generator": null, "manifests": null, "manifests_interactive
→˓": null, "no_imports": false, "options": null, "package": null, "profile": null,
→˓"reference": "zlib/1.2.8@lasote/stable", "remote": null, "scope": null, "settings":␣
→˓null, "update": false, "verify": null, "werror": false}, "time": 1485346039.817543}
{"_action": "GOT_RECIPE_FROM_LOCAL_CACHE", "_id": "zlib/1.2.8@lasote/stable", "time":␣
→˓1485346039.824949}
{"_action": "GOT_PACKAGE_FROM_LOCAL_CACHE", "_id": "zlib/1.2.8@lasote/
→˓stable:c6d75a933080ca17eb7f076813e7fb21aaa740f2", "time": 1485346039.827915}

1. A command install execution.

2. A GOT_RECIPE_FROM_LOCAL_CACHE because it’s already stored in local cache.

3. A GOT_PACKAGE_FROM_LOCAL_CACHE because the package is cached too.

11.6.2 How to log the build process

You can log your command executions self.run in a file named conan_run.log using the environment variable CO-
NAN_LOG_RUN_TO_FILE.

You can also use the variable CONAN_PRINT_RUN_COMMANDS to log extra information about the commands being
executed.

Package the log files

The conan_run.log file will be created in your build folder so you can package it the same way you package a library
file:

def package(self):
self.copy(pattern="conan_run.log", dst="", keep_path=False)

11.7 Sharing the settings and other configuration

If you are using Conan in a company or in an organization, sometimes you need to share the settings.yml file, the
profiles, or even the remotes or any other Conan local configuration with the team.

You can use the conan config install.

If you want to try this feature without affecting your current configuration, you can declare the CONAN_USER_HOME
environment variable and point to a different directory.

Read more in the section conan config install.

11.7. Sharing the settings and other configuration 159

Conan Documentation, Release 1.31.4

11.8 Conan local cache: concurrency, Continuous Integration, isola-
tion

Conan needs access to some per user configuration files, such as the conan.conf file that defines the basic client app
configuration. By convention, this file will be located in the user home folder ~/.conan/. This folder will also typically
store the package cache in ~/.conan/data. Even though the latter is configurable in conan.conf, Conan needs some
place to look for this initial configuration file.

There are some scenarios in which you might want to use different initial locations for the Conan client application:

• Continuous Integration (CI) environments, in which multiple jobs can also work concurrently. Moreover, these
environments would typically want to run with different user credentials, different remote configurations, etc.
Note that using Continuous Integration with the same user, with isolated machine instances (virtual machines),
or with sequential jobs is perfectly possible. For example, we use a lot CI cloud services of travis-ci and appveyor.

• Independent per project management and storage. If as a single developer you want to manage different projects
with different user credentials and/or different remotes, you might find that having multiple independent caches
makes it easier.

Using different caches is very simple. You can just define the environment variable CONAN_USER_HOME. By
setting this variable to different paths, you have multiple conan caches, something like python “virtualenvs”. Just
changing the value of CONAN_USER_HOME, you can switch among isolated Conan instances that will have inde-
pendent package storage caches, and also different user credentials, different user default settings, and different remotes
configuration.

Note: Use an absolute path or a path starting with ~/ (relative to user home). In Windows do not use quotes.

Windows users:

$ SET CONAN_USER_HOME=c:\data
$ conan install . # call conan normally, config & data will be in c:\data\.conan

Linux/macOS users:

$ export CONAN_USER_HOME=/tmp/conan
$ conan install . # call conan normally, config & data will be in /tmp/conan/.conan

You can now:

• Build concurrent jobs, parallel builds in Continuous Integration or locally, by just setting the variable before
launching Conan commands.

• You can test locally different user credentials, default configurations, or different remotes, just by switching from
one cache to another.

$ export CONAN_USER_HOME=/tmp/conan
$ conan search # using that /tmp/conan cache
$ conan user # using that /tmp/conan cache

$ export CONAN_USER_HOME=/tmp/conan2
$ conan search # different packages
$ conan user # can be different users

$ export CONAN_USER_HOME=/tmp/conan # just go back to use the other cache

160 Chapter 11. Mastering Conan

Conan Documentation, Release 1.31.4

11.8.1 Concurrency

Conan local cache support some degree of concurrency, allowing simultaneous creation or installation of different
packages, or building different binaries for the same package. However, concurrent operations like removal of packages
while creating them will fail. If you need different environments that operate totally independently, you probably want
to use different Conan caches for that.

The concurrency is implemented with a Readers-Writers lock mechanism, which in turn uses fasteners library file
locks to achieve multi-platform portability. As this “mutex” resource is by definition not enough to implement a
Readers-Writers solution, some active-wait with time sleeps in a loop is necessary. However, this time sleeps will
be rare, only sleeping when there is actually a collision and waiting on a lock.

The lock files will be stored inside each Pkg/version/user/channel folder in the local cache, in a rw file for locking
the entire package, or in a set of locks (one per each different binary package, under a subfolder called locks, with
each lock named with the binary ID of the package).

It is possible to disable the locking mechanism in conan.conf:

[general]
cache_no_locks = True

11.8.2 System Requirements

When system_requirements() runs, Conan creates the system_reqs folder. This folder could be created individ-
ually by package id or globally when global_system_requirements is True.

However, sometimes you want to run system_requirements() again for a specific package, so you could either
remove the system_reqs.txt file for the specific package id, or you could remove system_reqs globally for the package
name referred.

11.8. Conan local cache: concurrency, Continuous Integration, isolation 161

Conan Documentation, Release 1.31.4

162 Chapter 11. Mastering Conan

CHAPTER

TWELVE

SYSTEMS AND CROSS BUILDING

This section explains how to approach a cross building scenario with Conan and how the use the Windows subsystems
(Cygwin, MSYS2).

Todo: Maybe we should divide this section, create one for the general cross building problem and a different one to
talk about Windows subsystems.

12.1 Cross building

Cross building (or cross compilation) is the process of generating binaries for a platform that is not the one where the
compiling process is running.

Cross compilation is mostly used to build software for an alien device, such as an embedded device where you don’t
have an operating system nor a compiler available. It’s also used to build software for slower devices, like an Android
machine or a Raspberry Pi where running the native compilation will take too much time.

In order to cross build a codebase the right toolchain is needed, with a proper compiler (cross compiler), a linker and
the set of libraries matching the host platform.

12.1.1 GNU triplet convention

According to the GNU convention, there are three platforms involved in the software building:

• Build platform: The platform on which the compilation tools are being executed.

• Host platform: The platform on which the generated binaries will run.

• Target platform: Only when building a cross compiler, it is the platform it will generate binaries for.

Depending on the values of these platforms, there are different scenarios:

• Native building: when the build and the host platforms are the same, it means that the platform where the
compiler is running is the same one where the generated binaries will run. This is the most common scenario.

• Cross building: when the build and the host platform are different, it requires a cross compiler running in the
build platform that generates binaries for the host platform.

The target platform plays and important role when compiling a cross compiler, in that scenario the target is the
platform the compiler will generate binaries for: in order to be a cross compiler the host platform (where the cross
compiler will run) has to be different from the target platform. If the build platform is also different, it is called
Canadian Cross.

Let’s illustrate these scenarios with some examples:

163

Conan Documentation, Release 1.31.4

• The Android NDK is a cross compiler to Android: it can be executed in Linux (the build platform) to generate
binaries for Android (the host platform).

• The Android NDK was once compiled, during that compilation a different compiler was used running in a build
platform (maybe Windows) to generate the actual Android NDK that will run in the host platform Linux, and as
we saw before, that Android NDK cross compiler will generate binaries for a target platform which is Android.

The values of the build , host and target platforms are not absolute, and they depend on the process we are
talking about: the host when compiling a cross compiler turns into the build when using that same cross compiler,
or the target of the cross compiler is the host platform when we are using it to build binaries.

See also:

One way to avoid this complexity is to run the compilation in the host platform, so both build and host will take the
same value and it will be a native compilation. Docker is a very successful tool that can help you with this, read more
about it in this section.

12.1.2 Cross building with Conan

If you want to cross build a Conan package (for example using your Linux machine) to build the zlib Conan package
for Windows, you need to tell Conan where to find your toolchain/cross compiler.

There are two approaches:

• Using a profile: install the toolchain in your computer and use a profile to declare the settings and point to the
needed tools/libraries in the toolchain using the [env] section to declare, at least, the CC and CXX environment
variables.

• Using build requires: package the toolchain as a Conan package and include it as a build_requires.

Using a profile

Using a Conan profile we can declare not only the settings that will identify our binary (host settings), but also all
the environment variables needed to use a toolchain or cross compiler. The profile needs the following sections:

• A [settings] section containing the regular settings: os, arch, compiler and build_type depending on your
library. These settings will identify your binary.

• An [env] section with a PATH variable pointing to your installed toolchain. Also any other variable that the
toolchain expects (read the docs of your compiler). Some build systems need a variable SYSROOT to locate
where the host system libraries and tools are.

For example, in the following profile we declare the host platform to be Windows x86_64 with the compiler, version
and other settings we are using. And we add the [env] section with all the variables needed to use an installed toolchain:

toolchain=/usr/x86_64-w64-mingw32 # Adjust this path
target_host=x86_64-w64-mingw32
cc_compiler=gcc
cxx_compiler=g++

[env]
CONAN_CMAKE_FIND_ROOT_PATH=$toolchain # Optional, for CMake to find things in that␣
→˓folder
CONAN_CMAKE_SYSROOT=$toolchain # Optional, if we want to define sysroot
CHOST=$target_host
AR=$target_host-ar
AS=$target_host-as

(continues on next page)

164 Chapter 12. Systems and cross building

Conan Documentation, Release 1.31.4

(continued from previous page)

RANLIB=$target_host-ranlib
CC=$target_host-$cc_compiler
CXX=$target_host-$cxx_compiler
STRIP=$target_host-strip
RC=$target_host-windres

[settings]
We are cross-building to Windows
os=Windows
arch=x86_64
compiler=gcc

Adjust to the gcc version of your MinGW package
compiler.version=7.3
compiler.libcxx=libstdc++11
build_type=Release

You can find working examples at the bottom of this section.

Using build requires

Warning: This section refers to the experimental feature that is activated when using --profile:build and
--profile:host in the command-line. It is currently under development, features can be added or removed in
the following versions.

Instead of manually downloading the toolchain and creating a profile, you can create a Conan package with it. Starting
with Conan v1.24 and the command line arguments --profile:host and --profile:build this should be a regular
recipe, for older versions some more work is needed.

Conan v1.24 and newer

A recipe with a toolchain is like any other recipe with a binary executable:

import os
from conans import ConanFile

class MyToolchainXXXConan(ConanFile):
name = "my_toolchain"
version = "0.1"
settings = "os", "arch", "compiler", "build_type"

Implement source() and build() as usual

def package(self):
Copy all the required files for your toolchain
self.copy("*", dst="", src="toolchain")

def package_info(self):
bin_folder = os.path.join(self.package_folder, "bin")

(continues on next page)

12.1. Cross building 165

Conan Documentation, Release 1.31.4

(continued from previous page)

self.env_info.CC = os.path.join(bin_folder, "mycompiler-cc")
self.env_info.CXX = os.path.join(bin_folder, "mycompiler-cxx")
self.env_info.SYSROOT = self.package_folder

The Conan package with the toolchain needs to fill the env_info object in the package_info() method with the same
variables we’ve specified in the examples above in the [env] section of profiles.

Then you will need to consume this recipe as any regular build requires that belongs to the build context: you need
to use the --profile:build argument in the command line while creating your library:

conan create path/to/conanfile.py --profile:build=profile_build --profile:host=profile_
→˓host

The profile profile_build will contain just the settings related to your build platform, where you are running the
command, and the profile_host will list the settings for the host platform (and eventually the my_toolchain/0.1
as build_requires if it is not listed in the recipe itself).

Conan will apply the appropiate profile to each recipe, and will inject the environment of all the build requirements
that belong to the build context before running the build() method of the libraries being compiled. That way,
the environment variables CC, CXX and SYSROOT from my_toolchain/0.1 will be available and also the path to the
bindirs directory from that package.

The above means that Conan is able to compile the full graph in a single execution, it will compile the build re-
quires using the profile_build and then it will compile the libraries using the host_profile settings applying the
environment of the former ones.

Starting with Conan v1.25 (if the user provides the --profile:build) it is possible to get the relative context where
a recipe is running during a Conan invocation. The object instatiated from the recipe contains the following attributes:

• self.settings will always contain the settings corresponding to the binary to build/retrieve. It will contain
the settings from the profile profile_host when this recipe appears in the host context and the settings from
the profile profile:build if this object belongs to the build context.

• self.settings_build will always contain the settings provided in the profile profile_build, even if the
recipe appears in the build context, the build requirements of the build requirements are expected to run in the
build machine too.

166 Chapter 12. Systems and cross building

Conan Documentation, Release 1.31.4

• self.settings_target: for recipes in the host context this attribute will be equal to None, for those in the
build context, if will depend on the level of anidation:

– for recipes that are build requirements of packages in the host context, this attribute will contain the settings
from the profile profile_host, while

– for recipes that are build requirements of other build requirements the self.settings_target will con-
tain the values of the profile_build.

With previous attributes, a draft for a recipe that packages a cross compiler could follow this pattern:

class CrossCompiler(ConanFile):
name = "my_compiler"

settings = "os", "arch", "compiler", "build_type"
options = {"target": "ANY"}
default_options = {"shared": False, "target": None}

def configure(self):
settings_target = getattr(self, 'settings_target', None)
if settings_target is None:

It is running in 'host', so Conan is compiling this package
if not self.options.target:

raise ConanInvalidConfiguration("A value for option 'target' has to be␣
→˓provided")

else:
It is running in 'build' and it is being used as a BR, 'target' can be␣

→˓inferred from settings
if self.options.target:

raise ConanInvalidConfiguration("Value for the option 'target' will be␣
→˓computed from settings_target")

self.options.target = "<target-value>" # Use 'self.settings_target' to get␣
→˓this value

Conan older than v1.24

Warning: We ask you to use the previous approach for Conan 1.24 and newer, and avoid any specific modification
of your recipes to make them work as build requirements in a cross building scenario.

With this approach, only one profile is provided in the command line (the --profile:host or just --profile) and
it has to define the os_build and arch_build settings too. The recipe of this build requires has to be modified to
take into account these settings and the compiler and build_type settings have to be removed because their values
for the build platform are not defined in the profile:

from conans import ConanFile
import os

class MyToolchainXXXConan(ConanFile):
name = "my_toolchain"
version = "0.1"
settings = "os_build", "arch_build"

(continues on next page)

12.1. Cross building 167

Conan Documentation, Release 1.31.4

(continued from previous page)

As typically, this recipe doesn't declare 'compiler' and 'build_type',
the source() and build() methods need a custom implementation
def build(self):

Typically download the toolchain for the 'build' platform
url = "http://fake_url.com/installers/%s/%s/toolchain.tgz" % (os_build, os_arch)
tools.download(url, "toolchain.tgz")
tools.unzip("toolchain.tgz")

def package(self):
Copy all the required files for your toolchain
self.copy("*", dst="", src="toolchain")

def package_info(self):
bin_folder = os.path.join(self.package_folder, "bin")
self.env_info.PATH.append(bin_folder)
self.env_info.CC = os.path.join(bin_folder, "mycompiler-cc")
self.env_info.CXX = os.path.join(bin_folder, "mycompiler-cxx")
self.env_info.SYSROOT = self.package_folder

With this approach we also need to add the path to the binaries to the PATH environment variable. The one and only
profile has to include a [build_requires] section with the reference to our new packaged toolchain and it will also
contain a [settings] section with the regular settings plus the os_build and arch_build ones.

This approach requires a special profile, and it needs a modified recipe without the compiler and build_type settings,
Conan can still compile it from sources but it won’t be able to identify the binary properly and it can be really to tackle
if the build requirements has other Conan dependencies.

Host settings os_build, arch_build, os_target and arch_target

Warning: These settings are being reviewed and might be deprecated in the future, we encourage you to try
not to use them. If you need help with your use case, please open an issue in the Conan repository and we will help
you.

Before Conan v1.24 the recommended way to deal with cross building was to use some extra settings like os_build,
arch_build and os_target and arch_target. These settings have a special meaning for some Conan tools and build
helpers, but they also need to be listed in the recipes themselves creating a dedicated set of recipes for installers and tools
in general. This approach should be superseeded with the introduction in Conan 1.24 of the command line arguments
--profile:host and --profile:build that allow to declare two different profiles with all the information needed
for the corresponding platforms (see section above this one).

The meaning of those settings is the following:

• The settings os_build and arch_build identify the build platform according to the GNU convention triplet.
These settings are detected the first time you run Conan with the same values than the host settings, so by
default, we are doing native building. You will probably never need to change the value of this setting because
they describe where are you running Conan.

• The settings os_target and arch_target identify the target platform. If you are building a cross compiler,
these settings specify where the compiled code will run.

The rest of settings, as we already know, identify the host platform.

168 Chapter 12. Systems and cross building

https://github.com/conan-io/conan/issues

Conan Documentation, Release 1.31.4

12.1.3 ARM architecture reference

Remember that the Conan settings are intended to unify the different names for operating systems, compilers, architec-
tures etc.

Conan has different architecture settings for ARM: armv6, armv7, armv7hf, armv8. The “problem” with ARM archi-
tecture is that it’s frequently named in different ways, so maybe you are wondering what setting do you need to specify
in your case.

Here is a table with some typical ARM platforms:

Platform Conan setting
Raspberry PI 1 armv6
Raspberry PI 2 armv7 or armv7hf if we want to use the float point hard support
Raspberry PI 3 armv8 also known as armv64-v8a
Visual Studio armv7 currently Visual Studio builds armv7 binaries when you select ARM.
Android armbeabi-v7a armv7
Android armv64-v8a armv8
Android armeabi armv6 (as a minimal compatible, will be compatible with v7 too)

12.1.4 Examples

Examples using profiles

Linux to Windows

• Install the needed toolchain, in Ubuntu:

sudo apt-get install g++-mingw-w64 gcc-mingw-w64

• Create a file named linux_to_win64 with the contents:

toolchain=/usr/x86_64-w64-mingw32 # Adjust this path
target_host=x86_64-w64-mingw32
cc_compiler=gcc
cxx_compiler=g++

[env]
CONAN_CMAKE_FIND_ROOT_PATH=$toolchain # Optional, for CMake to find things in that␣
→˓folder
CONAN_CMAKE_SYSROOT=$toolchain # Optional, if we want to define sysroot
CHOST=$target_host
AR=$target_host-ar
AS=$target_host-as
RANLIB=$target_host-ranlib
CC=$target_host-$cc_compiler
CXX=$target_host-$cxx_compiler
STRIP=$target_host-strip
RC=$target_host-windres

[settings]
We are cross-building to Windows

(continues on next page)

12.1. Cross building 169

Conan Documentation, Release 1.31.4

(continued from previous page)

os=Windows
arch=x86_64
compiler=gcc

Adjust to the gcc version of your MinGW package
compiler.version=7.3
compiler.libcxx=libstdc++11
build_type=Release

• Clone an example recipe or use your own recipe:

git clone https://github.com/memsharded/conan-hello.git

• Call conan create using the created linux_to_win64

$ cd conan-hello && conan create . conan/testing --profile ../linux_to_win64
...
[50%] Building CXX object CMakeFiles/example.dir/example.cpp.obj
[100%] Linking CXX executable bin/example.exe
[100%] Built target example

A bin/example.exe for Win64 platform has been built.

Windows to Raspberry Pi (Linux/ARM)

• Install the toolchain: https://gnutoolchains.com/raspberry/ You can choose different versions of the GCC cross
compiler. Choose one and adjust the following settings in the profile accordingly.

• Create a file named win_to_rpi with the contents:

target_host=arm-linux-gnueabihf
standalone_toolchain=C:/sysgcc/raspberry
cc_compiler=gcc
cxx_compiler=g++

[settings]
os=Linux
arch=armv7 # Change to armv6 if you are using Raspberry 1
compiler=gcc
compiler.version=6
compiler.libcxx=libstdc++11
build_type=Release

[env]
CONAN_CMAKE_FIND_ROOT_PATH=$standalone_toolchain/$target_host
CONAN_CMAKE_SYSROOT=$standalone_toolchain/$target_host/sysroot
PATH=[$standalone_toolchain/bin]
CHOST=$target_host
AR=$target_host-ar
AS=$target_host-as
RANLIB=$target_host-ranlib
LD=$target_host-ld

(continues on next page)

170 Chapter 12. Systems and cross building

https://gnutoolchains.com/raspberry/

Conan Documentation, Release 1.31.4

(continued from previous page)

STRIP=$target_host-strip
CC=$target_host-$cc_compiler
CXX=$target_host-$cxx_compiler
CXXFLAGS=-I"$standalone_toolchain/$target_host/lib/include"

The profiles to target Linux are all very similar. You probably just need to adjust the variables declared at the top of
the profile:

• target_host: All the executables in the toolchain starts with this prefix.

• standalone_toolchain: Path to the toolchain installation.

• cc_compiler/cxx_compiler: In this case gcc/g++, but could be clang/clang++.

• Clone an example recipe or use your own recipe:

git clone https://github.com/memsharded/conan-hello.git

• Call conan create using the created profile.

$ cd conan-hello && conan create . conan/testing --profile=../win_to_rpi
...
[50%] Building CXX object CMakeFiles/example.dir/example.cpp.obj
[100%] Linking CXX executable bin/example
[100%] Built target example

A bin/example for Raspberry PI (Linux/armv7hf) platform has been built.

Windows to Windows CE

The Windows CE (WinCE) operating system is supported for CMake and MSBuild. Since WinCE depends on the
MSVC compiler, Visual Studio and the according Windows CE platform SDK for the WinCE device have to be installed
on the build host.

The os.platform defines the WinCE Platform SDK and is equal to the Platform in Visual Studio.

Some examples for Windows CE platforms:

• SDK_AM335X_SK_WEC2013_V310

• STANDARDSDK_500 (ARMV4I)

• Windows Mobile 5.0 Pocket PC SDK (ARMV4I)

• Toradex_CE800 (ARMV7)

The os.version defines the WinCE version and must be "5.0", "6.0" or "7.0".

CMake supports Visual Studio 2008 (compiler.version=9) and Visual Studio 2012 (compiler.version=11).

Example of an Windows CE conan profile:

[settings]
os=WindowsCE
os.version=8.0
os.platform=Toradex_CE800 (ARMV7)
arch=armv7
compiler=Visual Studio

(continues on next page)

12.1. Cross building 171

Conan Documentation, Release 1.31.4

(continued from previous page)

compiler.version=11

Release configuration
build_type=Release
compiler.runtime=MD

Note: Further information about CMake and WinCE can be found in the CMake documentation:

CMake - Cross Compiling for Windows CE

Linux/Windows/macOS to Android

Cross-building a library for Android is very similar to the previous examples, except the complexity of managing
different architectures (armeabi, armeabi-v7a, x86, arm64-v8a) and the Android API levels.

Download the Android NDK here and unzip it.

Note: If you are in Windows the process will be almost the same, but unzip the file in the root folder of your hard disk
(C:\) to avoid issues with path lengths.

Now you have to build a standalone toolchain. We are going to target the “arm” architecture and the Android API level
21. Change the --install-dir to any other place that works for you:

$ cd build/tools
$ python make_standalone_toolchain.py --arch=arm --api=21 --stl=libc++ --install-dir=/
→˓myfolder/arm_21_toolchain

Note: You can generate the standalone toolchain with several different options to target different architectures, API
levels etc.

Check the Android docs: standalone toolchain

To use the clang compiler, create a profile android_21_arm_clang. Once again, the profile is very similar to the
RPI one:

standalone_toolchain=/myfolder/arm_21_toolchain # Adjust this path
target_host=arm-linux-androideabi
cc_compiler=clang
cxx_compiler=clang++

[settings]
compiler=clang
compiler.version=5.0
compiler.libcxx=libc++
os=Android
os.api_level=21
arch=armv7
build_type=Release

(continues on next page)

172 Chapter 12. Systems and cross building

https://cmake.org/cmake/help/latest/manual/cmake-toolchains.7.html#cross-compiling-for-windows-ce
https://developer.android.com/ndk/downloads
https://developer.android.com/ndk/guides/standalone_toolchain
https://developer.android.com/ndk/guides/standalone_toolchain

Conan Documentation, Release 1.31.4

(continued from previous page)

[env]
CONAN_CMAKE_FIND_ROOT_PATH=$standalone_toolchain
CONAN_CMAKE_SYSROOT=$standalone_toolchain/sysroot
PATH=[$standalone_toolchain/bin]
CHOST=$target_host
AR=$target_host-ar
AS=$target_host-as
RANLIB=$target_host-ranlib
CC=$target_host-$cc_compiler
CXX=$target_host-$cxx_compiler
LD=$target_host-ld
STRIP=$target_host-strip
CFLAGS= -fPIE -fPIC -I$standalone_toolchain/include/c++/4.9.x
CXXFLAGS= -fPIE -fPIC -I$standalone_toolchain/include/c++/4.9.x
LDFLAGS= -pie

You could also use gcc using this profile arm_21_toolchain_gcc, changing the cc_compiler and cxx_compiler
variables, removing -fPIE flag and, of course, changing the [settings] to match the gcc toolchain compiler:

standalone_toolchain=/myfolder/arm_21_toolchain
target_host=arm-linux-androideabi
cc_compiler=gcc
cxx_compiler=g++

[settings]
compiler=gcc
compiler.version=4.9
compiler.libcxx=libstdc++
os=Android
os.api_level=21
arch=armv7
build_type=Release

[env]
CONAN_CMAKE_FIND_ROOT_PATH=$standalone_toolchain
CONAN_CMAKE_SYSROOT=$standalone_toolchain/sysroot
PATH=[$standalone_toolchain/bin]
CHOST=$target_host
AR=$target_host-ar
AS=$target_host-as
RANLIB=$target_host-ranlib
CC=$target_host-$cc_compiler
CXX=$target_host-$cxx_compiler
LD=$target_host-ld
STRIP=$target_host-strip
CFLAGS= -fPIC -I$standalone_toolchain/include/c++/4.9.x
CXXFLAGS= -fPIC -I$standalone_toolchain/include/c++/4.9.x
LDFLAGS=

• Clone, for example, the zlib library to try to build it to Android

12.1. Cross building 173

Conan Documentation, Release 1.31.4

git clone https://github.com/conan-community/conan-zlib.git

• Call conan create using the created profile.

$ cd conan-zlib && conan create . --profile=../android_21_arm_clang

...
-- Build files have been written to: /tmp/conan-zlib/test_package/build/
→˓ba0b9dbae0576b9a23ce7005180b00e4fdef1198
Scanning dependencies of target enough
[50%] Building C object CMakeFiles/enough.dir/enough.c.o
[100%] Linking C executable bin/enough
[100%] Built target enough
zlib/1.2.11 (test package): Running test()

A bin/enough for Android ARM platform has been built.

Examples using build requires

You can find one example on how to use build requires for cross-compiling to iOS in the iOS integration section in the
documentation.

See also:

• Check the Creating conan packages to install dev tools to learn more about how to create Conan packages for
tools.

• Check the mingw-installer build require recipe as an example of packaging a compiler.

—

See also:

Reference links

ARM

• https://developer.arm.com/documentation/dui0773/j/compiling-c-and-c—code/specifying-a-target-
architecture–processor–and-instruction-set

• https://developer.arm.com/documentation/dui0472/latest/compiler-command-line-options

ANDROID

• https://developer.android.com/ndk/guides/standalone_toolchain

VISUAL STUDIO

• https://docs.microsoft.com/en-us/visualstudio/msbuild/msbuild-command-line-reference?view=vs-2017

See also:

• See conan.conf file and Environment variables sections to know more.

• See AutoToolsBuildEnvironment build helper reference.

• See CMake build helper reference.

• See CMake cross-building wiki to know more about cross-building with CMake.

174 Chapter 12. Systems and cross building

https://github.com/conan-community/conan-mingw-installer/blob/master/conanfile.py
https://developer.arm.com/documentation/dui0773/j/compiling-c-and-c---code/specifying-a-target-architecture--processor--and-instruction-set
https://developer.arm.com/documentation/dui0773/j/compiling-c-and-c---code/specifying-a-target-architecture--processor--and-instruction-set
https://developer.arm.com/documentation/dui0472/latest/compiler-command-line-options
https://developer.android.com/ndk/guides/standalone_toolchain
https://docs.microsoft.com/en-us/visualstudio/msbuild/msbuild-command-line-reference?view=vs-2017
https://vtk.org/Wiki/CMake_Cross_Compiling

Conan Documentation, Release 1.31.4

12.2 Windows Subsystems

On Windows, you can run different subsystems that enhance the operating system with UNIX capabilities.

Conan supports MSYS2, CYGWIN, WSL and in general any subsystem that is able to run a bash shell.

Many libraries use these subsystems in order to use the Unix tools like the Autoconf suite that generates Makefiles.

The difference between MSYS2 and CYGWIN is that MSYS2 is oriented to the development of native Windows pack-
ages, while CYGWIN tries to provide a complete POSIX-like system to run any Unix application on it.

For that reason, we recommend the use of MSYS2 as a subsystem to be used with Conan.

12.2.1 Operation Modes

The MSYS2 and CYGWIN can be used with different operation modes:

• You can use them together with MinGW to build Windows-native software.

• You can use them together with any other compiler to build Windows-native software, even with Visual Studio.

• You can use them with MinGW to build specific software for the subsystem, with a dependency to a runtime
DLL (msys-2.0.dll and cygwin1.dll)

If you are building specific software for the subsystem, you have to specify a value for the setting os.subsystem, if
you are only using the subsystem for taking benefit of the UNIX tools but generating native Windows software, you
shouldn’t specify it.

12.2.2 Running commands inside the subsystem

self.run()

In a Conan recipe, you can use the self.run method specifying the parameter win_bash=True that will call auto-
matically to the tool tools.run_in_windows_bash.

It will use the bash in the path or the bash specified for the environment variable CONAN_BASH_PATH to run the
specified command.

Conan will automatically escape the command to match the detected subsystem. If you also specify the msys_mingw
parameter to False, and the subsystem is MSYS2 it will run in Windows-native mode, the compiler won’t link against
the msys-2.0.dll.

AutoToolsBuildEnvironment

In the constructor of the build helper, you have the win_bash parameter. Set it to True to run the configure and
make commands inside a bash.

12.2. Windows Subsystems 175

Conan Documentation, Release 1.31.4

12.2.3 Controlling the build environment

Building software in a Windows subsystem for a different compiler than MinGW can sometimes be painful. The reason
is how the subsystem finds your compiler/tools in your system.

For example, the icu library requires Visual Studio to be built in Windows, but also a subsystem able to build the
Makefile. A very common problem and example of the pain is the link.exe program. In the Visual Studio suite,
link.exe is the linker, but in the MSYS2 environment the link.exe is a tool to manage symbolic links.

Conan is able to prioritize the tools when you use build_requires, and put the tools in the PATH in the right order.

There are some packages you can use as build_requires:

• From Conan-center:

– mingw_installer/1.0@conan/stable: MinGW compiler installer as a Conan package.

– msys2/20190524@: MSYS2 subsystem as a Conan package (Conan Center Index).

– cygwin_installer/2.9.0@bincrafters/stable: Cygwin subsystem as a Conan package.

For example, create a profile and name it msys2_mingw with the following contents:

[build_requires]
mingw_installer/1.0@conan/stable
msys2/20190524

[settings]
os_build=Windows
os=Windows
arch=x86_64
arch_build=x86_64
compiler=gcc
compiler.version=4.9
compiler.exception=seh
compiler.libcxx=libstdc++11
compiler.threads=posix
build_type=Release

Then you can have a conanfile.py that can use self.run() with win_bash=True to run any command in a bash
terminal or use the AutoToolsBuildEnvironment to invoke configure/make in the subsystem:

from conans import ConanFile
import os

class MyToolchainXXXConan(ConanFile):
name = "mylib"
version = "0.1"
...

def build(self):
self.run("some_command", win_bash=True)

env_build = AutoToolsBuildEnvironment(self, win_bash=True)
env_build.configure()
env_build.make()

(continues on next page)

176 Chapter 12. Systems and cross building

http://site.icu-project.org

Conan Documentation, Release 1.31.4

(continued from previous page)

...

Apply the profile in your recipe to create a package using the MSYS2 and MINGW:

$ conan create . user/testing --profile msys2_mingw

As we included in the profile the MinGW and then the MSYS2 build_require, when we run a command, the PATH will
contain first the MinGW tools and finally the MSYS2.

What could we do with the Visual Studio issue with link.exe? You can pass an additional parameter to
run_in_windows_bash with a dictionary of environment variables to have more priority than the others:

def build(self):
...
vs_path = tools.vcvars_dict(self)["PATH"] # Extract the path from the vcvars_dict␣

→˓tool
tools.run_in_windows_bash(self, command, env={"PATH": vs_path})

So you will get first the link.exe from the Visual Studio.

Also, Conan has a tool tools.remove_from_path that you can use in a recipe to temporarily remove a tool from the
path if you know that it can interfere with your build script:

class MyToolchainXXXConan(ConanFile):
name = "mylib"
version = "0.1"
...

def build(self):
with tools.remove_from_path("link"):

Call something
self.run("some_command", win_bash=True)

...

12.2. Windows Subsystems 177

Conan Documentation, Release 1.31.4

178 Chapter 12. Systems and cross building

CHAPTER

THIRTEEN

EXTENDING CONAN

This section provides an introduction to extension capabilities of Conan:

13.1 Customizing settings

There is a file in <userhome>/.conan/settings.yml that contains a default definition of the allowed settings values
for Conan package recipes. It looks like:

os:
Windows:

subsystem: [None, cygwin, msys, msys2, wsl]
Linux:
Macos:

version: [None, "10.6", "10.7", "10.8", "10.9", "10.10", "10.11", "10.12", "10.13
→˓", "10.14"]
Android:

api_level: ANY
iOS:

version: ["7.0", "7.1", "8.0", "8.1", "8.2", "8.3", "9.0", "9.1", "9.2", "9.3",
→˓"10.0", "10.1", "10.2", "10.3", "11.0", "11.1", "11.2", "11.3", "11.4", "12.0", "12.1"]
watchOS:

version: ["4.0", "4.1", "4.2", "4.3", "5.0", "5.1"]
FreeBSD:
SunOS:
Emscripten:

arch: [x86, x86_64, ppc32, ppc64le, ppc64, armv4, armv4i, armv5el, armv5hf, armv6, armv7,
→˓ armv7hf, armv7s, armv7k, armv8, armv8_32, armv8.3, sparc, sparcv9, mips, mips64, avr,␣
→˓s390, s390x, asm.js, wasm]
compiler:

gcc:
version: ["4.1", "4.4", "4.5", "4.6", "4.7", "4.8", "4.9",

"5", "5.1", "5.2", "5.3", "5.4", "5.5",
"6", "6.1", "6.2", "6.3", "6.4",
"7", "7.1", "7.2", "7.3",
"8", "8.1", "8.2",
"9"]

libcxx: [libstdc++, libstdc++11]
threads: [None, posix, win32] # Windows MinGW
exception: [None, dwarf2, sjlj, seh] # Windows MinGW
cppstd: [None, 98, gnu98, 11, gnu11, 14, gnu14, 17, gnu17, 20, gnu20]

(continues on next page)

179

Conan Documentation, Release 1.31.4

(continued from previous page)

Visual Studio:
runtime: [MD, MT, MTd, MDd]
version: ["8", "9", "10", "11", "12", "14", "15", "16"]
toolset: [None, v90, v100, v110, v110_xp, v120, v120_xp,

v140, v140_xp, v140_clang_c2, LLVM-vs2012, LLVM-vs2012_xp,
LLVM-vs2013, LLVM-vs2013_xp, LLVM-vs2014, LLVM-vs2014_xp,
LLVM-vs2017, LLVM-vs2017_xp, v141, v141_xp, v141_clang_c2, v142,
llvm, ClangCL]

cppstd: [None, 14, 17, 20]

This are the default settings and values. They are a common syntax and notation for having package binary IDs that
are common to all developers. They are also used for validation, for example if you write in a profile [settings]
something like os=Windos (note the typo), then it will raise an error, telling you it is not a recognized os and offering
a list of available os. Also, note how the sub-settings are different for different platforms, for example the standard
C++ library (compiler.libcxx) exists for the gcc compiler, but not for Visual Studio compiler. And in the same
way, Visual Studio has a runtime sub-setting that is missing in gcc. Trying to incorrectly use or define these
sub-settings in the wrong compiler will also raise an error.

These settings are good for defining a base for Open Source packages, and for a large number of mainstream configu-
rations. But it is likely that you might need finer detail of definition of the binaries that are being created.

For example, it is possible that you are managing binaries for older Linux distros, like RHEL 6, or old Centos, besides
other modern distributions. The problem is that the binaries compiled for modern distributions will not work (will not
be binary compatible, or ABI incompatible) in those older distributions, mainly because of different versions of glibc.
We would need a way to model the differences of the binaries for those platforms. Check out the section Deployment
challenges which explains mentioned situation in detail.

13.1.1 Adding new settings

It is possible to add new settings at the root of the settings.yml file, something like:

os:
Windows:

subsystem: [None, cygwin, msys, msys2, wsl]
distro: [None, RHEL6, CentOS, Debian]

If we want to create different binaries from our recipes defining this new setting, we would need to add to our recipes
that:

class Pkg(ConanFile):
settings = "os", "compiler", "build_type", "arch", "distro"

The value None allows for not defining it (which would be a default value, valid for all other distros). It is possible to
define values for it in the profiles:

[settings]
os = "Linux"
distro = "CentOS"
compiler = "gcc"

And use their values to affect our build if desired:

180 Chapter 13. Extending Conan

Conan Documentation, Release 1.31.4

class Pkg(ConanFile):
settings = "os", "compiler", "build_type", "arch", "distro"

def build(self):
cmake = CMake(self)
if self.settings.distro == "CentOS":

cmake.definitions["SOME_CENTOS_FLAG"] = "Some CentOS Value"
...

13.1.2 Adding new sub-settings

The above approach requires modification to all recipes to take it into account. It is also possible to define kind of
incompatible settings, like os=Windows and distro=CentOS. While adding new settings is totally possible, it might
make more sense for other cases, but for this example it is more adequate to add it as above subsetting of the Linux
OS:

os:
Windows:

subsystem: [None, cygwin, msys, msys2, wsl]
Linux:

distro: [None, RHEL6, CentOS, Debian]

With this definition we could define our profiles as:

[settings]
os = "Linux"
os.distro = "CentOS"
compiler = "gcc"

And any attempt to define os.distro for another os value rather than Linux will raise an error.

As this is a subsetting, it will be automatically taken into account in all recipes that declare an os setting. Note that
having a value of distro=None possible is important if you want to keep previously created binaries, otherwise you
would be forcing to always define a specific distro value, and binaries created without this subsetting, won’t be usable
anymore.

The sub-setting can also be accessed from recipes:

class Pkg(ConanFile):
settings = "os", "compiler", "build_type", "arch" # Note, no "distro" defined here

def build(self):
cmake = CMake(self)
if self.settings.os == "Linux" and self.settings.os.distro == "CentOS":

cmake.definitions["SOME_CENTOS_FLAG"] = "Some CentOS Value"

13.1. Customizing settings 181

Conan Documentation, Release 1.31.4

13.1.3 Add new values

In the same way we have added a new distro subsetting, it is possible to add new values to existing settings and
subsettings. For example, if some compiler version is not present in the range of accepted values, you can add those
new values.

You can also add a completely new compiler:

os:
Windows:

subsystem: [None, cygwin, msys, msys2, wsl]
...

compiler:
gcc:

...
mycompiler:

version: [1.1, 1.2]
Visual Studio:

This works as the above regarding profiles, and the way they can be accessed from recipes. The main issue with
custom compilers is that the builtin build helpers, like CMake, MSBuild, etc, internally contains code that will check
for those values. For example, the MSBuild build helper will only know how to manage the Visual Studio setting
and sub-settings, but not the new compiler. For those cases, custom logic can be implemented in the recipes:

class Pkg(ConanFile):
settings = "os", "compiler", "build_type", "arch"

def build(self):
if self.settings.compiler == "mycompiler":

my_custom_compile = ["some", "--flags", "for", "--my=compiler"]
self.run(["mycompiler", "."] + my_custom_compile)

Note: You can also remove items from settings.yml file. You can remove compilers, OS, architectures, etc. Do that
only in the case you really want to protect against creation of binaries for other platforms other than your main supported
ones. In the general case, you can leave them, the binary configurations are managed in profiles, and you want to define
your supported configurations in profiles, not by restricting the settings.yml

Note: If you customize your settings.yml, you can share, distribute and sync this configuration with your team and CI
machines with the conan config install command.

13.2 Python requires

Warning: This is an experimental feature subject to breaking changes in future releases.

Note: This syntax supersedes the legacy python_requires() syntax. The most important changes are:

• These new python_requires affect the consumers package_id. So different binaries can be managed, and CI
systems can re-build affected packages according to package ID modes and versioning policies.

182 Chapter 13. Extending Conan

Conan Documentation, Release 1.31.4

• The syntax defines a class attribute instead of a module function call, so recipes are cleaner and more aligned
with other types of requirements.

• The new python_requires will play better with lockfiles and deterministic dependency graphs.

• They are able to extend base classes more naturally without conflicts of ConanFile classes.

13.2.1 Introduction

The python_requires feature is a very convenient way to share files and code between different recipes. A python
requires is similar to any other recipe, it is the way it is required from the consumer what makes the difference.

A very simple recipe that we want to reuse could be:

from conans import ConanFile

myvar = 123

def myfunct():
return 234

class Pkg(ConanFile):
pass

And then we will make it available to other packages with conan export. Note that we are not calling conan create,
because this recipe doesn’t have binaries. It is just the python code that we want to reuse.

$ conan export . pyreq/0.1@user/channel

We can reuse the above recipe functionality declaring the dependency in the python_requires attribute and we can
access its members using self.python_requires["<name>"].module:

from conans import ConanFile

class Pkg(ConanFile):
python_requires = "pyreq/0.1@user/channel"

def build(self):
v = self.python_requires["pyreq"].module.myvar # v will be 123
f = self.python_requires["pyreq"].module.myfunct() # f will be 234
self.output.info("%s, %s" % (v, f))

$ conan create . pkg/0.1@user/channel
...
pkg/0.1@user/channel: 123, 234

It is also possible to require more than one python-require, and use the package name to address the functionality:

from conans import ConanFile

class Pkg(ConanFile):
python_requires = "pyreq/0.1@user/channel", "other/1.2@user/channel"

(continues on next page)

13.2. Python requires 183

Conan Documentation, Release 1.31.4

(continued from previous page)

def build(self):
v = self.python_requires["pyreq"].module.myvar # v will be 123
f = self.python_requires["other"].module.otherfunc("some-args")

13.2.2 Extending base classes

A common use case would be to declare a base class with methods we want to reuse in several recipes via inheritance.
We’d write this base class in a python-requires package:

from conans import ConanFile

class MyBase(object):
def source(self):

self.output.info("My cool source!")
def build(self):

self.output.info("My cool build!")
def package(self):

self.output.info("My cool package!")
def package_info(self):

self.output.info("My cool package_info!")

class PyReq(ConanFile):
name = "pyreq"
version = "0.1"

And make it available for reuse with:

$ conan export . pyreq/0.1@user/channel

Note that there are two classes in the recipe file:

• MyBase is the one intended for inheritance and doesn’t extend ConanFile.

• PyReq is the one that defines the current package being exported, it is the recipe for the reference pyreq/0.
1@user/channel.

Once the package with the base class we want to reuse is available we can use it in other recipes to inherit the function-
ality from that base class. We’d need to declare the python_requires as we did before and we’d need to tell Conan
the base classes to use in the attribute python_requires_extend. Here our recipe will inherit from the class MyBase:

from conans import ConanFile

class Pkg(ConanFile):
python_requires = "pyreq/0.1@user/channel"
python_requires_extend = "pyreq.MyBase"

The resulting inheritance is equivalent to declare our Pkg class as class Pkg(pyreq.MyBase, ConanFile). So
creating the package we can see how the methods from the base class are reused:

$ conan create . pkg/0.1@user/channel
...
pkg/0.1@user/channel: My cool source!
pkg/0.1@user/channel: My cool build!

(continues on next page)

184 Chapter 13. Extending Conan

Conan Documentation, Release 1.31.4

(continued from previous page)

pkg/0.1@user/channel: My cool package!
pkg/0.1@user/channel: My cool package_info!
...

If there is extra logic needed to extend from a base class, like composing the base class settings with the current recipe,
the init() method can be used for it:

class PkgTest(ConanFile):
license = "MIT"
settings = "arch", # tuple!
python_requires = "base/1.1@user/testing"
python_requires_extend = "base.MyConanfileBase"

def init(self):
base = self.python_requires["base"].module.MyConanfileBase
self.settings = base.settings + self.settings # Note, adding 2 tuples = tuple
self.license = base.license # License is overwritten

For more information about the init() method visit init()

Limitations

There are a few limitations that should be taken into account:

• name and version fields shouldn’t be inherited. set_name() and set_version() might be used.

• short_paths cannot be inherited from a python_requires. Make sure to specify it directly in the recipes that
need the paths shortened in Windows.

• exports, exports_sources shouldn’t be inherited from a base class, but explictly defined directly in the
recipes. A reusable alternative might be using the SCM component.

• build_policy shouldn’t be inherited from a base class, but explictly defined directly in the recipes.

13.2.3 Reusing files

It is possible to access the files exported by a recipe that is used with python_requires. We could have this recipe,
together with a myfile.txt file containing the “Hello” text.

from conans import ConanFile

class PyReq(ConanFile):
exports = "*"

$ echo "Hello" > myfile.txt
$ conan export . pyreq/0.1@user/channel

Now the recipe has been exported, we can access its path (the place where myfile.txt is) with the path attribute:

import os
from conans import ConanFile, load

class Pkg(ConanFile):
(continues on next page)

13.2. Python requires 185

Conan Documentation, Release 1.31.4

(continued from previous page)

python_requires = "pyreq/0.1@user/channel"

def build(self):
pyreq_path = self.python_requires["pyreq"].path
myfile_path = os.path.join(pyreq_path, "myfile.txt")
content = load(myfile_path) # content = "Hello"
self.output.info(content)
we could also copy the file, instead of reading it

Note that only exports work for this case, but not exports_sources.

13.2.4 PackageID

The python-requires will affect the package_id of the packages using those dependencies. By default, the policy
is minor_mode, which means:

• Changes to the patch version of a python-require will not affect the package ID. So depending on "pyreq/1.
2.3" or "pyreq/1.2.4" will result in identical package ID (both will be mapped to "pyreq/1.2.Z" in the
hash computation). Bump the patch version if you want to change your common code, but you don’t want the
consumers to be affected or to fire a re-build of the dependants.

• Changes to the minor or major version will produce a different package ID. So if you depend on "pyreq/1.
2.3", and you bump the version to "pyreq/1.3.0", then, you will need to build new binaries that are using
that new python-require. Bump the minor or major version if you want to make sure that packages requiring this
python-require will be built using these changes in the code.

• Both changing the minor and major requires a new package ID, and then a build from source. You could use
changes in the minor to indicate that it should be source compatible, and consumers wouldn’t need to do changes,
and changes in the major for source incompatible changes.

As with the regular requires, this default can be customized. First you can customize it at attribute global
level, modifying the conan.conf [general] variable default_python_requires_id_mode, which can take
the values unrelated_mode, semver_mode, patch_mode, minor_mode, major_mode, full_version_mode,
full_recipe_mode and recipe_revision_mode.

For example, if you want to make the package IDs never be affected by any change in the versions of python-requires,
you could do:

Listing 1: conan.conf configuration file

[general]
default_python_requires_id_mode=unrelated_mode

Read more about these modes in Using package_id() for Package Dependencies.

It is also possible to customize the effect of python_requires per package, using the package_id() method:

from conans import ConanFile

class Pkg(ConanFile):
python_requires ="pyreq/[>=1.0]"
def package_id(self):

self.info.python_requires.patch_mode()

186 Chapter 13. Extending Conan

Conan Documentation, Release 1.31.4

13.2.5 Resolution of python-requires

There are few things that should be taken into account when using python-requires:

• Python requires recipes are loaded by the interpreter just once, and they are common to all consumers. Do not
use any global state in the python-requires recipes.

• Python requires are private to the consumers. They are not transitive. Different consumers can require different
versions of the same python-require.

• python-requires can use version ranges expressions.

• python-requires can python-require other recipes too, but this should probably be limited to very few
cases, we recommend to use the simplest possible structure.

• python-requires can conflict if they require other recipes and create conflicts in different versions.

• python-requires cannot use regular requires or build_requires.

• It is possible to use python-requires without user and channel.

• python-requires can use native python import to other python files, as long as these are exported together
with the recipe.

• python-requires should not create packages, but use export only.

• python-requires can be used as editable packages too.

• python-requires are locked in lockfiles.

13.3 Python requires (legacy)

Warning: This feature has been superseded by the new Python requires. Even if this is an experimental feature
subject to breaking changes in future releases, this legacy python_requires syntax has not been removed yet, but
it will be removed in Conan 2.0.

The python_requires() feature is a very convenient way to share files and code between different recipes. A Python
Requires is just like any other recipe, it is the way it is required from the consumer what makes the difference.

The Python Requires recipe file, besides exporting its own required sources, can export files to be used by the consumer
recipes and also python code in the recipe file itself.

Let’s have a look at an example showing all its capabilities (you can find all the sources in Conan examples repository):

• Python requires recipe:

import os
import shutil
from conans import ConanFile, CMake, tools
from scm_utils import get_version

class PythonRequires(ConanFile):
name = "pyreq"
version = "version"

exports = "scm_utils.py"
(continues on next page)

13.3. Python requires (legacy) 187

https://github.com/conan-io/examples/tree/master/features/

Conan Documentation, Release 1.31.4

(continued from previous page)

exports_sources = "CMakeLists.txt"

def get_conanfile():

class BaseConanFile(ConanFile):

settings = "os", "compiler", "build_type", "arch"
options = {"shared": [True, False]}
default_options = {"shared": False}
generators = "cmake"
exports_sources = "src/*"

def source(self):
Copy the CMakeLists.txt file exported with the python requires
pyreq = self.python_requires["pyreq"]
shutil.copy(src=os.path.join(pyreq.exports_sources_folder,

→˓"CMakeLists.txt"),
dst=self.source_folder)

Rename the project to match the consumer name
tools.replace_in_file(os.path.join(self.source_folder,

→˓"CMakeLists.txt"),
"add_library(mylibrary ${sources})",
"add_library({} ${{sources}})".

→˓format(self.name))

def build(self):
cmake = CMake(self)
cmake.configure()
cmake.build()

def package(self):
self.copy("*.h", dst="include", src="src")
self.copy("*.lib", dst="lib", keep_path=False)
self.copy("*.dll", dst="bin", keep_path=False)
self.copy("*.dylib*", dst="lib", keep_path=False)
self.copy("*.so", dst="lib", keep_path=False)
self.copy("*.a", dst="lib", keep_path=False)

def package_info(self):
self.cpp_info.libs = [self.name]

return BaseConanFile

• Consumer recipe

from conans import ConanFile, python_requires

base = python_requires("pyreq/version@user/channel")
(continues on next page)

188 Chapter 13. Extending Conan

Conan Documentation, Release 1.31.4

(continued from previous page)

class ConsumerConan(base.get_conanfile()):
name = "consumer"
version = base.get_version()

Everything else is inherited

We must make available for other to use the recipe with the Python Requires, this recipe won’t have any associated
binaries, only the sources will be needed, so we only need to execute the export and upload commands:

$ conan export . pyreq/version@user/channel
$ conan upload pyreq/version@user/channel -r=myremote

Now any consumer will be able to reuse the business logic and files available in the recipe, let’s have a look at the most
common use cases.

13.3.1 Import a python requires

To import a recipe as a Python requires it is needed to call the python_requires() function with the reference as the
only parameter:

base = python_requires("pyreq/version@user/channel")

All the code available in the conanfile.py file of the imported recipe will be available in the consumer through the base
variable.

Important: There are several important considerations regarding python_requires():

• They are required at every step of the conan commands. If you are creating a package that
python_requires("MyBase/..."), the MyBase package should be already available in the local cache or
to be downloaded from the remotes. Otherwise, conan will raise a “missing package” error.

• They do not affect the package binary ID (hash). Depending on different version, or different channel of such
python_requires() do not change the package IDs as the normal dependencies do.

• They are imported only once. The python code that is reused is imported only once, the first time it is required.
Subsequent requirements of that conan recipe will reuse the previously imported module. Global initialization
at parsing time and global state are discouraged.

• They are transitive. One recipe using python_requires() can be also consumed with a python_requires()
from another package recipe.

• They are not automatically updated with the --update argument from remotes.

• Different packages can require different versions in their python_requires(). They are private to each recipe,
so they do not conflict with each other, but it is the responsibility of the user to keep consistency.

• They are not overridden from downstream consumers. Again, as they are private, they are not affected by other
packages, even consumers

13.3. Python requires (legacy) 189

Conan Documentation, Release 1.31.4

13.3.2 Reuse python sources

In the example proposed we are using two functions through the base variable: base.get_conanfile() and base.
get_version(). The first one is defined directly in the conanfile.py file, but the second one is in a different source
file that was exported together with the pyreq/version@user/channel recipe using the exports attribute.

This works without any Conan magic, it is just plain Python and you can even return a class from a function and inherit
from it. That’s just what we are proposing in this example: all the business logic in contained in the Python Requires
so every recipe will reuse it automatically. The consumer only needs to define the name and version:

from conans import ConanFile, python_requires

base = python_requires("pyreq/version@user/channel")

class ConsumerConan(base.get_conanfile()):
name = "consumer"
version = "version"

Everything else is inherited

while all the functional code is defined in the python requires recipe file:

from conans import ConanFile, python_requires

[...]

def get_conanfile():

class BaseConanFile(ConanFile):
def source(self):

[...]

def build(self):
[...]

13.3.3 Reuse source files

Up to now, we have been reusing python code, but we can also package files within the python requires recipe and
consume them afterward, that’s what we are doing with a CMakeList.txt file, it will allow us to share the CMake code
and ensure that all the libraries using the same python requires will have the same build script. These are the relevant
code snippets from the example files:

• The python requires exports the needed sources (the file exists next to this conanfile.py):

class PythonRequires(ConanFile):
name = "pyreq"
version = "version"

exports_sources = "CMakeLists.txt"

[...]

190 Chapter 13. Extending Conan

Conan Documentation, Release 1.31.4

The file will be exported together with the recipe pyreq/version@user/channel during the call to conan
export . pyreq/version@user/channel as it is expected for any Conan package.

• The consumer recipe will copy the file from the python requires folder, we need to make this copy ourselves,
there is nothing run automatically during the python_requires() call:

class BaseConanFile(ConanFile):
[...]

def source(self):
Copy the CMakeLists.txt file exported with the python requires
pyreq = self.python_requires["pyreq"]
shutil.copy(src=os.path.join(pyreq.exports_sources_folder,

→˓"CMakeLists.txt"),
dst=self.source_folder)

Rename the project to match the consumer name
tools.replace_in_file(os.path.join(self.source_folder, "CMakeLists.

→˓txt"),
"add_library(mylibrary ${sources})",
"add_library({} ${{sources}})".format(self.

→˓name))

As you can see, in the inherited source() method, we are copying the CMakeLists.txt file from the ex-
ports_sources folder of the python requires (take a look at the python_requires attribute), and modifying a line
to name the library with the current recipe name.

In the example, our ConsumerConan class will also inherit the build(), package() and package_info()
method, turning the actual conanfile.py of the library into a mere declaration of the name and version.

You can find the full example in the Conan examples repository.

13.4 Creating a custom build helper for Conan

If Conan doesn’t have a build helper for the build tool you are using, you can create a custom build helper with the
Python requires. You can create a package defining the build helper for that build tool and reuse it later in the consumers
importing the build helper as a Python requires.

As you probably know, build helpers are wrappers of the build tool that help with the conversion of the Conan settings
to the build tool’s ones. They assist users with the compilation of libraries and applications in the build() method of a
recipe.

As an example, we are going to create a minimal implementation of a build helper for the Waf build system . First, we
need to create a recipe for the python_requires that will export waf_environment.py, where all the implementation
of the build helper is.

from conans import ConanFile
from waf_environment import WafBuildEnvironment

class PythonRequires(ConanFile):
name = "waf-build-helper"
version = "0.1"
exports = "waf_environment.py"

13.4. Creating a custom build helper for Conan 191

https://github.com/conan-io/examples/tree/master/features/
https://waf.io/

Conan Documentation, Release 1.31.4

As we said, the build helper is responsible for translating Conan settings to something that the build tool understands.
That can be passing arguments through the command line when invoking the tool or creating files that will take as an
input. In this case, the build helper for Waf will create one file named waf_toolchain.py that will contain linker and
compiler flags based on the Conan settings.

To pass that information to Waf in the file, you have to modify its configuration environment through the conf.env
variable setting all the relevant flags. We will also define a configure and a build method. Let’s see how the most
important parts of waf_environment.py file that defines the build helper could look. In this case, for simplification, the
build helper will only add flags depending on the conan setting value for the build_type.

class WafBuildEnvironment(object):
def __init__(self, conanfile):

self._conanfile = conanfile
self._settings = self._conanfile.settings

def build_type_flags(self, settings):
if "Visual Studio" in self._compiler:

if self._build_type == "Debug":
return ['/Zi', '/FS']

elif self._build_type == "Release":
return ['/O2']

else:
if self._build_type == "Debug":

return ['-g']
elif self._build_type == "Release":

return ['-O3']

def _toolchain_content(self):
sections = []
sections.append("def configure(conf):")
sections.append(" conf.env.CXXFLAGS = conf.env.CXXFLAGS or []")
_build_type_flags = build_type_flags(self._settings)
sections.append(" conf.env.CXXFLAGS.extend({})".format(_build_type_flags))
return "\n".join(sections)

def _save_toolchain_file(self):
filename = "waf_conan_toolchain.py"
content = self._toolchain_content()
output_path = self._conanfile.build_folder
save(os.path.join(output_path, filename), content)

def configure(self, args=None):
self._save_toolchain_file()
args = args or []
command = "waf configure " + " ".join(arg for arg in args)
self._conanfile.run(command)

def build(self, args=None):
args = args or []
command = "waf build " + " ".join(arg for arg in args)
self._conanfile.run(command)

Now you can export your custom build helper to the local cache, or upload to a remote:

192 Chapter 13. Extending Conan

Conan Documentation, Release 1.31.4

$ conan export .

After exporting this package to the local cache you can use this custom build helper to compile our packages using
the Waf build system. Just add the necessary configuration files for Waf and import the python_requires. The
conanfile.py of that package could look similar to this:

from conans import ConanFile

class TestWafConan(ConanFile):
python_requires = "waf-build-helper/0.1"
settings = "os", "compiler", "build_type", "arch"
name = "waf-consumer"
generators = "Waf"
requires = "mylib-waf/1.0"
build_requires = "WafGen/0.1", "waf/2.0.19"
exports_sources = "wscript", "main.cpp"

def build(self):
waf = self.python_requires["waf-build-helper"].module.WafBuildEnvironment(self)
waf.configure()
waf.build()

As you can see in the conanfile.py we also are requiring the build tool and a generator for that build tool. If you want
more detailed information on how to integrate your own build system in Conan, please check this blog-post about that
topic.

13.5 Hooks

Warning: This is an experimental feature subject to breaking changes in future releases.

The Conan hooks is a feature intended to extend the Conan functionalities and let users customize the client behavior
at determined points.

13.5.1 Hook structure

A hook is a Python function that will be executed at certain points of Conan workflow to customize the client behavior
without modifying the client sources or the recipe ones. In the hooks reference you can find the full list of hook functions
and exhaustive documentation about their arguments.

Hooks can implement any functionality: it could be Conan commands, recipe interactions such as exporting or pack-
aging, or interactions with the remotes.

Here is an example of a simple hook:

Listing 2: example_hook.py

from conans import tools

(continues on next page)

13.5. Hooks 193

https://blog.conan.io/2019/07/24/C++-build-systems-new-integrations-in-Conan-package-manager.html
https://blog.conan.io/2019/07/24/C++-build-systems-new-integrations-in-Conan-package-manager.html

Conan Documentation, Release 1.31.4

(continued from previous page)

def pre_export(output, conanfile, conanfile_path, reference, **kwargs):
test = "%s/%s" % (reference.name, reference.version)
for field in ["url", "license", "description"]:

field_value = getattr(conanfile, field, None)
if not field_value:

output.error("%s Conanfile doesn't have '%s'. It is recommended to add it␣
→˓as attribute: %s"

% (test, field, conanfile_path))

def pre_source(output, conanfile, conanfile_path, **kwargs):
conanfile_content = tools.load(conanfile_path)
if "def source(self):" in conanfile_content:

test = "[IMMUTABLE SOURCES]"
valid_content = [".zip", ".tar", ".tgz", ".tbz2", ".txz"]
invalid_content = ["git checkout master", "git checkout devel", "git checkout␣

→˓develop"]
if "git clone" in conanfile_content and "git checkout" in conanfile_content:

fixed_sources = True
for invalid in invalid_content:

if invalid in conanfile_content:
fixed_sources = False

else:
fixed_sources = False
for valid in valid_content:

if valid in conanfile_content:
fixed_sources = True

if not fixed_sources:
output.error("%s Source files does not come from and immutable place.␣

→˓Checkout to a "
"commit/tag or download a compressed source file for %s" %␣

→˓(test, str(reference)))

This hook checks the recipe content prior to it being exported and prior to downloading the sources. Basically the
pre_export() function checks the attributes of the conanfile object to see if there is an URL, a license and a
description and if missing, warns the user with a message through the output. This is done before the recipe is
exported to the local cache.

The pre_source() function checks if the recipe contains a source() method (this time it is using the conanfile.py
content instead of the conanfile object) and in that case it checks if the download of the sources are likely coming
from immutable places (a compressed file or a determined git checkout). This is done before the source() method
of the recipe is called.

Any kind of Python script can be executed. You can create global functions and call them from different hook functions,
import from a relative module and warn, error or even raise to abort the Conan client execution.

Other useful task where a hook may come handy are the upload and download actions. There are pre and post functions
for every download/upload as a whole and for fine download tasks such as recipe and package downloads/uploads.

For example they can be used to sign the packages (including a file with the signature) when the package is created and
check that signature every time they are downloaded.

194 Chapter 13. Extending Conan

Conan Documentation, Release 1.31.4

Listing 3: signing_hook.py

import os
from conans import tools

SIGNATURE = "this is my signature"

def post_package(output, conanfile, conanfile_path, **kwargs):
sign_path = os.path.join(conanfile.package_folder, ".sign")
tools.save(sign_path, SIGNATURE)
output.success("Package signed successfully")

def post_download_package(output, conanfile_path, reference, package_id, remote_name,␣
→˓**kwargs):

package_path = os.path.abspath(os.path.join(os.path.dirname(conanfile_path), "..",
→˓"package", package_id))

sign_path = os.path.join(package_path, ".sign")
content = tools.load(sign_path)
if content != SIGNATURE:

raise Exception("Wrong signature")

13.5.2 Importing from a module

The hook interface should always be placed inside a Python file with the name of the hook and stored in the ~/.co-
nan/hooks folder. However, you can use functionalities from imported modules if you have them installed in your
system or if they are installed with Conan:

Listing 4: example_hook.py

import requests
from conans import tools

def post_export(output, conanfile, conanfile_path, reference, **kwargs):
cmakelists_path = os.path.join(os.path.dirname(conanfile_path), "CMakeLists.txt")
tools.replace_in_file(cmakelists_path, "PROJECT(MyProject)", "PROJECT(MyProject CPP)

→˓")
r = requests.get('https://api.github.com/events')

You can also import functionalities from a relative module:

hooks
custom_module

custom.py
__init__.py

my_hook.py

Inside the custom.py from my custom_module there is:

def my_printer(output):
output.info("my_printer(): CUSTOM MODULE")

And it can be used in the hook importing the module, just like regular Python:

13.5. Hooks 195

Conan Documentation, Release 1.31.4

from custom_module.custom import my_printer

def pre_export(output, conanfile, conanfile_path, reference, **kwargs):
my_printer(output)

13.5.3 Storage, activation and sharing

Hooks are Python files stored under ~/.conan/hooks folder and their file name should be the same used for activation
(the .py extension could be indicated or not).

The activation of the hooks is done in the conan.conf section named [hooks]. The hook names or paths listed under
this section will be considered activated.

Listing 5: conan.conf

...
[hooks]
attribute_checker.py
conan-center.py
my_custom_hook/hook.py

They can be easily activated and deactivated from the command line using the conan config set command:

$ conan config set hooks.my_custom_hook/hook # Activates 'my_custom_hook'

$ conan config rm hooks.my_custom_hook/hook # Deactivates 'my_custom_hook'

There is also an environment variable CONAN_HOOKS that you can use to declare which hooks should be activated.

Hooks are considered part of the Conan client configuration and can be shared as usual with the conan config install
command. However, they can also be managed in isolated Git repositories cloned into the ~/.conan/hooks folder:

$ cd ~/.conan/hooks
$ git clone https://github.com/conan-io/hooks.git conan_hooks
$ conan config set hooks.conan_hooks/hooks/conan-center.py

This way you can easily change from one version to another.

13.5.4 Official Hooks

There are some officially maintained hooks in its own repository in GitHub, including the attribute_checker that
has been packaged with Conan sources for several versions (although it is distributed with Conan still, it is no longer
maintained and we may remove it in the future, so we encourage you to install the one in the hooks repository and
activate it).

Using the hooks in the official repository is as easy as installing them and activating the ones of interest:

conan config install https://github.com/conan-io/hooks.git -sf hooks -tf hooks
conan config set hooks.attribute_checker

196 Chapter 13. Extending Conan

https://github.com/conan-io/hooks

Conan Documentation, Release 1.31.4

13.6 Template system

The user can provide their own templates to override some of the files that Conan generates in runtime. This can help
to provide custom visualization for some outputs that satisfies specific use-cases or more detailed inputs for companies
that want some standarization when creating new recipes for packages.

User provided templates to override Conan default ones, must be stored in the Conan cache under a templates directory
(<conan_cache>/templates). Use conan config command to distribute them among your developer team.

13.6.1 HTML output for conan search table

Warning: This has to be an considered as an experimental feature, we might change the context provided to this
templates once we have more examples from the community.

The conan search command can generate an HTML table with the results of the query when looking for binaries

This is the default Conan provides, but you can use your own Jinja2 documentation template to customize this output
to your needs:

• <cache>/templates/output/search_table.html.

13.6. Template system 197

https://palletsprojects.com/p/jinja/

Conan Documentation, Release 1.31.4

Context

Conan feeds this template with the information about the packages found, this information is called context and it
contains these objects:

• base_template_path: absolute path to the directory where the chosen template file is located. It is needed if
your output file needs to link assets distributed together with the template file.

• search: it contains the pattern used in the command line to search packages.

• results: this object contains all the information retrieved from the remotes, it is used to get the headers and the
rows.

When the output is a table, the first thing needed are the headers, these can be a single row or two rows like the image
above. In order to get the headers you should use results.get_headers(keys) with a list of extra keys you want
to include (see example below). Conan will always return a header for all the different settings and options values, with
this keys list variable you can retrieve other information that might be useful in your table like remote, reference,
outdated or package_id.

Then you can use the returned object to get the actual headers:

• single row headers: it just returns a list with all the headers, it is straightforward to use:

<thead>
<tr>

{%- set headers = results.get_headers(keys=['remote', 'package_id',
→˓'outdated']) %}

{%- for header in headers.row(n_rows=1) %}
<th>{{ header }}</th>
{%- endfor %}

</tr>
</thead>

• two-rows headers: it returns a list of tuples like the following one:

[('os', ['']), ('arch', ['']), ('compiler', ['', 'version', 'libcxx']),]

The first element for this tuple is intended for the top row, while the second element lists all the sub-settings in
the top header category. An empty string means there is no category, like compiler=Visual Studio.

Composing the table headers in HTML requires some more code in the template:

<thead>
{%- set headers = results.get_headers(keys=['remote', 'package_id', 'outdated

→˓']) %}
{%- set headers2rows = headers.row(n_rows=2) %}
<tr>

{%- for category, subheaders in headers2rows %}
<th rowspan="{% if subheaders|length == 1 and not subheaders[0] %}2{%␣

→˓else %}1{% endif %}" colspan="{{ subheaders|length }}">
{{ category }}

</th>
{%- endfor %}

</tr>
<tr>

{%- for category, subheaders in headers2rows %}
{%- if subheaders|length != 1 or subheaders[0] != '' %}

(continues on next page)

198 Chapter 13. Extending Conan

Conan Documentation, Release 1.31.4

(continued from previous page)

{%- for subheader in subheaders %}
<th>{{ subheader|default(category, true) }}</th>

{%- endfor %}
{%- endif %}

{%- endfor %}
</tr>

</thead>

Once the headers are done, iterating the rows is easy. You should use results.packages() to get an iterable with
the list of results and then, for each of the rows, the fields. You need to provide the headers to retrieve the fields you
need in the proper order according to the table headers:

<tbody>
{%- for package in results.packages() %}

<tr>
{%- for item in package.row(headers) %}

<td>{{ item if item != None else ''}}</td>
{%- endfor %}

</tr>
{%- endfor %}

</tbody>

Additionally, the package object in the snippet above that represents one of the query results contain some fields that
can be useful to compose the text for an alt field in the HTML:

• remote

• reference or recipe

• package_id

• outdated

13.6.2 Graph output for conan info command

Warning: This has to be an considered as an experimental feature, we might change the context provided to this
templates once we have more exmpales from the community.

The conan info command can generate a visualization of the dependency graph, it comes in two flavors: html and dot
(GraphViz), but both take the same template parameters. Conan will use the following input files, if found, inside the
Conan cache folder:

• HTML output: <cache>/templates/output/info_graph.html.

• DOT output: <cache>/templates/output/info_graph.dot.

13.6. Template system 199

Conan Documentation, Release 1.31.4

Context

These files should be valid Jinja2 documentation templates and they will be feed with the following context:

• base_template_path: absolute path to the directory where the choosen template file is located. It is needed if
your output file needs to link assets distributed together with the template file (see HTML example linking CSS
and JS files).

• graph: this object contains all the information from the graph of dependencies. It offers the following API:

– graph.nodes: list of Node objects with the information for each Conan package included in the graph
(see below API for this Node object).

– graph.edges: list of tuples with all the connections in the dependency graph. First item in the tuple is the
consumer Node and second item the required Node.

– graph.binary_color(node): function that retrieves the Conan default color based on the node.binary
value.

The Node objects in the context provide all the required information about each package:

• node.label: display name for the conanfile.

• node.short_label: name/version parts of the Conan reference.

• node.package_id: the package identifier.

• node.is_build_requires:

• node.binary: it identifies where the binary comes from (cache, download, build,
missing, update).

• node.data(): returns a dictionary that contains data from the recipe, members are url, homepage, license,
author and topics.

Examples

This is are two examples of templates Conan is currently using for the basic functionality, you can refer to the Jinja2
documentation for more information about the logic and filters your can use in these templates.

Let’s us know if you have a cool template you want to share with the Conan community.

Dot files:

Default template for the DOT output contains just the node names and the edges:

digraph {
{%- for src, dst in graph.edges %}

"{{ src.label }}" -> "{{ dst.label }}"
{%- endfor %}

}

The output will compose a valid dot file:

conan info poco/1.10.0@ --graph=poco.dot

200 Chapter 13. Extending Conan

https://palletsprojects.com/p/jinja/
https://palletsprojects.com/p/jinja/
https://palletsprojects.com/p/jinja/

Conan Documentation, Release 1.31.4

digraph {
"poco/1.10.0" -> "openssl/1.1.1g"
"virtual" -> "poco/1.10.0"

}

Use dot to render the default view of the generated graph:

dot -Tpng poco.dot > poco.png

HTML files:

HTML templates are more complicated than dot ones, but the HTML can provide a nicer view of the graph and easily
include JavaScript to create an interactive view of the graph.

In this example we assume you have distributed the following files to your cache folder:

<cache>/templates/output/css/vis.min.css
<cache>/templates/output/js/vis.min.js
<cache>/templates/output/info_graph.html

Our template will we the info_graph.html file, and it will use the assets from the local files provided in the cache (most
use cases will use files from the internet using the full URL).

These are some snippets from the info_graph.html template, it uses the vis.js library:

<html lang="en">
<head>

{# ... #}
<script type="text/javascript" src="{{ base_template_path }}/js/vis.min.js"></

→˓script>
<link href="{{ base_template_path }}/css/vis.min.css" rel="stylesheet" type=

(continues on next page)

13.6. Template system 201

https://visjs.org/

Conan Documentation, Release 1.31.4

(continued from previous page)

→˓"text/css"/>
</head>

<body>
{# ... #}

<div style="width: 100%;">
<div id="mynetwork"></div>

</div>

{# ... #}

<script type="text/javascript">
var nodes = new vis.DataSet([

{%- for node in graph.nodes %}
{

id: {{ node.id }},
label: '{{ node.short_label }}',
shape: '{% if node.is_build_requires %}ellipse{% else %}box{%␣

→˓endif %}',
color: { background: '{{ graph.binary_color(node) }}'},
fulllabel: '<h3>{{ node.label }}</h3>' +

'' +
' id: {{ node.package_id }}' +
{%- for key, value in node.data().items() %}
{%- if value %}
' {{ key }}: {{ value }}' +
{%- endif %}
{%- endfor %}
''

}{%- if not loop.last %},{% endif %}
{%- endfor %}

]);
var edges = new vis.DataSet([

{%- for src, dst in graph.edges %}
{ from: {{ src.id }}, to: {{ dst.id }} }{%- if not loop.last %},{%␣

→˓endif %}
{%- endfor %}

]);

var container = document.getElementById('mynetwork');
var data = {

nodes: nodes,
edges: edges

};
var network = new vis.Network(container, data, options);

</script>
</body>

</html>

202 Chapter 13. Extending Conan

Conan Documentation, Release 1.31.4

13.6.3 Package scaffolding for conan new command

Warning: This has to be an considered as an experimental feature, we might change the context provided to this
templates once we have more exmpales from the community.

Using the Conan command conan new is a very convenient way to start a new project with a example conanfile.py.
This command has a --template argument you can use to provide a path to a template file for the conanfile.py
itself or even a path to a folder containing files for a C++ project using Conan recipes.

The argument --template can take an absolute path or a relative path. If relative, Conan will look for the files starting
in the Conan cache folder templates/command/new/, this is very useful in combination with conan config install
because you can easily share these templates with all your team.

Note: For backwards compatibility reasons, if the --template argument takes the path to a single file Conan will
look for it in the cache at the path templates/<filename> first. This will likely be removed in Conan v2.0

This mechanism lets you have in the Conan cache templates containing not only a conanfile.py, but the full C++ project
scaffolding, and with a single command you can get started:

$ conan new mypackage/version --template=header_only
$ conan new mypackage/version --template=conan-center

Conan will process all the files found in that folder using Jinja2 engine and the paths to those files too. Thus the
following template directory (which match the conventions for conan-center-index recipes):

conan-center/{{name}}/config.yml
/{{name}}/all/conanfile.py
/{{name}}/all/conandata.yml
/{{name}}/all/test_package/conanfile.py
/{{name}}/all/test_package/CMakeLists.txt
/{{name}}/all/test_package/main.cpp

will be translated to:

conan-center/mypackage/config.yml
/mypackage/all/conanfile.py
/mypackage/all/conandata.yml
/mypackage/all/test_package/conanfile.py
/mypackage/all/test_package/CMakeLists.txt
/mypackage/all/test_package/main.cpp

And the contents of all the files will be rendered using Jinja2 syntax too, substituting values in the context as we will
see in the next section.

13.6. Template system 203

https://palletsprojects.com/p/jinja/
https://github.com/conan-io/conan-center-index/tree/master/recipes

Conan Documentation, Release 1.31.4

Context

All the files should be valid Jinja2 templates and they will be feed with the following context:

• name and version: defined from the command line.

• package_name: a CamelCase variant of the name. Any valid Conan package name like package_name,
package+name, package.name or package-name will be converted into a suitable name for a Python class,
PackageName.

• conan_version: an object that renders as the current Conan version, e.g. 1.24.0.

Example

This is a very simple example for a header only library:

Recipe autogenerated with Conan {{ conan_version }} using `conan new --
→˓template` command

from conans import ConanFile

class {{package_name}}Conan(ConanFile):
name = "{{ name }}"
version = "{{ version }}"
settings = "os", "arch", "compiler", "build_type"
exports_sources = "include/*"

def package(self):
self.copy("*.hpp", dst="include")
self.copy("LICENSE.txt", dst="licenses")

def package_id(self):
self.info.header_only()

204 Chapter 13. Extending Conan

CHAPTER

FOURTEEN

INTEGRATIONS

This topical list of build systems, IDEs, and CI platforms provides information on how conan packages can be con-
sumed, created, and continuously deployed/tested with each, as applicable.

14.1 Compilers

Conan can work with any compiler, the most common ones are already declared in the default settings.yml:

• sun-cc

• gcc

• Visual Studio

• clang

• apple-clang

• qcc

• intel

Note: Remember that you can customize Conan to extend the supported compilers, build systems, etc.

Important: If you work with a compiler like intel that uses Visual Studio in Windows environments and gcc
in Linux environments and you are wondering how to manage the compatibility between the packages generated with
intel and the generated with the pure base compiler (gcc or Visual Studio) check the Compatible Packages and
Compatible Compilers sections.

14.2 Build systems

Conan can be integrated with any build system. This can be done with:

• Generators: Conan can write file/s in different formats gathering all the information from the dependency tree,
like include directories, library names, library dirs. . .

• Build Helpers: Conan provides some classes to help calling your build system, translating the settings and options
to the arguments, flags or environment variables that your build system expect.

205

Conan Documentation, Release 1.31.4

14.2.1 CMake

Conan can be integrated with CMake using generators, build helpers and custom findXXX.cmake files:

cmake generator

If you are using CMake to build your project, you can use the cmake generator to define all your requirements in CMake
syntax. It creates a file named conanbuildinfo.cmake that can be imported from your CMakeLists.txt.

Listing 1: conanfile.txt

...
[generators]
cmake

When conan install is executed, a file named conanbuildinfo.cmake is created.

You can include conanbuildinfo.cmake in your project’s CMakeLists.txt to manage your requirements. The inclusion
of conanbuildinfo.cmake doesn’t alter the CMake environment at all. It simply provides CONAN_ variables and some
useful macros.

Global variables approach

The simplest way to consume it would be to invoke the conan_basic_setup() macro, which will basically set global
include directories, libraries directories, definitions, etc. so typically it is enough to call:

include(${CMAKE_BINARY_DIR}/conanbuildinfo.cmake)
conan_basic_setup()

add_executable(timer timer.cpp)
target_link_libraries(timer ${CONAN_LIBS})

The conan_basic_setup() is divided into smaller macros that should be self explanatory. If you need to do something
different, you can just call them individually.

Note: This approach makes all dependencies visible to all CMake targets and may also increase the build times due to
unneeded include and library path components. This is particularly relevant if you have multiple targets with different
dependencies. In that case, you should consider using the Targets approach.

206 Chapter 14. Integrations

Conan Documentation, Release 1.31.4

Targets approach

For modern cmake (>=3.1.2), you can use the following approach:

include(${CMAKE_BINARY_DIR}/conanbuildinfo.cmake)
conan_basic_setup(TARGETS)

add_executable(timer timer.cpp)
target_link_libraries(timer CONAN_PKG::poco)

Using TARGETS as argument, conan_basic_setup() will internally call the macro conan_define_targets()
which defines cmake INTERFACE IMPORTED targets, one per package. These targets, named
CONAN_PKG::PackageName can be used to link against, instead of using global cmake setup.

See also:

Check the CMake generator section to read more.

Note: The CMAKE_MODULE_PATH and CMAKE_PREFIX_PATH contain the paths to the self.info.builddirs of
every required package. By default, the root package folder is the only one declared in builddirs. Check cpp_info
for more information.

cmake_multi generator

cmake_multi generator is intended for CMake multi-configuration environments, like Visual Studio and Xcode IDEs
that do not configure for a specific build_type, like Debug or Release, but rather can be used for both and switch
among Debug and Release configurations with a combo box or similar control. The project configuration for cmake is
different, in multi-configuration environments, the flow would be:

$ cmake .. -G "Visual Studio 14 Win64"
Now open the IDE (.sln file) or
$ cmake --build . --config Release

While in single-configuration environments (Unix Makefiles, etc):

$ cmake .. -G "Unix Makefiles" -DCMAKE_BUILD_TYPE=Release
Build from your IDE, launching make, or
$ cmake --build .

The CMAKE_BUILD_TYPE default, if not specified is Debug.

With the regular conan cmake generator, only 1 configuration at a time can be managed. Then, it is a universal,
homogeneous solution for all environments. This is the recommended way, using the regular cmake generator, and just
go to the command line and switch among configurations:

$ conan install . -s build_type=Release ...
Work in release, then, to switch to Debug dependencies
$ conan install . -s build_type=Debug ...

However, end consumers with heavy usage of the IDE, might want a multi-configuration build. The cmake_multi
experimental generator is able to do that. First, both Debug and Release dependencies have to be installed:

$ conan install . -g cmake_multi -s build_type=Release ...
$ conan install . -g cmake_multi -s build_type=Debug ...

14.2. Build systems 207

Conan Documentation, Release 1.31.4

These commands will generate 3 files: conanbuildinfo_release.cmake, conanbuildinfo_debug.cmake, and
conanbuildinfo_multi.cmake, which includes the other two, and enables its use.

Warning: The cmake_multi generator is designed as a helper for consumers, but not for creating packages. If
you also want to create a package, see Creating packages section.

Global variables approach

The consumer project might write a CMakeLists.txt like:

project(MyHello)
cmake_minimum_required(VERSION 2.8.12)

include(${CMAKE_BINARY_DIR}/conanbuildinfo_multi.cmake)
conan_basic_setup()

add_executable(say_hello main.cpp)
foreach(_LIB ${CONAN_LIBS_RELEASE})

target_link_libraries(say_hello optimized ${_LIB})
endforeach()
foreach(_LIB ${CONAN_LIBS_DEBUG})

target_link_libraries(say_hello debug ${_LIB})
endforeach()

Targets approach

Or, if using the modern cmake syntax with targets (where Hello1 is an example package name that the executable
say_hello depends on):

project(MyHello)
cmake_minimum_required(VERSION 2.8.12)

include(${CMAKE_BINARY_DIR}/conanbuildinfo_multi.cmake)
conan_basic_setup(TARGETS)

add_executable(say_hello main.cpp)
target_link_libraries(say_hello CONAN_PKG::Hello1)

There’s also a convenient macro for linking to all libraries:

project(MyHello)
cmake_minimum_required(VERSION 2.8.12)

include(${CMAKE_BINARY_DIR}/conanbuildinfo_multi.cmake)
conan_basic_setup()

add_executable(say_hello main.cpp)
conan_target_link_libraries(say_hello)

With this approach, the end user can open the generated IDE project and switch among both configurations, building
the project, or from the command line:

208 Chapter 14. Integrations

Conan Documentation, Release 1.31.4

$ cmake --build . --config Release
And without having to conan install again, or do anything else
$ cmake --build . --config Debug

Creating packages

The cmake_multi generator is just for consumption. It cannot be used to create packages. If you want to be able
to both use the cmake_multi generator to install dependencies and build your project but also to create packages
from that code, you need to specify the regular cmake generator for package creation, and prepare the CMakeLists.txt
accordingly, something like:

project(MyHello)
cmake_minimum_required(VERSION 2.8.12)

if(EXISTS ${CMAKE_BINARY_DIR}/conanbuildinfo_multi.cmake)
include(${CMAKE_BINARY_DIR}/conanbuildinfo_multi.cmake)

else()
include(${CMAKE_BINARY_DIR}/conanbuildinfo.cmake)

endif()

conan_basic_setup()

add_executable(say_hello main.cpp)
conan_target_link_libraries(say_hello)

Then, make sure that the generator cmake_multi is not specified in the conanfiles, but the users specify it in the
command line while installing dependencies:

$ conan install . -g cmake_multi

See also:

Check the section Reference/Generators/cmake to read more about this generator.

cmake_paths generator

This generator is especially useful if you are using CMake based only on the find_package feature to locate the
dependencies.

The cmake_paths generator creates a file named conan_paths.cmake declaring:

• CMAKE_MODULE_PATH with the folders of the required packages, to allow CMake to locate the included cmake
scripts and FindXXX.cmake files. The folder containing the conan_paths.cmake (self.install_folder when used in
a recipe) is also included, so any custom file will be located too. Check cmake_find_package generator generator.

• CMAKE_PREFIX_PATH used by find_library() to locate library files (.a, .lib, .so, .dll) in your packages and
find_dependency() to locate the transitive dependencies.

Listing 2: conanfile.txt

[requires]
zlib/1.2.11
...

(continues on next page)

14.2. Build systems 209

Conan Documentation, Release 1.31.4

(continued from previous page)

[generators]
cmake_paths

Listing 3: CMakeList.txt

cmake_minimum_required(VERSION 3.0)
project(helloworld)
add_executable(helloworld hello.c)
find_package(Zlib)
if(ZLIB_FOUND)

include_directories(${ZLIB_INCLUDE_DIRS})
target_link_libraries (helloworld ${ZLIB_LIBRARIES})

endif()

In the example above, the zlib/1.2.11 package is not packaging a custom FindZLIB.cmake file, but the FindZLIB.
cmake included in the CMake installation directory (/Modules) will locate the zlib library from the Conan package
because of the CMAKE_PREFIX_PATH used by the find_library().

If the zlib/1.2.11 would have included a custom FindZLIB.cmake in the package root folder or any declared
self.cpp_info.builddirs, it would have been located because of the CMAKE_MODULE_PATH variable.

Included as a toolchain

You can use the conan_paths.cmake as a toolchain without modifying your CMakeLists.txt file:

$ mkdir build && cd build
$ conan install ..
$ cmake .. -DCMAKE_TOOLCHAIN_FILE=conan_paths.cmake -G "Unix Makefiles" -DCMAKE_BUILD_
→˓TYPE=Release
$ cmake --build .

Included using the CMAKE_PROJECT_<PROJECT-NAME>_INCLUDE

With CMAKE_PROJECT_<PROJECT-NAME>_INCLUDE you can specify a file to be included by the project() command.
If you already have a toolchain file you can use this variable to include the conan_paths.cmake and insert your
toolchain with the CMAKE_TOOLCHAIN_FILE.

$ mkdir build && cd build
$ conan install ..
$ cmake .. -G "Unix Makefiles" -DCMAKE_BUILD_TYPE=Release -DCMAKE_PROJECT_helloworld_
→˓INCLUDE=build/conan_paths.cmake
$ cmake --build .

210 Chapter 14. Integrations

Conan Documentation, Release 1.31.4

Included in your CMakeLists.txt

Listing 4: CMakeList.txt

cmake_minimum_required(VERSION 3.0)
project(helloworld)

include(${CMAKE_BINARY_DIR}/conan_paths.cmake)

add_executable(helloworld hello.c)

find_package(zlib)

if(ZLIB_FOUND)
include_directories(${ZLIB_INCLUDE_DIRS})
target_link_libraries (helloworld ${ZLIB_LIBRARIES})

endif()

$ mkdir build && cd build
$ conan install ..
$ cmake .. -G "Unix Makefiles" -DCMAKE_BUILD_TYPE=Release
$ cmake --build .

See also:

Check the section cmake_paths to read more about this generator.

Note: The CMAKE_MODULE_PATH and CMAKE_PREFIX_PATH contain the paths to the builddirs of every required
package. By default the root package folder is the only declared builddirs directory. Check cpp_info.

cmake_find_package generator

This generator is especially useful if you are using CMake using the find_package feature to locate the dependencies.

The cmake_find_package generator creates a file for each requirement specified in a conanfile.

The name of the files follows the pattern Find<package_name>.cmake. So for the zlib/1.2.11 package, a
FindZLIB.cmake file will be generated.

In a conanfile.py

Listing 5: conanfile.py

from conans import ConanFile, CMake, tools

class LibConan(ConanFile):
...
requires = "zlib/1.2.11"
generators = "cmake_find_package"

(continues on next page)

14.2. Build systems 211

Conan Documentation, Release 1.31.4

(continued from previous page)

def build(self):
cmake = CMake(self) # it will find the packages by using our auto-generated␣

→˓FindXXX.cmake files
cmake.configure()
cmake.build()

In the previous example, the CMake build helper will automatically adjust the CMAKE_MODULE_PATH to the conanfile.
install_folder, where the generated Find<package_name>.cmake is.

In the CMakeList.txt you do not need to specify or include anything related with Conan at all; just rely on the
find_package feature:

Listing 6: CMakeList.txt

cmake_minimum_required(VERSION 3.0)
project(helloworld)
add_executable(helloworld hello.c)
find_package(ZLIB)

Global approach
if(ZLIB_FOUND)

include_directories(${ZLIB_INCLUDE_DIRS})
target_link_libraries (helloworld ${ZLIB_LIBRARIES})

endif()

Modern CMake targets approach
if(TARGET ZLIB::ZLIB)

target_link_libraries(helloworld ZLIB::ZLIB)
endif()

$ conan create . user/channel

lib/1.0@user/channel: Calling build()
-- The C compiler identification is AppleClang 9.1.0.9020039
...
-- Conan: Using autogenerated FindZLIB.cmake
-- Found: /Users/user/.conan/data/zlib/1.2.11/_/_/package/
→˓0eaf3bfbc94fb6d2c8f230d052d75c6c1a57a4ce/lib/libz.a
lib/1.0@user/channel: Package '72bce3af445a371b892525bc8701d96c568ead8b' created

In a conanfile.txt

If you are using a conanfile.txt file in your project, instead of a conanfile.py, this generator can be used together
with the cmake_paths generator to adjust the CMAKE_MODULE_PATH and CMAKE_PREFIX_PATH variables automatically
and let CMake locate the generated Find<package_name>.cmake files.

With cmake_paths:

Listing 7: conanfile.txt

[requires]
zlib/1.2.11

(continues on next page)

212 Chapter 14. Integrations

Conan Documentation, Release 1.31.4

(continued from previous page)

...

[generators]
cmake_find_package
cmake_paths

Listing 8: CMakeList.txt

cmake_minimum_required(VERSION 3.0)
project(helloworld)
include(${CMAKE_BINARY_DIR}/conan_paths.cmake)
add_executable(helloworld hello.c)
find_package(ZLIB)

Global approach
if(ZLIB_FOUND)

include_directories(${ZLIB_INCLUDE_DIRS})
target_link_libraries (helloworld ${ZLIB_LIBRARIES})

endif()

Modern CMake targets approach
if(TARGET ZLIB::ZLIB)

target_link_libraries(helloworld ZLIB::ZLIB)
endif()

$ mkdir build && cd build
$ conan install ..
$ cmake .. -G "Unix Makefiles" -DCMAKE_BUILD_TYPE=Release
-- Conan: Using autogenerated FindZLIB.cmake
-- Found: /Users/user/.conan/data/zlib/1.2.11/_/_/package/

→˓0eaf3bfbc94fb6d2c8f230d052d75c6c1a57a4ce/lib/libz.a
...

$ cmake --build .

Or you can also adjust CMAKE_MODULE_PATH and CMAKE_PREFIX_PATH manually.

Without cmake_paths, adjusting the variables manually:

Listing 9: conanfile.txt

[requires]
zlib/1.2.11
...

[generators]
cmake_find_package

Listing 10: CMakeList.txt

cmake_minimum_required(VERSION 3.0)
project(helloworld)

(continues on next page)

14.2. Build systems 213

Conan Documentation, Release 1.31.4

(continued from previous page)

list(APPEND CMAKE_MODULE_PATH ${CMAKE_BINARY_DIR})
list(APPEND CMAKE_PREFIX_PATH ${CMAKE_BINARY_DIR})

add_executable(helloworld hello.c)
find_package(ZLIB)

Global approach
if(ZLIB_FOUND)

include_directories(${ZLIB_INCLUDE_DIRS})
target_link_libraries (helloworld ${ZLIB_LIBRARIES})

endif()

Modern CMake targets approach
if(TARGET ZLIB::ZLIB)

target_link_libraries(helloworld ZLIB::ZLIB)
endif()

See also:

Check the section cmake_find_package to read more about this generator and the adjusted CMake variables/targets.

cmake_find_package_multi

Warning: This is an experimental feature subject to breaking changes in future releases.

This generator is similar to the cmake_find_package generator but it allows working with multi-configuration projects
like Visual Studio with both Debug and Release. But there are some differences:

• Only works with CMake > 3.0

• It doesn’t generate FindXXX.cmake modules but XXXConfig.cmake files.

• The “global” approach is not supported, only “modern” CMake by using targets.

Usage

$ conan install . -g cmake_find_package_multi -s build_type=Debug
$ conan install . -g cmake_find_package_multi -s build_type=Release

These commands will generate several files for each dependency in your graph, including a XXXConfig.cmake that
can be located by the CMake find_package(XXX CONFIG) command, with XXX as the package name.

Important: Add the CONFIG option to find_package so that module mode is explicitly skipped by CMake. This
helps to solve issues when there is for example a FindXXXX.cmake file in CMake’s default modules directory that
could be loaded instead of the XXXXConfig.cmake generated by Conan.

The name of the files follows the pattern <package_name>Config.cmake. So for the zlib/1.2.11 package, a
zlibConfig.cmake file will be generated.

214 Chapter 14. Integrations

https://cmake.org/cmake/help/v3.0/command/find_package.html

Conan Documentation, Release 1.31.4

See also:

Check the section cmake_find_package_multi to read more about this generator and the adjusted CMake vari-
ables/targets.

Build automation

You can invoke CMake from your conanfile.py file and automate the build of your library/project. Conan provides a
CMake() helper. This helper is useful in calling the cmake command both for creating Conan packages or automating
your project build with the conan build . command. The CMake() helper will take into account your settings in
order to automatically set definitions and a generator according to your compiler, build_type, etc.

See also:

Check the section Building with CMake.

Find Packages

If a FindXXX.cmake file for the library you are packaging is already available, it should work automatically.

Variables CMAKE_INCLUDE_PATH and CMAKE_LIBRARY_PATH are set with the requirements paths. The
CMake find_library function will be able to locate the libraries in the package’s folders.

So, you can use find_package normally:

project(MyHello)
cmake_minimum_required(VERSION 2.8.12)

include(conanbuildinfo.cmake)
conan_basic_setup()

find_package("ZLIB")

if(ZLIB_FOUND)
add_executable(enough enough.c)
include_directories(${ZLIB_INCLUDE_DIRS})
target_link_libraries(enough ${ZLIB_LIBRARIES})

else()
message(FATAL_ERROR "Zlib not found")

endif()

In addition to automatic find_package support, CMAKE_MODULE_PATH variable is set with the requirements
root package paths. You can override the default behavior of any find_package() by creating a findXXX.cmake file in
your package.

14.2. Build systems 215

Conan Documentation, Release 1.31.4

Creating a custom FindXXX.cmake file

Sometimes the “official” CMake FindXXX.cmake scripts are not ready to find our libraries (unsupported library names
for specific settings, fixed installation directories like C:\OpenSSL, etc.) Or maybe there is no “official” CMake script
for our library.

In these cases we can provide a custom FindXXX.cmake file in our Conan packages.

1. Create a file named FindXXX.cmake and save it in your Conan package root folder, where XXX is the name of
the library that we will use in the find_package CMake function. For example, we create a FindZLIB.cmake and
use find_package(ZLIB). We recommend copying the original FindXXX.cmake file from Kitware (folder Mod-
ules/FindXXX.cmake), if available, and modifying it to help find our library files, but it depends a lot; maybe you are
interested in creating a new one.

If it’s not provided, you can create a basic one. Take a look at this example with the ZLIB library:

FindZLIB.cmake

find_path(ZLIB_INCLUDE_DIR NAMES zlib.h PATHS ${CONAN_INCLUDE_DIRS_ZLIB})
find_library(ZLIB_LIBRARY NAMES ${CONAN_LIBS_ZLIB} PATHS ${CONAN_LIB_DIRS_ZLIB})

set(ZLIB_FOUND TRUE)
set(ZLIB_INCLUDE_DIRS ${ZLIB_INCLUDE_DIR})
set(ZLIB_LIBRARIES ${ZLIB_LIBRARY})
mark_as_advanced(ZLIB_LIBRARY ZLIB_INCLUDE_DIR)

In the first line we find the path where the headers should be found. We suggest the CONAN_INCLUDE_DIRS_XXX.
Then repeat for the library names with CONAN_LIBS_XXX and the paths where the libs are CO-
NAN_LIB_DIRS_XXX.

2. In your conanfile.py file add the FindXXX.cmake to the exports_sources field:

class HelloConan(ConanFile):
name = "hello"
version = "0.1"
...
exports_sources = ["FindXXX.cmake"]

3. In the package method, copy the FindXXX.cmake file to the root:

class HelloConan(ConanFile):
name = "hello"
version = "0.1"
...
exports_sources = ["FindXXX.cmake"]

def package(self):
...
self.copy("FindXXX.cmake", ".", ".")

216 Chapter 14. Integrations

Conan Documentation, Release 1.31.4

14.2.2 MSBuild (Visual Studio)

Conan can be integrated with MSBuild, the build system of Visual Studio in two different ways:

• Using the cmake generator to create a conanbuildinfo.cmake file.

• Using the visual_studio generator to create a conanbuildinfo.props file.

With CMake

Use the cmake generator or cmake_multi if you are using CMake to machine-generate your Visual Studio projects.

Check the Generators section to read about the cmake generator. Check the official CMake docs to find out more about
generating Visual Studio projects with CMake.

However, beware of some current CMake limitations, such as not dealing well with find-packages, because CMake
doesn’t know how to handle finding both debug and release packages.

Note: If you want to use the Visual Studio 2017 + CMake integration, check this how-to

With visual_studio generator

Use the visual_studio generator, or visual_studio_multi, if you are maintaining your Visual Studio projects, and want
to use Conan to to tell Visual Studio how to find your third-party dependencies.

You can use the visual_studio generator to manage your requirements via your Visual Studio project.

This generator creates a Visual Studio project properties file, with all the include paths, lib paths, libs, flags etc., that
can be imported in your project.

Open conanfile.txt and change (or add) the visual_studio generator:

[requires]
poco/1.9.4

[generators]
visual_studio

Install the requirements:

$ conan install .

Go to your Visual Studio project, and open the Property Manager (usually in View -> Other Windows -> Property
Manager).

14.2. Build systems 217

https://cmake.org/cmake/help/v3.0/manual/cmake-generators.7.html
https://docs.microsoft.com/en-us/visualstudio/ide/managing-project-and-solution-properties?view=vs-2017

Conan Documentation, Release 1.31.4

Click the + icon and select the generated conanbuildinfo.props file:

Build your project as usual.

Note: Remember to set your project’s architecture and build type accordingly, explicitly or implicitly, when issuing
the conan install command. If these values don’t match, your build will probably fail.

e.g. Release/x64

See also:

Check visual_studio for the complete reference.

218 Chapter 14. Integrations

Conan Documentation, Release 1.31.4

Calling Visual Studio compiler

You can call the Visual Studio compiler from your build() method using the VisualStudioBuildEnvironment
and the tools.vcvars_command().

Check the MSBuild section for more info.

Build an existing Visual Studio project

You can build an existing Visual Studio from your build() method using the MSBuild() build helper.

from conans import ConanFile, MSBuild

class ExampleConan(ConanFile):
...

def build(self):
msbuild = MSBuild(self)
msbuild.build("MyProject.sln")

Toolsets

You can use the sub-setting toolset of the Visual Studio compiler to specify a custom toolset. It will be automatically
applied when using the CMake() and MSBuild() build helpers. The toolset can also be specified manually in these
build helpers with the toolset parameter.

By default, Conan will not generate a new binary package if the specified compiler.toolset matches an already
generated package for the corresponding compiler.version. Check the package_id() reference to learn more.

See also:

Check the CMake() reference section for more info.

14.2.3 Autotools: configure/make

If you are using configure/make you can use the AutoToolsBuildEnvironment helper. This helper sets LIBS,
LDFLAGS, CFLAGS, CXXFLAGS and CPPFLAGS environment variables based on your requirements.

Check Building with Autotools for more info.

14.2.4 Ninja, NMake, Borland

These build systems still don’t have a Conan generator for using them natively. However, if you are using CMake, you
can instruct Conan to use them instead of the default generator (typically Unix Makefiles).

Set it globally in your conan.conf file:

$ conan config set general.cmake_generator=Ninja

or use the environment variable CONAN_CMAKE_GENERATOR.

14.2. Build systems 219

Conan Documentation, Release 1.31.4

14.2.5 pkg-config and .pc files

If you are creating a Conan package for a library (A) and the build system uses .pc files to locate its dependencies (B
and C) that are Conan packages too, you can follow different approaches.

The main issue to address is the absolute paths. When a user installs a package in the local cache, the directory will
probably be different from the directory where the package was created. This could be because of the different computer,
the change in Conan home directory or even a different user or channel:

For example, in the machine where the packages were created:

/home/user/lasote/.data/storage/zlib/1.2.11/conan/stable

In the machine where the library is being reused:

/custom/dir/.data/storage/zlib/1.2.11/conan/testing

You can see that .pc files containing absolute paths won’t work with locating the dependencies.

Example of a .pc file with an absolute path:

prefix=/Users/lasote/.conan/data/zlib/1.2.11/lasote/stable/package/
→˓b5d68b3533204ad67e01fa587ad28fb8ce010527
exec_prefix=${prefix}
libdir=${exec_prefix}/lib
sharedlibdir=${libdir}
includedir=${prefix}/include

Name: zlib
Description: zlib compression library
Version: 1.2.11

Requires:
Libs: -L${libdir} -L${sharedlibdir} -lz
Cflags: -I${includedir}

To solve this problem there are different approaches that can be followed.

Approach 1: Import and patch the prefix in the .pc files

In this approach your library A will import to a local directory the .pc files from B and C, then, as they will contain
absolute paths, the recipe for A will patch the paths to match the current installation directory.

You will need to package the .pc files from your dependencies. You can adjust the PKG_CONFIG_PATH to let
pkg-config tool locate them.

import os
from conans import ConanFile, tools

class LibAConan(ConanFile):
name = "libA"
version = "1.0"
settings = "os", "compiler", "build_type", "arch"
exports_sources = "*.cpp"
requires = "libB/1.0@conan/stable"

(continues on next page)

220 Chapter 14. Integrations

Conan Documentation, Release 1.31.4

(continued from previous page)

def build(self):
lib_b_path = self.deps_cpp_info["libB"].rootpath
copyfile(os.path.join(lib_b_path, "libB.pc"), "libB.pc")
Patch copied file with the libB path
tools.replace_prefix_in_pc_file("libB.pc", lib_b_path)

with tools.environment_append({"PKG_CONFIG_PATH": os.getcwd()}):
CALL YOUR BUILD SYSTEM (configure, make etc)
E.g., self.run('g++ main.cpp $(pkg-config libB --libs --cflags) -o main')

Approach 2: Prepare and package .pc files before packaging them

With this approach you will patch the .pc files from B and C before packaging them. The goal is to replace the absolute
path (the variable part of the path) with a variable placeholder. Then in the consumer package A, declare the variable
using --define-variable when calling the pkg-config command.

This approach is cleaner than approach 1, because the packaged files are already prepared to be reused with or without
Conan by declaring the needed variable. And it’s unneeded to import the .pc files to the consumer package. However,
you need B and C libraries to package the .pc files correctly.

Library B recipe (preparing the .pc file):

from conans import ConanFile, tools

class LibBConan(ConanFile):
....

def build(self):
...
tools.replace_prefix_in_pc_file("mypcfile.pc", "${package_root_path_lib_b}")

def package(self):
self.copy(pattern="*.pc", dst="", keep_path=False)

Library A recipe (importing and consuming .pc file):

class LibAConan(ConanFile):
....

requires = "libB/1.0@conan/stable, libC/1.0@conan/stable"

def build(self):

args = '--define-variable package_root_path_lib_b=%s' % self.deps_cpp_info["libB
→˓"].rootpath

args += ' --define-variable package_root_path_lib_c=%s' % self.deps_cpp_info[
→˓"libC"].rootpath

pkgconfig_exec = 'pkg-config ' + args

vars = {'PKG_CONFIG': pkgconfig_exec, # Used by autotools
'PKG_CONFIG_PATH': "%s:%s" % (self.deps_cpp_info["libB"].rootpath,

(continues on next page)

14.2. Build systems 221

Conan Documentation, Release 1.31.4

(continued from previous page)

self.deps_cpp_info["libC"].rootpath)}

with tools.environment_append(vars):
Call autotools (./configure ./make, will read PKG_CONFIG)
Or directly declare the variables:
self.run('g++ main.cpp $(pkg-config %s libB --libs --cflags) -o main' % args)

Approach 3: Use --define-prefix

If you have available pkg-config >= 0.29 and you have only one dependency, you can directly use the
--define-prefix option to declare a custom prefix variable. With this approach you won’t need to patch any-
thing, just declare the correct variable.

Approach 4: Use PKG_CONFIG_$PACKAGE_$VARIABLE

If you have pkg-config >= 0.29.1 available, you can manage multiple dependencies declaring N variables with the
prefixes:

class LibAConan(ConanFile):
....

requires = "libB/1.0@conan/stable, libC/1.0@conan/stable"

def build(self):

vars = {'PKG_CONFIG_libB_PREFIX': self.deps_cpp_info["libB"].rootpath,
'PKG_CONFIG_libC_PREFIX': self.deps_cpp_info["libC"].rootpath,
'PKG_CONFIG_PATH': "%s:%s" % (self.deps_cpp_info["libB"].rootpath,

self.deps_cpp_info["libC"].rootpath)}

with tools.environment_append(vars):
Call the build system

Approach 5: Use the pkg_config generator

If you use package_info() in library B and library C, and specify all the library names and any other needed flag, you
can use the pkg_config generator for library A. Those files doesn’t need to be patched, because they are dynamically
generated with the correct path.

So it can be a good solution in case you are building library A with a build system that manages .pc files like Meson
Build or AutoTools:

Meson Build

from conans import ConanFile, tools, Meson
import os

class ConanFileToolsTest(ConanFile):
generators = "pkg_config"
requires = "lib_a/0.1@conan/stable"

(continues on next page)

222 Chapter 14. Integrations

Conan Documentation, Release 1.31.4

(continued from previous page)

settings = "os", "compiler", "build_type"

def build(self):
meson = Meson(self)
meson.configure()
meson.build()

Autotools

from conans import ConanFile, tools, AutoToolsBuildEnvironment
import os

class ConanFileToolsTest(ConanFile):
generators = "pkg_config"
requires = "lib_a/0.1@conan/stable"
settings = "os", "compiler", "build_type"

def build(self):
autotools = AutoToolsBuildEnvironment(self)
When using the pkg_config generator, self.build_folder will be added to PKG_

→˓CONFIG_PATH
so pkg_config will be able to locate the generated pc files from the requires␣

→˓(LIB_A)
autotools.configure()
autotools.make()

See also:

Check the tools.PkgConfig(), a wrapper of the pkg-config tool that allows to extract flags, library paths, etc. for any
.pc file.

14.2.6
Boost Build

Caution: This generator is deprecated in favor of the b2 generator. See generator b2.

With this generator boost-build you can generate a project-root.jam file to be used with your Boost Build system.

Check the generator boost-build

14.2. Build systems 223

Conan Documentation, Release 1.31.4

14.2.7 B2
(Boost Build)

With this generator b2 you can generate a conanbuildinfo.jam file to be used with your B2 system.

Check the generator b2

14.2.8 QMake

The qmake generator will generate a conanbuildinfo.pri file that can be used for your qmake builds.

$ conan install . -g qmake

Add conan_basic_setup to CONFIG and include the file in your existing project .pro file:

Listing 11: yourproject.pro

...

CONFIG += conan_basic_setup
include(conanbuildinfo.pri)

This will include all the statements in conanbuildinfo.pri in your project. Include paths, libraries, defines, etc. will be
set up for all requirements you have defined as dependencies in a conanfile.txt.

If you’d prefer to manually add the variables for each dependency, you can do so by skipping the CONFIG statement and
only including conanbuildinfo.pri:

Listing 12: yourproject.pro

...

include(conanbuildinfo.pri)

you may now modify your variables manually for each library, such as
INCLUDEPATH += CONAN_INCLUDEPATH_POCO

The qmake generator allows multi-configuration packages, i.e. packages that contains both Debug and Release artifacts.

Example

Tip: This complete example is stored in https://github.com/memsharded/qmake_example

This example project will depend on a multi-configuration (Debug/Release) “Hello World” package. It should be
installed first:

$ git clone https://github.com/memsharded/hello_multi_config
$ cd hello_multi_config

(continues on next page)

224 Chapter 14. Integrations

https://github.com/memsharded/qmake_example

Conan Documentation, Release 1.31.4

(continued from previous page)

$ conan create . memsharded/testing
hello/0.1@memsharded/testing export: Copied 1 '.txt' file: CMakeLists.txt
hello/0.1@memsharded/testing export: Copied 1 '.cpp' file: hello.cpp
hello/0.1@memsharded/testing export: Copied 1 '.h' file: hello.h
hello/0.1@memsharded/testing: A new conanfile.py version was exported

This hello package is created with CMake, but that doesn’t matter for this example, as it can be consumed from a qmake
project with the configuration showed before.

Now let’s get the qmake project and install its hello/0.1@memsharded/testing dependency:

$ git clone https://github.com/memsharded/qmake_example
$ cd qmake_example
$ conan install .
PROJECT: Installing C:\Users\memsharded\qmake_example\conanfile.txt
Requirements

hello/0.1@memsharded/testing from local cache - Cache
Packages

hello/0.1@memsharded/testing:15af85373a5688417675aa1e5065700263bf257e - Cache

hello/0.1@memsharded/testing: Already installed!
PROJECT: Generator qmake created conanbuildinfo.pri
PROJECT: Generator txt created conanbuildinfo.txt
PROJECT: Generated conaninfo.txt

As you can see, we got the dependency information in the conanbuildinfo.pri file. You can inspect the file to see the
variables generated. Now let’s build the project for Release and then for Debug:

$ qmake
$ make
$./helloworld
> Hello World Release!

now let's build the Debug one
$ make clean
$ qmake CONFIG+=debug
$ make
$./helloworld
> Hello World Debug!

See also:

Check the complete reference of the qmake generator.

14.2. Build systems 225

Conan Documentation, Release 1.31.4

14.2.9 Premake

Since Conan 1.9.0 the premake generator is built-in and works with premake5, so the following should be enough to
use it:

[generators]
premake

Example

We are going to use the same example from Getting Started, a MD5 hash calculator app.

This is the main source file for it:

Listing 13: main.cpp

#include "Poco/MD5Engine.h"
#include "Poco/DigestStream.h"

#include <iostream>

int main(int argc, char** argv)
{

Poco::MD5Engine md5;
Poco::DigestOutputStream ds(md5);
ds << "abcdefghijklmnopqrstuvwxyz";
ds.close();
std::cout << Poco::DigestEngine::digestToHex(md5.digest()) << std::endl;
return 0;

}

As this project relies on the Poco Libraries, we are going to create a conanfile.txt with our requirement and also declare
the Premake generator:

Listing 14: conanfile.txt

[requires]
poco/1.9.4

[generators]
premake

In order to use the new generator within your project, use the following Premake script as a reference:

Listing 15: premake5.lua

-- premake5.lua

include("conanbuildinfo.premake.lua")
(continues on next page)

226 Chapter 14. Integrations

Conan Documentation, Release 1.31.4

(continued from previous page)

workspace("ConanPremakeDemo")
conan_basic_setup()

project "ConanPremakeDemo"
kind "ConsoleApp"
language "C++"
targetdir "bin/%{cfg.buildcfg}"

linkoptions { conan_exelinkflags }

files { "**.h", "**.cpp" }

filter "configurations:Debug"
defines { "DEBUG" }
symbols "On"

filter "configurations:Release"
defines { "NDEBUG" }
optimize "On"

Now we are going to let Conan retrieve the dependencies and generate the dependency information in a conanbuild-
info.lua:

$ conan install .

Then let’s call premake to generate our project:

• Use this command for Windows Visual Studio:

$ premake5 vs2017 # Generates a .sln

• Use this command for Linux or macOS:

$ premake5 gmake # Generates a makefile

Now you can build your project with Visual Studio or Make.

See also:

Check the complete reference of the premake generator.

14.2.10 XMake

Install third-party packages:

After version 2.2.5, xmake supports installing for dependency libraries of conan package manager.

14.2. Build systems 227

Conan Documentation, Release 1.31.4

Listing 16: xmake.lua

-- xmake.lua

add_requires("conan::zlib/1.2.11@conan/stable", {alias = "zlib", debug = true})
add_requires("conan::openssl/1.1.1g", {alias = "openssl",

configs = {options = "OpenSSL:shared=True"}})

target("test")
set_kind("binary")
add_files("src/*.c")
add_packages("openssl", "zlib")

After executing xmake to compile:

$ xmake
checking for the architecture ... x86_64
checking for the Xcode directory ... /Applications/Xcode.app
checking for the SDK version of Xcode ... 10.14
note: try installing these packages (pass -y to skip confirm)?
-> conan::zlib/1.2.11@conan/stable (debug)
-> conan::openssl/1.1.1g

please input: y (y/n)

=> installing conan::zlib/1.2.11@conan/stable .. ok
=> installing conan::openssl/1.1.1g .. ok

[0%]: ccache compiling.release src/main.c
[100%]: linking.release test

Find a conan package

XMake v2.2.6 and later versions also support finding the specified package in the Conan cache:

Listing 17: xmake.lua

...
find_packages("conan::openssl/1.1.1g")

Test command for finding package

We can also add a third-party package manager prefix to test:

xmake l find_packages conan::openssl/1.1.1g

Note: It should be noted that if the find_package command is executed in the project directory with xmake.lua, there
will be a cache. If the search fails, the next lookup will also use the cached result. If you want to force a retest every
time, Please switch to the non-project directory to execute the above command.

228 Chapter 14. Integrations

Conan Documentation, Release 1.31.4

14.2.11 Make

Conan provides two integrations for plain Makefiles:

The Make generator
The Make toolchain (experimental)

Refer to the links above for more detail about each of them. Here we provide a high-level explanation of how these
integrations are meant to be used.

If you are using Makefile to build your project you can use one or both of these depending on your needs.

The make generator outputs all the variables related to package dependencies into a file which is named conanbuild-
info.mak. The make toolchain outputs all the variables related to settings, options, and platform into a file which is
named conan_toolchain.mak.

To use the generator, indicate it in your conanfile like this:

Listing 18: conanfile.txt

[generators]
make

Listing 19: conanfile.py

class MyConan(ConanFile):
...
generators = "make"

To use the toolchain, add the following function to your conanfile:

Listing 20: conanfile.py

class MyConan(ConanFile):
...
def toolchain(self):

tc = Make(self)
tc.write_toolchain_files()

NOTE: This can only be used in a conanfile.py and not conanfile.txt.

Example

We are going to use the same example from Getting Started, a MD5 hash calculator app.

This is the main source file for it:

Listing 21: main.cpp

#include "Poco/MD5Engine.h"
#include "Poco/DigestStream.h"

#include <iostream>

int main(int argc, char** argv)
(continues on next page)

14.2. Build systems 229

Conan Documentation, Release 1.31.4

(continued from previous page)

{
Poco::MD5Engine md5;
Poco::DigestOutputStream ds(md5);
ds << "abcdefghijklmnopqrstuvwxyz";
ds.close();
std::cout << Poco::DigestEngine::digestToHex(md5.digest()) << std::endl;
return 0;

}

As this project relies on the Poco Libraries we are going to create a conanfile.py with our requirement and also
declare the Make generator and Make toolchain. For simplicity, this conanfile declares an empty build and package
step. They’re not needed for for the local developer workflow.

Listing 22: conanfile.py

from conans import ConanFile, MakeToolchain

class MyConan(ConanFile):
name = "myconan"
version = "0.1"
settings = "os", "arch", "compiler", "build_type"
generators = "make"
exports_sources = "*"

def toolchain(self):
tc = Make(self)
tc.write_toolchain_files()

def build(self):
pass

def package(self):
pass

In order to use this generator within your project, use the following Makefile as a reference:

Listing 23: Makefile

#--
Prepare flags from make generator
#--

include conanbuildinfo.mak
$(call CONAN_BASIC_SETUP)

#--
Prepare flags from make toolchain
#--

include conan_toolchain.mak
$(call CONAN_TC_SETUP)

#--
(continues on next page)

230 Chapter 14. Integrations

Conan Documentation, Release 1.31.4

(continued from previous page)

Make variables for a sample App
#--

SRCS = main.cpp
OBJS = main.o
EXE_FILENAME = main

#--
Make Rules
#--

.PHONY : exe
exe : $(EXE_FILENAME)

$(EXE_FILENAME) : $(OBJS)
g++ $(OBJS) $(CXXFLAGS) $(LDFLAGS) $(LDLIBS) -o $(EXE_FILENAME)

%.o : $(SRCS)
g++ -c $(CPPFLAGS) $(CXXFLAGS) $< -o $@

Now we are going to let Conan retrieve the dependencies, generate the dependency information in the file
conanbuildinfo.mak, and generate the options and settings information in the file conan_toolchain.mak:

$ conan install .

Then let’s call make to generate our project:

$ make exe

Now you can run your application with ./main.

See also:

Complete reference for Make generator
Complete reference for Make toolchain (experimental)

14.2.12 qbs

Conan provides a qbs generator, which will generate a conanbuildinfo.qbs file that can be used for your qbs builds.

Add conanbuildinfo.qbs as a reference on the project level and a Depends item with the name conanbuildinfo:

yourproject.qbs

import qbs

Project {
references: ["conanbuildinfo.qbs"]
Product {

type: "application"
consoleApplication: true
files: [

(continues on next page)

14.2. Build systems 231

Conan Documentation, Release 1.31.4

(continued from previous page)

"conanfile.txt",
"main.cpp",

]
Depends { name: "cpp" }
Depends { name: "ConanBasicSetup" }

}
}

This will include the product called ConanBasicSetupwhich holds all the necessary settings for all your dependencies.

If you’d prefer to manually add each dependency, just replace ConanBasicSetup with the dependency you would like
to include. You may also specify multiple dependencies:

yourproject.qbs

import qbs

Project {
references: ["conanbuildinfo.qbs"]
Product {

type: "application"
consoleApplication: true
files: [

"conanfile.txt",
"main.cpp",

]
Depends { name: "cpp" }
Depends { name: "catch" }
Depends { name: "Poco" }

}
}

See also:

Check the Reference/Generators/qbs section for get more details.

14.2.13 Meson Build

If you are using Meson Build as your library build system, you can use the Meson build helper. This helper has .
configure() and .build() methods available to ease the call to Meson build system. It also will automatically take
the pc files of your dependencies when using the pkg_config generator.

Check Building with Meson Build for more info.

232 Chapter 14. Integrations

Conan Documentation, Release 1.31.4

14.2.14 SCons

SCons can be used both to generate and consume Conan packages via the scons generator. The package recipe build()
method could be similar to:

class PkgConan(ConanFile):
settings = 'os', 'compiler', 'build_type', 'arch'
requires = 'hello/1.0@user/stable'
generators = "scons"
...

def build(self):
debug_opts = ['--debug-build'] if self.settings.build_type == 'Debug' else []
os.makedirs("build")
FIXME: Compiler, version, arch are hardcoded, not parametrized
with tools.chdir("build"):

self.run(['scons', '-C', '{}/src'.format(self.source_folder)] + debug_opts)

...

The SConscript build script can load the generated SConscript_conan file that contains the information of the
dependencies, and use it to build

conan = SConscript('{}/SConscript_conan'.format(build_path_relative_to_sconstruct))
if not conan:

print("File `SConscript_conan` is missing.")
print("It should be generated by running `conan install`.")
sys.exit(1)

flags = conan["conan"]
version = flags.pop("VERSION")
env.MergeFlags(flags)
env.Library("hello", "hello.cpp")

A complete example with a test_package that uses SCons too is available in the following GitHub repository. Give it a
try!

$ git clone https://github.com/memsharded/conan-scons-template
$ cd conan-scons-template
$ conan create . demo/testing
> Hello World Release!
$ conan create . demo/testing -s build_type=Debug
> Hello World Debug!

14.2. Build systems 233

Conan Documentation, Release 1.31.4

14.2.15 Compilers on command line

The compiler_args generator creates a file named conanbuildinfo.args containing command line arguments to
invoke gcc, clang or cl (Visual Studio) compiler.

Now we are going to compile the getting started example using compiler_args instead of the cmake generator.

Open conanfile.txt and change (or add) compiler_args generator:

[requires]
poco/1.9.4

[generators]
compiler_args

Install the requirements (from the mytimer/build folder):

$ conan install ..

Note: Remember, if you don’t specify settings in the install command with -s, Conan will use the detected defaults.
You can always change them by editing the ~/.conan/profiles/default or override them with “-s” parameters.

The generated conanbuildinfo.args show:

-DPOCO_STATIC=ON -DPOCO_NO_AUTOMATIC_LIBS
-I/home/user/.conan/data/poco/1.9.4/_/_/package/58080bce1cc38259eb7c282aa95c25aecde8efe4/
→˓include
-I/home/user/.conan/data/openssl/1.0.2t/_/_/package/
→˓f99afdbf2a1cc98ba2029817b35103455b6a9b77/include
-I/home/user/.conan/data/zlib/1.2.11/_/_/package/
→˓6af9cc7cb931c5ad942174fd7838eb655717c709/include
-m64 -O3 -s -DNDEBUG
-Wl,-rpath="/home/user/.conan/data/poco/1.9.4/_/_/package/
→˓58080bce1cc38259eb7c282aa95c25aecde8efe4/lib"
-Wl,-rpath="/home/user/.conan/data/openssl/1.0.2t/_/_/package/
→˓f99afdbf2a1cc98ba2029817b35103455b6a9b77/lib"
-Wl,-rpath="/home/user/.conan/data/zlib/1.2.11/_/_/package/
→˓6af9cc7cb931c5ad942174fd7838eb655717c709/lib"
-L/home/user/.conan/data/poco/1.9.4/_/_/package/58080bce1cc38259eb7c282aa95c25aecde8efe4/
→˓lib
-L/home/user/.conan/data/openssl/1.0.2t/_/_/package/
→˓f99afdbf2a1cc98ba2029817b35103455b6a9b77/lib
-L/home/user/.conan/data/zlib/1.2.11/_/_/package/
→˓6af9cc7cb931c5ad942174fd7838eb655717c709/lib
-lPocoMongoDB -lPocoNetSSL -lPocoNet -lPocoCrypto -lPocoDataSQLite -lPocoData -lPocoZip -
→˓lPocoUtil
-lPocoXML -lPocoJSON -lPocoRedis -lPocoFoundation
-lrt -lssl -lcrypto -ldl -lpthread -lz
-D_GLIBCXX_USE_CXX11_ABI=1

This is hard to read, but those are just the compiler_args parameters needed to compile our program:

• -I options with headers directories

• -L for libraries directories

234 Chapter 14. Integrations

Conan Documentation, Release 1.31.4

• -l for library names

• and so on. . . see the complete reference here

It’s almost the same information we can see in conanbuildinfo.cmake and many other generators’ files.

Run:

$ mkdir bin
$ g++ ../timer.cpp @conanbuildinfo.args -std=c++14 -o bin/timer

Note: “@conanbuildinfo.args” appends all the file contents to g++ command parameters

$./bin/timer
Callback called after 250 milliseconds.
...

To invoke cl (Visual Studio compiler):

$ cl /EHsc timer.cpp @conanbuildinfo.args

You can also use the generator within your build() method of your conanfile.py.

Check the Reference, generators, compiler_args section for more info.

14.3 IDEs

You can develop both the recipes and your libraries using you IDE.

14.3.1 Visual Studio

Conan Extension for Visual Studio

Thanks to the invaluable help of our community we manage to develop and maintain a free extension for Visual Studio
in the Microsoft Marketplace, it is called Conan Extension for Visual Studio and it provides integration with Conan
using the Visual Studio generators.

14.3. IDEs 235

Conan Documentation, Release 1.31.4

You can install it into your IDE using the Extensions manager and start using it right away. This extension will look
for a conanfile.py (or conanfile.txt) and retrieve the requirements declared in it that match your build configuration (it
will build them from sources if no binaries are available).

Note: Location of the conanfile

In version 1.0 of the extension, the algorithm to look for the conanfile.py (preferred) or conanfile.txt is very naïve: It
will start looking for those files in the directory where the Visual Studio project file is located and then it will walk
recursively into parent directories to look for them.

The extension creates a property sheet file and adds it to the project, so all the information from the dependencies
handled by Conan should be added (as inherited properties) to those already available in your projects.

At this moment (release v1.0.x) the extension is under heavy development, some behaviors may change and new
features will be added. You can subscribe to its repository to stay updated and, of course, any feedback about it will be
more than welcome.

General Integration

Check the MSBuild() integration, that contains information about Build Helpers and generators to be used with Visual
Studio.

14.3.2 CLion

There is an official Jetbrains plugin Conan plugin for CLion.

236 Chapter 14. Integrations

https://github.com/conan-io/conan-vs-extension
https://plugins.jetbrains.com/plugin/11956-conan

Conan Documentation, Release 1.31.4

You can read how to use it in the following blog post

General Integration

CLion uses CMake as the build system of projects, so you can use the CMake generator to manage your requirements
in your CLion project.

Just include the conanbuildinfo.cmake this way:

if(EXISTS ${CMAKE_BINARY_DIR}/conanbuildinfo.cmake)
include(${CMAKE_BINARY_DIR}/conanbuildinfo.cmake)
conan_basic_setup()

else()
message(WARNING "The file conanbuildinfo.cmake doesn't exist, you have to run conan␣

→˓install first")
endif()

If the conanbuildinfo.cmake file is not found, it will print a warning message in the Messages console of your
CLion IDE.

Using packages in a CLion project

Let see an example of how to consume Conan packages in a CLion project. We are going to require and use the zlib
conan package.

1. Create a new CLion project

14.3. IDEs 237

https://blog.jetbrains.com/clion/2019/05/getting-started-with-the-conan-clion-plugin/

Conan Documentation, Release 1.31.4

2. Edit the CMakeLists.txt file and add the following lines:

if(EXISTS ${CMAKE_BINARY_DIR}/conanbuildinfo.cmake)
include(${CMAKE_BINARY_DIR}/conanbuildinfo.cmake)
conan_basic_setup()

else()
message(WARNING "The file conanbuildinfo.cmake doesn't exist, you have to run conan␣

→˓install first")
endif()

3. CLion will reload your CMake project and you will be able to see a Warning in the console, because the
conanbuildinfo.cmake file still doesn’t exist:

4. Create a conanfile.txt with all your requirements and use the cmake generator. In this case we only require the

238 Chapter 14. Integrations

Conan Documentation, Release 1.31.4

zlib library from a Conan package:

[requires]
zlib/1.2.11

[generators]
cmake

5. Now you can run conan install for debug in the cmake-build-debug folder to install your requirements and
generate the conanbuildinfo.cmake file there:

$ conan install . -s build_type=Debug --install-folder=cmake-build-debug

6. Repeat the last step if you have the release build types configured in your CLion IDE, but change the build_type
setting accordingly:

$ conan install . -s build_type=Release --install-folder=cmake-build-release

7. Now reconfigure your CLion project. The Warning message is not shown anymore:

8. Open the library.cpp file and include zlib.h. If you follow the link, you can see that CLion automatically detects
the zlib.h header file from the local Conan cache.

9. Build your project normally using your CLion IDE:

14.3. IDEs 239

Conan Documentation, Release 1.31.4

You can check a complete example of a CLion project reusing conan packages in this github repository: lasote/clion-
conan-consumer.

Creating Conan packages in a CLion project

Now we are going to see how to create a Conan package from the previous library.

1. Create a new CLion project

2. Edit the CMakeLists.txt file and add the following lines:

if(EXISTS ${CMAKE_BINARY_DIR}/conanbuildinfo.cmake)
include(${CMAKE_BINARY_DIR}/conanbuildinfo.cmake)
conan_basic_setup()

else()
message(WARNING "The file conanbuildinfo.cmake doesn't exist, you have to run conan␣

→˓install first")
endif()

240 Chapter 14. Integrations

https://github.com/lasote/clion-conan-consumer
https://github.com/lasote/clion-conan-consumer

Conan Documentation, Release 1.31.4

3. Create a conanfile.py file. It’s recommended to use the conan new command.

$ conan new mylibrary/1.0@myuser/channel

Edit the conanfile.py:

• We are removing the source method because we have the sources in the same project; so we can use the
exports_sources.

• In the package_infomethod, adjust the library name. In this case our CMakeLists.txt creates a target library
called mylibrary.

• Adjust the CMake helper in the build() method. The cmake.configure() doesn’t need to specify the
source_folder, because we have the library.* files in the root directory.

• Adjust the copy function calls in the package method to ensure that all your headers and libraries are copied to
the Conan package.

from conans import ConanFile, CMake, tools

class MylibraryConan(ConanFile):
name = "mylibrary"
version = "1.0"
license = "<Put the package license here>"
url = "<Package recipe repository url here, for issues about the package>"
description = "<Description of Mylibrary here>"
settings = "os", "compiler", "build_type", "arch"
options = {"shared": [True, False]}
default_options = {"shared": False}
generators = "cmake"
requires = "zlib/1.2.11"

def build(self):
cmake = CMake(self)
cmake.configure()
cmake.build()

Explicit way:
self.run('cmake "%s" %s' % (self.source_folder, cmake.command_line))
self.run("cmake --build . %s" % cmake.build_config)

def package(self):
self.copy("*.h", dst="include", src="hello")
self.copy("*.lib", dst="lib", keep_path=False)
self.copy("*.dll", dst="bin", keep_path=False)

(continues on next page)

14.3. IDEs 241

Conan Documentation, Release 1.31.4

(continued from previous page)

self.copy("*.so", dst="lib", keep_path=False)
self.copy("*.dylib", dst="lib", keep_path=False)
self.copy("*.a", dst="lib", keep_path=False)

def package_info(self):
self.cpp_info.libs = ["mylibrary"]

4. To build your library with CLion, follow the guide of Using packages from step 5.

5. To package your library, use the conan export-pkg command passing the used build-folder. It will call your
package() method to extract the artifacts and push the Conan package to the local cache:

$ conan export-pkg . mylibrary/1.0@myuser/channel --build-folder cmake-build-debug -
→˓pr=myprofile

7. Now you can upload it to a Conan server if needed:

$ conan upload mylibrary/1.0@myuser/channel # This will upload only the recipe, use --
→˓all to upload all the generated binary packages.

8. If you would like to see how the package looks like before exporting it to the local cache (conan export-pkg) you
can use the conan package command to create the package in a local directory:

$ conan package . --build-folder cmake-build-debug --package-folder=mypackage

If we list the mypackage folder we can see:

• A lib folder containing our library

• A include folder containing our header files

• A conaninfo.txt and conanmanifest.txt conan files, always present in all packages.

You can check a full example of a CLion project for creating a Conan package in this github repository: lasote/clion-
conan-package.

14.3.3 Apple/Xcode

Conan can be integrated with Apple’s XCode in two different ways:

• Using the cmake generator to create a conanbuildinfo.cmake file.

• Using the xcode generator to create a conanbuildinfo.xcconfig file.

242 Chapter 14. Integrations

https://github.com/lasote/clion-conan-package
https://github.com/lasote/clion-conan-package

Conan Documentation, Release 1.31.4

With CMake

Check the Integrations/cmake section to read about the cmake generator. Check the official CMake docs to find out
more about generating Xcode projects with CMake.

With the xcode generator

You can use the xcode generator to integrate your requirements with your Xcode project. This generator creates an
xcconfig file, with all the include paths, lib paths, libs, flags etc, that can be imported in your project.

Open conanfile.txt and change (or add) the xcode generator:

[requires]
poco/1.9.4

[generators]
xcode

Install the requirements:

$ conan install .

Go to your Xcode project, click on the project and select Add files to. . .

Choose conanbuildinfo.xcconfig generated.

14.3. IDEs 243

https://cmake.org/cmake/help/v3.0/manual/cmake-generators.7.html

Conan Documentation, Release 1.31.4

Click on the project again. In the info/configurations section, choose conanbuildinfo for release and debug.

Build your project as usual.

See also:

Check the Reference/Generators/xcode for the complete reference.

See also:

Check the Tools section about Apple tools to ease the integration with the Apple development tools in your recipes
using the toolchain as a build require.

See also:

Check the Darwin Toolchain package section to learn how to cross build for iOS, watchOS and tvOS.

244 Chapter 14. Integrations

Conan Documentation, Release 1.31.4

14.3.4 Android Studio

You can use Conan to cross-build your libraries for Android with different architectures. If you are using Android
Studio for your Android application development, you can integrate Conan to automate the library building for the
different architectures that you want to support in your project.

Here is an example of how to integrate the libpng Conan package library in an Android application, but any library
that can be cross-compiled to Android could be used using the same procedure.

We are going to start from the “Hello World” wizard application and then will add it the libpng C library:

1. Follow the cross-build your libraries for Android guide to create a standalone toolchain and create a profile
named android_21_arm_clang for Android. You can also use the NDK that the Android Studio installs.

2. Create a new Android Studio project and include C++ support.

3. Select your API level and target. The arch and api level have to match with the standalone toolchain created in step
1.

14.3. IDEs 245

Conan Documentation, Release 1.31.4

4. Add an empty Activity and name it.

246 Chapter 14. Integrations

Conan Documentation, Release 1.31.4

5. Select the C++ standard

6. Change to the project view and in the app folder create a conanfile.txt with the following contents:

conanfile.txt

[requires]
(continues on next page)

14.3. IDEs 247

Conan Documentation, Release 1.31.4

(continued from previous page)

libpng/1.6.23@lasote/stable

[generators]
cmake

7. Open the CMakeLists.txt file from the app folder and replace the contents with:

cmake_minimum_required(VERSION 3.4.1)

include(${CMAKE_CURRENT_SOURCE_DIR}/conan_build/conanbuildinfo.cmake)
set(CMAKE_CXX_COMPILER_VERSION "5.0") # Unknown miss-detection of the compiler by CMake
conan_basic_setup(TARGETS)

add_library(native-lib SHARED src/main/cpp/native-lib.cpp)
target_link_libraries(native-lib CONAN_PKG::libpng)

8. Open the app/build.gradle file. We are configuring the architectures we want to build, specifying adding a new task
conanInstall that will call conan install to install the requirements:

• In the defaultConfig section, append:

ndk {
// Specifies the ABI configurations of your native
// libraries Gradle should build and package with your APK.
abiFilters 'armeabi-v7a'

}

• After the android block:

task conanInstall {
def buildDir = new File("app/conan_build")
buildDir.mkdirs()
// if you have problems running the command try to specify the absolute
// path to conan (Known problem in MacOSX) /usr/local/bin/conan
def cmmd = "conan install ../conanfile.txt --profile android_21_arm_clang --build␣

→˓missing "
print(">> ${cmmd} \n")

def sout = new StringBuilder(), serr = new StringBuilder()
def proc = cmmd.execute(null, buildDir)
proc.consumeProcessOutput(sout, serr)
proc.waitFor()
println "$sout $serr"
if(proc.exitValue() != 0){

throw new Exception("out> $sout err> $serr" + "\nCommand: ${cmmd}")
}

}

9. Finally open the default example cpp library in app/src/main/cpp/native-lib.cpp and include some lines
using your library. Be careful with the JNICALL name if you used another app name in the wizard:

#include <jni.h>
#include <string>

(continues on next page)

248 Chapter 14. Integrations

Conan Documentation, Release 1.31.4

(continued from previous page)

#include "png.h"
#include "zlib.h"
#include <sstream>
#include <iostream>

extern "C"
JNIEXPORT jstring JNICALL
Java_com_jfrog_myconanandroidcppapp_MainActivity_stringFromJNI(

JNIEnv *env,
jobject /* this */) {

std::ostringstream oss;
oss << "Compiled with libpng: " << PNG_LIBPNG_VER_STRING << std::endl;
oss << "Running with libpng: " << png_libpng_ver << std::endl;
oss << "Compiled with zlib: " << ZLIB_VERSION << std::endl;
oss << "Running with zlib: " << zlib_version << std::endl;

return env->NewStringUTF(oss.str().c_str());
}

Build your project normally. Conan will create a conan folder with a folder for each different architecture you have
specified in the abiFilters with a conanbuildinfo.cmake file.

Then run the app using an x86 emulator for best performance:

See also:

Check the section Linux/Windows/macOS to Android to read more about cross-building for Android.

14.3. IDEs 249

Conan Documentation, Release 1.31.4

14.3.5 YouCompleteMe (vim)

If you are a vim user, you may also be a user of YouCompleteMe.

With this generator, you can create the necessary files for your project dependencies, so YouCompleteMe will show
symbols from your Conan installed dependencies for your project. You only have to add the ycm generator to your
conanfile:

Listing 24: conanfile.txt

[generators]
ycm

It will generate a conan_ycm_extra_conf.py and a conan_ycm_flags.json file in your folder. Those files will be over-
written each time you run conan install.

In order to make YouCompleteMe work, copy/move conan_ycm_extra_conf.py to your project base folder (usually the
one containing your conanfile) and rename it to .ycm_extra_conf.py.

You can (and probably should) edit this file to add your project specific configuration. If your base folder is different
from your build folder, link the conan_ycm_flags.json from your build folder to your base folder.

from your base folder
$ cp build/conan_ycm_extra_conf.py .ycm_extra_conf.py
$ ln -s build/conan_ycm_flags.json conan_ycm_flags.json

14.4 CI Platforms

You can use any CI platform to build your libraries and generate your Conan packages.

14.4.1 Jenkins

You can use Jenkins CI both for:

• Building and testing your project, which manages dependencies with Conan, and probably a conanfile.txt file

• Building and testing conan binary packages for a given Conan package recipe (with a conanfile.py) and uploading
to a Conan remote (Artifactory or conan_server)

There is no need for any special setup for it, just install Conan and your build tools in the Jenkins machine and call the
needed Conan commands.

Note: As reported in https://github.com/conan-io/conan/issues/6400, running Conan under Jenkins could have some
unexpected issues running git clone of repositories requiring authentication. If that is the case, consider to use ssh
protocol instead of https.

250 Chapter 14. Integrations

https://github.com/ycm-core/YouCompleteMe/
https://github.com/conan-io/conan/issues/6400

Conan Documentation, Release 1.31.4

Artifactory and Jenkins integration

If you are using Artifactory you can take advantage of the Jenkins Artifactory Plugin. Check here how to install the
plugin and here you can check the full documentation about the DSL.

The Artifactory Jenkins plugin provides a powerful DSL (Domain Specific Language) to call Conan, connect with your
Artifactory instance, upload and download your packages from Artifactory and manage your build information.

Example: Test your project getting requirements from Artifactory

This is a template to use Jenkins with an Artifactory plugin and Conan to retrieve your package from Artifactory server
and publish the build information about the downloaded packages to Artifactory.

In this script we assume that we already have all our dependencies in the Artifactory server, and we are building our
project that uses Boost and Poco libraries.

Create a new Jenkins Pipeline task using this script:

//Adjust your artifactory instance name/repository and your source code repository
def artifactory_name = "artifactory"
def artifactory_repo = "conan-local"
def repo_url = 'https://github.com/memsharded/example-boost-poco.git'
def repo_branch = 'master'

node {
def server = Artifactory.server artifactory_name
def client = Artifactory.newConanClient()

stage("Get project"){
git branch: repo_branch, url: repo_url

}

stage("Get dependencies and publish build info"){
sh "mkdir -p build"
dir ('build') {
def b = client.run(command: "install ..")
server.publishBuildInfo b

}
}

stage("Build/Test project"){
dir ('build') {
sh "cmake ../ && cmake --build ."

}
}

}

14.4. CI Platforms 251

https://jfrog.com/artifactory/
https://www.jfrog.com/confluence/display/JFROG/Jenkins+Artifactory+Plug-in
https://www.jfrog.com/confluence/display/JFROG/Jenkins+Artifactory+Plug-in
https://www.jfrog.com/confluence/display/JFROG/Jenkins+Artifactory+Plug-in
https://www.jfrog.com/confluence/display/JFROG/Working+With+Pipeline+Jobs+in+Jenkins
https://www.jfrog.com/confluence/display/JFROG/Build+Integration
https://www.jfrog.com/confluence/display/JFROG/Build+Integration

Conan Documentation, Release 1.31.4

Example: Build a Conan package and upload it to Artifactory

In this example we will call Conan test package command to create a binary packages and then upload it to Artifactory.
We also upload the build information:

def artifactory_name = "artifactory"
def artifactory_repo = "conan-local"
def repo_url = 'https://github.com/conan-community/conan-zlib.git'
def repo_branch = "release/1.2.11"

node {
def server = Artifactory.server artifactory_name
def client = Artifactory.newConanClient()
def serverName = client.remote.add server: server, repo: artifactory_repo

stage("Get recipe"){
git branch: repo_branch, url: repo_url

}
(continues on next page)

252 Chapter 14. Integrations

https://www.jfrog.com/confluence/display/JFROG/Build+Integration

Conan Documentation, Release 1.31.4

(continued from previous page)

stage("Test recipe"){
client.run(command: "create")

}

stage("Upload packages"){
String command = "upload \"*\" --all -r ${serverName} --confirm"
def b = client.run(command: command)
server.publishBuildInfo b

}
}

14.4.2 Travis CI

You can use the Travis CI cloud service to automatically build and test your project in Linux/MacOS environments in
the cloud. It is free for OSS projects, and offers an easy integration with GitHub, so builds can be automatically fired
in Travis-CI after a git push to GitHub.

You can use Travis-CI both for:

• Building and testing your project, which manages dependencies with Conan, and probably a conanfile.txt file.

• Building and testing Conan binary packages for a given Conan package recipe (with a conanfile.py).

14.4. CI Platforms 253

https://travis-ci.org/

Conan Documentation, Release 1.31.4

Installing dependencies and building your project

A very common use case is to build your project after Conan takes care of installing your dependencies. Doing this
process in Travis CI is quite convenient as you can do it with conan install.

To enable Travis CI support, you need to create a .travis.yml file and paste this code in it:

os: linux
language: python
python: "3.7"
dist: xenial
compiler:
- gcc

install:
Install conan
- pip install conan

Automatic detection of your arch, compiler, etc.
- conan user

script:
Download dependencies and build project
- conan install .

Call your build system
- cmake . -G "Unix Makefiles"
- cmake --build .

Run your tests
- ctest .

Travis will install the gcc compiler and the conan client and will execute the conan install command using the
requirements and generators indicated in your conanfile.py or conanfile.txt. Then, the script section installs the re-
quirements and then you can use your build system to compile the project (using make in this example).

Creating, testing and uploading Conan binary packages

You can also use Travis CI to automate building new Conan binary packages with every change you push to GitHub.
You can probably set up your own way, but Conan has some utilities to help in the process.

The command conan new has arguments to create a default working .travis.yml file. Other setups might be possible,
but for this example we are assuming that you are using GitHub and also uploading your final packages to Bintray.

You could follow these steps:

1. First, create an empty GitHub repository. Let’s call it “hello”, for creating a “hello world” package. GitHub
allows creating it with a Readme and .gitignore.

2. Get the credentials User and API Key. (Remember, Bintray uses the API key as “password”, not your main
Bintray account password.)

3. Create a Conan repository in Bintray under your user or organization, and get its URL (“Set me up”). We will
call it UPLOAD_URL

4. Activate the repo in your Travis account, so it is built when we push changes to it.

5. Under Travis More Options -> Settings->Environment Variables, add the CONAN_PASSWORD environment vari-
able with the Bintray API Key. If your Bintray user is different from the package user, you can also define your
Bintray username, defining the environment variable CONAN_LOGIN_USERNAME.

6. Clone the repo: git clone <your_repo/hello> && cd hello.

254 Chapter 14. Integrations

Conan Documentation, Release 1.31.4

7. Create the package: conan new hello/0.1@<user>/testing -t -s -cilg -cis -ciu=UPLOAD_URL
where user is your Bintray username.

8. You can inspect the created files: both .travis.yml, .travis/run.sh, and .travis/install.sh and the build.py
script, that is used by conan-package-tools utility to split different builds with different configurations in different
Travis CI jobs.

9. You can test locally, before pushing, with conan test.

10. Add the changes, commit and push: git add . && git commit -m "first commit" && git push.

11. Go to Travis and see the build, with the different jobs.

12. When it has finished, go to your Bintray repository, you should see there the uploaded packages for different
configurations.

13. Check locally, searching in Bintray: conan search hello/0.1@<user>/testing -r=mybintray.

If something fails, please report an issue in the conan-package-tools GitHub repository: https://github.com/
conan-io/conan-package-tools

14.4.3 Appveyor

You can use the AppVeyor cloud service to automatically build and test your project in a Windows environment in the
cloud. It is free for OSS projects, and offers an easy integration with Github, so builds can be automatically fired in
Appveyor after a git push to Github.

You can use Appveyor both for:

• Building and testing your project, which manages dependencies with Conan, and probably a conanfile.txt file

• Building and testing Conan binary packages for a given Conan package recipe (with a conanfile.py)

Building and testing your project

We are going to use an example with GTest package, with AppVeyor support to run the tests.

Clone the project from github:

$ git clone https://github.com/lasote/conan-gtest-example

Create an appveyor.yml file and paste this code in it:

version: 1.0.{build}
platform:
- x64

install:
- cmd: echo "Downloading conan..."
- cmd: set PATH=%PATH%;%PYTHON%/Scripts/
- cmd: pip.exe install conan
- cmd: conan user # Create the conan data directory

(continues on next page)

14.4. CI Platforms 255

https://github.com/conan-io/conan-package-tools
https://github.com/conan-io/conan-package-tools
https://ci.appveyor.com

Conan Documentation, Release 1.31.4

(continued from previous page)

- cmd: conan --version

build_script:
- cmd: mkdir build
- cmd: conan install . -o gtest:shared=True
- cmd: cd build
- cmd: cmake ../ -DBUILD_TEST=TRUE -G "Visual Studio 14 2015 Win64"
- cmd: cmake --build . --config Release

test_script:
- cmd: cd bin
- cmd: encryption_test.exe

Appveyor will install the Conan tool and will execute the conan install command. Then, the build_script section
creates the build folder, compiles the project with cmake and the section test_script runs the tests.

Creating, testing and uploading Conan binary packages

You can use Appveyor to automate the building of binary packages, which will be created in the cloud after pushing to
Github. You can probably set up your own way, but Conan has some utilities to help in the process.

The command conan new has arguments to create a default working appveyor.yml file. Other setups might be possible,
but for this example we are assuming that you are using GitHub and also uploading your final packages to Bintray. You
could follow these steps:

1. First, create an empty github repository. Let’s call it “hello”, for creating a “hello world” package. Github allows
to create it with a Readme and .gitignore.

2. Get the credentials User and API Key. (Remember, Bintray uses the API key as “password”, not your main
Bintray account password.)

3. Create a Conan repository in Bintray under your user or organization, and get its URL (“Set me up”). We will
call it UPLOAD_URL

4. Activate the repo in your Appveyor account, so it is built when we push changes to it.

5. Under Appveyor Settings->Environment, add the CONAN_PASSWORD environment variable with the Bintray API
Key, and encrypt it. If your Bintray user is different from the package user, you can define your Bintray username
too, defining the environment variable CONAN_LOGIN_USERNAME

6. Clone the repo: $ git clone <your_repo/hello> && cd hello

7. Create the package: conan new hello/0.1@<user>/testing -t -s -ciw -cis -ciu=UPLOAD_URL
where user is your Bintray username

8. You can inspect the created files: both appveyor.yml and the build.py script, that is used by conan-package-tools
utility to split different builds with different configurations in different appveyor jobs.

9. You can test locally, before pushing, with conan create

10. Add the changes, commit and push: git add . && git commit -m "first commit" && git push

11. Go to Appveyor and see the build, with the different jobs.

12. When it finish, go to your Bintray repository, you should see there the uploaded packages for different configu-
rations

13. Check locally, searching in Bintray: conan search hello/0.1@<user>/testing -r=mybintray

256 Chapter 14. Integrations

Conan Documentation, Release 1.31.4

If something fails, please report an issue in the conan-package-tools github repository: https://github.com/
conan-io/conan-package-tools

14.4.4 Gitlab

You can use the Gitlab CI cloud or local service to automatically build and test your project in Linux/MacOS/Windows
environments. It is free for OSS projects, and offers an easy integration with Gitlab, so builds can be automatically
fired in Gitlab CI after a git push to Gitlab.

You can use Gitlab CI both for:

• Building and testing your project, which manages dependencies with Conan, and probably a conanfile.txt file

• Building and testing Conan binary packages for a given Conan package recipe (with a conanfile.py)

Building and testing your project

We are going to use an example with GTest package, with Gitlab CI support to run the tests.

Clone the project from github:

$ git clone https://github.com/lasote/conan-gtest-example

Create a .gitlab-ci.yml file and paste this code in it:

image: conanio/gcc63

build:
before_script:
Upgrade Conan version
- sudo pip install --upgrade conan
Automatic detection of your arch, compiler, etc.
- conan user

script:
Download dependencies, build, test and create package
- conan create . user/channel

Gitlab CI will install the conan tool and will execute the conan install command. Then, the script section creates the
build folder, compiles the project with cmake and runs the tests.

On Windows the Gitlab runner may be running as a service and not have a home directory, in which case you need to
set a custom value for CONAN_USER_HOME.

14.4. CI Platforms 257

https://github.com/conan-io/conan-package-tools
https://github.com/conan-io/conan-package-tools
https://about.gitlab.com/

Conan Documentation, Release 1.31.4

Creating, testing and uploading Conan binary packages

You can use Gitlab CI to automate the building of binary packages, which will be created in the cloud after pushing
to Gitlab. You can probably setup your own way, but Conan has some utilities to help in the process. The command
conan new has arguments to create a default working .gitlab-ci.yml file. Other setups might be possible, but for
this example we are assuming that you are using github and also uploading your final packages to Bintray. You could
follow these steps:

1. First, create an empty gitlab repository, let’s call it “hello”, for creating a “hello world” package. Gitlab allows
to create it with a Readme, license and .gitignore.

2. Get the credentials User and API Key (remember, Bintray uses the API key as “password”, not your main Bintray
account password)

3. Create a Conan repository in Bintray under your user or organization, and get its URL (“Set me up”). We will
call it UPLOAD_URL

4. Under your project page, Settings -> Pipelines -> Add a variable, add the CONAN_PASSWORD environment vari-
able with the Bintray API Key. If your Bintray user is different from the package user, you can also define your
Bintray username, defining the environment variable CONAN_LOGIN_USERNAME

5. Clone the repo: git clone <your_repo/hello> && cd hello.

6. Create the package: conan new hello/0.1@<user>/testing -t -s -ciglg -ciglc -cis
-ciu=UPLOAD_URL where user is your Bintray username.

7. You can inspect the created files: both .gitlab-ci.yml and the build.py script, that is used by conan-package-tools
utility to split different builds with different configurations in different GitLab CI jobs.

8. You can test locally, before pushing, with conan create or by GitLab Runner.

9. Add the changes, commit and push: git add . && git commit -m "first commit" && git push.

10. Go to Pipelines page and see the pipeline, with the different jobs.

11. When it has finished, go to your Bintray repository, you should see there the uploaded packages for different
configurations.

12. Check locally, searching in Bintray: conan search hello/0.1@<user>/testing -r=mybintray.

If something fails, please report an issue in the conan-package-tools github repository: https://github.com/conan-io/
conan-package-tools

14.4.5 Circle CI

You can use the Circle CI cloud to automatically build and test your project in Linux/MacOS environments. It is free
for OSS projects, and offers an easy integration with Github, so builds can be automatically fired in CircleCI after a
git push to Github.

You can use CircleCI both for:

• Building and testing your project, which manages dependencies with Conan, and probably a conanfile.txt file

• Building and testing Conan binary packages for a given Conan package recipe (with a conanfile.py)

258 Chapter 14. Integrations

https://github.com/conan-io/conan-package-tools
https://github.com/conan-io/conan-package-tools
https://circleci.com/

Conan Documentation, Release 1.31.4

Building and testing your project

We are going to use an example with GTest package, with CircleCI support to run the tests.

Clone the project from github:

$ git clone https://github.com/lasote/conan-gtest-example

Create a .circleci/config.yml file and paste this code in it:

version: 2
gcc-6:
docker:
- image: conanio/gcc6

steps:
- checkout
- run:

name: Build Conan package
command: |
sudo pip install --upgrade conan
conan user
conan create . user/channel

workflows:
version: 2
build_and_test:
jobs:
- gcc-6

CircleCI will install the Conan tool and will execute the conan create command. Then, the script section creates the
build folder, compiles the project with cmake and runs the tests.

Creating, testing and uploading Conan package binaries

You can use CircleCI to automate the building of binary packages, which will be created in the cloud after pushing to
Github. You can probably set up your own way, but Conan has some utilities to help in the process.

The command conan new has arguments to create a default working .circleci/config.yml file. Other setups
might be possible, but for this example we are assuming that you are using github and also uploading your final packages
to Bintray. You could follow these steps:

1. First, create an empty Github repository (let’s call it “hello”) for creating a “hello world” package. Github allows
to create it with a Readme, license and .gitignore.

2. Get the credentials User and API Key (remember, Bintray uses the API key as “password”, not your main Bintray
account password)

3. Create a Conan repository in Bintray under your user or organization, and get its URL (“Set me up”). We will
call it UPLOAD_URL

4. Under your project page, Settings -> Pipelines -> Add a variable, add the CONAN_PASSWORD environment vari-
able with the Bintray API Key. If your Bintray user is different from the package user, you can also define your
Bintray username, defining the environment variable CONAN_LOGIN_USERNAME

5. Clone the repo: $ git clone <your_repo/hello> && cd hello

6. Create the package: $ conan new hello/0.1@<user>/testing -t -s -ciccg -ciccc -cicco -cis
-ciu=UPLOAD_URL where user is your Bintray username

14.4. CI Platforms 259

Conan Documentation, Release 1.31.4

7. You can inspect the created files: both .circleci/config.yml and the build.py script, that is used by
conan-package-tools utility to split different builds with different configurations in different GitLab CI jobs.

8. You can test locally, before pushing, with $ conan create

9. Add the changes, commit and push: $ git add . && git commit -m "first commit" && git push

10. Go to Pipelines page and see the pipeline, with the different jobs.

11. When it has finished, go to your Bintray repository, you should see there the uploaded packages for different
configurations

12. Check locally, searching in Bintray: $ conan search hello/0.1@<user>/testing -r=mybintray

If something fails, please report an issue in the conan-package-tools github repository: https://github.com/
conan-io/conan-package-tools

14.4.6 Microsoft’s Azure DevOps (TFS, VSTS)

Thanks to the JFrog Artifactory Extension for Azure DevOps and TFS it is possible to support Conan tasks and integrate
it with the CI development platform provided by Microsoft’s Azure DevOps and the Artifactory binary repository
manager.

The support for Conan now in the JFrog Artifactory Extension helps you perform the following tasks in Azure DevOps
or TFS:

• Run Conan commands

• Resolve Conan dependencies from remote Artifactory servers

• Push Conan packages to Artifactory

• Publish BuildInfo metadata

• Import a Conan configuration

In this section we will show you how to add Conan tasks to your pipelines using the Artifactory/Conan Extension and
push the generated buildinfo metadata to Artifactory where it can be used to track and automate your builds.

Configuring DevOps Azure to use Artifactory with Conan

To use the Conan support provided by the JFrog Artifactory Extension you must configure a self-hosted agent that will
enable Conan builds for your Azure Pipelines environment. Afterwards you can install the JFrog Artifactory Extension
from the Visual Studio Marketplace and follow the installation instructions in the Overview.

260 Chapter 14. Integrations

https://github.com/conan-io/conan-package-tools
https://github.com/conan-io/conan-package-tools
https://marketplace.visualstudio.com/items?itemName=JFrog.jfrog-artifactory-vsts-extension
https://azure.microsoft.com/en-us/products/devops/
https://jfrog.com/artifactory/
https://jfrog.com/artifactory/
https://docs.microsoft.com/en-us/azure/devops/pipelines/agents/agents?view=azure-devops

Conan Documentation, Release 1.31.4

When completed, proceed to create builds and access buildinfo from within Azure DevOps or TFS.

Steps to follow

In these steps, you will set up Azure DevOps to use Artifactory and add Conan tasks to your build pipeline. Then you
can set up to push the buildinfo from the Conan task to Artifactory.

STEP 1: Configure the Artifactory instance

Once the Artifactory Extension is installed, you must configure Azure DevOps to access the Artifactory instance.

To add Artifactory to Azure DevOps:

1. In Azure DevOps, go to Project Settings > Service connections.

2. Click + New service connection to display the list control, and select Artifactory.

14.4. CI Platforms 261

Conan Documentation, Release 1.31.4

3. In the resulting Update Authentication for Artifactory dialog, enter the required server and credential
information, and click OK.

STEP 2: Add a Conan task

Once your Artifactory connection is configured, you may add Conan tasks to your Build or Release pipelines.

To add a Conan task:

1. Go to the Pipeline Tasks setup screen.

2. In the Add tasks section, search for “Conan” in the task selection list.

3. Select the Artifactory Conan task to add it to your pipeline.

262 Chapter 14. Integrations

Conan Documentation, Release 1.31.4

4. In the new task, select which Conan command to run.

5. Configure the Conan command for the task.

Continue to add Conan tasks as you need for each pipeline.

14.4. CI Platforms 263

Conan Documentation, Release 1.31.4

STEP 3: Configure the Push task buildinfo to Artifactory

When the pipeline containing the Conan task executes, the task log shows all the information about the executed Conan
command.

You can configure your Conan task to collect the buildinfo by selecting the Collect buildinfo checkbox when you create
the task.

Once collected, the buildinfo can then be pushed as metadata to Artifactory.

To perform this, create an Artifactory Publish Build Info task to push the metadata to your Artifactory instance.

264 Chapter 14. Integrations

Conan Documentation, Release 1.31.4

After you run the pipeline, you will be able to see the build information for the Conan task in Artifactory.

See also:

The documentation for this integration is taken from the JFrog blog.

14.4. CI Platforms 265

https://jfrog.com/blog/accelerate-azure-devops-or-tfs-with-jfrog-artifactory-and-conan/

Conan Documentation, Release 1.31.4

14.5 Other Systems

You can run Conan on any platform supporting Python and also cross-build Conan packages for different platforms.

14.5.1 Buildroot

The Buildroot Project is a tool for automating the creation of Embedded Linux distributions. It builds the code for the
architecture of the board so it was set up, all through an overview of Makefiles. In addition to being open-source, it is
licensed under GPL-2.0-or-later.

Integration with Conan

Let’s create a new file called pkg-conan.mk in the package/ directory. At the same time, we need to add it in pack-
age/Makefile.in file in order to Buildroot be able to list it.

echo 'include package/pkg-conan.mk' >> package/Makefile.in

For this development we will break it down into a few steps. Because it is a large file, we will only portray parts of it
in this post, but the full version can be found in pkg-conan.mk.

Buildroot defines its settings, including processor, compiler version, and build type through variables. However, these
variables do not have directly valid values for Conan, so we need to parse most of them. Let’s start with the compiler
version, by default Buildroot uses a GCC-based toolchain, so we will only filter on its possible versions:

CONAN_SETTING_COMPILER_VERSION ?=
ifeq ($(BR2_GCC_VERSION_8_X),y)
CONAN_SETTING_COMPILER_VERSION = 8
else ifeq ($(BR2_GCC_VERSION_7_X),y)
CONAN_SETTING_COMPILER_VERSION = 7
else ifeq ($(BR2_GCC_VERSION_6_X),y)
CONAN_SETTING_COMPILER_VERSION = 6
else ifeq ($(BR2_GCC_VERSION_5_X),y)
CONAN_SETTING_COMPILER_VERSION = 5
else ifeq ($(BR2_GCC_VERSION_4_9_X),y)
CONAN_SETTING_COMPILER_VERSION = 4.9
endif

This same process should be repeated for build_type, arch, and so on. For the Conan package installation step we will
have the following routine:

define $(2)_BUILD_CMDS
$$(TARGET_MAKE_ENV) $$(CONAN_ENV) $$($$(PKG)_CONAN_ENV) \

CC=$$(TARGET_CC) CXX=$$(TARGET_CXX) \
$$(CONAN) install $$(CONAN_OPTS) $$($$(PKG)_CONAN_OPTS) \
$$($$(PKG)_REFERENCE) \
-s build_type=$$(CONAN_SETTING_BUILD_TYPE) \
-s arch=$$(CONAN_SETTING_ARCH) \

(continues on next page)

266 Chapter 14. Integrations

https://buildroot.org/
https://spdx.org/licenses/GPL-2.0-or-later.html
https://github.com/conan-community/buildroot/blob/feature/conan/package/pkg-conan.mk

Conan Documentation, Release 1.31.4

(continued from previous page)

-s compiler=$$(CONAN_SETTING_COMPILER) \
-s compiler.version=$$(CONAN_SETTING_COMPILER_VERSION) \
-g deploy \
--build $$(CONAN_BUILD_POLICY)

endef

The conan install command will be executed as usual, but the settings and options are configured through what
was previously collected from Buildroot, and accept new ones through the Buildroot package recipe. Because it was a
scenario where previously all sources were compiled in the first moment, we will set Conan build policy to missing,
so any package will be built if not available.

Also, note that we are using the generator deploy, as we will need to copy all the artifacts into the Buildroot internal
structure. Once built, we will copy the libraries, binaries and headers through the following routine:

define $(2)_INSTALL_CMDS
cp -f -a $$($$(PKG)_BUILDDIR)/bin/. /usr/bin 2>/dev/null || :
cp -f -a $$($$(PKG)_BUILDDIR)/lib/. /usr/lib 2>/dev/null || :
cp -f -a $$($$(PKG)_BUILDDIR)/include/. /usr/include 2>/dev/null || :

endef

With this script we will be able to install the vast majority of Conan packages, using only simpler information for each
Buildroot recipe.

Creating Conan packages with Buildroot

Installing Conan Zlib

Once we have our script for installing Conan packages, now let’s install a fairly simple and well-known project: zlib.
For this case we will create a new recipe in the package directory. Let’s start with the package configuration file:

mkdir package/conan-zlib
touch package/conan-zlib/Config.in
touch package/conan-zlib/conan-zlib.mk

The contents of the file Config.in should be as follows:

config BR2_PACKAGE_CONAN_ZLIB
bool "conan-zlib"
help
Standard (de)compression library. Used by things like
gzip and libpng.

http://www.zlib.net

Now let’s go to the conan-zlib.mk that contains the Zlib data:

conan-zlib.mk
CONAN_ZLIB_VERSION = 1.2.11
CONAN_ZLIB_LICENSE = Zlib
CONAN_ZLIB_LICENSE_FILES = licenses/LICENSE
CONAN_ZLIB_SITE = $(call github,conan-community,conan-zlib,
→˓92d34d0024d64a8f307237f211e43ab9952ef0a1)

(continues on next page)

14.5. Other Systems 267

https://www.zlib.net

Conan Documentation, Release 1.31.4

(continued from previous page)

CONAN_ZLIB_REFERENCE = zlib/$(CONAN_ZLIB_VERSION)@

$(eval $(conan-package))

An important note here is the fact that CONAN_ZLIB_SITE is required even if not used for our purpose. If it is not
present, Buildroot will raise an error during its execution. The other variables are simple, just expressing the package
reference, name, version and license. Note that in the end we are calling our script which should execute Conan.

Once created, we still need to add it to the Buildroot configuration list. To do so, let’s update the list with a new menu
named Conan. In package/Config.in file, let’s add the following section:

menu "Conan"
source "package/conan-zlib/Config.in"

endmenu

Now just select the package through menuconfig: Target Packages -> Conan -> conan-zlib

Once configured and saved, simply run make again to install the package.

As you can see, Conan is following the same profile used by Buildroot, which gives us the advantage of not having to
create a profile manually.

At the end of the installation it will be copied to the output directory.

268 Chapter 14. Integrations

Conan Documentation, Release 1.31.4

Customizing Conan remote

Let’s say we have an Artifatory instance where all packages are available for download. How could we customize the
remote used by Buildroot? We need to introduce a new option, where we can write the remote name and Conan will be
able to consume such variable. First we need to create a new configuration file to insert new options in Conan’s menu:

mkdir package/conan
touch package/conan/Config.in

The file Config.in should contain:

config CONAN_REMOTE_NAME
string "Conan remote name"

help
Look in the specified remote server.

Also, we need to parse the option CONAN_REMOTE_NAME in pkg-conan.mk and add it to Conan command line:

ifneq ($(CONAN_REMOTE_NAME),"")
CONAN_REMOTE = -r $$(CONAN_REMOTE_NAME)
endif

define $(2)_BUILD_CMDS
$$(TARGET_MAKE_ENV) $$(CONAN_ENV) $$($$(PKG)_CONAN_ENV) \

CC=$$(TARGET_CC) CXX=$$(TARGET_CXX) \
$$(CONAN) install $$(CONAN_OPTS) $$($$(PKG)_CONAN_OPTS) \
$$($$(PKG)_REFERENCE) \
-s build_type=$$(CONAN_SETTING_BUILD_TYPE) \
-s arch=$$(CONAN_SETTING_ARCH) \
-s compiler=$$(CONAN_SETTING_COMPILER) \
-s compiler.version=$$(CONAN_SETTING_COMPILER_VERSION) \
-g deploy \
--build $$(CONAN_BUILD_POLICY) \
$$(CONAN_REMOTE)

endef

Now we are ready to set our specific remote name. We only need to run make menuconfig and follow the path: Target
Packages -> Libraries -> Conan -> Conan remote name

And we will see:

Now Conan is configured to search for packages in the remote named artifactory. But we need to run make again. Note
that it will cost less time to build, since now we are using pre-built packages provided by Conan.

14.5. Other Systems 269

Conan Documentation, Release 1.31.4

If no errors have occurred during the process we will have the following output folder:

ls output/images/
bcm2710-rpi-3-b.dtb bcm2710-rpi-3-b-plus.dtb bcm2710-rpi-cm3.dtb boot.vfat rootfs.

→˓ext2 rootfs.ext4 rpi-firmware sdcard.img zImage

ls -lh output/images/sdcard.img
-rw-r--r-- 1 conan conan 153M ago 6 11:43 output/images/sdcard.img

These artifacts are the final compilation of everything that was generated during the build process, here we will be
interested in the sdcard.img file. This is the final image that we will use on our RaspberryPi3 and it is only 153MB.
Compared to other embedded distributions like Raspbian, it is much smaller.

If you are interested in knowing more, we have a complete blog post about Buildroot integration.

14.5.2 Docker

You can easily run Conan in a Docker container to build and cross-build conan packages.

Check the ‘How to use docker to create and cross build C and C++ conan packages’ section to know more.

14.5.3 Emscripten

It should be possible to build packages for Emscripten (asm.js) via the following conan profile:

include(default)
[settings]
os=Emscripten
arch=asm.js
compiler=clang
compiler.version=6.0
compiler.libcxx=libc++
[options]
[build_requires]
emsdk_installer/1.38.29@bincrafters/stable
[env]

And the following conan profile is required for the WASM (Web Assembly):

include(default)
[settings]
os=Emscripten
arch=wasm

(continues on next page)

270 Chapter 14. Integrations

https://blog.conan.io/2019/08/27/Creating-small-Linux-images-with-Buildroot.html
https://emscripten.org
http://asmjs.org
https://webassembly.org

Conan Documentation, Release 1.31.4

(continued from previous page)

compiler=clang
compiler.version=6.0
compiler.libcxx=libc++
[options]
[build_requires]
emsdk_installer/1.38.29@bincrafters/stable
[env]

These profile above are using the emsdk_installer/1.38.29@bincrafters/stable conan package. It will automatically
download the Emscripten SDK and set up required environment variables (like CC, CXX, etc.).

Note: In order to use emsdk_installer package, you need to add it to the remotes:

$ conan remote add bincrafters https://api.bintray.com/conan/bincrafters/public-conan

Note: Alternatively, it’s always possible to use an existing emsdk installation and manually specify required environ-
ment variables within the [env] section of the conan profile.

Note: In addition to the above, Windows users may need to specify CONAN_MAKE_PROGRAM, for instance from the
existing MinGW installation (e.g. C:\MinGW\bin\mingw32-make.exe), or use make from the mingw_installer/
1.0@conan/stable.

Note: In addition to the above, Windows users may need to specify CONAN_CMAKE_GENERATOR, e.g. to MinGW
Makefiles, because default one is Visual Studio. Other options (e.g. Ninja) work as well.

As specified, os has been set to the Emscripten, and arch has been set to either asm.js or wasm (only these two
are currently supported). And compiler setting has been set to match the one used by Emscripten - Clang 6.0 with
libc++ standard library.

Running the code inside the browser

Note: Emscripten requires Python 2.7.12 or above, make sure that you have an up-to-date Python version installed.

Note: Running demo on Windows may require pywin32 module. Install it by running pip install pywin32.

In order to demonstrate how to use conan with Emscripten, let’s check out the example project:

$ git clone --depth 1 git@github.com:conan-io/examples.git

Change the directory to the Emscripten demo:

$ cd features
$ cd emscripten

14.5. Other Systems 271

https://github.com/bincrafters/conan-emsdk_installer
https://github.com/emscripten-core/emsdk

Conan Documentation, Release 1.31.4

This is an extremely simple demo, which just imports the famous zlib library and outputs its version into the browser.

In order to build it for the Emscripten run:

$./build.sh

or (on Windows):

$./build.cmd

Please note that running the above command may take a while to download and build required dependencies. This
script will execute several conan commands:

$ conan remove conan-hello-emscripten/* -f
$ conan create . conan/testing -k -p emscripten.profile --build missing
$ conan install conanfile.txt -pr emscripten.profile

First one removes any traces of previous demo installations, just to ensure that environment is clean. Then, it builds the
simple demo (it uses CMakeLists.txt and main.cpp files from the current directory). The following local profile is
used (file emscripten.profile within the current directory):

include(default)
[settings]
os=Emscripten
arch=wasm
compiler=clang
compiler.version=6.0
compiler.libcxx=libc++
[options]
[build_requires]
emsdk_installer/1.38.29@bincrafters/stable
ninja/1.9.0
[env]

Finally, it installs the demo importing ithe required files (.html, .js and .wasm) into the bin subdirectory.

Then we can run the code inside the browser via emrun helper:

$./run.sh

or (on Windows):

$./run.cmd

The command above uses virtualenv generator generator in order to get emrun command available in the PATH. And
as the result, Web Browser should be opened (or new tab in Web Browser will be opened, if it was already run), and
the following output should be displayed:

$ Using zlib version: 1.2.11

It confirms the fact we have just built zlib into JavaScript and run it inside the Web Browser.

272 Chapter 14. Integrations

https://www.zlib.net/
https://emscripten.org/docs/compiling/Running-html-files-with-emrun.html

Conan Documentation, Release 1.31.4

14.5.4 QNX Neutrino

It’s possible to cross-compile packages for QNX Neutrino operating with Conan.

Conan has support for QNX Neutrino 6.x and 7.x. The following architectures are supported:

• armv7

• armv8

• sh4le

• ppc32be

The following C++ standard library implementations are supported for QCC:

• cxx (LLVM C++)

• gpp (GNU C++)

• cpp (Dinkum C++)

• cpp-ne (Dinkum C++ without exceptions)

• acpp (Dinkum Abridged C++)

• acpp-ne (Dinkum Abridged C++ without exceptions)

• ecpp (Dinkum Embedded C++)

• ecpp-ne (Dinkum Embedded C++ without exceptions)

Conan automatically sets up corresponding compiler flags for the given standard library (e.g. -Y cxx for the LLVM
C++).

With QNX SDK set up on the machine, the following conan profile might be used for the cross-compiling (assuming
qcc in the PATH):

include(default)
[settings]
os=Neutrino
os.version=6.5
arch=sh4le
compiler=qcc
compiler.version=4.4
compiler.libcxx=cxx
[options]
[build_requires]
[env]
CC=qcc
CXX=QCC

14.5. Other Systems 273

https://blackberry.qnx.com/en/software-solutions/embedded-software/qnx-neutrino-rtos
http://www.qnx.com/download/

Conan Documentation, Release 1.31.4

14.5.5 Yocto

The Yocto Project is an open-source project that delivers a set of tools that create operating system images for embedded
Linux systems. The Yocto Project tools are based on the OpenEmbedded project, which uses the BitBake build tool,
to construct complete Linux images.

Yocto supports several Linux host distributions and it also provides a way to install the correct version of these tools
by either downloading a buildtools-tarball or building one on a supported machine. This allows virtually any Linux
distribution to be able to run Yocto, and also makes sure that it will be possible to replicate your Yocto build system
in the future. The Yocto Project build system also isolates itself from the host distribution’s C library, which makes it
possible to share build caches between different distributions and also helps in future-proofing the build system.

Integration with Conan

You can create Conan packages building with the Yocto SDK as any other package for other configuration. Those
packages can be integrated into a Yocto build installing them from a remote and without compiling them again.

Three stages can be differentiated in the proposed flow:

1. Developers can create an application with the native tools in their desktop platform of choice using their usual IDE,
compiler or debugger and test the application.

274 Chapter 14. Integrations

https://www.yoctoproject.org/
http://www.openembedded.org/wiki/Main_Page

Conan Documentation, Release 1.31.4

2. Packages can be cross-built for the target device using the Yocto SDK and uploaded to Artifactory, even auto-
mated in a CI process.

14.5. Other Systems 275

Conan Documentation, Release 1.31.4

3. Once the cross-built packages are available in Artifactory, the application can be directly deployed to the Yocto
image. This step can also be automated also in a CI. it from sources again.

276 Chapter 14. Integrations

Conan Documentation, Release 1.31.4

Creating Conan packages with Yocto’s SDK

Prepare your recipes

First of all, the recipe of the application to be deployed to the final image should have a deploy() method. There you can
specify the files of the application needed in the image as well as any other from its dependencies (like shared libraries
or assets):

Listing 25: conanfile.py

from conans import ConanFile

class MosquittoConan(ConanFile):
name = "mosquitto"
version = "1.4.15"
description = "Open source message broker that implements the MQTT protocol"
license = "EPL", "EDL"
settings = "os", "arch", "compiler", "build_type"
generators = "cmake"
requires = "openssl/1.0.2u", "c-ares/1.15.0"

def source(self):
(continues on next page)

14.5. Other Systems 277

https://docs.conan.io/en/latest/devtools/running_packages.html

Conan Documentation, Release 1.31.4

(continued from previous page)

source_url = "https://github.com/eclipse/mosquitto"
tools.get("{0}/archive/v{1}.tar.gz".format(source_url, self.version))

def build(self):
cmake = CMake(self)
cmake.configure()
cmake.build()

def package(self):
self.copy("*.h", dst="include", src="hello")
self.copy("*.so", dst="lib", keep_path=False)
self.copy("*.a", dst="lib", keep_path=False)
self.copy("*mosquitto.conf", dst="bin", keep_path=False)

def deploy(self):
Deploy the executables from this eclipse/mosquitto package
self.copy("*", src="bin", dst="bin")
Deploy the shared libs from this eclipse/mosquitto package
self.copy("*.so*", src="lib", dst="bin")
Deploy all the shared libs from the transitive deps
self.copy_deps("*.so*", src="lib", dst="bin")

def package_info(self):
self.cpp_info.libs = ["mosquitto", "mosquitopp", "rt", "pthread", "dl"]

Setting up a Yocto SDK

Yocto SDKs are completely self-contained, there is no dependency on libraries of the build machine or tools installed in
it. The SDK is a cross-building toolchain matching the target and it is generated from that specific configuration. This
means that you will have to use a different SDK toolchain to build for a different target architecture or that some SDK’s
may have specific settings to enable some system dependency of the final target and those libraries will be available in
the SDK.

You can create your own Yocto SDKs or download and use the prebuilt ones.

In the case that you are using CMake to create the Conan packages, Yocto injects a toolchain that configures CMake
to only search for libraries in the rootpath of the SDK with CMAKE_FIND_ROOT_PATH. This is something that has
to be patched to allow CMake to find libraries in the Conan cache as well:

Listing 26: sdk/sysroots/x86_64-pokysdk-
linux/usr/share/cmake/OEToolchainConfig.cmake

set(CMAKE_FIND_ROOT_PATH $ENV{OECORE_TARGET_SYSROOT} $ENV{OECORE_NATIVE_SYSROOT})
set(CMAKE_FIND_ROOT_PATH_MODE_PROGRAM NEVER)
COMMENT THIS: set(CMAKE_FIND_ROOT_PATH_MODE_LIBRARY ONLY)
COMMENT THIS: set(CMAKE_FIND_ROOT_PATH_MODE_INCLUDE ONLY)
COMMENT THIS: set(CMAKE_FIND_ROOT_PATH_MODE_PACKAGE ONLY)

You can read more about those variables here:

• CMAKE_FIND_ROOT_PATH_MODE_LIBRARY

• CMAKE_FIND_ROOT_PATH_MODE_INCLUDE

278 Chapter 14. Integrations

https://www.yoctoproject.org/docs/2.6/sdk-manual/sdk-manual.html#sdk-building-an-sdk-installer
http://downloads.yoctoproject.org/releases/yocto/yocto-2.6.2/toolchain/x86_64/
https://cmake.org/cmake/help/v3.0/variable/CMAKE_FIND_ROOT_PATH.html#variable:CMAKE_FIND_ROOT_PATH
https://cmake.org/cmake/help/v3.0/variable/CMAKE_FIND_ROOT_PATH_MODE_LIBRARY.html
https://cmake.org/cmake/help/v3.0/variable/CMAKE_FIND_ROOT_PATH_MODE_INCLUDE.html

Conan Documentation, Release 1.31.4

• CMAKE_FIND_ROOT_PATH_MODE_PACKAGE

Cross-building Conan packages with the SDK toolchain

After setting up your desired SDK, you can start creating Conan packages setting up the environment of the Yocto SDK
and running a conan create command with a suitable profile with the specific architecture of the toolchain.

For example, creating packages for arch=armv8:

The profile will be:

Listing 27: armv8

[settings]
os_build=Linux
arch_build=x86_64
os=Linux
arch=armv8
compiler=gcc
compiler.version=8
compiler.libcxx=libstdc++11
build_type=Release

Activate the SDK environment and execute the create command.

$ source oe-environment-setup-aarch64-poky-linux
$ conan create . user/channel --profile armv8

This will generate the packages using the Yocto toolchain from the environment variables such as CC, CXX, LD. . . Now
you can upload the binaries to an Artifactory server to share and reuse in your Yocto builds.

$ conan upload mosquitto/1.4.15@user/channel --all --remote my_repo

Important: We strongly recommend using the Yocto’s SDK toolchain to create packages as they will be built with
the optimization flags suitable to be deployed later to an image generated in a Yocto build.

Deploying an application to a Yocto image

Now that you have your cross-built Conan packages in Artifactory, you can deploy them in a Yocto build.

Set up the Conan layer

We have created a meta-conan layer that includes all the configuration, the Conan client and a generic BitBake recipe.
To add the layer you will have to clone the repository and the dependency layers of meta-openembedded:

$ cd poky
$ git clone https://github.com/conan-io/meta-conan.git
$ git clone --branch thud https://github.com/openembedded/meta-openembedded.git

You would also have to activate the layers in the bblayers.conf file of your build folder:

14.5. Other Systems 279

https://cmake.org/cmake/help/v3.0/variable/CMAKE_FIND_ROOT_PATH_MODE_PACKAGE.html
https://github.com/conan-io/meta-conan

Conan Documentation, Release 1.31.4

Listing 28: conf/bblayers.conf

POKY_BBLAYERS_CONF_VERSION = "2"

BBPATH = "${TOPDIR}"
BBFILES ?= ""

BBLAYERS ?= " \
/home/username/poky/meta \
/home/username/poky/meta-poky \
/home/username/poky/meta-yocto-bsp \
/home/username/poky/meta-openembedded/meta-oe \
/home/username/poky/meta-openembedded/meta-python \
/home/username/poky/meta-conan \
"

Note: Currently there is no support for CONAN_REVISIONS_ENABLED, so remote and virtual Artifactory repositories
will not work in this case. We will continue working on this layer to support more features.

Please report any question, feature request or issue related to the meta-conan layer in its GitHub issue tracker.

Write the Bitbake recipe for the Conan package

With the meta-conan layer, a Conan recipe to deploy a Conan package should look as easy as this recipe:

Listing 29: conan-mosquitto_1.4.15.bb

inherit conan

DESCRIPTION = "An open source MQTT broker"
LICENSE = "EPL-1.0"

CONAN_PKG = "mosquitto/1.4.15@bincrafters/stable"

This recipe will be placed inside your application layer that should be also added to the conf/bblayers.conf file.

Configure Conan variables for the build

Additionally to the recipe, you will need to provide the information about the credentials for Artifactory or the profile
to be used to retrieve the packages in the local.conf file of your build folder.

Listing 30: poky_build_folder/conf/local.conf

IMAGE_INSTALL_append = " conan-mosquitto"

Profile for installation
CONAN_PROFILE_PATH = "${TOPDIR}/conf/armv8"
Artifactory repository
CONAN_REMOTE_URL = "https://localhost:8081/artifactory/api/conan/<repository>"
Artifactory Credentials

(continues on next page)

280 Chapter 14. Integrations

https://github.com/conan-io/meta-conan/issues

Conan Documentation, Release 1.31.4

(continued from previous page)

CONAN_USER = "REPO_USER"
CONAN_PASSWORD = "REPO_PASSWORD"

Notice the armv8 profile to indicate your configuration next to the local.conf. That way you will be able to match the
Conan configuration with the specific architecture or board of your Yocto build.

Listing 31: poky_build_folder/conf/armv8

[settings]
os_build=Linux
arch_build=x86_64
os=Linux
arch=armv8
compiler=gcc
compiler.version=8
compiler.libcxx=libstdc++11
build_type=Release

It is recommended to set up the specific profile to use in your build with CONAN_PROFILE_PATH pointing to profile
stored in the configuration folder of your build (next to the conf/local.conf file), for example: CONAN_PROFILE_PATH
= "${TOPDIR}/conf/armv8".

Finally, the Artifactory repository URL where you want to retrieve the packages from and its credentials.

You can also use CONAN_CONFIG_URL with a custom Conan configuration to be used with conan config install
and the name of the profile to use in CONAN_PROFILE_PATH and just the name of the remote in CONAN_REMOTE_NAME.
For example:

Listing 32: poky_build_folder/conf/local.conf

IMAGE_INSTALL_append = " conan-mosquitto"

CONAN_CONFIG_URL = "https://github.com/<your-organization>/conan-config.git"
CONAN_PROFILE_PATH = "armv8"
CONAN_REMOTE_NAME = "my_repo"
CONAN_USER = "REPO_USER"
CONAN_PASSWORD = "REPO_PASSWORD"

In this case the armv8 profile and the my_repo remote will be taken from the ones installed with the conan config
install command.

14.5. Other Systems 281

Conan Documentation, Release 1.31.4

Architecture conversion table

If no specific profile is indicated in CONAN_PROFILE_PATH, Conan will map the most common Yocto architectures and
machines to the existing ones in Conan. This is the current mapping from Conan architectures to the Yocto ones:

Yocto SDK Yocto Machine Conan arch setting
aarch64 qemuarm64 armv8
armv5e qemuarmv5 armv5el
core2-64 qemux86_64 x86_64
cortexa8hf quemuarm armv7hf
i586 qemux86 x86
mips32r2 qemumips mips
mips64 qemumips64 mips64
ppc7400 qemuppc ppc32

This mapping may not be complete and some of the binaries generated with the Yocto toolchains will have specific
optimization flags for the specific architectures.

Tip: For heavy Yocto users, having a custom setting for this may be very useful. For example, including the specific
architecture names in your settings.yml

arch: [..., "aarch64", "armv5e", "core2-64", ...]

Or using a machine subsetting under the Linux operating system:

os:
Linux:

machine: [None, "qemuarm64", "qemuarm64", "qemux86_64", ...]

Note that the None value is important here to be able to build other packages without value for this subsetting to target
a non-yocto Linux distro.

See also:

• Yocto Machine configurations: https://git.yoctoproject.org/cgit.cgi/poky/tree/meta/conf/machine

• Conan Architectures in settings.yml.

Deploy the application and its dependencies to the final image

You can build the recipe to test that the packages are correctly deployed:

$ bitbake -c install conan-mosquitto

Packages will be installed with the profile indicated and installed with its dependencies only from the remote specified.

Finally, you can build your image with the Conan packages:

$ bitbake core-image-minimal

The binaries of the Conan packages will be deployed to the /bin folder of the image once it is created.

282 Chapter 14. Integrations

https://git.yoctoproject.org/cgit.cgi/poky/tree/meta/conf/machine

Conan Documentation, Release 1.31.4

14.5.6 Android

There are several ways to cross-compile packages for Android platform via conan.

Using android_ndk_installer package (build require)

The easiest way so far is to use android_ndk_installer conan package (which is in conan-center repository).

Using the android_ndk_installer package as a build requirement will do the following steps:

• Download the appropriate Android NDK archive.

• Set up required environment variables, such as CC, CXX, RANLIB and so on to the appropriate tools from the
NDK.

• In case of using CMake, it will inject the appropriate toolchain file and set up the necessary CMake variables.

For instance, in order to cross-compile for ARMv8, the following conan profile might be used:

include(default)
[settings]
arch=armv8
build_type=Release
compiler=clang
compiler.libcxx=libc++
compiler.version=8
os=Android
os.api_level=21
[build_requires]
android_ndk_installer/r20@bincrafters/stable
[options]
[env]

Note: In addition to the above, Windows users may need to specify CONAN_MAKE_PROGRAM, for instance from the
existing MinGW installation (e.g. C:\MinGW\bin\mingw32-make.exe), or use make from the mingw_installer/
1.0@conan/stable.

Similar profile might be used to cross-compile for ARMv7 (notice the arch change):

include(default)
[settings]

(continues on next page)

14.5. Other Systems 283

https://www.android.com
https://github.com/bincrafters/conan-android_ndk_installer
https://developer.android.com/ndk
https://developer.android.com/ndk/guides/cmake#file
https://developer.android.com/ndk/guides/cmake#variables

Conan Documentation, Release 1.31.4

(continued from previous page)

arch=armv7
build_type=Release
compiler=clang
compiler.libcxx=libc++
compiler.version=8
os=Android
os.api_level=21
[build_requires]
android_ndk_installer/r20@bincrafters/stable
[options]
[env]

By adjusting arch setting, you may cross-compile for x86 and x86_64 Android as well (e.g. if you need to run code
in a simulator).

Note: os.api_level is an important setting which affects compatibility - it defines the minimum Android version
supported. In other words, it is the same meaning as minSdkVersion.

Use built-in Conan toolchain

Warning: This is an experimental feature subject to breaking changes in future releases.

Conan will generate a toolchain for Android if the recipe is using a CMakeToolchain. In that case all you need is to
provide the path to the Android NDK and working profiles. This approach can also use the Android NDK package
referenced in the previous section.

Use a regular profile for the host context:

Listing 33: profile_host

[settings]
os=Android
os.api_level=23
arch=x86_64
compiler=clang
compiler.version=9
compiler.libcxx=c++_shared
build_type=Release

and add Android NDK to the PATH or populate the CONAN_CMAKE_ANDROID_NDK environment variable.

Together with the files created by the generators that make it possible to find and link the requirements, conan install
command will generate a toolchain file like the following one:

Listing 34: conan_toolchain.cmake (some parts are stripped)

set(CMAKE_BUILD_TYPE "Release" CACHE STRING "Choose the type of build." FORCE)

set(CMAKE_SYSTEM_NAME Android)
set(CMAKE_SYSTEM_VERSION 23)

(continues on next page)

284 Chapter 14. Integrations

https://developer.android.com/guide/topics/manifest/uses-sdk-element

Conan Documentation, Release 1.31.4

(continued from previous page)

set(CMAKE_ANDROID_ARCH_ABI x86_64)
set(CMAKE_ANDROID_STL_TYPE c++_shared)
set(CMAKE_ANDROID_NDK <path/provided/via/environment/variable>)

With this toolchain file you can execute CMake’s command to generate the binaries:

conan install <conanfile> --profile:host=profile_host --profile:build=default
cmake . -DCMAKE_TOOLCHAIN_FILE=conan_toolchain.cmake
cmake --build . --config Release

Using Docker images

If you’re using Docker for builds, you may consider using docker images from the Conan Docker Tools repository.

Currently, Conan Docker Tools provide the following Android images:

• conanio/android-clang8

• conanio/android-clang8-x86

• conanio/android-clang8-armv7

• conanio/android-clang8-armv8

All above mentioned images have corresponding Android NDK installed, with required environment variables set and
with default conan profile configured for android cross-building. Therefore, these images might be especially useful
for CI systems.

Using existing NDK

It’s also possible to use an existing Android NDK installation with conan. For instance, if you’re using Android Studio
IDE, you may already have an NDK at ~/Library/Android/sdk/ndk.

You have to specify different environment variables in the Conan profile for make-based projects. For instance:

include(default)
target_host=aarch64-linux-android
android_ndk=/home/conan/Library/Android/sdk/ndk/20.0.5594570
api_level=21
[settings]
arch=armv8
build_type=Release
compiler=clang
compiler.libcxx=libc++
compiler.version=8
os=Android
os.api_level=$api_level
[build_requires]
[options]
[env]
PATH=[$android_ndk/toolchains/llvm/prebuilt/darwin-x86_64/bin]
CHOST=$target_host
AR=$target_host-ar
AS=$target_host-as

(continues on next page)

14.5. Other Systems 285

https://www.docker.com
https://github.com/conan-io/conan-docker-tools
https://developer.android.com/ndk
https://developer.android.com/ndk
https://developer.android.com/studio/

Conan Documentation, Release 1.31.4

(continued from previous page)

RANLIB=$target_host-ranlib
CC=$target_host$api_level-clang
CXX=$target_host$api_level-clang++
LD=$target_host-ld
STRIP=$target_host-strip

However, when building CMake projects, there are several approaches available, and it’s not always clear which one to
follow.

Using toolchain from Android NDK

This is the official way recommended by Android developers.

For this, you will need a small CMake toolchain file:

set(ANDROID_PLATFORM 21)
set(ANDROID_ABI arm64-v8a)
include($ENV{HOME}/Library/Android/sdk/ndk/20.0.5594570/build/cmake/android.toolchain.
→˓cmake)

This toolchain file only sets up the required CMake variables, and then includes the default toolchain file supplied with
Android NDK.

And then, you may use the following profile:

include(default)
[settings]
arch=armv8
build_type=Release
compiler=clang
compiler.libcxx=libc++
compiler.version=8
os=Android
os.api_level=21
[build_requires]
[options]
[env]
CONAN_CMAKE_TOOLCHAIN_FILE=/home/conan/my_android_toolchain.cmake

In the profile, CONAN_CMAKE_TOOLCHAIN_FILE points to the CMake toolchain file listed above.

Using CMake build-in Android NDK support

Warning: This workflow is not supported by Android and is often broken with new NDK releases or when using
older versions of CMake. This workflow is strongly discouraged and will not work with Gradle.

For this approach, you don’t need to specify CMake toolchain file at all. It’s enough to indicate os is Android and
Conan will automatically set up all required CMake variables for you.

Therefore, the following conan profile could be used for ARMv8:

286 Chapter 14. Integrations

https://developer.android.com/ndk/guides/cmake#variables
https://developer.android.com/ndk/guides/cmake#file
https://cmake.org/cmake/help/latest/manual/cmake-toolchains.7.html#cross-compiling-for-android

Conan Documentation, Release 1.31.4

include(default)
[settings]
arch=armv8
build_type=Release
compiler=clang
compiler.libcxx=libc++
compiler.version=7.0
os=Android
os.api_level=21
[build_requires]
[options]
[env]
ANDROID_NDK_ROOT=/home/conan/android-ndk-r18b

The only way you have to configure is ANDROID_NDK_ROOT which is a path to the Android NDK installation.

Once profile is configured, you should see the following output during the CMake build:

-- Android: Targeting API '21' with architecture 'arm64', ABI 'arm64-v8a', and processor
→˓'aarch64'
-- Android: Selected Clang toolchain 'aarch64-linux-android-clang' with GCC toolchain
→˓'aarch64-linux-android-4.9'

It means native CMake integration has successfully found Android NDK and configured the build.

14.5.7 iOS, tvOS, watchOS

Using Darwin toolchain package (build require)

Warning: This is an experimental feature subject to breaking changes in future releases.

One example of a build requires implementing a toolchain to cross-compile to iOS, tvOS or watchOS, is the Darwin
Toolchain package. Although this package is not in Conan Center Index you can check it to see an example of how to
use a toolchain for cross-compilation by using a build requires. You can use a profile like the following to cross-build
your packages for iOS, watchOS and tvOS:

Listing 35: ios_profile

include(default)

[settings]
os=iOS
os.version=9.0
arch=armv7

[build_requires]
darwin-toolchain/1.0@theodelrieu/stable

$ conan install . --profile ios_profile

14.5. Other Systems 287

https://github.com/theodelrieu/conan-darwin-toolchain
https://github.com/theodelrieu/conan-darwin-toolchain

Conan Documentation, Release 1.31.4

Use built-in Conan toolchain

Warning: This is an experimental feature subject to breaking changes in future releases.

Conan will generate a toolchain for iOS if the recipe is using a CMakeToolchain. This toolchain provides a minimal
implementation supporting only the CMake XCode generator. It will be extended in the future but at the current version
(1.31.0) is just for testing purpouses.

For using it, create a regular profile for the host context:

Listing 36: profile_host_ios

[settings]
os=iOS
os.version=12.0
arch=armv8
compiler=apple-clang
compiler.version=12.0
compiler.libcxx=libc++
build_type=Release

Together with the files created by the generators that make it possible to find and link the requirements, conan install
command will generate a toolchain file like the following one:

Listing 37: conan_toolchain.cmake (some parts are stripped)

set(CMAKE_BUILD_TYPE "Release" CACHE STRING "Choose the type of build." FORCE)

set cmake vars
set(CMAKE_SYSTEM_NAME iOS)
set(CMAKE_SYSTEM_VERSION 12.0)
set(DEPLOYMENT_TARGET ${CONAN_SETTINGS_HOST_MIN_OS_VERSION})
Set the architectures for which to build.
set(CMAKE_OSX_ARCHITECTURES arm64)
Setting CMAKE_OSX_SYSROOT SDK, when using Xcode generator the name is enough
but full path is necessary for others
set(CMAKE_OSX_SYSROOT iphoneos)

With this toolchain file you can execute CMake’s command to generate the binaries:

conan install <conanfile> --profile:host=profile_host_ios --profile:build=default
cmake . -GXcode -DCMAKE_TOOLCHAIN_FILE=conan_toolchain.cmake
cmake --build . --config Release

288 Chapter 14. Integrations

Conan Documentation, Release 1.31.4

14.6 Version Control System

Conan uses plain text files for the recipes and configuration files and they can be managed nicely with any version
control system. Also, with the scm feature, your recipe can capture automatically the commit/revision of the source
code of your library so the recipe will clone the correct sources automatically.

14.6.1 Git

Conan uses plain text files, conanfile.txt or conanfile.py, so it’s perfectly suitable for the use of any version
control system. We use and highly recommend git.

Check workflows section to learn more about project layouts that naturally fit version control systems.

Temporary files

Conan generates some files that should not be committed, as conanbuildinfo.* and conaninfo.txt. These files can
change in different computers and are re-generated with the conan install command.

However, these files are typically generated in the build tree not in the source tree, so they will be naturally disregarded.
Just take care in case you have created the build folder inside your project (we do this in several examples in the
documentation). In this case, you should add it to your .gitignore file:

Listing 38: .gitignore

...
build/

Package creators

Check scm feature to learn more about managing the libraries source code with Git.

If you are creating a Conan package:

• You can use the url field to indicate the origin of your package recipe. If you are using an external package recipe,
this url should point to the package recipe repository not to the external source origin. If a github repository is
detected, the Conan website will link your github issues page from your Conan’s package page.

• You can use git to obtain your source (requires the git client in the path) when creating external package recipes.

14.6.2 SVN

Conan uses plain text files, conanfile.txt or conanfile.py, so it’s perfectly suitable for the use of any version
control system.

Check workflows section to learn more about project layouts that naturally fit version control systems.

Check scm feature to learn more about managing the libraries source code with SVN.

14.6. Version Control System 289

Conan Documentation, Release 1.31.4

14.7 Custom integrations

If you intend to use a build system that does not have a built-in generator, you may still be able to do so. There are
several options:

• First, search in Bintray for generator packages. Generators can be created and contributed by users as regular
packages, so you can depend on them as a normal requirement, use versioning and evolve faster without depend-
ing on the Conan releases.

• You can use the txt or json generators. They will generate a text file, simple to read that you can easily parse with
your tools to extract the required information.

• Use the conanfile data model (deps_cpp_info, deps_env_info) in your recipe to access its properties and values,
so you can directly call your build system with that information, without requiring to generate a file.

• Write and create your own generator. So you can upload it, version and reuse it, as well as share it with your
team or community. Check How to create and share a custom generator with generator packages.

Note: Need help integrating your build system? Tell us what you need: info@conan.io

14.7.1 Use the JSON generator

Specify the json generator in your recipe:

Listing 39: conanfile.txt

[requires]
fmt/6.1.2
poco/1.9.4

[generators]
json

A file named conanbuildinfo.json will be generated. It will contain the information about every dependency:

Listing 40: conanbuildinfo.json

{
"dependencies":
[
{
"name": "fmt",
"version": "6.1.2",
"include_paths": [
"/path/to/.conan/data/fmt/6.1.2/_/_/package/<id>/include"

],
"lib_paths": [
"/path/to/.conan/data/fmt/6.1.2/_/_/package/<id>/lib"

],
"libs": [
"fmt"

],
"...": "...",

(continues on next page)

290 Chapter 14. Integrations

mailto:info@conan.io

Conan Documentation, Release 1.31.4

(continued from previous page)

},
{
"name": "poco",
"version": "1.9.4",
"...": "..."

}
]

}

14.7.2 Use the text generator

Just specify the txt generator in your recipe:

Listing 41: conanfile.txt

[requires]
poco/1.9.4

[generators]
txt

A file is generated with the same information in a generic text format.

Listing 42: conanbuildinfo.txt

[includedirs]
/home/user/.conan/data/poco/1.9.4/_/_/package/58080bce1cc38259eb7c282aa95c25aecde8efe4/
→˓include
/home/user/.conan/data/openssl/1.0.2t/_/_/package/
→˓f99afdbf2a1cc98ba2029817b35103455b6a9b77/include
/home/user/.conan/data/zlib/1.2.11/_/_/package/6af9cc7cb931c5ad942174fd7838eb655717c709/
→˓include

[libdirs]
/home/user/.conan/data/poco/1.9.4/_/_/package/58080bce1cc38259eb7c282aa95c25aecde8efe4/
→˓lib
/home/user/.conan/data/openssl/1.0.2t/_/_/package/
→˓f99afdbf2a1cc98ba2029817b35103455b6a9b77/lib
/home/user/.conan/data/zlib/1.2.11/_/_/package/6af9cc7cb931c5ad942174fd7838eb655717c709/
→˓lib

[bindirs]
/home/user/.conan/data/openssl/1.0.2t/_/_/package/
→˓f99afdbf2a1cc98ba2029817b35103455b6a9b77/bin

[resdirs]
/home/user/.conan/data/openssl/1.0.2t/_/_/package/
→˓f99afdbf2a1cc98ba2029817b35103455b6a9b77/res

[builddirs]
/home/user/.conan/data/poco/1.9.4/_/_/package/58080bce1cc38259eb7c282aa95c25aecde8efe4/

(continues on next page)

14.7. Custom integrations 291

Conan Documentation, Release 1.31.4

(continued from previous page)

/home/user/.conan/data/openssl/1.0.2t/_/_/package/
→˓f99afdbf2a1cc98ba2029817b35103455b6a9b77/
/home/user/.conan/data/zlib/1.2.11/_/_/package/6af9cc7cb931c5ad942174fd7838eb655717c709/

[libs]
PocoMongoDB
PocoNetSSL
PocoNet
PocoCrypto
PocoDataSQLite
PocoData
PocoZip
PocoUtil
PocoXML
PocoJSON
PocoRedis
PocoFoundation
rt
ssl
crypto
dl
pthread
z

[system_libs]

[defines]
POCO_STATIC=ON
POCO_NO_AUTOMATIC_LIBS

14.7.3 Use the Conan data model (in a conanfile.py)

If you are using any other build system you can use Conan too. In the build() method you can access your settings
and build information from your requirements and pass it to your build system. Note, however, that probably is simpler
and much more reusable to create a generator to simplify the task for your build system.

Listing 43: conanfile.py

from conans import ConanFile

class MyProjectWithConan(ConanFile):
settings = "os", "compiler", "build_type", "arch"
requires = "poco/1.9.4"
########### IT'S IMPORTANT TO DECLARE THE TXT GENERATOR TO DEAL WITH A GENERIC BUILD␣

→˓SYSTEM
generators = "txt"
default_options = {"poco:shared": False, "openssl:shared": False}

def imports(self):
(continues on next page)

292 Chapter 14. Integrations

Conan Documentation, Release 1.31.4

(continued from previous page)

self.copy("*.dll", dst="bin", src="bin") # From bin to bin
self.copy("*.dylib*", dst="bin", src="lib") # From lib to bin

def build(self):
############ Without any helper ###########
Settings
print(self.settings.os)
print(self.settings.arch)
print(self.settings.compiler)

Options
#print(self.options.my_option)
print(self.options["openssl"].shared)
print(self.options["poco"].shared)

Paths and libraries, all
print("-------- ALL --------------")
print(self.deps_cpp_info.include_paths)
print(self.deps_cpp_info.lib_paths)
print(self.deps_cpp_info.bin_paths)
print(self.deps_cpp_info.libs)
print(self.deps_cpp_info.defines)
print(self.deps_cpp_info.cflags)
print(self.deps_cpp_info.cxxflags)
print(self.deps_cpp_info.sharedlinkflags)
print(self.deps_cpp_info.exelinkflags)

Just from OpenSSL
print("--------- FROM OPENSSL -------------")
print(self.deps_cpp_info["openssl"].include_paths)
print(self.deps_cpp_info["openssl"].lib_paths)
print(self.deps_cpp_info["openssl"].bin_paths)
print(self.deps_cpp_info["openssl"].libs)
print(self.deps_cpp_info["openssl"].defines)
print(self.deps_cpp_info["openssl"].cflags)
print(self.deps_cpp_info["openssl"].cxxflags)
print(self.deps_cpp_info["openssl"].sharedlinkflags)
print(self.deps_cpp_info["openssl"].exelinkflags)

Just from POCO
print("--------- FROM POCO -------------")
print(self.deps_cpp_info["poco"].include_paths)
print(self.deps_cpp_info["poco"].lib_paths)
print(self.deps_cpp_info["poco"].bin_paths)
print(self.deps_cpp_info["poco"].libs)
print(self.deps_cpp_info["poco"].defines)
print(self.deps_cpp_info["poco"].cflags)
print(self.deps_cpp_info["poco"].cxxflags)
print(self.deps_cpp_info["poco"].sharedlinkflags)
print(self.deps_cpp_info["poco"].exelinkflags)

self.run("invoke here your configure, make, or others")

(continues on next page)

14.7. Custom integrations 293

Conan Documentation, Release 1.31.4

(continued from previous page)

self.run("basically you can do what you want with your requirements build␣
→˓info)

Environment variables (from requirements self.env_info objects)
are automatically applied in the python ``os.environ`` but can be accesible as␣

→˓well:
print("--------- Globally -------------")
print(self.env)

print("--------- FROM MyLib -------------")
print(self.deps_env_info["MyLib"].some_env_var)

User declared variables (from requirements self.user_info objects)
are available in the self.deps_user_info object
print("--------- FROM MyLib -------------")
print(self.deps_user_info["MyLib"].some_user_var)

14.7.4 Create your own generator

There are two ways in which generators can be contributed:

• Forking and adding the new generator in the Conan codebase. This will be a built-in generator. It might have a
much slower release and update cycle, it needs to pass some tests before being accepted, but it has the advantage
than no extra things are needed to use that generator (once next Conan version is released).

• Creating a custom generator package. You can write a conanfile.py and add the custom logic for a generator
inside that file, then upload, refer and depend on it as any other package. These generators will be another node
in the dependency graph but they have many advantages: much faster release cycles, independent from the Conan
codebase and can be versioned. So backwards compatibility and upgrades are much easier.

14.7.5 Extending Conan

There are other powerful mechanisms to integrate other tools with Conan. Check the Extending Conan section for
further information.

14.8 Linting

You can develop your recipe and binary packages getting feedback of potential issues.

14.8.1 Linting the recipe

IDE

If you have an IDE that supports Python and may do linting automatically, there are false warnings caused by the fact
that Conan dynamically populates some fields of the recipe based on context.

Conan provides a plugin which makes pylint aware of these dynamic fields and their types. To use it when running
pylint outside Conan, just add the following to your .pylintrc file:

294 Chapter 14. Integrations

Conan Documentation, Release 1.31.4

[MASTER]
load-plugins=conans.pylint_plugin

Hook

There is also a “recipe_linter” hook in the official hooks repository that can be activated to run automatic linter checks
on the recipes when they are exported to the conan cache (export, create and export-pkg commands). Read the
hook documentation for details. You could also write your own custom linter hook to provide your own recipe quality
checks.

14.8.2 Linting binary packages

Using the Conan hooks feature you can scan your binaries to ensure that you are generating the correct binary files and
even checking the binary contents.

Take a look at the official hooks repository to see several examples of how to implement a binary linter system.

14.9 Deployment

If you have a project with all the dependencies managed by Conan and you want to deploy into a specific format, the
process is the following:

• Extract the needed artifacts to a local directory either using the deploy generator or the json generator.

• Convert the artifacts (typically executables, shared libraries and assets) to a different deploy format. You will
find the specific steps for some of the most common deploy technologies below.

14.9.1 System package manager

The Conan packages can be deployed using a system package manager. Usually this process is done by creating a folder
structure with the needed files and bundling all of them into the file format specific to the system package manager of
choice, like .rpm or .deb. This method is very convenient for deployment and distribution as it is natively integrated in
the system. However, there are some limitations:

• It might require to create a specific package for each of supported distro, or at least use the lowest version (see
concerns about glibc below), see the section Customizing settings, which explains how to customize Conan
settings to model different Linux distributions in order to create different packages for them.

• If you want to target different distros, then you need to create one package per supported distro (likely one for
Ubuntu, one for Arch Linux, etc.), and formats or guidelines for each distro might differ significantly

Check out the sections makeself , AppImage, Flatpak and Snap for information on how to create distribution-agnostic
packages.

14.9. Deployment 295

https://github.com/conan-io/hooks
https://github.com/conan-io/hooks
https://ubuntu.com
https://www.archlinux.org

Conan Documentation, Release 1.31.4

14.9.2 Makeself

Makeself is a small command-line utility to generate self-extracting archives for Unix. It is pretty popular and it is used
by VirtualBox and CMake projects.

Makeself creates archives that are just small startup scripts (.run, .bin or .sh) concatenated with tarballs.

When you run such self-extracting archive:

• A small script (shim) extracts the embedded archive into the temporary directory

• Script passes the execution to the entry point within the unpacked archive

• application is being run

• The temporary directory removed

Therefore, it transparently appears just like a normal application execution.

With help of deploy generator, it’s only needed to invoke makeself.sh in order to generate self-extracting archive for
the further deployment:

TMPDIR=`dirname $(mktemp -u -t tmp.XXXXXXXXXX)`
curl "https://github.com/megastep/makeself/releases/download/release-2.4.0/makeself-2.4.
→˓0.run" --output $TMPDIR/makeself.run -L
chmod +x $TMPDIR/makeself.run
$TMPDIR/makeself.run --target $TMPDIR/makeself
$TMPDIR/makeself/makeself.sh $PREFIX md5.run "conan-generated makeself.sh" "./conan-
→˓entrypoint.sh"

The PREFIX variable in the example points to the directory where binary artifacts are situated. The md5.run is an
output SFX archive:

$ file md5.run
md5.run: POSIX shell script executable (binary data)

The conan-entry-point.sh is a simple script which sets requires variables (like PATH or LD_LIBRARY_PATH):

#!/usr/bin/env bash
set -ex
export PATH=$PATH:$PWD/bin
export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:$PWD/lib
pushd $(dirname $PWD/md5)
$(basename $PWD/md5)
popd

Check out the complete example on GitHub.

14.9.3 AppImage

AppImage (former klik, PortableLinuxApps) is a format for Linux portable applications. Its major advantages are:

• It does not require root permissions.

• It does not require to install any application (it uses chmod +x).

• It does not require the installation of runtime or a daemon into the system.

296 Chapter 14. Integrations

https://makeself.io
https://en.wikipedia.org/wiki/VirtualBox
https://cmake.org/download/
https://github.com/conan-io/examples/tree/master/features
https://appimage.org

Conan Documentation, Release 1.31.4

AppImage might be used to distribute desktop applications, command-line tools and system services (daemons).

AppImage uses filesystem in user-space (FUSE). It allows to easily mount the images and inspect their contents.

The main steps of the packaging process are pretty straightforward and could be easily automated:

• Create a directory like MyApp.AppDir

• Download the AppImage runtime (AppRun file) and put it into the directory.

• Copy all dependency files, like libraries (.so), resources (e.g. images) inside the directory.

• Fill the myapp.desktop configuration file with some brief metadata of your application: name, category. . .

• Run appimagetool.

The copy step can be automatically done with Conan using the json generator and a custom script or just using the
deploy generator.

The result of the previous steps will give you a MyApp-x86_64.AppImage file, which is a regular Linux ELF file:

$ file MyApp-x86_64.AppImage
MyApp-x86_64.AppImage: ELF 64-bit LSB executable, x86-64, version 1 (SYSV), dynamically␣
→˓linked, interpreter /lib64/l, for GNU/Linux 2.6.18, stripped

Finally, that file file could be easily distributed just by copying and uploading it to a Web or a FTP server, moving it to
the flash drive, etc..

14.9.4 Snap

Snap is the package management system available for the wide range of Linux distributions. Unlike AppImage, Snap
requires a daemon (snapd) installed in the system in order to operate. Under the hood, Snap is based on SquashFS.
Snap is Canonical initiative. Usually, applications are distributed via snapcraft store, but it’s not mandatory. Snap
provides fine-grained control to system resources (e.g. camera, removable media, network, etc.). The major advantage
is plug-in system, which allows to easily integrate Snap with different languages and build systems (e.g. CMake,
autotools, etc.).

The packaging process could be summed up in the following steps:

• Install the snapcraft

• Run snapcraft init

• Edit the snap/snapcraft.yml manifest

• Run snapcraft in order to produce the snap

• Publish and upload snap, so it could be installed on other systems.

In order to integrate with build process managed with help of the conan, the following steps could be used:

• Use deploy generator (or json generator with custom script) to prepare the assets

• Use the dump plug-in of snapcraft to simply copy the files deployed on previous step into the snap

14.9. Deployment 297

https://github.com/libfuse/libfuse
https://docs.appimage.org/packaging-guide/manual.html
https://github.com/AppImage/AppImageKit/releases
https://snapcraft.io/
https://github.com/plougher/squashfs-tools
https://canonical.com
https://snapcraft.io/store
https://snapcraft.io/docs/supported-plugins
https://snapcraft.io/docs/creating-a-snap
https://snapcraft.io/docs/snapcraft-overview
https://snapcraft.io/docs/snapcraft-format
https://forum.snapcraft.io/t/releasing-your-app/6795
https://snapcraft.io/docs/dump-plugin

Conan Documentation, Release 1.31.4

14.9.5 Flatpak

Flatpak (former xdg-app) is a package management system to distribute desktop applications for Linux. It is based on
OSTree. Flatpak is RedHat initiative.

Unlike AppImage, usually applications are distributed via flathub store, and require a special runtime to install appli-
cations on target machines.

The major advantage of Flatpak is sandboxing: each application runs in its own isolated environment. Flatpak
provides fine-grained control to system resources (e.g. network, bluetooth, host filesystem, etc.). Flatpak also offers
a set of runtimes for various Linux desktop applications, e.g. Freedesktop, GNOME and KDE.

The packaging process is:

• Install the flatpak runtime, flatpak-builder and SDK.

• Create a manifest <app-id>.json

• Run the flatpak-builder in order to produce the application

• Publish the application for further distribution

With help of conan’s json generator, the manifest creation could be easily automated. For example, the custom script
could generate build-commands and sources entries within the manifest file:

app_id = "org.flatpak.%s" % self._name
manifest = {

"app-id": app_id,
"runtime": "org.freedesktop.Platform",
"runtime-version": "18.08",
"sdk": "org.freedesktop.Sdk",
"command": "conan-entrypoint.sh",
"modules": [

{
"name": self._name,
"buildsystem": "simple",
"build-commands": ["install -D conan-entrypoint.sh /app/bin/conan-entrypoint.

→˓sh"],
"sources": [

{
"type": "file",
"path": "conan-entrypoint.sh"

}
]

}
]

}
sources = []
build_commands = []
for root, _, filenames in os.walk(temp_folder):

for filename in filenames:
filepath = os.path.join(root, filename)
unique_name = str(uuid.uuid4())
source = {

"type": "file",
"path": filepath,
"dest-filename": unique_name

(continues on next page)

298 Chapter 14. Integrations

https://flatpak.org
https://en.wikipedia.org/wiki/OSTree
https://www.redhat.com/en
https://flathub.org
https://www.freedesktop.org/wiki/
https://www.gnome.org
https://kde.org
https://docs.flatpak.org/en/latest/first-build.html
https://docs.flatpak.org/en/latest/publishing.html
https://docs.flatpak.org/en/latest/manifests.html

Conan Documentation, Release 1.31.4

(continued from previous page)

}
build_command = "install -D %s /app/%s" % (unique_name, os.path.relpath(filepath,

→˓ temp_folder))
sources.append(source)
build_commands.append(build_command)

manifest["modules"][0]["sources"].extend(sources)
manifest["modules"][0]["build-commands"].extend(build_commands)

Alternatively, flatpak allows distributing the single-file package. Such package, however, cannot be run or installed
on its own, it’s needed to be imported to the local repository on another machine.

14.9. Deployment 299

https://docs.flatpak.org/en/latest/single-file-bundles.html

Conan Documentation, Release 1.31.4

300 Chapter 14. Integrations

CHAPTER

FIFTEEN

CONFIGURATION

The Conan client can be configured to behave differently. Most of the configuration can be found in the conan.conf
reference, but this section aims to be an introduction to the configuration based on different use cases.

15.1 Download cache

Warning: This is an experimental feature subject to breaking changes in future releases.

Conan implements a shared download cache that can be used to reduce the time needed to populate the Conan package
cache with commands like install, create.

This cache is purely an optimization mechanism. It is completely different to the Conan package cache, (typically the
<userhome>/.conan folder). It is not related to the short_paths mechanism for long path in Windows, nor to the
short_paths cache folder. The cache will contain a copy of the artifacts, it is not a new location of files. Those files
will still be copied to the Conan package cache, which will not change anything, its behavior, layout or location of any
file.

This cache (whose path can be configured in the conan.conf file) will store the following items:

• All files that are downloaded from a Conan server (conan_server, Artifactory), both in the api V1 (without
revisions) and V2 (with revisions). This includes files like conanfile.py, but also the zipped artifacts like co-
nan_package.tgz or conan_sources.tgz.

• The downloads done by users with the tools.download() or tools.get() helpers, as long as they provide a
checksum (md5, sha1, etc.). If a checksum is not provided, even if the download cache is enabled, the download
will be always executed and the files will not be cached.

Warning: The cache computes a sha256 checksum of the download URL and the file checksum whenever is
available. As not always the file checksums are available, the download cache will not be able to correctly cache
artifacts with revisions enabled if a proxy suddenly and transparently changes a existing server and moves it to a
new location, without the clients changing the URL too.

301

Conan Documentation, Release 1.31.4

15.1.1 Activating/deactivating the download cache

The download cache is activated and configured in the conan.conf like this:

[storage]
download_cache=/path/to/my/cache

It can be defined from the command line:

$ conan config set storage.download_cache="/path/to/my/cache"
Display it
$ conan config get storage.download_cache

And, as the conan.conf is part of the configuration, you can also put a common conan.conf file in a git repo or zip file
and use the conan config install command to automatically install it in Conan clients.

To deactivate the download cache, you can remove the entry download_cache from the conan.conf with the command:

$ conan config rm storage.download_cache

15.1.2 Concurrency, multiple caches and CI

The downloads cache implements exclusive locks for concurrency, so it can be shared among different concurrent
Conan instances. This is a typical scenario in CI servers, in which each job uses a different Conan package cache
(defined by CONAN_USER_HOME environment variable). Every different Conan instance could configure its download
cache to share the same storage. The download cache implements interprocess exclusive locks, so only 1 process will
access at a time to a given cached artifact. If other processes needs the same artifact, they will wait until it is released,
avoiding multiple downloads of the same file, even if they were requested almost simultaneously.

For Continuous Integration processes, it is recommended to have a different Conan package cache (CONAN_USER_HOME)
for each job, in most of the cases, because the Conan package cache is not concurrent, and it might also have old
dependencies, stale packages, etc. It is better to run CI jobs in a clean environment.

15.1.3 Removing cached files

The download cache will store a lot of artifacts, for all recipes, packages, versions and configurations that are used. This
can grow and consume a lot of storage. If you are using this feature, provide for a sufficiently large and fast download
cache folder.

At the moment, it is only a folder. You can clean the cached artifacts just by removing that folder and its contents. You
might also be able to run scripts and jobs that remove old artifacts only. If you do such operations, please make sure
that there are not other Conan processes using it simultaneously, or they might fail.

Note: Installation of binaries can be accelerated setting up parallel downloads with the general.
parallel_download experimental configuration in conan.conf . You might want to try combining both the parallel
download and the download cache for extra speed.

302 Chapter 15. Configuration

CHAPTER

SIXTEEN

HOWTOS

This section shows common solutions and different approaches to typical problems.

16.1 How to package header-only libraries

16.1.1 Without unit tests

Packaging a header only library, without requiring to build and run unit tests for it within Conan, can be done with a
very simple recipe. Assuming you have the recipe in the source repo root folder, and the headers in a subfolder called
include, you could do:

from conans import ConanFile

class HelloConan(ConanFile):
name = "Hello"
version = "0.1"
No settings/options are necessary, this is header only
exports_sources = "include/*"
no_copy_source = True

def package(self):
self.copy("*.h")

If you want to package an external repository, you can use the source() method to do a clone or download instead of
the exports_sources fields.

• There is no need for settings, as changing them will not affect the final package artifacts

• There is no need for build() method, as header-only are not built

• There is no need for a custom package_info() method. The default one already adds an “include” subfolder
to the include path

• no_copy_source = True will disable the copy of the source folder to the build directory as there is no need
to do so because source code is not modified at all by the configure() or build() methods.

• Note that this recipe has no other dependencies, settings or options. If it had any of those, it would be very
convenient to add the package_id() method, to ensure that only one package with always the same ID is
created, irrespective of the configurations and dependencies:

def package_id(self):
self.info.header_only()

303

Conan Documentation, Release 1.31.4

Package is created with:

$ conan create . user/channel

16.1.2 With unit tests

If you want to run the library unit test while packaging, you would need this recipe:

from conans import ConanFile, CMake

class HelloConan(ConanFile):
name = "Hello"
version = "0.1"
settings = "os", "compiler", "arch", "build_type"
exports_sources = "include/*", "CMakeLists.txt", "example.cpp"
no_copy_source = True

def build(self): # this is not building a library, just tests
cmake = CMake(self)
cmake.configure()
cmake.build()
cmake.test()

def package(self):
self.copy("*.h")

def package_id(self):
self.info.header_only()

Tip: If you are cross-building your library or app you’ll probably need to skip the unit tests because your target
binary cannot be executed in current building host. To do it you can use tools.get_env() in combination with CO-
NAN_RUN_TESTS environment variable, defined as False in profile for cross-building and replace cmake.test()
with:

if tools.get_env("CONAN_RUN_TESTS", True):
cmake.test()

Which will use a CMakeLists.txt file in the root folder:

project(Package CXX)
cmake_minimum_required(VERSION 2.8.12)

include_directories("include")
add_executable(example example.cpp)

enable_testing()
add_test(NAME example

WORKING_DIRECTORY ${CMAKE_BINARY_DIR}/bin
COMMAND example)

and some example.cpp file, which will be our “unit test” of the library:

304 Chapter 16. Howtos

Conan Documentation, Release 1.31.4

#include <iostream>
#include "hello.h"

int main() {
hello();

}

• This will use different compilers and versions, as configured by Conan settings (in command line or profiles),
but will always generate just 1 output package, always with the same ID.

• The necessary files for the unit tests, must be exports_sources too (or retrieved from source() method)

• If the package had dependencies, via requires, it would be necessary to add the generators = "cmake" to
the package recipe and adding the conanbuildinfo.cmake file to the testing CMakeLists.txt:

include(${CMAKE_BINARY_DIR}/conanbuildinfo.cmake)
conan_basic_setup()

add_executable(example example.cpp)
target_link_libraries(example ${CONAN_LIBS}) # not necessary if dependencies are also␣
→˓header-only

Package is created with:

$ conan create . user/channel

Note: This with/without tests is referring to running full unitary tests over the library, which is different to the test
functionality that checks the integrity of the package. The above examples are describing the approaches for unit-testing
the library within the recipe. In either case, it is recommended to have a test_package folder, so the conan create
command checks the package once it is created. Check the packaging getting started guide

16.2 How to launch conan install from cmake

It is possible to launch conan install from cmake, which can be convenient for end users, package consumers, that
are not creating packages themselves.

This is work under testing. Please try it and give feedback or contribute. The CMake code to do this task is here:
https://github.com/conan-io/cmake-conan

To be able to use it, you can directly download the code from your CMake script:

Listing 1: CMakeLists.txt

cmake_minimum_required(VERSION 2.8)
project(myproject CXX)

Download automatically, you can also just copy the conan.cmake file
if(NOT EXISTS "${CMAKE_BINARY_DIR}/conan.cmake")

message(STATUS "Downloading conan.cmake from https://github.com/conan-io/cmake-conan")
file(DOWNLOAD "https://raw.githubusercontent.com/conan-io/cmake-conan/master/conan.

→˓cmake"
"${CMAKE_BINARY_DIR}/conan.cmake")

(continues on next page)

16.2. How to launch conan install from cmake 305

https://github.com/conan-io/cmake-conan

Conan Documentation, Release 1.31.4

(continued from previous page)

endif()

include(${CMAKE_BINARY_DIR}/conan.cmake)

conan_cmake_run(REQUIRES Catch2/2.6.0@catchorg/stable
BASIC_SETUP)

add_executable(main main.cpp)
target_link_libraries(main ${CONAN_LIBS})

If you want to use targets, you could do:

include(conan.cmake)
conan_cmake_run(REQUIRES Catch2/2.6.0@catchorg/stable

BASIC_SETUP CMAKE_TARGETS)

add_executable(main main.cpp)
target_link_libraries(main CONAN_PKG::hello)

16.3 How to create and reuse packages based on Visual Studio

Conan has different helpers to manage Visual Studio and MSBuild based projects. This how-to illustrates how to put
them together to create and consume packages that are purely based on Visual Studio. This how-to is using VS2015,
but other versions can be used too.

16.3.1 Creating packages

Start cloning the existing example repository, containing a simple “Hello World” library, and application:

$ git clone https://github.com/memsharded/hello_vs
$ cd hello_vs

It contains a src folder with the source code and a build folder with a Visual Studio 2015 solution, containing 2
projects: the HelloLib static library, and the Greet application. Open it:

$ build\HelloLib\HelloLib.sln

You should be able to select the Greet subproject -> Set as Startup Project. Then build and run the app with
Ctrl+F5. (Debug -> Start Without Debugging)

$ Hello World Debug!
Switch IDE to Release mode, repeat
$ Hello World Release!

Because the hello.cpp file contains an #ifdef _DEBUG to switch between debug and release message.

In the repository, there is already a conanfile.py recipe:

from conans import ConanFile, MSBuild

(continues on next page)

306 Chapter 16. Howtos

Conan Documentation, Release 1.31.4

(continued from previous page)

class HelloConan(ConanFile):
name = "hello"
version = "0.1"
license = "MIT"
url = "https://github.com/memsharded/hello_vs"
settings = "os", "compiler", "build_type", "arch"
exports_sources = "src/*", "build/*"

def build(self):
msbuild = MSBuild(self)
msbuild.build("build/HelloLib/HelloLib.sln")

def package(self):
self.copy("*.h", dst="include", src="src")
self.copy("*.lib", dst="lib", keep_path=False)

def package_info(self):
self.cpp_info.libs = ["HelloLib"]

This recipe is using the MSBuild() build helper to build the sln project. If our recipe has requires, the MSBUILD
helper will also take care of inject all the needed information from the requirements, as include directories, library
names, definitions, flags etc to allow our project to locate the declared dependencies.

The recipe contains also a test_package folder with a simple example consuming application. In this example, the
consuming application is using CMake to build, but it could also use Visual Studio too. We have left the CMake one
because it is the default generated with conan new, and also to show that packages created from Visual Studio projects
can also be consumed with other build systems like CMake.

Once we want to create a package, it is advised to close VS IDE, clean the temporary build files from VS to avoid
problems, then create and test the package. Here it is using system defaults, assuming they are Visual Studio 14,
Release, x86_64:

close VS
$ git clean -xdf
$ conan create . memsharded/testing
...
> Hello World Release!

Instead of closing the IDE and running the command:git clean we could also configure a smarter filter in
exports_sources field, so temporary build files are not exported into the recipe.

This process can be repeated to create and test packages for different configurations:

$ conan create . memsharded/testing -s arch=x86
$ conan create . memsharded/testing -s compiler="Visual Studio" -s compiler.runtime=MDd -
→˓s build_type=Debug
$ conan create . memsharded/testing -s compiler="Visual Studio" -s compiler.runtime=MDd -
→˓s build_type=Debug -s arch=x86

Note: It is not mandatory to specify the compiler.runtime setting. If it is not explicitly defined, Conan will
automatically use runtime=MDd for build_type==Debug and runtime=MD for build_type==Release.

You can list the different created binary packages:

16.3. How to create and reuse packages based on Visual Studio 307

Conan Documentation, Release 1.31.4

$ conan search hello/0.1@memsharded/testing

16.3.2 Uploading binaries

Your locally created packages can already be uploaded to a Conan remote. If you created them with the original
username “memsharded”, as from the git clone, you might want to do a conan copy to put them on your own username.
Of course, you can also directly use your user name in conan create.

Another alternative is to configure the permissions in the remote, to allow uploading packages with different usernames.
By default, Artifactory will do it but Conan server won’t: Permissions must be given in the [write_permissions]
section of server.conf file.

16.3.3 Reusing packages

To use existing packages directly from Visual Studio, Conan provides the visual_studio generator. Let’s clone an
existing “Chat” project, consisting of a ChatLib static library that makes use of the previous “Hello World” package,
and a MyChat application, calling the ChatLib library function.

$ git clone https://github.com/memsharded/chat_vs
$ cd chat_vs

As above, the repository contains a Visual Studio solution in the build folder. But if you try to open it, it will fail to
load. This is because it is expecting to find a file with the required information about dependencies, so it is necessary
to obtain that file first. Just run:

$ conan install .

You will see that it created two files, a conaninfo.txt file, containing the current configuration of dependencies, and a
conanbuildinfo.props file, containing the Visual Studio properties (like <AdditionalIncludeDirectories>),
so it is able to find the installed dependencies.

Now you can open the IDE and build and run the app (by the way, the chat function is just calling the hello() function
two or three times, depending on the build type):

$ build\ChatLib\ChatLib.sln
Switch to Release
MyChat -> Set as Startup Project
Ctrl + F5 (Debug -> Run without debugging)
> Hello World Release!
> Hello World Release!

If you wish to link with the debug version of Hello package, just install it and change IDE build type:

$ conan install . -s build_type=Debug -s compiler="Visual Studio" -s compiler.runtime=MDd
Switch to Debug
Ctrl + F5 (Debug -> Run without debugging)
> Hello World Debug!
> Hello World Debug!
> Hello World Debug!

Now you can close the IDE and clean the temporary files:

308 Chapter 16. Howtos

Conan Documentation, Release 1.31.4

close VS IDE
$ git clean -xdf

Again, there is a conanfile.py package recipe in the repository, together with a test_package. The recipe is almost
identical to the above one, just with two minor differences:

requires = "hello/0.1@memsharded/testing"
...
generators = "visual_studio"

This will allow us to create and test the package of the ChatLib library:

$ conan create . memsharded/testing
> Hello World Release!
> Hello World Release!

You can also repeat the process for different build types and architectures.

16.3.4 Other configurations

The above example works as-is for VS2017, because VS supports upgrading from previous versions. The MSBuild()
already implements such functionality, so building and testing packages with VS2017 can be done.

$ conan create . demo/testing -s compiler="Visual Studio" -s compiler.version=15

If you have to build for older versions of Visual Studio, it is also possible. In that case, you would probably have
different solution projects inside your build folder. Then the recipe only has to select the correct one, something like:

def build(self):
assuming HelloLibVS12, HelloLibVS14 subfolders
sln_file = "build/HelloLibVS%s/HelloLib.sln" % self.settings.compiler.version
msbuild = MSBuild(self)
msbuild.build(sln_file)

Finally, we used just one conanbuildinfo.props file, which the solution loaded at a global level. You could also
define multiple conanbuildinfo.props files, one per configuration (Release/Debug, x86/x86_64), and load them
accordingly.

Note: So far, the visual_studio generator is single-configuration (packages containing debug or release artifacts,
the generally recommended approach). It does not support multi-config packages (packages containing both debug and
release artifacts). Please report and provide feedback (submit an issue in github) to request this feature if necessary.

16.3. How to create and reuse packages based on Visual Studio 309

Conan Documentation, Release 1.31.4

16.4 Creating and reusing packages based on Makefiles

Conan can create packages and reuse them with Makefiles. The AutoToolsBuildEnvironment build helper helps
with most of the necessary tasks.

This how-to has been tested in Windows with MinGW and Linux with gcc. It uses static libraries but could be extended
to shared libraries too. The Makefiles surely can be improved. They are just an example.

16.4.1 Creating packages

Sources for this example can be found in our examples repository in the features/makefiles folder:

$ git clone https://github.com/conan-io/examples.git
$ cd examples/features/makefiles
$ cd hellolib

It contains a src folder with the source code and a conanfile.py file for creating a package.

Inside the src folder, there is Makefile to build the static library. This Makefile uses standard variables like $(CPPFLAGS)
or $(CXX) to build it:

SRC = hello.cpp
OBJ = $(SRC:.cpp=.o)
OUT = libhello.a
INCLUDES = -I.

.SUFFIXES: .cpp

default: $(OUT)

.cpp.o:
$(CXX) $(INCLUDES) $(CPPFLAGS) $(CXXFLAGS) -c $< -o $@

$(OUT): $(OBJ)
ar rcs $(OUT) $(OBJ)

The conanfile.py file uses the AutoToolsBuildEnvironment build helper. This helper defines the necessary envi-
ronment variables with information from dependencies, as well as other variables to match the current Conan settings
(like -m32 or -m64 based on the Conan arch setting)

from conans import ConanFile, AutoToolsBuildEnvironment
from conans import tools

class HelloConan(ConanFile):
name = "hello"
version = "0.1"
settings = "os", "compiler", "build_type", "arch"
generators = "cmake"
exports_sources = "src/*"

def build(self):
with tools.chdir("src"):

atools = AutoToolsBuildEnvironment(self)
(continues on next page)

310 Chapter 16. Howtos

https://github.com/conan-io/examples

Conan Documentation, Release 1.31.4

(continued from previous page)

atools.configure() # use it to run "./configure" if using autotools
atools.make()

def package(self):
self.copy("*.h", dst="include", src="src")
self.copy("*.lib", dst="lib", keep_path=False)
self.copy("*.a", dst="lib", keep_path=False)

def package_info(self):
self.cpp_info.libs = ["hello"]

With this conanfile.py you can create the package:

$ conan create . user/testing -s compiler=gcc -s compiler.version=4.9 -s compiler.
→˓libcxx=libstdc++

16.4.2 Using packages

Now let’s move to the application folder:

$ cd ../helloapp

There you can also see a src folder with a Makefile creating an executable:

SRC = app.cpp
OBJ = $(SRC:.cpp=.o)
OUT = app
INCLUDES = -I.

.SUFFIXES: .cpp

default: $(OUT)

.cpp.o:
$(CXX) $(CPPFLAGS) $(CXXFLAGS) -c $< -o $@

$(OUT): $(OBJ)
$(CXX) -o $(OUT) $(OBJ) $(LDFLAGS) $(LIBS)

And also a conanfile.py very similar to the previous one. In this case adding a requires and a deploy() method:

from conans import ConanFile, AutoToolsBuildEnvironment
from conans import tools

class AppConan(ConanFile):
name = "App"
version = "0.1"
settings = "os", "compiler", "build_type", "arch"
exports_sources = "src/*"
requires = "hello/0.1@user/testing"

(continues on next page)

16.4. Creating and reusing packages based on Makefiles 311

Conan Documentation, Release 1.31.4

(continued from previous page)

def build(self):
with tools.chdir("src"):

atools = AutoToolsBuildEnvironment(self)
atools.make()

def package(self):
self.copy("*app", dst="bin", keep_path=False)
self.copy("*app.exe", dst="bin", keep_path=False)

def deploy(self):
self.copy("*", src="bin", dst="bin")

Note that in this case, the AutoToolsBuildEnvironment will automatically set values to CPPFLAGS, LDFLAGS, LIBS,
etc. existing in the Makefile with the correct include directories, library names, etc. to properly build and link with the
hello library contained in the “hello” package.

As above, we can create the package with:

$ conan create . user/testing -s compiler=gcc -s compiler.version=4.9 -s compiler.
→˓libcxx=libstdc++

There are different ways to run executables contained in packages, like using virtualrunenv generators. In this case,
since the package has a deploy() method, we can use it:

$ conan install hello/0.1user/testing -s compiler=gcc -s compiler.version=4.9 -s␣
→˓compiler.libcxx=libstdc++
$./bin/app
$ Hello World Release!

16.5 How to manage the GCC >= 5 ABI

In version 5.1, GCC released libstdc++, which introduced a new library ABI that includes new implementations of
std::string and std::list. These changes were necessary to conform to the 2011 C++ standard which forbids
Copy-On-Write strings and requires lists to keep track of their size.

You can choose which ABI to use in your Conan packages by adjusting the compiler.libcxx:

• libstdc++: Old ABI.

• libstdc++11: New ABI.

When Conan creates the default profile the first time it runs, it adjusts the compiler.libcxx setting to libstdc++
for backwards compatibility. However, if you are using GCC >= 5 your compiler is likely to be using the new CXX11
ABI by default (libstdc++11).

If you want Conan to use the new ABI, edit the default profile at ~/.conan/profiles/default adjusting compiler.
libcxx=libstdc++11 or override this setting in the profile you are using.

If you are using the CMake build helper or the AutotoolsBuildEnvironment build helper Conan will automatically
adjust the _GLIBCXX_USE_CXX11_ABI flag to manage the ABI.

312 Chapter 16. Howtos

https://gcc.gnu.org/onlinedocs/libstdc++/manual/using_dual_abi.html

Conan Documentation, Release 1.31.4

16.6 Using Visual Studio 2017 - CMake integration

Visual Studio 2017 comes with a CMake integration that allows one to just open a folder that contains a CMakeLists.txt
and Visual will use it to define the project build.

Conan can also be used in this setup to install dependencies. Let`s say that we are going to build an application that
depends on an existing Conan package called hello/0.1@user/testing. For the purpose of this example, you can
quickly create this package by typing in your terminal:

$ conan new hello/0.1 -s
$ conan create . user/testing # Default conan profile is Release
$ conan create . user/testing -s build_type=Debug

The project we want to develop will be a simple application with these 3 files in the same folder:

Listing 2: example.cpp

#include <iostream>
#include "hello.h"

int main() {
hello();
std::cin.ignore();

}

Listing 3: conanfile.txt

[requires]
hello/0.1@user/testing

[generators]
cmake

Listing 4: CMakeLists.txt

project(Example CXX)
cmake_minimum_required(VERSION 2.8.12)

include(${CMAKE_BINARY_DIR}/conanbuildinfo.cmake)
conan_basic_setup()

add_executable(example example.cpp)
target_link_libraries(example ${CONAN_LIBS})

If we open Visual Studio 2017 (with CMake support installed), and select “Open Folder” from the menu, and select
the above folder, we will see something like the following error:

1> Command line: C:\PROGRAM FILES (X86)\MICROSOFT VISUAL STUDIO\2017\COMMUNITY\COMMON7\
→˓IDE\COMMONEXTENSIONS\MICROSOFT\CMAKE\CMake\bin\cmake.exe -G "Ninja" -DCMAKE_INSTALL_
→˓PREFIX:PATH="C:\Users\user\CMakeBuilds\df6639d2-3ef2-bc32-abb3-2cd1bdb3c1ab\install\
→˓x64-Debug" -DCMAKE_CXX_COMPILER="C:/Program Files (x86)/Microsoft Visual Studio/2017/
→˓Community/VC/Tools/MSVC/14.12.25827/bin/HostX64/x64/cl.exe" -DCMAKE_C_COMPILER="C:/
→˓Program Files (x86)/Microsoft Visual Studio/2017/Community/VC/Tools/MSVC/14.12.25827/
→˓bin/HostX64/x64/cl.exe" -DCMAKE_BUILD_TYPE="Debug" -DCMAKE_MAKE_PROGRAM="C:\PROGRAM␣

(continues on next page)

16.6. Using Visual Studio 2017 - CMake integration 313

Conan Documentation, Release 1.31.4

(continued from previous page)

→˓FILES (X86)\MICROSOFT VISUAL STUDIO\2017\COMMUNITY\COMMON7\IDE\COMMONEXTENSIONS\
→˓MICROSOFT\CMAKE\Ninja\ninja.exe" "C:\Users\user\conanws\visual-cmake"
1> Working directory: C:\Users\user\CMakeBuilds\df6639d2-3ef2-bc32-abb3-2cd1bdb3c1ab\
→˓build\x64-Debug
1> -- The CXX compiler identification is MSVC 19.12.25831.0
1> -- Check for working CXX compiler: C:/Program Files (x86)/Microsoft Visual Studio/
→˓2017/Community/VC/Tools/MSVC/14.12.25827/bin/HostX64/x64/cl.exe
1> -- Check for working CXX compiler: C:/Program Files (x86)/Microsoft Visual Studio/
→˓2017/Community/VC/Tools/MSVC/14.12.25827/bin/HostX64/x64/cl.exe -- works
1> -- Detecting CXX compiler ABI info
1> -- Detecting CXX compiler ABI info - done
1> -- Detecting CXX compile features
1> -- Detecting CXX compile features - done
1> CMake Error at CMakeLists.txt:4 (include):
1> include could not find load file:
1>
1> C:/Users/user/CMakeBuilds/df6639d2-3ef2-bc32-abb3-2cd1bdb3c1ab/build/x64-Debug/
→˓conanbuildinfo.cmake

As expected, our CMakeLists.txt is using an include(${CMAKE_BINARY_DIR}/conanbuildinfo.cmake), and that
file doesn’t exist yet, because Conan has not yet installed the dependencies of this project. Visual Studio 2017 uses
different build folders for each configuration. In this case, the default configuration at startup is x64-Debug. This
means that we need to install the dependencies that match this configuration. Assuming that our default profile is using
Visual Studio 2017 for x64 (it should typically be the default one created by Conan if VS2017 is present), then all we
need to specify is the -s build_type=Debug setting:

$ conan install . -s build_type=Debug -if=C:\Users\user\CMakeBuilds\df6639d2-3ef2-bc32-
→˓abb3-2cd1bdb3c1ab\build\x64-Debug

Now, you should be able to regenerate the CMake project from the IDE, Menu->CMake, build it, select the “example”
executable to run, and run it.

Now, let’s say that you want to build the Release application. You switch configuration from the IDE, and then the
above error happens again. The dependencies for Release mode need to be installed too:

$ conan install . -if=C:\Users\user\CMakeBuilds\df6639d2-3ef2-bc32-abb3-2cd1bdb3c1ab\
→˓build\x64-Release

The process can be extended to x86 (passing -s arch=x86 in the command line), or to other configurations. For
production usage, Conan profiles are highly recommended.

16.6.1 Using cmake-conan

The cmake-conan project in https://github.com/conan-io/cmake-conan is a CMake script that runs an
execute_process that automatically launches conan install to install dependencies. The settings passed
in the command line will be derived from the current CMake configuration, that will match the Visual Studio one.
This script can be used to further automate the installation task:

project(Example CXX)
cmake_minimum_required(VERSION 2.8.12)

Download automatically, you can also just copy the conan.cmake file
(continues on next page)

314 Chapter 16. Howtos

https://github.com/conan-io/cmake-conan

Conan Documentation, Release 1.31.4

(continued from previous page)

if(NOT EXISTS "${CMAKE_BINARY_DIR}/conan.cmake")
message(STATUS "Downloading conan.cmake from https://github.com/conan-io/cmake-conan")

file(DOWNLOAD "https://raw.githubusercontent.com/conan-io/cmake-conan/v0.9/conan.
→˓cmake"

"${CMAKE_BINARY_DIR}/conan.cmake")
endif()

include(${CMAKE_BINARY_DIR}/conan.cmake)

conan_cmake_run(CONANFILE conanfile.txt
BASIC_SETUP)

add_executable(example example.cpp)
target_link_libraries(example ${CONAN_LIBS})

This code will manage to download the cmake-conan CMake script, and use it automatically, calling a conan install
automatically.

There could be an issue, though, for the Release configuration. Internally, the Visual Studio 2017 defines the
configurationTypeAs RelWithDebInfo for Release builds. But Conan default settings (in the Conan settings.yml
file), only have Debug and Release defined. It is possible to modify the settings.yml file, and add those extra build
types. Then you should create the hello package for those settings. And most existing packages, specially in central
repositories, are built only for Debug and Release modes.

An easier approach is to change the CMake configuration in Visual: go to the Menu -> CMake -> Change CMake
Configuration. That should open the CMakeSettings.json file, and there you can change the configurationType to
Release:

{
"name": "x64-Release",
"generator": "Ninja",
"configurationType": "Release",
"inheritEnvironments": ["msvc_x64_x64"],
"buildRoot": "${env.USERPROFILE}\\CMakeBuilds\\${workspaceHash}\\build\\${name}",
"installRoot": "${env.USERPROFILE}\\CMakeBuilds\\${workspaceHash}\\install\\${name}

→˓",
"cmakeCommandArgs": "",
"buildCommandArgs": "-v",
"ctestCommandArgs": ""

}

Note that the above CMake code is only valid for consuming existing packages. If you are also creating a package, you
would need to make sure the right CMake code is executed, please check https://github.com/conan-io/cmake-conan/
blob/master/README.md

16.6. Using Visual Studio 2017 - CMake integration 315

https://github.com/conan-io/cmake-conan/blob/master/README.md
https://github.com/conan-io/cmake-conan/blob/master/README.md

Conan Documentation, Release 1.31.4

16.6.2 Using tasks with tasks.vs.json

Another alternative is using file tasks feature of Visual Studio 2017. This way you can install dependencies by running
conan install as task directly in the IDE.

All you need is to right click on your conanfile.py -> Configure Tasks (see the link above) and add the following to your
tasks.vs.json.

Warning: The file tasks.vs.json is added to your local .vs folder so it is not supposed to be added to your version
control system.

{
"tasks": [

{
"taskName": "conan install debug",
"appliesTo": "conanfile.py",
"type": "launch",
"command": "${env.COMSPEC}",
"args": [

"conan install ${file} -s build_type=Debug -if C:/Users/user/CMakeBuilds/
→˓4c2d87b9-ec5a-9a30-a47a-32ccb6cca172/build/x64-Debug/"

]
},
{
"taskName": "conan install release",
"appliesTo": "conanfile.py",
"type": "launch",
"command": "${env.COMSPEC}",
"args": [

"conan install ${file} -s build_type=Release -if C:/Users/user/CMakeBuilds/
→˓4c2d87b9-ec5a-9a30-a47a-32ccb6cca172/build/x64-Release/"

]
}

],
"version": "0.2.1"

}

Then just right click on your conanfile.py and launch your conan install and regenerate your CMakeLists.txt.

16.7 Working with Intel compiler

The Intel compiler is a particular case, as it uses Visual Studio compiler in Windows environments and gcc in
Linux environments. If you are wondering how to manage the compatibility between the packages generated with
intel and the generated with the pure base compiler (gcc or Visual Studio) check the Compatible Packages and
Compatible Compilers sections.

316 Chapter 16. Howtos

https://docs.microsoft.com/en-us/visualstudio/ide/customize-build-and-debug-tasks-in-visual-studio?view=vs-2017
https://docs.microsoft.com/en-us/visualstudio/ide/customize-build-and-debug-tasks-in-visual-studio?view=vs-2017

Conan Documentation, Release 1.31.4

16.8 How to manage C++ standard [EXPERIMENTAL]

Warning: This is an experimental feature subject to breaking changes in future releases. Previously, it was
implemented as a first level setting cppstd, we encourage you to adopt the new subsetting and update your recipes
if they were including the deprecated one in its settings attribute.

The setting representing the C++ standard is compiler.cppstd. The detected default profile doesn’t set any value for
the compiler.cppstd setting,

The consumer can specify it in a profile or with the -s parameter:

conan install . -s compiler.cppstd=gnu14

As it is a subsetting, it can have different values for each compiler (also, take into account that depending on the version
of the compiler the standard could have only partial support and may change the ABI).

Valid values for compiler=Visual Studio:

VALUE DESCRIPTION
14 C++ 14
17 C++ 17
20 C++ 20 (Still C++20 Working Draft)

Valid values for other compilers:

VALUE DESCRIPTION
98 C++ 98
gnu98 C++ 98 with GNU extensions
11 C++ 11
gnu11 C++ 11 with GNU extensions
14 C++ 14
gnu14 C++ 14 with GNU extensions
17 C++ 17
gnu17 C++ 17 with GNU extensions
20 C++ 20 (Partial support)
gnu20 C++ 20 with GNU extensions (Partial support)

16.8.1 Build helpers

The value of compiler.cppstd provided by the consumer is used by the build helpers:

• The CMake build helper will set the CONAN_CMAKE_CXX_STANDARD and CONAN_CMAKE_CXX_EXTENSIONS def-
initions that will be converted to the corresponding CMake variables to activate the standard automatically with
the conan_basic_setup() macro.

• The AutotoolsBuildEnvironment build helper will adjust the needed flag to CXXFLAGS automatically.

• The MSBuild/VisualStudioBuildEnvironment build helper will adjust the needed flag to CL env var automatically.

16.8. How to manage C++ standard [EXPERIMENTAL] 317

Conan Documentation, Release 1.31.4

16.8.2 Package compatibility

By default Conan will detect the default standard of your compiler to not generate different binary packages. For
example, you already built some gcc 6.1 packages, where the default C++ standard is gnu14. If you introduce the
compiler.cppstd setting in your profile with the gnu14 value, Conan won’t generate new packages, because it was
already the default of your compiler.

Note: Check the package_id() reference to know more.

Note: Conan 1.x will also generate the same packages as the ones generated with the deprecated setting cppstd for
the default value of the standard.

16.8.3 Required version

When the package to be built requires a minimal C++ standard support (e.g. 17), it can be done by comparing the
cppstd. For such condition, there is the helper check_min_cppstd.

16.9 How to use Docker to create and cross-build C and C++ Conan
packages

With Docker, you can run different virtual Linux operating systems in a Linux, Mac OSX or Windows machine. It is
useful to reproduce build environments, for example to automate CI processes. You can have different images with
different compilers or toolchains and run containers every time is needed.

In this section you will find a list of pre-built images with common build tools and compilers as well as Conan installed.

16.9.1 Using Conan inside a container

$ docker run -it --rm conanio/gcc7 /bin/bash

Note: Use sudo when needed to run docker.

The previous code will run a shell in container. We have specified:

• -it: Keep STDIN open and allocate a pseudo-tty, in other words, we want to type in the container because we
are opening a bash.

• --rm: Once the container exits, remove the container. Helps to keep clean or hard drive.

• conanio/gcc7: Image name, check the available Docker images.

• /bin/bash: The command to run

Now we are running on the conangcc7 container we can use Conan normally. In the following example we are creating
a package from the recipe by cloning the repository, for OpenSSL. It is always recommended to upgrade Conan from
pip first:

318 Chapter 16. Howtos

Conan Documentation, Release 1.31.4

$ sudo pip install conan --upgrade # We make sure we are running the latest Conan version
$ git clone https://github.com/conan-community/conan-openssl
$ cd conan-openssl
$ conan create . user/channel

16.9.2 Sharing a local folder with a Docker container

You can share a local folder with your container, for example a project:

$ git clone https://github.com/conan-community/conan-openssl
$ cd conan-openssl
$ docker run -it -v$(pwd):/home/conan/project --rm conanio/gcc7 /bin/bash

• v$(pwd):/home/conan/project: We are mapping the current directory (conan-openssl) to the container /
home/conan/project directory, so anything we change in this shared folder, will be reflected in our host ma-
chine.

Now we are running on the conangcc7 container
$ sudo pip install conan --upgrade # We make sure we are running the latest Conan version
$ cd project
$ conan create . user/channel --build missing
$ conan remote add myremote http://some.remote.url
$ conan upload "*" -r myremote --all

16.9.3 Using the images to cross build packages

You can use the available docker images (with the suffix -i386, -armv7 and -armv7gh) to generate packages for those
platforms.

For example, the armv7 images have a toolchain for linux ARM installed, and declared as main compiler with the
environment variables CC and CXX. Also, the default Conan profile (~/.conan/profiles/default) is adjusted to
declare the correct arch (armv7 / armv7hf).

This process will run a native compilation inside docker, so we cannot say it is actual cross building, but if we were
talking in terms of cross compiling: the docker service is running in your machine (the build platform) a docker
image (which is the host platform) to generate the binaries. To read about actual cross compiling with Conan we have
a dedicated section in the docs: Cross building.

Building and uploading a package along with all its missing dependencies for Linux/armv7hf is done in few steps:

$ git clone https://github.com/conan-community/conan-openssl
$ cd conan-openssl
$ docker run -it -v$(pwd):/home/conan/project --rm conanio/gcc49-armv7hf /bin/bash

Now we are running on the conangcc49-armv7hf container
The default profile is automatically adjusted to armv7hf
$ cat ~/.conan/profiles/default

[settings]
os=Linux
arch=armv7hf
compiler=gcc

(continues on next page)

16.9. How to use Docker to create and cross-build C and C++ Conan packages 319

Conan Documentation, Release 1.31.4

(continued from previous page)

compiler.version=4.9
compiler.libcxx=libstdc++
build_type=Release
[options]
[build_requires]
[env]

$ sudo pip install conan --upgrade # We make sure we are running the latest Conan version
$ cd project

$ conan create . user/channel --build missing
$ conan remote add myremoteARMV7 http://some.remote.url
$ conan upload "*" -r myremoteARMV7 --all

16.9.4 Available Docker images

We provide a set of images with the most common compilers installed that can be used to generate Conan packages for
different profiles. Their dockerfiles can be found in the Conan Docker Tools repository.

Warning: The images listed below are intended for generating open-source library packages and we cannot guar-
antee any kind of stability. We strongly recommend using your own generated images for production environments
taking these dockerfiles as a reference.

GCC images

Version Target Arch
conanio/gcc49 (GCC 4.9) x86_64
conanio/gcc49-i386 (GCC 4.9) x86
conanio/gcc49-armv7 (GCC 4.9) armv7
conanio/gcc49-armv7hf (GCC 4.9) armv7hf
conanio/gcc5-armv7 (GCC 5) armv7
conanio/gcc5-armv7hf (GCC 5) armv7hf
conanio/gcc5 (GCC 5) x86_64
conanio/gcc5-i386 (GCC 5) x86
conanio/gcc5-armv7 (GCC 5) armv7
conanio/gcc5-armv7hf (GCC 5) armv7hf
conanio/gcc6 (GCC 6) x86_64
conanio/gcc6-i386 (GCC 6) x86
conanio/gcc6-armv7 (GCC 6) armv7
conanio/gcc6-armv7hf: (GCC 6) armv7hf
conanio/gcc7-i386 (GCC 7) x86
conanio/gcc7 (GCC 7) x86_64
conanio/gcc7-armv7 (GCC 7) armv7
conanio/gcc7-armv7hf (GCC 7) armv7hf

Clang images

320 Chapter 16. Howtos

https://github.com/conan-io/conan-docker-tools
https://hub.docker.com/r/conanio/gcc49/
https://hub.docker.com/r/conanio/gcc49-i386/
https://hub.docker.com/r/conanio/gcc49-armv7/
https://hub.docker.com/r/conanio/gcc49-armv7hf/
https://hub.docker.com/r/conanio/gcc5-armv7/
https://hub.docker.com/r/conanio/gcc5-armv7hf/
https://hub.docker.com/r/conanio/gcc5/
https://hub.docker.com/r/conanio/gcc5-i386/
https://hub.docker.com/r/conanio/gcc5-armv7/
https://hub.docker.com/r/conanio/gcc5-armv7hf/
https://hub.docker.com/r/conanio/gcc6/
https://hub.docker.com/r/conanio/gcc6-i386/
https://hub.docker.com/r/conanio/gcc6-armv7/
https://hub.docker.com/r/conanio/gcc6-armv7hf/
https://hub.docker.com/r/conanio/gcc7-i386/
https://hub.docker.com/r/conanio/gcc7/
https://hub.docker.com/r/conanio/gcc7-armv7/
https://hub.docker.com/r/conanio/gcc7-armv7hf/

Conan Documentation, Release 1.31.4

Version Target Arch
conanio/clang38 (Clang 3.8) x86_64
conanio/clang39-i386 (Clang 3.9) x86
conanio/clang39 (Clang 3.9) x86_64
conanio/clang40-i386 (Clang 4) x86
conanio/clang40 (Clang 4) x86_64
conanio/clang50-i386 (Clang 5) x86
conanio/clang50 (Clang 5) x86_64

16.10 How to reuse Python code in recipes

Warning: To reuse Python code, from Conan 1.7 there is a new python_requires() feature. See: Python
requires: reusing Python code in recipes This “how to” might be deprecated and removed in the future. It is left
here for reference only.

First, if you feel that you are repeating a lot of Python code, and that repeated code could be useful for other Conan
users, please propose it in a github issue.

There are several ways to handle Python code reuse in package recipes:

• To put common code in files, as explained below. This code has to be exported into the recipe itself.

• To create a Conan package with the common Python code, and then require it from the recipe.

This howto explains the latter.

16.10.1 A basic Python package

Let’s begin with a simple Python package, a “hello world” functionality that we want to package and reuse:

def hello():
print("Hello World from Python!")

To create a package, all we need to do is create the following layout:

-| hello.py
| __init__.py
| conanfile.py

The __init__.py is blank. It is not necessary to compile code, so the package recipe conanfile.py is quite simple:

from conans import ConanFile

class HelloPythonConan(ConanFile):
name = "hello_py"
version = "0.1"
exports = '*'
build_policy = "missing"

def package(self):
(continues on next page)

16.10. How to reuse Python code in recipes 321

https://hub.docker.com/r/conanio/clang38/
https://hub.docker.com/r/conanio/clang39-i386/
https://hub.docker.com/r/conanio/clang39/
https://hub.docker.com/r/conanio/clang40/-i386
https://hub.docker.com/r/conanio/clang40/
https://hub.docker.com/r/conanio/clang50-i386/
https://hub.docker.com/r/conanio/clang50/

Conan Documentation, Release 1.31.4

(continued from previous page)

self.copy('*.py')

def package_info(self):
self.env_info.PYTHONPATH.append(self.package_folder)

The exports will copy both the hello.py and the __init__.py into the recipe. The package() method is also
obvious: to construct the package just copy the Python sources.

The package_info() adds the current package folder to the PYTHONPATH Conan environment variable. It will not
affect the real environment variable unless the end user desires it.

It can be seen that this recipe would be practically the same for most Python packages, so it could be factored in a
PythonConanFile base class to further simplify it. (Open a feature request, or better a pull request. :))

With this recipe, all we have to do is:

$ conan export . memsharded/testing

Of course if you want to share the package with your team, you can conan upload it to a remote server. But to create
and test the package, we can do everything locally.

Now the package is ready for consumption. In another folder, we can create a conanfile.txt (or a conanfile.py if we
prefer):

[requires]
hello_py/0.1@memsharded/testing

And install it with the following command:

$ conan install . -g virtualenv

Creating the above conanfile.txt might be unnecessary for this simple example, as you can directly run conan
install hello_py/0.1@memsharded/testing -g virtualenv, however, using the file is the canonical way.

The specified virtualenv generator will create an activate script (in Windows activate.bat), that basically contains
the environment, in this case, the PYTHONPATH. Once we activate it, we are able to find the package in the path and use
it:

$ activate
$ python
Python 2.7.12 (v2.7.12:d33e0cf91556, Jun 27 2016, 15:19:22) [MSC v.1500 32 bit (Intel)]␣
→˓on win32
...
>>> import hello
>>> hello.hello()
Hello World from Python!
>>>

The above shows an interactive session, but you can import also the functionality in a regular Python script.

322 Chapter 16. Howtos

Conan Documentation, Release 1.31.4

16.10.2 Reusing Python code in your recipes

Requiring a Python Conan package

As the Conan recipes are Python code itself, it is easy to reuse Python packages in them. A basic recipe using the
created package would be:

from conans import ConanFile

class HelloPythonReuseConan(ConanFile):
requires = "hello_py/0.1@memsharded/testing"

def build(self):
from hello import hello
hello()

The requires section is just referencing the previously created package. The functionality of that package can be used
in several methods of the recipe: source(), build(), package() and package_info(), i.e. all of the methods used
for creating the package itself. Note that in other places it is not possible, as it would require the dependencies of the
recipe to be already retrieved, and such dependencies cannot be retrieved until the basic evaluation of the recipe has
been executed.

$ conan install .
...
$ conan build .
Hello World from Python!

Sharing a Python module

Another approach is sharing a Python module and exporting within the recipe.

Let’s write for example a msgs.py file and put it besides the conanfile.py:

def build_msg(output):
output.info("Building!")

And then the main conanfile.py would be:

from conans import ConanFile
from msgs import build_msg

class ConanFileToolsTest(ConanFile):
name = "test"
version = "1.9"
exports = "msgs.py" # Important to remember!

def build(self):
build_msg(self.output)
...

It is important to note that such msgs.py file must be exported too when exporting the package, because package
recipes must be self-contained.

The code reuse can also be done in the form of a base class, something like a file base_conan.py

16.10. How to reuse Python code in recipes 323

Conan Documentation, Release 1.31.4

from conans import ConanFile

class ConanBase(ConanFile):
common code here

And then:

from conans import ConanFile
from base_conan import ConanBase

class ConanFileToolsTest(ConanBase):
name = "test"
version = "1.9"
exports = "base_conan.py"

16.11 How to create and share a custom generator with generator
packages

There are several built-in generators, like cmake, visual_studio, xcode. . . But what if your build system is not
included or the existing built-in ones doesn’t satisfy your needs? This how to will show you how to create a generator
for Premake build system.

Important: Check the reference of the custom_generator section to know the syntax and attributes available.

16.11.1 Creating a Premake generator

Create a folder with a new conanfile.py with the following contents:

$ mkdir conan-premake && cd conan-premake

Listing 5: conanfile.py

from conans.model import Generator
from conans import ConanFile

class PremakeDeps(object):
def __init__(self, deps_cpp_info):

self.include_paths = ",\n".join('"%s"' % p.replace("\\", "/")
for p in deps_cpp_info.include_paths)

self.lib_paths = ",\n".join('"%s"' % p.replace("\\", "/")
for p in deps_cpp_info.lib_paths)

self.bin_paths = ",\n".join('"%s"' % p.replace("\\", "/")
for p in deps_cpp_info.bin_paths)

self.libs = ", ".join('"%s"' % p for p in deps_cpp_info.libs)
self.defines = ", ".join('"%s"' % p for p in deps_cpp_info.defines)
self.cppflags = ", ".join('"%s"' % p for p in deps_cpp_info.cppflags)
self.cflags = ", ".join('"%s"' % p for p in deps_cpp_info.cflags)

(continues on next page)

324 Chapter 16. Howtos

https://premake.github.io/

Conan Documentation, Release 1.31.4

(continued from previous page)

self.sharedlinkflags = ", ".join('"%s"' % p for p in deps_cpp_info.
→˓sharedlinkflags)

self.exelinkflags = ", ".join('"%s"' % p for p in deps_cpp_info.exelinkflags)

self.rootpath = "%s" % deps_cpp_info.rootpath.replace("\\", "/")

class premake(Generator):

@property
def filename(self):

return "conanpremake.lua"

@property
def content(self):

deps = PremakeDeps(self.deps_build_info)

template = ('conan_includedirs{dep} = {{{deps.include_paths}}}\n'
'conan_libdirs{dep} = {{{deps.lib_paths}}}\n'
'conan_bindirs{dep} = {{{deps.bin_paths}}}\n'
'conan_libs{dep} = {{{deps.libs}}}\n'
'conan_cppdefines{dep} = {{{deps.defines}}}\n'
'conan_cppflags{dep} = {{{deps.cppflags}}}\n'
'conan_cflags{dep} = {{{deps.cflags}}}\n'
'conan_sharedlinkflags{dep} = {{{deps.sharedlinkflags}}}\n'
'conan_exelinkflags{dep} = {{{deps.exelinkflags}}}\n')

sections = ["#!lua"]
all_flags = template.format(dep="", deps=deps)
sections.append(all_flags)
template_deps = template + 'conan_rootpath{dep} = "{deps.rootpath}"\n'

for dep_name, dep_cpp_info in self.deps_build_info.dependencies:
deps = PremakeDeps(dep_cpp_info)
dep_name = dep_name.replace("-", "_")
dep_flags = template_deps.format(dep="_" + dep_name, deps=deps)
sections.append(dep_flags)

return "\n".join(sections)

class MyPremakeGeneratorPackage(ConanFile):
name = "premakegen"
version = "0.1"
url = "https://github.com/memsharded/conan-premake"
license = "MIT"

This is a full working example. Note the PremakeDeps class as a helper. The generator is creating Premake information
for each individual library separately, then also an aggregated information for all dependencies. This PremakeDeps
wraps a single item of such information.

Note the name of the package will be premakegen/0.1@<user>/<channel> as that is the name given to it, while the
generator name is premake (the name of the class that inherits from Generator). You can give the package any name

16.11. How to create and share a custom generator with generator packages 325

Conan Documentation, Release 1.31.4

you want, even the same as the generator’s name if desired.

You export the package recipe to the local cache, so it can be used by other projects as usual:

$ conan export . myuser/testing

16.11.2 Using the generator

Let’s create a test project that uses this generator. We will use a simple application that will use a “Hello World” library
package as a requirement.

First, let’s create the “Hello World” library package:

$ mkdir conan-hello && cd conan-hello
$ conan new hello/0.1
$ conan create . myuser/testing

Now, let’s create a folder for the application that will use Premake as build system:

$ cd ..
$ mkdir premake-project && cd premake-project

Put the following files inside. Note the premakegen@0.1@myuser/testing package reference in your conanfile.txt.

Listing 6: conanfile.txt

[requires]
hello/0.1@myuser/testing
premakegen@0.1@myuser/testing

[generators]
premake

Listing 7: main.cpp

#include "hello.h"

int main (void) {
hello();

}

Listing 8: premake4.lua

-- premake4.lua

require 'conanpremake'

-- A solution contains projects, and defines the available configurations solution
→˓"MyApplication"

configurations { "Debug", "Release" }
includedirs { conan_includedirs }
libdirs { conan_libdirs }
links { conan_libs }

(continues on next page)

326 Chapter 16. Howtos

Conan Documentation, Release 1.31.4

(continued from previous page)

-- A project defines one build target

project "MyApplication"
kind "ConsoleApp"
language "C++"
files { "**.h", "**.cpp" }

configuration "Debug"
defines { "DEBUG" }
flags { "Symbols" }

configuration "Release"
defines { "NDEBUG" }
flags { "Optimize" }

Let’s install the requirements:

$ conan install . -s compiler=gcc -s compiler.version=4.9 -s compiler.libcxx=libstdc++ --
→˓build

This generates the premake4.lua file with the requirements information for building.

Now we are ready to build the project:

$ premake4 gmake
$ make (or mingw32-make if in windows-mingw)
$./MyApplication
Hello World Release!

Now everything works, so you might want to share your generator:

$ conan upload premakegen/0.1@myuser/testing

Tip: This is a regular Conan package, so you could create a test_package folder with a conanfile.py to test the generator
as done in the example above (invoke the Premake build in the build() method).

16.11.3 Using template files for custom generators

If your generator has a lot of common, non-parameterized text, you might want to use files that contain the template.
It is possible to do this as long as the template file is exported in the recipe. The following example uses a simple text
file, but you could use other templating formats:

import os
from conans import ConanFile, load
from conans.model import Generator

class MyCustomGenerator(Generator):

(continues on next page)

16.11. How to create and share a custom generator with generator packages 327

Conan Documentation, Release 1.31.4

(continued from previous page)

@property
def filename(self):

return "customfile.gen"

@property
def content(self):

template = load(os.path.join(os.path.dirname(__file__), "mytemplate.txt"))
return template % "Hello"

class MyCustomGeneratorPackage(ConanFile):
name = "custom_generator"
version = "0.1"
exports = "mytemplate.txt"

16.11.4 Storing generators in the Conan local cache

Warning: This is an experimental feature subject to breaking changes in future releases.

In addition to distributing them using Conan packages, custom generators can be stored in the generators folder in the
Conan local cache (by default ~/.conan/generators).

Generators stored in the local cache can be used in the same ways as the built-in generators, i.e. they can be referenced
on the command line with conan install when using the --generator option, and do not require installing a
package to use. Instead, these generators can be distributed using conan config install.

Listing 9: A custom generator which saves all environment variables de-
fined in a package to a json file

import json
from conans.model import Generator

The generator name will be the literal class name (not the filename)
class custom_generator(Generator):

@property
def filename(self):

return "custom_generator_output.json"

@property
def content(self):

return json.dumps(self.deps_env_info.vars)

Listing 10: Using the custom generator at install time

$ conan install <path_or_reference> --generator custom_generator

Note: Generators loaded from the local cache do not need to be accompanied by a recipe class. Additionally, more
than one generator can be loaded from the same python module when loaded from the local cache.

328 Chapter 16. Howtos

Conan Documentation, Release 1.31.4

16.12 How to manage shared libraries

Shared libraries, .DLL in windows, .dylib in OSX and .so in Linux, are loaded at runtime. That means that the appli-
cation executable needs to know where are the required shared libraries when it runs.

On Windows, the dynamic linker, will search in the same directory then in the PATH directories. On OSX, it will
search in the directories declared in DYLD_LIBRARY_PATH as on Linux will use the LD_LIBRARY_PATH.

Furthermore in OSX and Linux there is another mechanism to locate the shared libraries: The RPATHs.

16.12.1 Manage Shared Libraries with Environment Variables

Shared libraries are loaded at runtime. The application executable needs to know where to find the required shared
libraries when it runs.

Depending on the operating system, we can use environment variables to help the dynamic linker to find the shared
libraries:

OPERATING SYSTEM ENVIRONMENT VARIABLE
WINDOWS PATH
LINUX LD_LIBRARY_PATH
OSX DYLD_LIBRARY_PATH

If your package recipe (A) is generating shared libraries you can declare the needed environment variables pointing to
the package directory. This way, any other package depending on (A) will automatically have the right environment
variable set, so they will be able to locate the (A) shared library.

Similarly if you use the virtualenv generator and you activate it, you will get the paths needed to locate the shared
libraries in your terminal.

Example

We are packaging a tool called toolA with a library and an executable that will, for example, compress data.

The package offers two flavors, shared library or static library (embedded in the executable of the tool and available
to link with). You can use the toolA package library to develop another executable or library or you can just use the
executable provided by the package. In both cases, if you choose to install the shared package of toolA you will need
to have the shared library available.

import os
from conans import tools, ConanFile

class ToolA(ConanFile):
....
name = "tool_a"
version = "1.0"
options = {"shared": [True, False]}
default_options = {"shared": False}

def build(self):
build your shared library

(continues on next page)

16.12. How to manage shared libraries 329

Conan Documentation, Release 1.31.4

(continued from previous page)

def package(self):
Copy the executable
self.copy(pattern="tool_a*", dst="bin", keep_path=False)

Copy the libraries
if self.options.shared:

self.copy(pattern="*.dll", dst="bin", keep_path=False)
self.copy(pattern="*.dylib", dst="lib", keep_path=False)
self.copy(pattern="*.so*", dst="lib", keep_path=False)

else:
...

Using the tool from a different package

If we are now creating a package that uses the tool_a executable to compress some data, we can execute directly
tool_a using RunEnvironment build helper to set the environment variables accordingly:

import os
from conans import tools, ConanFile

class PackageB(ConanFile):
name = "package_b"
version = "1.0"
requires = "tool_a/1.0@myuser/stable"

def build(self):
exe_name = "tool_a.exe" if self.settings.os == "Windows" else "tool_a"
self.run([exe_name, "--someparams"], run_environment=True)
...

Building an application using the shared library from tool_a

As we are building a final application, we will probably want to distribute it together with the shared library from the
tool_a, so we can use the Imports to import the required shared libraries to our user space.

Listing 11: conanfile.txt

[requires]
tool_a/1.0@myuser/stable

[generators]
cmake

[options]
tool_a:shared=True

[imports]
bin, *.dll -> ./bin # Copies all dll files from packages bin folder to my "bin" folder
lib, *.dylib* -> ./bin # Copies all dylib files from packages lib folder to my "bin"␣
→˓folder
lib, *.so* -> ./bin # Copies all so files from packages lib folder to my "bin" folder

330 Chapter 16. Howtos

Conan Documentation, Release 1.31.4

Now you can build the project:

$ mkdir build && cd build
$ conan install ..
$ cmake .. -G "Visual Studio 14 Win64"
$ cmake --build . --config Release
$ cd bin && mytool

The previous example will work only in Windows and OSX (changing the CMake generator), because the dynamic
linker will look in the current directory (the binary directory) where we copied the shared libraries too.

In Linux you still need to set the LD_LIBRARY_PATH, or in OSX, the DYLD_LIBRARY_PATH:

$ cd bin && LD_LIBRARY_PATH=$(pwd) && ./mytool

Using shared libraries from dependencies

If you are executing something that depends on shared libraries belonging to your dependencies, those shared libraries
have to be found at runtime. In Windows, it is enough if the package added its binary folder to the system PATH. In
Linux and OSX, it is necessary that the LD_LIBRARY_PATH and DYLD_LIBRARY_PATH environment variables are used.

Security restrictions might apply in OSX (read this thread), so the DYLD_LIBRARY_PATH and DYLD_FRAMEWORK_PATH
environment variables are not directly transferred to the child process. In that case, you have to use it explicitly in your
conanfile.py:

def build(self):
env_build = RunEnvironment(self)
with tools.environment_append(env_build.vars):

self.run("./myexetool") # won't work, even if 'DYLD_LIBRARY_PATH' and 'DYLD_
→˓FRAMEWORK_PATH' are in the env

self.run("DYLD_LIBRARY_PATH=%s DYLD_FRAMEWORK_PATH=%s ./myexetool" % (os.environ[
→˓'DYLD_LIBRARY_PATH'], os.environ['DYLD_FRAMEWORK_PATH']))

Or you could use RunEnvironment helper described above.

Using virtualrunenv generator

virtualrunenv generator will set the environment variables PATH, LD_LIBRARY_PATH, DYLD_LIBRARY_PATH pointing
to lib and bin folders automatically.

Listing 12: conanfile.txt

[requires]
tool_a/1.0@myuser/stable

[options]
tool_a:shared=True

[generators]
virtualrunenv

In the terminal window:

16.12. How to manage shared libraries 331

https://stackoverflow.com/questions/35568122/why-isnt-dyld-library-path-being-propagated-here

Conan Documentation, Release 1.31.4

$ conan install .
$ source activate_run
$ tool_a --someparams
Only For Mac OS users to avoid restrictions:
$ DYLD_LIBRARY_PATH=$DYLD_LIBRARY_PATH toolA --someparams

16.12.2 Manage RPATHs

The rpath is encoded inside dynamic libraries and executables and helps the linker to find its required shared libraries.

If we have an executable, my_exe, that requires a shared library, shared_lib_1, and shared_lib_1, in turn, requires
another shared_lib_2.

So the rpaths values are:

File rpath
my_exe /path/to/shared_lib_1
shared_lib_1 /path/to/shared_lib_2
shared_lib_2

In Linux if the linker doesn’t find the library in rpath, it will continue the search in system defaults paths
(LD_LIBRARY_PATH. . . etc) In OSX, if the linker detects an invalid rpath (the file does not exist there), it will
fail.

Default Conan approach

The consumer project of dependencies with shared libraries needs to import them to the executable directory to be able
to run it:

conanfile.txt

[requires]
poco/1.9.4

[imports]
bin, *.dll -> ./bin # Copies all dll files from packages bin folder to my "bin" folder
lib, *.dylib* -> ./bin # Copies all dylib files from packages lib folder to my "bin"␣
→˓folder

On Windows this approach works well, importing the shared library to the directory containing your executable is a
very common procedure.

On Linux there is an additional problem, the dynamic linker doesn’t look by default in the executable directory, and
you will need to adjust the LD_LIBRARY_PATH environment variable like this:

LD_LIBRARY_PATH=$(pwd) && ./mybin

On OSX if absolute rpaths are hardcoded in an executable or shared library and they don’t exist the executable will fail
to run. This is the most common problem when we reuse packages in a different environment from where the artifacts
have been generated.

So for OSX, Conan, by default, when you build your library with CMake, the rpaths will be generated without any
path:

332 Chapter 16. Howtos

Conan Documentation, Release 1.31.4

File rpath
my_exe shared_lib_1.dylib
shared_lib_1.dylib shared_lib_2.dylib
shared_lib_2.dylib

The conan_basic_setup() macro will set the set(CMAKE_SKIP_RPATH 1) in OSX.

You can skip this default behavior by passing the KEEP_RPATHS parameter to the conan_basic_setup macro:

include(${CMAKE_BINARY_DIR}/conanbuildinfo.cmake)
conan_basic_setup(KEEP_RPATHS)

add_executable(timer timer.cpp)
target_link_libraries(timer ${CONAN_LIBS})

If you are using autotools Conan won’t auto-adjust the rpaths behavior. if you want to follow this default behavior
you will probably need to replace the install_name in the configure or MakeFile generated files in your recipe to
not use $rpath:

replace_in_file("./configure", r"-install_name \$rpath/", "-install_name ")

Different approaches

You can adjust the rpaths in the way that adapts better to your needs.

If you are using CMake take a look to the CMake RPATH handling guide.

Remember to pass the KEEP_RPATHS variable to the conan_basic_setup:

include(${CMAKE_BINARY_DIR}/conanbuildinfo.cmake)
conan_basic_setup(KEEP_RPATHS)

Then, you could, for example, use the @executable_path in OSX and $ORIGIN in Linux to adjust a relative path
from the executable. Also, enabling CMAKE_BUILD_WITH_INSTALL_RPATH will build the application with the
RPATH value of CMAKE_INSTALL_RPATH and avoid the need to be relinked when installed.

if (APPLE)
set(CMAKE_INSTALL_RPATH "@executable_path/../lib")

else()
set(CMAKE_INSTALL_RPATH "$ORIGIN/../lib")

endif()

set(CMAKE_BUILD_WITH_INSTALL_RPATH ON)

You can use this imports statements in the consumer project:

[requires]
poco/1.9.4

[imports]
bin, *.dll -> ./bin # Copies all dll files from packages bin folder to my "bin" folder
lib, *.dylib* -> ./lib # Copies all dylib files from packages lib folder to my "lib"␣

(continues on next page)

16.12. How to manage shared libraries 333

https://gitlab.kitware.com/cmake/community/-/wikis/doc/cmake/RPATH-handling
https://cmake.org/cmake/help/v3.0/variable/CMAKE_BUILD_WITH_INSTALL_RPATH.html

Conan Documentation, Release 1.31.4

(continued from previous page)

→˓folder
lib, *.so* -> ./lib # Copies all so files from packages lib folder to my "lib" folder

And your final application can follow this layout:

bin
|_____ my_executable
|_____ mylib.dll
|
lib
|_____ libmylib.so
|_____ libmylib.dylib

You could move the entire application folder to any location and the shared libraries will be located correctly.

16.13 How to reuse cmake install for package() method

It is possible that your project’s CMakeLists.txt has already defined some functionality that extracts the artifacts (head-
ers, libraries, binaries) from the build and source folder to a predetermined place and does the post-processing (e.g.,
strips rpaths). For example, one common practice is to use CMake install directive to that end.

When using Conan, the install phase of CMake is wrapped in the package() method. That way the flags like conan
create --keep-build or the commands for the Package development flow are consistent with every step of the
packaging process.

The following excerpt shows how to build and package with CMake within Conan. Mind that you need to configure
CMake both in build() and in package(), since these methods are called independently.

def _configure_cmake(self):
cmake = CMake(self)
cmake.definitions["SOME_DEFINITION"] = True
cmake.configure()
return cmake

def build(self):
cmake = self._configure_cmake()
cmake.build()

def package(self):
cmake = self._configure_cmake()
cmake.install()

def package_info(self):
self.cpp_info.libs = ["libname"]

The package_info() method specifies the list of the necessary libraries, defines and flags for different build configu-
rations for the consumers of the package. This is necessary as there is no possible way to extract this information from
the CMake install automatically.

334 Chapter 16. Howtos

https://cmake.org/cmake/help/latest/command/install.html

Conan Documentation, Release 1.31.4

16.14 How to collaborate with other users’ packages

If a certain existing package does not work for you, or you need to store pre-compiled binaries for a platform not
provided by the original package creator, you might still be able to do so:

16.14.1 Collaborate from source repository

If the original package creator has the package recipe in a repository, this would be the simplest approach. Just clone
the package recipe on your machine, change something if you want, and then export the package recipe under your own
user name. Point your project’s [requires] to the new package name, and use it as usual:

$ git clone <repository>
$ cd <repository>
//make changes if desired
$ conan export . <youruser/yourchannel>

You can just directly run:

$ conan create . demo/testing

Once you have generated the desired binaries, you can store your pre-compiled binaries in your Bintray repository or
on your own Conan server:

$ conan upload package/0.1@myuser/stable -r=myremote --all

Finally, if you made useful changes, you might want to create a pull request to the original repository of the package
creator.

16.14.2 Copy a package

If you don’t need to modify the original package creator recipe, it is fine to just copy the package to your local storage.
You can copy the recipes and existing binary packages. This could be enough for caching existing binary packages
from the original remote into your own remote, under your own username:

$ conan copy poco/1.9.4@ myuser/testing
$ conan upload poco/1.9.4@myuser/testing -r=myremote --all

16.15 How to link with Apple Frameworks

It is common in MacOS that your Conan package needs to link with a complete Apple framework, and, of course, you
want to propagate this information to all projects/libraries that use your package.

With regular libraries, use self.cpp_info.libs object to append to it all the libraries:

def package_info(self):

self.cpp_info.libs = ["SDL2"]
self.cpp_info.libs.append("OpenGL32")

With frameworks we need to use self.cpp_info.frameworks in a similar manner:

16.14. How to collaborate with other users’ packages 335

Conan Documentation, Release 1.31.4

def package_info(self):

self.cpp_info.libs = ["SDL2"]

self.cpp_info.frameworks.extend(["Carbon", "CoreAudio", "Security", "IOKit"])

16.16 How to package Apple Frameworks

To package a MyFramework Apple framework, copy/create a folder MyFramework.framework to your package
folder, where you should put all the subdirectories (Headers, Modules, etc).

def package(self):
If you have the framework folder built in your build_folder:
self.copy("MyFramework.framework/*", symlinks=True)
Or build the destination folder:
tools.mkdir("MyFramework.framework/Headers")
self.copy("*.h", dst="MyFramework.framework/Headers")
...

Declare the framework in the cpp_info object, the directory of the framework folder (self.package_folder) into the
cpp_info.frameworkdirs and the framework name into the cpp_info.frameworks.

def package_info(self):
...
self.cpp_info.frameworkdirs.append(self.package_folder)
self.cpp_info.frameworks.append("MyFramework")

16.17 How to collect licenses of dependencies

With the imports feature it is possible to collect the License files from all packages in the dependency graph. Please
note that the licenses are artifacts that must exist in the binary packages to be collected, as different binary packages
might have different licenses. E.g., A package creator might provide a different license for static or shared linkage with
different “License” files if they want to.

Also, we will assume the convention that the package authors will provide a “License” (case not important) file at the
root of their packages.

In conanfile.txt we would use the following syntax:

[imports]
., license* -> ./licenses @ folder=True, ignore_case=True

And in conanfile.py we will use the imports() method:

def imports(self):
self.copy("license*", dst="licenses", folder=True, ignore_case=True)

In both cases, after conan install, it will store all the found License files inside the local licenses folder, which will
contain one subfolder per dependency with the license file inside.

336 Chapter 16. Howtos

Conan Documentation, Release 1.31.4

16.18 How to extract licenses from headers

Sometimes there is no license file, and you will need to extract the license from a header file, as in the following
example:

def package():
Extract the License/s from the header to a file
tmp = tools.load("header.h")
license_contents = tmp[2:tmp.find("*/", 1)] # The license begins with a C␣

→˓comment /* and ends with */
tools.save("LICENSE", license_contents)

Package it
self.copy("license*", dst="licenses", ignore_case=True, keep_path=False)

16.19 How to dynamically define the name and version of a package

The name and version fields are used to define constant values. The set_name() and set_version() methods can
be used to dynamically define those values, for example if we want to extract the version from a text file or from the git
repository.

The version of a recipe is stored in the package metadata when it is exported (or created) and always taken from the
metadata later on. This means that the set_name() and set_version() methods will not be executed once the
recipe is in the cache, or when it is installed from a server. Both methods will use the current folder as the current
working directory to resolve relative paths. To define paths relative to the location of the conanfile.py use the self.
recipe_folder attribute.

16.20 How to capture package version from SCM: git

The Git() helper from tools can be used to capture data from the Git repo in which the conanfile.py recipe resides,
and use it to define the version of the Conan package.

from conans import ConanFile, tools

class HelloConan(ConanFile):
name = "hello"

def set_version(self):
git = tools.Git(folder=self.recipe_folder)
self.version = "%s_%s" % (git.get_branch(), git.get_revision())

def build(self):
...

In this example, the package created with conan create will be called hello/branch_commit@user/channel.

16.18. How to extract licenses from headers 337

Conan Documentation, Release 1.31.4

16.21 How to capture package version from SCM: svn

The SVN() helper from tools can be used to capture data from the subversion repo in which the conanfile.py recipe
resides, and use it to define the version of the Conan package.

from conans import ConanFile, tools

class HelloLibrary(ConanFile):
name = "hello"
def set_version(self):

scm = tools.SVN(folder=self.recipe_folder)
revision = scm.get_revision()
branch = scm.get_branch() # Delivers e.g trunk, tags/v1.0.0, branches/my_branch
branch = branch.replace("/","_")
if scm.is_pristine():

dirty = ""
else:

dirty = ".dirty"
self.version = "%s-%s+%s%s" % (version, revision, branch, dirty) # e.g. 1.2.0-

→˓1234+trunk.dirty

def build(self):
...

In this example, the package created with conan create will be called hello/generated_version@user/
channel. Note: this function should never raise, see the section about when the version is computed and saved above.

16.22 How to capture package version from text or build files

It is common that a library version number would be already encoded in a text file, build scripts, etc. As an example,
let’s assume we have the following library layout, and that we want to create a package from it:

conanfile.py
CMakeLists.txt
src

hello.cpp
...

The CMakeLists.txt will have some variables to define the library version number. For simplicity, let’s also assume that
it includes a line such as the following:

cmake_minimum_required(VERSION 2.8)
set(MY_LIBRARY_VERSION 1.2.3) # This is the version we want
add_library(hello src/hello.cpp)

You can extract the version dynamically using:

from conans import ConanFile
from conans.tools import load
import re, os

class HelloConan(ConanFile):
(continues on next page)

338 Chapter 16. Howtos

Conan Documentation, Release 1.31.4

(continued from previous page)

name = "hello"
def set_version(self):

content = load(os.path.join(self.recipe_folder, "CMakeLists.txt"))
version = re.search(r"set\(MY_LIBRARY_VERSION (.*)\)", content).group(1)
self.version = version.strip()

16.23 How to use Conan as other language package manager

Conan is a generic package manager. In the getting started section we saw how to use Conan and manage a C/C++
library, like POCO.

But Conan just provided some tools, related to C/C++ (like some generators and the cpp_info), to offer a better user
experience. The general basis of Conan can be used with other programming languages.

Obviously, this does not try to compete with other package managers. Conan is a C and C++ package manager, focused
on C and C++ developers. But when we realized that this was possible, we thought it was a good way to showcase its
power, simplicity and versatility.

And of course, if you are doing C/C++ and occasionally you need some package from other language in your workflow,
as in the Conan package recipes themselves, or for some other tooling, you might find this functionality useful.

16.23.1 Conan: A Go package manager

The source code

You can just clone the following example repository:

$ git clone https://github.com/conan-community/conan-goserver-example

Or, alternatively, manually create the folder and copy the following files inside:

$ mkdir conan-goserver-example
$ cd conan-goserver-example
$ mkdir src
$ mkdir src/server

The files are:

src/server/main.go is a small http server that will answer “Hello world!” if we connect to it.

package main

import "github.com/go-martini/martini"

func main() {
m := martini.Classic()
m.Get("/", func() string {
return "Hello world!"

})
m.Run()

}

16.23. How to use Conan as other language package manager 339

Conan Documentation, Release 1.31.4

Declaring and installing dependencies

Create a conanfile.txt, with the following content:

Listing 13: conanfile.txt

[requires]
go-martini/1.0@lasote/stable

[imports]
src, * -> ./deps/src

Our project requires a package, go-martini/1.0@lasote/stable, and we indicate that all src contents from all our
requirements have to be copied to ./deps/src.

The package go-martini depends on go-inject, so Conan will handle automatically the go-inject dependency.

$ conan install .

This command will download our packages and will copy the contents in the ./deps/src folder.

Running our server

Just add the deps folder to GOPATH:

Linux / Macos
$ export GOPATH=${GOPATH}:${PWD}/deps

Windows
$ SET GOPATH=%GOPATH%;%CD%/deps

And run the server:

$ cd src/server
$ go run main.go

Open your browser and go to localhost:9300

Hello World!

Generating Go packages

Creating a Conan package for a Go library is very simple. In a Go project, you compile all the code from sources in
the project itself, including all of its dependencies.

So we don’t need to take care of settings at all. Architecture, compiler, operating system, etc. are only relevant for
pre-compiled binaries. Source code packages are settings agnostic.

Let’s take a look at the conanfile.py of the go inject library:

Listing 14: conanfile.py

from conans import ConanFile

(continues on next page)

340 Chapter 16. Howtos

Conan Documentation, Release 1.31.4

(continued from previous page)

class InjectConan(ConanFile):
name = "go-inject"
version = "1.0"

def source(self):
self.run("git clone https://github.com/codegangsta/inject.git")
self.run("cd inject && git checkout v1.0-rc1") # TAG v1.0-rc1

def package(self):
self.copy(pattern='*', dst='src/github.com/codegangsta/inject', src="inject",␣

→˓keep_path=True)

If you have read the Building a hello world package, the previous code may look quite simple to you.

We want to pack version 1.0 of the go inject library, so the version variable is “1.0”. In the source() method, we
declare how to obtain the source code of the library, in this case just by cloning the github repository and making
a checkout of the v1.0-rc1 tag. In the package() method, we are just copying all the sources to a folder named
“src/github.com/codegangsta/inject”.

This way, we can keep importing the library in the same way:

import "github.com/codegangsta/inject"

We can export and upload the package to a remote and we are done:

$ conan export . lasote/stable # Or any other user/channel
$ conan upload go-inject/1.0@lasote/stable --all

Now look at the go martini conanfile:

Listing 15: conanfile.py

from conans import ConanFile

class InjectConan(ConanFile):
name = "go-martini"
version = "1.0"
requires = 'go-inject/1.0@lasote/stable'

def source(self):
self.run("git clone https://github.com/go-martini/martini.git")
self.run("cd martini && git checkout v1.0") # TAG v1.0

def package(self):
self.copy(pattern='*', dst='src/github.com/go-martini/martini', src="martini",␣

→˓keep_path=True)

It is very similar. The only difference is the requires variable. It defines the go-inject/1.0@lasote/stable library, as
a requirement.

$ conan export . lasote/stable # Or any other user/channel
$ conan upload go-martini/1.0@lasote/stable --all

Now we are able to use them easily and without the problems of versioning with github checkouts.

16.23. How to use Conan as other language package manager 341

Conan Documentation, Release 1.31.4

16.23.2 Conan: A Python package manager

Conan is a C and C++ package manager, and to deal with the vast variability of C and C++ build systems, compilers,
configurations, etc., it was designed to be extremely flexible, to allow users the freedom to configure builds in virtually
any manner required. This is one of the reasons to use Python as the scripting language for Conan package recipes.

With this flexibility, Conan is able to do very different tasks: package Visual Studio modules, package Go code, build
packages from sources or from binaries retrieved from elsewhere, etc.

Python code can be reused and packaged with Conan to share functionalities or tools among conanfile.py files. Here
we can see a full example of Conan as a Python package manager.

A full Python and C/C++ package manager

The real utility of this is that Conan is a C and C++ package manager. So, for example, you are able to create a Python
package that wraps the functionality of the Poco C++ library. Poco itself has transitive (C/C++) dependencies, but they
are already handled by Conan. Furthermore, a very interesting thing is that nothing has to be done in advance for that
library, thanks to useful tools such as pybind11, that lets you easily create Python bindings.

So let’s build a package with the following files:

• conanfile.py: The package recipe.

• __init__.py: A required file which should remain blank.

• pypoco.cpp: The C++ code with the pybind11 wrapper for Poco that generates a Python extension (a shared
library that can be imported from Python).

• CMakeLists.txt: The CMake build file that is able to compile pypoco.cpp into a Python extension (pypoco.pyd
in Windows, pypoco.so in Linux)

• poco.py: A Python file that makes use of the pypoco Python binary extension built with pypoco.cpp.

• test_package/conanfile.py: A test consumer “convenience” recipe to create and test the package.

The pypoco.cpp file can be coded easily thanks to the elegant pybind11 library:

Listing 16: pypoco.cpp

#include <pybind11/pybind11.h>
#include "Poco/Random.h"

using Poco::Random;
namespace py = pybind11;

PYBIND11_PLUGIN(pypoco) {
py::module m("pypoco", "pybind11 example plugin");
py::class_<Random>(m, "Random")

.def(py::init<>())

.def("nextFloat", &Random::nextFloat);
return m.ptr();

}

And the poco.py file is straightforward:

342 Chapter 16. Howtos

https://blog.conan.io/2016/06/01/Building-and-packaging-C++-modules-in-VS2015.html

Conan Documentation, Release 1.31.4

Listing 17: poco.py

import sys
import pypoco

def random_float():
r = pypoco.Random()
return r.nextFloat()

The conanfile.py is a bit longer, but is still quite easy to understand:

Listing 18: conanfile.py

from conans import ConanFile, tools, CMake

class PocoPyReuseConan(ConanFile):
name = "PocoPy"
version = "0.1"
requires = "poco/1.9.4", "pybind11/2.3.0@conan/stable"
settings = "os", "compiler", "arch", "build_type"
exports = "*"
generators = "cmake"
build_policy = "missing"

def build(self):
cmake = CMake(self)
pythonpaths = "-DPYTHON_INCLUDE_DIR=C:/Python27/include -DPYTHON_LIBRARY=C:/

→˓Python27/libs/python27.lib"
self.run('cmake %s %s -DEXAMPLE_PYTHON_VERSION=2.7' % (cmake.command_line,␣

→˓pythonpaths))
self.run("cmake --build . %s" % cmake.build_config)

def package(self):
self.copy('*.py*')
self.copy("*.so")

def package_info(self):
self.env_info.PYTHONPATH.append(self.package_folder)

The recipe now declares 2 requires that will be used to create the binary extension: the Poco library and the pybind11
library.

As we are actually building C++ code, there are a few important things that we need:

• Input settings that define the OS, compiler, version and architecture we are using to build our extension. This
is necessary because the binary we are building must match the architecture of the Python interpreter that we
will be using.

• The build() method is actually used to invoke CMake. You may see that we had to hardcode the Python path
in the example, as the CMakeLists.txt call to find_package(PythonLibs) didn’t find my Python installation
in C:/Python27, even though that is a standard path. I have also added the cmake generator to be able to easily
use the declared requires build information inside my CMakeLists.txt.

• The CMakeLists.txt is not posted here, but is basically the one used in the pybind11 example with just 2 lines to
include the cmake file generated by Conan for dependencies. It can be inspected in the GitHub repo.

16.23. How to use Conan as other language package manager 343

Conan Documentation, Release 1.31.4

• Note that we are using Python 2.7 as an input option. If necessary, more options for other inter-
preters/architectures could be easily provided, as well as avoiding the hardcoded paths. Even the Python in-
terpreter itself could be packaged in a Conan package.

The above recipe will generate a different binary for different compilers or versions. As the binary is being wrapped
by Python, we could avoid this and use the same binary for different setups, modifying this behavior with the
conan_info() method.

$ conan export . memsharded/testing
$ conan install pocopy/0.1@memsharded/testing -s arch=x86 -g virtualenv
$ activate
$ python
>>> import poco
>>> poco.random_float()
0.697845458984375

Now, the first invocation of conan installwill retrieve the dependencies and build the package. The next invocation
will use the cached binaries and be much faster. Note how we have to specify -s arch=x86 to match the architecture
of the Python interpreter to be used, in our case, 32 bits.

The output of the conan install command also shows us the dependencies that are being pulled:

Requirements
openssl/1.0.2t from conan.io
poco/1.9.4 from conan.io
pocopy/0.1@memsharded/testing from local
pybind11/2.3.0@conan/stable from conan.io
zlib/1.2.11 from conan.io

This is one of the great advantages of using Conan for this task, because by depending on Poco, other C and C++
transitive dependencies are retrieved and used in the application.

For a deeper look into the code of these examples, please refer to this github repo. The above examples and code have
only been tested on Win10, VS14u2, but may work on other configurations with little or no extra work.

16.24 How to manage SSL (TLS) certificates

16.24.1 Server certificate validation

By default, when a remote is added, if the URL schema is https, the Conan client will verify the certificate using a
list of authorities declared in the cacert.pem file located in the Conan home (~/.conan).

If you have a self signed certificate (not signed by any authority) you have two options:

• Use the conan remote command to disable the SSL verification.

• Append your server crt file to the cacert.pem file.

344 Chapter 16. Howtos

https://github.com/memsharded/python-conan-packages

Conan Documentation, Release 1.31.4

16.24.2 Client certificates

If your server is requiring client certificates to validate a connection from a Conan client, you need to create two files
in the Conan home directory (default ~/.conan):

• A file client.crt with the client certificate.

• A file client.key with the private key.

Note: You can create only the client.crt file containing both the certificate and the private key concatenated and
not create the client.key

If you are a familiar with the curl tool, this mechanism is similar to specify the --cert / --key parameters.

16.25 How to check the version of the Conan client inside a conanfile

Sometimes it might be useful to check the Conan version that is running in that moment your recipe. Although we
consider conan-center recipes only forward compatible, this kind of check makes sense to update them so they can
maintain compatibility with old versions of Conan.

Let’s have a look at a basic example of this:

Listing 19: conanfile.py

from conans import ConanFile, CMake, __version__ as conan_version
from conans.model.version import Version

class MyLibraryConan(ConanFile):
name = "mylibrary"
version = "1.0"

def build(self):
if conan_version < Version("0.29"):

cmake = CMake(self.settings)
else:

cmake = CMake(self)
...

Here it checks the Conan version to maintain compatibility of the CMake build helper for versions lower than Conan
0.29. It also uses the internal Version() class to perform the semver comparison in the if-clause.

You can also use it to take advantage of new features when the client is new enough, for example:

from conans import ConanFile, tools, __version__ as conan_version
from conans.model.version import Version

class MyPackage(ConanFile):
name = "package"
...

def package_id(self):
if conan_version >= Version("1.20"):

(continues on next page)

16.25. How to check the version of the Conan client inside a conanfile 345

https://curl.haxx.se/docs/manpage.html

Conan Documentation, Release 1.31.4

(continued from previous page)

if self.settings.compiler == "gcc" and self.settings.compiler.version == "4.9
→˓":

compatible_pkg = self.info.clone()
compatible_pkg.settings.compiler.version = "4.8"
self.compatible_packages.append(compatible_pkg)

It can be useful to introduce new features in your recipes while all the consumers update their client version. Together
with our stability commitment for Conan 1.x it should be easy to adopt new Conan versions while evolving your recipes.

16.26 Use a generic CI with Conan and Artifactory

Warning: Some problems regarding the use of BuildInfo with Conan packages have been reported. If the BuildInfo
contains artifacts that have the same checksum as other artifacts, this may result in losing the path of the artifact in
the BuildInfo in Artifactory and also fail in the promotion process.

We are currently working along with the Artifactory team to solve those problems. Until this issue gets fixed, we
do not recommend using BuildInfo’s for Conan.

16.26.1 Uploading the BuildInfo

If you are using Jenkins with Conan and Artifactory, along with the Jenkins Artifactory Plugin, any Conan package
downloaded or uploaded during your build will be automatically recorded in the BuildInfo json file, that will be auto-
matically uploaded to the specified Artifactory instance.

However, using the conan_build_info command, you can gather and upload that information using other CI infrastruc-
ture. There are two possible ways of using this commmand:

Extracting build-info from the Conan trace log

1. Before calling Conan the first time in your build, set the environment variable CONAN_TRACE_FILE to a file
path. The generated file will contain the BuildInfo json.

2. You also need to create the artifacts.properties file in your Conan home containing the build information. All
this properties will be automatically associated to all the published artifacts.

artifact_property_build.name=MyBuild
artifact_property_build.number=23
artifact_property_build.timestamp=1487676992

3. Call Conan as many times as you need. For example, if you are testing a Conan package and uploading it at the
end, you will run something similar to:

$ conan create . user/stable # Will retrieve the dependencies and create the package
$ conan upload mypackage/1.0@user/stable -r artifactory

4. Call the command conan_build_info passing the path to the generated Conan traces file and a parameter
--output to indicate the output file. You can also, delete the traces.log` file` otherwise while the CO-
NAN_TRACE_FILE is present, any Conan command will keep appending actions.

346 Chapter 16. Howtos

https://www.jfrog.com/jira/browse/RTFACT-9343
https://www.jfrog.com/confluence/display/JFROG/Jenkins+Artifactory+Plug-in
https://www.jfrog.com/confluence/display/JFROG/Build+Integration#BuildIntegration-BuildInfoJSON

Conan Documentation, Release 1.31.4

$ conan_build_info /tmp/traces.log --output /tmp/build_info.json
$ rm /tmp/traces.log

5. Edit the build_info.json file to append name (build name), number (build number) and the started (started date)
and any other field that you need according to the Build Info json format.

The started field has to be in the format: yyyy-MM-dd'T'HH:mm:ss.SSSZ

To edit the file you can import the json file using the programming language you are using in your framework,
groovy, java, python. . .

6. Push the json file to Artifactory, using the REST-API:

curl -X PUT -u<username>:<password> -H "Content-type: application/json" -T /tmp/build_
→˓info.json "http://host:8081/artifactory/api/build"

Generating build info from lockfiles information

Warning: This is an experimental feature subject to breaking changes in future releases.

To maintain compatibility with the current implementation of the conan_build_info command, this version must be
invoked using the argument --v2 before any subcommand.

1. To begin associating the build information to the uploaded packages the first thing is calling to the start sub-
command of conan_build_info. This will set the artifact_property_build.name and artifact_property_build.name
properties in the artifacts.properties.

$ conan_build_info --v2 start MyBuildName 42

2. Call Conan using lockfiles to create information for the Build Info json format.

$ cd mypackage
$ conan create . mypackage/1.0@user/stable # We create one package
$ cd .. && cd consumer
$ conan install . # Consumes mypackage, generates a lockfile
$ conan create . consumer/1.0@user/stable --lockfile conan.lock
$ conan upload "*" -c -r local # Upload all packages to local remotes

3. Create build information based on the contents of the generated conan.lock lockfile and the information retrieved
from the remote (the authentication is for the remote where you uploaded the packages).

$ conan_build_info --v2 create buildinfo.json --lockfile conan.lock --user admin --
→˓password password

4. Publish the build information to Artifactory with the publish subcommand:

Using user and password

$ conan_build_info --v2 publish buildinfo.json --url http://localhost:8081/artifactory --
→˓user admin --password password

or an API key:

16.26. Use a generic CI with Conan and Artifactory 347

https://github.com/jfrog/build-info
https://github.com/jfrog/build-info

Conan Documentation, Release 1.31.4

$ conan_build_info --v2 publish buildinfo.json --url http://localhost:8081/artifactory --
→˓apikey apikey

5. If the whole process has finished and you don’t want to continue associating the build number and build name to the
files uploaded to Artifactory then you can use the stop subcommand:

$ conan_build_info --v2 stop

It is also possible to merge different build info files using the update subcommand. This is useful in CI when many
slaves are generating different build info files.

$ conan_build_info --v2 update buildinfo1.json buildinfo2.json --output-file␣
→˓mergedbuildinfo.json

You can check the complete conan_build_info reference.

16.27 Compiler sanitizers

Sanitizers are tools that can detect bugs such as buffer overflows or accesses, dangling pointer or different types of
undefined behavior.

The two compilers that mainly support sanitizing options are gcc and clang. These options are passed to the compiler
as flags and, depending on if you are using clang or gcc, different sanitizers are supported.

Here we explain different options on how to model and use sanitizers with your Conan packages.

16.27.1 Adding custom settings

If you want to model the sanitizer options so that the package id is affected by them, you have to introduce new settings
in the settings.yml file (see Customizing settings section for more information).

Sanitizer options should be modeled as sub-settings of the compiler. Depending on how you want to combine the
sanitizers you have two choices.

Adding a list of commonly used values

If you have a fixed set of sanitizers or combinations of them that are the ones you usually set for your builds you can
add the sanitizers as a list of values. An example for apple-clang would be like this:

Listing 20: settings.yml

apple-clang:
version: ["5.0", "5.1", "6.0", "6.1", "7.0", "7.3", "8.0", "8.1",

"9.0", "9.1", "10.0", "11.0"]
libcxx: [libstdc++, libc++]
cppstd: [None, 98, gnu98, 11, gnu11, 14, gnu14, 17, gnu17, 20, gnu20]
sanitizer: [None, Address, Thread, Memory, UndefinedBehavior,␣

→˓AddressUndefinedBehavior]

Here you have modeled the use of -fsanitize=address, -fsanitize=thread, -fsanitize=memory,
-fsanitize=undefined and the combination of -fsanitize=address and -fsanitize=undefined. Note that
for example, for clang it is not possible to combine more than one of the -fsanitize=address, -fsanitize=thread,
and -fsanitize=memory checkers in the same program.

348 Chapter 16. Howtos

https://github.com/conan-io/examples/tree/master/features/lockfiles/ci
https://github.com/conan-io/examples/tree/master/features/lockfiles/ci
https://clang.llvm.org/docs/UsersManual.html#controlling-code-generation
https://gcc.gnu.org/onlinedocs/gcc/Instrumentation-Options.html

Conan Documentation, Release 1.31.4

Adding thread sanitizer for a conan install, in this case, could be done by calling conan install .. -s
compiler.sanitizer=Thread

Adding different values to combine

Another option would be to add the sanitizer values as multiple True or None fields so that they can be freely combined
later. An example of that for the previous sanitizer options would be as follows:

Listing 21: settings.yml

apple-clang:
version: ["5.0", "5.1", "6.0", "6.1", "7.0", "7.3", "8.0",

"8.1", "9.0", "9.1", "10.0", "11.0"]
libcxx: [libstdc++, libc++]
cppstd: [None, 98, gnu98, 11, gnu11, 14, gnu14, 17, gnu17, 20, gnu20]
address_sanitizer: [None, True]
thread_sanitizer: [None, True]
undefined_sanitizer: [None, True]

Then, you can add different sanitizers calling, for example, to conan install .. -s compiler.
address_sanitizer=True -s compiler.undefined_sanitizer=True

A drawback of this approach is that not all the combinations will be valid or will make sense, but it is up to the consumer
to use it correctly.

16.27.2 Passing the information to the compiler or build system

Here again, we have multiple choices to pass sanitizers information to the compiler or build system.

Using from custom profiles

It is possible to have different custom profiles defining the compiler sanitizer setting and environment variables to inject
that information to the compiler, and then passing those profiles to Conan commands. An example of this would be a
profile like:

Listing 22: address_sanitizer_profile

[settings]
os=Macos
os_build=Macos
arch=x86_64
arch_build=x86_64
compiler=apple-clang
compiler.version=10.0
compiler.libcxx=libc++
build_type=Release
compiler.sanitizer=Address
[env]
CXXFLAGS=-fsanitize=address
CFLAGS=-fsanitize=address

Then calling to conan create . -pr address_sanitizer_profile would inject -fsanitize=address to the
build through the CXXFLAGS environment variable.

16.27. Compiler sanitizers 349

Conan Documentation, Release 1.31.4

Managing sanitizer settings with the build system

Another option is to make use of the information that is propagated to the conan generator. For example, if we are
using CMake we could use the information from the CMakeLists.txt to append the flags to the compiler settings like
this:

Listing 23: CMakeLists.txt

cmake_minimum_required(VERSION 3.2)
project(SanitizerExample)
set (CMAKE_CXX_STANDARD 11)
include(${CMAKE_BINARY_DIR}/conanbuildinfo.cmake)
conan_basic_setup()
set(SANITIZER ${CONAN_SETTINGS_COMPILER_SANITIZER})
if(SANITIZER)

if(SANITIZER MATCHES "(Address)")
set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -fsanitize=address")
endif()

endif()
add_executable(sanit_example src/main.cpp)

The sanitizer setting is propagated to CMake as the CONAN_SETTINGS_COMPILER_SANITIZER variable with a value
equals to "Address" and we can set the behavior in CMake depending on the value of the variable.

Using conan Hooks to set compiler environment variables

Important: Take into account that the package ID doesn’t encode information about the environment, so different
binaries due to different CXX_FLAGS would be considered by Conan as the same package.

If you are not interested in modelling the settings in the Conan package you can use a Hook to modify the environment
variable and apply the sanitizer flags to the build. It could be something like:

Listing 24: sanitizer_hook.py

def set_sanitize_address_flag(self):
self._old_cxx_flags = os.environ.get("CXXFLAGS")
os.environ["SOURCE_DATE_EPOCH"] = _old_flags + " -fsanitize=address"

def reset_sanitize_address_flag(self):
if self._old_cxx_flags is None:

del os.environ["CXXFLAGS"]
else:

os.environ["CXXFLAGS"] = self._old_cxx_flags

And then calling those functions from a pre_build and a post_build hook:

Listing 25: sanitizer_hook.py

def pre_build(output, conanfile, **kwargs):
set_sanitize_address_flag()

(continues on next page)

350 Chapter 16. Howtos

Conan Documentation, Release 1.31.4

(continued from previous page)

def post_build(output, conanfile, **kwargs):
reset_sanitize_address_flag()

16.27. Compiler sanitizers 351

Conan Documentation, Release 1.31.4

352 Chapter 16. Howtos

CHAPTER

SEVENTEEN

REFERENCE

General information about the commands, configuration files, etc.

Contents:

17.1 Commands

17.1.1 Consumer commands

Commands related with the installation and usage of Conan packages:

conan install

$ conan install [-h] [-g GENERATOR] [-if INSTALL_FOLDER] [-m [MANIFESTS]]
[-mi [MANIFESTS_INTERACTIVE]] [-v [VERIFY]]
[--no-imports] [-j JSON] [-b [BUILD]] [-r REMOTE] [-u]
[-l [LOCKFILE]] [-e ENV_HOST] [-e:b ENV_BUILD]
[-e:h ENV_HOST] [-o OPTIONS_HOST] [-o:b OPTIONS_BUILD]
[-o:h OPTIONS_HOST] [-pr PROFILE_HOST]
[-pr:b PROFILE_BUILD] [-pr:h PROFILE_HOST]
[-s SETTINGS_HOST] [-s:b SETTINGS_BUILD]
[-s:h SETTINGS_HOST]
path_or_reference [reference]

Installs the requirements specified in a recipe (conanfile.py or conanfile.txt).

It can also be used to install a concrete package specifying a reference. If any requirement is not found in the local
cache, it will retrieve the recipe from a remote, looking for it sequentially in the configured remotes. When the recipes
have been downloaded it will try to download a binary package matching the specified settings, only from the remote
from which the recipe was retrieved. If no binary package is found, it can be built from sources using the ‘–build’
option. When the package is installed, Conan will write the files for the specified generators.

positional arguments:
path_or_reference Path to a folder containing a recipe (conanfile.py or

conanfile.txt) or to a recipe file. e.g.,
./my_project/conanfile.txt. It could also be a
reference

reference Reference for the conanfile path of the first
argument: user/channel, version@user/channel or

(continues on next page)

353

Conan Documentation, Release 1.31.4

(continued from previous page)

pkg/version@user/channel(if name or version declared
in conanfile.py, they should match)

optional arguments:
-h, --help show this help message and exit
-g GENERATOR, --generator GENERATOR

Generators to use
-if INSTALL_FOLDER, --install-folder INSTALL_FOLDER

Use this directory as the directory where to put the
generatorfiles. e.g., conaninfo/conanbuildinfo.txt

-m [MANIFESTS], --manifests [MANIFESTS]
Install dependencies manifests in folder for later
verify. Default folder is .conan_manifests, but can be
changed

-mi [MANIFESTS_INTERACTIVE], --manifests-interactive [MANIFESTS_INTERACTIVE]
Install dependencies manifests in folder for later
verify, asking user for confirmation. Default folder
is .conan_manifests, but can be changed

-v [VERIFY], --verify [VERIFY]
Verify dependencies manifests against stored ones

--no-imports Install specified packages but avoid running imports
-j JSON, --json JSON Path to a json file where the install information will

be written
-b [BUILD], --build [BUILD]

Optional, specify which packages to build from source.
Combining multiple '--build' options on one command
line is allowed. For dependencies, the optional
'build_policy' attribute in their conanfile.py takes
precedence over the command line parameter. Possible
parameters: --build Force build for all packages, do
not use binary packages. --build=never Disallow build
for all packages, use binary packages or fail if a
binary package is not found. Cannot be combined with
other '--build' options. --build=missing Build
packages from source whose binary package is not
found. --build=outdated Build packages from source
whose binary package was not generated from the latest
recipe or is not found. --build=cascade Build packages
from source that have at least one dependency being
built from source. --build=[pattern] Build packages
from source whose package reference matches the
pattern. The pattern uses 'fnmatch' style wildcards.
Default behavior: If you omit the '--build' option,
the 'build_policy' attribute in conanfile.py will be
used if it exists, otherwise the behavior is like '--
build=never'.

-r REMOTE, --remote REMOTE
Look in the specified remote server

-u, --update Will check the remote and in case a newer version
and/or revision of the dependencies exists there, it
will install those in the local cache. When using
version ranges, it will install the latest version

(continues on next page)

354 Chapter 17. Reference

Conan Documentation, Release 1.31.4

(continued from previous page)

that satisfies the range. Also, if using revisions, it
will update to the latest revision for the resolved
version range.

-l [LOCKFILE], --lockfile [LOCKFILE]
Path to a lockfile or folder containing 'conan.lock'
file. Lockfile can be updated if packages change

-e ENV_HOST, --env ENV_HOST
Environment variables that will be set during the
package build (host machine). e.g.: -e
CXX=/usr/bin/clang++

-e:b ENV_BUILD, --env:build ENV_BUILD
Environment variables that will be set during the
package build (build machine). e.g.: -e:b
CXX=/usr/bin/clang++

-e:h ENV_HOST, --env:host ENV_HOST
Environment variables that will be set during the
package build (host machine). e.g.: -e:h
CXX=/usr/bin/clang++

-o OPTIONS_HOST, --options OPTIONS_HOST
Define options values (host machine), e.g.: -o
Pkg:with_qt=true

-o:b OPTIONS_BUILD, --options:build OPTIONS_BUILD
Define options values (build machine), e.g.: -o:b
Pkg:with_qt=true

-o:h OPTIONS_HOST, --options:host OPTIONS_HOST
Define options values (host machine), e.g.: -o:h
Pkg:with_qt=true

-pr PROFILE_HOST, --profile PROFILE_HOST
Apply the specified profile to the host machine

-pr:b PROFILE_BUILD, --profile:build PROFILE_BUILD
Apply the specified profile to the build machine

-pr:h PROFILE_HOST, --profile:host PROFILE_HOST
Apply the specified profile to the host machine

-s SETTINGS_HOST, --settings SETTINGS_HOST
Settings to build the package, overwriting the
defaults (host machine). e.g.: -s compiler=gcc

-s:b SETTINGS_BUILD, --settings:build SETTINGS_BUILD
Settings to build the package, overwriting the
defaults (build machine). e.g.: -s:b compiler=gcc

-s:h SETTINGS_HOST, --settings:host SETTINGS_HOST
Settings to build the package, overwriting the
defaults (host machine). e.g.: -s:h compiler=gcc

conan install executes methods of a conanfile.py in the following order:

1. config_options()

2. configure()

3. requirements()

4. package_id()

5. package_info()

6. deploy()

17.1. Commands 355

Conan Documentation, Release 1.31.4

Note this describes the process of installing a pre-built binary package. If the package has to be built, conan install
--build executes the following:

1. config_options()

2. configure()

3. requirements()

4. package_id()

5. build_requirements()

6. build_id()

7. system_requirements()

8. source()

9. imports()

10. build()

11. package()

12. package_info()

13. deploy()

Examples

• Install a package requirement from a conanfile.txt, saved in your current directory with one option and setting
(other settings will be defaulted as defined in <userhome>/.conan/profiles/default):

$ conan install . -o pkg_name:use_debug_mode=on -s compiler=clang

• Install the requirements defined in a conanfile.py file in your current directory, with the default settings in
default profile <userhome>/.conan/profiles/default, and specifying the version, user and channel (as
they might be used in the recipe):

class Pkg(ConanFile):
name = "mypkg"
see, no version defined!
def requirements(self):

this trick allow to depend on packages on your same user/channel
self.requires("dep/0.3@%s/%s" % (self.user, self.channel))

def build(self):
if self.version == "myversion":

something specific for this version of the package.

$ conan install . myversion@someuser/somechannel

Those values are cached in a file, so later calls to local commands like conan build can find and use this version,
user and channel data.

• Install the opencv/4.1.1@conan/stable reference with its default options and default settings from <userhome>/
.conan/profiles/default:

$ conan install opencv/4.1.1@conan/stable

356 Chapter 17. Reference

Conan Documentation, Release 1.31.4

• Install the opencv/4.1.1@conan/stable reference updating the recipe and the binary package if new upstream
versions are available:

$ conan install opencv/4.1.1@conan/stable --update

build options

Both the conan install and create commands accept --build options to specify which packages to build from source.
Combining multiple --build options on one command line is allowed, where a package is built from source if at least
one of the given build options selects it for the build. For dependencies, the optional build_policy attribute in their
conanfile.py can override the behavior of the given command line parameters. Possible values are:

• --build: Always build everything from source. Produces a clean re-build of all packages. and transitively
dependent packages

• --build=never: Conan will not try to build packages when the requested configuration does not match, in
which case it will throw an error. This option can not be combined with other --build options.

• --build=missing: Conan will try to build packages from source whose binary package was not found in the
requested configuration on any of the active remotes or the cache.

• --build=outdated: Conan will try to build packages from source whose binary package was not built with
the current recipe or when missing the binary package.

• --build=cascade: Conan selects packages for the build where at least one of its dependencies is selected for
the build. This is useful to rebuild packages that, directly or indirectly, depend on changed packages.

• --build=[pattern]: A fnmatch case-sensitive pattern of a package reference or only the package name. Conan
will force the build of the packages whose reference matches the given pattern. Several patterns can be specified,
chaining multiple options:

– e.g., --build=pattern1 --build=pattern2 can be used to specify more than one pattern.

– e.g., --build=zlib will match any package named zlib (same as zlib/*).

– e.g., --build=z*@conan/stable will match any package starting with z with conan/stable as
user/channel.

If you omit the --build option, the build_policy attribute in conanfile.py will be looked up. If it is set to missing
or always, this build option will be used, otherwise the command will behave like --build=never was set.

env variables

With the -e parameters you can define:

• Global environment variables (-e SOME_VAR="SOME_VALUE"). These variables will be defined before the build
step in all the packages and will be cleaned after the build execution.

• Specific package environment variables (-e zlib:SOME_VAR="SOME_VALUE"). These variables will be defined
only in the specified packages (e.g., zlib).

You can specify this variables not only for your direct requires but for any package in the dependency graph.

If you want to define an environment variable but you want to append the variables declared in your requirements you
can use the [] syntax:

$ conan install . -e PATH=[/other/path]

17.1. Commands 357

Conan Documentation, Release 1.31.4

This way the first entry in the PATH variable will be /other/path but the PATH values declared in the requirements of the
project will be appended at the end using the system path separator.

settings

With the -s parameters you can define:

• Global settings (-s compiler="Visual Studio"). Will apply to all the requires.

• Specific package settings (-s zlib:compiler="MinGW"). Those settings will be applied only to the specified
packages. They accept patterns too, like -s *@myuser/*:compiler=MinGW, which means that packages that
have the username “myuser” will use MinGW as compiler.

You can specify custom settings not only for your direct requires but for any package in the dependency graph.

options

With the -o parameters you can only define specific package options.

$ conan install . -o zlib:shared=True
$ conan install . -o zlib:shared=True -o bzip2:option=132
you can also apply the same options to many packages with wildcards:
$ conan install . -o *:shared=True

Note: You can use profiles files to create predefined sets of settings, options and environment variables.

reference

An optional positional argument, if used the first argument should be a path. If the reference specifies name and/or
version, and they are also declared in the conanfile.py, they should match, otherwise, an error will be raised.

$ conan install . # OK, user and channel will be None
$ conan install . user/testing # OK
$ conan install . version@user/testing # OK
$ conan install . pkg/version@user/testing # OK
$ conan install pkg/version@user/testing user/channel # Error, first arg is not a path

Note: Installation of binaries can be accelerated setting up parallel downloads with the general.
parallel_download experimental configuration in conan.conf .

358 Chapter 17. Reference

Conan Documentation, Release 1.31.4

conan config

$ conan config [-h] {get,home,install,rm,set} ...

Manages Conan configuration.

Used to edit conan.conf, or install config files.

positional arguments:
{get,home,install,rm,set}

sub-command help
get Get the value of configuration item
home Retrieve the Conan home directory
install Install a full configuration from a local or remote

zip file
rm Remove an existing config element
set Set a value for a configuration item
init Initializes Conan configuration files

optional arguments:
-h, --help show this help message and exit

Examples

• Change the logging level to 10:

$ conan config set log.level=10

• Get the logging level:

$ conan config get log.level
$> 10

• Get the Conan home directory:

$ conan config home
$> /home/user/.conan

• Create all missing configuration files:

$ conan config init

• Delete the existing configuration files and create all configuration files:

$ conan config init --force

17.1. Commands 359

Conan Documentation, Release 1.31.4

conan config install

usage: conan config install [-h] [--verify-ssl [VERIFY_SSL]] [--type {git}]
[--args ARGS] [-sf SOURCE_FOLDER] [-tf TARGET_FOLDER]
[-l] [-r REMOVE]
[item]

positional arguments:
item git repository, local file or folder or zip file (local or

http) where the configuration is stored

optional arguments:
-h, --help show this help message and exit
--verify-ssl [VERIFY_SSL]

Verify SSL connection when downloading file
--type {git,dir,file,url}, -t {git,dir,file,url}

Type of remote config
--args ARGS, -a ARGS String with extra arguments for "git clone"
-sf SOURCE_FOLDER, --source-folder SOURCE_FOLDER

Install files only from a source subfolder from the
specified origin

-tf TARGET_FOLDER, --target-folder TARGET_FOLDER
Install to that path in the conan cache

-l, --list List stored configuration origins
-r REMOVE, --remove REMOVE

Remove configuration origin by index in list (index provided by -
→˓-list argument)

The config install is intended to share the Conan client configuration. For example, in a company or organization,
is important to have common settings.yml, profiles, etc.

It can install one specific file or get its configuration files from a local or remote zip file, from a local directory or from
a git repository. It then installs the files in the local Conan configuration.

The configuration may contain all or a subset of the allowed configuration files. Only the files that are present will be
replaced. The only exception is the conan.conf file for which only the variables declared will be installed, leaving the
other variables unchanged.

This means for example that profiles and hooks files will be overwritten if already present, but no profile or hook file
that the user has in the local machine will be deleted.

All the configuration files will be copied to the Conan home directory. These are the special files and the rules applied
to merge them:

File How it is applied
profiles/MyProfile Overrides the local ~/.conan/profiles/MyProfile if already exists
settings.yml Overrides the local ~/.conan/settings.yml
remotes.txt Overrides remotes. Will remove remotes that are not present in file
config/conan.conf Merges the variables, overriding only the declared variables
hooks/my_hook.py Overrides the local ~/.conan/hooks/my_hook.py if already exists

The file remotes.txt is the only file listed above which does not have a direct counterpart in the ~/.conan folder. Its
format is a list of entries, one on each line, with the form of

360 Chapter 17. Reference

Conan Documentation, Release 1.31.4

[remote name] [remote url] [bool]

where [bool] (either True or False) indicates whether SSL should be used to verify that remote. The remote defi-
nitions can be found in the remotes.json file and it provides a helpful starting point when writing the remotes.txt to be
packaged in a Conan client configuration.

Note: During the installation, Conan skips any file with the name README.md or LICENSE.txt.

The conan config install <item> calls are stored in a config_install.json file in the Conan local cache. That
allows to issue a conan config install command, without arguments, to iterate over the cached configurations,
executing them again (updating).

The conan config install can be periodically executed, before any command, when config_install_interval is
configured in conan.conf . Conan runs it based on config_install.json, including the timestamp of the last change.

Examples:

• Install the configuration from a URL:

$ conan config install http://url/to/some/config.zip

• Install the configuration from a URL, but only getting the files inside a origin folder inside the zip file, and putting
them inside a target folder in the local cache:

$ conan config install http://url/to/some/config.zip -sf=origin -tf=target

• Install configuration from 2 different zip files from 2 different urls, using different source and target folders for
each one, then update all:

$ conan config install http://url/to/some/config.zip -sf=origin -tf=target
$ conan config install http://url/to/some/config.zip -sf=origin2 -tf=target2
$ conan config install http://other/url/to/other.zip -sf=hooks -tf=hooks
Later on, execute again the previous configurations cached:
$ conan config install

It’s not needed to specify any argument, it will iterate previously stored configurations in config_install.json,
executing them again.

• Install the configuration from a Git repository with submodules:

$ conan config install http://github.com/user/conan_config/.git --args "--recursive"

You can also force the git download by using --type git (in case it is not deduced from the URL automatically):

$ conan config install http://github.com/user/conan_config/.git --type git

• Install from a URL skipping SSL verification:

$ conan config install http://url/to/some/config.zip --verify-ssl=False

This will disable the SSL check of the certificate.

• Install a specific file from a local path:

$ conan config install my_settings\settings.yml

17.1. Commands 361

Conan Documentation, Release 1.31.4

• Install the configuration from a local path:

$ conan config install /path/to/some/config.zip

• List all previously installed origins (the ones that will be used if conan config install is called without
args):

$ conan config install --list

This will display the list of stored origins, with their index inside the list.

• Remove one of the previously installed origins:

$ conan config install --remove=1

This will remove the element with index=1 (second element in the list) of the existing origins. This means that the next
conan config install manual or scheduled calls to this command will not use this origin anymore.

conan get

$ conan get [-h] [-p PACKAGE] [-r REMOTE] [-raw] reference [path]

Gets a file or list a directory of a given reference or package.

positional arguments:
reference Recipe reference or package reference e.g.,

'MyPackage/1.2@user/channel', 'MyPackage/1.2@user/chan
nel:af7901d8bdfde621d086181aa1c495c25a17b137'

path Path to the file or directory. If not specified will
get the conanfile if only a reference is specified and
a conaninfo.txt file contents if the package is also
specified

optional arguments:
-h, --help show this help message and exit
-p PACKAGE, --package PACKAGE

Package ID [DEPRECATED: use full reference instead]
-r REMOTE, --remote REMOTE

Get from this specific remote
-raw, --raw Do not decorate the text

Examples:

• Print the conanfile.py from a remote package:

$ conan get zlib/1.2.8@ -r conan-center

• List the files for a local package recipe:

$ conan get zlib/1.2.11@ .

Listing directory '.':
CMakeLists.txt
conanfile.py
conanmanifest.txt

362 Chapter 17. Reference

Conan Documentation, Release 1.31.4

• Print a file from a recipe folder:

$ conan get zlib/1.2.11@ conanmanifest.txt

• Print the conaninfo.txt file for a binary package:

$ conan get zlib/1.2.11@:2144f833c251030c3cfd61c4354ae0e38607a909

[settings]
arch=x86_64
build_type=Release
compiler=apple-clang
compiler.version=8.1
os=Macos

[requires]

[options]
...

• List the files from a binary package in a remote:

$ conan get zlib/1.2.11@:2144f833c251030c3cfd61c4354ae0e38607a909 . -r conan-center

Listing directory '.':
conan_package.tgz
conaninfo.txt
conanmanifest.txt

conan info

$ conan info [-h] [--paths] [-bo BUILD_ORDER] [-g GRAPH]
[-if INSTALL_FOLDER] [-j [JSON]] [-n ONLY]
[--package-filter [PACKAGE_FILTER]] [-db [DRY_BUILD]]
[-b [BUILD]] [-r REMOTE] [-u] [-l [LOCKFILE]] [-e ENV_HOST]
[-e:b ENV_BUILD] [-e:h ENV_HOST] [-o OPTIONS_HOST]
[-o:b OPTIONS_BUILD] [-o:h OPTIONS_HOST] [-pr PROFILE_HOST]
[-pr:b PROFILE_BUILD] [-pr:h PROFILE_HOST]
[-s SETTINGS_HOST] [-s:b SETTINGS_BUILD]
[-s:h SETTINGS_HOST]
path_or_reference

Gets information about the dependency graph of a recipe.

It can be used with a recipe or a reference for any existing package in your local cache.

positional arguments:
path_or_reference Path to a folder containing a recipe (conanfile.py or

conanfile.txt) or to a recipe file. e.g.,
./my_project/conanfile.txt. It could also be a
reference

(continues on next page)

17.1. Commands 363

Conan Documentation, Release 1.31.4

(continued from previous page)

optional arguments:
-h, --help show this help message and exit
--paths Show package paths in local cache
-bo BUILD_ORDER, --build-order BUILD_ORDER

given a modified reference, return an ordered list to
build (CI). [DEPRECATED: use 'conan lock build-order
...' instead]

-g GRAPH, --graph GRAPH
Creates file with project dependencies graph. It will
generate a DOT or HTML file depending on the filename
extension

-if INSTALL_FOLDER, --install-folder INSTALL_FOLDER
local folder containing the conaninfo.txt and
conanbuildinfo.txt files (from a previous conan
install execution). Defaulted to current folder,
unless --profile, -s or -o is specified. If you
specify both install-folder and any setting/option it
will raise an error.

-j [JSON], --json [JSON]
Path to a json file where the information will be
written

-n ONLY, --only ONLY Show only the specified fields: "id", "build_id",
"remote", "url", "license", "requires", "update",
"required", "date", "author", "description", "None". '
--paths' information can also be filtered with options
"export_folder", "build_folder", "package_folder",
"source_folder". Use '--only None' to show only
references.

--package-filter [PACKAGE_FILTER]
Print information only for packages that match the
filter pattern e.g., MyPackage/1.2@user/channel or
MyPackage*

-db [DRY_BUILD], --dry-build [DRY_BUILD]
Apply the --build argument to output the information,
as it would be done by the install command

-b [BUILD], --build [BUILD]
Given a build policy, return an ordered list of
packages that would be built from sources during the
install command

-r REMOTE, --remote REMOTE
Look in the specified remote server

-u, --update Will check if updates of the dependencies exist in the
remotes (a new version that satisfies a version range,
a new revision or a newer recipe if not using
revisions).

-l [LOCKFILE], --lockfile [LOCKFILE]
Path to a lockfile or folder containing 'conan.lock'
file. Lockfile can be updated if packages change

-e ENV_HOST, --env ENV_HOST
Environment variables that will be set during the
package build (host machine). e.g.: -e
CXX=/usr/bin/clang++

(continues on next page)

364 Chapter 17. Reference

Conan Documentation, Release 1.31.4

(continued from previous page)

-e:b ENV_BUILD, --env:build ENV_BUILD
Environment variables that will be set during the
package build (build machine). e.g.: -e:b
CXX=/usr/bin/clang++

-e:h ENV_HOST, --env:host ENV_HOST
Environment variables that will be set during the
package build (host machine). e.g.: -e:h
CXX=/usr/bin/clang++

-o OPTIONS_HOST, --options OPTIONS_HOST
Define options values (host machine), e.g.: -o
Pkg:with_qt=true

-o:b OPTIONS_BUILD, --options:build OPTIONS_BUILD
Define options values (build machine), e.g.: -o:b
Pkg:with_qt=true

-o:h OPTIONS_HOST, --options:host OPTIONS_HOST
Define options values (host machine), e.g.: -o:h
Pkg:with_qt=true

-pr PROFILE_HOST, --profile PROFILE_HOST
Apply the specified profile to the host machine

-pr:b PROFILE_BUILD, --profile:build PROFILE_BUILD
Apply the specified profile to the build machine

-pr:h PROFILE_HOST, --profile:host PROFILE_HOST
Apply the specified profile to the host machine

-s SETTINGS_HOST, --settings SETTINGS_HOST
Settings to build the package, overwriting the
defaults (host machine). e.g.: -s compiler=gcc

-s:b SETTINGS_BUILD, --settings:build SETTINGS_BUILD
Settings to build the package, overwriting the
defaults (build machine). e.g.: -s:b compiler=gcc

-s:h SETTINGS_HOST, --settings:host SETTINGS_HOST
Settings to build the package, overwriting the
defaults (host machine). e.g.: -s:h compiler=gcc

Examples:

$ conan info .
$ conan info myproject_folder
$ conan info myproject_folder/conanfile.py
$ conan info hello/1.0@user/channel

The output will look like:

Dependency/0.1@user/channel
ID: 5ab84d6acfe1f23c4fae0ab88f26e3a396351ac9
BuildID: None
Remote: None
URL: http://...
License: MIT
Description: A common dependency
Updates: Version not checked
Creation date: 2017-10-31 14:45:34
Required by:

(continues on next page)

17.1. Commands 365

Conan Documentation, Release 1.31.4

(continued from previous page)

hello/1.0@user/channel

hello/1.0@user/channel
ID: 5ab84d6acfe1f23c4fa5ab84d6acfe1f23c4fa8
BuildID: None
Remote: None
URL: http://...
License: MIT
Description: Hello World!
Updates: Version not checked
Required by:

Project
Requires:

hello0/0.1@user/channel

conan info builds the complete dependency graph, like conan install does. The main difference is that it doesn’t
try to install or build the binaries, but the package recipes will be retrieved from remotes if necessary.

It is very important to note, that the info command outputs the dependency graph for a given configuration (settings,
options), as the dependency graph can be different for different configurations. Then, the input to the conan info
command is the same as conan install, the configuration can be specified directly with settings and options, or
using profiles.

Also, if you did a previous conan install with a specific configuration, or maybe different installs with different
configurations, you can reuse that information with the --install-folder argument:

$ # dir with a conanfile.txt
$ mkdir build_release && cd build_release
$ conan install .. --profile=gcc54release
$ cd .. && mkdir build_debug && cd build_debug
$ conan install .. --profile=gcc54debug
$ cd ..
$ conan info . --install-folder=build_release
> info for the release dependency graph install
$ conan info . --install-folder=build_debug
> info for the debug dependency graph install

It is possible to use the conan info command to extract useful information for Continuous Integration systems. More
precisely, it has the --build-order, -bo option (deprecated in favor of conan lock build-order), that will produce a
machine-readable output with an ordered list of package references, in the order they should be built. E.g., let’s assume
that we have a project that depends on Boost and Poco, which in turn depends on OpenSSL and zlib transitively. So
we can query our project with a reference that has changed (most likely due to a git push on that package):

$ conan info . -bo zlib/1.2.11@
[zlib/1.2.11], [openssl/1.0.2u], [boost/1.71.0, poco/1.9.4]

Note the result is a list of lists. When there is more than one element in one of the lists, it means that they are decoupled
projects and they can be built in parallel by the CI system.

You can also specify the --build-order=ALL argument, if you want just to compute the whole dependency graph
build order

$ conan info . --build-order=ALL
> [zlib/1.2.11], [openssl/1.0.2u], [boost/1.71.0, poco/1.9.4]

366 Chapter 17. Reference

Conan Documentation, Release 1.31.4

Also you can get a list of nodes that would be built (simulation) in an install command specifying a build policy with
the --build parameter.

E.g., if I try to install boost/1.71.0 recipe with --build missing build policy and arch=x86, which libraries will
be built?

$ conan info boost/1.71.0@ --build missing -s arch=x86
bzip2/1.0.8, zlib/1.2.11, boost/1.71.0

You can generate a graph of your dependencies, in dot or html formats:

$ conan info .. --graph=file.html
$ file.html # or open the file, double-click

The generated html output contains links to third party resources, the vis.js library (2 files: vis.min.js, vis.min.css). By
default they are retrieved from cloudfare. However, for environments without internet connection, these files could be
also used from the local cache and installed with conan config install by putting those files in the root of the
configuration folder:

• vis.min.js: Default link to “https://cdnjs.cloudflare.com/ajax/libs/vis/4.18.1/vis.min.js”

• vis.min.css: Default link to “https://cdnjs.cloudflare.com/ajax/libs/vis/4.18.1/vis.min.css”

It is not necessary to modify the generated html file. Conan will automatically use the local paths to the cache files if
present, or the internet ones if not.

You can find where the package is installed in your cache by using the argument --paths:

$ conan info foobar/1.0.0@user/channel --paths

The output will look like:

foobar/1.0.0@user/channel
ID: 6af9cc7cb931c5ad942174fd7838eb655717c709
BuildID: None
export_folder: /home/conan/.conan/data/foobar/1.0.0/user/channel/export
source_folder: /home/conan/.conan/data/foobar/1.0.0/user/channel/source
build_folder: /home/conan/.conan/data/foobar/1.0.0/user/channel/build/

→˓6af9cc7cb931c5ad942174fd7838eb655717c709
package_folder: /home/conan/.conan/data/foobar/1.0.0/user/channel/package/

(continues on next page)

17.1. Commands 367

https://cdnjs.cloudflare.com/ajax/libs/vis/4.18.1/vis.min.js
https://cdnjs.cloudflare.com/ajax/libs/vis/4.18.1/vis.min.css

Conan Documentation, Release 1.31.4

(continued from previous page)

→˓6af9cc7cb931c5ad942174fd7838eb655717c709
Remote: None
License: MIT
Description: Foobar project
Author: Dummy
Topics: None
Recipe: Cache
Binary: Cache
Binary remote: None
Creation date: 2019-09-03 11:22:17

conan search

$ conan search [-h] [-o] [-q QUERY] [-r REMOTE] [--case-sensitive]
[--raw] [--table TABLE] [-j JSON] [-rev]
[pattern_or_reference]

Searches package recipes and binaries in the local cache or a remote. Unless a remote is specified only the local cache
is searched.

If you provide a pattern, then it will search for existing package recipes matching it. If a full reference is provided
(pkg/0.1@user/channel) then the existing binary packages for that reference will be displayed. The default remote is
ignored, if no remote is specified, the search will be done in the local cache. Search is case sensitive, the exact case has
to be used. For case insensitive file systems, like Windows, case sensitive search can be forced with ‘–case-sensitive’.

positional arguments:
pattern_or_reference Pattern or package recipe reference, e.g., 'boost/*',

'MyPackage/1.2@user/channel'

optional arguments:
-h, --help show this help message and exit
-o, --outdated Show only outdated from recipe packages. This flag can

only be used with a reference
-q QUERY, --query QUERY

Packages query: 'os=Windows AND (arch=x86 OR
compiler=gcc)'. The 'pattern_or_reference' parameter
has to be a reference: MyPackage/1.2@user/channel

-r REMOTE, --remote REMOTE
Remote to search in. '-r all' searches all remotes

--case-sensitive Make a case-sensitive search. Use it to guarantee
case-sensitive search in Windows or other case-
insensitive file systems

--raw Print just the list of recipes
--table TABLE Outputs html file with a table of binaries. Only valid

for a reference search
-j JSON, --json JSON json file path where the search information will be

written to
-rev, --revisions Get a list of revisions for a reference or a package

reference.

368 Chapter 17. Reference

mailto:pkg/0.1@user/channel

Conan Documentation, Release 1.31.4

Examples

$ conan search "zlib/*"
$ conan search "zlib/*" -r=conan-center

To search for recipes in all defined remotes use -r all (this is only valid for searching recipes, not binaries):

$ conan search "zlib/*" -r=all

If you use instead the full package recipe reference, you can explore the binaries existing for that recipe, also in a remote
or in the local conan cache:

$ conan search boost/1.71.0@

Query syntax

A query syntax is allowed to look for specific binaries, you can use AND and OR operators and parenthesis, with settings
and also options.

$ conan search boost/1.71.0@ -q arch=x86_64
$ conan search boost/1.71.0@ -q "(arch=x86_64 OR arch=ARM) AND (build_type=Release OR␣
→˓os=Windows)"

Query syntax allows sub-settings, even for custom ones. e.g:

$ conan search boost/1.71.0@ -q "compiler=gcc AND compiler.version=9"
$ conan search boost/1.71.0@ -q "os=Linux AND os.distro=Ubuntu AND os.distro.version=19.
→˓04"

If you specify a query filter for a setting and the package recipe is not restricted by this setting, Conan won’t find the
packages. e.g:

class MyRecipe(ConanFile):
name = "my_recipe"
settings = "arch",

$ conan search my_recipe/1.0@lasote/stable -q os=Windows

The query above won’t find the my_recipe binary packages (because the recipe doesn’t declare “os” as a setting) unless
you specify the None value:

$ conan search my_recipe/1.0@lasote/stable -q os=None

17.1. Commands 369

Conan Documentation, Release 1.31.4

Tabular output

You can generate a table for all binaries from a given recipe with the --table argument:

$ conan search jinja2cpp/1.1.0@ --table=file.html -r=conan-center
$ file.html # or open the file, double-click

Recipe and package revisions

Search all the local Conan packages matching a pattern and showing the revision:

$ conan search "lib*" --revisions
$ Existing package recipes:

lib/1.0@user/channel#404e86c18e4a47a166fabe70b3b15e33

Search the local revision for a local cache recipe:

$ conan search lib/1.0@conan/testing --revisions
$ Revisions for 'lib/1.0@conan/testing':

(continues on next page)

370 Chapter 17. Reference

Conan Documentation, Release 1.31.4

(continued from previous page)

a55e3b054fdbf4e2c6f10e955da69502 (2019-03-05 16:37:27 UTC)

Search the remote revisions in a server:

$ conan search lib/1.0@conan/testing --revisions -r=myremote
Revisions for 'lib/1.0@conan/testing' at remote 'myremote':
78fcef25a1eaeecd5facbbf08624c561 (2019-03-05 16:37:27 UTC)
f3367e0e7d170aa12abccb175fee5f97 (2019-03-05 16:37:27 UTC)

17.1.2 Creator commands

Commands related to the creation of Conan recipes and packages:

conan create

$ conan create [-h] [-j JSON] [-k] [-kb] [-ne] [-tbf TEST_BUILD_FOLDER]
[-tf TEST_FOLDER] [--ignore-dirty] [-m [MANIFESTS]]
[-mi [MANIFESTS_INTERACTIVE]] [-v [VERIFY]] [-b [BUILD]]
[-r REMOTE] [-u] [-l [LOCKFILE]] [-e ENV_HOST]
[-e:b ENV_BUILD] [-e:h ENV_HOST] [-o OPTIONS_HOST]
[-o:b OPTIONS_BUILD] [-o:h OPTIONS_HOST]
[-pr PROFILE_HOST] [-pr:b PROFILE_BUILD]
[-pr:h PROFILE_HOST] [-s SETTINGS_HOST]
[-s:b SETTINGS_BUILD] [-s:h SETTINGS_HOST]
path [reference]

Builds a binary package for a recipe (conanfile.py).

Uses the specified configuration in a profile or in -s settings, -o options, etc. If a ‘test_package’ folder (the name can be
configured with -tf) is found, the command will run the consumer project to ensure that the package has been created
correctly. Check ‘conan test’ command to know more about ‘test_folder’ project.

positional arguments:
path Path to a folder containing a conanfile.py or to a

recipe file e.g., my_folder/conanfile.py
reference user/channel, version@user/channel or

pkg/version@user/channel (if name or version declared
in conanfile.py, they should match)

optional arguments:
-h, --help show this help message and exit
-j JSON, --json JSON json file path where the install information will be

written to
-k, -ks, --keep-source

Do not remove the source folder in the local cache,
even if the recipe changed. Use this for testing
purposes only

-kb, --keep-build Do not remove the build folder in local cache. Implies
--keep-source. Use this for testing purposes only

-ne, --not-export Do not export the conanfile.py
-tbf TEST_BUILD_FOLDER, --test-build-folder TEST_BUILD_FOLDER

(continues on next page)

17.1. Commands 371

Conan Documentation, Release 1.31.4

(continued from previous page)

Working directory for the build of the test project.
-tf TEST_FOLDER, --test-folder TEST_FOLDER

Alternative test folder name. By default it is
"test_package". Use "None" to skip the test stage

--ignore-dirty When using the "scm" feature with "auto" values,
capture the revision and url even if there are
uncommitted changes

-m [MANIFESTS], --manifests [MANIFESTS]
Install dependencies manifests in folder for later
verify. Default folder is .conan_manifests, but can be
changed

-mi [MANIFESTS_INTERACTIVE], --manifests-interactive [MANIFESTS_INTERACTIVE]
Install dependencies manifests in folder for later
verify, asking user for confirmation. Default folder
is .conan_manifests, but can be changed

-v [VERIFY], --verify [VERIFY]
Verify dependencies manifests against stored ones

-b [BUILD], --build [BUILD]
Optional, specify which packages to build from source.
Combining multiple '--build' options on one command
line is allowed. For dependencies, the optional
'build_policy' attribute in their conanfile.py takes
precedence over the command line parameter. Possible
parameters: --build Force build for all packages, do
not use binary packages. --build=never Disallow build
for all packages, use binary packages or fail if a
binary package is not found. Cannot be combined with
other '--build' options. --build=missing Build
packages from source whose binary package is not
found. --build=outdated Build packages from source
whose binary package was not generated from the latest
recipe or is not found. --build=cascade Build packages
from source that have at least one dependency being
built from source. --build=[pattern] Build packages
from source whose package reference matches the
pattern. The pattern uses 'fnmatch' style wildcards.
Default behavior: If you omit the '--build' option,
the 'build_policy' attribute in conanfile.py will be
used if it exists, otherwise the behavior is like '--
build=package name'.

-r REMOTE, --remote REMOTE
Look in the specified remote server

-u, --update Will check the remote and in case a newer version
and/or revision of the dependencies exists there, it
will install those in the local cache. When using
version ranges, it will install the latest version
that satisfies the range. Also, if using revisions, it
will update to the latest revision for the resolved
version range.

-l [LOCKFILE], --lockfile [LOCKFILE]
Path to a lockfile or folder containing 'conan.lock'
file. Lockfile can be updated if packages change

(continues on next page)

372 Chapter 17. Reference

Conan Documentation, Release 1.31.4

(continued from previous page)

-e ENV_HOST, --env ENV_HOST
Environment variables that will be set during the
package build (host machine). e.g.: -e
CXX=/usr/bin/clang++

-e:b ENV_BUILD, --env:build ENV_BUILD
Environment variables that will be set during the
package build (build machine). e.g.: -e:b
CXX=/usr/bin/clang++

-e:h ENV_HOST, --env:host ENV_HOST
Environment variables that will be set during the
package build (host machine). e.g.: -e:h
CXX=/usr/bin/clang++

-o OPTIONS_HOST, --options OPTIONS_HOST
Define options values (host machine), e.g.: -o
Pkg:with_qt=true

-o:b OPTIONS_BUILD, --options:build OPTIONS_BUILD
Define options values (build machine), e.g.: -o:b
Pkg:with_qt=true

-o:h OPTIONS_HOST, --options:host OPTIONS_HOST
Define options values (host machine), e.g.: -o:h
Pkg:with_qt=true

-pr PROFILE_HOST, --profile PROFILE_HOST
Apply the specified profile to the host machine

-pr:b PROFILE_BUILD, --profile:build PROFILE_BUILD
Apply the specified profile to the build machine

-pr:h PROFILE_HOST, --profile:host PROFILE_HOST
Apply the specified profile to the host machine

-s SETTINGS_HOST, --settings SETTINGS_HOST
Settings to build the package, overwriting the
defaults (host machine). e.g.: -s compiler=gcc

-s:b SETTINGS_BUILD, --settings:build SETTINGS_BUILD
Settings to build the package, overwriting the
defaults (build machine). e.g.: -s:b compiler=gcc

-s:h SETTINGS_HOST, --settings:host SETTINGS_HOST
Settings to build the package, overwriting the
defaults (host machine). e.g.: -s:h compiler=gcc

conan create . demo/testing is equivalent to:

$ conan export . demo/testing
$ conan install hello/0.1@demo/testing --build=hello
package is created now, use test to test it
$ cd test_package
$ conan test . hello/0.1@demo/testing

Tip: Sometimes you need to skip/disable test stage to avoid a failure while creating the package, i.e: when you are
cross compiling libraries and target code cannot be executed in current host platform. In that case you can skip/disable
the test package stage:

$ conan create . demo/testing --test-folder=None

17.1. Commands 373

Conan Documentation, Release 1.31.4

conan create executes methods of a conanfile.py in the following order:

1. config_options()

2. configure()

3. requirements()

4. package_id()

5. build_requirements()

6. build_id()

7. system_requirements()

8. source()

9. imports()

10. build()

11. package()

12. package_info()

In case of installing a pre-built binary, steps from 5 to 11 will be skipped. Note that deploy() method is only used in
conan install.

Note: Installation of binaries can be accelerated setting up parallel downloads with the general.
parallel_download experimental configuration in conan.conf .

conan export

$ conan export [-h] [-k] [-l [LOCKFILE]] [--ignore-dirty]
path [reference]

Copies the recipe (conanfile.py & associated files) to your local cache.

Use the ‘reference’ param to specify a user and channel where to export it. Once the recipe is in the local cache it can
be shared, reused and to any remote with the ‘conan upload’ command.

positional arguments:
path Path to a folder containing a conanfile.py or to a

recipe file e.g., my_folder/conanfile.py
reference user/channel, Pkg/version@user/channel (if name and

version are not declared in the conanfile.py) or
Pkg/version@ if user/channel is not relevant.

optional arguments:
-h, --help show this help message and exit
-k, -ks, --keep-source

Do not remove the source folder in the local cache,
even if the recipe changed. Use this for testing
purposes only

-l [LOCKFILE], --lockfile [LOCKFILE]
Path to a lockfile or folder containing 'conan.lock'
file. Lockfile will be updated with the exported

(continues on next page)

374 Chapter 17. Reference

Conan Documentation, Release 1.31.4

(continued from previous page)

package
--ignore-dirty When using the "scm" feature with "auto" values,

capture the revision and url even if there are
uncommitted changes

The reference field can be:

• A complete package reference: pkg/version@user/channel. In this case, the recipe doesn’t need to declare
the name or the version. If the recipe declares them, they should match the provided values in the command line.

• The user and channel: user/channel. The command will assume that the name and version are provided by
the recipe.

• The version, user and channel: version@user/channel. The recipe must provide the name, and if it does
provide the version, it should match the command line one.

There is also a “recipe_linter” hook in the official hooks repository that can be activated to run automatic linter checks
on the recipes when they are exported.

Examples

• Export a recipe using a full reference. Only valid if name and version are not declared in the recipe:

$ conan export . mylib/1.0@myuser/channel

• Same as above, but without any user/channel. The ending @ is here to disambiguate from the user/channel
part:

$ conan export . mylib/1.0@

• Export a recipe from any folder directory, under the myuser/stable user and channel:

$ conan export ./folder_name myuser/stable

• Export a recipe without removing the source folder in the local cache:

$ conan export . fenix/stable -k

conan export-pkg

$ conan export-pkg [-h] [-bf BUILD_FOLDER] [-f] [-if INSTALL_FOLDER]
[-pf PACKAGE_FOLDER] [-sf SOURCE_FOLDER] [-j JSON]
[-l [LOCKFILE]] [--ignore-dirty] [-e ENV_HOST]
[-e:b ENV_BUILD] [-e:h ENV_HOST] [-o OPTIONS_HOST]
[-o:b OPTIONS_BUILD] [-o:h OPTIONS_HOST]
[-pr PROFILE_HOST] [-pr:b PROFILE_BUILD]
[-pr:h PROFILE_HOST] [-s SETTINGS_HOST]
[-s:b SETTINGS_BUILD] [-s:h SETTINGS_HOST]
path [reference]

Exports a recipe, then creates a package from local source and build folders.

If ‘–package-folder’ is provided it will copy the files from there, otherwise, it will execute package() method over
‘–source-folder’ and ‘–build-folder’ to create the binary package.

17.1. Commands 375

https://github.com/conan-io/hooks

Conan Documentation, Release 1.31.4

positional arguments:
path Path to a folder containing a conanfile.py or to a

recipe file e.g., my_folder/conanfile.py
reference user/channel or pkg/version@user/channel (if name and

version are not declared in the conanfile.py)

optional arguments:
-h, --help show this help message and exit
-bf BUILD_FOLDER, --build-folder BUILD_FOLDER

Directory for the build process. Defaulted to the
current directory. A relative path to the current
directory can also be specified

-f, --force Overwrite existing package if existing
-if INSTALL_FOLDER, --install-folder INSTALL_FOLDER

Directory containing the conaninfo.txt and
conanbuildinfo.txt files (from previous 'conan
install'). Defaulted to --build-folder If these files
are found in the specified folder and any of '-e',
'-o', '-pr' or '-s' arguments are used, it will raise
an error.

-pf PACKAGE_FOLDER, --package-folder PACKAGE_FOLDER
folder containing a locally created package. If a
value is given, it won't call the recipe 'package()'
method, and will run a copy of the provided folder.

-sf SOURCE_FOLDER, --source-folder SOURCE_FOLDER
Directory containing the sources. Defaulted to the
conanfile's directory. A relative path to the current
directory can also be specified

-j JSON, --json JSON Path to a json file where the install information will
be written

-l [LOCKFILE], --lockfile [LOCKFILE]
Path to a lockfile or folder containing 'conan.lock'
file. Lockfile will be updated with the exported
package

--ignore-dirty When using the "scm" feature with "auto" values,
capture the revision and url even if there are
uncommitted changes

-e ENV_HOST, --env ENV_HOST
Environment variables that will be set during the
package build (host machine). e.g.: -e
CXX=/usr/bin/clang++

-e:b ENV_BUILD, --env:build ENV_BUILD
Environment variables that will be set during the
package build (build machine). e.g.: -e:b
CXX=/usr/bin/clang++

-e:h ENV_HOST, --env:host ENV_HOST
Environment variables that will be set during the
package build (host machine). e.g.: -e:h
CXX=/usr/bin/clang++

-o OPTIONS_HOST, --options OPTIONS_HOST
Define options values (host machine), e.g.: -o
Pkg:with_qt=true

-o:b OPTIONS_BUILD, --options:build OPTIONS_BUILD
(continues on next page)

376 Chapter 17. Reference

Conan Documentation, Release 1.31.4

(continued from previous page)

Define options values (build machine), e.g.: -o:b
Pkg:with_qt=true

-o:h OPTIONS_HOST, --options:host OPTIONS_HOST
Define options values (host machine), e.g.: -o:h
Pkg:with_qt=true

-pr PROFILE_HOST, --profile PROFILE_HOST
Apply the specified profile to the host machine

-pr:b PROFILE_BUILD, --profile:build PROFILE_BUILD
Apply the specified profile to the build machine

-pr:h PROFILE_HOST, --profile:host PROFILE_HOST
Apply the specified profile to the host machine

-s SETTINGS_HOST, --settings SETTINGS_HOST
Settings to build the package, overwriting the
defaults (host machine). e.g.: -s compiler=gcc

-s:b SETTINGS_BUILD, --settings:build SETTINGS_BUILD
Settings to build the package, overwriting the
defaults (build machine). e.g.: -s:b compiler=gcc

-s:h SETTINGS_HOST, --settings:host SETTINGS_HOST
Settings to build the package, overwriting the
defaults (host machine). e.g.: -s:h compiler=gcc

The export-pkg command let you create a package from already existing files in your working folder, it can be useful
if you are using a build process external to Conan and do not want to provide it with the recipe. Nevertheless, you
should take into account that it will generate a package and Conan won’t be able to guarantee its reproducibility or
regenerate it again. This is not the normal or recommended flow for creating Conan packages.

Execution of this command will result in several files copied to the package folder in the cache identified by its
package_id (Conan will perform all the required actions to compute this _id_: build the graph, evaluate the re-
quirements and options, and call any required method), but there could be two different sources for the files:

• If the argument --package-folder is provided, Conan will just copy all the contents of that folder to the
package one in the cache.

• If no --package-folder is given, Conan will execute the method package() once and the self.copy(...)
functions will copy matching files from the source_folder and build_folder to the corresponding path in
the Conan cache (working directory corresponds to the build_folder).

• If the arguments --package-folder, `--build-folder or --source-folder are declared, but the path is
incorrect, export-pkg will raise an exception.

There are different scenarios where this command could look like useful:

• You are working locally on a package and you want to upload it to the cache to be able to consume it from other
recipes. In this situation you can use the export-pkg command to copy the package to the cache, but you could
also put the package in editable mode and avoid this extra step.

• You only have precompiled binaries available, then you can use the export-pkg to create the Conan package,
or you can build a working recipe to download and package them. These scenarios are described in the docu-
mentation section How to package existing binaries.

Note: Note that if --profile, settings or options are not provided to export-pkg, the configuration will be extracted
from the information stored after a previous conan install. That information might be incomplete in some edge
cases, so we strongly recommend the usage of --profile or --settings, --options, etc.

Examples

17.1. Commands 377

Conan Documentation, Release 1.31.4

• Create a package from a directory containing the binaries for Windows/x86/Release:

We need to collect all the files from the local filesystem and tell Conan to compute the proper package_id so
its get associated with the correct settings and it works when consuming it.

If the files in the working folder are:

Release_x86/lib/libmycoollib.a
Release_x86/lib/other.a
Release_x86/include/mylib.h
Release_x86/include/other.h

then, just run:

$ conan new hello/0.1 --bare # It creates a minimum recipe example
$ conan export-pkg . hello/0.1@user/stable -s os=Windows -s arch=x86 -s build_
→˓type=Release --package-folder=Release_x86

This last command will copy all the contents from the package-folder and create the package associated with
the settings provided through the command line.

• Create a package from a source and build folder:

The objective is to collect the files that will be part of the package from the source folder (include files) and from
the build folder (libraries), so, if these are the files in the working folder:

sources/include/mylib.h
sources/src/file.cpp
build/lib/mylib.lib
build/lib/mylib.tmp
build/file.obj

we would need a slightly more complicated conanfile.py than in the previous example to select which files to
copy, we need to change the patterns in the package() method:

def package(self):
self.copy("*.h", dst="include", src="include")
self.copy("*.lib", dst="lib", keep_path=False)

Now, we can run Conan to create the package:

$ conan export-pkg . hello/0.1@user/stable -pr:host=myprofile --source-
→˓folder=sources --build-folder=build

conan new

$ conan new [-h] [-t] [-i] [-c] [-s] [-b] [-m TEMPLATE] [-cis] [-cilg]
[-cilc] [-cio] [-ciw] [-ciglg] [-ciglc] [-ciccg] [-ciccc]
[-cicco] [-gi] [-ciu CI_UPLOAD_URL]
name

Creates a new package recipe template with a ‘conanfile.py’ and optionally, ‘test_package’ testing files.

positional arguments:
name Package name, e.g.: "poco/1.9.4" or complete reference

(continues on next page)

378 Chapter 17. Reference

Conan Documentation, Release 1.31.4

(continued from previous page)

for CI scripts: "poco/1.9.4@user/channel"

optional arguments:
-h, --help show this help message and exit
-t, --test Create test_package skeleton to test package
-i, --header Create a headers only package template
-c, --pure-c Create a C language package only package, deleting

"self.settings.compiler.libcxx" setting in the
configure method

-s, --sources Create a package with embedded sources in "src"
folder, using "exports_sources" instead of retrieving
external code with the "source()" method

-b, --bare Create the minimum package recipe, without build()
method. Useful in combination with "export-pkg"
command

-m TEMPLATE, --template TEMPLATE
Use the given template from the local cache for
conanfile.py

-cis, --ci-shared Package will have a "shared" option to be used in CI
-cilg, --ci-travis-gcc

Generate travis-ci files for linux gcc
-cilc, --ci-travis-clang

Generate travis-ci files for linux clang
-cio, --ci-travis-osx

Generate travis-ci files for OSX apple-clang
-ciw, --ci-appveyor-win

Generate appveyor files for Appveyor Visual Studio
-ciglg, --ci-gitlab-gcc

Generate GitLab files for linux gcc
-ciglc, --ci-gitlab-clang

Generate GitLab files for linux clang
-ciccg, --ci-circleci-gcc

Generate CircleCI files for linux gcc
-ciccc, --ci-circleci-clang

Generate CircleCI files for linux clang
-cicco, --ci-circleci-osx

Generate CircleCI files for OSX apple-clang
-gi, --gitignore Generate a .gitignore with the known patterns to

excluded
-ciu CI_UPLOAD_URL, --ci-upload-url CI_UPLOAD_URL

Define URL of the repository to upload

Examples:

• Create a new conanfile.py for a new package mypackage/1.0@myuser/stable

$ conan new mypackage/1.0

• Create also a test_package folder skeleton:

$ conan new mypackage/1.0 -t

• Create files for travis (both Linux and OSX) and appveyor Continuous Integration:

17.1. Commands 379

Conan Documentation, Release 1.31.4

$ conan new mypackage/1.0@myuser/stable -t -cilg -cio -ciw

• Create files for gitlab (linux) Continuous integration and set upload conan server:

$ conan new mypackage/1.0@myuser/stable -t -ciglg -ciglc -ciu https://api.bintray.
→˓com/conan/myuser/myrepo

• Create files from a custom, predefined, user template recipe or template directory:

$ conan new mypackage/1.0 --template=myconanfile.py # Single template file
$ conan new mypackage/1.0 --template=header_only # Template directory

Refer to the section Package scaffolding for conan new command for more information about these templates.

conan upload

$ conan upload [-h] [-p PACKAGE] [-q QUERY] [-r REMOTE] [--all]
[--skip-upload] [--force] [--check] [-c] [--retry RETRY]
[--retry-wait RETRY_WAIT] [-no [{all,recipe}]] [-j JSON]
[--parallel]
pattern_or_reference

Uploads a recipe and binary packages to a remote.

If no remote is specified, the first configured remote (by default conan-center, use ‘conan remote list’ to list the remotes)
will be used.

positional arguments:
pattern_or_reference Pattern, recipe reference or package reference e.g.,

'boost/*', 'MyPackage/1.2@user/channel', 'MyPackage/1.
2@user/channel:af7901d8bdfde621d086181aa1c495c25a17b13
7'

optional arguments:
-h, --help show this help message and exit
-p PACKAGE, --package PACKAGE

Package ID [DEPRECATED: use full reference instead]
-q QUERY, --query QUERY

Only upload packages matching a specific query.
Packages query: 'os=Windows AND (arch=x86 OR
compiler=gcc)'. The 'pattern_or_reference' parameter
has to be a reference: MyPackage/1.2@user/channel

-r REMOTE, --remote REMOTE
upload to this specific remote

--all Upload both package recipe and packages
--skip-upload Do not upload anything, just run the checks and the

compression
--force Ignore checks before uploading the recipe: it will

bypass missing fields in the scm attribute and it will
override remote recipe with local regardless of recipe
date

--check Perform an integrity check, using the manifests,
before upload

(continues on next page)

380 Chapter 17. Reference

Conan Documentation, Release 1.31.4

(continued from previous page)

-c, --confirm Upload all matching recipes without confirmation
--retry RETRY In case of fail retries to upload again the specified

times.
--retry-wait RETRY_WAIT

Waits specified seconds before retry again
-no [{all,recipe}], --no-overwrite [{all,recipe}]

Uploads package only if recipe is the same as the
remote one

-j JSON, --json JSON json file path where the upload information will be
written to

--parallel Upload files in parallel using multiple threads. The
default number of launched threads is set to the value
of cpu_count and can be configured using the
CONAN_CPU_COUNT environment variable or defining
cpu_count in conan.conf

Examples:

Uploads a package recipe (conanfile.py and the exported files):

$ conan upload OpenCV/1.4.0@lasote/stable

Uploads a package recipe and a single binary package:

$ conan upload OpenCV/1.4.0@lasote/stable:d50a0d523d98c15bb147b18fa7d203887c38be8b

Uploads a package recipe and all the generated binary packages to a specified remote:

$ conan upload OpenCV/1.4.0@lasote/stable --all -r my_remote

Uploads all recipes and binary packages from our local cache to my_remote without confirmation:

$ conan upload "*" --all -r my_remote -c

Uploads the recipe for OpenCV alongside any of its binary packages which are built with settings arch=x86_64 and
os=Linux from our local cache to my_remote:

$ conan upload OpenCV/1.4.0@lasote/stable -q 'arch=x86_64 and os=Linux' -r my_remote

Upload all local packages and recipes beginning with “Op” retrying 3 times and waiting 10 seconds between upload
attempts:

$ conan upload "Op*" --all -r my_remote -c --retry 3 --retry-wait 10

Upload packages without overwriting the recipe and packages if the recipe has changed:

$ conan upload OpenCV/1.4.0@lasote/stable --all --no-overwrite # defaults to --no-
→˓overwrite all

Upload packages without overwriting the recipe if the packages have changed:

$ conan upload OpenCV/1.4.0@lasote/stable --all --no-overwrite recipe

17.1. Commands 381

Conan Documentation, Release 1.31.4

Upload packages using multiple threads without requiring confirmation to my_remote. By default, the number of
threads used is the number of cores available in the machine running Conan. It can also be configured setting the
environment variable CONAN_CPU_COUNT or defining cpu_count in the conan.conf .

$ conan upload "*" --confirm --parallel -r my_remote

Warning: Note that non_interactive mode will be forced to true when using parallel upload

conan test

$ conan test [-h] [-tbf TEST_BUILD_FOLDER] [-b [BUILD]] [-r REMOTE] [-u]
[-l [LOCKFILE]] [-e ENV_HOST] [-e:b ENV_BUILD]
[-e:h ENV_HOST] [-o OPTIONS_HOST] [-o:b OPTIONS_BUILD]
[-o:h OPTIONS_HOST] [-pr PROFILE_HOST] [-pr:b PROFILE_BUILD]
[-pr:h PROFILE_HOST] [-s SETTINGS_HOST]
[-s:b SETTINGS_BUILD] [-s:h SETTINGS_HOST]
path reference

Tests a package consuming it from a conanfile.py with a test() method.

This command installs the conanfile dependencies (including the tested package), calls a ‘conan build’ to build test
apps and finally executes the test() method. The testing recipe does not require name or version, neither definition of
package() or package_info() methods. The package to be tested must exist in the local cache or any configured remote.

positional arguments:
path Path to the "testing" folder containing a conanfile.py

or to a recipe file with test() methode.g. conan
test_package/conanfile.py pkg/version@user/channel

reference pkg/version@user/channel of the package to be tested

optional arguments:
-h, --help show this help message and exit
-tbf TEST_BUILD_FOLDER, --test-build-folder TEST_BUILD_FOLDER

Working directory of the build process.
-b [BUILD], --build [BUILD]

Optional, specify which packages to build from source.
Combining multiple '--build' options on one command
line is allowed. For dependencies, the optional
'build_policy' attribute in their conanfile.py takes
precedence over the command line parameter. Possible
parameters: --build Force build for all packages, do
not use binary packages. --build=never Disallow build
for all packages, use binary packages or fail if a
binary package is not found. Cannot be combined with
other '--build' options. --build=missing Build
packages from source whose binary package is not
found. --build=outdated Build packages from source
whose binary package was not generated from the latest
recipe or is not found. --build=cascade Build packages
from source that have at least one dependency being
built from source. --build=[pattern] Build packages

(continues on next page)

382 Chapter 17. Reference

Conan Documentation, Release 1.31.4

(continued from previous page)

from source whose package reference matches the
pattern. The pattern uses 'fnmatch' style wildcards.
Default behavior: If you omit the '--build' option,
the 'build_policy' attribute in conanfile.py will be
used if it exists, otherwise the behavior is like '--
build=never'.

-r REMOTE, --remote REMOTE
Look in the specified remote server

-u, --update Will check the remote and in case a newer version
and/or revision of the dependencies exists there, it
will install those in the local cache. When using
version ranges, it will install the latest version
that satisfies the range. Also, if using revisions, it
will update to the latest revision for the resolved
version range.

-l [LOCKFILE], --lockfile [LOCKFILE]
Path to a lockfile or folder containing 'conan.lock'
file. Lockfile can be updated if packages change

-e ENV_HOST, --env ENV_HOST
Environment variables that will be set during the
package build (host machine). e.g.: -e
CXX=/usr/bin/clang++

-e:b ENV_BUILD, --env:build ENV_BUILD
Environment variables that will be set during the
package build (build machine). e.g.: -e:b
CXX=/usr/bin/clang++

-e:h ENV_HOST, --env:host ENV_HOST
Environment variables that will be set during the
package build (host machine). e.g.: -e:h
CXX=/usr/bin/clang++

-o OPTIONS_HOST, --options OPTIONS_HOST
Define options values (host machine), e.g.: -o
Pkg:with_qt=true

-o:b OPTIONS_BUILD, --options:build OPTIONS_BUILD
Define options values (build machine), e.g.: -o:b
Pkg:with_qt=true

-o:h OPTIONS_HOST, --options:host OPTIONS_HOST
Define options values (host machine), e.g.: -o:h
Pkg:with_qt=true

-pr PROFILE_HOST, --profile PROFILE_HOST
Apply the specified profile to the host machine

-pr:b PROFILE_BUILD, --profile:build PROFILE_BUILD
Apply the specified profile to the build machine

-pr:h PROFILE_HOST, --profile:host PROFILE_HOST
Apply the specified profile to the host machine

-s SETTINGS_HOST, --settings SETTINGS_HOST
Settings to build the package, overwriting the
defaults (host machine). e.g.: -s compiler=gcc

-s:b SETTINGS_BUILD, --settings:build SETTINGS_BUILD
Settings to build the package, overwriting the
defaults (build machine). e.g.: -s:b compiler=gcc

-s:h SETTINGS_HOST, --settings:host SETTINGS_HOST

(continues on next page)

17.1. Commands 383

Conan Documentation, Release 1.31.4

(continued from previous page)

Settings to build the package, overwriting the
defaults (host machine). e.g.: -s:h compiler=gcc

This command is util for testing existing packages, that have been previously built (with conan create, for example).
conan create will automatically run this test if a test_package folder is found besides the conanfile.py, or if the
--test-folder argument is provided to conan create.

Example:

$ conan new hello/0.1 -s -t
$ mv test_package test_package2
$ conan create . user/testing
doesn't automatically run test, it has been renamed
now run test
$ conan test test_package2 hello/0.1@user/testing

The test package folder, could be elsewhere, or could be even applied to different versions of the package.

17.1.3 Package development commands

Commands related to the local (user space) development of a Conan package:

conan source

$ conan source [-h] [-sf SOURCE_FOLDER] [-if INSTALL_FOLDER] path

Calls your local conanfile.py ‘source()’ method.

Usually downloads and uncompresses the package sources.

positional arguments:
path Path to a folder containing a conanfile.py or to a

recipe file e.g., my_folder/conanfile.py

optional arguments:
-h, --help show this help message and exit
-sf SOURCE_FOLDER, --source-folder SOURCE_FOLDER

Destination directory. Defaulted to current directory
-if INSTALL_FOLDER, --install-folder INSTALL_FOLDER

Directory containing the conaninfo.txt and
conanbuildinfo.txt files (from previous 'conan
install'). Defaulted to --build-folder Optional,
source method will run without the information
retrieved from the conaninfo.txt and
conanbuildinfo.txt, only required when using
conditional source() based on settings, options,
env_info and user_info

The source() method might use (optional) settings, options and environment variables from the specified profile and
dependencies information from the declared deps_XXX_info objects in the conanfile requirements.

All that information is saved automatically in the conaninfo.txt and conanbuildinfo.txt files respectively, when you run
the conan install command. Those files have to be located in the specified --install-folder.

384 Chapter 17. Reference

Conan Documentation, Release 1.31.4

Examples:

• Call a local recipe’s source method: In user space, the command will execute a local conanfile.py source()
method, in the src folder in the current directory.

$ conan new lib/1.0@conan/stable
$ conan source . --source-folder mysrc

• In case you need the settings/options or any info from the requirements, perform first an install:

$ conan install . --install-folder mybuild
$ conan source . --source-folder mysrc --install-folder mybuild

conan build

$ conan build [-h] [-b] [-bf BUILD_FOLDER] [-c] [-i] [-t]
[-if INSTALL_FOLDER] [-pf PACKAGE_FOLDER]
[-sf SOURCE_FOLDER]
path

Calls your local conanfile.py ‘build()’ method.

The recipe will be built in the local directory specified by –build-folder, reading the sources from –source-folder. If you
are using a build helper, like CMake(), the –package-folder will be configured as the destination folder for the install
step.

positional arguments:
path Path to a folder containing a conanfile.py or to a

recipe file e.g., my_folder/conanfile.py

optional arguments:
-h, --help show this help message and exit
-b, --build Execute the build step (variable should_build=True).

When specified, configure/install/test won't run
unless --configure/--install/--test specified

-bf BUILD_FOLDER, --build-folder BUILD_FOLDER
Directory for the build process. Defaulted to the
current directory. A relative path to the current
directory can also be specified

-c, --configure Execute the configuration step (variable
should_configure=True). When specified,
build/install/test won't run unless
--build/--install/--test specified

-i, --install Execute the install step (variable
should_install=True). When specified,
configure/build/test won't run unless
--configure/--build/--test specified

-t, --test Execute the test step (variable should_test=True).
When specified, configure/build/install won't run
unless --configure/--build/--install specified

-if INSTALL_FOLDER, --install-folder INSTALL_FOLDER
Directory containing the conaninfo.txt and
conanbuildinfo.txt files (from previous 'conan

(continues on next page)

17.1. Commands 385

Conan Documentation, Release 1.31.4

(continued from previous page)

install'). Defaulted to --build-folder
-pf PACKAGE_FOLDER, --package-folder PACKAGE_FOLDER

Directory to install the package (when the build
system or build() method does it). Defaulted to the
'{build_folder}/package' folder. A relative path can
be specified, relative to the current folder. Also an
absolute path is allowed.

-sf SOURCE_FOLDER, --source-folder SOURCE_FOLDER
Directory containing the sources. Defaulted to the
conanfile's directory. A relative path to the current
directory can also be specified

The build() method might use settings, options and environment variables from the specified profile and depen-
dencies information from the declared deps_XXX_info objects in the conanfile requirements. All that information is
saved automatically in the conaninfo.txt and conanbuildinfo.txt files respectively, when you run the conan install
command. Those files have to be located in the specified --build-folder or in the --install-folder if specified.

The --configure, --build, --install arguments control which parts of the build() are actually executed.
They have related conanfile boolean variables should_configure, should_build, should_install, which are
True by default, but that will change if some of these arguments are used in the command line. The CMake and Meson
and AutotoolsBuildEnvironment helpers already use these variables.

Example: Building a conan package (for architecture x86) in a local directory.

Listing 1: conanfile.py

from conans import ConanFile, CMake, tools

class LibConan(ConanFile):
...

def source(self):
self.run("git clone https://github.com/conan-io/hello.git")

def build(self):
cmake = CMake(self)
cmake.configure(source_folder="hello")
cmake.build()

First we will call conan source to get our source code in the src directory, then conan install to install the re-
quirements and generate the info files, and finally conan build to build the package:

$ conan source . --source-folder src
$ conan install . --install-folder build_x86 -s arch=x86
$ conan build . --build-folder build_x86 --source-folder src

Or if we want to create the conaninfo.txt and conanbuildinfo.txt files in a different folder:

$ conan source . --source-folder src
$ conan install . --install-folder install_x86 -s arch=x86
$ conan build . --build-folder build_x86 --install-folder install_x86 --source-folder␣
→˓src

However, we recommend the conaninfo.txt and conanbuildinfo.txt to be generated in the same –build-folder,
otherwise, you will need to specify a different folder in your build system to include the files generators file. E.g.,

386 Chapter 17. Reference

Conan Documentation, Release 1.31.4

conanbuildinfo.cmake

Example: Control the build stages

You can control the build stages using --configure/--build/--install/--test arguments. Here is an example
using the CMake build helper:

$ conan build . --configure # only run cmake.configure(). Other methods will do nothing
$ conan build . --build # only run cmake.build(). Other methods will do nothing
$ conan build . --install # only run cmake.install(). Other methods will do nothing
$ conan build . --test # only run cmake.test(). Other methods will do nothing
They can be combined
$ conan build . -c -b # run cmake.configure() + cmake.build(), but not cmake.install()␣
→˓nor cmake.test

If nothing is specified, all the methods will be called.

See also:

Read more about should_configure, should_build, should_install, should_test.

conan package

$ conan package [-h] [-bf BUILD_FOLDER] [-if INSTALL_FOLDER]
[-pf PACKAGE_FOLDER] [-sf SOURCE_FOLDER]
path

Calls your local conanfile.py ‘package()’ method.

This command works in the user space and it will copy artifacts from the –build-folder and –source-folder folder to the
–package-folder one. It won’t create a new package in the local cache, if you want to do it, use ‘conan create’ or ‘conan
export-pkg’ after a ‘conan build’ command.

positional arguments:
path Path to a folder containing a conanfile.py or to a

recipe file e.g., my_folder/conanfile.py

optional arguments:
-h, --help show this help message and exit
-bf BUILD_FOLDER, --build-folder BUILD_FOLDER

Directory for the build process. Defaulted to the
current directory. A relative path to the current
directory can also be specified

-if INSTALL_FOLDER, --install-folder INSTALL_FOLDER
Directory containing the conaninfo.txt and
conanbuildinfo.txt files (from previous 'conan
install'). Defaulted to --build-folder

-pf PACKAGE_FOLDER, --package-folder PACKAGE_FOLDER
folder to install the package. Defaulted to the
'{build_folder}/package' folder. A relative path can
be specified (relative to the current directory). Also
an absolute path is allowed.

-sf SOURCE_FOLDER, --source-folder SOURCE_FOLDER
Directory containing the sources. Defaulted to the

(continues on next page)

17.1. Commands 387

Conan Documentation, Release 1.31.4

(continued from previous page)

conanfile's directory. A relative path to the current
directory can also be specified

The package() method might use settings, options and environment variables from the specified profile and depen-
dencies information from the declared deps_XXX_info objects in the conanfile requirements.

All that information is saved automatically in the conaninfo.txt and conanbuildinfo.txt files respectively, when you run
conan install. Those files have to be located in the specified --build-folder.

$ conan install . --build-folder=build

Examples

This example shows how package() works in a package which can be edited and built in user folders instead of the
local cache.

$ conan new hello/0.1 -s
$ conan install . --install-folder=build_x86 -s arch=x86
$ conan build . --build-folder=build_x86
$ conan package . --build-folder=build_x86 --package-folder=package_x86
$ ls package/x86
> conaninfo.txt conanmanifest.txt include/ lib/

Note: The packages created locally are just for the user, but cannot be directly consumed by other packages, nor they
can be uploaded to a remote repository. In order to make these packages available to the system, they have to be put in
the conan local cache, which can be done with the conan export-pkg command instead of using conan package
command:

$ conan new hello/0.1 -s
$ conan install . --install-folder=build_x86 -s arch=x86
$ conan build . --build-folder=build_x86
$ conan export-pkg . hello/0.1@user/stable --build-folder=build_x86 -s arch=x86

conan editable

$ conan editable [-h] {add,remove,list} ...

Manages editable packages (packages that reside in the user workspace, but are consumed as if they were in the cache).

Use the subcommands ‘add’, ‘remove’ and ‘list’ to create, remove or list packages currently installed in this mode.

positional arguments:
{add,remove,list} sub-command help
add Put a package in editable mode
remove Disable editable mode for a package
list List packages in editable mode

optional arguments:
-h, --help show this help message and exit

388 Chapter 17. Reference

Conan Documentation, Release 1.31.4

conan editable add

$ conan editable add [-h] [-l LAYOUT] path reference

Opens the package <reference> in editable mode in the user folder <path>

positional arguments:
path Path to the package folder in the user workspace
reference Package reference e.g.: mylib/1.X@user/channel

optional arguments:
-h, --help show this help message and exit
-l LAYOUT, --layout LAYOUT

Relative or absolute path to a file containing the
layout. Relative paths will be resolved first relative
to current dir, then to local cache "layouts" folder

This command puts a package in “Editable mode”, and consumers of this package will use it from the given user folder
instead of using it from the cache. The path pointed by path should exist and contain a conanfile.py.

Example: Put the package cool/version@user/dev in editable mode, using the layout specified by the file
win_layout.

$ conan editable add . cool/version@user/dev --layout=win_layout

conan editable remove

$ conan editable remove [-h] reference

Removes the editable mode of package reference.

positional arguments:
reference Package reference e.g.: mylib/1.X@user/channel

optional arguments:
-h, --help show this help message and exit

Example: remove the “Editable mode”, use again package from the cache:

$ conan editable remove cool/version@user/dev

conan editable list

$ conan editable list [-h]

Shows the list of the packages that are opened in “editable” mode.

17.1. Commands 389

Conan Documentation, Release 1.31.4

conan workspace

$ conan workspace [-h] {install} ...

Manages a workspace (a set of packages consumed from the user workspace that belongs to the same project).

Use this command to manage a Conan workspace, use the subcommand ‘install’ to create the workspace from a file.

positional arguments:
{install} sub-command help
install same as a "conan install" command but using the workspace data

from the file. If no file is provided, it will look for a file
named "conanws.yml"

optional arguments:
-h, --help show this help message and exit

conan workspace install

$ conan workspace install [-h] [-b [BUILD]] [-r REMOTE] [-u] [-l [LOCKFILE]]
[-e ENV_HOST] [-e:b ENV_BUILD] [-e:h ENV_HOST]
[-o OPTIONS_HOST] [-o:b OPTIONS_BUILD] [-o:h OPTIONS_HOST]
[-pr PROFILE_HOST] [-pr:b PROFILE_BUILD]
[-pr:h PROFILE_HOST] [-s SETTINGS_HOST]
[-s:b SETTINGS_BUILD] [-s:h SETTINGS_HOST]
[-if INSTALL_FOLDER]
path

positional arguments:
path path to workspace definition file (it will look for a "conanws.

→˓yml"
inside if a directory is given)

optional arguments:
-h, --help show this help message and exit
-b [BUILD], --build [BUILD]

Optional, use it to choose if you want to build from sources:
--build Build all from sources, do not use binary packages.
--build=never Never build, use binary packages or fail if a␣

→˓binary
package is not found. --build=missing Build from code if a binary
package is not found. --build=cascade Will build from code all␣

→˓the
nodes with some dependency being built (for any reason). Can be
used together with any other build policy. Useful to make sure␣

→˓that
any new change introduced in a dependency is incorporated by
building again the package. --build=outdated Build from code if␣

→˓the
binary is not built with the current recipe or when missing a
binary package. --build=[pattern] Build always these packages␣

→˓from
(continues on next page)

390 Chapter 17. Reference

Conan Documentation, Release 1.31.4

(continued from previous page)

source, but never build the others. Allows multiple --build
parameters. 'pattern' is a fnmatch file pattern of a package
reference. Default behavior: If you don't specify anything, it␣

→˓will
be similar to '--build=never', but package recipes can override␣

→˓it
with their 'build_policy' attribute in the conanfile.py.

-r REMOTE, --remote REMOTE
Look in the specified remote server

-u, --update Will check the remote and in case a newer version
and/or revision of the dependencies exists there, it
will install those in the local cache. When using
version ranges, it will install the latest version
that satisfies the range. Also, if using revisions, it
will update to the latest revision for the resolved
version range.

-l [LOCKFILE], --lockfile [LOCKFILE]
Path to a lockfile or folder containing 'conan.lock' file.␣

→˓Lockfile
can be updated if packages change

-e ENV_HOST, --env ENV_HOST
Environment variables that will be set during the package build
(host machine). e.g.: -e CXX=/usr/bin/clang++

-e:b ENV_BUILD, --env:build ENV_BUILD
Environment variables that will be set during the package build
(build machine). e.g.: -e CXX=/usr/bin/clang++

-e:h ENV_HOST, --env:host ENV_HOST
Environment variables that will be set during the package build
(host machine). e.g.: -e CXX=/usr/bin/clang++

-o OPTIONS_HOST, --options OPTIONS_HOST
Define options values (host machine), e.g.: -o Pkg:with_qt=true

-o:b OPTIONS_BUILD, --options:build OPTIONS_BUILD
Define options values (build machine), e.g.: -o Pkg:with_qt=true

-o:h OPTIONS_HOST, --options:host OPTIONS_HOST
Define options values (host machine), e.g.: -o Pkg:with_qt=true

-pr PROFILE_HOST, --profile PROFILE_HOST
Apply the specified profile to the host machine

-pr:b PROFILE_BUILD, --profile:build PROFILE_BUILD
Apply the specified profile to the build machine

-pr:h PROFILE_HOST, --profile:host PROFILE_HOST
Apply the specified profile to the host machine

-s SETTINGS_HOST, --settings SETTINGS_HOST
Settings to build the package, overwriting the defaults (host
machine). e.g.: -s compiler=gcc

-s:b SETTINGS_BUILD, --settings:build SETTINGS_BUILD
Settings to build the package, overwriting the defaults (build
machine). e.g.: -s compiler=gcc

-s:h SETTINGS_HOST, --settings:host SETTINGS_HOST
Settings to build the package, overwriting the defaults (host
machine). e.g.: -s compiler=gcc

-if INSTALL_FOLDER, --install-folder INSTALL_FOLDER
Folder where the workspace files will be created (default to

(continues on next page)

17.1. Commands 391

Conan Documentation, Release 1.31.4

(continued from previous page)

current working directory)

Note that these arguments, like settings and options mostly apply to the dependencies, but those packages that
are defined as editable in the workspace are in the user space. Those packages won’t be built by the command (even
with --build arguments), as they are built locally. It is the responsibility of the editables layout to match the settings
(typically parameterizing the layout with settings and options)

17.1.4 Misc commands

Other useful commands:

conan profile

$ conan profile [-h] {list,show,new,update,get,remove} ...

Lists profiles in the ‘.conan/profiles’ folder, or shows profile details.

The ‘list’ subcommand will always use the default user ‘conan/profiles’ folder. But the ‘show’ subcommand can resolve
absolute and relative paths, as well as to map names to ‘.conan/profiles’ folder, in the same way as the ‘–profile’ install
argument.

positional arguments:
{list,show,new,update,get,remove}
list List current profiles
show Show the values defined for a profile
new Creates a new empty profile
update Update a profile with desired value
get Get a profile key
remove Remove a profile key

optional arguments:
-h, --help show this help message and exit

Examples

• List the profiles:

$ conan profile list
> myprofile1
> myprofile2

• Print profile contents:

$ conan profile show myprofile1
Profile myprofile1
[settings]
...

• Print profile contents (in the standard directory .conan/profiles):

392 Chapter 17. Reference

Conan Documentation, Release 1.31.4

$ conan profile show myprofile1
Profile myprofile1
[settings]
...

• Print profile contents (in a custom directory):

$ conan profile show /path/to/myprofile1
Profile myprofile1
[settings]
...

• Update a setting from a profile located in a custom directory:

$ conan profile update settings.build_type=Debug /path/to/my/profile

• Add a new option to the default profile:

$ conan profile update options.zlib:shared=True default

• Create a new empty profile:

$ conan profile new /path/to/new/profile

• Create a new profile detecting the settings:

$ conan profile new /path/to/new/profile --detect

• Create a new or overwrite an existing profile with detected settings:

$ conan profile new /path/to/new/profile --detect --force

conan remote

$ conan remote [-h]
{list,add,remove,update,rename,list_ref,add_ref,remove_ref,update_ref,

→˓list_pref,add_pref,remove_pref,update_pref,clean,enable,disable}
...

Manages the remote list and the package recipes associated with a remote.

positional arguments:
{list,add,remove,update,rename,list_ref,add_ref,remove_ref,update_ref,list_pref,add_

→˓pref,remove_pref,update_pref,clean,enable,disable}
sub-command help

list List current remotes
add Add a remote
remove Remove a remote
update Update the remote url
rename Update the remote name
list_ref List the package recipes and its associated remotes
add_ref Associate a recipe's reference to a remote
remove_ref Dissociate a recipe's reference and its remote

(continues on next page)

17.1. Commands 393

Conan Documentation, Release 1.31.4

(continued from previous page)

update_ref Update the remote associated with a package recipe
list_pref List the package binaries and its associated remotes
add_pref Associate a package reference to a remote
remove_pref Dissociate a package's reference and its remote
update_pref Update the remote associated with a binary package
clean Clean the list of remotes and all recipe-remote

associations
enable Enable a remote
disable Disable a remote

optional arguments:
-h, --help show this help message and exit

Examples

• List remotes:

$ conan remote list
conan-center: https://conan.bintray.com [Verify SSL: True]
local: http://localhost:9300 [Verify SSL: True, Disabled: True]

• List remotes in a format almost valid for the remotes.txt to use with conan config install, only need to remove the
True boolean appended to disabled remotes (notice line for local one in the output):

$ conan remote list --raw
conan-center https://conan.bintray.com True
local http://localhost:9300 True True
capture the current remotes in a text file
$ conan remote list --raw > remotes.txt

• Add a new remote:

$ conan remote add remote_name remote_url [verify_ssl]

Verify SSL option can be True or False (default True). Conan client will verify the SSL certificates.

• Insert a new remote:

Insert as the first one (position/index 0), so it is the first one to be checked:

$ conan remote add remote_name remote_url [verify_ssl] --insert

Insert as the second one (position/index 1), so it is the second one to be checked:

$ conan remote add remote_name remote_url [verify_ssl] --insert=1

• Add or insert a remote:

Adding the --force argument to conan remote addwill always work, and won’t raise an error. If an existing remote
exists with that remote name or URL, it will be updated with the new information. The --insert works the same. If
not specified, the remote will be appended the last one. If specified, the command will insert the remote in the specified
position

$ conan remote add remote_name remote_url [verify_ssl] --force --insert=1

• Remove a remote:

394 Chapter 17. Reference

Conan Documentation, Release 1.31.4

$ conan remote remove remote_name

• Remove all configured remotes (this will also remove all recipe-remote associations):

$ conan remote clean

• Update a remote:

$ conan remote update remote_name new_url [verify_ssl]

• Rename a remote:

$ conan remote rename remote_name new_remote_name

• Change an existing remote to the first position:

$ conan remote update remote_name same_url --insert 0

• List the package recipes and its associated remotes:

$ conan remote list_ref
bzip2/1.0.6@lasote/stable: conan.io
Boost/1.60.0@lasote/stable: conan.io
zlib/1.2.8@lasote/stable: conan.io

• Associate a recipe’s reference to a remote:

$ conan remote add_ref openssl/1.0.2u conan-center

• Update the remote associated with a package recipe:

$ conan remote update_ref openssl/1.0.2t local-remote

• Enable or disable remotes (accepts patterns such as * as argument using Unix shell-style wildcards):

$ conan remote disable "*"
$ conan remote enable local-remote

Note: Check the section How to manage SSL (TLS) certificates section to know more about server certificates verifi-
cation and client certifications management .

conan user

$ conan user [-h] [-c] [-p [PASSWORD]] [-r REMOTE] [-j JSON] [-s] [name]

Authenticates against a remote with user/pass, caching the auth token.

Useful to avoid the user and password being requested later. e.g. while you’re uploading a package. You can have one
user for each remote. Changing the user, or introducing the password is only necessary to perform changes in remote
packages.

17.1. Commands 395

Conan Documentation, Release 1.31.4

positional arguments:
name Username you want to use. If no name is provided it

will show the current user

optional arguments:
-h, --help show this help message and exit
-c, --clean Remove user and tokens for all remotes
-p [PASSWORD], --password [PASSWORD]

User password. Use double quotes if password with
spacing, and escape quotes if existing. If empty, the
password is requested interactively (not exposed)

-r REMOTE, --remote REMOTE
Use the specified remote server

-j JSON, --json JSON json file path where the user list will be written to
-s, --skip-auth Skips the authentication with the server if there are

local stored credentials. It doesn't check if the
current credentials are valid or not

After a successful login the auth token is stored in the local database (see CONAN_LOGIN_ENCRYPTION_KEY to
add a basic level of security).

Examples:

• List my user for each remote:

$ conan user
Current user of remote 'conan-center' set to: 'None' (anonymous)
Current user of remote 'myprivateremote' set to: 'danimtb' [Authenticated]
Current user of remote 'otherremote' set to: 'None' (anonymous)

• Change bar remote user to foo:

$ conan user foo -r bar
Changed user of remote 'bar' from 'None' (anonymous) to 'foo'

• Change bar remote user to foo, authenticating against the remote and storing the user and authentication token
locally, so a later upload won’t require entering credentials:

$ conan user foo -r bar -p mypassword

• Authenticate against the remote only if we don’t have credentials stored locally. It will not check if the credentials
are valid or not:

$ conan user foo -r bar -p mypassword --skip-auth

• Clean all local users and tokens:

$ conan user --clean

• Change bar remote user to foo, asking user password to authenticate against the remote and storing the user
and authentication token locally, so a later upload won’t require entering credentials:

$ conan user foo -r bar -p
Please enter a password for "foo" account:
Change 'bar' user from None (anonymous) to foo

396 Chapter 17. Reference

Conan Documentation, Release 1.31.4

Note: The password is not stored in the client computer at any moment. Conan uses JWT, so it gets a token (expirable
by the server) checking the password against the remote credentials. If the password is correct, an authentication token
will be obtained, and that token is the information cached locally. For any subsequent interaction with the remotes, the
Conan client will only use that JWT token.

Using environment variables

The CONAN_LOGIN_USERNAME and CONAN_PASSWORD environment variables allow defining the user and the
password in the environment. If those environment variables are defined, the user input will no be necessary whenever
the user or password are requested. Values for user and password will be automatically taken from the environment
variables without any interactive input.

This applies also to the conan user command, if you want to force the authentication in some scripts, without requiring
to put the password in plain text, the following can be done:

$ conan user --clean # remove previous auth tokens
$ export CONAN_PASSWORD=mypassword
$ conan user mysyusername -p -r=myremote
Please enter a password for "mysusername" account: Got password '******' from environment
Changed user of remote 'myremote' from 'None' (anonymous) to 'mysusername'
$ conan upload zlib* -r=myremote --all --confirm

In this example, conan user mysyusername -p -r=myremote will interactively request a password if
CONAN_PASSWORD is not defined.

The environment variable CONAN_NON_INTERACTIVE (or general.non_interactive in conan.conf) can be
defined to guarantee that an error will be raise if user input is required, to avoid stalls in CI builds.

Note that defining CONAN_LOGIN_USERNAME and/or CONAN_PASSWORD do not perform in any case an authentication
request against the server. Only when the server request credentials (or a explicit conan user -p is done), they will
be used as an alternative source rather than interactive user input. This means that for servers like Artifactory that
allow enabling “Hide Existence of Unauthorized Resource” modes, it will be necessary to explicitly call conan user
-p before downloading or uploading anything from the server, otherwise, Artifactory will return 404 errors instead of
requesting authentication.

conan imports

$ conan imports [-h] [-if INSTALL_FOLDER] [-imf IMPORT_FOLDER] [-u] path

Calls your local conanfile.py or conanfile.txt ‘imports’ method.

It requires to have been previously installed and have a conanbuildinfo.txt generated file in the –install-folder (defaulted
to the current directory).

positional arguments:
path Path to a folder containing a conanfile.py or to a

recipe file e.g., my_folder/conanfile.py With --undo
option, this parameter is the folder containing the
conan_imports_manifest.txt file generated in a
previous execution. e.g.: conan imports
./imported_files --undo

(continues on next page)

17.1. Commands 397

https://en.wikipedia.org/wiki/JSON_Web_Token

Conan Documentation, Release 1.31.4

(continued from previous page)

optional arguments:
-h, --help show this help message and exit
-if INSTALL_FOLDER, --install-folder INSTALL_FOLDER

Directory containing the conaninfo.txt and
conanbuildinfo.txt files (from previous 'conan
install'). Defaulted to --build-folder

-imf IMPORT_FOLDER, --import-folder IMPORT_FOLDER
Directory to copy the artifacts to. By default it will
be the current directory

-u, --undo Undo imports. Remove imported files

The imports() method might use settings, options and environment variables from the specified profile and depen-
dencies information from the declared deps_XXX_info objects in the conanfile requirements.

All that information is saved automatically in the conaninfo.txt and conanbuildinfo.txt files respectively, when you run
conan install. Those files have to be located in the specified --install-folder.

Examples

• Import files from a current conanfile in current directory:

$ conan install . --no-imports # Creates the conanbuildinfo.txt
$ conan imports .

• Remove the copied files (undo the import):

$ conan imports . --undo

conan copy

$ conan copy [-h] [-p PACKAGE] [--all] [--force] reference user_channel

Copies conan recipes and packages to another user/channel.

Useful to promote packages (e.g. from “beta” to “stable”) or transfer them from one user to another.

positional arguments:
reference package reference. e.g., MyPackage/1.2@user/channel
user_channel Destination user/channel. e.g., lasote/testing

optional arguments:
-h, --help show this help message and exit
-p PACKAGE, --package PACKAGE

copy specified package ID [DEPRECATED: use full
reference instead]

--all Copy all packages from the specified package recipe
--force Override destination packages and the package recipe

Examples

• Promote a package to stable from beta:

$ conan copy mypackage/1.0.0@lasote/beta lasote/stable

• Change a package’s username:

398 Chapter 17. Reference

Conan Documentation, Release 1.31.4

$ conan copy openssl/1.0.2u@ foo/beta

conan download

$ conan download [-h] [-p PACKAGE] [-r REMOTE] [-re] reference

Downloads recipe and binaries to the local cache, without using settings.

It works specifying the recipe reference and package ID to be installed. Not transitive, requirements of the specified
reference will NOT be retrieved. Useful together with ‘conan copy’ to automate the promotion of packages to a different
user/channel. Only if a reference is specified, it will download all packages from the specified remote. If no remote is
specified, it will use the default remote.

positional arguments:
reference pkg/version@user/channel

optional arguments:
-h, --help show this help message and exit
-p PACKAGE, --package PACKAGE

Force install specified package ID (ignore
settings/options) [DEPRECATED: use full reference
instead]

-r REMOTE, --remote REMOTE
look in the specified remote server

-re, --recipe Downloads only the recipe

Examples

• Download all openssl/1.0.2u binary packages from the remote foo:

$ conan download openssl/1.0.2u@ -r foo

• Download a single binary package of openssl/1.0.2u from the remote foo:

$ conan download openssl/1.0.2u@:8018a4df6e7d2b4630a814fa40c81b85b9182d2 -r foo

• Download only the recipe of package openssl/1.0.2u from the remote foo:

$ conan download openssl/1.0.2u@ -r foo -re

conan remove

$ conan remove [-h] [-b [BUILDS [BUILDS ...]]] [-f] [-l] [-o]
[-p [PACKAGES [PACKAGES ...]]] [-q QUERY] [-r REMOTE] [-s]
[-t]
[pattern_or_reference]

Removes packages or binaries matching pattern from local cache or remote.

It can also be used to remove the temporary source or build folders in the local conan cache. If no remote is specified,
the removal will be done by default in the local conan cache.

17.1. Commands 399

Conan Documentation, Release 1.31.4

positional arguments:
pattern_or_reference Pattern or package recipe reference, e.g., 'boost/*',

'MyPackage/1.2@user/channel'

optional arguments:
-h, --help show this help message and exit
-b [BUILDS [BUILDS ...]], --builds [BUILDS [BUILDS ...]]

By default, remove all the build folders or select
one, specifying the package ID

-f, --force Remove without requesting a confirmation
-l, --locks Remove locks
-o, --outdated Remove only outdated from recipe packages. This flag

can only be used with a reference
-p [PACKAGES [PACKAGES ...]], --packages [PACKAGES [PACKAGES ...]]

Remove all packages of the specified reference if no
specific package ID is provided

-q QUERY, --query QUERY
Packages query: 'os=Windows AND (arch=x86 OR
compiler=gcc)'. The 'pattern_or_reference' parameter
has to be a reference: MyPackage/1.2@user/channel

-r REMOTE, --remote REMOTE
Will remove from the specified remote

-s, --src Remove source folders
-t, --system-reqs Remove system_reqs folders

The -q parameter can’t be used along with -p nor -b parameters.

Examples:

• Remove from the local cache the binary packages (the package recipes will not be removed) from all the recipes
matching openssl/* pattern:

$ conan remove openssl/* --packages

• Remove the temporary build folders from all the recipes matching openssl/* pattern without requesting con-
firmation:

$ conan remove openssl/* --builds --force

• Remove the recipe and the binary packages from a specific remote:

$ conan remove openssl/1.0.u@ -r myremote

• Remove only Windows openssl packages from local cache:

$ conan remove openssl/1.0.u@ -q "os=Windows"

• Remove system requirements installation registry for the package name referred globally for all package ids:

$ conan remove --system-reqs package/version@user/channel

This command does not remove the system installed packages, but only the Conan lock to indicate they were
installed.

• Remove system requirements installation registry for all packages named package via a wildcard

400 Chapter 17. Reference

Conan Documentation, Release 1.31.4

$ conan remove --system-reqs 'package/*'

• Remove system requirements installation registry for all packages via a wildcard

$ conan remove --system-reqs '*'

conan alias

$ conan alias [-h] reference target

Creates and exports an ‘alias package recipe’.

An “alias” package is a symbolic name (reference) for another package (target). When some package depends on an
alias, the target one will be retrieved and used instead, so the alias reference, the symbolic name, does not appear in the
final dependency graph.

positional arguments:
reference Alias reference. e.g.: mylib/1.X@user/channel
target Target reference. e.g.: mylib/1.12@user/channel

optional arguments:
-h, --help show this help message and exit

The command:

$ conan alias hello/0.X@user/testing hello/0.1@user/testing

Creates and exports a package recipe for hello/0.X@user/testing with the following content:

from conans import ConanFile

class AliasConanfile(ConanFile):
alias = "hello/0.1@user/testing"

Such package recipe acts as a “proxy” for the aliased reference. Users depending on hello/0.X@user/testing will
actually use version hello/0.1@user/testing. The alias package reference will not appear in the dependency graph
at all. It is useful to define symbolic names, or behaviors like “always depend on the latest minor”, but defined upstream
instead of being defined downstream with version-ranges.

The “alias” package should be uploaded to servers in the same way as regular package recipes, in order to enable usage
from servers.

conan inspect

Warning: This is an experimental feature subject to breaking changes in future releases.

$ conan inspect [-h] [-a [ATTRIBUTE]] [-r REMOTE] [-j JSON] [--raw RAW]
path_or_reference

Displays conanfile attributes, like name, version, and options. Works locally, in local cache and remote.

17.1. Commands 401

Conan Documentation, Release 1.31.4

positional arguments:
path_or_reference Path to a folder containing a recipe (conanfile.py) or

to a recipe file. e.g., ./my_project/conanfile.py. It
could also be a reference

optional arguments:
-h, --help show this help message and exit
-a [ATTRIBUTE], --attribute [ATTRIBUTE]

The attribute to be displayed, e.g "name"
-r REMOTE, --remote REMOTE

look in the specified remote server
-j JSON, --json JSON json output file
--raw RAW Print just the value of the requested attribute

Examples:

$ conan inspect zlib/1.2.11@ -a=name -a=version -a=options -a default_options -r=conan-
→˓center
name: zlib
version: 1.2.11
options

shared: [True, False]
default_options: shared=False

$ conan inspect zlib/1.2.11@ -a=license -a=url
license: Zlib
url: https://github.com/conan-io/conan-center-index

$ conan inspect zlib/1.2.11@ --raw=settings
('os', 'arch', 'compiler', 'build_type')

If no specific attributes are defined via -a, then, some default attributes will be displayed:

$ conan inspect zlib/1.2.11@
name: zlib
version: 1.2.11
url: https://github.com/conan-io/conan-center-index
homepage: https://zlib.net
license: Zlib
author: None
description: A Massively Spiffy Yet Delicately Unobtrusive Compression Library (Also␣
→˓Free, Not to Mention Unencumbered by Patents)
topics: None
generators: cmake
exports: None
exports_sources: ['CMakeLists.txt', 'CMakeLists_minizip.txt', 'minizip.patch']
short_paths: False
apply_env: True
build_policy: None
revision_mode: hash
settings: ('os', 'arch', 'compiler', 'build_type')
options:

fPIC: [True, False]
(continues on next page)

402 Chapter 17. Reference

Conan Documentation, Release 1.31.4

(continued from previous page)

minizip: [True, False]
shared: [True, False]

default_options:
fPIC: True
minizip: False
shared: False

conan lock

$ conan lock [-h] {update,build-order,clean-modified,create} ...

Generates and manipulates lock files.

positional arguments:
{update,build-order,clean-modified,create}

sub-command help
update Complete missing information in the first lockfile with␣

→˓information defined in the second lockfile. Both lockfiles must represent the same␣
→˓graph,

and have the same topology with the same identifiers, i.e. the␣
→˓second lockfile must be an evolution based on the first one

build-order Returns build-order
clean-modified Clean modified flags
create Create a lockfile from a conanfile or a reference

optional arguments:
-h, --help show this help message and exit

See also:

read about lockfiles in Lockfiles

conan lock create

$ conan lock create [-h] [--name NAME] [--version VERSION] [--user USER] [--channel␣
→˓CHANNEL] [--reference REFERENCE] [-l LOCKFILE] [--base]

[--lockfile-out LOCKFILE_OUT] [-b [BUILD]] [-r REMOTE] [-u] [-e ENV_
→˓HOST] [-e:b ENV_BUILD] [-e:h ENV_HOST] [-o OPTIONS_HOST] [-o:b OPTIONS_BUILD]

[-o:h OPTIONS_HOST] [-pr PROFILE_HOST] [-pr:b PROFILE_BUILD] [-pr:h␣
→˓PROFILE_HOST] [-s SETTINGS_HOST] [-s:b SETTINGS_BUILD] [-s:h SETTINGS_HOST]

[path]

positional arguments:
path Path to a conanfile

optional arguments:
-h, --help show this help message and exit
--name NAME Provide a package name if not specified in conanfile
--version VERSION Provide a package version if not specified in conanfile
--user USER Provide a user

(continues on next page)

17.1. Commands 403

Conan Documentation, Release 1.31.4

(continued from previous page)

--channel CHANNEL Provide a channel
--reference REFERENCE

Provide a package reference instead of a conanfile
-l LOCKFILE, --lockfile LOCKFILE

Path to lockfile to be used as a base
--base Lock only recipe versions and revisions
--lockfile-out LOCKFILE_OUT

Filename of the created lockfile
-b [BUILD], --build [BUILD]

Packages to build from source
-r REMOTE, --remote REMOTE

Look in the specified remote server
-u, --update Will check the remote and in case a newer version and/or␣

→˓revision of the dependencies exists there, it will install those in the local cache.␣
→˓When

using version ranges, it will install the latest version that␣
→˓satisfies the range. Also, if using revisions, it will update to the latest revision

for the resolved version range.
-e ENV_HOST, --env ENV_HOST

Environment variables that will be set during the package build␣
→˓(host machine). e.g.: -e CXX=/usr/bin/clang++
-e:b ENV_BUILD, --env:build ENV_BUILD

Environment variables that will be set during the package build␣
→˓(build machine). e.g.: -e:b CXX=/usr/bin/clang++
-e:h ENV_HOST, --env:host ENV_HOST

Environment variables that will be set during the package build␣
→˓(host machine). e.g.: -e:h CXX=/usr/bin/clang++
-o OPTIONS_HOST, --options OPTIONS_HOST

Define options values (host machine), e.g.: -o Pkg:with_qt=true
-o:b OPTIONS_BUILD, --options:build OPTIONS_BUILD

Define options values (build machine), e.g.: -o:b Pkg:with_
→˓qt=true
-o:h OPTIONS_HOST, --options:host OPTIONS_HOST

Define options values (host machine), e.g.: -o:h Pkg:with_qt=true
-pr PROFILE_HOST, --profile PROFILE_HOST

Apply the specified profile to the host machine
-pr:b PROFILE_BUILD, --profile:build PROFILE_BUILD

Apply the specified profile to the build machine
-pr:h PROFILE_HOST, --profile:host PROFILE_HOST

Apply the specified profile to the host machine
-s SETTINGS_HOST, --settings SETTINGS_HOST

Settings to build the package, overwriting the defaults (host␣
→˓machine). e.g.: -s compiler=gcc
-s:b SETTINGS_BUILD, --settings:build SETTINGS_BUILD

Settings to build the package, overwriting the defaults (build␣
→˓machine). e.g.: -s:b compiler=gcc
-s:h SETTINGS_HOST, --settings:host SETTINGS_HOST

Settings to build the package, overwriting the defaults (host␣
→˓machine). e.g.: -s:h compiler=gcc

404 Chapter 17. Reference

Conan Documentation, Release 1.31.4

conan lock update

$ conan lock update [-h] old_lockfile new_lockfile

positional arguments:
old_lockfile Path to lockfile to be updated
new_lockfile Path to lockfile containing the new information that is going to be␣

→˓updated into the first lockfile

optional arguments:
-h, --help show this help message and exit

conan lock build-order

$ conan lock build-order [-h] [--json JSON] lockfile

positional arguments:
lockfile lockfile file

optional arguments:
-h, --help show this help message and exit
--json JSON generate output file in json format

conan lock clean-modified

$ conan lock clean-modified [-h] lockfile

positional arguments:
lockfile Path to the lockfile

optional arguments:
-h, --help show this help message and exit

conan help

$ conan help [-h] [command]

Shows help for a specific command.

positional arguments:
command command

optional arguments:
-h, --help show this help message and exit

This command is equivalent to the --help and -h arguments

Example:

17.1. Commands 405

Conan Documentation, Release 1.31.4

$ conan help get
> usage: conan get [-h] [-p PACKAGE] [-r REMOTE] [-raw] reference [path]
> Gets a file or list a directory of a given reference or package.

same as
$ conan get -h

Warning: This is an experimental feature subject to breaking changes in future releases.

Warning: Some problems regarding the use of BuildInfo with Conan packages have been reported. If the BuildInfo
contains artifacts that have the same checksum as other artifacts, this may result in losing the path of the artifact in
the BuildInfo in Artifactory and also fail in the promotion process.

We are currently working along with the Artifactory team to solve those problems. Until this issue gets fixed, we
do not recommend using BuildInfo’s for Conan.

conan_build_info v1

usage: conan_build_info [-h] [--output OUTPUT] trace_path

Extracts build-info from a specified conan trace log and return a valid JSON

positional arguments:
trace_path Path to the conan trace log file e.g.: /tmp/conan_trace.log

optional arguments:
-h, --help show this help message and exit
--output OUTPUT Optional file to output the JSON contents, if not specified

the JSON will be printed to stdout

conan_build_info v2

$ conan_build_info --v2 [-h] {start,stop,create,update,publish} ...

Generates build-info from lockfiles information

positional arguments:
{start,stop,create,update,publish}

sub-command help
start Command to incorporate to the artifacts.properties the

build name and number
stop Command to remove from the artifacts.properties the

build name and number
create Command to generate a build info json from a lockfile
update Command to update a build info json with another one
publish Command to publish the build info to Artifactory

(continues on next page)

406 Chapter 17. Reference

https://www.jfrog.com/jira/browse/RTFACT-9343

Conan Documentation, Release 1.31.4

(continued from previous page)

optional arguments:
-h, --help show this help message and exit

start subcommand:

usage: conan_build_info --v2 start [-h] build_name build_number

positional arguments:
build_name build name to assign
build_number build number to assign

optional arguments:
-h, --help show this help message and exit

stop subcommand:

usage: conan_build_info --v2 stop [-h]

optional arguments:
-h, --help show this help message and exit

create subcommand:

usage: conan_build_info --v2 create [-h] --lockfile LOCKFILE [--user [USER]]
[--password [PASSWORD]] [--apikey [APIKEY]]
build_info_file

positional arguments:
build_info_file build info json for output

optional arguments:
-h, --help show this help message and exit
--lockfile LOCKFILE input lockfile
--user [USER] user
--password [PASSWORD]

password
--apikey [APIKEY] apikey

publish subcommand:

usage: conan_build_info --v2 publish [-h] --url URL [--user [USER]]
[--password [PASSWORD]] [--apikey [APIKEY]]
buildinfo

positional arguments:
buildinfo build info to upload

optional arguments:
-h, --help show this help message and exit
--url URL url
--user [USER] user
--password [PASSWORD]

(continues on next page)

17.1. Commands 407

Conan Documentation, Release 1.31.4

(continued from previous page)

password
--apikey [APIKEY] apikey

update subcommand:

usage: conan_build_info --v2 update [-h] [--output-file OUTPUT_FILE]
buildinfo [buildinfo ...]

positional arguments:
buildinfo buildinfo files to merge

optional arguments:
-h, --help show this help message and exit
--output-file OUTPUT_FILE

path to generated build info file

17.1.5 JSON Output

JSON documents generated by the commands:

Install and Create output

Warning: This is an experimental feature subject to breaking changes in future releases.

The conan install and conan create provide a --json parameter to generate a file containing the information of
the installation process.

The output JSON contains a two first level keys:

• error: True if the install completed without error, False otherwise.

• installed: A list of installed packages. Each element contains:

– recipe: Document representing the downloaded recipe.

∗ remote: remote URL if the recipe has been downloaded. null otherwise.

∗ cache: true/false. Retrieved from cache (not downloaded).

∗ downloaded: true/false. Downloaded from a remote (not in cache).

∗ time: ISO 8601 string with the time the recipe was downloaded/retrieved.

∗ error: true/false.

∗ id: Reference. E.g., “openssl/1.0.2u”

∗ name: name of the packaged library. E.g., “openssl”

∗ version: version of the packaged library. E.g., “1.0.2u”

∗ user: user of the packaged library. E.g., “conan”

∗ channel: channel of the packaged library. E.g., “stable”

∗ dependency: true/false. Is the package being installed/created or a dependency. Same as develop
conanfile attribute.

408 Chapter 17. Reference

Conan Documentation, Release 1.31.4

– packages: List of elements, representing the binary packages downloaded for the recipe. Normally there
will be only 1 element in this list, only in special cases with build requires, private dependencies and settings
overridden this list could have more than one element.

∗ remote: remote URL if the recipe has been downloaded. null otherwise.

∗ cache: true/false. Retrieved from cache (not downloaded).

∗ downloaded: true/false. Downloaded from a remote (not in cache).

∗ time: ISO 8601 string with the time the recipe was downloaded/retrieved.

∗ error: true/false.

∗ id: Package ID. E.g., “8018a4df6e7d2b4630a814fa40c81b85b9182d2b”

∗ cpp_info: dictionary containing the build information defined in the package_info method on the
recipe.

Example:

$ conan install openssl/1.0.2u@ --json install.json

Listing 2: install.json

{
"error": false,
"installed": [{

"recipe": {
"id": "openssl/1.0.2u",
"downloaded": true,
"exported": false,
"error": null,
"remote": "https://conan.bintray.com",
"time": "2020-01-30T19:19:21.217923",
"dependency": true,
"name": "openssl",
"version": "1.0.2u",
"user": null,
"channel": null

},
"packages": [{

"id": "f99afdbf2a1cc98ba2029817b35103455b6a9b77",
"downloaded": true,
"exported": false,
"error": null,
"remote": "https://conan.bintray.com",
"time": "2020-01-30T19:19:27.662199",
"built": false,
"cpp_info": {

"name": "openssl",
"names": {

"cmake_find_package": "OpenSSL",
"cmake_find_package_multi": "OpenSSL"

},
"includedirs": ["include"],
"libdirs": ["lib"],

(continues on next page)

17.1. Commands 409

Conan Documentation, Release 1.31.4

(continued from previous page)

"resdirs": ["res"],
"bindirs": ["bin"],
"builddirs": [""],
"frameworkdirs": ["Frameworks"],
"libs": ["ssl", "crypto", "dl", "pthread"],
"rootpath": "/home/user/.conan/data/openssl/1.0.2u/_/_/package/

→˓f99afdbf2a1cc98ba2029817b35103455b6a9b77",
"version": "1.0.2u",
"description": "A toolkit for the Transport Layer Security (TLS) and␣

→˓Secure Sockets Layer (SSL) protocols",
"filter_empty": true,
"public_deps": ["zlib"]

}
}]

}, {
"recipe": {

"id": "zlib/1.2.11#1cd4a227e1b846f961bf91fcb6f3980f",
"downloaded": false,
"exported": false,
"error": null,
"remote": null,
"time": "2020-01-30T19:19:21.237131",
"dependency": true,
"name": "zlib",
"version": "1.2.11",
"user": null,
"channel": null

},
"packages": [{

"id": "6af9cc7cb931c5ad942174fd7838eb655717c709",
"downloaded": false,
"exported": false,
"error": null,
"remote": null,
"time": "2020-01-30T19:19:22.061885",
"built": false,
"cpp_info": {

"name": "ZLIB",
"includedirs": ["include"],
"libdirs": ["lib"],
"resdirs": ["res"],
"bindirs": ["bin"],
"builddirs": [""],
"frameworkdirs": ["Frameworks"],
"libs": ["z"],
"rootpath": "/home/user/.conan/data/zlib/1.2.11/_/_/package/

→˓6af9cc7cb931c5ad942174fd7838eb655717c709",
"version": "1.2.11",
"description": "A Massively Spiffy Yet Delicately Unobtrusive␣

→˓Compression Library (Also Free, Not to Mention Unencumbered by Patents)",
"filter_empty": true

}

(continues on next page)

410 Chapter 17. Reference

Conan Documentation, Release 1.31.4

(continued from previous page)

}]
}]

}

Note: As this is a marked as experimental, some fields may be removed or added: fields version and description
inside cpp_info will eventually be removed and paths may be changed for absolute ones.

Search output

Warning: This is an experimental feature subject to breaking changes in future releases.

The conan search provides a --json parameter to generate a file containing the information of the search process.

The output JSON contains a two first level keys:

• error: True if the upload completed without error, False otherwise.

• results: A list of the remotes with the packages found. Each element contains:

– remote: Name of the remote.

– items: List of the items found in that remote. For each item there will always be a

recipe and optionally also packages when searching them.

∗ recipe: Document representing the uploaded recipe.

· id: Reference, e.g., “openssl/1.0.2u”

∗ packages: List of elements representing the binary packages found for the recipe.

· id: Package ID, e.g., “8018a4df6e7d2b4630a814fa40c81b85b9182d2b”

· options: Dictionary of options of the package.

· settings: Dictionary with settings of the package.

· requires: List of requires of the package.

· outdated: Boolean to show whether package is outdated from recipe or not.

Examples:

• Search references in all remotes: conan search eigen* -r all

{
"error": false,
"results": [{

"remote": "conan-center",
"items": [{

"recipe": {
"id": "eigen/3.3.4@conan/stable"

}
}, {

"recipe": {
"id": "eigen/3.3.5@conan/stable"

(continues on next page)

17.1. Commands 411

Conan Documentation, Release 1.31.4

(continued from previous page)

}
}, {

"recipe": {
"id": "eigen/3.3.7"

}
}, {

"recipe": {
"id": "eigen/3.3.7@conan/stable"

}
}]

}, {
"remote": "otherremote",
"items": [{

"recipe": {
"id": "eigen/3.3.4@conan/stable"

}
}, {

"recipe": {
"id": "eigen/3.3.5@conan/stable"

}
}, {

"recipe": {
"id": "eigen/3.3.7@conan/stable"

}
}]

}]
}

• Search packages of a reference in a remote: conan search paho-c/1.2.0@conan/stable -r
conan-center --json search.json

{
"error":false,
"results":[

{
"remote":"conan-center",
"items":[

{
"recipe":{

"id":"paho-c/1.2.0@conan/stable"
},
"packages":[

{
"id":"0000193ac313953e78a4f8e82528100030ca70ee",
"options":{

"shared":"False",
"asynchronous":"False",
"SSL":"False"

},
"settings":{

"os":"Linux",
"arch":"x86_64",

(continues on next page)

412 Chapter 17. Reference

Conan Documentation, Release 1.31.4

(continued from previous page)

"compiler":"gcc",
"build_type":"Debug",
"compiler.version":"4.9"

},
"requires":[

],
"outdated":false

},
{

"id":"014be746b283391f79d11e4e8af3154344b58223",
"options":{

"shared":"False",
"asynchronous":"False",
"SSL":"False"

},
"settings":{

"os":"Windows",
"compiler.threads":"posix",
"compiler.exception":"seh",
"arch":"x86_64",
"compiler":"gcc",
"build_type":"Debug",
"compiler.version":"5"

},
"requires":[

],
"outdated":false

},
{
"id":"0188020dbfd167611b967ad2fa0e30710d23e920",
"options":{

"shared":"True",
"asynchronous":"False",
"SSL":"False"

},
"settings":{

"os":"Macos",
"arch":"x86_64",
"compiler":"apple-clang",
"build_type":"Debug",
"compiler.version":"9.1"

},
"requires":[

],
"outdated":false

},
{

"id":"03369b0caf8c0c8d4bb84d5136112596bde4652d",
"options":{

(continues on next page)

17.1. Commands 413

Conan Documentation, Release 1.31.4

(continued from previous page)

"shared":"True",
"asynchronous":"False",
"SSL":"False"

},
"settings":{

"os":"Linux",
"arch":"x86",
"compiler":"gcc",
"build_type":"Release",
"compiler.version":"5"

},
"requires":[

],
"outdated":false

}
]

}
]

}
]

}

• Search references in local cache: conan search paho-c* --json search.json

{
"error":false,
"results":[

{
"remote":"None",
"items":[

{
"recipe":{

"id":"paho-c/1.2.0@danimtb/testing"
}

}
]

}
]

}

• Search packages of a reference in local cache: conan search paho-c/1.2.0@danimtb/testing --json
search.json

{
"error":false,
"results":[

{
"remote":"None",
"items":[

{
"recipe":{

(continues on next page)

414 Chapter 17. Reference

Conan Documentation, Release 1.31.4

(continued from previous page)

"id":"paho-c/1.2.0@danimtb/testing"
},
"packages":[

{
"id":"6cc50b139b9c3d27b3e9042d5f5372d327b3a9f7",
"options":{

"SSL":"False",
"asynchronous":"False",
"shared":"False"

},
"settings":{

"arch":"x86_64",
"build_type":"Release",
"compiler":"Visual Studio",
"compiler.runtime":"MD",
"compiler.version":"15",
"os":"Windows"

},
"requires":[

],
"outdated":false

},
{
"id":"95cd13dfc3f6b80d3ccb2a38441e3a1ad88e5a15",
"options":{

"SSL":"False",
"asynchronous":"True",
"shared":"True"

},
"settings":{

"arch":"x86_64",
"build_type":"Release",
"compiler":"Visual Studio",
"compiler.runtime":"MD",
"compiler.version":"15",
"os":"Windows"

},
"requires":[

],
"outdated":true

},
{

"id":"970e773c5651dc2560f86200a4ea56c23f568ff9",
"options":{

"SSL":"False",
"asynchronous":"False",
"shared":"True"

},
"settings":{

"arch":"x86_64",
(continues on next page)

17.1. Commands 415

Conan Documentation, Release 1.31.4

(continued from previous page)

"build_type":"Release",
"compiler":"Visual Studio",
"compiler.runtime":"MD",
"compiler.version":"15",
"os":"Windows"

},
"requires":[

],
"outdated":true

},
{

"id":"c4c0a49b09575515ce1dd9841a48de0c508b9d7c",
"options":{

"SSL":"True",
"asynchronous":"False",
"shared":"True"

},
"settings":{

"arch":"x86_64",
"build_type":"Release",
"compiler":"Visual Studio",
"compiler.runtime":"MD",
"compiler.version":"15",
"os":"Windows"

},
"requires":[

"openssl/1.0.2n@conan/
→˓stable:606fdb601e335c2001bdf31d478826b644747077",

"zlib/1.2.11@conan/
→˓stable:6cc50b139b9c3d27b3e9042d5f5372d327b3a9f7"

],
"outdated":true

},
{

"id":"db9d6ba7004592ed2598f2c369484d4a01269110",
"options":{

"SSL":"True",
"asynchronous":"False",
"shared":"True"

},
"settings":{

"arch":"x86_64",
"build_type":"Release",
"compiler":"gcc",
"compiler.exception":"seh",
"compiler.threads":"posix",
"compiler.version":"7",
"os":"Windows"

},
"requires":[

"openssl/1.0.2n@conan/

(continues on next page)

416 Chapter 17. Reference

Conan Documentation, Release 1.31.4

(continued from previous page)

→˓stable:f761d91cef7988eafb88c6b6179f4cf261609f26",
"zlib/1.2.11@conan/

→˓stable:6dc82da13f94df549e60f9c1ce4c5d11285a4dff"
],
"outdated":true

}
]

}
]

}
]

}

Upload output

Warning: This is an experimental feature subject to breaking changes in future releases.

The conan upload provides a --json parameter to generate a file containing the information of the upload process.

The output JSON contains a two first level keys:

• error: True if the upload completed without error, False otherwise.

• uploaded: A list of uploaded packages. Each element contains:

– recipe: Document representing the uploaded recipe.

∗ id: Reference, e.g., “openssl/1.0.2u@”

∗ remote_name: Remote name where the recipe was uploaded.

∗ remote_url: Remote URL where the recipe was uploaded.

∗ time: ISO 8601 string with the time the recipe was uploaded.

– packages: List of elements, representing the binary packages uploaded for the recipe.

∗ id: Package ID, e.g., “8018a4df6e7d2b4630a814fa40c81b85b9182d2b”

∗ time: ISO 8601 string with the time the recipe was uploaded.

Example:

$ conan upload "h*" -all -r conan-center --json upload.json

Listing 3: upload.json

{
"error":false,
"uploaded":[

{
"recipe":{

"id":"hello/0.1@conan/testing",
"remote_name":"conan-center",
"remote_url":"https://conan.bintray.com",

(continues on next page)

17.1. Commands 417

Conan Documentation, Release 1.31.4

(continued from previous page)

"time":"2018-04-30T11:18:19.204728"
},
"packages":[

{
"id":"3f3387d49612e03a5306289405a2101383b861f0",
"remote_name":"conan-center",
"remote_url":"https://conan.bintray.com",
"time":"2018-04-30T11:18:21.534877"

},
{

"id":"6cc50b139b9c3d27b3e9042d5f5372d327b3a9f7",
"remote_name":"conan-center",
"remote_url":"https://conan.bintray.com",
"time":"2018-04-30T11:18:23.934152"

},
{

"id":"889d5d7812b4723bd3ef05693ffd190b1106ea43",
"remote_name":"conan-center",
"remote_url":"https://conan.bintray.com",
"time":"2018-04-30T11:18:28.195266"

},
{

"id":"e98aac15065fc710dffd1b4fbee382b087c3ad1d",
"remote_name":"conan-center",
"remote_url":"https://conan.bintray.com",
"time":"2018-04-30T11:18:30.495989"

}
]

},
{

"recipe":{
"id":"hello0/1.2.1@conan/testing",
"remote_name":"conan-center",
"remote_url":"https://conan.bintray.com",
"time":"2018-04-30T11:18:32.688651"

},
"packages":[

{
"id":"5ab84d6acfe1f23c4fae0ab88f26e3a396351ac9",
"remote_name":"conan-center",
"remote_url":"https://conan.bintray.com",
"time":"2018-04-30T11:18:34.991721"

}
]

},
{

"recipe":{
"id":"hello_app/0.1@conan/testing",
"remote_name":"conan-center",
"remote_url":"https://conan.bintray.com",
"time":"2018-04-30T11:18:36.901333"

},

(continues on next page)

418 Chapter 17. Reference

Conan Documentation, Release 1.31.4

(continued from previous page)

"packages":[
{

"id":"6cc50b139b9c3d27b3e9042d5f5372d327b3a9f7",
"remote_name":"conan-center",
"remote_url":"https://conan.bintray.com",
"time":"2018-04-30T11:18:39.243895"

}
]

},
{

"recipe":{
"id":"hello_python_conan/0.1@conan/testing",
"remote_name":"conan-center",
"remote_url":"https://conan.bintray.com",
"time":"2018-04-30T11:18:41.181543"

},
"packages":[

{
"id":"5ab84d6acfe1f23c4fae0ab88f26e3a396351ac9",
"remote_name":"conan-center",
"remote_url":"https://conan.bintray.com",
"time":"2018-04-30T11:18:43.749422"

}
]

},
{

"recipe":{
"id":"hello_python_reuse_conan/0.1@conan/testing",
"remote_name":"conan-center",
"remote_url":"https://conan.bintray.com",
"time":"2018-04-30T11:18:45.614096"

},
"packages":[

{
"id":"6a051b2648c89dbd1f8ada0031105b287deea9d2",
"remote_name":"conan-center",
"remote_url":"https://conan.bintray.com",
"time":"2018-04-30T11:18:47.942491"

}
]

},
{

"recipe":{
"id":"hdf5/1.8.20@acri/testing",
"remote_name":"conan-center",
"remote_url":"https://conan.bintray.com",
"time":"2018-04-30T11:18:48.291756"

},
"packages":[

]
},

(continues on next page)

17.1. Commands 419

Conan Documentation, Release 1.31.4

(continued from previous page)

{
"recipe":{

"id":"http_parser/2.9.2",
"remote_name":"conan-center",
"remote_url":"https://conan.bintray.com",
"time":"2018-04-30T11:18:48.637576"

},
"packages":[

{
"id":"6cc50b139b9c3d27b3e9042d5f5372d327b3a9f7",
"remote_name":"conan-center",
"remote_url":"https://conan.bintray.com",
"time":"2018-04-30T11:18:51.125189"

}
]

}
]

}

User output

Warning: This is an experimental feature subject to breaking changes in future releases.

The conan user provides a --json parameter to generate a file containing the information of the users configured
per remote.

The output JSON contains a two first level keys:

• error: Boolean indicating whether command completed with error.

• remotes: A list of the remotes with the packages found. Each element contains:

– name: Name of the remote.

– user_name: Name of the user set for that remote.

– authenticated: Boolean indicating if user is authenticated or not.

Example:

List users per remote: conan user --json user.json

Listing 4: user.json

{
"error":false,
"remotes":[

{
"name":"conan-center",
"user_name":"danimtb",
"authenticated":true

},
{

(continues on next page)

420 Chapter 17. Reference

Conan Documentation, Release 1.31.4

(continued from previous page)

"name":"bincrafters",
"user_name":null,
"authenticated":false

},
{

"name":"conan-community",
"user_name":"danimtb",
"authenticated":true

},
{

"name":"the_remote",
"user_name":"foo",
"authenticated":false

}
]

}

Info output

Warning: This is an experimental feature subject to breaking changes in future releases.

The conan info provides a --json parameter to generate a file containing the output of the command.

There are several possible outputs depending on other arguments:

Build order

Warning: The command conan info --build-order is deprecated in favor of conan lock build-order.

The build order printed with the argument --build-order can be formatted as JSON. It will show a list of lists where
the references inside each nested one can be built in parallel.

Listing 5: build_order.json

{
"groups":[

[
"liba/0.1@lasote/stable",
"libe/0.1@lasote/stable",
"libf/0.1@lasote/stable"

],
[

"libb/0.1@lasote/stable",
"libc/0.1@lasote/stable"

]
]

}

17.1. Commands 421

Conan Documentation, Release 1.31.4

Nodes to build

When called with the argument --build it will retrieve the list of nodes to be built according to the build policy.
Output will be just a list of references.

Listing 6: nodes_to_build.json

[
"h0/0.1@lu/st",
"h1a/0.1@lu/st",
"h1c/0.1@lu/st",
"h2a/0.1@lu/st",
"h2c/0.1@lu/st"

]

Info output

The output of a conan info call over a reference or a path gives information about all the nodes involved in its build
graph; the generated JSON file will contain a list with the information for each of the nodes.

Listing 7: info.json

[
{

"reference":"liba/0.1@lasote/stable",
"is_ref":true,
"display_name":"liba/0.1@lasote/stable",
"id":"8da7d879f40d12efabc9a1f26ab12f1b6cafb6ad",
"build_id":null,
"url":"myurl",
"license":[

"MIT"
],
"description": "project A",
"recipe":"No remote",
"binary":"Missing",
"creation_date":"2019-01-29 17:22:41",
"required_by":[

"libc/0.1@lasote/stable",
"libb/0.1@lasote/stable"

]
},
{

"reference":"libb/0.1@lasote/stable",
"is_ref":true,
"display_name":"libb/0.1@lasote/stable",
"id":"c4ec2bf350e2a02405029ab366535e26372a4f63",
"build_id":null,
"url":"myurl",
"license":[

"MIT"
],

(continues on next page)

422 Chapter 17. Reference

Conan Documentation, Release 1.31.4

(continued from previous page)

"description": "project C",
"recipe":"No remote",
"binary":"Missing",
"creation_date":"2019-01-29 17:22:41",
"required_by":[

"conanfile.py (libd/0.1@None/None)"
],
"requires":[

"liba/0.1@lasote/stable",
"libe/0.1@lasote/stable"

]
},
{ "...": "..."}

]

Note: As this is a marked as experimental, some fields may be removed or added.

Config output

Warning: This is an experimental feature subject to breaking changes in future releases.

The conan config home provides a --json parameter to generate a file containing the information of the conan
home directory.

$ conan config home --json home.json

It will create a JSON file like:

17.1. Commands 423

Conan Documentation, Release 1.31.4

Listing 8: home.json

{
"home": "/path/to/conan/home"

}

17.1.6 Return codes

Return Codes

The Conan client returns different exit codes for every command depending on the situation:

Success

Return code: 0

Execution terminated successfully

General error

Return code: 1

Execution terminated with a general error, normally caused by a ConanException.

Migration error

Return code: 2

Execution terminated with an error migrating configuration files to new format.

User Ctrl+C

Return code: 3

Execution terminated due to manually stopping the process with Ctrl+C key combination.

User Ctrl+Break

Return code: 4

Execution terminated due to manually stopping the profess with Ctrl+Break key combination.

424 Chapter 17. Reference

Conan Documentation, Release 1.31.4

SIGTERM

Return code: 5

Execution terminated due to SIGTERM signal.

Invalid configuration

Return code: 6

Execution terminated due to an exception caused by a ConanInvalidConfiguration. This exit code can be consid-
ered a success as it is expected for configurations not supported by the recipe.

17.2 conanfile.txt

Reference for conanfile.txt sections: requires, generators, etc.

17.2.1 Sections

[requires]

List of requirements, specifying the full reference.

[requires]
poco/1.9.4
zlib/1.2.11

This section supports references with version ranges:

[requires]
poco/[>1.0,<1.9]
zlib/1.2.11

[build_requires]

List of build requirements specifying the full reference.

[build_requires]
7zip/16.00

This section supports references with version ranges.

In practice the [build_requires] will be always installed (same as [requires]) as installing from a conanfile.txt
means that something is going to be built, so the build requirements are indeed needed.

It is useful and conceptually cleaner to have them in separate sections, so users of this conanfile.txt might quickly
identify some dev-tools that they have already installed on their machine, differentiating them from the required libraries
to link with.

17.2. conanfile.txt 425

Conan Documentation, Release 1.31.4

[generators]

List of generators.

[requires]
poco/1.9.4
zlib/1.2.11

[generators]
xcode
cmake
qmake

[options]

List of options scoped for each package like package_name:option = Value.

[requires]
poco/1.9.4
zlib/1.2.11

[generators]
cmake

[options]
poco:shared=True
openssl:shared=True

[imports]

List of files to be imported to a local directory. Read more: imports.

[requires]
poco/1.9.4
zlib/1.2.11

[generators]
cmake

[options]
poco:shared=True
openssl:shared=True

[imports]
bin, *.dll -> ./bin # Copies all dll files from packages bin folder to my local "bin"␣
→˓folder
lib, *.dylib* -> ./bin # Copies all dylib files from packages lib folder to my local "bin
→˓" folder

The first item is the subfolder of the packages (could be the root “.” one), the second is the pattern to match. Both relate
to the local cache. The third (after the arrow) item, is the destination folder, living in user space, not in the local cache.

426 Chapter 17. Reference

Conan Documentation, Release 1.31.4

The [imports] section also support the same arguments as the equivalent imports() method in conanfile.py, sepa-
rated with an @.

Note: If your previous folders use an @ in the path name, use a trailing (even if empty) @ so the parser correctly gets
the folders paths, e.g: lib, * -> /home/jenkins/workspace/conan_test@2/g/install/lib @

• root_package (Optional, Defaulted to all packages in deps): fnmatch pattern of the package name (“OpenCV”,
“Boost”) from which files will be copied.

• folder: (Optional, Defaulted to False). If enabled, it will copy the files from the local cache to a subfolder
named as the package containing the files. Useful to avoid conflicting imports of files with the same name (e.g.
License).

• ignore_case: (Optional, Defaulted to False). If enabled will do a case-insensitive pattern matching.

• excludes: (Optional, Defaulted to None). Allows defining a list of patterns (even a single pattern) to be excluded
from the copy, even if they match the main pattern.

• keep_path (Optional, Defaulted to True): Means if you want to keep the relative path when you copy the files
from the src folder to the dst one. Useful to ignore (keep_path=False) path of library.dll files in the package
it is imported from.

Example to collect license files from dependencies into a licenses folder, excluding (just an example) .html and .jpeg
files:

[imports]
., license* -> ./licenses @ folder=True, ignore_case=True, excludes=*.html *.jpeg

Comments

A comment starts with a hash character (#) and ends at the end of the physical line. Comments are ignored by the
syntax; they are not tokens.

17.3 conanfile.py

Reference for conanfile.py: attributes, methods, etc.

Important: conanfile.py recipes uses a variety of attributes and methods to operate. In order to avoid collisions and
conflicts, follow these rules:

• Public attributes and methods, like build(), self.package_folder, are reserved for Conan. Don’t use public
members for custom fields or methods in the recipes.

• Use “protected” access for your own members, like self._my_data or def _my_helper(self):. Conan only
reserves “protected” members starting with _conan.

Contents:

17.3. conanfile.py 427

Conan Documentation, Release 1.31.4

17.3.1 Attributes

name

This is a string, with a minimum of 2 and a maximum of 50 characters (though shorter names are recommended), that
defines the package name. It will be the <PkgName>/version@user/channel of the package reference. It should
match the following regex ^[a-zA-Z0-9_][a-zA-Z0-9_\+\.-]{1,50}$, so start with alphanumeric or underscore,
then alphanumeric, underscore, +, ., - characters.

The name is only necessary for export-ing the recipe into the local cache (export and create commands), if they
are not defined in the command line. It might take its value from an environment variable, or even any python code
that defines it (e.g. a function that reads an environment variable, or a file from disk). However, the most common and
suggested approach would be to define it in plain text as a constant, or provide it as command line arguments.

version

The version attribute will define the version part of the package reference: PkgName/<version>@user/channel It
is a string, and can take any value, matching the same constraints as the name attribute. In case the version follows
semantic versioning in the form X.Y.Z-pre1+build2, that value might be used for requiring this package through
version ranges instead of exact versions.

The version is only strictly necessary for export-ing the recipe into the local cache (export and create commands),
if they are not defined in the command line. It might take its value from an environment variable, or even any python
code that defines it (e.g. a function that reads an environment variable, or a file from disk). Please note that this value
might be used in the recipe in other places (as in source() method to retrieve code from elsewhere), making this value
not constant means that it may evaluate differently in different contexts (e.g., on different machines or for different users)
leading to unrepeatable or unpredictable results. The most common and suggested approach would be to define it in
plain text as a constant, or provide it as command line arguments.

description

This is an optional, but strongly recommended text field, containing the description of the package, and any information
that might be useful for the consumers. The first line might be used as a short description of the package.

class HelloConan(ConanFile):
name = "hello"
version = "0.1"
description = """This is a Hello World library.

A fully featured, portable, C++ library to say Hello World in the␣
→˓stdout,

with incredible iostreams performance"""

homepage

Use this attribute to indicate the home web page of the library being packaged. This is useful to link the recipe to
further explanations of the library itself like an overview of its features, documentation, FAQ as well as other related
information.

class EigenConan(ConanFile):
name = "eigen"
version = "3.3.4"
homepage = "http://eigen.tuxfamily.org"

428 Chapter 17. Reference

Conan Documentation, Release 1.31.4

url

It is possible, even typical, if you are packaging a third party lib, that you just develop the packaging code. Such code
is also subject to change, often via collaboration, so it should be stored in a VCS like git, and probably put on GitHub
or a similar service. If you do indeed maintain such a repository, please indicate it in the url attribute, so that it can
be easily found.

class HelloConan(ConanFile):
name = "hello"
version = "0.1"
url = "https://github.com/conan-io/hello.git"

The url is the url of the package repository, i.e. not necessarily the original source code. It is optional, but highly
recommended, that it points to GitHub, Bitbucket or your preferred code collaboration platform. Of course, if you have
the conanfile inside your library source, you can point to it, and afterwards use the url in your source() method.

This is a recommended, but not mandatory attribute.

license

This field is intended for the license of the target source code and binaries, i.e. the code that is being packaged, not the
conanfile.py itself. This info is used to be displayed by the conan info command and possibly other search and
report tools.

class HelloConan(ConanFile):
name = "hello"
version = "0.1"
license = "MIT"

This attribute can contain several, comma separated licenses. It is a text string, so it can contain any text, including
hyperlinks to license files elsewhere.

However, we strongly recommend packagers of Open-Source projects to use [SPDX](https://spdx.dev/) identifiers from
the [SPDX license list](https://spdx.dev/licenses/) instead of free-formed text. This will help people wanting to auto-
mate license compatibility checks, like consumers of your package, or you if your package has Open-Source depen-
dencies.

This is a recommended, but not mandatory attribute.

author

Intended to add information about the author, in case it is different from the Conan user. It is possible that the Conan
user is the name of an organization, project, company or group, and many users have permissions over that account. In
this case, the author information can explicitly define who is the creator/maintainer of the package

class HelloConan(ConanFile):
name = "hello"
version = "0.1"
author = "John J. Smith (john.smith@company.com)"

This is an optional attribute.

17.3. conanfile.py 429

https://spdx.dev/
https://spdx.dev/licenses/

Conan Documentation, Release 1.31.4

topics

Topics provide a useful way to group related tags together and to quickly tell developers what a package is about. Topics
also make it easier for customers to find your recipe. It could be useful to filter packages by topics or to reuse them in
Bintray package page.

The topics attribute should be a tuple with the needed topics inside.

class ProtocInstallerConan(ConanFile):
name = "protoc_installer"
version = "0.1"
topics = ("protocol-buffers", "protocol-compiler", "serialization", "rpc")

This is an optional attribute.

user, channel

These fields are optional in a Conan reference, they could be useful to identify a forked recipe from the community
with changes specific for your company. Using these fields you may keep the same name and version and use the
user/channel to disambiguate your recipe.

The value of these fields can be accessed from within a conanfile.py:

from conans import ConanFile

class HelloConan(ConanFile):
name = "hello"
version = "0.1"

def requirements(self):
self.requires("common-lib/version")
if self.user and self.channel:

If the recipe is using them, I want to consume my fork.
self.requires("say/0.1@%s/%s" % (self.user, self.channel))

else:
otherwise, I'll consume the community one
self.requires("say/0.1")

Only packages that have already been exported (packages in the local cache or in a remote server) can have a
user/channel assigned. For package recipes working in the user space, there is no current user/channel by default,
although they can be defined at conan install time with:

$ conan install <path to conanfile.py> user/channel

See also:

FAQ: Is there any recommendation regarding which <user> or <channel> to use in a reference?

Warning: Environment variables CONAN_USERNAME and CONAN_CHANNEL that were used to assign a value to these
fields are now deprecated and will be removed in Conan 2.0. Don’t use them to populate the value of self.user
and self.channel.

430 Chapter 17. Reference

Conan Documentation, Release 1.31.4

default_user, default_channel

For package recipes working in the user space, with local methods like conan install . and conan build ., there
is no current user/channel. If you are accessing to self.user or self.channel in your recipe, you need to declare
the environment variables CONAN_USERNAME and CONAN_CHANNEL or you can set the attributes default_user and
default_channel. You can also use python @property:

from conans import ConanFile

class HelloConan(ConanFile):
name = "hello"
version = "0.1"
default_user = "myuser"

@property
def default_channel(self):

return "mydefaultchannel"

def requirements(self):
self.requires("pkg/0.1@%s/%s" % (self.user, self.channel))

settings

There are several things that can potentially affect a package being created, i.e. the final package will be different (a
different binary, for example), if some input is different.

Development project-wide variables, like the compiler, its version, or the OS itself. These variables have to be defined,
and they cannot have a default value listed in the conanfile, as it would not make sense.

It is obvious that changing the OS produces a different binary in most cases. Changing the compiler or compiler version
changes the binary too, which might have a compatible ABI or not, but the package will be different in any case.

For these reasons, the most common convention among Conan recipes is to distinguish binaries by the following four
settings, which is reflected in the conanfile.py template used in the conan new command:

settings = "os", "compiler", "build_type", "arch"

When Conan generates a compiled binary for a package with a given combination of the settings above, it generates a
unique ID for that binary by hashing the current values of these settings.

But what happens for example to header only libraries? The final package for such libraries is not binary and, in most
cases it will be identical, unless it is automatically generating code. We can indicate that in the conanfile:

from conans import ConanFile

class HelloConan(ConanFile):
name = "hello"
version = "0.1"
We can just omit the settings attribute too
settings = None

def build(self):
#empty too, nothing to build in header only

You can restrict existing settings and accepted values as well, by redeclaring the settings attribute:

17.3. conanfile.py 431

Conan Documentation, Release 1.31.4

class HelloConan(ConanFile):
settings = {"os": ["Windows"],

"compiler": {"Visual Studio": {"version": [11, 12]}},
"arch": None}

In this example we have just defined that this package only works in Windows, with VS 10 and 11. Any attempt to build
it in other platforms with other settings will throw an error saying so. We have also defined that the runtime (the MD
and MT flags of VS) is irrelevant for us (maybe we using a universal one?). Using None as a value means, maintain the
original values in order to avoid re-typing them. Then, “arch”: None is totally equivalent to “arch”: [“x86”, “x86_64”,
“arm”] Check the reference or your ~/.conan/settings.yml file.

As re-defining the whole settings attribute can be tedious, it is sometimes much simpler to remove or tune specific
fields in the configure() method. For example, if our package is runtime independent in VS, we can just remove that
setting field:

settings = "os", "compiler", "build_type", "arch"

def configure(self):
self.settings.compiler["Visual Studio"].remove("runtime")

It is possible to check the settings to implement conditional logic, with attribute syntax:

def build(self):
if self.settings.os == "Windows" and self.settings.compiler.version == "15":

do some special build commands
elif self.settings.arch == "x86_64":

Other different commands

Those comparisons do content checking, for example if you do a typo like self.settings.os == "Windos", Conan
will fail and tell you that is not a valid settings.os value, and the possible range of values.

Likewise, if you try to access some setting that doesn’t exist, like self.settings.compiler.libcxx for the Visual
Studio setting, Conan will fail telling that libcxx does not exist for that compiler.

If you want to do a safe check of settings values, you could use the get_safe() method:

def build(self):
Will be None if doesn't exist
arch = self.settings.get_safe("arch")
Will be None if doesn't exist
compiler_version = self.settings.get_safe("compiler.version")
Will be the default version if the return is None
build_type = self.settings.get_safe("build_type", default="Release")

The get_safe() method will return None if that setting or subsetting doesn’t exist and there is no default value
assigned.

432 Chapter 17. Reference

Conan Documentation, Release 1.31.4

options

Conan packages recipes can generate different binary packages when different settings are used, but can also customize,
per-package any other configuration that will produce a different binary.

A typical option would be being shared or static for a certain library. Note that this is optional, different packages can
have this option, or not (like header-only packages), and different packages can have different values for this option, as
opposed to settings, which typically have the same values for all packages being installed (though this can be controlled
too, defining different settings for specific packages)

Options are defined in package recipes as dictionaries of name and allowed values:

class MyPkg(ConanFile):
...
options = {"shared": [True, False]}

Options are defined as a python dictionary inside the ConanFile where each key must be a string with the identifier
of the option and the value be a list with all the possible option values:

class MyPkg(ConanFile):
...
options = {"shared": [True, False],

"option1": ["value1", "value2"],}

Values for each option can be typed or plain strings, and there is a special value, ANY, for options that can take any
value.

The attribute default_options has the purpose of defining the default values for the options if the consumer (con-
suming recipe, project, profile or the user through the command line) does not define them. It is worth noticing that an
uninitialized option will get the value None and it will be a valid value if its contained in the list of valid values.
This attribute should be defined as a python dictionary too, although other definitions could be valid for legacy reasons.

class MyPkg(ConanFile):
...
options = {"shared": [True, False],

"option1": ["value1", "value2"],
"option2": "ANY"}

default_options = {"shared": True,
"option1": "value1",
"option2": 42}

def build(self):
shared = "-DBUILD_SHARED_LIBS=ON" if self.options.shared else ""
cmake = CMake(self)
self.run("cmake . %s %s" % (cmake.command_line, shared))
...

Tip:

• You can inspect available package options reading the package recipe, which can be done with the command
conan inspect mypkg/0.1@user/channel.

• Options "shared": [True, False] and "fPIC": [True, False] are automatically managed in CMake
and AutoToolsBuildEnvironment (configure/make) build helpers.

17.3. conanfile.py 433

Conan Documentation, Release 1.31.4

As we mentioned before, values for options in a recipe can be defined using different ways, let’s go over all of them for
the example recipe mypkg defined above:

• Using the attribute default_options in the recipe itself.

• In the default_options of a recipe that requires this one: the values defined here will override the default ones
in the recipe.

class OtherPkg(ConanFile):
requires = "mypkg/0.1@user/channel"
default_options = {"mypkg:shared": False}

Of course, this will work in the same way working with a conanfile.txt:

[requires]
mypkg/0.1@user/channel

[options]
mypkg:shared=False

• It is also possible to define default values for the options of a recipe using profiles. They will apply whenever
that recipe is used:

file "myprofile"
use it as $ conan install -pr=myprofile
[settings]
setting=value

[options]
MyPkg:shared=False

• Last way of defining values for options, with the highest priority over them all, is to pass these values using the
command argument -o in the command line:

$ conan install . -o MyPkg:shared=True -o OtherPkg:option=value

Values for options can be also conditionally assigned (or even deleted) in the methods configure() and
config_options(), the corresponding section has examples documenting these use cases. However, conditionally
assigning values to options can have it drawbacks as it is explained in the mastering section.

One important notice is how these options values are evaluated and how the different conditionals that we can implement
in Python will behave. As seen before, values for options can be defined in Python code (assigning a dictionary to
default_options) or through strings (using a conanfile.txt, a profile file, or through the command line). In
order to provide a consistent implementation take into account these considerations:

• Evaluation for the typed value and the string one is the same, so all these inputs would behave the same:

– default_options = {"shared": True, "option": None}

– default_options = {"shared": "True", "option": "None"}

– mypkg:shared=True, mypkg:option=None on profiles, command line or conanfile.txt

• Implicit conversion to boolean is case insensitive, so the expression bool(self.options.option):

– equals True for the values True, "True" and "true", and any other value that would be evaluated the
same way in Python code.

– equals False for the values False, "False" and "false", also for the empty string and for 0 and "0" as
expected.

434 Chapter 17. Reference

Conan Documentation, Release 1.31.4

• Comparison using is is always equals to False because the types would be different as the option value is
encapsulated inside a Conan class.

• Explicit comparisons with the == symbol are case sensitive, so:

– self.options.option = "False" satisfies assert self.options.option == False, assert
self.options.option == "False", but assert self.options.option != "false".

• A different behavior has self.options.option = None, because assert self.options.option !=
None.

If you want to do a safe check of options values, you could use the get_safe() method:

def build(self):
Will be None if doesn't exist
fpic = self.options.get_safe("fPIC")
Will be the default version if the return is None
shared = self.options.get_safe("shared", default=False)

The get_safe() method will return None if that option doesn’t exist and there is no default value assigned.

default_options

As you have seen in the examples above, recipe’s default options are declared as a dictionary with the initial desired
value of the options. However, you can also specify default option values of the required dependencies:

class OtherPkg(ConanFile):
requires = "pkg/0.1@user/channel"
default_options = {"pkg:pkg_option": "value"}

And it also works with default option values of conditional required dependencies:

class OtherPkg(ConanFile):
default_options = {"pkg:pkg_option": "value"}

def requirements(self):
if self.settings.os != "Windows":

self.requires("pkg/0.1@user/channel")

For this example running in Windows, the default_options for the pkg/0.1@user/channel will be ignored, they will only
be used on every other OS.

You can also set the options conditionally to a final value with config_options() instead of using
default_options:

class OtherPkg(ConanFile):
settings = "os", "arch", "compiler", "build_type"
options = {"some_option": [True, False]}
Do NOT declare 'default_options', use 'config_options()'

def config_options(self):
if self.options.some_option == None:

if self.settings.os == 'Android':
self.options.some_option = True

else:
self.options.some_option = False

17.3. conanfile.py 435

Conan Documentation, Release 1.31.4

Important: Setting options conditionally without a default value works only to define a default value if not defined in
command line. However, doing it this way will assign a final value to the option and not an initial one, so those option
values will not be overridable from downstream dependent packages.

Important: Default options can be specified as a dictionary only for Conan version >= 1.8.

See also:

Read more about the config_options() method.

requires

Specify package dependencies as a list or tuple of other packages:

class MyLibConan(ConanFile):
requires = "hello/1.0@user/stable", "OtherLib/2.1@otheruser/testing"

You can specify further information about the package requirements:

class MyLibConan(ConanFile):
requires = [("hello/0.1@user/testing"),

("say/0.2@dummy/stable", "override"),
("bye/2.1@coder/beta", "private")]

class MyLibConan(ConanFile):
requires = (("hello/1.0@user/stable", "private"),)

Requirements can be complemented by 2 different parameters:

private: a dependency can be declared as private if it is going to be fully embedded and hidden from consumers of
the package. It might be necessary in some extreme cases, like having to use two different versions of the same library
(provided that they are totally hidden in a shared library, for example), but it is mostly discouraged otherwise.

override: packages can define overrides of their dependencies, if they require the definition of specific versions of the
upstream required libraries, but not necessarily direct dependencies. For example, a package can depend on A(v1.0),
which in turn could conditionally depend on Zlib(v2), depending on whether the compression is enabled or not. Now,
if you want to force the usage of Zlib(v3) you can:

class HelloConan(ConanFile):
requires = ("ab/1.0@user/stable", ("zlib/3.0@other/beta", "override"))

This will not introduce a new dependency, it will just change zlib/2.0 to zlib/3.0 if ab actually requires it.
Otherwise zlib will not be a dependency of your package.

Note: To prevent accidental override of transitive dependencies, check the config variable general.error_on_override
or the environment variable CONAN_ERROR_ON_OVERRIDE.

436 Chapter 17. Reference

Conan Documentation, Release 1.31.4

version ranges

The syntax is using brackets:

class HelloConan(ConanFile):
requires = "pkg/[>1.0 <1.8]@user/stable"

Expressions are those defined and implemented by [python node-semver](https://pypi.org/project/node-semver/). Ac-
cepted expressions would be:

>1.1 <2.1 # In such range
2.8 # equivalent to =2.8
~=3.0 # compatible, according to semver
>1.1 || 0.8 # conditions can be OR'ed

Go to Mastering/Version Ranges if you want to learn more about version ranges.

build_requires

Build requirements are requirements that are only installed and used when the package is built from sources. If there
is an existing pre-compiled binary, then the build requirements for this package will not be retrieved.

They can be specified as a comma separated tuple in the package recipe:

class MyPkg(ConanFile):
build_requires = "tool_a/0.2@user/testing", "tool_b/0.2@user/testing"

Read more: Build requirements

exports

This optional attribute declares the set of files that should be exported and stored side by side with the conanfile.py
file to make the recipe work: other python files that the recipe will import, some text file with data to read,. . .

The exports field can declare one single file or pattern, or a list of any of the previous elements. Patterns use fnmatch
formatting to declare files to include or exclude.

For example, if we have some python code that we want the recipe to use in a helpers.py file, and have some text file
info.txt we want to read and display during the recipe evaluation we would do something like:

exports = "helpers.py", "info.txt"

Exclude patterns are also possible, with the ! prefix:

exports = "*.py", "!*tmp.py"

17.3. conanfile.py 437

https://pypi.org/project/node-semver/
https://docs.python.org/3/library/fnmatch.html

Conan Documentation, Release 1.31.4

exports_sources

This optional attribute declares the set of files that should be exported together with the recipe and will be available to
generate the package. Unlike exports attribute, these files shouldn’t be used by the conanfile.py Python code, but to
compile the library or generate the final package. And, due to its purpose, these files will only be retrieved if requested
binaries are not available or the user forces Conan to compile from sources.

The exports_sources attribute can declare one single file or pattern, or a list of any of the previous elements. Patterns
use fnmatch formatting to declare files to include or exclude.

Together with the source() and imports() methods, and the SCM feature, this is another way to retrieve the sources
to create a package. Unlike the other methods, files declared in exports_sources will be exported together with the
conanfile.py recipe, so, if nothing else is required, it can create a self-contained package with all the sources (like a
snapshot) that will be used to generate the final artifacts.

Some examples for this attribute are:

exports_sources = "include*", "src*"

Exclude patterns are also possible, with the ! prefix:

exports_sources = "include*", "src*", "!src/build/*"

generators

Generators specify which is the output of the install command in your project folder. By default, a conanbuildinfo.txt
file is generated, but you can specify different generators and even use more than one.

class MyLibConan(ConanFile):
generators = "cmake", "gcc"

You can also set the generators conditionally in the configure() method like in the example below.

class MyLibConan(ConanFile):
settings = "os", "compiler", "arch", "build_type"
def configure(self):

if self.settings.os == "Windows":
self.generators = ["msbuild"]

Check the full generators list.

should_configure, should_build, should_install, should_test

Read only variables defaulted to True.

These variables allow you to control the build stages of a recipe during a conan build command with the optional
arguments --configure/--build/--install/--test. For example, consider this build() method:

def build(self):
cmake = CMake(self)
cmake.configure()
cmake.build()
cmake.install()
cmake.test()

438 Chapter 17. Reference

https://docs.python.org/3/library/fnmatch.html

Conan Documentation, Release 1.31.4

If nothing is specified, all four methods will be called. But using command line arguments, this can be changed:

$ conan build . --configure # only run cmake.configure(). Other methods will do nothing
$ conan build . --build # only run cmake.build(). Other methods will do nothing
$ conan build . --install # only run cmake.install(). Other methods will do nothing
$ conan build . --test # only run cmake.test(). Other methods will do nothing
They can be combined
$ conan build . -c -b # run cmake.configure() + cmake.build(), but not cmake.install()␣
→˓nor cmake.test()

Autotools and Meson helpers already implement the same functionality. For other build systems, you can use these
variables in the build() method:

def build(self):
if self.should_configure:

Run my configure stage
if self.should_build:

Run my build stage
if self.should_install: # If my build has install, otherwise use package()

Run my install stage
if self.should_test:

Run my test stage

Note that the should_configure, should_build, should_install, should_test variables will always be True
while building in the cache and can be only modified for the local flow with conan build.

build_policy

With the build_policy attribute the package creator can change conan’s build behavior. The allowed build_policy
values are:

• missing: If this package is not found as a binary package, Conan will build it from source.

• always: This package will always be built from source, also retrieving the source code each time by executing
the “source” method.

class PocoTimerConan(ConanFile):
build_policy = "always" # "missing"

short_paths

This attribute is specific to Windows, and ignored on other operating systems. It tells Conan to workaround the limi-
tation of 260 chars in Windows paths.

Important: Since Windows 10 (ver. 10.0.14393), it is possible to enable long paths at the system level.
Latest python 2.x and 3.x installers enable this by default. With the path limit removed both on the OS and
on Python, the short_paths functionality becomes unnecessary, and can be disabled explicitly through the
CONAN_USER_HOME_SHORT environment variable.

Enabling short paths management will “link” the source and build directories of the package to a different location,
in Windows it will be C:\.conan\tmpdir. All the folder layout in the local cache is maintained.

Set short_paths=True in your conanfile.py:

17.3. conanfile.py 439

https://docs.microsoft.com/es-es/windows/win32/fileio/naming-a-file#maximum-path-length-limitation

Conan Documentation, Release 1.31.4

from conans import ConanFile

class ConanFileTest(ConanFile):
...
short_paths = True

See also:

There is an environment variable CONAN_USE_ALWAYS_SHORT_PATHS to force activate this behavior for all packages.

This behavior will also work in Cygwin, the short folder directory will be /home/<user>/.conan_short by default,
but it can be modified as we’ve explained before.

no_copy_source

The attribute no_copy_source tells the recipe that the source code will not be copied from the source folder to the
build folder. This is mostly an optimization for packages with large source codebases, to avoid extra copies. It is
mandatory that the source code must not be modified at all by the configure or build scripts, as the source code will
be shared among all builds.

To be able to use it, the package recipe can access the self.source_folder attribute, which will point to
the build folder when no_copy_source=False or not defined, and will point to the source folder when
no_copy_source=True

When this attribute is set to True, the self.copy() lines will be called twice, one copying from the source folder
and the other copying from the build folder.

source_folder

The folder in which the source code lives.

When a package is built in the Conan local cache its value is the same as the build folder by default. This is due to the
fact that the source code is copied from the source folder to the build folder to ensure isolation and avoiding modifi-
cations of shared common source code among builds for different configurations. Only when no_copy_source=True
this folder will actually point to the package source folder in the local cache.

When executing Conan commands in the Package development flow like conan source, this attribute will be pointing
to the folder specified in the command line.

install_folder

The folder in which the installation of packages outputs the generator files with the information of dependencies. By
default in the the local cache its value is the same as self.build_folder one.

When executing Conan commands in the Package development flow like conan install or conan build, this at-
tribute will be pointing to the folder specified in the command line.

440 Chapter 17. Reference

Conan Documentation, Release 1.31.4

build_folder

The folder used to build the source code. In the local cache a build folder is created with the name of the package ID
that will be built.

When executing Conan commands in the Package development flow like conan build, this attribute will be pointing
to the folder specified in the command line.

package_folder

The folder to copy the final artifacts for the binary package. In the local cache a package folder is created for every
different package ID.

When executing Conan commands in the Package development flow like conan package, this attribute will be pointing
to the folder specified in the command line.

recipe_folder

The folder where the recipe conanfile.py is stored, either in the local folder or in the cache. This is useful in order to
access files that are exported along with the recipe.

cpp_info

Important: This attribute is only defined inside package_info() method being None elsewhere.

The self.cpp_info attribute is responsible for storing all the information needed by consumers of a package: include
directories, library names, library paths. . . There are some default values that will be applied automatically if not
indicated otherwise.

This object should be filled in package_info() method.

17.3. conanfile.py 441

Conan Documentation, Release 1.31.4

NAME DESCRIPTION
self.cpp_info.includedirs Ordered list with include paths. Defaulted to

["include"]
self.cpp_info.libdirs Ordered list with lib paths. Defaulted to ["lib"]
self.cpp_info.resdirs Ordered list of resource (data) paths. Defaulted to

["res"]
self.cpp_info.bindirs Ordered list with paths to binaries (executables, dynamic

libraries,. . .). Defaulted to ["bin"]
self.cpp_info.builddirs

Ordered list with build scripts directory paths.
Defaulted to [""] (Package folder directory)
CMake generators will search in these dirs for files like
findXXX.cmake

self.cpp_info.libs Ordered list with the library names, Defaulted to []
(empty)

self.cpp_info.defines Preprocessor definitions. Defaulted to [] (empty)
self.cpp_info.cflags Ordered list with pure C flags. Defaulted to [] (empty)
self.cpp_info.cppflags [DEPRECATED: Use cxxflags instead]
self.cpp_info.cxxflags Ordered list with C++ flags. Defaulted to [] (empty)
self.cpp_info.sharedlinkflags Ordered list with linker flags (shared libs). Defaulted to

[] (empty)
self.cpp_info.exelinkflags Ordered list with linker flags (executables). Defaulted to

[] (empty)
self.cpp_info.frameworks Ordered list with the framework names (OSX), De-

faulted to [] (empty)
self.cpp_info.frameworkdirs Ordered list with frameworks search paths (OSX). De-

faulted to ["Frameworks"]
self.cpp_info.rootpath Filled with the root directory of the package, see

deps_cpp_info
self.cpp_info.name

Alternative name for the package used by generators to
create files or variables.
Defaulted to the package name. Supported by cmake,
cmake_multi, cmake_find_package,
cmake_find_package_multi, cmake_paths and
pkg_config generators.

self.cpp_info.names[“generator”]

Alternative name for the package used by an specific
generator to create files or variables.
If set for a generator it will overrite the information
provided by self.cpp_info.name.
Like the cpp_info.name, this is only supported by
cmake, cmake_multi, cmake_find_package,
cmake_find_package_multi, cmake_paths and
pkg_config generators.

self.cpp_info.filenames[“generator”]

Alternative name for the filename produced by a
specific generator. If set for a generator it will
override the “names” value (which itself overrides
self.cppinfo.name). This is only supported by
the cmake_find_package and
cmake_find_package_multi generators.

self.cpp_info.system_libs Ordered list with the system library names. Defaulted to
[] (empty)

self.cpp_info.build_modules

List of relative paths to build system related utility
module files created by the package. Used by
CMake generators to export .cmake files with functions
for consumers. Defaulted to [] (empty)

self.cpp_info.components

[Experimental] Dictionary with different components
a package may have: libraries, executables. . .
Warning: Using components with other cpp_info
non-default values or configs is not supported

self.cpp_info.requires

[Experimental] List of components to consume from
requirements (it applies only to
generators that implements components feature).
Warning: If declared, only the components listed here
will used by the linker and consumers.

442 Chapter 17. Reference

Conan Documentation, Release 1.31.4

The paths of the directories in the directory variables indicated above are relative to the self.package_folder directory.

Warning: Components is a experimental feature subject to breaking changes in future releases.

Using components you can achieve a more fine-grained control over individual libraries available in a single Conan
package. Components allow you define a cpp_info like object per each of those libraries and also requirements
between them and to components of other packages (the following case is not a real example):

def package_info(self):
self.cpp_info.name = "OpenSSL"
self.cpp_info.components["crypto"].names["cmake_find_package"] = "Crypto"
self.cpp_info.components["crypto"].libs = ["libcrypto"]
self.cpp_info.components["crypto"].defines = ["DEFINE_CRYPTO=1"]
self.cpp_info.components["crypto"].requires = ["zlib::zlib"] # Depends on all␣

→˓components in zlib package

self.cpp_info.components["ssl"].names["cmake"] = "SSL"
self.cpp_info.components["ssl"].includedirs = ["include/headers_ssl"]
self.cpp_info.components["ssl"].libs = ["libssl"]
self.cpp_info.components["ssl"].requires = ["crypto",

"boost::headers"] # Depends on headers␣
→˓component in boost package

The interface of the Component object is the same as the one used by the cpp_info object and has the same default
directories.

Warning: Using components and global cpp_info non-default values or release/debug configurations at the same
time is not allowed (except for self.cpp_info.name and self.cpp_info.names).

Dependencies among components and to components of other requirements can be defined using the requires at-
tribute and the name of the component. The dependency graph for components will be calculated and values will be
aggregated in the correct order for each field.

See also:

Read Using Components and package_info() to learn more.

17.3. conanfile.py 443

Conan Documentation, Release 1.31.4

deps_cpp_info

Contains the cpp_info object of the requirements of the recipe. In addition of the above fields, there are also properties
to obtain the absolute paths, and name and version attributes:

NAME DESCRIPTION
self.deps_cpp_info[“dep”].include_paths “dep” package includedirs but transformed to abso-

lute paths
self.deps_cpp_info[“dep”].lib_paths “dep” package libdirs but transformed to absolute

paths
self.deps_cpp_info[“dep”].bin_paths “dep” package bindirs but transformed to absolute

paths
self.deps_cpp_info[“dep”].build_paths “dep” package builddirs but transformed to absolute

paths
self.deps_cpp_info[“dep”].res_paths “dep” package resdirs but transformed to absolute

paths
self.deps_cpp_info[“dep”].framework_paths “dep” package frameworkdirs but transformed to ab-

solute paths
self.deps_cpp_info[“dep”].build_modules_paths “dep” package build_modules but transformed to ab-

solute paths
self.deps_cpp_info[“dep”].get_name(“<generator>”) Get the name declared for the given generator
self.deps_cpp_info[“dep”].version Get the version of the “dep” package
self.deps_cpp_info[“dep”].components

[Experimental] Dictionary with different components
a package
may have: libraries, executables. . .

To get a list of all the dependency names from deps_cpp_info, you can call the deps member:

class PocoTimerConan(ConanFile):
...
def build(self):

deps is a list of package names: ["poco", "zlib", "openssl"]
deps = self.deps_cpp_info.deps

It can be used to get information about the dependencies, like used compilation flags or the root folder of the package:

class PocoTimerConan(ConanFile):
...
requires = "zlib/1.2.11", "openssl/1.0.2u"
...

def build(self):
Get the directory where zlib package is installed
self.deps_cpp_info["zlib"].rootpath

Get the absolute paths to zlib include directories (list)
self.deps_cpp_info["zlib"].include_paths

Get the sharedlinkflags property from OpenSSL package
self.deps_cpp_info["openssl"].sharedlinkflags

444 Chapter 17. Reference

Conan Documentation, Release 1.31.4

Note: If using the experimental feature with different context for host and build, this attribute will contain only
information from packages in the host context.

env_info

This attribute is only defined inside package_info() method, being None elsewhere, so please use it only inside this
method.

The self.env_info object can be filled with the environment variables to be declared in the packages reusing the
recipe.

See also:

Read package_info() method docs for more info.

deps_env_info

You can access to the declared environment variables of the requirements of the recipe.

Note: The environment variables declared in the requirements of a recipe are automatically applied and it can be
accessed with the python os.environ dictionary. Nevertheless if you want to access to the variable declared by some
specific requirement you can use the self.deps_env_info object.

import os

class RecipeConan(ConanFile):
...
requires = "package1/1.0@conan/stable", "package2/1.2@conan/stable"
...

def build(self):
Get the SOMEVAR environment variable declared in the "package1"
self.deps_env_info["package1"].SOMEVAR

Access to the environment variables globally
os.environ["SOMEVAR"]

Note: If using the experimental feature with different context for host and build, this attribute will contain only
information from packages in the build context.

user_info

This attribute is only defined inside package_info() method, being None elsewhere, so please use it only inside this
method.

The self.user_info object can be filled with any custom variable to be accessed in the packages reusing the recipe.

See also:

Read package_info() method docs for more info.

17.3. conanfile.py 445

Conan Documentation, Release 1.31.4

deps_user_info

You can access the declared user_info.XXX variables of the requirements through the self.deps_user_info object
like this:

import os

class RecipeConan(ConanFile):
...
requires = "package1/1.0@conan/stable"
...

def build(self):
self.deps_user_info["package1"].SOMEVAR

Note: If using the experimental feature with different context for host and build, this attribute will contain only
information from packages in the host context. Use user_info_build to access information from packages that belong
to build context.

user_info_build

Warning: This section refers to the experimental feature that is activated when using --profile:build and
--profile:host in the command-line. It is currently under development, features can be added or removed in
the following versions.

This attribute offers the information declared in the user_info.XXXX variables of the requirements that belong to the
build context, it is available only if Conan is invoked with two profiles (see this section to know more about this feature.

import os

class RecipeConan(ConanFile):
...
build_requires = "tool/1.0"
...

def build(self):
self.user_info_build["tool"].SOMEVAR

info

Object used to control the unique ID for a package. Check the package_id() to see the details of the self.info object.

446 Chapter 17. Reference

Conan Documentation, Release 1.31.4

apply_env

When True (Default), the values from self.deps_env_info (corresponding to the declared env_info in the
requires and build_requires) will be automatically applied to the os.environ.

Disable it setting apply_env to False if you want to control by yourself the environment variables applied to your
recipes.

You can apply manually the environment variables from the requires and build_requires:

import os
from conans import tools

class RecipeConan(ConanFile):
apply_env = False

def build(self):
with tools.environment_append(self.env):

The same if we specified apply_env = True
pass

in_local_cache

A boolean attribute useful for conditional logic to apply in user folders local commands. It will return True if the
conanfile resides in the local cache (we are installing the package) and False if we are running the conanfile in a user
folder (local Conan commands).

import os

class RecipeConan(ConanFile):
...

def build(self):
if self.in_local_cache:

we are installing the package
else:

we are building the package in a local directory

develop

A boolean attribute useful for conditional logic. It will be True if the package is created with conan create, or if the
conanfile.py is in user space:

class RecipeConan(ConanFile):

def build(self):
if self.develop:

self.output.info("Develop mode")

It can be used for conditional logic in other methods too, like requirements(), package(), etc.

This recipe will output “Develop mode” if:

17.3. conanfile.py 447

Conan Documentation, Release 1.31.4

$ conan create . user/testing
or
$ mkdir build && cd build && conan install ..
$ conan build ..

But it will not output that when it is a transitive requirement or installed with conan install.

keep_imports

Just before the build() method is executed, if the conanfile has an imports() method, it is executed into the build
folder, to copy binaries from dependencies that might be necessary for the build() method to work. After the method
finishes, those copied (imported) files are removed, so they are not later unnecessarily repackaged.

This behavior can be avoided declaring the keep_imports=True attribute. This can be useful, for example to repack-
age artifacts

scm

Warning: This is an experimental feature subject to breaking changes in future releases. Although this is an
experimental feature, the use of the feature using scm_to_conandata is considered stable.

Used to clone/checkout a repository. It is a dictionary with the following possible values:

from conans import ConanFile, CMake, tools

class HelloConan(ConanFile):
scm = {

"type": "git",
"subfolder": "hello",
"url": "https://github.com/conan-io/hello.git",
"revision": "master"

}
...

• type (Required): Currently only git and svn are supported. Others can be added eventually.

• url (Required): URL of the remote or auto to capture the remote from the local working copy (credentials will
be removed from it). When type is svn it can contain the peg_revision.

• revision (Required): id of the revision or auto to capture the current working copy one. When type is git, it
can also be the branch name or a tag.

• subfolder (Optional, Defaulted to .): A subfolder where the repository will be cloned.

• username (Optional, Defaulted to None): When present, it will be used as the login to authenticate with the
remote.

• password (Optional, Defaulted to None): When present, it will be used as the password to authenticate with the
remote.

• verify_ssl (Optional, Defaulted to True): Verify SSL certificate of the specified url.

• shallow (Optional, Defaulted to True): Use shallow clone for Git repositories.

• submodule (Optional, Defaulted to None):

448 Chapter 17. Reference

http://svnbook.red-bean.com/en/1.7/svn.advanced.pegrevs.html

Conan Documentation, Release 1.31.4

– shallow: Will sync the git submodules using submodule sync

– recursive: Will sync the git submodules using submodule sync --recursive

Attributes type, url and revision are required to upload the recipe to a remote server.

SCM attributes are evaluated in the working directory where the conanfile.py is located before exporting it to the Conan
cache, so these values can be returned from arbitrary functions that depend on the local directory. Nevertheless, all the
other code in the recipe must be able to run in the export folder inside the cache, where it has access only to the files
exported (see attribute exports and conandata.yml) and to any other functionality from a python_requires package.

Warning: By default, in Conan v1.x the information after evaluating the attribute scm will be stored in the
conanfile.py file (the recipe will be modified when exported to the Conan cache) and any value will be written
in plain text (watch out about passwords). However, you can activate the scm_to_conandata config option, the
conanfile.py won’t be modified (data is stored in a different file) and the fields username and password won’t be
stored, so these one will be computed each time the recipe is loaded.

Note: In case of git, by default conan will try to perform shallow clone of the repository, and will fallback to the full
clone in case shallow fails (e.g. not supported by the server).

To know more about the usage of scm check:

• Creating packages/Recipe and sources in a different repo

• Creating packages/Recipe and sources in the same repo

revision_mode

Warning: This attribute is part of the package revisions feature, so it is also an experimental feature subject to
breaking changes in future releases.

This attribute allow each recipe to declare how the revision for the recipe itself should be computed. It can take two
different values:

• "hash" (by default): Conan will use the checksum hash of the recipe manifest to compute the revision for the
recipe.

• "scm": the commit ID will be used as the recipe revision if it belongs to a known repository system (Git or
SVN). If there is no repository it will raise an error.

python_requires (legacy)

Warning: This attribute has been superseded by the new Python requires. Even if this is an experimental feature
subject to breaking changes in future releases, this legacy python_requires syntax has not been removed yet, but
it will be removed in Conan 2.0.

Python requires are associated with the ConanFile declared in the recipe file, data from those imported recipes is
accessible using the python_requires attribute in the recipe itself. This attribute is a dictionary where the key is the
name of the python requires reference and the value is a dictionary with the following information:

17.3. conanfile.py 449

Conan Documentation, Release 1.31.4

• ref: full reference of the python requires.

• exports_folder: directory in the cache where the exported files are located.

• exports_sources_folder: directory in the cache where the files exported using the exports_sources at-
tribute of the python requires recipe are located.

You can use this information to copy files accompanying a python requires to the consumer workspace.:

from conans import ConanFile

class PyReq(ConanFile):
name = "pyreq"
exports_sources = "CMakeLists.txt"

def source(self):
pyreq = self.python_requires['pyreq']
path = os.path.join(pyreq.exports_sources_folder, "CMakeLists.txt")
shutil.copy(src=path, dst=self.source_folder)

python_requires

Warning: This is an experimental feature subject to breaking changes in future releases.

This class attribute allows to define a dependency to another Conan recipe and reuse its code. Its basic syntax is:

from conans import ConanFile

class Pkg(ConanFile):
python_requires = "pyreq/0.1@user/channel" # recipe to reuse code from

def build(self):
self.python_requires["pyreq"].module # access to the whole conanfile.py module
self.python_requires["pyreq"].module.myvar # access to a variable
self.python_requires["pyreq"].module.myfunct() # access to a global function
self.python_requires["pyreq"].path # access to the folder where the reused file␣

→˓is

Read more about this attribute in Python requires

python_requires_extend

Warning: This is an experimental feature subject to breaking changes in future releases.

This class attribute defines one or more classes that will be injected in runtime as base classes of the recipe class.
Syntax for each of these classes should be a string like pyreq.MyConanfileBase where the pyreq is the name of a
python_requires and MyConanfileBase is the name of the class to use.

450 Chapter 17. Reference

Conan Documentation, Release 1.31.4

from conans import ConanFile

class Pkg(ConanFile):
python_requires = "pyreq/0.1@user/channel", "utils/0.1@user/channel"
python_requires_extend = "pyreq.MyConanfileBase", "utils.UtilsBase" # class/es to␣

→˓inject

Read more about this attribute in Python requires

conan_data

This attribute is a dictionary with the keys and values provided in a conandata.yml file format placed next to the
conanfile.py. This YAML file is automatically exported with the recipe and automatically loaded with it too.

You can declare information in the conandata.yml file and then access it inside any of the methods of the recipe. For
example, a conandata.yml with information about sources that looks like this:

sources:
"1.1.0":
url: "https://www.url.org/source/mylib-1.0.0.tar.gz"
sha256: "8c48baf3babe0d505d16cfc0cf272589c66d3624264098213db0fb00034728e9"

"1.1.1":
url: "https://www.url.org/source/mylib-1.0.1.tar.gz"
sha256: "15b6393c20030aab02c8e2fe0243cb1d1d18062f6c095d67bca91871dc7f324a"

def source(self):
tools.get(**self.conan_data["sources"][self.version])

deprecated

Warning: This is an experimental feature subject to breaking changes in future releases.

This attribute declares that the recipe is deprecated, causing a user-friendly warning message to be emitted whenever
it is used. For example, the following code:

from conans import ConanFile

class Pkg(ConanFile):
name = "cpp-taskflow"
version = "1.0"
deprecated = True

may emit a warning like:

cpp-taskflow/1.0: WARN: Recipe 'cpp-taskflow/1.0' is deprecated. Please, consider␣
→˓changing your requirements.

Optionally, the attribute may specify the name of the suggested replacement:

17.3. conanfile.py 451

Conan Documentation, Release 1.31.4

from conans import ConanFile

class Pkg(ConanFile):
name = "cpp-taskflow"
version = "1.0"
deprecated = "taskflow"

This will emit a warning like:

cpp-taskflow/1.0: WARN: Recipe 'cpp-taskflow/1.0' is deprecated in favor of 'taskflow'.␣
→˓Please, consider changing your requirements.

If the value of the attribute evaluates to False, no warning is printed.

provides

Warning: This is an experimental feature subject to breaking changes in future releases.

This attribute declares that the recipe provides the same functionality as other recipe(s). The attribute is usually needed
if two or more libraries implement the same API to prevent link-time and run-time conflicts (ODR violations). One
typical situation is forked libraries.

Some examples are:

• LibreSSL, BoringSSL and OpenSSL

• libav and ffmpeg

• MariaDB client and MySQL client

If Conan encounters two or more libraries providing the same functionality within a single graph, it raises an error:

At least two recipes provides the same functionality:
- 'libjpeg' provided by 'libjpeg/9d', 'libjpeg-turbo/2.0.5'

The attribute value should be a string with a recipe name or a tuple of such recipe names.

For example, to declare that libjpeg-turbo recipe offers the same functionality as libjpeg recipe, the following
code could be used:

from conans import ConanFile

class LibJpegTurbo(ConanFile):
name = "libjpeg-turbo"
version = "1.0"
provides = "libjpeg"

To declare that a recipe provides the functionality of several different recipes at the same time, the following code could
be used:

from conans import ConanFile

class OpenBLAS(ConanFile):
name = "openblas"

(continues on next page)

452 Chapter 17. Reference

https://www.libressl.org/
https://boringssl.googlesource.com/boringssl/
https://www.openssl.org/
https://libav.org/
https://ffmpeg.org/
https://downloads.mariadb.org/client-native
https://dev.mysql.com/downloads/c-api/

Conan Documentation, Release 1.31.4

(continued from previous page)

version = "1.0"
provides = "cblas", "lapack"

If the attribute is omitted, the value of the attribute is assumed to be equal to the current package name. Thus, it’s
redundant for libjpeg recipe to declare that it provides libjpeg, it’s already implicitly assumed by Conan.

17.3.2 Methods

source()

Method used to retrieve the source code from any other external origin like github using $ git clone or just a regular
download.

For example, “exporting” the source code files, together with the conanfile.py file, can be handy if the source code is
not under version control. But if the source code is available in a repository, you can directly get it from there:

from conans import ConanFile

class HelloConan(ConanFile):
name = "hello"
version = "0.1"
settings = "os", "compiler", "build_type", "arch"

def source(self):
self.run("git clone https://github.com/conan-io/hello.git")
You can also change branch, commit or whatever
self.run("cd hello && git checkout 2fe5...")
#
Or using the Git class:
git = tools.Git(folder="hello")
git.clone("https://github.com/conan-io/hello.git")

This will work, as long as git is in your current path (so in Win you probably want to run things in msysgit, cmder,
etc). You can also use another VCS or direct download/unzip. For that purpose, we have provided some helpers, but
you can use your own code or origin as well. This is a snippet of the conanfile of the Poco library:

from conans import ConanFile
from conans.tools import download, unzip, check_md5, check_sha1, check_sha256
import os
import shutil

class PocoConan(ConanFile):
name = "poco"
version = "1.6.0"

def source(self):
zip_name = "poco-1.6.0-release.zip"
download("https://github.com/pocoproject/poco/archive/poco-1.6.0-release.zip",␣

→˓zip_name)
check_md5(zip_name, "51e11f2c02a36689d6ed655b6fff9ec9")
check_sha1(zip_name, "8d87812ce591ced8ce3a022beec1df1c8b2fac87")
check_sha256(zip_name,

(continues on next page)

17.3. conanfile.py 453

Conan Documentation, Release 1.31.4

(continued from previous page)

→˓"653f983c30974d292de58444626884bee84a2731989ff5a336b93a0fef168d79")
unzip(zip_name)
shutil.move("poco-poco-1.6.0-release", "poco")
os.unlink(zip_name)

The download, unzip utilities can be imported from conan, but you can also use your own code here to retrieve source
code from any origin. You can even create packages for pre-compiled libraries you already have, even if you don’t
have the source code. You can download the binaries, skip the build() method and define your package() and
package_info() accordingly.

You can also use check_md5(), check_sha1() and check_sha256() from the tools module to verify that a package
is downloaded correctly.

Note: It is very important to recall that the source() method will be executed just once, and the source code will
be shared for all the package builds. So it is not a good idea to conditionally use settings or options to make changes
or patches on the source code. Maybe the only setting that makes sense is the OS self.settings.os, if not doing
cross-building, for example to retrieve different sources:

def source(self):
if platform.system() == "Windows":

download some Win source zip
else:

download sources from Nix systems in a tgz

If you need to patch the source code or build scripts differently for different variants of your packages, you can do it in
the build() method, which uses a different folder and source code copy for each variant.

def build(self):
tools.patch(patch_file="0001-fix.patch")

build()

This method is used to build the source code of the recipe using the desired commands. You can use your command
line tools to invoke your build system or any of the build helpers provided with Conan.

def build(self):
cmake = CMake(self)
self.run("cmake . %s" % (cmake.command_line))
self.run("cmake --build . %s" % cmake.build_config)

Build helpers

You can use these classes to prepare your build system’s command invocation:

• CMake: Prepares the invocation of cmake command with your settings.

• AutoToolsBuildEnvironment: If you are using configure/Makefile to build your project you can use this helper.
Read more: Building with Autotools.

454 Chapter 17. Reference

Conan Documentation, Release 1.31.4

• MSBuild: If you are using Visual Studio compiler directly to build your project you can use this helper MS-
Build(). For lower level control, the VisualStudioBuildEnvironment can also be used: VisualStudioBuildEn-
vironment.

(Unit) Testing your library

We have seen how to run package tests with conan, but what if we want to run full unit tests on our library before
packaging, so that they are run for every build configuration? Nothing special is required here. We can just launch the
tests from the last command in our build() method:

def build(self):
cmake = CMake(self)
cmake.configure()
cmake.build()
here you can run CTest, launch your binaries, etc
cmake.test()

package()

The actual creation of the package, once that it is built, is done in the package() method. Using the self.copy()
method, artifacts are copied from the build folder to the package folder.

The syntax of self.copy inside package() is as follows:

self.copy(pattern, dst="", src="", keep_path=True, symlinks=None, excludes=None, ignore_
→˓case=True)

Returns: A list with absolute paths of the files copied in the destination folder.

Parameters:

• pattern (Required): A pattern following fnmatch syntax of the files you want to copy, from the build to the
package folders. Typically something like *.lib or *.h.

• src (Optional, Defaulted to ""): The folder where you want to search the files in the build folder. If you
know that your libraries when you build your package will be in build/lib, you will typically use build/lib
in this parameter. Leaving it empty means the root build folder in local cache.

• dst (Optional, Defaulted to ""): Destination folder in the package. They will typically be include for
headers, lib for libraries and so on, though you can use any convention you like. Leaving it empty means
the root package folder in local cache.

• keep_path (Optional, Defaulted to True): Means if you want to keep the relative path when you copy the
files from the src folder to the dst one. Typically headers are packaged with relative path.

• symlinks (Optional, Defaulted to None): Set it to True to activate symlink copying, like typical lib.so-
>lib.so.9.

• excludes (Optional, Defaulted to None): Single pattern or a tuple of patterns to be excluded from the copy.
If a file matches both the include and the exclude pattern, it will be excluded.

• ignore_case (Optional, Defaulted to True): If enabled, it will do a case-insensitive pattern matching.

For example:

self.copy("*.h", "include", "build/include") #keep_path default is True

17.3. conanfile.py 455

Conan Documentation, Release 1.31.4

The final path in the package will be: include/mylib/path/header.h, and as the include is usually added to the
path, the includes will be in the form: #include "mylib/path/header.h" which is something desired.

keep_path=False is something typically desired for libraries, both static and dynamic. Some compilers as MSVC,
put them in paths as Debug/x64/MyLib/Mylib.lib. Using this option, we could write:

self.copy("*.lib", "lib", "", keep_path=False)

And it will copy the lib to the package folder lib/Mylib.lib, which can be linked easily.

Note: If you are using CMake and you have an install target defined in your CMakeLists.txt, you might be able to
reuse it for this package() method. Please check How to reuse cmake install for package() method.

This method copies files from build/source folder to the package folder depending on two situations:

• Build folder and source folder are the same: Normally during conan create source folder content is copied
to the build folder. In this situation src parameter of self.copy() will be relative to the build folder in the
local cache.

• Build folder is different from source folder: When developing a package recipe and source and build
folder are different (conan package . --source-folder=source --build-folder=build) or when
no_copy_source is defined, every self.copy() is internally called twice: One will copy from the source folder
(src parameter of self.copy() will point to the source folder), and the other will copy from the build folder
(src parameter of self.copy() will point to the build folder).

package_info()

cpp_info

Each package has to specify certain build information for its consumers. This can be done in the cpp_info attribute
within the package_info() method.

The cpp_info attribute has the following properties you can assign/append to:

self.cpp_info.name = "<PKG_NAME>"
self.cpp_info.names["generator_name"] = "<PKG_NAME>"
self.cpp_info.includedirs = ['include'] # Ordered list of include paths
self.cpp_info.libs = [] # The libs to link against
self.cpp_info.system_libs = [] # System libs to link against
self.cpp_info.libdirs = ['lib'] # Directories where libraries can be found
self.cpp_info.resdirs = ['res'] # Directories where resources, data, etc. can be found
self.cpp_info.bindirs = ['bin'] # Directories where executables and shared libs can be␣
→˓found
self.cpp_info.srcdirs = [] # Directories where sources can be found (debugging, reusing␣
→˓sources)
self.cpp_info.build_modules = [] # Build system utility module files
self.cpp_info.defines = [] # preprocessor definitions
self.cpp_info.cflags = [] # pure C flags
self.cpp_info.cxxflags = [] # C++ compilation flags
self.cpp_info.sharedlinkflags = [] # linker flags
self.cpp_info.exelinkflags = [] # linker flags
self.cpp_info.components # Dictionary with the different components a package may have
self.cpp_info.requires = None # List of components from requirements

456 Chapter 17. Reference

Conan Documentation, Release 1.31.4

• name: Alternative name for the package to be used by generators.

• includedirs: List of relative paths (starting from the package root) of directories where headers can be found.
By default it is initialized to ['include'], and it is rarely changed.

• libs: Ordered list of libs the client should link against. Empty by default, it is common that different configura-
tions produce different library names. For example:

def package_info(self):
if not self.settings.os == "Windows":

self.cpp_info.libs = ["libzmq-static.a"] if self.options.static else [
→˓"libzmq.so"]
else:

...

• libdirs: List of relative paths (starting from the package root) of directories in which to find library object binaries
(*.lib, *.a, *.so, *.dylib). By default it is initialized to ['lib'], and it is rarely changed.

• resdirs: List of relative paths (starting from the package root) of directories in which to find resource files
(images, xml, etc). By default it is initialized to ['res'], and it is rarely changed.

• bindirs: List of relative paths (starting from the package root) of directories in which to find library runtime
binaries (like Windows .dlls). By default it is initialized to ['bin'], and it is rarely changed.

• srcdirs: List of relative paths (starting from the package root) of directories in which to find sources (like .c,
.cpp). By default it is empty. It might be used to store sources (for later debugging of packages, or to reuse those
sources building them in other packages too).

• build_modules: List of relative paths to build system related utility module files created by the pack-
age. Used by CMake generators to include .cmake files with functions for consumers. e.g: self.
cpp_info.build_modules.append("cmake/myfunctions.cmake"). Those files will be included auto-
matically in cmake/cmake_multi generators when using conan_basic_setup() and will be automatically added
in cmake_find_package/cmake_find_package_multi generators when find_package() is used.

• defines: Ordered list of preprocessor directives. It is common that the consumers have to specify some sort of
defines in some cases, so that including the library headers matches the binaries.

• system_libs: Ordered list of system libs the consumer should link against. Empty by default.

• cflags, cxxflags, sharedlinkflags, exelinkflags: List of flags that the consumer should activate for proper behav-
ior. Usage of C++11 could be configured here, for example, although it is true that the consumer may want to do
some flag processing to check if different dependencies are setting incompatible flags (c++11 after c++14).

if self.options.static:
if self.settings.compiler == "Visual Studio":

self.cpp_info.libs.append("ws2_32")
self.cpp_info.defines = ["ZMQ_STATIC"]

if not self.settings.os == "Windows":
self.cpp_info.cxxflags = ["-pthread"]

Note that due to the way that some build systems, like CMake, manage forward and back slashes, it might be
more robust passing flags for Visual Studio compiler with dash instead. Using "/NODEFAULTLIB:MSVCRT", for
example, might fail when using CMake targets mode, so the following is preferred and works both in the global
and targets mode of CMake:

def package_info(self):
self.cpp_info.exelinkflags = ["-NODEFAULTLIB:MSVCRT",

"-DEFAULTLIB:LIBCMT"]

17.3. conanfile.py 457

Conan Documentation, Release 1.31.4

• name: Alternative name for the package so generators can take into account in order to generate targets or file
names.

• components: [Experimental] Dictionary with names as keys and a component object as value to model the
different components a package may have: libraries, executables. . . Read more about this feature at Using Com-
ponents.

• requires: [Experimental] List of components from the requirements this package (and its consumers) should
link with. It will be used by generators that add support for components features (Using Components).

If your recipe has requirements, you can access to the information stored in the cpp_info of your requirements using
the deps_cpp_info object:

class OtherConan(ConanFile):
name = "OtherLib"
version = "1.0"
requires = "MyLib/1.6.0@conan/stable"

def build(self):
self.output.warn(self.deps_cpp_info["MyLib"].libdirs)

Note: Please take into account that defining self.cpp_info.bindirs directories, does not have any effect on system
paths, PATH environment variable, nor will be directly accessible by consumers. self.cpp_info information is trans-
lated to build-systems information via generators, for example for CMake, it will be a variable in conanbuildinfo.
cmake. If you want a package to make accessible its executables to its consumers, you have to specify it with self.
env_info as described in env_info.

env_info

Each package can also define some environment variables that the package needs to be reused. It’s specially useful for
installer packages, to set the path with the “bin” folder of the packaged application. This can be done in the env_info
attribute within the package_info() method.

self.env_info.path.append("ANOTHER VALUE") # Append "ANOTHER VALUE" to the path variable
self.env_info.othervar = "OTHER VALUE" # Assign "OTHER VALUE" to the othervar variable
self.env_info.thirdvar.append("some value") # Every variable can be set or appended a␣
→˓new value

One of the most typical usages for the PATH environment variable, would be to add the current binary package direc-
tories to the path, so consumers can use those executables easily:

assuming the binaries are in the "bin" subfolder
self.env_info.PATH.append(os.path.join(self.package_folder, "bin"))

The virtualenv generator will use the self.env_info variables to prepare a script to activate/deactivate a virtual
environment. However, this could be directly done using the virtualrunenv generator.

They will be automatically applied before calling the consumer conanfile.py methods source(), build(), package()
and imports().

If your recipe has requirements, you can access to your requirements env_info as well using the deps_env_info
object.

458 Chapter 17. Reference

Conan Documentation, Release 1.31.4

class OtherConan(ConanFile):
name = "OtherLib"
version = "1.0"
requires = "MyLib/1.6.0@conan/stable"

def build(self):
self.output.warn(self.deps_env_info["MyLib"].othervar)

user_info

If you need to declare custom variables not related with C/C++ (cpp_info) and the variables are not environment
variables (env_info), you can use the self.user_info object.

Currently only the cmake, cmake_multi and txt generators supports user_info variables.

class MyLibConan(ConanFile):
name = "MyLib"
version = "1.6.0"

...

def package_info(self):
self.user_info.var1 = 2

For the example above, in the cmake and cmake_multi generators, a variable CONAN_USER_MYLIB_var1 will be
declared. If your recipe has requirements, you can access to your requirements user_info using the deps_user_info
object.

class OtherConan(ConanFile):
name = "OtherLib"
version = "1.0"
requires = "MyLib/1.6.0@conan/stable"

def build(self):
self.out.warn(self.deps_user_info["MyLib"].var1)

Important: Both env_info and user_info objects store information in a “key <-> value” form and the values are
always considered strings. This is done for serialization purposes to conanbuildinfo.txt files and to avoid the deserial-
ization of complex structures. It is up to the consumer to convert the string to the expected type:

In a dependency
self.user_info.jars="jar1.jar, jar2.jar, jar3.jar" # Use a string, not a list
...

In the dependent conanfile
jars = self.deps_user_info["Pkg"].jars
jar_list = jars.replace(" ", "").split(",")

17.3. conanfile.py 459

Conan Documentation, Release 1.31.4

set_name(), set_version()

Dynamically define name and version attributes in the recipe with these methods. The following example defines the
package name reading it from a name.txt file and the version from the branch and commit of the recipe’s repository.

These functions are executed after assigning the values of the name and version if they are provided from the command
line.

from conans import ConanFile, tools

class HelloConan(ConanFile):
def set_name(self):

Read the value from 'name.txt' if it is not provided in the command line
self.name = self.name or tools.load("name.txt")

def set_version(self):
git = tools.Git()
self.version = "%s_%s" % (git.get_branch(), git.get_revision())

The set_name() and set_version()methods should respectively set the self.name and self.version attributes.
These methods are only executed when the recipe is in a user folder (export, create and install <path> com-
mands).

The above example uses the current working directory as the one to resolve the relative “name.txt” path and the git
repository. That means that the “name.txt” should exist in the directory where conan was launched. To define a relative
path to the conanfile.py, irrespective of the current working directory it is necessary to do:

import os
from conans import ConanFile, tools

class HelloConan(ConanFile):
def set_name(self):

f = os.path.join(self.recipe_folder, "name.txt")
self.name = tools.load(f)

def set_version(self):
git = tools.Git(folder=self.recipe_folder)
self.version = "%s_%s" % (git.get_branch(), git.get_revision())

See also:

See more examples in this howto.

configure(), config_options()

If the package options and settings are related, and you want to configure either, you can do so in the configure()
and config_options() methods.

class MyLibConan(ConanFile):
name = "MyLib"
version = "2.5"
settings = "os", "compiler", "build_type", "arch"
options = {"static": [True, False],

"header_only": [True False]}

(continues on next page)

460 Chapter 17. Reference

Conan Documentation, Release 1.31.4

(continued from previous page)

def configure(self):
If header only, the compiler, etc, does not affect the package!
if self.options.header_only:

self.settings.clear()
self.options.remove("static")

The package has 2 options set, to be compiled as a static (as opposed to shared) library, and also not to involve any
builds, because header-only libraries will be used. In this case, the settings that would affect a normal build, and
even the other option (static vs shared) do not make sense, so we just clear them. That means, if someone consumes
MyLib with the header_only=True option, the package downloaded and used will be the same, irrespective of the
OS, compiler or architecture the consumer is building with.

You can also restrict the settings used deleting any specific one. For example, it is quite common for C libraries to
delete the compiler.libcxx and compiler.cppstd as your library does not depend on any C++ standard library:

def configure(self):
del self.settings.compiler.libcxx
del self.settings.compiler.cppstd

The most typical usage would be the one with configure()while config_options() should be used more sparingly.
config_options() is used to configure or constraint the available options in a package, before they are given a value.
So when a value is tried to be assigned it will raise an error. For example, let’s suppose that a certain package library
cannot be built as shared library in Windows, it can be done:

def config_options(self):
if self.settings.os == "Windows":

del self.options.shared

This will be executed before the actual assignment of options (then, such options values cannot be used inside this
function), so the command conan install -o Pkg:shared=True will raise an exception in Windows saying that
shared is not an option for such package.

Invalid configuration

Conan allows the recipe creator to declare invalid configurations, those that are known not to work with the library
being packaged. There is an especial kind of exception that can be raised from the configure() method to state
this situation: conans.errors.ConanInvalidConfiguration. Here it is an example of a recipe for a library that
doesn’t support Windows operating system:

def configure(self):
if self.settings.os != "Windows":

raise ConanInvalidConfiguration("Library MyLib is only supported for Windows")

This exception will be propagated and Conan application will finish with a special return code.

17.3. conanfile.py 461

Conan Documentation, Release 1.31.4

requirements()

Besides the requires field, more advanced requirement logic can be defined in the requirements() optional method,
using for example values from the package settings or options:

def requirements(self):
if self.options.myoption:

self.requires("zlib/1.2@drl/testing")
else:

self.requires("opencv/2.2@drl/stable")

This is a powerful mechanism for handling conditional dependencies.

When you are inside the method, each call to self.requires() will add the corresponding requirement to the current
list of requirements. It also has optional parameters that allow defining the special cases, as is shown below:

def requirements(self):
self.requires("zlib/1.2@drl/testing", private=True, override=False)

self.requires() parameters:

• override (Optional, Defaulted to False): True means that this is not an actual requirement, but something to be
passed upstream and override possible existing values.

• private (Optional, Defaulted to False): True means that this requirement will be somewhat embedded, and
totally hidden. It might be necessary in some extreme cases, like having to use two different versions of the
same library (provided that they are totally hidden in a shared library, for example), but it is mostly discouraged
otherwise.

Note: To prevent accidental override of transitive dependencies, check the config variable general.error_on_override
or the environment variable CONAN_ERROR_ON_OVERRIDE.

build_requirements()

Build requirements are requirements that are only installed and used when the package is built from sources. If there
is an existing pre-compiled binary, then the build requirements for this package will not be retrieved.

This method is useful for defining conditional build requirements, for example:

class MyPkg(ConanFile):

def build_requirements(self):
if self.settings.os == "Windows":

self.build_requires("tool_win/0.1@user/stable")

See also:

Build requirements

462 Chapter 17. Reference

Conan Documentation, Release 1.31.4

system_requirements()

It is possible to install system-wide packages from Conan. Just add a system_requirements() method to your
conanfile and specify what you need there.

For a special use case you can use also conans.tools.os_info object to detect the operating system, version and
distribution (Linux):

• os_info.is_linux: True if Linux.

• os_info.is_windows: True if Windows.

• os_info.is_macos: True if macOS.

• os_info.is_freebsd: True if FreeBSD.

• os_info.is_solaris: True if SunOS.

• os_info.os_version: OS version.

• os_info.os_version_name: Common name of the OS (Windows 7, Mountain Lion, Wheezy. . .).

• os_info.linux_distro: Linux distribution name (None if not Linux).

• os_info.bash_path: Returns the absolute path to a bash in the system.

• os_info.uname(options=None): Runs the “uname” command and returns the output. You can pass argu-
ments with the options parameter.

• os_info.detect_windows_subsystem(): Returns “MSYS”, “MSYS2”, “CYGWIN” or “WSL” if any of
these Windows subsystems are detected.

Warning: The values returned from some of these variables (linux_distro, os_version and
os_version_name) use the external dependency distro, values returned might be different from one version to
another, please check their changelog for bugfixes and new features.

You can also use SystemPackageTool class, that will automatically invoke the right system package tool: apt, yum,
dnf, pkg, pkgutil, brew and pacman depending on the system we are running.

from conans.tools import os_info, SystemPackageTool

def system_requirements(self):
pack_name = None
if os_info.linux_distro == "ubuntu":

if os_info.os_version > "12":
pack_name = "package_name_in_ubuntu_10"

else:
pack_name = "package_name_in_ubuntu_12"

elif os_info.linux_distro == "fedora" or os_info.linux_distro == "centos":
pack_name = "package_name_in_fedora_and_centos"

elif os_info.is_macos:
pack_name = "package_name_in_macos"

elif os_info.is_freebsd:
pack_name = "package_name_in_freebsd"

elif os_info.is_solaris:
pack_name = "package_name_in_solaris"

if pack_name:
(continues on next page)

17.3. conanfile.py 463

https://pypi.org/project/distro/

Conan Documentation, Release 1.31.4

(continued from previous page)

installer = SystemPackageTool()
installer.install(pack_name) # Install the package, will update the package␣

→˓database if pack_name isn't already installed

On Windows, there is no standard package manager, however choco can be invoked as an optional:

from conans.tools import os_info, SystemPackageTool, ChocolateyTool

def system_requirements(self):
if os_info.is_windows:

pack_name = "package_name_in_windows"
installer = SystemPackageTool(tool=ChocolateyTool()) # Invoke choco package␣

→˓manager to install the package
installer.install(pack_name)

SystemPackageTool

def SystemPackageTool(runner=None, os_info=None, tool=None, recommends=False,␣
→˓output=None, conanfile=None, default_mode="enabled")

Available tool classes: AptTool, YumTool, DnfTool, BrewTool, PkgTool, PkgUtilTool, ChocolateyTool, PacMan-
Tool.

Methods:

• add_repository(repository, repo_key=None): Add repository address in your current repo list.

• update(): Updates the system package manager database. It’s called automatically from the install()
method by default.

• install(packages, update=True, force=False): Installs the packages (could be a list or a string). If
update is True it will execute update() first if it’s needed. The packages won’t be installed if they are
already installed at least of force parameter is set to True. If packages is a list the first available package
will be picked (short-circuit like logical or). Note: This list of packages is intended for providing alter-
native names for the same package, to account for small variations of the name for the same package in
different distros. To install different packages, one call to install() per package is necessary.

• installed(package_name): Verify if package_name is actually installed. It returns True if it is installed,
otherwise False.

The use of sudo in the internals of the install() and update() methods is controlled by the
CONAN_SYSREQUIRES_SUDO environment variable, so if the users don’t need sudo permissions, it is easy to
opt-in/out.

When the environment variable CONAN_SYSREQUIRES_SUDO is not defined, Conan will try to use sudo if the following
conditions are met:

• sudo is available in the PATH.

• The platform name is posix and the UID (user id) is not 0

Also, when the environment variable CONAN_SYSREQUIRES_MODE is not defined, Conan will work as if its value
was enabled unless you pass the default_mode argument to the constructor of SystemPackageTool. In that case, it
will work as if CONAN_SYSREQUIRES_MODE had been defined to that value. If CONAN_SYSREQUIRES_MODE is defined,
it will take preference and the default_mode parameter will not affect. This can be useful when a recipe has system

464 Chapter 17. Reference

Conan Documentation, Release 1.31.4

requirements but we don’t want to automatically install them if the user has not defined CONAN_SYSREQUIRES_MODE
but to warn him about the missing requirements and allowing him to install them.

Conan will keep track of the execution of this method, so that it is not invoked again and again at every Conan command.
The execution is done per package, since some packages of the same library might have different system dependencies.
If you are sure that all your binary packages have the same system requirements, just add the following line to your
method:

def system_requirements(self):
self.global_system_requirements=True
if ...

To install multi-arch packages it is possible passing the desired architecture manually according your package manager:

name = "foobar"
platforms = {"x86_64": "amd64", "x86": "i386"}
installer = SystemPackageTool(tool=AptTool())
installer.install("%s:%s" % (name, platforms[self.settings.arch]))

However, it requires a boilerplate which could be automatically solved by your settings in ConanFile:

installer = SystemPackageTool(conanfile=self)
installer.install(name)

The SystemPackageTool is adapted to support possible prefixes and suffixes, according to the instance of the package
manager. It validates whether your current settings are configured for cross-building, and if so, it will update the package
name to be installed according to self.settings.arch.

imports()

Importing files copies files from the local store to your project. This feature is handy for copying shared libraries (dylib
in Mac, dll in Win) to the directory of your executable, so that you don’t have to mess with your PATH to run them.
But there are other use cases:

• Copy an executable to your project, so that it can be easily run. A good example is the Google’s protobuf code
generator.

• Copy package data to your project, like configuration, images, sounds. . . A good example is the OpenCV demo,
in which face detection XML pattern files are required.

Importing files is also very convenient in order to redistribute your application, as many times you will just have to
bundle your project’s bin folder.

A typical imports() method for shared libs could be:

def imports(self):
self.copy("*.dll", "", "bin")
self.copy("*.dylib", "", "lib")

The self.copy() method inside imports() supports the following arguments:

def copy(pattern, dst="", src="", root_package=None, folder=False, ignore_case=True,␣
→˓excludes=None, keep_path=True)

Parameters:

• pattern (Required): An fnmatch file pattern of the files that should be copied.

17.3. conanfile.py 465

Conan Documentation, Release 1.31.4

• dst (Optional, Defaulted to ""): Destination local folder, with reference to current directory, to which the
files will be copied.

• src (Optional, Defaulted to ""): Source folder in which those files will be searched. This folder will be
stripped from the dst parameter. E.g., lib/Debug/x86. It accepts symbolic folder names like @bindirs and
@libdirswhich will map to the self.cpp_info.bindirs and self.cpp_info.libdirs of the source
package, instead of a hardcoded name.

• root_package (Optional, Defaulted to all packages in deps): An fnmatch pattern of the package name
(“OpenCV”, “Boost”) from which files will be copied.

• folder (Optional, Defaulted to False): If enabled, it will copy the files from the local cache to a subfolder
named as the package containing the files. Useful to avoid conflicting imports of files with the same name
(e.g. License).

• ignore_case (Optional, Defaulted to True): If enabled, it will do a case-insensitive pattern matching.

• excludes (Optional, Defaulted to None): Allows defining a list of patterns (even a single pattern) to be
excluded from the copy, even if they match the main pattern.

• keep_path (Optional, Defaulted to True): Means if you want to keep the relative path when you copy the
files from the src folder to the dst one. Useful to ignore (keep_path=False) path of library.dll files in
the package it is imported from.

Example to collect license files from dependencies:

def imports(self):
self.copy("license*", dst="licenses", folder=True, ignore_case=True)

If you want to be able to customize the output user directory to work with both the cmake and cmake_multi generators,
then you can do:

def imports(self):
dest = os.getenv("CONAN_IMPORT_PATH", "bin")
self.copy("*.dll", dst=dest, src="bin")
self.copy("*.dylib*", dst=dest, src="lib")

And then use, for example: conan install . -e CONAN_IMPORT_PATH=Release -g cmake_multi

To import files from packages that have different layouts, for example a package uses folder libraries instead of lib,
or to import files from packages that could be in editable mode, a symbolic src argument can be provided:

def imports(self):
self.copy("*", src="@bindirs", dst="bin")
self.copy("*", src="@libdirs", dst="lib")

This will import all files from all the dependencies self.cpp_info.bindirs folders to the local “bin” folder, and all
files from the dependencies self.cpp_info.libdirs folders to the local “lib” folder. This include packages that are
in editable mode and declares [libdirs] and [bindirs] in their editable layouts.

When a conanfile recipe has an imports() method and it builds from sources, it will do the following:

• Before running build() it will execute imports() in the build folder, copying dependencies artifacts

• Run the build() method, which could use such imported binaries.

• Remove the copied (imported) artifacts after build() is finished.

You can use the keep_imports attribute to keep the imported artifacts, and maybe repackage them.

466 Chapter 17. Reference

Conan Documentation, Release 1.31.4

package_id()

Creates a unique ID for the package. Default package ID is calculated using settings, options and requires
properties. When a package creator specifies the values for any of those properties, it is telling that any value change
will require a different binary package.

However, sometimes a package creator would need to alter the default behavior, for example, to have only one binary
package for several different compiler versions. In that case you can set a custom self.info object implementing this
method and the package ID will be computed with the given information:

def package_id(self):
v = Version(str(self.settings.compiler.version))
if self.settings.compiler == "gcc" and (v >= "4.5" and v < "5.0"):

self.info.settings.compiler.version = "GCC 4 between 4.5 and 5.0"

Please, check the section Defining Package ABI Compatibility to get more details.

self.info

This self.info object stores the information that will be used to compute the package ID.

This object can be manipulated to reflect the information you want in the computation of the package ID. For example,
you can delete any setting or option:

def package_id(self):
del self.info.settings.compiler
del self.info.options.shared

self.info.header_only()

The package will always be the same, irrespective of the settings (OS, compiler or architecture), options and depen-
dencies.

def package_id(self):
self.info.header_only()

self.info.shared_library_package_id()

When a shared library links with a static library, the binary code of the later one is “embedded” or copied into the shared
library. That means that any change in the static library basically requires a new binary re-build of the shared one to
integrate those changes. Note that this doesn’t happen in the static-static and shared-shared library dependencies.

Use this shared_library_package_id() helper in the package_id() method:

def package_id(self):
self.info.shared_library_package_id()

This helper automatically detects if the current package has the shared option and it is True and if it is depending
on static libraries in other packages (having a shared option equal False or not having it, which means a header-
only library). Only then, any change in the dependencies will affect the package_id of this package, (internally,
package_revision_mode is applied to the dependencies). It is recommended its usage in packages that have the
shared option.

17.3. conanfile.py 467

Conan Documentation, Release 1.31.4

If you want to have in your dependency graph all static libraries or all shared libraries, (but not shared with embedded
static ones) it can be defined with a *:shared=True option in command line or profiles, but can also be defined in
recipes like:

def configure(self):
if self.options.shared:

self.options["*"].shared = True

Using both shared_library_package_id() and this configure() method is necessary for Conan-center packages
that have dependencies to compiled libraries and have the shared option.

self.info.vs_toolset_compatible() / self.info.vs_toolset_incompatible()

By default (vs_toolset_compatible() mode) Conan will generate the same binary package when the compiler is
Visual Studio and the compiler.toolsetmatches the specified compiler.version. For example, if we install some
packages specifying the following settings:

def package_id(self):
self.info.vs_toolset_compatible()
self.info.vs_toolset_incompatible()

compiler="Visual Studio"
compiler.version=14

And then we install again specifying these settings:

compiler="Visual Studio"
compiler.version=15
compiler.toolset=v140

The compiler version is different, but Conan will not install a different package, because the used toolchain
in both cases are considered the same. You can deactivate this default behavior using calling self.info.
vs_toolset_incompatible().

This is the relation of Visual Studio versions and the compatible toolchain:

Visual Studio Version Compatible toolset
15 v141
14 v140
12 v120
11 v110
10 v100
9 v90
8 v80

468 Chapter 17. Reference

https://github.com/conan-io/conan-center-index

Conan Documentation, Release 1.31.4

self.info.discard_build_settings() / self.info.include_build_settings()

By default (discard_build_settings()) Conan will generate the same binary when you change the os_build
or arch_build when the os and arch are declared respectively. This is because os_build represent the machine
running Conan, so, for the consumer, the only setting that matters is where the built software will run, not where is
running the compilation. The same applies to arch_build.

With self.info.include_build_settings(), Conan will generate different packages when you change the
os_build or arch_build.

def package_id(self):
self.info.discard_build_settings()
self.info.include_build_settings()

self.info.default_std_matching() / self.info.default_std_non_matching()

By default (default_std_matching()) Conan will detect the default C++ standard of your compiler to not generate
different binary packages.

For example, you already built some gcc 6.1 packages, where the default std is gnu14. If you specify a value for
the setting compiler.cppstd equal to the default one, gnu14, Conan won’t generate new packages, because it was
already the default of your compiler.

With self.info.default_std_non_matching(), Conan will generate different packages when you specify the
compiler.cppstd even if it matches with the default of the compiler being used:

def package_id(self):
self.info.default_std_non_matching()
self.info.default_std_matching()

Same behavior applies if you use the deprecated setting cppstd.

Compatible packages

The package_id() method serves to define the “canonical” binary package ID, the identifier of the binary that corre-
spond to the input configuration of settings and options. This canonical binary package ID will be always computed,
and Conan will check for its existence to be downloaded and installed.

If the binary of that package ID is not found, Conan lets the recipe writer define an ordered list of compatible package
IDs, of other configurations that should be binary compatible and can be used as a fallback. The syntax to do this is:

from conans import ConanFile

class Pkg(ConanFile):
settings = "os", "compiler", "arch", "build_type"

def package_id(self):
if self.settings.compiler == "gcc" and self.settings.compiler.version == "4.9":

compatible_pkg = self.info.clone()
compatible_pkg.settings.compiler.version = "4.8"
self.compatible_packages.append(compatible_pkg)

This will define that, if we try to install this package with gcc 4.9 and there isn’t a binary available for that configu-
ration, Conan will check if there is one available built with gcc 4.8 and use it. But not the other way round.

17.3. conanfile.py 469

Conan Documentation, Release 1.31.4

See also:

For more information about compatible packages read this

build_id()

In the general case, there is one build folder for each binary package, with the exact same hash/ID of the package.
However this behavior can be changed, there are a couple of scenarios that this might be interesting:

• You have a build script that generates several different configurations at once, like both debug and release artifacts,
but you actually want to package and consume them separately. Same for different architectures or any other
setting.

• You build just one configuration (like release), but you want to create different binary packages for different
consuming cases. For example, if you have created tests for the library in the build step, you might want to create
two packages: one just containing the library for general usage, and another one also containing the tests. First
package could be used as a reference and the other one as a tool to debug errors.

In both cases, if using different settings, the system will build twice (or more times) the same binaries, just to produce
a different final binary package. With the build_id() method this logic can be changed. build_id() will create a
new package ID/hash for the build folder, and you can define the logic you want in it. For example:

settings = "os", "compiler", "arch", "build_type"

def build_id(self):
self.info_build.settings.build_type = "Any"

So this recipe will generate a final different package for each debug/release configuration. But as the build_id()
will generate the same ID for any build_type, then just one folder and one build will be done. Such build should
build both debug and release artifacts, and then the package() method should package them accordingly to the self.
settings.build_type value. Different builds will still be executed if using different compilers or architectures. This
method is basically an optimization of build time, avoiding multiple re-builds.

Other information like custom package options can also be changed:

def build_id(self):
self.info_build.options.myoption = 'MyValue' # any value possible
self.info_build.options.fullsource = 'Always'

If the build_id() method does not modify the build_id, and produce a different one than the package_id, then
the standard behavior will be applied. Consider the following:

settings = "os", "compiler", "arch", "build_type"

def build_id(self):
if self.settings.os == "Windows":

self.info_build.settings.build_type = "Any"

This will only produce a build ID different if the package is for Windows. So the behavior in any other OS will be the
standard one, as if the build_id() method was not defined: the build folder will be wiped at each conan create
command and a clean build will be done.

470 Chapter 17. Reference

Conan Documentation, Release 1.31.4

deploy()

This method can be used in a conanfile.py to install in the system or user folder artifacts from packages.

def deploy(self):
self.copy("*.exe") # copy from current package
self.copy_deps("*.dll") # copy from dependencies

Where:

• self.copy() is the self.copy() method executed inside package() method.

• self.copy_deps() is the same as self.copy() method inside imports() method.

Both methods allow the definition of absolute paths (to install in the system), in the dst argument. By default, the dst
destination folder will be the current one.

The deploy() method is designed to work on a package that is installed directly from its reference, as:

$ conan install pkg/0.1@user/channel
> ...
> pkg/0.1@user/testing deploy(): Copied 1 '.dll' files: mylib.dll
> pkg/0.1@user/testing deploy(): Copied 1 '.exe' files: myexe.exe

All other packages and dependencies, even transitive dependencies of pkg/0.1@user/testing will not be deployed,
it is the responsibility of the installed package to deploy what it needs from its dependencies.

See also:

For a different approach to deploy package files in the user space folders, check the deploy generator.

init()

This is an optional method for initializing conanfile values, designed for inheritance from python requires. Assuming
we have a base/1.1@user/testing recipe:

class MyConanfileBase(object):
license = "MyLicense"
settings = "os", # tuple!

class PyReq(ConanFile):
name = "base"
version = "1.1"

We could reuse and inherit from it with:

class PkgTest(ConanFile):
license = "MIT"
settings = "arch", # tuple!
python_requires = "base/1.1@user/testing"
python_requires_extend = "base.MyConanfileBase"

def init(self):
base = self.python_requires["base"].module.MyConanfileBase
self.settings = base.settings + self.settings # Note, adding 2 tuples = tuple
self.license = base.license # License is overwritten

17.3. conanfile.py 471

Conan Documentation, Release 1.31.4

The final PkgTest conanfile will have both os and arch as settings, and MyLicense as license.

This method can also be useful if you need to unconditionally initialize class attributes like license or description
or any other attributes from datafiles other than conandata.yml. For example, you have a json file containing the
information about the license, description and author for the library:

Listing 9: data.json

{"license": "MIT", "description": "This is my awesome library.", "author": "Me"}

Then, you can load that information from the init() method:

import os
import json
from conans import ConanFile, load

class Lib(ConanFile):
exports = "data.json"
def init(self):

data = load(os.path.join(self.recipe_folder, "data.json"))
d = json.loads(data)
self.license = d["license"]
self.description = d["description"]
self.author = d["author"]

export()

Equivalent to the exports attribute, but in method form. It supports the self.copy() to do pattern based copy of
files from the local user folder (the folder containing the conanfile.py) to the cache export_folder

from conans import ConanFile

class Pkg(ConanFile):

def export(self):
self.copy("LICENSE.md")

The current folder (os.getcwd()) and the self.export_folder can be used in the method:

import os
from conans import ConanFile
from conans.tools import save, load

class Pkg(ConanFile):

def export(self):
we can load files in the user folder
content = load(os.path.join(os.getcwd(), "data.txt"))
We have access to the cache export_folder
save(os.path.join(self.export_folder, "myfile.txt"), "some content")

The self.copy support src and dst subfolder arguments. The src is relative to the current folder (the one containing
the conanfile.py). The dst is relative to the cache export_folder.

472 Chapter 17. Reference

Conan Documentation, Release 1.31.4

from conans import ConanFile

class Pkg(ConanFile):

def export(self):
self.output.info("Executing export() method")
will copy all .txt files from the local "subfolder" folder to the cache "mydata

→˓" one
self.copy("*.txt", src="mysubfolder", dst="mydata")

export_sources()

Equivalent to the exports_sources attribute, but in method form. It supports the self.copy() to do pattern based
copy of files from the local user folder (the folder containing the conanfile.py) to the cache export_sources_folder

from conans import ConanFile

class Pkg(ConanFile):

def export_sources(self):
self.copy("LICENSE.md")

The current folder (os.getcwd()) and the self.export_sources_folder can be used in the method:

import os
from conans import ConanFile
from conans.tools import save, load

class Pkg(ConanFile):

def export_sources(self):
content = load(os.path.join(os.getcwd(), "data.txt"))
save(os.path.join(self.export_sources_folder, "myfile.txt"), content)

The self.copy support src and dst subfolder arguments. The src is relative to the current folder (the one containing
the conanfile.py). The dst is relative to the cache export_sources_folder.

from conans import ConanFile

class Pkg(ConanFile):

def export_sources(self):
self.output.info("Executing export_sources() method")
will copy all .txt files from the local "subfolder" folder to the cache "mydata

→˓" one
self.copy("*.txt", src="mysubfolder", dst="mydata")

17.3. conanfile.py 473

Conan Documentation, Release 1.31.4

17.3.3 Python requires

It is possible to reuse python code existing in other conanfile.py recipes with the python_requires functionality,
doing something like:

from conans import ConanFile

class Pkg(ConanFile):
python_requires = "pyreq/0.1@user/channel"

def build(self):
v = self.python_requires["pyreq"].module.myvar # myvar defined in pyreq's␣

→˓conanfile.py
f = self.python_requires["pyreq"].module.myfunct() # myfunct defined in pyreq's␣

→˓conanfile.py
self.output.info("%s,%s" % (v, f))

See this section: Python requires: reusing python code in recipes

17.3.4 Output and Running

Output contents

Use the self.output to print contents to the output.

self.output.success("This is a good, should be green")
self.output.info("This is a neutral, should be white")
self.output.warn("This is a warning, should be yellow")
self.output.error("Error, should be red")
self.output.rewrite_line("for progress bars, issues a cr")

Check the source code. You might be able to produce different outputs with different colors.

Running commands

run(self, command, output=True, cwd=None, win_bash=False, subsystem=None, msys_
→˓mingw=True,

ignore_errors=False, run_environment=False, with_login=True):

self.run() is a helper to run system commands and throw exceptions when errors occur, so that command errors do
not pass unnoticed. It is just a wrapper for subprocess.call().

When the environment variable CONAN_PRINT_RUN_COMMANDS is set to true (or its equivalent print_run_commands
conan.conf configuration variable, under [general]) then all the invocations of self.run() will print to output the
command to be executed.

The command can be specified as a string which is passed to the system shell. Alternatively it can be specified as a
sequence of strings, the first of which is interpreted as the name of the program to be executed and the remaining ones
are passed as arguments. Unless you are relying on shell-specific features such as redirection or command substitution,
providing a sequence of strings is generally preferred as it allows Conan to take care of any required escaping and
quoting of arguments (e.g. to permit spaces in file names).

Optional parameters:

474 Chapter 17. Reference

Conan Documentation, Release 1.31.4

• output (Optional, Defaulted to True) When True it will write in stdout.
You can pass any stream that accepts a write method like a six.StringIO():

from six import StringIO # Python 2 and 3 compatible
mybuf = StringIO()
self.run("mycommand", output=mybuf)
self.output.warn(mybuf.getvalue())

• cwd (Optional, Defaulted to . current directory): Current directory to run the command.

• win_bash (Optional, Defaulted to False): When True, it will run the configure/make commands inside a bash.

• subsystem (Optional, Defaulted to None will autodetect the subsystem): Used to escape the command according
to the specified subsystem.

• msys_mingw (Optional, Defaulted to True) If the specified subsystem is MSYS2, will start it in MinGW mode
(native windows development).

• ignore_errors (Optional, Defaulted to False). This method raises an exception if the command fails. If
ignore_errors=True, it will not raise an exception. Instead, the user can use the return code to check for
errors.

• run_environment (Optional, Defaulted to False). Applies a RunEnvironment, so the environment variables
PATH, LD_LIBRARY_PATH and DYLIB_LIBRARY_PATH are defined in the command execution adding the
values of the “lib” and “bin” folders of the dependencies. Allows executables to be easily run using shared
libraries from its dependencies.

• with_login (Optional, Defaulted to True): Pass the --login flag to bash command when using win_bash
parameter. This might come handy when you don’t want to create a fresh user session for running the command.

Requiring a Conan version for the recipe

A required Conan version can be declared in the conanfile.py using required_conan_version to throw an error when
the Conan version installed does not meet the criteria established by the variable. To add required_conan_version
to a conanfile.py just declare it before the recipe class definition:

from conans import ConanFile

required_conan_version = ">=1.27.1"

class Pkg(ConanFile):
settings = "os", "compiler", "arch", "build_type"
...

It is also possible to declare required_conan_version at configuration level for the whole client adding it to the
conan.conf file.

17.3. conanfile.py 475

Conan Documentation, Release 1.31.4

17.4 Generators

Generators are specific components that provide the information of dependencies calculated by Conan in a suitable
format for a build system. They normally provide Conan users with a conanbuildinfo.XXX file that can be included
or injected to the specific build system. The file generated contains information of dependencies in form of different
variables and sometimes function helpers too.

You can specify a generator in:

• The [generators] section from conanfile.txt.

• The generators attribute in conanfile.py.

• The command line when installing dependencies conan install --generator.

Available generators:

17.4.1 cmake

This is the reference page for cmake generator. Go to Integrations/CMake if you want to learn how to integrate your
project or recipes with CMake.

It generates a file named conanbuildinfo.cmake and declares some variables and methods.

Variables in conanbuildinfo.cmake

• Package declared variables:

For each requirement conanbuildinfo.cmake file declares the following variables. Where <PKG-NAME> is the
placeholder for the name of the require in uppercase (ZLIB for zlib/1.2.8@lasote/stable) or the one de-
clared in cpp_info.name or in cpp_info.names["cmake"] if specified:

476 Chapter 17. Reference

Conan Documentation, Release 1.31.4

NAME VALUE
CONAN_<PKG-NAME>_ROOT Abs path to root package folder.
CONAN_INCLUDE_DIRS_<PKG-
NAME>

Header’s folders

CONAN_LIB_DIRS_<PKG-NAME> Library folders (default {CONAN_<PKG-
NAME>_ROOT}/lib)

CONAN_BIN_DIRS_<PKG-NAME> Binary folders (default {CONAN_<PKG-
NAME>_ROOT}/bin)

CONAN_SRC_DIRS_<PKG-NAME> Sources folders
CONAN_LIBS_<PKG-NAME> Library names to link (package libs, system libs and frame-

works)
CONAN_PKG_LIBS_<PKG-NAME> Package library names to link
CONAN_SYSTEM_LIBS_<PKG-NAME> System library names to link
CONAN_DEFINES_<PKG-NAME> Library defines
CONAN_COMPILE_DEFINITIONS_<PKG-
NAME>

Compile definitions

CONAN_CXX_FLAGS_<PKG-NAME> CXX flags
CONAN_SHARED_LINK_FLAGS_<PKG-
NAME>

Shared link flags

CONAN_C_FLAGS_<PKG-NAME> C flags
CONAN_FRAMEWORKS_<PKG-
NAME>

Frameworks names to use them in find_library()

CONAN_FRAMEWORKS_FOUND_<PKG-
NAME>

Frameworks found after using CONAN_FRAMEWORKS in
find_library()

CONAN_FRAMEWORK_PATHS_<PKG-
NAME>

Framework folders to locate the frameworks (OSX)

• Global declared variables:

This generator also declares some global variables with the aggregated values of all our requirements. The values
are ordered in the right order according to the dependency tree.

NAME VALUE
CONAN_INCLUDE_DIRS Aggregated header’s folders
CONAN_LIB_DIRS Aggregated library folders
CONAN_BIN_DIRS Aggregated binary folders
CONAN_SRC_DIRS Aggregated sources folders
CONAN_LIBS Aggregated library names to link (with system libs and frameworks)
CONAN_SYSTEM_LIBS Aggregated system libraries names to link
CONAN_DEFINES Aggregated library defines
CONAN_COMPILE_DEFINITIONS Aggregated compile definitions
CONAN_CXX_FLAGS Aggregated CXX flags
CONAN_SHARED_LINK_FLAGS Aggregated Shared link flags
CONAN_C_FLAGS Aggregated C flags
CONAN_FRAMEWORKS Aggregated frameworks to be found with find_library() (OSX)
CONAN_FRAMEWORKS_FOUND Aggregated found frameworks after find_library() call (OSX)
CONAN_FRAMEWORK_PATHS Aggregated framework folders (OSX)
CONAN_BUILD_MODULES Aggregated paths for build module files (like .cmake)

• User information declared variables:

If any of the requirements is filling the user_info object in the package_info method a set of variables will be

17.4. Generators 477

Conan Documentation, Release 1.31.4

declared following this naming:

NAME VALUE
CONAN_USER_<PKG-NAME>_<VAR-NAME> User declared value

Where <PKG-NAME> means the name of the requirement in uppercase and <VAR-NAME> the variable name. For
example, if this recipe declares:

class MyLibConan(ConanFile):
name = "MyLib"
version = "1.6.0"

...

def package_info(self):
self.user_info.var1 = 2

Other library requiring MyLib and using this generator will get:

Listing 10: conanbuildinfo.cmake

...
set(CONAN_USER_MYLIB_var1 "2")

Macros available in conanbuildinfo.cmake

conan_basic_setup()

This is a helper and general purpose macro that uses all the macros below to set all the CMake variables according to
the Conan generated variables. See the macros below for detailed information.

macro(conan_basic_setup)
set(options TARGETS NO_OUTPUT_DIRS SKIP_RPATH KEEP_RPATHS SKIP_STD SKIP_FPIC)

Parameters:

• TARGETS (Optional): Setup all the CMake variables by target (only CMake > 3.1.2). Activates the call to
the macro conan_target_link_libraries().

• NO_OUTPUT_DIRS (Optional): Do not adjust the build output directories. Deactivates the call to the macro
[conan_output_dirs_setup()](#conan_output_dirs_setup).

• SKIP_RPATH (Optional): [DEPRECATED] Use KEEP_RPATHS instead. Activate CMAKE_SKIP_RPATH
variable in OSX.

• KEEP_RPATHS (Optional): Do not adjust the CMAKE_SKIP_RPATH variable in OSX. Activates the call to
the macro conan_set_rpath()

• SKIP_STD (Optional): Do not adjust the C++ standard flag in CMAKE_CXX_FLAGS. Deactivates the call to
the macro conan_set_std().

• SKIP_FPIC (Optional): Do not adjust the CMAKE_POSITION_INDEPENDENT_CODE flag. Deactivates the
call to the macro conan_set_fpic().

478 Chapter 17. Reference

Conan Documentation, Release 1.31.4

Note: You can also call each of the following macros individually instead of using the conan_basic_setup().

conan_target_link_libraries()

Helper to link all libraries to a specified target.

These targets are:

• A CONAN_PKG::<PKG-NAME> target per package in the dependency graph. This is an IMPORTED INTERFACE
target. IMPORTED because it is external, a pre-compiled library. INTERFACE, because it doesn’t necessarily match
a library, it could be a header-only library, or the package could even contain several libraries. It contains all the
properties (include paths, compile flags, etc.) that are defined in the consumer. It contains all the properties
(include paths, compile flags, etc.) that are defined in the package_info() method of the recipe.

• Inside each package a CONAN_LIB::<PKG-NAME>_<LIB-NAME> target will be generated for each library. Its
type is IMPORTED UNKNOWN and its main purpose is to provide a correct link order. Their only properties are the
location and the dependencies.

• A CONAN_PKG depends on every CONAN_LIB that belongs to it, and to its direct public dependencies (e.g. other
CONAN_PKG targets from its requirements).

• Each CONAN_LIB depends on the direct public dependencies CONAN_PKG targets of its container package. This
guarantees correct link order.

conan_check_compiler()

Checks that your compiler matches the one declared in settings.

This method can be disabled setting the CONAN_DISABLE_CHECK_COMPILER variable.

conan_output_dirs_setup()

Adjusts each CMAKE_RUNTIME_OUTPUT_DIRECTORY variable to be ${CMAKE_CURRENT_BINARY_DIR}/
bin and each CMAKE_ARCHIVE_OUTPUT_DIRECTORY and CMAKE_LIBRARY_OUTPUT_DIRECTORY variable to be
${CMAKE_CURRENT_BINARY_DIR}/lib.

Calling this method makes writing the package() method for recipies easier. All artifacts will always be found in the
same location. Otherwise, they may be found in different locations depending on your build environment (eg Linux vs
Windows).

conan_set_find_library_paths()

Sets CMAKE_INCLUDE_PATH and CMAKE_INCLUDE_PATH.

17.4. Generators 479

Conan Documentation, Release 1.31.4

conan_global_flags()

Sets the corresponding variables to CMake’s include_directories() and link_directories().

conan_define_targets()

Defines the targets for each dependency (target flags instead of global flags).

conan_set_rpath()

Sets CMAKE_SKIP_RPATH=1 in the case of working in OSX.

conan_set_vs_runtime()

Adjusts the runtime flags /MD, /MDd, /MT or /MTd for Visual Studio.

conan_set_std()

Sets CMAKE_CXX_STANDARD and CMAKE_CXX_EXTENSIONS to the appropriate values.

conan_set_libcxx()

Adjusts the standard library flags (libc++`, libstdc++, libstdc++11) in CMAKE_CXX_FLAGS.

conan_set_find_paths()

Adjusts CMAKE_MODULE_PATH and CMAKE_PREFIX_PATH to the values of deps_cpp_info.build_paths.

conan_include_build_modules()

Includes CMake files declared in CONAN_BUILD_MODULES using the include(...) directive. This loads the functions
or macros that packages may export and makes them available for usage in the consumers CMakeLists.txt.

conan_find_apple_frameworks(FRAMEWORKS_FOUND FRAMEWORKS)

Find framework library names provided in ${FRAMEWORKS} using find_library() and return the found values in
FRAMEWORKS_FOUND.

480 Chapter 17. Reference

Conan Documentation, Release 1.31.4

Input variables for conanbuildinfo.cmake

CONAN_CMAKE_SILENT_OUTPUT

Default to: FALSE

Activate it to silence the Conan message output.

CONAN_DISABLE_CHECK_COMPILER

Default to: FALSE

Deactivates the check of the compiler done with the method conan_check_compiler().

17.4.2 cmake_multi

This is the reference page for cmake_multi generator. Go to Integrations/CMake if you want to learn how to integrate
your project or recipes with CMake.

This generator will create 3 files with the general information and specific Debug/Release ones:

• conanbuildinfo_release.cmake: Variables adjusted only for build type Release

• conanbuildinfo_debug.cmake: Variables adjusted only for build type Debug

• conanbuildinfo_multi.cmake: Which includes the other two and enables its use and has more generic variables
and macros.

Variables in conanbuildinfo_release.cmake

Same as conanbuildinfo.cmake with suffix _RELEASE

Variables in conanbuildinfo_debug.cmake

Same as conanbuildinfo.cmake with suffix _DEBUG

Macros available in conanbuildinfo_multi.cmake

conan_basic_setup()

This is a helper and general purpose macro that uses all the macros below to set all the CMake variables according to
the Conan generated variables. See the macros below for detailed information.

macro(conan_basic_setup)
set(options TARGETS NO_OUTPUT_DIRS SKIP_RPATH KEEP_RPATHS SKIP_STD SKIP_FPIC)

Parameters:

• TARGETS (Optional): Setup all the CMake variables by target (only CMake > 3.1.2). Activates the call to
the macro conan_target_link_libraries().

• NO_OUTPUT_DIRS (Optional): This variable has no effect and it works as if it was activated by default (does
not se fixed output directories and uses the default ones designated by CMake).

17.4. Generators 481

Conan Documentation, Release 1.31.4

• SKIP_RPATH (Optional): [DEPRECATED] Use KEEP_RPATHS instead. Activate CMAKE_SKIP_RPATH
variable in OSX.

• KEEP_RPATHS (Optional): Do not adjust the CMAKE_SKIP_RPATH variable in OSX. Activates the call to
the macro conan_set_rpath()

• SKIP_STD (Optional): Do not adjust the C++ standard flag in CMAKE_CXX_FLAGS. Deactivates the call to
the macro conan_set_std().

• SKIP_FPIC (Optional): Do not adjust the CMAKE_POSITION_INDEPENDENT_CODE flag. Deactivates the
call to the macro conan_set_fpic().

Note: You can also call each of the following macros individually instead of using the conan_basic_setup().

conan_target_link_libraries()

Helper to link all libraries to a specified target.

These targets are:

• A CONAN_PKG::<PKG-NAME> target per package in the dependency graph. This is an IMPORTED INTERFACE
target. IMPORTED because it is external, external, a pre-compiled library. INTERFACE, because it doesn’t neces-
sarily match a library, it could be a header-only library, or the package could even contain several libraries. It
contains all the properties (include paths, compile flags, etc.) that are defined in the consumer. It contains all the
properties (include paths, compile flags, etc.) that are defined in the package_info() method of the recipe.

• Inside each package a CONAN_LIB::<PKG-NAME>_<LIB-NAME> target will be generated for each library. Its
type is IMPORTED UNKNOWN and its main purpose is to provide a correct link order. Their only properties are the
location and the dependencies.

• A CONAN_PKG depends on every CONAN_LIB that belongs to it, and to its direct public dependencies (e.g. other
CONAN_PKG targets from its requirements).

• Each CONAN_LIB depends on the direct public dependencies CONAN_PKG targets of its container package. This
guarantees correct link order.

conan_check_compiler()

Checks that your compiler matches the one declared in settings.

conan_output_dirs_setup()

Adjust the bin/ and lib/ output directories.

482 Chapter 17. Reference

Conan Documentation, Release 1.31.4

conan_global_flags()

Set the corresponding variables to CMake’s include_directories() and link_directories().

conan_define_targets()

Define the targets for each dependency (target flags instead of global flags).

conan_set_rpath()

Set CMAKE_SKIP_RPATH=1 in the case of working in OSX.

conan_set_vs_runtime()

Adjust the runtime flags /MD, /MDd, /MT or /MTd for Visual Studio.

conan_set_std()

Set CMAKE_CXX_STANDARD and CMAKE_CXX_EXTENSIONS to the appropriate values.

conan_set_libcxx()

Adjust the standard library flags (libc++`, libstdc++, libstdc++11) in CMAKE_CXX_FLAGS.

conan_set_find_paths()

Adjust CMAKE_MODULE_PATH and CMAKE_PREFIX_PATH to the values of deps_cpp_info.build_paths.

conan_include_build_modules()

Includes CMake files declared in CONAN_BUILD_MODULES using the include(...) directive. This loads the functions
or macros that packages may export and makes them available for usage in the consumers CMakeLists.txt.

conan_find_apple_frameworks(FRAMEWORKS_FOUND FRAMEWORKS)

Find framework library names provided in ${FRAMEWORKS} using find_library() and return the found values in
FRAMEWORKS_FOUND.

17.4. Generators 483

Conan Documentation, Release 1.31.4

Input variables for conanbuildinfo_multi.cmake

CONAN_CMAKE_SILENT_OUTPUT

Default to: FALSE

Activate it to silence the Conan message output.

17.4.3 cmake_paths

This is the reference page for cmake_paths generator. Go to Integrations/CMake if you want to learn how to integrate
your project or recipes with CMake.

It generates a file named conan_paths.cmake and declares two variables:

Variables in conan_paths.cmake

NAME VALUE
CMAKE_MODULE_PATHContaining all requires root folders, any declared self.cpp_info.builddirs and the current

directory of this file
CMAKE_PREFIX_PATHContaining all requires root folders, any declared self.cpp_info.builddirs and the current

directory of this file
CONAN_<PKG-
NAME>_ROOT

For each dep, the root folder, being XXX the dep name uppercase. Useful when a .cmake
is patched with cmake.patch_config_paths()

Where <PKG-NAME> is the placeholder for the name of the require in uppercase (ZLIB for zlib/1.2.11) or the one
declared in cpp_info.name or in cpp_info.names["cmake_paths"] if specified.

17.4.4 cmake_find_package

This is the reference page for cmake_find_package generator. Go to Integrations/CMake if you want to learn how to
integrate your project or recipes with CMake.

The cmake_find_package generator creates a file for each requirement specified in the conanfile.

The name of the files follow the pattern Find<PKG-NAME>.cmake. So for the asio/1.14.0 package, a Findasio.
cmake file will be generated.

Variables in Find<PKG-NAME>.cmake

Being <PKG-NAME> the package name used in the reference (by default) or the one declared in cpp_info.name or in
cpp_info.names["cmake_find_package"] if specified:

484 Chapter 17. Reference

Conan Documentation, Release 1.31.4

NAME VALUE
<PKG-NAME>_FOUND Set to 1
<PKG-NAME>_VERSION Package version
<PKG-NAME>_INCLUDE_DIRS Containing all the include directories of the package
<PKG-NAME>_INCLUDES Same as the XXX_INCLUDE_DIRS
<PKG-NAME>_DEFINITIONS Definitions of the library
<PKG-NAME>_LIBS Library paths to link
<PKG-NAME>_LIBRARIES Same as <PKG-NAME>_LIBS
<PKG-
NAME>_BUILD_MODULES

List of CMake module files with functionalities for consumers

<PKG-NAME>_SYSTEM_LIBS System libraries to link
<PKG-NAME>_FRAMEWORKS Framework names to do a find_library()
<PKG-
NAME>_FRAMEWORKS_FOUND

Found frameworks to link with after find_library()

<PKG-
NAME>_FRAMEWORK_DIRS

Framework directories to perform the find_library() of <PKG-
NAME>_FRAMEWORKS

This file uses <PKG-NAME>_BUILD_MODULES values to include the files using the include(. . .) CMake directive.
This makes functions or utilities exported by the package available for consumers just by setting find_package(<PKG-
NAME>) in the CMakeLists.txt.

Moreover, this also adjusts CMAKE_MODULE_PATH and CMAKE_PREFIX_PATH to the values declared by the
package in cpp_info.buildirs, so modules in those directories can be found.

Targets in Find<PKG-NAME>.cmake

A target named <PKG-NAME>::<PKG-NAME> target is generated with the following properties adjusted:

• INTERFACE_INCLUDE_DIRECTORIES: Containing all the include directories of the package.

• INTERFACE_LINK_LIBRARIES: Library paths to link.

• INTERFACE_COMPILE_DEFINITIONS: Definitions of the library.

The targets are transitive. So, if your project depends on a packages A and B, and at the same time A depends on C, the
A target will contain automatically the properties of the C dependency, so in your CMakeLists.txt file you only need to
find_package(A) and find_package(B).

Components

If a recipe uses components, the targets generated will be <PKG-NAME>::<COMP-NAME> with the following properties
adjusted:

• INTERFACE_INCLUDE_DIRECTORIES: Containing all the include directories of the component.

• INTERFACE_LINK_DIRECTORIES: Containing all the lib directories of the component.

• INTERFACE_LINK_LIBRARIES: Containing the targets to link the component to (includes component’s libraries
and dependencies).

• INTERFACE_COMPILE_DEFINITIONS: Containing the definitions of the component.

• INTERFACE_COMPILE_OPTIONS: Containing the compile options of the component.

Moreover, a global target <PKG-NAME>::<PKG-NAME> will be declared with the following properties adjusted:

17.4. Generators 485

Conan Documentation, Release 1.31.4

• INTERFACE_LINK_LIBRARIES: Containing all the component targets to link the global target to (includes pack-
age’s components only).

17.4.5 cmake_find_package_multi

Warning: This is an experimental feature subject to breaking changes in future releases.

This is the reference page for cmake_find_package_multi generator. Go to Integrations/CMake if you want to learn
how to integrate your project or recipes with CMake.

Generated files

For each conan package in your graph, it will generate 2 files and 1 more per different build_type. Being <PKG-NAME>
the package name used in the reference (by default) or the one declared in cpp_info.name or in cpp_info.
names["cmake_find_package_multi"] if specified:

NAME CONTENTS
<PKG-NAME>Config.cmake It includes the <PKG-NAME>Targets.cmake and call find_dependency

for each dep
<PKG-NAME>ConfigVersion.cmake Package version file for each dep
<PKG-NAME>Targets.cmake It includes the files <PKG-NAME>Targets-<BUILD-TYPE>.cmake
<PKG-NAME>Targets-debug.cmake Specific information for the Debug configuration
<PKG-NAME>Targets-release.cmake Specific information for the Release configuration
<PKG-NAME>Targets-
relwithdebinfo.cmake

Specific information for the RelWithDebInfo configuration

<PKG-NAME>Targets-
minsizerel.cmake

Specific information for the MinSizeRel configuration

Targets

A target named <PKG-NAME>::<PKG-NAME> target is generated with the following properties adjusted:

• INTERFACE_INCLUDE_DIRECTORIES: Containing all the include directories of the package.

• INTERFACE_LINK_LIBRARIES: Library paths to link.

• INTERFACE_COMPILE_DEFINITIONS: Definitions of the library.

• INTERFACE_COMPILE_OPTIONS: Compile options of the library.

The targets contains multi-configuration properties, for example, the compile options property is declared like this:

set_property(TARGET <PKG-NAME>::<PKG-NAME>
PROPERTY INTERFACE_COMPILE_OPTIONS

$<$<CONFIG:Release>:${{<PKG-NAME>_COMPILE_OPTIONS_RELEASE_LIST}}>
$<$<CONFIG:RelWithDebInfo>:${{<PKG-NAME>_COMPILE_OPTIONS_RELWITHDEBINFO_

→˓LIST}}>
$<$<CONFIG:MinSizeRel>:${{<PKG-NAME>_COMPILE_OPTIONS_MINSIZEREL_LIST}}>
$<$<CONFIG:Debug>:${{<PKG-NAME>_COMPILE_OPTIONS_DEBUG_LIST}}>)

486 Chapter 17. Reference

Conan Documentation, Release 1.31.4

The targets are also transitive. So, if your project depends on a packages A and B, and at the same time A depends on C,
the A target will contain automatically the properties of the C dependency, so in your CMakeLists.txt file you only need
to find_package(A CONFIG) and find_package(B CONFIG).

Important: Add the CONFIG option to find_package so that module mode is explicitly skipped by CMake. This
helps to solve issues when there is for example a Find<PKG-NAME>.cmake file in CMake’s default modules directory
that could be loaded instead of the <PKG-NAME>Config.cmake generated by Conan.

You also need to adjust CMAKE_PREFIX_PATH and CMAKE_MODULE_PATH so CMake can locate all
the <PKG-NAME>Config.cmake files: The CMAKE_PREFIX_PATH is used by the find_package and the
CMAKE_MODULE_PATH is used by the find_dependency calls that locates the transitive dependencies.

The <PKG-NAME>Targets-.cmake files use <PKG-NAME>_BUILD_MODULES_<BUILD-TYPE> values to include
the files using the include(. . .) CMake directive. This makes functions or utilities exported by the package available
for consumers just by setting find_package(<PKG-NAME>) in the CMakeLists.txt.

Moreover, this also adjusts CMAKE_MODULE_PATH and CMAKE_PREFIX_PATH to the values declared by the
package in cpp_info.buildirs, so modules in those directories can be found.

Components

If a recipe uses components, the targets generated will be <PKG-NAME>::<COMP-NAME> with the follow-
ing properties adjusted. Being <COMP-NAME> the dictionary key used to declare the component or the
one declared in cpp_info.name or the alternative name declared in cpp_info.components["comp_name"].
names["cmake_find_package_multi"] if specified:

• INTERFACE_INCLUDE_DIRECTORIES: Containing all the include directories of the component.

• INTERFACE_LINK_LIBRARIES: Containing the targets to link the component to (includes component’s libraries
and dependencies).

• INTERFACE_COMPILE_DEFINITIONS: Containing the definitions of the component.

• INTERFACE_COMPILE_OPTIONS: Containing the compile options of the component.

Moreover, a global target <PKG-NAME>::<PKG-NAME> will be declared with the following properties adjusted:

• INTERFACE_LINK_LIBRARIES: Containing the list of targets for all the components in the package.

17.4.6 msbuild

Introduced in Conan 1.26. This generator is aimed to supersede the existing visualstudio and visualstudiomulti
generators.

Warning: This generator is experimental and subject to breaking changes.

This is a generator to be used for Visual Studio projects (.sln solutions and .vcxproject files), natively, without using
CMake at all. The generator will create Visual Studio properties files that can be added to the projects and solutions in
the IDE, under the “properties” tab.

If a conanfile declares two requirements "zlib/1.2.11", "poco/1.9.4", then running the conan install
-g=msbuild will create the following files:

17.4. Generators 487

https://cmake.org/cmake/help/v3.0/variable/CMAKE_PREFIX_PATH.html
https://cmake.org/cmake/help/v3.0/variable/CMAKE_MODULE_PATH.html

Conan Documentation, Release 1.31.4

• One properties file for each dependency and transitive dependency, like conan_zlib.props, co-
nan_openssl.props*and *conan_poco.props. These files will transitively import other files, in this case
as the poco package depends on openssl, the conan_poco.props will import conan_openssl.props file.

• One file for each dependency for each configuration, like conan_zlib_release_x64_v141.props, containing the
corresponding variables (include folders, library folders, library name, etc.) for that configuration, like the
<ConanzlibIncludeDirectories> variable. These files are conditionally included per configuration by the
base dependency file (conan_zlib.props).

• One conan_deps.props Visual Studio properties file, importing all the direct dependencies, in this example both
conan_zlib.props and conan_poco.props.

The per-configuration files are created after installing that specific configurations.

$ conan install . -g msbuild -s build_type=Release -s arch=x86_64
This will generate the conan_xxx_release_x64 properties files
$ conan install . -g msbuild -s build_type=Debug -s arch=x86
This will generate the conan_xxx_debug_x86 properties files

This is a multi-configuration generator, after installing different configurations it is possible to switch the configuration
directly in the Visual Studio IDE.

If a Visual Studio solutions consists of multiple subprojects, it is possible to add individual property files to specific
subprojects, making it available that dependency and its transitive dependencies to that subproject only.

17.4.7 visual_studio

This is the reference page for visual_studio generator. Go to Integrations/Visual Studio if you want to learn how to
integrate your project or recipes with Visual Studio.

Generates a file named conanbuildinfo.props containing an XML that can be imported to your Visual Studio project.

Generated xml structure:

<?xml version="1.0" encoding="utf-8"?>
<Project ToolsVersion="4.0" xmlns="http://schemas.microsoft.com/developer/msbuild/2003">
<ImportGroup Label="PropertySheets" />
<PropertyGroup Label="UserMacros" />
<PropertyGroup Label="Conan-RootDirs">
<Conan-Lib1-Root>{PACKAGE LIB1 FOLDER}</Conan-Poco-Root>
<Conan-Lib2-Root>{PACKAGE LIB2 FOLDER}</Conan-Poco-Root>
...

</PropertyGroup>
<PropertyGroup Label="ConanVariables">
<ConanCompilerFlags>{compiler_flags}</ConanCompilerFlags>
<ConanLinkerFlags>{linker_flags}</ConanLinkerFlags>
<ConanPreprocessorDefinitions>{definitions}</ConanPreprocessorDefinitions>
<ConanIncludeDirectories>{include_dirs}</ConanIncludeDirectories>
<ConanResourceDirectories>{res_dirs}</ConanResourceDirectories>
<ConanLibraryDirectories>{lib_dirs}</ConanLibraryDirectories>
<ConanBinaryDirectories>{bin_dirs}</ConanBinaryDirectories>
<ConanLibraries>{libs}</ConanLibraries>
<ConanSystemDeps>{system_libs}</ConanSystemDeps>

</PropertyGroup>
<PropertyGroup>
<LocalDebuggerEnvironment>PATH=%PATH%;{CONAN BINARY DIRECTORIES LIST}</

(continues on next page)

488 Chapter 17. Reference

Conan Documentation, Release 1.31.4

(continued from previous page)

→˓LocalDebuggerEnvironment>
<DebuggerFlavor>WindowsLocalDebugger</DebuggerFlavor>

</PropertyGroup>
<ItemDefinitionGroup>
<ClCompile>
<AdditionalIncludeDirectories>$(ConanIncludeDirectories)

→˓%(AdditionalIncludeDirectories)</AdditionalIncludeDirectories>
<PreprocessorDefinitions>$(ConanPreprocessorDefinitions)%(PreprocessorDefinitions)

→˓</PreprocessorDefinitions>
<AdditionalOptions>$(ConanCompilerFlags) %(AdditionalOptions)</AdditionalOptions>

</ClCompile>
<Link>
<AdditionalLibraryDirectories>$(ConanLibraryDirectories)

→˓%(AdditionalLibraryDirectories)</AdditionalLibraryDirectories>
<AdditionalDependencies>$(ConanLibraries)%(AdditionalDependencies)</

→˓AdditionalDependencies>
<AdditionalDependencies>$(ConanSystemDeps)%(AdditionalDependencies)</

→˓AdditionalDependencies>
<AdditionalOptions>$(ConanLinkerFlags) %(AdditionalOptions)</AdditionalOptions>

</Link>
<Midl>
<AdditionalIncludeDirectories>$(ConanIncludeDirectories)

→˓%(AdditionalIncludeDirectories)</AdditionalIncludeDirectories>
</Midl>
<ResourceCompile>
<AdditionalIncludeDirectories>$(ConanIncludeDirectories)

→˓%(AdditionalIncludeDirectories)</AdditionalIncludeDirectories>
<PreprocessorDefinitions>$(ConanPreprocessorDefinitions)%(PreprocessorDefinitions)

→˓</PreprocessorDefinitions>
<AdditionalOptions>$(ConanCompilerFlags) %(AdditionalOptions)</AdditionalOptions>

</ResourceCompile>
</ItemDefinitionGroup>
<ItemGroup />

</Project>

There are ConanVariables containing the information of the dependencies. Those variables are used later in the file,
like in the <Link> task.

Note that for single-configuration packages, which is the most typical, Conan installs Debug/Release, 32/64bits, pack-
ages separately. So a different property sheet will be generated for each configuration. The process could be:

Given for example a conanfile.txt like:

17.4. Generators 489

Conan Documentation, Release 1.31.4

Listing 11: conanfile.txt

[requires]
pkg/0.1@user/channel

[generators]
visual_studio

And assuming that binary packages exist for pkg/0.1@user/channel, we could do:

$ mkdir debug32 && cd debug32
$ conan install .. -s compiler="Visual Studio" -s compiler.version=15 -s arch=x86 -s␣
→˓build_type=Debug
$ cd ..
$ mkdir debug64 && cd debug64
$ conan install .. -s compiler="Visual Studio" -s compiler.version=15 -s arch=x86_64 -s␣
→˓build_type=Debug
$ cd ..
$ mkdir release32 && cd release32
$ conan install .. -s compiler="Visual Studio" -s compiler.version=15 -s arch=x86 -s␣
→˓build_type=Release
$ cd ..
$ mkdir release64 && cd release64
$ conan install .. -s compiler="Visual Studio" -s compiler.version=15 -s arch=x86_64 -s␣
→˓build_type=Release
...
Now go to VS 2017 Property Manager, load the respective sheet into each configuration

The above process can be simplified using profiles (assuming you have created the respective profiles), and you can
also specify the generators in the command line:

$ conan install .. -pr=vs15release64 -g visual_studio
...

17.4.8 visual_studio_multi

This is the reference page for visual_studio_multi generator. Go to Integrations/Visual Studio if you want to learn
how to integrate your project or recipes with Visual Studio.

Usage

$ conan install . -g visual_studio_multi -s arch=x86 -s build_type=Debug
$ conan install . -g visual_studio_multi -s arch=x86_64 -s build_type=Debug
$ conan install . -g visual_studio_multi -s arch=x86 -s build_type=Release
$ conan install . -g visual_studio_multi -s arch=x86_64 -s build_type=Release

These commands will generate 5 files for each compiler version:

• conanbuildinfo_multi.props: All properties

• conanbuildinfo_release_x64_v141.props.props: Variables for release/64bits/VS2015 (toolset v141).

• conanbuildinfo_debug_x64_v141.props.props: Variables for debug/64bits/VS2015 (toolset v141).

490 Chapter 17. Reference

Conan Documentation, Release 1.31.4

• conanbuildinfo_release_win32_v141.props.props: Variables for release/32bits/VS2015 (toolset v141).

• conanbuildinfo_debug_win32_v141.props.props: Variables for debug/32bits/VS2015 (toolset v141).

You can now load conanbuildinfo_multi.props in your Visual Studio IDE property manager, and all configurations will
be loaded at once.

Each one of the configurations will have the format and information defined in the visual_studio generator.

17.4.9 visual_studio_legacy

Generates a file named conanbuildinfo.vsprops containing an XML that can be imported to your Visual Studio 2008
project. Note that the format of this file is different and incompatible with the conanbuildinfo.props file generated with
the visual_studio generator for newer versions.

Generated XML structure:

<?xml version="1.0" encoding="Windows-1252"?>
<VisualStudioPropertySheet

ProjectType="Visual C++"
Version="8.00"
Name="conanbuildinfo"
>
<Tool

Name="VCCLCompilerTool"
AdditionalOptions="{compiler_flags}"
AdditionalIncludeDirectories="{include_dirs}"
PreprocessorDefinitions="{definitions}"

/>
<Tool

Name="VCLinkerTool"
AdditionalOptions="{linker_flags}"
AdditionalDependencies="{libs}"
AdditionalLibraryDirectories="{lib_dirs}"

/>
</VisualStudioPropertySheet>

This file can be loaded from the Menu->View->PropertyManager window, selecting “Add Existing Property Sheet” for
the desired configuration.

17.4. Generators 491

Conan Documentation, Release 1.31.4

Note that for single-configuration packages (which is the most typical), Conan installs Debug and Release packages
separately. So a different property sheet will be generated for each configuration. The process could be:

Given for example a recipe like:

Listing 12: conanfile.txt

[requires]
pkg/0.1@user/channel

[generators]
visual_studio_legacy

And assuming that binary packages exist for pkg/0.1@user/channel, we could do:

$ mkdir debug && cd debug
$ conan install .. -s compiler="Visual Studio" -s compiler.version=9 -s arch=x86 -s␣
→˓build_type=Debug
$ cd ..
$ mkdir release && cd release
$ conan install .. -s compiler="Visual Studio" -s compiler.version=9 -s arch=x86 -s␣
→˓build_type=Release
Now go to VS 2008 Property Manager, load the respective sheet into each configuration

The above process can be simplified using profiles (assuming you have created a vs9release profile) and you can also

492 Chapter 17. Reference

Conan Documentation, Release 1.31.4

specify the generators in the command line:

$ conan install .. -pr=vs9release -g visual_studio_legacy

17.4.10 xcode

This is the reference page for xcode generator. Go to Integrations/Xcode if you want to learn how to integrate your
project or recipes with Xcode.

The xcode generator creates a file named conanbuildinfo.xcconfig that can be imported to your Xcode project.

The file declare these variables:

VARIABLE VALUE
HEADER_SEARCH_PATHS The requirements include dirs
LIBRARY_SEARCH_PATHS The requirements lib dirs
OTHER_LDFLAGS -lXXX corresponding to library and system library names
GCC_PREPROCESSOR_DEFINITIONSThe requirements definitions
OTHER_CFLAGS The requirements cflags
OTHER_CPLUSPLUSFLAGS The requirements cxxflags
FRAMEWORK_SEARCH_PATHS The requirements framework folders, so xcode can find packaged frame-

works

17.4.11 compiler_args

This is the reference page for compiler_args generator. Go to Integrations/Compilers on command line if you want
to learn how to integrate your project calling your compiler in the command line.

Generates a file named conanbuildinfo.args containing a command line parameters to invoke gcc, clang or cl com-
piler.

You can use the compiler_args generator directly to build simple programs:

gcc/clang:

> g++ timer.cpp @conanbuildinfo.args -o bin/timer

cl:

$ cl /EHsc timer.cpp @conanbuildinfo.args

17.4. Generators 493

Conan Documentation, Release 1.31.4

With gcc or clang

FLAG MEANING
-DXXX Corresponding to requirements defines
-IXXX Corresponding to requirements include dirs
-Wl,-rpathXXX Corresponding to requirements lib dirs
-LXXX Corresponding to requirements lib dirs
-lXXX Corresponding to requirements libs and system_libs
-m64 For x86_64 architecture
-m32 For x86 architecture
-DNDEBUG For Release builds
-s For Release builds (only gcc)
-g For Debug builds
-D_GLIBCXX_USE_CXX11_ABI=0 When setting libcxx == “libstdc++”
-D_GLIBCXX_USE_CXX11_ABI=1 When setting libcxx == “libstdc++11”
-framework XXX Corresponding to requirements frameworks (OSX)
-F XXX Corresponding to requirements framework dirs (OSX)
Other flags cxxflags, cflags, sharedlinkflags, exelinkflags (applied directly)

With cl (Visual Studio)

FLAG MEANING
/DXXX Corresponding to requirements defines
/IXXX Corresponding to requirements include dirs
/LIBPATH:XX Corresponding to requirements lib dirs
/MT, /MTd, /MD, /MDd Corresponding to Runtime
-DNDEBUG For Release builds
/Zi For Debug builds

Directly inside a recipe

from conans import ConanFile

class PocoTimerConan(ConanFile):
settings = "os", "compiler", "build_type", "arch"
requires = "poco/1.9.4"
generators = "compiler_args"
default_options = {"poco:shared": True, "openssl:shared": True}

def build(self):
self.run("mkdir -p bin")
command = 'g++ timer.cpp @conanbuildinfo.args -o bin/timer'
self.run(command)

494 Chapter 17. Reference

Conan Documentation, Release 1.31.4

17.4.12 gcc

Deprecated, use compiler_args generator instead.

17.4.13 boost-build

Caution: This generator is deprecated in favor of the b2 generator. See generator b2.

The boost-build generator creates a file named project-root.jam that can be used with the Boost Build build system
script.

The generated project-root.jam file contains several sections and an alias conan-deps with the section names:

lib ssl :
: # requirements
<name>ssl
<search>/path/to/package/227fb0ea22f4797212e72ba94ea89c7b3fbc2a0c/lib
: # default-build
: # usage-requirements
<include>/path/to/package/227fb0ea22f4797212e72ba94ea89c7b3fbc2a0c/include
;

lib crypto :
: # requirements
<name>crypto
<search>/path/to/package/227fb0ea22f4797212e72ba94ea89c7b3fbc2a0c/lib
: # default-build
: # usage-requirements
<include>/path/to/package/227fb0ea22f4797212e72ba94ea89c7b3fbc2a0c/include
;

lib z :
: # requirements
<name>z
<search>/path/to/package/8018a4df6e7d2b4630a814fa40c81b85b9182d2b/lib
: # default-build
: # usage-requirements
<include>/path/to/package/8018a4df6e7d2b4630a814fa40c81b85b9182d2b/include
;

alias conan-deps :
ssl
crypto
z

;

17.4. Generators 495

Conan Documentation, Release 1.31.4

17.4.14 b2

This is the reference page for the b2 (Boost Build) generator. It is a multi-generator to match the multi-build nature of
B2.

Warning: This is an experimental feature subject to breaking changes in future releases.

Usage

Use release dependencies:
$ conan install -g b2 -s build_type=Release ...
Optionally, also use debug dependencies:
$ conan install -g b2 -s build_type=Debug ...
And so on for any number of configurations you need.

The commands will generate 3 files:

• conanbuildinfo.jam: Which includes the other two, and enables its use.

• conanbuildinfo-XXX.jam: Variables and targets adjusted only for build_type Release, where XXX is a key
indicating the full variation built.

• conanbuildinfo-YYY.jam: Variables and targets adjusted only for build_type Debug, where YYY is a key
indicating the full variation built.

Sub-projects in conanbuildinfo-XXX.jam

The b2 generator defines sub-projects relative to the location of the B2 project you generate the Conan configuration.
For each package a sub-project with the package name is created that contains targets you can use as B2 sources in your
projects.

For example with this conanfile.txt:

[requires]
clara/[>=1.1.0]@bincrafters/stable
boost_predef/[>=1.66.0]@bincrafters/stable
zlib/[>=1.2.11]@conan/stable

[generators]
b2

You would get three sub-projects defined relative to the conanfile.txt location:

project clara ;
project boost_predef ;
project zlib ;

For a root level project those could be referenced with an absolute project path, for example /clara. Or you can use
relative project paths as needed, for example ../clara or subproject/clara.

496 Chapter 17. Reference

Conan Documentation, Release 1.31.4

Targets in conanbuildinfo-XXX.jam

For each package a target in the corresponding package subproject is created that is specific to the variant built. There
is also a general libs target that is an alias to all the package library targets. For header only packages this libs target
would not contain references to the package libraries as they do not exist. But it would still contain the rest of the Usage
requirements for you to make use of the headers in that package. For example, for the above conanfile.txt, the targets
would be:

Listing 13: clara subproject

alias libs
: # source, none as it's header only
: # requirements specific to the build
...

: # default-build
: # usage-requirements
<include>/absolute/path/to/conan/package/include
<define>...
<cflags>...
<cxxflags>...
<link>shared:<linkflags>...

;

Where ... contains references to the variant specific constants. The target for boost_predef is equivalent as that’s
also a header only library. For libz it contains a built linkable library and hence it has additional targets for that.

Listing 14: libz subproject

alias z
: # source, no source as it's a searched pre-built library
: # requirements
<name>z
<search>/absolute/path/to/conan/package/lib
rest of the requirements specific to the build

: # default-build
: # usage-requirements
<include>/abolute/path/to/conan/package/include
<define>...
<cflags>...
<cxxflags>...
<link>shared:<linkflags>...

;

alias libs
: # source
z

: # requirements specific to the build
...

: # default-build
: # usage-requirements
<include>/absolute/path/to/conan/package/include
<define>...
<cflags>...
<cxxflags>...

(continues on next page)

17.4. Generators 497

Conan Documentation, Release 1.31.4

(continued from previous page)

<link>shared:<linkflags>...
;

Constants in conanbuildinfo-XXX.jam

This generator also defines constants, and path constants, in the project where the conanfile.txt is located. The constants
define variant specific variables for all the packages and a transitive conan set of constants for all the packages.

• Per package constants

For each requirement conanbuildinfo-XXX.cmake file declares the following constants. variation is the name
of the package and variation. That YYY variation takes the form of a comma separated list of: package name,
address-model, architecture, target-os, toolset with version, and variant (debug, release, relwithdebinfo, and
minsizerel). All are lower case and use the values of the corresponding B2 features. For example a boost_predef
package dependency when building with apple-clang 9.0 and debug would be: boost_predef,64,x86,darwin,
clang-9.0,debug.

NAME VALUE
rootpath(variation) Abs path to root package folder.
includedirs(variation) Header’s folders
libdirs(variation) Library folders (default {rootpath}/lib)
defines(variation) Library defines
cppflags(variation) CXX flags
sharedlinkflags(variation) Shared link flags
cflags(variation) C flags
requirements(variation) B2 requirements
usage-requirements(variation) B2 usage requirements

Both the requirements and usage-requirements are synthesized from the other constants.

• Global declared constants

The generator also defines a corresponding set of constants that aggregate the values of all the package requirements.
The constants for this are the same as the package-specific ones but with conan as the name of the project.

• Constants from user_info

If any of the requirements is filling the user_info object in the package_info method a set of constants will be declared
following this naming:

NAME VALUE
user(name,variation) User declared value

variation is the package and variant as above and name the variable name in lower case. For example:

class MyLibConan(ConanFile):
name = "MyLib"
version = "1.6.0"

...

(continues on next page)

498 Chapter 17. Reference

Conan Documentation, Release 1.31.4

(continued from previous page)

def package_info(self):
self.user_info.var1 = 2

When other library requires MyLib and uses the b2 generator:

Listing 15: conanbuildinfo-XXX.jam

constant user(var1,mylib,...) : "2" ;

17.4.15 qbs

This is the reference page for qbs generator. Go to Integrations/Qbs if you want to learn how to integrate your project
or recipes with Qbs.

Generates a file named conanbuildinfo.qbs that can be used for your Qbs builds.

A Product ConanBasicSetup contains the aggregated requirement values and also there is N Product declared, one
per requirement.

import qbs 1.0

Project {
Product {

name: "ConanBasicSetup"
Export {

Depends { name: "cpp" }
cpp.includePaths: [{INCLUDE DIRECTORIES REQUIRE 1}, {INCLUDE DIRECTORIES␣

→˓REQUIRE 2}]
cpp.libraryPaths: [{LIB DIRECTORIES REQUIRE 1}, {LIB DIRECTORIES REQUIRE 2}]
cpp.systemIncludePaths: [{BIN DIRECTORIES REQUIRE 1}, {BIN DIRECTORIES␣

→˓REQUIRE 2}]
cpp.dynamicLibraries: [{LIB NAMES REQUIRE 1}, {LIB NAMES REQUIRE 2}]
cpp.defines: []
cpp.cxxFlags: []
cpp.cFlags: []
cpp.linkerFlags: []

}
}

Product {
name: "REQUIRE1"
Export {

Depends { name: "cpp" }
cpp.includePaths: [{INCLUDE DIRECTORIES REQUIRE 1}]
cpp.libraryPaths: [{LIB DIRECTORIES REQUIRE 1}]
cpp.systemIncludePaths: [{BIN DIRECTORIES REQUIRE 1}]
cpp.dynamicLibraries: ["{LIB NAMES REQUIRE 1}"]
cpp.defines: []
cpp.cxxFlags: []
cpp.cFlags: []
cpp.linkerFlags: []

}
(continues on next page)

17.4. Generators 499

Conan Documentation, Release 1.31.4

(continued from previous page)

}
// lib root path: {ROOT PATH REQUIRE 1}

Product {
name: "REQUIRE2"
Export {

Depends { name: "cpp" }
cpp.includePaths: [{INCLUDE DIRECTORIES REQUIRE 2}]
cpp.libraryPaths: [{LIB DIRECTORIES REQUIRE 2}]
cpp.systemIncludePaths: [{BIN DIRECTORIES REQUIRE 2}]
cpp.dynamicLibraries: ["{LIB NAMES REQUIRE 2}"]
cpp.defines: []
cpp.cxxFlags: []
cpp.cFlags: []
cpp.linkerFlags: []

}
}
// lib root path: {ROOT PATH REQUIRE 2}

Product {
name: "REQUIRE3"
Export {

Depends { name: "cpp" }
cpp.includePaths: [{INCLUDE DIRECTORIES REQUIRE 3}]
cpp.libraryPaths: [{LIB DIRECTORIES REQUIRE 3}]
cpp.systemIncludePaths: [{BIN DIRECTORIES REQUIRE 3}]
cpp.dynamicLibraries: ["{LIB NAMES REQUIRE 3}"]
cpp.defines: []
cpp.cxxFlags: []
cpp.cFlags: []
cpp.linkerFlags: []
Depends { name: "REQUIRE1" }
Depends { name: "REQUIRE2" }

}
}
// lib root path: {ROOT PATH REQUIRE 3}

}

17.4.16 qmake

This is the reference page for qmake generator. Go to Integrations/Qmake if you want to learn how to integrate your
project or recipes with qmake.

Generates a file named conanbuildinfo.pri that can be used for your qmake builds. The file contains:

• N groups of variables, one group per require, declaring the same individual values: include_paths, libs, bin dirs,
libraries, defines etc.

• One group of global variables with the aggregated values for all requirements.

500 Chapter 17. Reference

Conan Documentation, Release 1.31.4

Package declared vars

For each requirement conanbuildinfo.pri file declares the following variables. XXX is the name of the require in
uppercase. e.k “ZLIB” for zlib/1.2.8@lasote/stable requirement:

NAME VALUE
CONAN_XXX_ROOT Abs path to root package folder.
CONAN_INCLUDEPATH_XXX Header’s folders
CONAN_LIB_DIRS_XXX Library folders (default {CONAN_XXX_ROOT}/lib)
CONAN_BINDIRS_XXX Binary folders (default {CONAN_XXX_ROOT}/bin)
CONAN_LIBS_XXX Library names to link
CONAN_DEFINES_XXX Library defines
CONAN_COMPILE_DEFINITIONS_XXX Compile definitions
CONAN_QMAKE_CXXFLAGS_XXX CXX flags
CONAN_QMAKE_LFLAGS_XXX Shared link flags
CONAN_QMAKE_CFLAGS_XXX C flags

Global declared vars

Conan also declares some global variables with the aggregated values of all our requirements. The values are ordered
in the right order according to the dependency tree.

NAME VALUE
CONAN_INCLUDEPATH Aggregated header’s folders
CONAN_LIB_DIRS Aggregated library folders
CONAN_BINDIRS Aggregated binary folders
CONAN_LIBS Aggregated library names to link
CONAN_DEFINES Aggregated library defines
CONAN_COMPILE_DEFINITIONS Aggregated compile definitions
CONAN_QMAKE_CXXFLAGS Aggregated CXX flags
CONAN_QMAKE_LFLAGS Aggregated Shared link flags
CONAN_QMAKE_CFLAGS Aggregated C flags

17.4. Generators 501

Conan Documentation, Release 1.31.4

Methods available in conanbuildinfo.pri

NAME DESCRIPTION
conan_basic_setup() Setup all the qmake vars according to our settings with the global approach

17.4.17 scons

Conan provides integration with SCons with this generator.

The generated SConscript_conan will generate several dictionaries, like:

"conan" : {
"CPPPATH" : ['/path/to/include'],
"LIBPATH" : ['/path/to/lib'],
"BINPATH" : ['/path/to/bin'],
"LIBS" : ['hello'],
"CPPDEFINES" : [],
"CXXFLAGS" : [],
"CCFLAGS" : [],
"SHLINKFLAGS" : [],
"LINKFLAGS" : [],

},

"hello" : {
"CPPPATH" : ['/path/to/include'],
"LIBPATH" : ['/path/to/lib'],
"BINPATH" : ['/path/to/bin'],
"LIBS" : ['hello'],
"CPPDEFINES" : [],
"CXXFLAGS" : [],
"CCFLAGS" : [],
"SHLINKFLAGS" : [],
"LINKFLAGS" : [],

},

The conan dictionary will contain the aggregated values for all dependencies, while the individual "hello" dictionar-
ies, one per package, will contain just the values for that specific dependency.

These dictionaries can be directly loaded into the environment like:

conan = SConscript('{}/SConscript_conan'.format(build_path_relative_to_sconstruct))
env.MergeFlags(conan['conan'])

502 Chapter 17. Reference

Conan Documentation, Release 1.31.4

17.4.18 pkg_config

Generates pkg-config files named <PKG-NAME>.pc (where <PKG-NAME is the name declared by dependencies in
cpp_info.name or in cpp_info.names["pkg_config"] if specified), containing a valid pkg-config file syntax.
The prefix variable is automatically adjusted to the package_folder.

Components

If a recipe uses components, the files generated will be <COMP-NAME>.pc with their corresponding flags and require
relations.

Additionally, a <PKG-NAME>.pc is generated to maintain compatibility for consumers with recipes that start support-
ing components. This <PKG-NAME>.pc file will declare the all the components of the package as requires while the
rest of the fields will be empty, relying on the propagation of flags coming from the components <COMP-NAME>.pc
files.

Go to Integrations/pkg-config and pc files/Use the pkg_config generator if you want to learn how to use this generator.

17.4.19 virtualenv

This is the reference page for virtualenv generator. Go to Mastering/Virtual Environments if you want to learn how
to use Conan virtual environments.

Created files

• activate.{sh|bat|ps1}

• deactivate.{sh|bat|ps1}

Usage

Linux/macOS:

> source activate.sh

Windows:

> activate.bat

Variables declared

ENVIRONMENT VAR VALUE
PS1 New shell prompt value corresponding to the current directory name
OLD_PS1 Old PS1 value, to recover it in deactivation
XXXX Any variable declared in the self.env_info object of the requirements.

17.4. Generators 503

Conan Documentation, Release 1.31.4

17.4.20 virtualenv_python

Created files

• activate_run_python.{sh|bat}

• deactivate_run_python.{sh|bat}

Usage

Linux/macOS:

> source activate_run_python.sh

Windows:

> activate_run_python.bat

Variables declared

ENVIRONMENT VAR DESCRIPTION
PATH With every bin folder of your requirements.
PYTHONPATH Union of PYTHONPATH of your requirements.
LD_LIBRARY_PATH lib folders of your requirements.
DYLD_LIBRARY_PATH lib folders of your requirements.

17.4.21 virtualbuildenv

This is the reference page for virtualbuildenv generator. Go to Mastering/Virtual Environments if you want to learn
how to use Conan virtual environments.

Created files

• activate_build.{sh|bat}

• deactivate_build.{sh|bat}

Usage

Linux/macOS:

$ source activate_build.sh

Windows:

$ activate_build.bat

504 Chapter 17. Reference

Conan Documentation, Release 1.31.4

Variables declared

ENVIRONMENT VAR DESCRIPTION
LIBS Library names to link
LDFLAGS Link flags, (-L, -m64, -m32)
CFLAGS Options for the C compiler (-g, -s, -m64, -m32, -fPIC)
CXXFLAGS Options for the C++ compiler (-g, -s, -stdlib, -m64, -m32, -fPIC)
CPPFLAGS Preprocessor definitions (-D, -I)
LIB Library paths separated with “;” (Visual Studio)
CL “/I” flags with include directories (Visual Studio)

In the case of using this generator to compile with Visual Studio, it also sets the environment variables needed via
tools.vcvars() to build your project. Some of these variables are:

VSINSTALLDIR=C:/Program Files (x86)/Microsoft Visual Studio/2017/Community/
WINDIR=C:/WINDOWS
WindowsLibPath=C:/Program Files (x86)/Windows Kits/10/UnionMetadata/10.0.16299.0;
WindowsSdkBinPath=C:/Program Files (x86)/Windows Kits/10/bin/
WindowsSdkDir=C:/Program Files (x86)/Windows Kits/10/
WindowsSDKLibVersion=10.0.16299.0/
WindowsSdkVerBinPath=C:/Program Files (x86)/Windows Kits/10/bin/10.0.16299.0/

17.4.22 virtualrunenv

This is the reference page for virtualrunenv generator. Go to Mastering/Virtual Environments if you want to learn
how to use Conan virtual environments.

Created files

• activate_run.{sh|bat}

• deactivate_run.{sh|bat}

Usage

Linux/macOS:

> source activate_run.sh

Windows:

> activate_run.bat

17.4. Generators 505

Conan Documentation, Release 1.31.4

Variables declared

ENVIRONMENT VAR DESCRIPTION
PATH With every bin folder of your requirements.
LD_LIBRARY_PATH lib folders of your requirements.
DYLD_LIBRARY_PATH lib folders of your requirements.
DYLD_FRAMEWORK_PATH framework_paths folders of your requirements.

17.4.23 youcompleteme

Go to Integrations/YouCompleteMe to see the details of the YouCompleteMe generator.

17.4.24 txt

This is the reference page for txt generator. Go to Integrations/Custom integrations / Use the text generator to know
how to use it.

The generated conanbuildinfo.txt file is a generic config file with [sections] and values.

Package declared vars

For each requirement conanbuildinfo.txt file declares the following sections. XXX is the name of the require in
lowercase. e.k “zlib” for zlib/1.2.8@lasote/stable requirement:

SECTION DESCRIPTION
[include_dirs_XXX] List with the include paths of the requirement
[libdirs_XXX] List with library paths of the requirement
[bindirs_XXX] List with binary directories of the requirement
[resdirs_XXX] List with the resource directories of the requirement
[builddirs_XXX] List with the build directories of the requirement
[libs_XXX] List with library names of the requirement
[defines_XXX] List with the defines of the requirement
[cflags_XXX] List with C compilation flags
[sharedlinkflags_XXX] List with shared libraries link flags
[exelinkflags_XXX] List with executable link flags
[cppflags_XXX] List with C++ compilation flags
[frameworks_XXX] List with the framework names (OSX)
[frameworkdirs_XXX] List with the frameworks search paths (OSX).
[rootpath_XXX] Root path of the package

506 Chapter 17. Reference

Conan Documentation, Release 1.31.4

Global declared vars

Conan also declares some global variables with the aggregated values of all our requirements. The values are ordered
in the right order according to the dependency tree.

SECTION DESCRIPTION
[include_dirs] List with the aggregated include paths of the requirements
[libdirs] List with aggregated library paths of the requirements
[bindirs] List with aggregated binary directories of the requirements
[resdirs] List with the aggregated resource directories of the requirements
[builddirs] List with the aggregated build directories of the requirements
[libs] List with aggregated library names of the requirements
[system_libs] List with aggregated system library names
[defines] List with the aggregated defines of the requirements
[cflags] List with aggregated C compilation flags
[sharedlinkflags] List with aggregated shared libraries link flags
[exelinkflags] List with aggregated executable link flags
[cppflags] List with aggregated C++ compilation flags
[frameworks] List with aggregated framework names (OSX)
[frameworkdirs] List with aggregated frameworks search paths (OSX).

17.4.25 json

Warning: Actual JSON may have more fields not documented here. Those fields may change in the future without
previous warning.

A file named conanbuildinfo.json will be generated. It will contain the information about every dependency and the
installed settings and options:

{
"deps_env_info": {
"MY_ENV_VAR": "foo"

},
"deps_user_info": {
"hello": {
"my_var": "my_value"

}
},
"dependencies":
[
{
"name": "fmt",
"version": "4.1.0",
"include_paths": [
"/path/to/.conan/data/fmt/4.1.0/<user>/<channel>/package/<id>/include"

],
"lib_paths": [

"/path/to/.conan/data/fmt/4.1.0/<user>/<channel>/package/<id>/lib"
],

(continues on next page)

17.4. Generators 507

Conan Documentation, Release 1.31.4

(continued from previous page)

"libs": [
"fmt"

],
"...": "...",

},
{
"name": "poco",
"version": "1.9.4",
"...": "..."

}
],
"settings": {
"os": "Linux",
"arch": "armv7"

},
"options": {
"curl": {
"shared": true,

}
}

}

The generated conanbuildinfo.json file is a JSON file with the following keys:

dependencies

The dependencies is a list, with each item belonging to one dependency, and each one with the following keys:

• name

• version

• description

• rootpath

• sysroot

• include_paths, lib_paths, bin_paths, build_paths, res_paths, framework_paths

• libs, frameworks, system_libs

• defines, cflags, cppflags, sharedlinkflags, exelinkflags

• configs (only for multi config dependencies, see below)

Please note that the dependencies are ordered, it isn’t a map, order is relevant. Upstream dependencies, i.e. the ones
that do not depend on other packages, will be first, and their direct dependencies after them, and so on.

The node configs will appear only for multi config recipes, it is holding a dictionary with the data related to each
configuration:

{
"...": "...",
"dependencies": [

{
"name": "hello",

(continues on next page)

508 Chapter 17. Reference

Conan Documentation, Release 1.31.4

(continued from previous page)

"rootpath": "/private/var/folders/yq/14hmvxm96xd7gfgl37_tnrbh0000gn/T/tmpkp9l_
→˓dovconans/path with spaces/.conan/data/hello/0.1/lasote/testing/package/
→˓46f53f156846659bf39ad6675fa0ee8156e859fe",

"...": "...",
"configs": {

"debug": {
"libs": ["hello_d"]

},
"release": {

"libs": ["hello"]
}

}
},
{

"...": "..."
}
]

}

deps_env_info

The environment variables defined by upstream dependencies.

deps_user_info

The user variables defined by upstream dependencies.

settings

The settings used during conan install.

options

The options of each dependency.

17.4.26 premake

Warning: This is an experimental feature subject to breaking changes in future releases.

This is the reference page for premake generator. Go to Integrations/premake if you want to learn how to integrate
your project or recipes with Premake.

Generates a file name conanbuildinfo.premake.lua that can be used for your Premake builds (both Premake 4 and 5 are
supported).

The file contains:

17.4. Generators 509

Conan Documentation, Release 1.31.4

• N groups of variables, one group per require, declaring the same individual values: include dirs, libs, bin dirs,
defines, etc.

• One group of global variables with aggregated values for all requirements.

• Helper functions to setup the settings in your configuration.

Variables

Package declared variables

For each requirement conanbuildinfo.premake.lua file declares the following variables. XXX is the name of the require.
e.g. “zlib” for zlib/1.2.11@lasote/stable requirement:

NAME VALUE
conan_includedirs_XXX Headers’s folders (default {CONAN_XXX_ROOT}/include)
conan_libdirs_XXX Library folders (default {CONAN_XXX_ROOT}/lib)
conan_bindirs_XXX Binary folders (default {CONAN_XXX_ROOT}/bin)
conan_libs_XXX Library names to link
conan_defines_XXX Compile definitions
conan_cxxflags_XXX CXX flags
conan_cflags_XXX C flags
conan_sharedlinkflags_XXX Shared link flags
conan_exelinkflags_XXX Executable link flags
conan_rootpath_XXX Abs path to root package folder

Global declared variables

NAME VALUE
conan_includedirs Aggregated headers’s folders
conan_libdirs Aggregated library folders
conan_bindirs Aggregated binary folders
conan_libs Aggregated library names to link
conan_defines Aggregated compile definitions
conan_cxxflags Aggregated CXX flags
conan_cflags Aggregated C flags
conan_sharedlinkflags Aggregated shared link flags
conan_exelinkflags Aggregated executable link flags

Functions

conan_basic_setup()

Basic function to setup the settings into your configuration. Useful to reduce the logic in Premake scripts and automate
the conversion of settings:

510 Chapter 17. Reference

Conan Documentation, Release 1.31.4

function conan_basic_setup()
configurations{conan_build_type}
architecture(conan_arch)
includedirs{conan_includedirs}
libdirs{conan_libdirs}
links{conan_libs}
defines{conan_cppdefines}
bindirs{conan_bindirs}

end

17.4.27 make

This is the reference page for make generator. Go to Integrations/make if you want to learn how to integrate your project
or recipes with make.

This generators creates a file named conanbuildinfo.mak with information of dependencies in different variables that
can be used for your make builds.

Variables

Variables per package. The <PKG-NAME> placeholder is filled with the name of the Conan package.

NAME VALUE
CONAN_ROOT_<PKG-NAME> Absolute path to root package folder
CONAN_SYSROOT_<PKG-NAME> System root folder
CONAN_INCLUDE_DIRS_<PKG-NAME> Headers folders
CONAN_LIB_DIRS_<PKG-NAME> Library folders
CONAN_BIN_DIRS_<PKG-NAME> Binary folders
CONAN_BUILD_DIRS_<PKG-NAME> Build folders
CONAN_RES_DIRS_<PKG-NAME> Resources folders
CONAN_LIBS_<PKG-NAME> Library names to link with
CONAN_SYSTEM_LIBS_<PKG-NAME> System library names to link with
CONAN_DEFINES_<PKG-NAME> Library definitions
CONAN_CFLAGS_<PKG-NAME> Options for the C compiler (-g, -s, -m64, -m32, -fPIC)
CONAN_CXXFLAGS_<PKG-NAME> Options for the C++ compiler (-g, -s, -stdlib, -m64, -m32, -fPIC,

-std)
CONAN_SHAREDLINKFLAGS_<PKG-
NAME>

Library Shared linker flags

CONAN_EXELINK_FLAGS_<PKG-
NAME>

Executable linker flags

CONAN_FRAMEWORKS_<PKG-NAME> Frameworks (OSX)
CONAN_FRAMEWORK_PATHS_<PKG-
NAME>

Framework folders (OSX) (default {CO-
NAN_XXX_ROOT}/Frameworks

Conan also declares some global variables with the aggregated values of all our requirements. The values are ordered
in the right order according to the dependency tree.

17.4. Generators 511

Conan Documentation, Release 1.31.4

NAME VALUE
CONAN_ROOTPATH Aggregated root folders
CONAN_SYSROOT Aggregated system root folders
CONAN_INCLUDE_DIRS Aggregated header folders
CONAN_LIB_DIRS Aggregated library folders
CONAN_BIN_DIRS Aggregated binary folders
CONAN_BUILD_DIRS Aggregated build folders
CONAN_RES_DIRS Aggregated resource folders
CONAN_LIBS Aggregated library names to link with
CONAN_SYSTEM_LIBS Aggregated system library names to link with
CONAN_DEFINES Aggregated library definitions
CONAN_CFLAGS Aggregated options for the C compiler
CONAN_CXXFLAGS Aggregated options for the C++ compiler
CONAN_SHAREDLINKFLAGS Aggregated Shared linker flags
CONAN_EXELINKFLAGS Aggregated Executable linker flags
CONAN_FRAMEWORKS Aggregated frameworks (OSX)
CONAN_FRAMEWORK_PATHS Aggregated framework folders (OSX)

Important: Note that the mapping of the Conan variables to the Make ones is done taking the following rules and we
suggest to use the variables indicated under the Makefile column to apply to a common naming:

cpp_info conanbuildinfo.mak Makefile
defines CONAN_DEFINES CPPFLAGS
includedirs CONAN_INCLUDE_DIRS CPPFLAGS
libdirs CONAN_LIB_DIRS LDFLAGS
libs CONAN_LIBS LDLIBS
SYSTEM_LIBS CONAN_SYSTEM_LIBS
cflags CONAN_CFLAGS CFLAGS
cxxflags CONAN_CXXFLAGS CXXFLAGS

17.4.28 markdown

This generator creates a .md file for each requirement with useful information to consume the installed packages:
libraries available, headers, compiler flags, snippet to consume them using different build systems,. . .

$ conan install libxml2/2.9.9@ --generator markdown
...
Generator markdown created libxml2.md

Although markdown files can be read in plain text, we highly recommend you to use any plugin to see it with proper
rendering (browsers, IDEs,.. all of them have plugins that will render markdown documents).

512 Chapter 17. Reference

Conan Documentation, Release 1.31.4

17.4.29 deploy

The deploy generator makes a bulk copy of the packages folders of all dependencies in a graph. It can be used to deploy
binaries from the local cache to the user space:

$ conan install openssl/1.0.2u@ -g deploy
...
Installing package: openssl/1.0.2u
...
Generator deploy created deploy_manifest.txt

Files from dependencies are deployed under a folder with the name of the dependency.

$ ls -R
openssl/ conanbuildinfo.txt deploy_manifest.txt zlib/

./openssl:
LICENSE include/ lib/

./openssl/include:
openssl/

./openssl/include/openssl:
aes.h blowfish.h cms.h des_old.h ebcdic.h evp.h md4.h ocsp.h ␣
→˓ pkcs12.h ripemd.h srtp.h symhacks.h whrlpool.h
applink.c bn.h comp.h dh.h ec.h hmac.h md5.h ␣
→˓opensslconf.h pkcs7.h rsa.h ssl.h tls1.h x509.h

(continues on next page)

17.4. Generators 513

Conan Documentation, Release 1.31.4

(continued from previous page)

asn1.h buffer.h conf.h dsa.h ecdh.h idea.h mdc2.h opensslv.
→˓h pqueue.h safestack.h ssl2.h ts.h x509_vfy.h
asn1_mac.h camellia.h conf_api.h dso.h ecdsa.h krb5_asn.h modes.h ossl_typ.
→˓h rand.h seed.h ssl23.h txt_db.h x509v3.h
asn1t.h cast.h crypto.h dtls1.h engine.h kssl.h obj_mac.h pem.h ␣
→˓ rc2.h sha.h ssl3.h ui.h
bio.h cmac.h des.h e_os2.h err.h lhash.h objects.h pem2.h ␣
→˓ rc4.h srp.h stack.h ui_compat.h

./openssl/lib:
libeay32.lib ssleay32.lib

./zlib:
FindZLIB.cmake include/ lib/ licenses/ zlib.pc

./zlib/include:
zconf.h zlib.h

./zlib/lib:
pkgconfig/ zlib.lib

./zlib/lib/pkgconfig:
zlib.pc

./zlib/licenses:
LICENSE

The generated deploy_manifest.txt file is a manifest file with a list of all the files deployed and hash of the contents for
each of them.

If any symbolic is present in the package folder, it will be preserved as well, and not copied as a new file or folder.

Tip: You can use the parameter --install-folder in the conan install to output the contents of the packages
to a specific folder.

See also:

For a different approach to deploy package files in the user space folders, check the deploy() method.

Important: If none of these generators fit your needs, you can create your own custom_generator.

514 Chapter 17. Reference

Conan Documentation, Release 1.31.4

17.5 Profiles

Profiles allows users to set a complete configuration set for settings, options, environment variables, and build
requirements in a file. They have this structure:

[settings]
setting=value

[options]
MyLib:shared=True

[env]
env_var=value

[build_requires]
tool1/0.1@user/channel
tool2/0.1@user/channel, tool3/0.1@user/channel
*: tool4/0.1@user/channel

Profile can be created with new option in conan profile. And then edit it later.

$ conan profile new mynewprofile --detect

Profile files can be used with -pr/--profile option in many commands like conan install or conan create
commands.

$ conan create . demo/testing -pr=myprofile

Profiles can be located in different folders. For example, the default <userhome>/.conan/profiles, and be referenced
by absolute or relative path:

$ conan install . --profile /abs/path/to/profile # abs path
$ conan install . --profile ./relpath/to/profile # resolved to current dir
$ conan install . --profile profile # resolved to user/.conan/profiles/profile

Listing existing profiles in the profiles folder can be done like this:

$ conan profile list
default
myprofile1
myprofile2
...

You can also show profile’s content:

$ conan profile show myprofile1
Configuration for profile myprofile1:

[settings]
os=Windows
arch=x86_64
compiler=Visual Studio
compiler.version=15
build_type=Release

(continues on next page)

17.5. Profiles 515

Conan Documentation, Release 1.31.4

(continued from previous page)

[options]
[build_requires]
[env]

Use $PROFILE_DIR in your profile and it will be replaced with the absolute path to the directory where the profile file
is (this path will contain only forward slashes). It is useful to declare relative folders:

[env]
PATH=$PROFILE_DIR/dev_tools

Tip: You can manage your profiles and share them using conan config install.

17.5.1 Package settings and env vars

Profiles also support package settings and package environment variables definition, so you can override some
settings or environment variables for some specific package:

Listing 16: .conan/profiles/zlib_with_clang

[settings]
zlib:compiler=clang
zlib:compiler.version=3.5
zlib:compiler.libcxx=libstdc++11
compiler=gcc
compiler.version=4.9
compiler.libcxx=libstdc++11

[env]
zlib:CC=/usr/bin/clang
zlib:CXX=/usr/bin/clang++

Your build tool will locate clang compiler only for the zlib package and gcc (default one) for the rest of your dependency
tree.

They accept patterns too, like -s *@myuser/*, which means that packages that have the username “myuser” will use
clang 3.5 as compiler, and gcc otherwise:

[settings]
@myuser/:compiler=clang
@myuser/:compiler.version=3.5
@myuser/:compiler.libcxx=libstdc++11
compiler=gcc
compiler.version=4.9
compiler.libcxx=libstdc++11

Note: If you want to override existing system environment variables, you should use the key=value syntax. If you
need to pre-pend to the system environment variables you should use the syntax key=[value] or key=[value1,
value2, ...]. A typical example is the PATH environment variable, when you want to add paths to the existing
system PATH, not override it, you would use:

516 Chapter 17. Reference

Conan Documentation, Release 1.31.4

[env]
PATH=[/some/path/to/my/tool]

17.5.2 Profile composition

You can specify multiple profiles in the command line. The applied configuration will be the composition of all the
profiles applied in the order they are specified.

If, for example, you want to apply a build require, like a cmake installer to your dependency tree, it won’t be very
practical adding the cmake installer reference, e.g cmake/3.16.3 to all your profiles where you could need to inject
cmake as a build require.

You can specify both profiles instead:

Listing 17: .conan/profiles/cmake_316

[build_requires]
cmake/3.16.3

$ conan install . --profile clang --profile cmake_316

17.5.3 Profile includes

You can include other profiles using the include() statement. The path can be relative to the current profile, absolute,
or a profile name from the default profile location in the local cache.

The include() statement has to be at the top of the profile file:

Listing 18: gcc_49

[settings]
compiler=gcc
compiler.version=4.9
compiler.libcxx=libstdc++11

Listing 19: myprofile

include(gcc_49)

[settings]
zlib:compiler=clang
zlib:compiler.version=3.5
zlib:compiler.libcxx=libstdc++11

[env]
zlib:CC=/usr/bin/clang
zlib:CXX=/usr/bin/clang++

17.5. Profiles 517

Conan Documentation, Release 1.31.4

17.5.4 Variable declaration

In a profile you can declare variables that will be replaced automatically by Conan before the profile is applied. The
variables have to be declared at the top of the file, after the include() statements.

Listing 20: myprofile

include(gcc_49)
CLANG=/usr/bin/clang

[settings]
zlib:compiler=clang
zlib:compiler.version=3.5
zlib:compiler.libcxx=libstdc++11

[env]
zlib:CC=$CLANG/clang
zlib:CXX=$CLANG/clang++

The variables will be inherited too, so you can declare variables in a profile and then include the profile in a different
one, all the variables will be available:

Listing 21: gcc_49

GCC_PATH=/my/custom/toolchain/path/

[settings]
compiler=gcc
compiler.version=4.9
compiler.libcxx=libstdc++11

Listing 22: myprofile

include(gcc_49)

[settings]
zlib:compiler=clang
zlib:compiler.version=3.5
zlib:compiler.libcxx=libstdc++11

[env]
zlib:CC=$GCC_PATH/gcc
zlib:CXX=$GCC_PATH/g++

518 Chapter 17. Reference

Conan Documentation, Release 1.31.4

17.5.5 Build profiles and host profiles

Warning: This is an experimental feature subject to breaking changes in future releases.

All the commands that take a profile as an argument, from Conan v1.24 are starting to accept two profiles with command
line arguments -pr:h/--profile:host and -pr:b/--profile:build. If both profiles are provided, Conan will
build a graph with some packages associated with the host platform and some build requirements associated to the
build platform. There are two scenarios where this feature is extremly useful:

• Creating conan packages to install dev tools

• Cross building

17.5.6 Examples

If you are working with Linux and you usually work with gcc compiler, but you have installed clang compiler and want
to install some package for clang compiler, you could do:

• Create a .conan/profiles/clang file:

[settings]
compiler=clang
compiler.version=3.5
compiler.libcxx=libstdc++11

[env]
CC=/usr/bin/clang
CXX=/usr/bin/clang++

• Execute an install command passing the --profile or -pr parameter:

$ conan install . --profile clang

Without profiles you would have needed to set CC and CXX variables in the environment to point to your clang compiler
and use -s parameters to specify the settings:

$ export CC=/usr/bin/clang
$ export CXX=/usr/bin/clang++
$ conan install -s compiler=clang -s compiler.version=3.5 -s compiler.libcxx=libstdc++11

A profile can also be used in conan create and conan info:

$ conan create . demo/testing --profile clang

See also:

• Check the section Build requirements to read more about its usage in a profile.

• Check conan profile and profiles/default for full reference.

• Related section: Cross building.

17.5. Profiles 519

Conan Documentation, Release 1.31.4

17.6 Build helpers

Build helpers are Python wrappers of a build tool that help with the conversion of the Conan settings to the build
system’s ones. They assist users with the compilation of libraries and applications in the build() method of a recipe.

Contents:

17.6.1 CMake

The CMake class helps us to invoke cmake command with the generator, flags and definitions, reflecting the specified
Conan settings.

There are two ways to invoke your cmake tools:

• Using the helper attributes cmake.command_line and cmake.build_config:

from conans import ConanFile, CMake

class ExampleConan(ConanFile):
...

def build(self):
cmake = CMake(self)
self.run('cmake "%s" %s' % (self.source_folder, cmake.command_line))
self.run('cmake --build . %s' % cmake.build_config)
self.run('cmake --build . --target install')

• Using the helper methods:

from conans import ConanFile, CMake

class ExampleConan(ConanFile):
...

def build(self):
cmake = CMake(self)
same as cmake.configure(source_folder=self.source_folder, build_folder=self.

→˓build_folder)
cmake.configure()
cmake.build()
cmake.test() # Build the "RUN_TESTS" or "test" target
Build the "install" target, defining CMAKE_INSTALL_PREFIX to self.package_

→˓folder
cmake.install()

520 Chapter 17. Reference

Conan Documentation, Release 1.31.4

Constructor

class CMake(object):

def __init__(self, conanfile, generator=None, cmake_system_name=True,
parallel=True, build_type=None, toolset=None, make_program=None,
set_cmake_flags=False, msbuild_verbosity='minimal', cmake_program=None,
generator_platform=None, append_vcvars=False)

Parameters:

• conanfile (Required): Conanfile object. Usually self in a conanfile.py

• generator (Optional, Defaulted to None): Specify a custom generator instead of autodetect it. e.g.,
“MinGW Makefiles”

• cmake_system_name (Optional, Defaulted to True): Specify a custom value for CMAKE_SYSTEM_NAME
instead of autodetect it.

• parallel (Optional, Defaulted to True): If True, will append the -jN attribute for parallel building being N
the cpu_count(). Also applies to parallel test execution (by defining CTEST_PARALLEL_LEVEL environment
variable).

• build_type (Optional, Defaulted to None): Force the build type instead of taking the value from the settings.
Note that CMAKE_BUILD_TYPEwill not be declared when using CMake multi-configuration generators such
as Visual Studio or XCode as it will not have effect.

• toolset (Optional, Defaulted to None): Specify a toolset for Visual Studio.

• make_program (Optional, Defaulted to None): Indicate path to make.

• set_cmake_flags (Optional, Defaulted to None): Whether or not to set CMake flags like
CMAKE_CXX_FLAGS, CMAKE_C_FLAGS, etc.

• msbuild_verbosity (Optional, Defaulted to minimal): verbosity level for MSBuild (in case of Visual
Studio generator). Set this parameter to None to avoid using it in the command line.

• cmake_program (Optional, Defaulted to None): Path to the custom cmake executable.

• generator_platform (Optional, Defaulted to None): Generator platform name or none to autodetect (-A
cmake option).

• append_vcvars (Optional, Defaulted to False): When a Visual Studio environment is activated by the
build helper, append it to respect existing environment. CMake helper sometimes, like when using the
Ninja generator, needs to call vcvars to set the VS environment. By default the vcvars is pre-pended
to the environment, taking precedence. With append_vcvars=True, the vcvars will append to the end
of the environment (for “list” environment variables, like PATH), instead of pre-pending, so the existing
environment takes precedence.

17.6. Build helpers 521

Conan Documentation, Release 1.31.4

Attributes

generator

Specifies a custom CMake generator to use, see also cmake-generators documentation.

generator_platform

Specifies a custom CMake generator platform to use, see also CMAKE_GENERATOR_PLATFORM documentation.

verbose

Defaulted to: False

Set it to True or False to automatically set the definition CMAKE_VERBOSE_MAKEFILE.

from conans import ConanFile, CMake

class ExampleConan(ConanFile):
...

def build(self):
cmake = CMake(self)
cmake.verbose = True
cmake.configure()
cmake.build()

build_folder (Read only)

Build folder where the configure() and build() methods will be called.

build_type [Deprecated]

Build type can be forced with this variable instead of taking it from the settings.

flags (Read only)

Flag conversion of definitions to be used in the command line invocation (-D).

522 Chapter 17. Reference

https://cmake.org/cmake/help/latest/manual/cmake-generators.7.html
https://cmake.org/cmake/help/latest/variable/CMAKE_GENERATOR_PLATFORM.html

Conan Documentation, Release 1.31.4

is_multi_configuration (Read only)

Indicates whether the generator selected allows builds with multi configuration: Release, Debug. . . Multi configuration
generators are Visual Studio and Xcode ones.

command_line (Read only)

Arguments and flags calculated by the build helper that will be applied. It indicates the generator, the Conan definitions
and the flags converted from the specified Conan settings. For example:

-G "Unix Makefiles" -DCMAKE_BUILD_TYPE=Release ... -DCONAN_C_FLAGS=-m64 -Wno-dev

build_config (Read only)

Value for --config option for Multi-configuration IDEs. This flag will only be set if the generator
is_multi_configuration and build_type was not forced in constructor class.

An example of the value of this property could be:

--config Release

parallel

Defaulted to: True

Run CMake process in parallel for compilation, installation and testing. This is translated into the proper command
line argument: For Unix Makefiles it is -jX and for Visual Studio it is /m:X.

However, the parallel executing can be changed for testing like this:

cmake = CMake(self)
cmake.configure()
cmake.build() # 'parallel' is enabled by default
cmake.parallel = False
cmake.test()

In the case of cmake.test() this flag sets the CTEST_PARALLEL_LEVEL variable to the according value in
tools.cpu_count().

definitions

The CMake helper will automatically append some definitions based on your settings:

17.6. Build helpers 523

Conan Documentation, Release 1.31.4

Variable Description
ANDROID_ABI Just alias for CMAKE_ANDROID_ARCH_ABI
ANDROID_NDK Defined when one of ANDROID_NDK_ROOT or AN-

DROID_NDK_HOME environment variables presented
BUILD_SHARED_LIBS Only if your recipe has a shared option
CMAKE_ANDROID_ARCH_ABI Set to a suitable value if cross-building to an Android is detected
CMAKE_BUILD_TYPE Debug, Release. . . from self.settings.build_type or build_type

attribute only if is_multi_configuration
CMAKE_EXPORT_NO_PACKAGE_REGISTRYDefined by default to disable the package registry
CMAKE_MODULE_PATH Set to conanfile.install_folderwhen using cmake_find_package

or cmake_find_package_multi
CMAKE_OSX_ARCHITECTURES i386 if architecture is x86 in an OSX system
CMAKE_PREFIX_PATH Set to conanfile.install_folder when using

cmake_find_package_multi
CMAKE_SYSTEM_NAME Set to self.settings.os value if cross-building is detected
CMAKE_SYSROOT Defined if CONAN_CMAKE_SYSROOT is defined as environment vari-

able
CMAKE_SYSTEM_VERSION Set to self.settings.os_version value if cross-building is detected
CONAN_CMAKE_CXX_EXTENSIONSSet to ON or OFF value when GNU extensions for the given C++ standard

are enabled
CONAN_CMAKE_CXX_STANDARD Set to the self.settings.compiler.cppstd value (or self.

settings.cppstd for backward compatibility)
CONAN_CMAKE_FIND_ROOT_PATHDefinition set only if same environment variable is declared by user
CONAN_CMAKE_FIND_ROOT_PATH_MODE_INCLUDEDefinition set only if same environment variable is declared by user
CONAN_CMAKE_FIND_ROOT_PATH_MODE_LIBRARYDefinition set only if same environment variable is declared by user
CONAN_CMAKE_FIND_ROOT_PATH_MODE_PROGRAMDefinition set only if same environment variable is declared by user
CONAN_CMAKE_POSITION_INDEPENDENT_CODESet when fPIC option exists and True or fPIC exists and False but

shared option exists and True
CONAN_CMAKE_SYSTEM_PROCESSORDefinition set only if same environment variable is declared by user
CONAN_COMPILER Conan internal variable to check the compiler
CONAN_CXX_FLAGS Set to -m32 or -m64 values based on the architecture and /MP for MSVS
CONAN_C_FLAGS Set to -m32 or -m64 values based on the architecture and /MP for MSVS
CONAN_EXPORTED Defined when CMake is called using Conan CMake helper
CONAN_IN_LOCAL_CACHE ON if the build runs in local cache, OFF if running in a user folder
CONAN_LIBCXX Set to self.settings.compiler.libcxx value
CONAN_LINK_RUNTIME Set to the runtime value from self.settings.compiler.runtime for

MSVS
CONAN_SHARED_LINKER_FLAGS Set to -m32 or -m64 values based on the architecture
CONAN_STD_CXX_FLAG Set to the flag corresponding to the C++ standard defined in self.

settings.compiler.cppstd. Used for CMake < 3.1)

There are some definitions set to be used later on the the install() step too:

524 Chapter 17. Reference

Conan Documentation, Release 1.31.4

Variable Description
CMAKE_INSTALL_BINDIR Set to bin inside the package folder.
CMAKE_INSTALL_DATAROOTDIR Set to share inside the package folder.
CMAKE_INSTALL_INCLUDEDIR Set to include inside the package folder.
CMAKE_INSTALL_LIBDIR Set to lib inside the package folder.
CMAKE_INSTALL_LIBEXECDIR Set to bin inside the package folder.
CMAKE_INSTALL_OLDINCLUDEDIR Set to include inside the package folder.
CMAKE_INSTALL_PREFIX Set to conanfile.package_folder value.
CMAKE_INSTALL_SBINDIR Set to bin inside the package folder.

But you can change the automatic definitions after the CMake() object creation using the definitions property or
even add your own ones:

from conans import ConanFile, CMake

class ExampleConan(ConanFile):
...

def build(self):
cmake = CMake(self)
cmake.definitions["CMAKE_SYSTEM_NAME"] = "Generic"
cmake.definitions["MY_CUSTOM_DEFINITION"] = True
cmake.configure()
cmake.build()
cmake.install() # Build --target=install

Note that definitions changed after the configure() call will not take effect later on the build(), test() or
install() ones.

Methods

configure()

def configure(self, args=None, defs=None, source_dir=None, build_dir=None,
source_folder=None, build_folder=None, cache_build_folder=None,
pkg_config_paths=None)

Configures CMake project with the given parameters.

Parameters:

• args (Optional, Defaulted to None): A list of additional arguments to be passed to the cmake com-
mand. Each argument will be escaped according to the current shell. No extra arguments will be added if
args=None

• defs (Optional, Defaulted to None): A dict that will be converted to a list of CMake command line variable
definitions of the form -DKEY=VALUE. Each value will be escaped according to the current shell and can be
either str, bool or of numeric type

• source_dir (Optional, Defaulted to None): [DEPRECATED] Use source_folder instead. CMake’s
source directory where CMakeLists.txt is located. The default value is the build folder if None is specified
(or the source folder if no_copy_source is specified). Relative paths are allowed and will be relative to
build_folder.

17.6. Build helpers 525

Conan Documentation, Release 1.31.4

• build_dir (Optional, Defaulted to None): [DEPRECATED] Use build_folder instead. CMake’s output
directory. The default value is the package build root folder if None is specified. The CMake object will
store build_folder internally for subsequent calls to build().

• source_folder: CMake’s source directory where CMakeLists.txt is located. The default value is the
self.source_folder. Relative paths are allowed and will be relative to self.source_folder.

• build_folder: CMake’s output directory. The default value is the self.build_folder if None is speci-
fied. The CMake object will store build_folder internally for subsequent calls to build().

• cache_build_folder (Optional, Defaulted to None): Use the given subfolder as build folder when build-
ing the package in the local cache. This argument doesn’t have effect when the package is being built
in user folder with conan build but overrides build_folder when working in the local cache. See
self.in_local_cache.

• pkg_config_paths (Optional, Defaulted to None): Specify folders (in a list) of relative paths to the install
folder or absolute ones where to find *.pc files (by using the env var PKG_CONFIG_PATH). If None is
specified but the conanfile is using the pkg_config generator, the self.install_folder will be added
to the PKG_CONFIG_PATH in order to locate the pc files of the requirements of the conanfile.

build()

def build(self, args=None, build_dir=None, target=None)

Builds CMake project with the given parameters.

Parameters:

• args (Optional, Defaulted to None): A list of additional arguments to be passed to the cmake com-
mand. Each argument will be escaped according to the current shell. No extra arguments will be added if
args=None

• build_dir (Optional, Defaulted to None): CMake’s output directory. If None is specified the build_dir
from configure() will be used.

• target (Optional, Defaulted to None): Specifies the target to execute. The default all target will be built if
None is specified. "install" can be used to relocate files to aid packaging.

test()

def test(args=None, build_dir=None, target=None, output_on_failure=False)

Build CMake test target (could be RUN_TESTS in multi-config projects or test in single-config projects), which
usually means building and running unit tests

Parameters:

• args (Optional, Defaulted to None): A list of additional arguments to be passed to the cmake com-
mand. Each argument will be escaped according to the current shell. No extra arguments will be added if
args=None.

• build_dir (Optional, Defaulted to None): CMake’s output directory. If None is specified the
build_folder from configure() will be used.

• target (Optional, default to None). Alternative target name for running the tests. If not defined
RUN_TESTS or test will be used.

526 Chapter 17. Reference

Conan Documentation, Release 1.31.4

• output_on_failure (Optional, default to False). Enables ctest to show output of failed tests by defining
CTEST_OUTPUT_ON_FAILURE environment variable (same effect as ctest --output-on-failure).

install()

def install(args=None, build_dir=None)

Installs CMake project with the given parameters.

Parameters:

• args (Optional, Defaulted to None): A list of additional arguments to be passed to the cmake com-
mand. Each argument will be escaped according to the current shell. No extra arguments will be added if
args=None.

• build_dir (Optional, Defaulted to None): CMake’s output directory. If None is specified the
build_folder from configure() will be used.

patch_config_paths() [EXPERIMENTAL]

def patch_config_paths()

Warning: This is an experimental feature subject to breaking changes in future releases.

This method changes references to the absolute path of the installed package in exported CMake config files to the
appropriate Conan variable. Method also changes references to other packages installation paths in export CMake
config files to Conan variable with their installation roots. This makes most CMake config files portable.

For example, if a package foo installs a file called fooConfig.cmake to be used by cmake’s find_package() method,
normally this file will contain absolute paths to the installed package folder, for example it will contain a line such as:

SET(Foo_INSTALL_DIR /home/developer/.conan/data/foo/1.0.0/...)

This will cause cmake’s find_package() method to fail when someone else installs the package via Conan. This
function will replace such paths to:

SET(Foo_INSTALL_DIR ${CONAN_FOO_ROOT})

Which is a variable that is set by conanbuildinfo.cmake, so that find_package() now correctly works on this Conan
package.

For dependent packages method replaces lines with references to dependencies installation paths such as:

SET_TARGET_PROPERTIES(foo PROPERTIES INTERFACE_INCLUDE_DIRECTORIES "/home/developer/.
→˓conan/data/bar/1.0.0/user/channel/id/include")

to following lines:

SET_TARGET_PROPERTIES(foo PROPERTIES INTERFACE_INCLUDE_DIRECTORIES "${CONAN_BAR_ROOT}/
→˓include")

If the install() method of the CMake object in the conanfile is used, this function should be called after that
invocation. For example:

17.6. Build helpers 527

Conan Documentation, Release 1.31.4

def build(self):
cmake = CMake(self)
cmake.configure()
cmake.build()
cmake.install()
cmake.patch_config_paths()

get_version()

@staticmethod
def get_version()

Returns the CMake version in a conans.model.Version object as it is evaluated by the command line. Will raise if
cannot resolve it to valid version.

Environment variables

There are some environment variables that will also affect the CMake() helper class. Check them in the CMAKE
RELATED VARIABLES section.

Example

The following example of conanfile.py shows you how to manage a project with conan and CMake.

from conans import ConanFile, CMake

class SomePackage(ConanFile):
name = "SomePackage"
version = "1.0.0"
settings = "os", "compiler", "build_type", "arch"
generators = "cmake"

def configure_cmake(self):
cmake = CMake(self)

put definitions here so that they are re-used in cmake between
build() and package()
cmake.definitions["SOME_DEFINITION_NAME"] = "On"

cmake.configure()
return cmake

def build(self):
cmake = self.configure_cmake()
cmake.build()

run unit tests after the build
cmake.test()

run custom make command
(continues on next page)

528 Chapter 17. Reference

Conan Documentation, Release 1.31.4

(continued from previous page)

self.run("make -j3 check)

def package(self):
cmake = self.configure_cmake()
cmake.install()

Default used generators

When a compiler or its version is not detected, the CMake helper uses a default generator based on the platform
operating system. For Unix systems it generates Unix Makefiles. For Windows there is no default generator, it will
be detected by CMake automatically.

17.6.2 AutoToolsBuildEnvironment (configure/make)

If you are using configure/make you can use AutoToolsBuildEnvironment helper. This helper sets LIBS, LDFLAGS,
CFLAGS, CXXFLAGS and CPPFLAGS environment variables based on your requirements.

from conans import ConanFile, AutoToolsBuildEnvironment

class ExampleConan(ConanFile):
settings = "os", "compiler", "build_type", "arch"
requires = "poco/1.9.4"
default_options = {"poco:shared": True, "openssl:shared": True}

def imports(self):
self.copy("*.dll", dst="bin", src="bin")
self.copy("*.dylib*", dst="bin", src="lib")

def build(self):
autotools = AutoToolsBuildEnvironment(self)
autotools.configure()
autotools.make()

It also works using the environment_append context manager applied to your configure and make commands, calling
configure and make manually:

from conans import ConanFile, AutoToolsBuildEnvironment, tools

class ExampleConan(ConanFile):
...

def build(self):
env_build = AutoToolsBuildEnvironment(self)
with tools.environment_append(env_build.vars):

self.run("./configure")
self.run("make")

You can change some variables like fpic, libs, include_paths and defines before accessing the vars to override
an automatic value or add new values:

17.6. Build helpers 529

Conan Documentation, Release 1.31.4

from conans import ConanFile, AutoToolsBuildEnvironment

class ExampleConan(ConanFile):
...

def build(self):
env_build = AutoToolsBuildEnvironment(self)
env_build.fpic = True
env_build.libs.append("pthread")
env_build.defines.append("NEW_DEFINE=23")
env_build.configure()
env_build.make()

You can use it also with MSYS2/MinGW subsystems installed by setting the win_bash parameter in the constructor. It will
run the the configure and make commands inside a bash that has to be in the path or declared in CONAN_BASH_PATH:

from conans import ConanFile, AutoToolsBuildEnvironment, tools

class ExampleConan(ConanFile):
settings = "os", "compiler", "build_type", "arch"

def imports(self):
self.copy("*.dll", dst="bin", src="bin")
self.copy("*.dylib*", dst="bin", src="lib")

def build(self):
env_build = AutoToolsBuildEnvironment(self, win_bash=tools.os_info.is_windows)
env_build.configure()
env_build.make()

Constructor

class AutoToolsBuildEnvironment(object):

def __init__(self, conanfile, win_bash=False)

Parameters:

• conanfile (Required): Conanfile object. Usually self in a conanfile.py

• win_bash: (Optional, Defaulted to False): When True, it will run the configure/make commands inside
a bash.

530 Chapter 17. Reference

Conan Documentation, Release 1.31.4

Attributes

You can adjust the automatically filled values modifying the attributes like this:

from conans import ConanFile, AutoToolsBuildEnvironment

class ExampleConan(ConanFile):
...

def build(self):
autotools = AutoToolsBuildEnvironment(self)
autotools.fpic = True
autotools.libs.append("pthread")
autotools.defines.append("NEW_DEFINE=23")
autotools.configure()
autotools.make()

fpic

Defaulted to: True if fPIC option exists and True or when fPIC exists and
False but option shared exists and True. Otherwise None.

Set it to True if you want to append the -fPIC flag.

libs

List with library names of the requirements (-l in LIBS).

include_paths

List with the include paths of the requires (-I in CPPFLAGS).

library_paths

List with library paths of the requirements (-L in LDFLAGS).

defines

List with variables that will be defined with -D in CPPFLAGS.

17.6. Build helpers 531

Conan Documentation, Release 1.31.4

flags

List with compilation flags (CFLAGS and CXXFLAGS).

cxx_flags

List with only C++ compilation flags (CXXFLAGS).

link_flags

List with linker flags

Properties

vars

Environment variables CPPFLAGS, CXXFLAGS, CFLAGS, LDFLAGS, LIBS generated by the build helper to use them in
the configure, make and install steps. This variables are generated dynamically with the values of the attributes and
can also be modified to be used in the following configure, make or install steps:

def build():
autotools = AutoToolsBuildEnvironment()
autotools.fpic = True
env_build_vars = autotools.vars
env_build_vars['RCFLAGS'] = '-O COFF'
autotools.configure(vars=env_build_vars)
autotools.make(vars=env_build_vars)
autotools.install(vars=env_build_vars)

vars_dict

Same behavior as vars but this property returns each variable CPPFLAGS, CXXFLAGS, CFLAGS, LDFLAGS, LIBS as
dictionaries.

Methods

configure()

def configure(self, configure_dir=None, args=None, build=None, host=None, target=None,
pkg_config_paths=None, vars=None)

Configures Autotools project with the given parameters.

Important: This method sets by default the --prefix argument to self.package_folder whenever --prefix is
not provided in the args parameter during the configure step.

There are other flags set automatically to fix the install directories by default:

532 Chapter 17. Reference

Conan Documentation, Release 1.31.4

• --bindir, --sbindir and --libexecdir set to bin folder.

• --libdir set to lib folder.

• --includedir, --oldincludedir set to include folder.

• --datarootdir set to share folder.

These flags will be set on demand, so only the available options in the ./configure are actually set. They can also be
totally skipped using use_default_install_dirs=False as described in the section below.

Warning: Since Conan 1.8 this build helper sets the output library directory via --libdir automatically to
${prefix}/lib. This means that if you are using the install() method to package with AutoTools, library
artifacts will be stored in the lib directory unless indicated explicitly by the user.

This change was introduced in order to fix issues detected in some Linux distributions where libraries were be-
ing installed to the lib64 folder (instead of lib) when rebuilding a package from sources. In those cases, if
package_info() was declaring self.cpp_info.libdirs as lib, the consumption of the package was broken.

This was considered a bug in the build helper, as it should be as much deterministic as possible when building the
same package for the same settings and generally for any other user input.

If you were already modeling the lib64 folder in your recipe, make sure you use lib for self.cpp_info.libdirs
or inject the argument in the Autotools’ configure() method:

atools = AutoToolsBuildEnvironment()
atools.configure(args=["--libdir=${prefix}/lib64"])
atools.install()

You can also skip its default value using the parameter use_default_install_dirs=False.

Parameters:

• configure_dir (Optional, Defaulted to None): Directory where the configure script is. If None, it will
use the current directory.

• args (Optional, Defaulted to None): A list of additional arguments to be passed to the configure script.
Each argument will be escaped according to the current shell. --prefix and --libdir, will be adjusted
automatically if not indicated specifically.

• build (Optional, Defaulted to None): To specify a value for the parameter --build. If None it will try
to detect the value if cross-building is detected according to the settings. If False, it will not use this
argument at all.

• host (Optional, Defaulted to None): To specify a value for the parameter --host. If None it will try to
detect the value if cross-building is detected according to the settings. If False, it will not use this argument
at all.

• target (Optional, Defaulted to None): To specify a value for the parameter --target. If None it will try
to detect the value if cross-building is detected according to the settings. If False, it will not use this
argument at all.

• pkg_config_paths (Optional, Defaulted to None): Specify folders (in a list) of relative paths to the install
folder or absolute ones where to find *.pc files (by using the env var PKG_CONFIG_PATH). If None is
specified but the conanfile is using the pkg_config generator, the self.install_folder will be added
to the PKG_CONFIG_PATH in order to locate the pc files of the requirements of the conanfile.

• vars (Optional, Defaulted to None): Overrides custom environment variables in the configure step.

17.6. Build helpers 533

Conan Documentation, Release 1.31.4

• use_default_install_dirs (Optional, Defaulted to True): Use or not the defaulted installation dirs such as
--libdir, --bindir. . .

make()

def make(self, args="", make_program=None, target=None, vars=None)

Builds Autotools project with the given parameters.

Parameters:

• args (Optional, Defaulted to ""): A list of additional arguments to be passed to the make command. Each
argument will be escaped accordingly to the current shell. No extra arguments will be added if args="".

• make_program (Optional, Defaulted to None): Allows to specify a different make executable, e.g.,
mingw32-make. The environment variable CONAN_MAKE_PROGRAM can be used too.

• target (Optional, Defaulted to None): Choose which target to build. This allows building of e.g., docs,
shared libraries or install for some AutoTools projects.

• vars (Optional, Defaulted to None): Overrides custom environment variables in the make step.

install()

def install(self, args="", make_program=None, vars=None)

Performs the install step of autotools calling make(target="install").

Parameters:

• args (Optional, Defaulted to ""): A list of additional arguments to be passed to the make command. Each
argument will be escaped accordingly to the current shell. No extra arguments will be added if args="".

• make_program (Optional, Defaulted to None): Allows to specify a different make executable, e.g.,
mingw32-make. The environment variable CONAN_MAKE_PROGRAM can be used too.

• vars (Optional, Defaulted to None): Overrides custom environment variables in the install step.

Environment variables

The following environment variables will also affect the AutoToolsBuildEnvironment helper class.

NAME DESCRIPTION
LIBS Library names to link
LDFLAGS Link flags, (-L, -m64, -m32)
CFLAGS Options for the C compiler (-g, -s, -m64, -m32, -fPIC)
CXXFLAGS Options for the C++ compiler (-g, -s, -stdlib, -m64, -m32, -fPIC, -std)
CPPFLAGS Preprocessor definitions (-D, -I)

See also:

• Reference/Tools/environment_append

534 Chapter 17. Reference

Conan Documentation, Release 1.31.4

17.6.3 MSBuild

Calls Visual Studio MSBuild command to build a .sln project:

from conans import ConanFile, MSBuild

class ExampleConan(ConanFile):
...

def build(self):
msbuild = MSBuild(self)
msbuild.build("MyProject.sln")

Internally the MSBuild build helper uses VisualStudioBuildEnvironment to adjust the LIB and CL environment variables
with all the information from the requirements: include directories, library names, flags etc. and then calls MSBuild.

• VisualStudioBuildEnvironment to adjust the LIB and CL environment variables with all the information from the
requirements: include directories, library names, flags etc.

• tools.msvc_build_command() [DEPRECATED] to call :command:MSBuild.

You can adjust all the information from the requirements accessing to the build_env that it is a VisualStudioBuildEn-
vironment object:

from conans import ConanFile, MSBuild

class ExampleConan(ConanFile):
...

def build(self):
msbuild = MSBuild(self)
msbuild.build_env.include_paths.append("mycustom/directory/to/headers")
msbuild.build_env.lib_paths.append("mycustom/directory/to/libs")
msbuild.build_env.link_flags = []

msbuild.build("MyProject.sln")

To inject the flags corresponding to the compiler.runtime, build_type and compiler.cppstd settings, this build
helper also generates a properties file (in the build folder) that is passed to :command:MSBuild with :command:/
p:ForceImportBeforeCppTargets="conan_build.props".

Constructor

class MSBuild(object):

def __init__(self, conanfile)

Parameters:

• conanfile (Required): ConanFile object. Usually self in a conanfile.py.

17.6. Build helpers 535

Conan Documentation, Release 1.31.4

Attributes

build_env

A VisualStudioBuildEnvironment object with the needed environment variables.

Methods

build()

def build(self, project_file, targets=None, upgrade_project=True, build_type=None,␣
→˓arch=None,

parallel=True, force_vcvars=False, toolset=None, platforms=None, use_env=True,
vcvars_ver=None, winsdk_version=None, properties=None, output_binary_log=None,
property_file_name=None, verbosity=None, definitions=None,
user_property_file_name=None)

Builds Visual Studio project with the given parameters.

Parameters:

• project_file (Required): Path to the .sln file.

• targets (Optional, Defaulted to None): Sets /target flag to the specified list of targets to build.

• upgrade_project (Optional, Defaulted to True): Will call devenv /upgrade to upgrade the solution to
your current Visual Studio.

• build_type (Optional, Defaulted to None): Sets /p:Configuration flag to the specified value. It will
override the value from settings.build_type.

• arch (Optional, Defaulted to None): Sets /p:Platform flag to the specified value. It will override the
value from settings.arch. This value (or the settings.arch one if not overridden) will be used as the
key for the msvc_arch dictionary that returns the final string used for the /p:Platform flag (see platforms
argument documentation below).

• parallel (Optional, Defaulted to True): Will use the configured number of cores in the conan.conf file or
tools.cpu_count():

– In the solution: Building the solution with the projects in parallel. (/m: parameter).

– CL compiler: Building the sources in parallel. (/MP: compiler flag).

• force_vcvars (Optional, Defaulted to False): Will ignore if the environment is already set for a different
Visual Studio version.

• toolset (Optional, Defaulted to None): Sets /p:PlatformToolset to the specified toolset. When None
it will apply the setting compiler.toolset if specified. When False it will skip adjusting the /
p:PlatformToolset.

• platforms (Optional, Defaulted to None): This dictionary will update the default one (see msvc_arch
below) and will be used to get the mapping of architectures to platforms from the Conan naming to an-
other one. It is useful for Visual Studio solutions that have a different naming in architectures. Example:
platforms={"x86":"Win32"} (Visual solution uses “Win32” instead of “x86”).

msvc_arch = {'x86': 'x86',
'x86_64': 'x64',

(continues on next page)

536 Chapter 17. Reference

Conan Documentation, Release 1.31.4

(continued from previous page)

'armv7': 'ARM',
'armv8': 'ARM64'}

• use_env (Optional, Defaulted to True: Sets /p:UseEnv=true flag. Note that this setting does not guaran-
tee that environment variables from Conan will not be used by the compiler or linker. This is an MSBuild
setting which simply specifies the behavior when environment variables conflict with equivalent properties
from the project (via .vcxproj, .props or .targets files). Conan will still apply the relevant compiler and
linker environment variables when spawning the MSBuild process. For example, if use_env=False is
specified and if there is no AdditionalDependencies variable defined in the project, the LINK environ-
ment variable passed by Conan will still be used by the linker because it technically doesn’t conflict with
the project variable.

• vcvars_ver (Optional, Defaulted to None): Specifies the Visual Studio compiler toolset to use.

• winsdk_version (Optional, Defaulted to None): Specifies the version of the Windows SDK to use.

• properties (Optional, Defaulted to None): Dictionary with new properties, for each element in the dictio-
nary {name: value} it will append a /p:name="value" option.

• output_binary_log (Optional, Defaulted to None): Sets /bl flag. If set to True then MSBuild will output
a binary log file called msbuild.binlog in the working directory. It can also be used to set the name of log
file like this output_binary_log="my_log.binlog". This parameter is only supported starting from
MSBuild version 15.3 and onwards.

• property_file_name (Optional, Defaulted to None): Sets p:ForceImportBeforeCppTargets. When
None it will generate a file named conan_build.props. You can specify a different name for the generated
properties file.

• verbosity (Optional, Defaulted to None): Sets the /verbosity flag to the specified verbosity level. Possi-
ble values are "quiet", "minimal", "normal", "detailed" and "diagnostic".

• definitions (Optional, Defaulted to None): Dictionary with additional compiler definitions to be applied
during the build. Use a dictionary with the desired key and its value set to None to set a compiler definition
with no value.

• user_property_file_name (Optional, Defaulted to None): Filename or list of filenames of user properties
files to be automatically passed to the build command. These files have priority over the conan_build.props
file (user can override that file values), and if a list of file names is provided, later file names also have
priority over the former ones. These filenames will be passed, together with conan_build.props files as
/p:ForceImportBeforeCppTargets argument.

Note: The MSBuild() build helper will, before calling to MSBuild, call tools.vcvars_command() to adjust the envi-
ronment according to the settings. When cross-building from x64 to x86 the toolchain by default is x86. If you want
to use amd64_x86 instead, set the environment variable PreferredToolArchitecture=x64.

17.6. Build helpers 537

https://msbuildlog.com
https://msbuildlog.com

Conan Documentation, Release 1.31.4

get_command()

Returns a string command calling MSBuild.

def get_command(self, project_file, props_file_path=None, targets=None, upgrade_
→˓project=True,

build_type=None, arch=None, parallel=True, toolset=None, platforms=None,
use_env=False, properties=None, output_binary_log=None, verbosity=None,
user_property_file_name=None)

Parameters:

• props_file_path (Optional, Defaulted to None): Path to a property file to be included in the compilation
command. This parameter is automatically set by the build() method to set the runtime from settings.

• Same parameters as the build() method.

get_version()

Static method that returns the version of MSBuild for the specified settings.

def get_version(settings)

Result is returned in a conans.model.Version object as it is evaluated by the command line. It will raise an exception
if it cannot resolve it to a valid result.

Parameters:

• settings (Required): Conanfile settings. Use self.settings.

17.6.4 VisualStudioBuildEnvironment

Prepares the needed environment variables to invoke the Visual Studio compiler. Use it together with
tools.vcvars_command().

from conans import ConanFile, VisualStudioBuildEnvironment

class ExampleConan(ConanFile):

...

def build(self):
if self.settings.compiler == "Visual Studio":

env_build = VisualStudioBuildEnvironment(self)
with tools.environment_append(env_build.vars):

vcvars = tools.vcvars_command(self.settings)
self.run('%s && cl /c /EHsc hello.cpp' % vcvars)
self.run('%s && lib hello.obj -OUT:hello.lib' % vcvars

You can adjust the automatically filled attributes:

def build(self):
if self.settings.compiler == "Visual Studio":
env_build = VisualStudioBuildEnvironment(self)

(continues on next page)

538 Chapter 17. Reference

Conan Documentation, Release 1.31.4

(continued from previous page)

env_build.include_paths.append("mycustom/directory/to/headers")
env_build.lib_paths.append("mycustom/directory/to/libs")
env_build.link_flags = []
with tools.environment_append(env_build.vars):

vcvars = tools.vcvars_command(self.settings)
self.run('%s && cl /c /EHsc hello.cpp' % vcvars)
self.run('%s && lib hello.obj -OUT:hello.lib' % vcvars

Constructor

class VisualStudioBuildEnvironment(object):

def __init__(self, conanfile, with_build_type_flags=True)

Parameters:

• conanfile (Required): ConanFile object. Usually self in a conanfile.py.

• with_build_type_flags (Optional, Defaulted to True): If True, it adjusts the compiler flags according to
the build_type setting. e.g: -Zi, -Ob0, -Od. . .

Environment variables

NAME DESCRIPTION
LIB Library paths separated with “;”
CL “/I” flags with include directories, Runtime (/MT, /MD. . .), Definitions (/DXXX), and any other C and

CXX flags.

Attributes

include_paths

List with directories of include paths.

lib_paths

List with directories of libraries.

17.6. Build helpers 539

Conan Documentation, Release 1.31.4

defines

List with definitions from requirements’ cpp_info.defines.

runtime

List with directories from settings.compiler.runtime.

flags

List with flags from requirements’ cpp_info.cflags.

cxx_flags

List with cxx flags from requirements’ cpp_info.cxxflags.

link_flags

List with linker flags from requirements’ cpp_info.sharedlinkflags and cpp_info.exelinkflags

std

This property contains the flag corresponding to the C++ standard. If you are still using the deprecated setting cppstd
(see How to manage C++ standard [EXPERIMENTAL]) and you are not providing any value for this setting, the
property will be None.

parallel

Defaulted to False.

Sets the flag /MP in order to compile the sources in parallel using cores found by tools.cpu_count().

See also:

Read more about tools.environment_append().

17.6.5 Meson

If you are using Meson Build as your build system, you can use the Meson build helper. Specially useful with the
pkg_config that will generate the .pc files of our requirements, then Meson() build helper will locate them automatically.

from conans import ConanFile, tools, Meson
import os

class ConanFileToolsTest(ConanFile):
generators = "pkg_config"
requires = "lib_a/0.1@conan/stable"
settings = "os", "compiler", "build_type"

(continues on next page)

540 Chapter 17. Reference

Conan Documentation, Release 1.31.4

(continued from previous page)

def build(self):
meson = Meson(self)
meson.configure(build_folder="build")
meson.build()

Constructor

class Meson(object):

def __init__(self, conanfile, backend=None, build_type=None)

Parameters:

• conanfile (Required): Use self inside a conanfile.py.

• backend (Optional, Defaulted to None): Specify a backend to be used, otherwise it will use "Ninja".

• build_type (Optional, Defaulted to None): Force to use a build type, ignoring the value from the settings.

Methods

configure()

def configure(self, args=None, defs=None, source_folder=None, build_folder=None,
pkg_config_paths=None, cache_build_folder=None, append_vcvars=False)

Configures Meson project with the given parameters.

Parameters:

• args (Optional, Defaulted to None): A list of additional arguments to be passed to the configure script.
Each argument will be escaped according to the current shell. No extra arguments will be added if
args=None.

• defs (Optional, Defaulted to None): A list of definitions.

• source_folder (Optional, Defaulted to None): Meson’s source directory where meson.build is located.
The default value is the self.source_folder. Relative paths are allowed and will be relative to self.
source_folder.

• build_folder (Optional, Defaulted to None): Meson’s output directory. The default value is the self.
build_folder if None is specified. The Meson object will store build_folder internally for subsequent
calls to build().

• pkg_config_paths (Optional, Defaulted to None): A list containing paths to locate the pkg-config files
(*.pc). If None, it will be set to conanfile.build_folder.

• cache_build_folder (Optional, Defaulted to None): Subfolder to be used as build folder when building the
package in the local cache. This argument doesn’t have effect when the package is being built in user folder
with conan build but overrides build_folder when working in the local cache. See self.in_local_cache.

• append_vcvars (Optional, Defaulted to False): When a Visual Studio environment is activated by the
build helper, append it to respect existing environment. Meson helper uses the Ninja generator and needs
to call vcvars to set the VS environment. By default the vcvars is pre-pended to the environment, taking

17.6. Build helpers 541

Conan Documentation, Release 1.31.4

precedence. With append_vcvars=True, the vcvarswill append to the end of the environment (for “list”
environment variables, like PATH), instead of pre-pending, so the existing environment takes precedence.

build()

def build(self, args=None, build_dir=None, targets=None)

Builds Meson project with the given parameters.

Parameters:

• args (Optional, Defaulted to None): A list of additional arguments to be passed to the ninja com-
mand. Each argument will be escaped according to the current shell. No extra arguments will be added if
args=None.

• build_dir (Optional, Defaulted to None): Build folder. If None is specified the build_folder from
configure() will be used. If build_folder from configure() is None, it will be set to conanfile.
build_folder.

• targets (Optional, Defaulted to None): Specifies the targets to build. The default all target will be built if
None is specified.

test()

def test(args=None, build_dir=None, target=None)

Executes ninja test target, which usually means building and running unit tests.

Parameters:

• args (Optional, Defaulted to None): A list of additional arguments to be passed to the ninja com-
mand. Each argument will be escaped according to the current shell. No extra arguments will be added if
args=None.

• build_dir (Optional, Defaulted to None): Build folder. If None is specified the build_folder from
configure() will be used. If build_folder from configure() is None, it will be set to conanfile.
build_folder.

• targets (Optional, Defaulted to None): Specifies the targets to be executed. The test target will be executed
if None is specified.

install()

def install(args=None, build_dir=None)

Executes ninja install target.

Parameters:

• args (Optional, Defaulted to None): A list of additional arguments to be passed to the ninja com-
mand. Each argument will be escaped according to the current shell. No extra arguments will be added if
args=None.

• build_dir (Optional, Defaulted to None): Build folder. If None is specified the build_folder from
configure() will be used. If build_folder from configure() is None, it will be set to conanfile.
build_folder.

542 Chapter 17. Reference

Conan Documentation, Release 1.31.4

meson_test()

def meson_test(args=None, build_dir=None)

Executes meson test command.

Parameters:

• args (Optional, Defaulted to None): A list of additional arguments to be passed to the meson test com-
mand. Each argument will be escaped according to the current shell. No extra arguments will be added if
args=None.

• build_dir (Optional, Defaulted to None): Build folder. If None is specified the build_folder from
configure() will be used. If build_folder from configure() is None, it will be set to conanfile.
build_folder.

meson_install()

def meson_install(args=None, build_dir=None)

Executes meson install command.

Parameters:

• args (Optional, Defaulted to None): A list of additional arguments to be passed to the meson install
command. Each argument will be escaped according to the current shell. No extra arguments will be added
if args=None.

• build_dir (Optional, Defaulted to None): Build folder. If None is specified the build_folder from
configure() will be used. If build_folder from configure() is None, it will be set to conanfile.
build_folder.

Example

A typical usage of the Meson build helper, if you want to be able to both execute conan create and also build your
package for a library locally (in your user folder, not in the local cache), could be:

from conans import ConanFile, Meson

class HelloConan(ConanFile):
name = "hello"
version = "0.1"
settings = "os", "compiler", "build_type", "arch"
generators = "pkg_config"
exports_sources = "src/*"
requires = "zlib/1.2.11"

def build(self):
meson = Meson(self)
meson.configure(source_folder="%s/src" % self.source_folder,

build_folder="build")
meson.build()

def package(self):
(continues on next page)

17.6. Build helpers 543

Conan Documentation, Release 1.31.4

(continued from previous page)

self.copy("*.h", dst="include", src="src")
self.copy("*.lib", dst="lib", keep_path=False)
self.copy("*.dll", dst="bin", keep_path=False)
self.copy("*.dylib*", dst="lib", keep_path=False)
self.copy("*.so", dst="lib", keep_path=False)
self.copy("*.a", dst="lib", keep_path=False)

def package_info(self):
self.cpp_info.libs = ["hello"]

Note the pkg_config generator, which generates .pc files (zlib.pc from the example above), which are understood by
Meson to process dependencies information (no need for a meson generator).

The layout is:

<folder>
| - conanfile.py
| - src

| - meson.build
| - hello.cpp
| - hello.h

And the meson.build could be as simple as:

project('hello',
'cpp',
version : '0.1.0'
default_options : ['cpp_std=c++11']
)

library('hello',
['hello.cpp'],
dependencies: [dependency('zlib')]
)

This allows, to create the package with conan create as well as to build the package locally:

$ cd <folder>
$ conan create . user/testing
Now local build
$ mkdir build && cd build
$ conan install ..
$ conan build ..

544 Chapter 17. Reference

Conan Documentation, Release 1.31.4

17.6.6 RunEnvironment

The RunEnvironment helper prepares PATH, LD_LIBRARY_PATH, DYLD_LIBRARY_PATH and DYLD_FRAMEWORK_PATH
environment variables to locate shared libraries, frameworks and executables of your requirements at runtime.

Warning: The RunEnvironment is no longer needed, at least explicitly in conanfile.py. It has been integrated
into the self.run(..., run_environment=True) argument. Check self.run().

This helper is specially useful if:

• You are requiring packages with shared libraries and you are running some executable that needs those libraries.

• You have a requirement with some tool (executable) and you need it to be in the path.

from conans import ConanFile, RunEnvironment

class ExampleConan(ConanFile):
...

def build(self):
env_build = RunEnvironment(self)
with tools.environment_append(env_build.vars):

self.run("....")
All the requirements bin folder will be available at PATH
All the lib folders will be available in LD_LIBRARY_PATH and DYLD_LIBRARY_PATH
All the framework_paths folders will be available in DYLD_FRAMEWORK_PATH

It sets the following environment variables:

NAME DESCRIPTION
PATH Containing all the requirements bin folders.
LD_LIBRARY_PATH Containing all the requirements lib folders. (Linux)
DYLD_LIBRARY_PATH Containing all the requirements lib folders. (OSX)
DYLD_FRAMEWORK_PATH Containing all the requirements framework_paths folders. (OSX)

Important: Security restrictions might apply in OSX (read this thread), so the DYLD_LIBRARY_PATH and
DYLD_FRAMEWORK_PATH environment variables are not directly transferred to the child process. In that case, you
have to use it explicitly in your conanfile.py:

def build(self):
env_build = RunEnvironment(self)
with tools.environment_append(env_build.vars):

self.run("./myexetool") # won't work, even if 'DYLD_LIBRARY_PATH' and 'DYLD_
→˓FRAMEWORK_PATH' are in the env

self.run("DYLD_LIBRARY_PATH=%s DYLD_FRAMEWORK_PATH=%s ./myexetool" % (os.environ[
→˓'DYLD_LIBRARY_PATH'], os.environ['DYLD_FRAMEWORK_PATH']))

This is already handled automatically by the self.run(..., run_environment=True) argument.

See also:

• Manage Shared Libraries with Environment Variables

17.6. Build helpers 545

https://stackoverflow.com/questions/35568122/why-isnt-dyld-library-path-being-propagated-here

Conan Documentation, Release 1.31.4

• tools.environment_append()

Important: If you need a build helper for any other tools, please check how you can create your own Creating a
custom build helper for Conan.

17.7 Tools

Under the tools module there are several functions and utilities that can be used in Conan package recipes:

from conans import ConanFile
from conans import tools

class ExampleConan(ConanFile):
...

17.7.1 tools.cpu_count()

def tools.cpu_count()

Returns the number of CPUs available, for parallel builds. If processor detection is not enabled, it will safely return
1. When running in Docker, it reads cgroup to detect the configured number of CPUs. It Can be overwritten with the
environment variable CONAN_CPU_COUNT and configured in the conan.conf .

17.7.2 tools.vcvars_command()

def vcvars_command(conanfile, arch=None, compiler_version=None, force=False, vcvars_
→˓ver=None,

winsdk_version=None)

Returns, for given settings, the command that should be called to load the Visual Studio environment variables for a
certain Visual Studio version. It wraps the functionality of vcvarsall but does not execute the command, as that typically
have to be done in the same command as the compilation, so the variables are loaded for the same subprocess. It will
be typically used in the build() method, like this:

from conans import tools

def build(self):
if self.settings.build_os == "Windows":

vcvars_command = tools.vcvars_command(self)
build_command = ...
self.run("%s && configure %s" % (vcvars_command, " ".join(args)))
self.run("%s && %s %s" % (vcvars, build_command, " ".join(build_args)))

The vcvars_command string will contain something like call "%vsXX0comntools%../../VC/vcvarsall.bat"
for the corresponding Visual Studio version for the current settings.

This is typically not needed if using CMake, as the cmake generator will handle the correct Visual Studio version.

If arch or compiler_version is specified, it will ignore the settings and return the command to set the Visual Studio
environment for these parameters.

546 Chapter 17. Reference

https://docs.microsoft.com/en-us/cpp/build/building-on-the-command-line?view=vs-2017

Conan Documentation, Release 1.31.4

Parameters:

• conanfile (Required): Conanfile object. Use self in a conanfile.py.

• arch (Optional, Defaulted to None): Will use settings.arch.

• compiler_version (Optional, Defaulted to None): Will use settings.compiler.version.

• force (Optional, Defaulted to False): Will ignore if the environment is already set for a different Visual
Studio version.

• winsdk_version (Optional, Defaulted to None): Specifies the version of the Windows SDK to use.

• vcvars_ver (Optional, Defaulted to None): Specifies the Visual Studio compiler toolset to use.

Note: When cross-building from x64 to x86 the toolchain by default is x86. If you want to use amd64_x86 instead,
set the environment variable PreferredToolArchitecture=x64.

17.7.3 tools.vcvars_dict()

vcvars_dict(conanfile, arch=None, compiler_version=None, force=False, filter_known_
→˓paths=False,

vcvars_ver=None, winsdk_version=None, only_diff=True)

Returns a dictionary with the variables set by the tools.vcvars_command() that can be directly applied to
tools.environment_append().

The values of the variables INCLUDE, LIB, LIBPATH and PATH will be returned as a list. When used with
tools.environment_append(), the previous environment values that these variables may have will be appended auto-
matically.

from conans import tools

def build(self):
env_vars = tools.vcvars_dict(self)
with tools.environment_append(env_vars):

Do something

Parameters:

• Same as tools.vcvars_command().

• filter_known_paths (Optional, Defaulted to False): When True, the function will only keep the PATH
entries that follows some known patterns, filtering all the non-Visual Studio ones. When False, it will keep
the PATH will all the system entries.

• only_diff (Optional, Defaulted to True): When True, the command will return only the variables set by
vcvarsall and not the whole environment. If vcvars modifies an environment variable by appending
values to the old value (separated by ;), only the new values will be returned, as a list.

17.7. Tools 547

Conan Documentation, Release 1.31.4

17.7.4 tools.vcvars()

vcvars(conanfile, arch=None, compiler_version=None, force=False, filter_known_
→˓paths=False)

Note: This context manager tool has no effect if used in a platform different from Windows.

This is a context manager that allows to append to the environment all the variables set by the tools.vcvars_dict(). You
can replace tools.vcvars_command() and use this context manager to get a cleaner way to activate the Visual Studio
environment:

from conans import tools

def build(self):
with tools.vcvars(self):

do_something()

17.7.5 tools.build_sln_command() [DEPRECATED]

Warning: This tool is deprecated and will be removed in Conan 2.0. Use MSBuild() build helper instead.

def build_sln_command(settings, sln_path, targets=None, upgrade_project=True, build_
→˓type=None,

arch=None, parallel=True, toolset=None, platforms=None,␣
→˓verbosity=None,

definitions=None)

Returns the command to call devenv and msbuild to build a Visual Studio project. It’s recommended to use it with
tools.vcvars_command(), so that the Visual Studio tools will be in path.

from conans import tools

def build(self):
build_command = build_sln_command(self.settings, "myfile.sln", targets=["SDL2_image

→˓"])
command = "%s && %s" % (tools.vcvars_command(self.settings), build_command)
self.run(command)

Parameters:

• settings (Required): Conanfile settings. Use “self.settings”.

• sln_path (Required): Visual Studio project file path.

• targets (Optional, Defaulted to None): List of targets to build.

• upgrade_project (Optional, Defaulted to True): If True, the project file will be upgraded if the project’s
VS version is older than current. When CONAN_SKIP_VS_PROJECTS_UPGRADE environment variable
is set to True/1, this parameter will be ignored and the project won’t be upgraded.

• build_type (Optional, Defaulted to None): Override the build type defined in the settings (settings.
build_type).

548 Chapter 17. Reference

Conan Documentation, Release 1.31.4

• arch (Optional, Defaulted to None): Override the architecture defined in the settings (settings.arch).

• parallel (Optional, Defaulted to True): Enables Visual Studio parallel build with /m:X argument, where
X is defined by CONAN_CPU_COUNT environment variable or by the number of cores in the processor
by default.

• toolset (Optional, Defaulted to None): Specify a toolset. Will append a /p:PlatformToolset option.

• platforms (Optional, Defaulted to None): Dictionary with the mapping of archs/platforms from Conan
naming to another one. It is useful for Visual Studio solutions that have a different naming in architec-
tures. Example: platforms={"x86":"Win32"} (Visual solution uses “Win32” instead of “x86”). This
dictionary will update the following default one:

msvc_arch = {'x86': 'x86',
'x86_64': 'x64',
'armv7': 'ARM',
'armv8': 'ARM64'}

• verbosity (Optional, Defaulted to None): Specifies verbosity level (/verbosity: parameter).

• definitions (Optional, Defaulted to None): Dictionary with additional compiler definitions to be applied
during the build. Use value of None to set compiler definition with no value.

17.7.6 tools.msvc_build_command() [DEPRECATED]

Warning: This tool is deprecated and will be removed in Conan 2.0. Use MSBuild().get_command() instead.

def msvc_build_command(settings, sln_path, targets=None, upgrade_project=True, build_
→˓type=None,

arch=None, parallel=True, force_vcvars=False, toolset=None,␣
→˓platforms=None)

Returns a string with a joint command consisting in setting the environment variables via vcvars.bat with the above
tools.vcvars_command() function, and building a Visual Studio project with the tools.build_sln_command() [DEPRE-
CATED] function.

Parameters:

• Same parameters as the above tools.build_sln_command() [DEPRECATED].

• force_vcvars: Optional. Defaulted to False. Will set tools.vcvars_command(force=force_vcvars).

17.7.7 tools.unzip()

def unzip(filename, destination=".", keep_permissions=False, pattern=None)

Function mainly used in source(), but could be used in build() in special cases, as when retrieving pre-built binaries
from the Internet.

This function accepts .tar.gz, .tar, .tzb2, .tar.bz2, .tgz, .txz, tar.xz, and .zip files, and decompresses
them into the given destination folder (the current one by default).

It also accepts gzipped files, with extension .gz (not matching any of the above), and it will unzip them into a file with
the same name but without the extension, or to a filename defined by the destination argument.

17.7. Tools 549

Conan Documentation, Release 1.31.4

from conans import tools

tools.unzip("myfile.zip")
or to extract in "myfolder" sub-folder
tools.unzip("myfile.zip", "myfolder")

You can keep the permissions of the files using the keep_permissions=True parameter.

from conans import tools

tools.unzip("myfile.zip", "myfolder", keep_permissions=True)

Use pattern=None if you want to filter specific files and paths to decompress from the archive.

from conans import tools

Extract only files inside relative folder "small"
tools.unzip("bigfile.zip", pattern="small/*")
Extract only txt files
tools.unzip("bigfile.zip", pattern="*.txt")

Parameters:

• filename (Required): File to be unzipped.

• destination (Optional, Defaulted to "."): Destination folder for unzipped files.

• keep_permissions (Optional, Defaulted to False): Keep permissions of files. WARNING: Can be dan-
gerous if the zip was not created in a NIX system, the bits could produce undefined permission schema.
Use only this option if you are sure that the zip was created correctly.

• pattern (Optional, Defaulted to None): Extract from the archive only paths matching the pattern. This
should be a Unix shell-style wildcard. See fnmatch documentation for more details.

17.7.8 tools.untargz()

def untargz(filename, destination=".", pattern=None)

Extract .tar.gz files (or in the family). This is the function called by the previous unzip() for the matching extensions,
so generally not needed to be called directly, call unzip() instead unless the file had a different extension.

from conans import tools

tools.untargz("myfile.tar.gz")
or to extract in "myfolder" sub-folder
tools.untargz("myfile.tar.gz", "myfolder")
or to extract only txt files
tools.untargz("myfile.tar.gz", pattern="*.txt")

Parameters:

• filename (Required): File to be unzipped.

• destination (Optional, Defaulted to "."): Destination folder for untargzed files.

550 Chapter 17. Reference

https://docs.python.org/3/library/fnmatch.html

Conan Documentation, Release 1.31.4

• pattern (Optional, Defaulted to None): Extract from the archive only paths matching the pattern. This
should be a Unix shell-style wildcard. See fnmatch documentation for more details.

17.7.9 tools.get()

def get(url, md5='', sha1='', sha256='', destination=".", filename="", keep_
→˓permissions=False,

pattern=None, requester=None, output=None, verify=True, retry=None, retry_
→˓wait=None,

overwrite=False, auth=None, headers=None)

Just a high level wrapper for download, unzip, and remove the temporary zip file once unzipped. You can pass hash
checking parameters: md5, sha1, sha256. All the specified algorithms will be checked. If any of them doesn’t match,
it will raise a ConanException.

from conans import tools

tools.get("http://url/file", md5='d2da0cd0756cd9da6560b9a56016a0cb')
also, specify a destination folder
tools.get("http://url/file", destination="subfolder")

Parameters:

• url (Required): URL to download. It can be a list, which only the first one will be downloaded, and the
follow URLs will be used as mirror in case of a download error.

• md5 (Optional, Defaulted to ""): MD5 hash code to check the downloaded file.

• sha1 (Optional, Defaulted to ""): SHA-1 hash code to check the downloaded file.

• sha256 (Optional, Defaulted to ""): SHA-256 hash code to check the downloaded file.

• filename (Optional, Defaulted to ""): Specify the name of the compressed file if it cannot be deduced from
the URL.

• keep_permissions (Optional, Defaulted to False): Propagates the parameter to tools.unzip().

• pattern (Optional, Defaulted to None): Propagates the parameter to tools.unzip().

• requester (Optional, Defaulted to None): HTTP requests instance

• output (Optional, Defaulted to None): Stream object.

• verify (Optional, Defaulted to True): When False, disables https certificate validation.

• retry (Optional, Defaulted to 2): Number of retries in case of failure. Default is overriden by general.
retry in the conan.conf file or an env variable CONAN_RETRY.

• retry_wait (Optional, Defaulted to 5): Seconds to wait between download attempts. Default is overriden
by general.retry_wait in the conan.conf file or an env variable CONAN_RETRY_WAIT.

• overwrite: (Optional, Defaulted to False): When TrueConan will overwrite the destination file if it exists.
Otherwise it will raise.

• auth (Optional, Defaulted to None): A tuple of user, password can be passed to use HTTPBasic authentica-
tion. This is passed directly to the requests Python library. Check here other uses of the auth parameter:
https://requests.readthedocs.io/en/master/user/authentication/#basic-authentication

• headers (Optional, Defaulted to None): A dictionary with additional headers.

17.7. Tools 551

https://docs.python.org/3/library/fnmatch.html
https://requests.readthedocs.io/en/master/user/authentication/#basic-authentication

Conan Documentation, Release 1.31.4

17.7.10 tools.get_env()

def get_env(env_key, default=None, environment=None)

Parses an environment and cast its value against the default type passed as an argument. Following Python conventions,
returns default if env_key is not defined.

This is a usage example with an environment variable defined while executing Conan:

$ TEST_ENV="1" conan <command> ...

from conans import tools

tools.get_env("TEST_ENV") # returns "1", returns current value
tools.get_env("TEST_ENV_NOT_DEFINED") # returns None, TEST_ENV_NOT_DEFINED not declared
tools.get_env("TEST_ENV_NOT_DEFINED", []) # returns [], TEST_ENV_NOT_DEFINED not declared
tools.get_env("TEST_ENV", "2") # returns "1"
tools.get_env("TEST_ENV", False) # returns True (default value is boolean)
tools.get_env("TEST_ENV", 2) # returns 1
tools.get_env("TEST_ENV", 2.0) # returns 1.0
tools.get_env("TEST_ENV", []) # returns ["1"]

Parameters:

• env_key (Required): environment variable name.

• default (Optional, Defaulted to None): default value to return if not defined or cast value against.

• environment (Optional, Defaulted to None): os.environ if None or environment dictionary to look for.

17.7.11 tools.download()

def download(url, filename, verify=True, out=None, retry=None, retry_wait=None,␣
→˓overwrite=False,

auth=None, headers=None, requester=None, md5='', sha1='', sha256='')

Retrieves a file from a given URL into a file with a given filename. It uses certificates from a list of known verifiers for
https downloads, but this can be optionally disabled.

You can pass hash checking parameters: md5, sha1, sha256. All the specified algorithms will be checked. If any of
them doesn’t match, it will raise a ConanException.

from conans import tools

tools.download("http://someurl/somefile.zip", "myfilename.zip")

to disable verification:
tools.download("http://someurl/somefile.zip", "myfilename.zip", verify=False)

to retry the download 2 times waiting 5 seconds between them
tools.download("http://someurl/somefile.zip", "myfilename.zip", retry=2, retry_wait=5)

Use https basic authentication
tools.download("http://someurl/somefile.zip", "myfilename.zip", auth=("user", "password

(continues on next page)

552 Chapter 17. Reference

Conan Documentation, Release 1.31.4

(continued from previous page)

→˓"))

Pass some header
tools.download("http://someurl/somefile.zip", "myfilename.zip", headers={"Myheader": "My␣
→˓value"})

Download and check file checksum
tools.download("http://someurl/somefile.zip", "myfilename.zip", md5=
→˓"e5d695597e9fa520209d1b41edad2a27")

to add mirrors
tools.download(["https://ftp.gnu.org/gnu/gcc/gcc-9.3.0/gcc-9.3.0.tar.gz",

"http://mirror.linux-ia64.org/gnu/gcc/releases/gcc-9.3.0/gcc-9.3.0.tar.gz
→˓"], "gcc-9.3.0.tar.gz",

sha256="5258a9b6afe9463c2e56b9e8355b1a4bee125ca828b8078f910303bc2ef91fa6")

Parameters:

• url (Required): URL to download. It can be a list, which only the first one will be downloaded, and the
follow URLs will be used as mirror in case of download error.

• filename (Required): Name of the file to be created in the local storage

• verify (Optional, Defaulted to True): When False, disables https certificate validation.

• out: (Optional, Defaulted to None): An object with a write() method can be passed to get the output.
stdout will use if not specified.

• retry (Optional, Defaulted to 1): Number of retries in case of failure. Default is overriden by general.
retry in the conan.conf file or an env variable CONAN_RETRY.

• retry_wait (Optional, Defaulted to 5): Seconds to wait between download attempts. Default is overriden
by general.retry_wait in the conan.conf file or an env variable CONAN_RETRY_WAIT.

• overwrite: (Optional, Defaulted to False): When True, Conan will overwrite the destination file if exists.
Otherwise it will raise an exception.

• auth (Optional, Defaulted to None): A tuple of user and password to use HTTPBasic authentication. This
is used directly in the requests Python library. Check other uses here: https://requests.readthedocs.io/en/
master/user/authentication/#basic-authentication

• headers (Optional, Defaulted to None): A dictionary with additional headers.

• requester (Optional, Defaulted to None): HTTP requests instance

• md5 (Optional, Defaulted to ""): MD5 hash code to check the downloaded file.

• sha1 (Optional, Defaulted to ""): SHA-1 hash code to check the downloaded file.

• sha256 (Optional, Defaulted to ""): SHA-256 hash code to check the downloaded file.

17.7. Tools 553

https://requests.readthedocs.io/en/master/user/authentication/#basic-authentication
https://requests.readthedocs.io/en/master/user/authentication/#basic-authentication

Conan Documentation, Release 1.31.4

17.7.12 tools.ftp_download()

def ftp_download(ip, filename, login="", password="")

Retrieves a file from an FTP server. This doesn’t support SSL, but you might implement it yourself using the standard
Python FTP library.

from conans import tools

def source(self):
tools.ftp_download('ftp.debian.org', "debian/README")
self.output.info(load("README"))

Parameters:

• ip (Required): The IP or address of the ftp server.

• filename (Required): The filename, including the path/folder where it is located.

• login (Optional, Defaulted to ""): Login credentials for the ftp server.

• password (Optional, Defaulted to ""): Password credentials for the ftp server.

17.7.13 tools.replace_in_file()

def replace_in_file(file_path, search, replace, strict=True, encoding=None)

This function is useful for a simple “patch” or modification of source files. A typical use would be to augment some
library existing CMakeLists.txt in the source() method of a conanfile.py, so it uses Conan dependencies without
forking or modifying the original project:

from conans import tools

def source(self):
get the sources from somewhere
tools.replace_in_file("hello/CMakeLists.txt", "PROJECT(MyHello)",

'''PROJECT(MyHello)
include(${CMAKE_BINARY_DIR}/conanbuildinfo.cmake)
conan_basic_setup()''')

Parameters:

• file_path (Required): File path of the file to perform the replace in.

• search (Required): String you want to be replaced.

• replace (Required): String to replace the searched string.

• strict (Optional, Defaulted to True): If True, it raises an error if the searched string is not found, so nothing
is actually replaced.

• encoding (Optional, Defaulted to None): Specifies the input and output files text encoding. The None value
has a special meaning - perform the encoding detection by checking the BOM (byte order mask), if no BOM
is present tries to use: utf-8, cp1252. In case of None, the output file is saved to the utf-8

554 Chapter 17. Reference

Conan Documentation, Release 1.31.4

17.7.14 tools.replace_path_in_file()

def replace_path_in_file(file_path, search, replace, strict=True, windows_paths=None,
encoding=None)

Replace a path in a file with another string. In Windows, it will match the path even if the casing and the path separator
doesn’t match.

from conans import tools

def build(self):
tools.replace_path_in_file("hello/somefile.cmake", "c:\Some/PATH/to\File.txt",

→˓"PATTERN/file.txt")

Parameters:

• file_path (Required): File path of the file to perform the replace in.

• search (Required): String with the path you want to be replaced.

• replace (Required): String to replace the searched path.

• strict (Optional, Defaulted to True): If True, it raises an error if the search string is not found and nothing
is actually replaced.

• windows_paths (Optional, Defaulted to None): Controls whether the casing of the path and the different
directory separators are taken into account:

– None: Only when Windows operating system is detected.

– False: Deactivated, it will match exact patterns (like tools.replace_in_file()).

– True: Always activated, irrespective of the detected operating system.

• encoding (Optional, Defaulted to None): Specifies the input and output files text encoding. The None value
has a special meaning - perform the encoding detection by checking the BOM (byte order mask), if no BOM
is present tries to use: utf-8, cp1252. In case of None, the output file is saved to the utf-8

17.7.15 tools.run_environment()

def run_environment(conanfile)

Context manager that sets temporary environment variables set by RunEnvironment.

17.7.16 tools.check_with_algorithm_sum()

def check_with_algorithm_sum(algorithm_name, file_path, signature)

Useful to check that some downloaded file or resource has a predefined hash, so integrity and security are guaranteed.
Something that could be typically done in source() method after retrieving some file from the internet.

Parameters:

• algorithm_name (Required): Name of the algorithm to be checked.

• file_path (Required): File path of the file to be checked.

• signature (Required): Hash code that the file should have.

17.7. Tools 555

Conan Documentation, Release 1.31.4

There are specific functions for common algorithms:

def check_sha1(file_path, signature)
def check_md5(file_path, signature)
def check_sha256(file_path, signature)

For example:

from conans import tools

tools.check_sha1("myfile.zip", "eb599ec83d383f0f25691c184f656d40384f9435")

Other algorithms are also possible, as long as are recognized by python hashlib implementation, via hashlib.
new(algorithm_name). The previous is equivalent to:

from conans import tools

tools.check_with_algorithm_sum("sha1", "myfile.zip",
"eb599ec83d383f0f25691c184f656d40384f9435")

17.7.17 tools.patch()

def patch(base_path=None, patch_file=None, patch_string=None, strip=0, output=None,␣
→˓fuzz=False)

Applies a patch from a file or from a string into the given path. The patch should be in diff (unified diff) format. Use it
preferably in the build() method.

from conans import tools

from a file
def build(self):

tools.patch(patch_file="file.patch")

from a string:
def build(self):

patch_content = " real patch content ..."
tools.patch(patch_string=patch_content)

to apply in subfolder
def build(self):

tools.patch(base_path=mysubfolder, patch_string=patch_content)

from conandata
def build(self):

tools.patch(**self.conan_data["patches"][self.version])

from conandata, using multiple versions
def build(self):

for patch in self.conan_data.get("patches", {}).get(self.version, []):
tools.patch(**patch)

If the patch to be applied uses alternate paths that have to be stripped like this example:

556 Chapter 17. Reference

Conan Documentation, Release 1.31.4

--- old_path/text.txt\t2016-01-25 17:57:11.452848309 +0100
+++ new_path/text_new.txt\t2016-01-25 17:57:28.839869950 +0100
@@ -1 +1 @@
- old content
+ new content

Then, the number of folders to be stripped from the path can be specified:

from conans import tools

tools.patch(patch_file="file.patch", strip=1)

If the patch to be applied differs from the source (fuzzy) the patch will fail by default, however, you can force it using
the fuzz option:

from conans import tools

tools.patch(patch_file="file.patch", fuzz=True)

When creating a header-only package and there is no usage for build step or build folder, the patch can be applied to
the source folder:

from conans import tools, ConanFile

class HeaderOnly(ConanFile):
no_copy_source = True

def source(self):
...
tools.patch(patch_file="file.patch")

Parameters:

• base_path (Optional, Defaulted to None): Base path where the patch should be applied.

• patch_file (Optional, Defaulted to None): Patch file that should be applied.

• patch_string (Optional, Defaulted to None): Patch string that should be applied.

• strip (Optional, Defaulted to 0): Number of folders to be stripped from the path.

• output (Optional, Defaulted to None): Stream object.

• fuzz (Optional, Defaulted to False): Accept fuzzy patches.

17.7.18 tools.environment_append()

def environment_append(env_vars)

This is a context manager that allows to temporary use environment variables for a specific piece of code in your
conanfile:

from conans import tools

def build(self):
(continues on next page)

17.7. Tools 557

Conan Documentation, Release 1.31.4

(continued from previous page)

with tools.environment_append({"MY_VAR": "3", "CXX": "/path/to/cxx", "CPPFLAGS":␣
→˓None}):

do_something()

The environment variables will be overridden if the value is a string, while it will be prepended if the value is a list.
Additionally, if value is None, the given environment variable is unset (In the previous example, CPPFLAGS environment
variable will be unset), and in case variable wasn’t set prior to the invocation, it has no effect on the given variable
(CPPFLAGS). When the context manager block ends, the environment variables will recover their previous state.

Parameters:

• env_vars (Required): Dictionary object with environment variable name and its value.

17.7.19 tools.chdir()

def chdir(newdir)

This is a context manager that allows to temporary change the current directory in your conanfile:

from conans import tools

def build(self):
with tools.chdir("./subdir"):

do_something()

Parameters:

• newdir (Required): Directory path name to change the current directory.

17.7.20 tools.pythonpath()

Warning: This way of reusing python code from other recipes can be improved via Python requires.

This tool is automatically applied in the conanfile methods unless apply_env is deactivated, so any PYTHONPATH inher-
ited from the requirements will be automatically available.

def pythonpath(conanfile)

This is a context manager that allows to load the PYTHONPATH for dependent packages, create packages with Python
code and reuse that code into your own recipes.

For example:

from conans import tools

def build(self):
with tools.pythonpath(self):

from module_name import whatever
whatever.do_something()

When the apply_env is activated (default) the above code could be simplified as:

558 Chapter 17. Reference

Conan Documentation, Release 1.31.4

from conans import tools

def build(self):
from module_name import whatever
whatever.do_something()

For that to work, one of the dependencies of the current recipe, must have a module_name file or folder with a whatever
file or object inside, and should have declared in its package_info():

from conans import tools

def package_info(self):
self.env_info.PYTHONPATH.append(self.package_folder)

Parameters:

• conanfile (Required): Current ConanFile object.

17.7.21 tools.no_op()

def no_op()

Context manager that performs nothing. Useful to condition any other context manager to get a cleaner code:

from conans import tools

def build(self):
with tools.chdir("some_dir") if self.options.myoption else tools.no_op():

if not self.options.myoption, we are not in the "some_dir"
pass

17.7.22 tools.human_size()

def human_size(size_bytes)

Will return a string from a given number of bytes, rounding it to the most appropriate unit: GB, MB, KB, etc. It is
mostly used by the Conan downloads and unzip progress.

from conans import tools

tools.human_size(1024)
>> 1.0KB

Parameters:

• size_bytes (Required): Number of bytes.

17.7. Tools 559

Conan Documentation, Release 1.31.4

17.7.23 tools.OSInfo and tools.SystemPackageTool

These are helpers to install system packages. Check system_requirements().

17.7.24 tools.cross_building()

def cross_building(conanfile, self_os=None, self_arch=None, skip_x64_x86=False)

Evaluates operating system and architecture from the host machine and the build machine to return a boolean True
if it is a cross building scenario. Settings from host machine are taken from the conanfile.settings, while setting
from the build context can provide from different sources:

• if conanfile.settings_build is available (Conan was called with a --profile:build) it will use settings
in that profile (read more about Build and Host contexts).

• otherwise, the values for the build context will come from (in this order of precedence): self_os and
self_arch if they are given to the function, the values for os_build and arch_build from conanfile.
settings or auto-detected.

This tool can be used to run special actions depending on its return value:

from conans import tools

if tools.cross_building(self):
Some special action

Parameters:

• conanfile (Required): Conanfile object. Use self in a conanfile.py.

• self_os (Optional, Defaulted to None): Current operating system where the build is being done.

• self_arch (Optional, Defaulted to None): Current architecture where the build is being done.

• skip_x64_x86 (Optional, Defaulted to False): Do not consider building for x86 host from x86_64 build
machine as cross building, in case of host and build machine use the same operating system. Normally, in
such case build machine may execute binaries produced for the target machine, and special cross-building
handling may not be needed.

17.7.25 tools.get_gnu_triplet()

def get_gnu_triplet(os_, arch, compiler=None)

Returns string with GNU like <machine>-<vendor>-<op_system> triplet.

Parameters:

• os_ (Required): Operating system to be used to create the triplet.

• arch (Required): Architecture to be used to create the triplet.

• compiler (Optional, Defaulted to None): Compiler used to create the triplet (only needed for Windows).

560 Chapter 17. Reference

Conan Documentation, Release 1.31.4

17.7.26 tools.run_in_windows_bash()

def run_in_windows_bash(conanfile, bashcmd, cwd=None, subsystem=None, msys_mingw=True,␣
→˓env=None, with_login=True)

Runs a UNIX command inside a bash shell. It requires to have “bash” in the path. Useful to build libraries using
configure and make in Windows. Check Windows subsytems section.

You can customize the path of the bash executable using the environment variable CONAN_BASH_PATH or the conan.conf
bash_path variable to change the default bash location.

from conans import tools

command = "pwd"
tools.run_in_windows_bash(self, command) # self is a conanfile instance

Parameters:

• conanfile (Required): Current ConanFile object.

• bashcmd (Required): String with the command to be run.

• cwd (Optional, Defaulted to None): Path to directory where to apply the command from.

• subsystem (Optional, Defaulted to None will autodetect the subsystem): Used to escape the command
according to the specified subsystem.

• msys_mingw (Optional, Defaulted to True): If the specified subsystem is MSYS2, will start it in MinGW
mode (native windows development).

• env (Optional, Defaulted to None): You can pass a dictionary with environment variable to be applied at
first place so they will have more priority than others.

• with_login (Optional, Defaulted to True): Pass the --login flag to bash command. This might come
handy when you don’t want to create a fresh user session for running the command.

17.7.27 tools.get_cased_path()

get_cased_path(abs_path)

This function converts a case-insensitive absolute path to a case-sensitive one. That is, with the real cased characters.
Useful when using Windows subsystems where the file system is case-sensitive.

17.7.28 tools.detected_os()

detected_os()

It returns the recognized OS name e.g “Macos”, “Windows”. Otherwise it will return the value from platform.
system().

17.7. Tools 561

Conan Documentation, Release 1.31.4

17.7.29 tools.remove_from_path()

remove_from_path(command)

This is a context manager that allows you to remove a tool from the PATH. Conan will locate the executable (using
tools.which()) and will remove from the PATH the directory entry that contains it. It’s not necessary to specify the
extension.

from conans import tools

with tools.remove_from_path("make"):
self.run("some command")

17.7.30 tools.unix_path()

def unix_path(path, path_flavor=None)

Used to translate Windows paths to MSYS/CYGWIN Unix paths like c/users/path/to/file.

Parameters:

• path (Required): Path to be converted.

• path_flavor (Optional, Defaulted to None, will try to autodetect the subsystem): Type of Unix path to be
returned. Options are MSYS, MSYS2, CYGWIN, WSL and SFU.

17.7.31 tools.escape_windows_cmd()

def escape_windows_cmd(command)

Useful to escape commands to be executed in a windows bash (msys2, cygwin etc).

• Adds escapes so the argument can be unpacked by CommandLineToArgvW().

• Adds escapes for cmd.exe so the argument survives to cmd.exe’s substitutions.

Parameters:

• command (Required): Command to execute.

17.7.32 tools.sha1sum(), sha256sum(), md5sum()

def def md5sum(file_path)
def sha1sum(file_path)
def sha256sum(file_path)

Return the respective hash or checksum for a file.

from conans import tools

md5 = tools.md5sum("myfilepath.txt")
sha1 = tools.sha1sum("myfilepath.txt")

Parameters:

562 Chapter 17. Reference

Conan Documentation, Release 1.31.4

• file_path (Required): Path to the file.

17.7.33 tools.md5()

def md5(content)

Returns the MD5 hash for a string or byte object.

from conans import tools

md5 = tools.md5("some string, not a file path")

Parameters:

• content (Required): String or bytes to calculate its md5.

17.7.34 tools.save()

def save(path, content, append=False, encoding="utf-8")

Utility function to save files in one line. It will manage the open and close of the file and creating directories if necessary.

from conans import tools

tools.save("otherfile.txt", "contents of the file")

Parameters:

• path (Required): Path to the file.

• content (Required): Content that should be saved into the file.

• append (Optional, Defaulted to False): If True, it will append the content.

• encoding (Optional, Defaulted to utf-8): Specifies the output file text encoding.

17.7.35 tools.load()

def load(path, binary=False, encoding="auto")

Utility function to load files in one line. It will manage the open and close of the file, and load binary encodings.
Returns the content of the file.

from conans import tools

content = tools.load("myfile.txt")

Parameters:

• path (Required): Path to the file.

• binary (Optional, Defaulted to False): If True, it reads the the file as binary code.

17.7. Tools 563

Conan Documentation, Release 1.31.4

• encoding (Optional, Defaulted to auto): Specifies the input file text encoding. The auto value has a
special meaning - perform the encoding detection by checking the BOM (byte order mask), if no BOM is
present tries to use: utf-8, cp1252. The value is ignored in case of binary set to the True.

17.7.36 tools.mkdir(), tools.rmdir()

def mkdir(path)
def rmdir(path)

Utility functions to create/delete a directory. The existence of the specified directory is checked, so mkdir() will do
nothing if the directory already exists and rmdir() will do nothing if the directory does not exists.

This makes it safe to use these functions in the package() method of a conanfile.py when no_copy_source=True.

from conans import tools

tools.mkdir("mydir") # Creates mydir if it does not already exist
tools.mkdir("mydir") # Does nothing

tools.rmdir("mydir") # Deletes mydir
tools.rmdir("mydir") # Does nothing

Parameters:

• path (Required): Path to the directory.

17.7.37 tools.which()

def which(filename)

Returns the path to a specified executable searching in the PATH environment variable. If not found, it returns None.

This tool also looks for filenames with following extensions if no extension provided:

• .com, .exe, .bat .cmd for Windows.

• .sh if not Windows.

from conans import tools

abs_path_make = tools.which("make")

Parameters:

• filename (Required): Name of the executable file. It doesn’t require the extension of the executable.

564 Chapter 17. Reference

Conan Documentation, Release 1.31.4

17.7.38 tools.unix2dos()

def unix2dos(filepath)

Converts line breaks in a text file from Unix format (LF) to DOS format (CRLF).

from conans import tools

tools.unix2dos("project.dsp")

Parameters:

• filepath (Required): The file to convert.

17.7.39 tools.dos2unix()

def dos2unix(filepath)

Converts line breaks in a text file from DOS format (CRLF) to Unix format (LF).

from conans import tools

tools.dos2unix("dosfile.txt")

Parameters:

• filepath (Required): The file to convert.

17.7.40 tools.rename()

def rename(src, dst)

Utility functions to rename a file or folder src to dst with retrying. os.rename() frequently raises “Access is denied”
exception on windows. This function renames file or folder using robocopy to avoid the exception on windows.

from conans import tools
tools.rename("src_dir", "dst_dir") # renaming a folder

Parameters:

• src (Required): Path to be renamed.

• dst (Required): Path to be renamed to.

17.7. Tools 565

Conan Documentation, Release 1.31.4

17.7.41 tools.touch()

def touch(fname, times=None)

Updates the timestamp (last access and last modification times) of a file. This is similar to Unix’ touch command
except that this one fails if the file does not exist.

Optionally, a tuple of two numbers can be specified, which denotes the new values for the last access and last modified
times respectively.

from conans import tools
import time

tools.touch("myfile") # Sets atime and mtime to the current␣
→˓time
tools.touch("myfile", (time.time(), time.time()) # Similar to above
tools.touch("myfile", (time.time(), 1)) # Modified long, long ago

Parameters:

• fname (Required): File name of the file to be touched.

• times (Optional, Defaulted to None: Tuple with ‘last access’ and ‘last modified’ times.

17.7.42 tools.relative_dirs()

def relative_dirs(path)

Recursively walks a given directory (using os.walk()) and returns a list of all contained file paths relative to the given
directory.

from conans import tools

tools.relative_dirs("mydir")

Parameters:

• path (Required): Path of the directory.

17.7.43 tools.vswhere()

def vswhere(all_=False, prerelease=False, products=None, requires=None, version="",
latest=False, legacy=False, property_="", nologo=True)

Wrapper of vswhere tool to look for details of Visual Studio installations. Its output is always a list with a dictionary
for each installation found.

from conans import tools

vs_legacy_installations = tool.vswhere(legacy=True)

Parameters:

• all_ (Optional, Defaulted to False): Finds all instances even if they are incomplete and may not launch.

566 Chapter 17. Reference

Conan Documentation, Release 1.31.4

• prerelease (Optional, Defaulted to False): Also searches prereleases. By default, only releases are
searched.

• products (Optional, Defaulted to None): List of one or more product IDs to find. Defaults to Community,
Professional, and Enterprise. Specify ["*"] by itself to search all product instances installed.

• requires (Optional, Defaulted to None): List of one or more workload or component IDs
required when finding instances. See https://docs.microsoft.com/en-us/visualstudio/install/
workload-and-component-ids?view=vs-2017 listing all workload and component IDs.

• version (Optional, Defaulted to ""): A version range of instances to find. Example: "[15.0,16.0)" will
find versions 15.*.

• latest (Optional, Defaulted to False): Return only the newest version and last installed.

• legacy (Optional, Defaulted to False): Also searches Visual Studio 2015 and older products. Information
is limited. This option cannot be used with either products or requires parameters.

• property_ (Optional, Defaulted to ""): The name of a property to return. Use delimiters ., /, or _ to
separate object and property names. Example: "properties.nickname" will return the “nickname”
property under “properties”.

• nologo (Optional, Defaulted to True): Do not show logo information.

17.7.44 tools.vs_comntools()

def vs_comntools(compiler_version)

Returns the value of the environment variable VS<compiler_version>.0COMNTOOLS for the compiler version indi-
cated.

from conans import tools

vs_path = tools.vs_comntools("14")

Parameters:

• compiler_version (Required): String with the version number: "14", "12". . .

17.7.45 tools.vs_installation_path()

def vs_installation_path(version, preference=None)

Returns the Visual Studio installation path for the given version. It uses tools.vswhere() and tools.vs_comntools(). It
will also look for the installation paths following CONAN_VS_INSTALLATION_PREFERENCE environment variable
or the preference parameter itself. If the tool is not able to return the path it will return None.

from conans import tools

vs_path_2017 = tools.vs_installation_path("15", preference=["Community", "BuildTools",
→˓"Professional", "Enterprise"])

Parameters:

• version (Required): Visual Studio version to locate. Valid version numbers are strings: "10", "11", "12",
"13", "14", "15". . .

17.7. Tools 567

https://docs.microsoft.com/en-us/visualstudio/install/workload-and-component-ids?view=vs-2017
https://docs.microsoft.com/en-us/visualstudio/install/workload-and-component-ids?view=vs-2017

Conan Documentation, Release 1.31.4

• preference (Optional, Defaulted to None): Set to value of CONAN_VS_INSTALLATION_PREFERENCE
or defaulted to ["Enterprise", "Professional", "Community", "BuildTools"]. If only set to
one type of preference, it will return the installation path only for that Visual type and version, otherwise
None.

17.7.46 tools.replace_prefix_in_pc_file()

def replace_prefix_in_pc_file(pc_file, new_prefix)

Replaces the prefix variable in a package config file .pc with the specified value.

from conans import tools

lib_b_path = self.deps_cpp_info["libB"].rootpath
tools.replace_prefix_in_pc_file("libB.pc", lib_b_path)

Parameters:

• pc_file (Required): Path to the pc file

• new_prefix (Required): New prefix variable value (Usually a path pointing to a package).

See also:

Check section pkg-config and .pc files to know more.

17.7.47 tools.collect_libs()

def collect_libs(conanfile, folder=None)

Returns a sorted list of library names from the libraries (files with extensions .so, .lib, .a and .dylib) located inside the
conanfile.cpp_info.libdirs (by default) or the folder directory relative to the package folder. Useful to collect
not inter-dependent libraries or with complex names like libmylib-x86-debug-en.lib.

from conans import tools

def package_info(self):
self.cpp_info.libdirs = ["lib", "other_libdir"] # Deafult value is 'lib'
self.cpp_info.libs = tools.collect_libs(self)

For UNIX libraries staring with lib, like libmath.a, this tool will collect the library name math.

Parameters:

• conanfile (Required): A ConanFile object to get the package_folder and cpp_info.

• folder (Optional, Defaulted to None): String indicating the subfolder name inside conanfile.
package_folder where the library files are.

Warning: This tool collects the libraries searching directly inside the package folder and returns them in no
specific order. If libraries are inter-dependent, then package_info() method should order them to achieve correct
linking order.

568 Chapter 17. Reference

Conan Documentation, Release 1.31.4

17.7.48 tools.PkgConfig()

class PkgConfig(library, pkg_config_executable="pkg-config", static=False, msvc_
→˓syntax=False, variables=None, print_errors=True)

Wrapper of the pkg-config tool.

from conans import tools

with tools.environment_append({'PKG_CONFIG_PATH': tmp_dir}):
pkg_config = PkgConfig("libastral")
print(pkg_config.version)
print(pkg_config.cflags)
print(pkg_config.cflags_only_I)
print(pkg_config.variables)

Parameters of the constructor:

• library (Required): Library (package) name, such as libastral.

• pkg_config_executable (Optional, Defaulted to "pkg-config"): Specify custom pkg-config executable
(e.g., for cross-compilation).

• static (Optional, Defaulted to False): Output libraries suitable for static linking (adds --static to
pkg-config command line).

• msvc_syntax (Optional, Defaulted to False): MSVC compatibility (adds --msvc-syntax to
pkg-config command line).

• variables (Optional, Defaulted to None): Dictionary of pkg-config variables (passed as
--define-variable=VARIABLENAME=VARIABLEVALUE).

• print_errors (Optional, Defaulted to True): Output error messages (adds –print-errors)

Properties:

PROPERTY DESCRIPTION
.version get version defined in the module
.cflags get all pre-processor and compiler flags
.cflags_only_I get -I flags
.cflags_only_other get cflags not covered by the cflags-only-I option
.libs get all linker flags
.libs_only_L get -L flags
.libs_only_l get -l flags
.libs_only_other get other libs (e.g., -pthread)
.provides get which packages the package provides
.requires get which packages the package requires
.requires_private get packages the package requires for static linking
.variables get list of variables defined by the module

17.7. Tools 569

Conan Documentation, Release 1.31.4

17.7.49 tools.Git()

Warning: This is an experimental feature subject to breaking changes in future releases.

class Git(folder=None, verify_ssl=True, username=None, password=None,
force_english=True, runner=None):

Wrapper of the git tool.

Parameters of the constructor:

• folder (Optional, Defaulted to None): Specify a subfolder where the code will be cloned. If not specified
it will clone in the current directory.

• verify_ssl (Optional, Defaulted to True): Verify SSL certificate of the specified url.

• username (Optional, Defaulted to None): When present, it will be used as the login to authenticate with
the remote.

• password (Optional, Defaulted to None): When present, it will be used as the password to authenticate
with the remote.

• force_english (Optional, Defaulted to True): The encoding of the tool will be forced to use en_US.UTF-8
to ease the output parsing.

• runner (Optional, Defaulted to None): By default subprocess.check_output will be used to invoke the
git tool.

Methods:

• run(command): Run any “git” command, e.g., run("status")

• get_url_with_credentials(url): Returns the passed URL but containing the username and password in
the URL to authenticate (only if username and password is specified)

• clone(url, branch=None, args=””, shallow=False): Clone a repository. Optionally you can specify a
branch. Note: If you want to clone a repository and the specified folder already exist you have to specify a
branch. Additional args may be specified (e.g. git config variables). Use shallow to perform a shallow
clone (with –depth 1 - only last revision is being cloned, such clones are usually done faster and take less
disk space). In this case, branch may specify any valid git reference - e.g. branch name, tag name, sha256
of the revision, expression like HEAD~1 or None (default branch, e.g. master).

• checkout(element, submodule=None): Checkout a branch, commit or tag given by element. Argument
submodule can get values in shallow or recursive to instruct what to do with submodules.

• get_remote_url(remote_name=None): Returns the remote URL of the specified remote. If not
remote_name is specified origin will be used.

• get_qualified_remote_url(): Returns the remote url (see get_remote_url()) but with forward slashes
if it is a local folder.

• get_revision(), get_commit(): Gets the current commit hash.

• get_branch(): Gets the current branch.

• get_tag(): Gets the current checkout tag (git describe --exact-match --tags) and returns None if
not in a tag.

• excluded_files(): Gets a list of the files and folders that would be excluded by .gitignore file.

• is_local_repository(): Returns True if the remote is a local folder.

570 Chapter 17. Reference

Conan Documentation, Release 1.31.4

• is_pristine(): Returns True if there aren’t modified or uncommitted files in the working copy.

• get_repo_root(): Returns the root folder of the working copy.

• get_commit_message(): Returns the latest log message

17.7.50 tools.SVN()

Warning: This is an experimental feature subject to breaking changes in future releases.

class SVN(folder=None, verify_ssl=True, username=None, password=None,
force_english=True, runner=None):

Wrapper of the svn tool.

Parameters of the constructor:

• folder (Optional, Defaulted to None): Specify a subfolder where the code will be cloned. If not specified
it will clone in the current directory.

• verify_ssl (Optional, Defaulted to True): Verify SSL certificate of the specified url.

• username (Optional, Defaulted to None): When present, it will be used as the login to authenticate with
the remote.

• password (Optional, Defaulted to None): When present, it will be used as the password to authenticate
with the remote.

• force_english (Optional, Defaulted to True): The encoding of the tool will be forced to use en_US.UTF-8
to ease the output parsing.

• runner (Optional, Defaulted to None): By default subprocess.check_output will be used to invoke the
svn tool.

Methods:

• version(): Retrieve version from the installed SVN client.

• run(command): Run any “svn” command, e.g., run("status")

• get_url_with_credentials(url): Return the passed url but containing the username and password in the
URL to authenticate (only if username and password is specified)

• checkout(url, revision=”HEAD”): Checkout the revision number given by revision from the specified
url.

• update(revision=”HEAD”): Update working copy to revision number given by revision.

• get_remote_url(): Returns the remote url of working copy.

• get_qualified_remote_url(): Returns the remote url of the working copy with the peg revision appended
to it.

• get_revision(): Gets the current revision number from the repo server.

• get_last_changed_revision(use_wc_root=True): Returns the revision number corresponding to the
last changed item in the working folder (use_wc_root=False) or in the working copy root
(use_wc_root=True).

• get_branch(): Tries to deduce the branch name from the standard SVN layout. Will raise if cannot resolve
it.

17.7. Tools 571

http://svnbook.red-bean.com/en/1.7/svn.advanced.pegrevs.html
http://svnbook.red-bean.com/en/1.7/svn.branchmerge.maint.html

Conan Documentation, Release 1.31.4

• get_tag(): Tries to deduce the tag name from the standard SVN layout and returns the current tag name.
Otherwise it will return None.

• excluded_files(): Gets a list of the files and folders that are marked to be ignored.

• is_local_repository(): Returns True if the remote is a local folder.

• is_pristine(): Returns True if there aren’t modified or uncommitted files in the working copy.

• get_repo_root(): Returns the root folder of the working copy.

• get_revision_message(): Returns the latest log message

Warning: SVN allows to checkout a subdirectory of the remote repository, take into account that the return value
of some of these functions may depend on the root of the working copy that has been checked out.

17.7.51 tools.is_apple_os()

def is_apple_os(os_)

Returns True if OS is an Apple one: macOS, iOS, watchOS or tvOS.

Parameters:

• os_ (Required): OS to perform the check. Usually this would be self.settings.os.

17.7.52 tools.to_apple_arch()

def to_apple_arch(arch)

Converts Conan style architecture into Apple style architecture.

Parameters:

• arch (Required): arch to perform the conversion. Usually this would be self.settings.arch.

17.7.53 tools.apple_sdk_name()

def apple_sdk_name(settings)

Returns proper SDK name suitable for OS and architecture you are building for (considering simulators).

Parameters:

• settings (Required): Conanfile settings.

572 Chapter 17. Reference

http://svnbook.red-bean.com/en/1.7/svn.branchmerge.maint.html

Conan Documentation, Release 1.31.4

17.7.54 tools.apple_deployment_target_env()

def apple_deployment_target_env(os_, os_version)

Environment variable name which controls deployment target: MACOSX_DEPLOYMENT_TARGET,
IOS_DEPLOYMENT_TARGET, WATCHOS_DEPLOYMENT_TARGET or TVOS_DEPLOYMENT_TARGET.

Parameters:

• os_ (Required): OS of the settings. Usually self.settings.os.

• os_version (Required): OS version.

17.7.55 tools.apple_deployment_target_flag()

def apple_deployment_target_flag(os_, os_version)

Compiler flag name which controls deployment target. For example: -mappletvos-version-min=9.0

Parameters:

• os_ (Required): OS of the settings. Usually self.settings.os.

• os_version (Required): OS version.

17.7.56 tools.XCRun()

class XCRun(object):

def __init__(self, settings, sdk=None):

XCRun wrapper used to get information for building.

Properties:

• sdk_path: Obtain SDK path (a.k.a. Apple sysroot or -isysroot).

• sdk_version: Obtain SDK version.

• sdk_platform_path: Obtain SDK platform path.

• sdk_platform_version: Obtain SDK platform version.

• cc: Path to C compiler (CC).

• cxx: Path to C++ compiler (CXX).

• ar: Path to archiver (AR).

• ranlib: Path to archive indexer (RANLIB).

• strip: Path to symbol removal utility (STRIP).

17.7. Tools 573

Conan Documentation, Release 1.31.4

17.7.57 tools.latest_vs_version_installed()

def latest_vs_version_installed()

Returns a string with the major version of latest Microsoft Visual Studio available on machine. If no Microsoft Visual
Studio installed, it returns None.

17.7.58 tools.apple_dot_clean()

def apple_dot_clean(folder)

Remove recursively all ._ files inside folder, these files are created by Apple OS when the underlying filesystem
cannot store metadata associated to files (they could appear when unzipping a file that has been created in Macos).
This tool will remove only the ._ files that are accompanied with a file without that prefix (it will remove ._file.txt
only if file.txt exists).

Parameters:

• folder (Required): root folder to start deleting ._ files.

17.7.59 tools.Version()

from conans import tools

v = tools.Version("1.2.3-dev23")
assert v < "1.2.3"

This is a helper class to work with semantic versions, built on top of semver.SemVer class with loose parsing. It
exposes all the version components as properties and offers total ordering through compare operators.

Build the tools.Version object using any valid string or any object that converts to string, the constructor will raise
if the string is not a valid loose semver.

Properties:

• major: component major of semver version

• minor: component minor of semver version (defaults to "0")

• patch: component patch of semver version (defaults to "0")

• prerelease: component prerelease of semver version (defaults to "")

• build: component build of semver version (defaults to ""). Take into account that build component
doesn’t affect precedence between versions.

574 Chapter 17. Reference

Conan Documentation, Release 1.31.4

17.7.60 tools.to_android_abi()

def to_android_abi(arch)

Converts Conan style architecture into Android NDK style architecture.

Parameters:

• arch (Required): Arch to perform the conversion. Usually this would be self.settings.arch.

17.7.61 tools.check_min_cppstd()

def check_min_cppstd(conanfile, cppstd, gnu_extensions=False)

Validates if the applied cppstd setting (from compiler.cppstd settings or deducing the default from compiler and com-
piler.version) is at least the value specified in the cppstd argument. It raises a ConanInvalidConfiguration when
is not supported.

from conans import tools, ConanFile

class Recipe(ConanFile):
...

def configure(self):
tools.check_min_cppstd(self, "17")

• If the current cppstd does not support C++17, check_min_cppstdwill raise an ConanInvalidConfiguration
error.

• If gnu_extensions is True, it is required that the applied cppstd supports the gnu extensions. (e.g. gnu17),
otherwise, an ConanInvalidConfiguration will be raised. The gnu_extensions is checked in any OS.

• If no compiler has been specified or the compiler is unknown, it raises a ConanException exception.

Parameters:

• conanfile (Required): ConanFile instance. Usually self.

• cppstd (Required): C++ standard version which must be supported.

• gnu_extensions (Optional): GNU extension is required.

17.7.62 tools.valid_min_cppstd()

def valid_min_cppstd(conanfile, cppstd, gnu_extensions=False)

Validate the current cppstd from settings or compiler, if it is supported by the required cppstd version. It returns True
when is valid, otherwise, False.

from conans import tools, ConanFile

class Recipe(ConanFile):
...

def configure(self):
(continues on next page)

17.7. Tools 575

Conan Documentation, Release 1.31.4

(continued from previous page)

if not tools.valid_min_cppstd(self, "17"):
self.output.error("C++17 is required.")

• The valid_min_cppstd works exactly like check_min_cppstd, however, it does not raise
ConanInvalidConfiguration error.

Parameters:

• conanfile (Required): ConanFile instance. Usually self.

• cppstd (Required): C++ standard version which must be supported.

• gnu_extensions (Optional): GNU extension is required.

17.7.63 tools.cppstd_flag():

def cppstd_flag(settings)

Returns the corresponding C++ standard flag based on the settings. For instance, it may return -std=c++17 for
compiler.cppstd=17, and so on.

Parameters:

• settings (Required): Conanfile settings. Use self.settings.

17.7.64 tools.msvs_toolset()

def msvs_toolset(conanfile)

Returns the corresponding Visual Studio platform toolset based on the settings of the given conanfile. For instance,
it may return v142 for compiler=Visual Studio with compiler.version=16. If compiler.toolset was set in
settings, it has a priority and always returned.

Parameters:

• conanfile (Required): ConanFile instance. Usually self.

17.7.65 tools.intel_compilervars_command()

Warning: This is an experimental feature subject to breaking changes in future releases.

def intel_compilervars_command(conanfile, arch=None, compiler_version=None, force=False)

Returns, for given settings of the given conanfile, the command that should be called to load the Intel C++ envi-
ronment variables for a certain Intel C++ version. It wraps the functionality of compilervars but does not execute the
command, as that typically have to be done in the same command as the compilation, so the variables are loaded for
the same subprocess. It will be typically used in the build() method, like this:

from conans import tools

def build(self):
(continues on next page)

576 Chapter 17. Reference

https://software.intel.com/content/www/us/en/develop/documentation/intel-system-studio-cplusplus-compiler-user-and-reference-guide/top/target-platform-build-instructions/using-compilervars-file.html

Conan Documentation, Release 1.31.4

(continued from previous page)

cvars_command = tools.intel_compilervars_command(self)
build_command = ...
self.run("%s && configure %s" % (cvars_command, " ".join(args)))
self.run("%s && %s %s" % (cvars, build_command, " ".join(build_args)))

The cvars_command string will contain something like call "compilervars.bat" for the corresponding Intel C++
version for the current settings.

This is typically not needed if using CMake, as the cmake generator will handle the correct Intel C++ version.

If arch or compiler_version is specified, it will ignore the settings and return the command to set the Intel C++
environment for these parameters.

Parameters:

• conanfile (Required): ConanFile instance. Usually self.

• arch (Optional, Defaulted to None): Will use conanfile.settings.arch.

• compiler_version (Optional, Defaulted to None): Will use conanfile.settings.compiler.version.

• force (Optional, Defaulted to False): Will ignore if the environment is already set for a different Intel C++
version.

17.7.66 tools.intel_compilervars_dict()

Warning: This is an experimental feature subject to breaking changes in future releases.

def intel_compilervars_dict(conanfile, arch=None, compiler_version=None, force=False,␣
→˓only_diff=True)

Returns a dictionary with the variables set by the tools.intel_compilervars_command() that can be directly applied to
tools.environment_append().

The values of the variables INCLUDE, LIB, LIBPATH and PATH will be returned as a list. When used with
tools.environment_append(), the previous environment values that these variables may have will be appended auto-
matically.

from conans import tools

def build(self):
env_vars = tools.intel_compilervars_dict(self.settings)
with tools.environment_append(env_vars):

Do something

Parameters:

• Same as tools.intel_compilervars_command().

• only_diff (Optional, Defaulted to True): When True, the command will return only the variables set by
intel_compilervars and not the whole environment. If intel_compilervars modifies an environment
variable by appending values to the old value (separated by ;), only the new values will be returned, as a
list.

17.7. Tools 577

Conan Documentation, Release 1.31.4

17.7.67 tools.intel_compilervars()

Warning: This is an experimental feature subject to breaking changes in future releases.

def intel_compilervars(conanfile, arch=None, compiler_version=None, force=False, only_
→˓diff=True)

This is a context manager that allows to append to the environment all the variables set by the
tools.intel_compilervars_dict(). You can replace tools.intel_compilervars_dict() and use this context manager
to get a cleaner way to activate the Intel C++ environment:

from conans import tools

def build(self):
with tools.intel_compilervars(self.settings):

do_something()

17.7.68 tools.intel_installation_path()

Warning: This is an experimental feature subject to breaking changes in future releases.

def intel_installation_path(version, arch)

Returns the Intel Compiler installation path for the given version and target arch. If the tool is not able to return the
path it will raise a ConanException.

from conans import tools

intel_path_2020 = tools.intel_installation_path("19.1", "x86")

Parameters:

• version (Required): Intel Compiler version to locate. Valid version numbers are strings: "15", "16", "17",
"18", "19", "19.1". . .

• arch (Required): Intel Compiler target arch. Valid archs are "x86" and "x86_64".

17.7.69 tools.remove_files_by_mask()

def remove_files_by_mask(directory, pattern)

Removes files recursively in the given directory matching the pattern. The function removes only files, and never
removes directories, even if their names match the pattern. The functions returns the array of the files removed (empty
array in case no files were removed). The paths in the returned array are relative to the given directory.

Parameters:

• directory (Required): Directory to remove files inside. You may use os.getcwd or self.
package_folder, for instance.

578 Chapter 17. Reference

Conan Documentation, Release 1.31.4

• pattern (Required): Pattern to check. See fnmatch documentation for more details.

17.7.70 tools.stdcpp_library():

def stdcpp_library(conanfile)

Returns the corresponding C++ standard library to link with based on the settings of the given conanfile. For instance,
it may return c++ for compiler.libcxx=libc++, and it may return stdc++ for compiler.libcxx=libstdc++ or
compiler.libcxx=libstdc++11. Returns None if there is no C++ standard library need to be linked. Usually, this
is required to populate self.cpp_info.system_libs for C++ libraries with plain C API, therefore such libraries
might be safely used in pure C projects (or in general, non-C++ projects capable of using C API, such as written in
Objective-C, Fortran, etc.).

Parameters:

• conanfile (Required): ConanFile instance. Usually self.

17.7.71 tools.fix_symlinks():

Warning: This is an experimental feature subject to breaking changes in future releases.

def fix_symlinks(conanfile, raise_if_error=False)

This tool is intended to be used inside the package() method after all files have been copied. It takes care of symlinks:

• Converts every symlink into a relative one starting in the root of the package.

• Removes (or raises) symlinks that point to files/directories outside the package.

• Removes (or raises) broken symlinks.

Parameters:

• conanfile (Required): ConanFile instance. Usually self.

• raise_if_error (Optional, Defaulted to False): Indicates whether to raise or to remove invalid symlinks.

17.8 Configuration files

These are the most important configuration files, used to customize conan.

17.8.1 artifacts.properties

This is a file in the Conan cache that is useful to define a set of key-value pairs that will be sent together with the
packages uploaded in the conan upload command. This information is sent as custom headers in the PUT request
and, if the server has the capability, as matrix params.

.conan/artifacts.properties

custom_header1=Value1
custom_header2=45
build.name=BuildJob

17.8. Configuration files 579

https://docs.python.org/3/library/fnmatch.html
https://www.ietf.org/rfc/rfc3986.txt

Conan Documentation, Release 1.31.4

Artifactory users can benefit from this capability to set file properties for the uploaded files. If the Artifactory version
doesn’t support matrix params yet (available since Artifactory 7.3.2) it will use the properties from the file that are
prefixed with artifact_property_:

.conan/artifacts.properties

artifact_property_build.name=Build1
artifact_property_build.number=23
artifact_property_build.timestamp=1487676992
artifact_property_custom_multiple_var=one;two;three;four

Take into account that some reverse proxies will block headers that contain a period in their name, for example Nginx,
as they consider it to be a security issue (you can bypass this check adding the ignore_invalid_headers to your Nginx
configuration).

17.8.2 client.crt / client.key

Conan support client TLS certificates. Create a client.crt with the client certificate in the Conan home directory (default
~/.conan) and a client.key with the private key.

You could also create only the client.crt file containing both the certificate and the private key concatenated.

Alternatively, you can define a path to those files in whichever location using the client_cert_path and
client_cert_key_path configuration entries in the conan.conf .

17.8.3 conan.conf

The typical location of the conan.conf file is the directory ~/.conan/:

[log]
run_to_output = True # environment CONAN_LOG_RUN_TO_OUTPUT
run_to_file = False # environment CONAN_LOG_RUN_TO_FILE
level = critical # environment CONAN_LOGGING_LEVEL
trace_file = # environment CONAN_TRACE_FILE
print_run_commands = False # environment CONAN_PRINT_RUN_COMMANDS

[general]
default_profile = default
compression_level = 9 # environment CONAN_COMPRESSION_LEVEL
sysrequires_sudo = True # environment CONAN_SYSREQUIRES_SUDO
request_timeout = 60 # environment CONAN_REQUEST_TIMEOUT (seconds)
default_package_id_mode = semver_direct_mode # environment CONAN_DEFAULT_PACKAGE_ID_MODE
parallel_download = 8 # experimental download binaries in parallel
full_transitive_package_id = 0
retry = 2 # environment CONAN_RETRY
retry_wait = 5 # environment CONAN_RETRY_WAIT (seconds)
sysrequires_mode = enabled # environment CONAN_SYSREQUIRES_MODE (allowed␣
→˓modes enabled/verify/disabled)
vs_installation_preference = Enterprise, Professional, Community, BuildTools #␣
→˓environment CONAN_VS_INSTALLATION_PREFERENCE
verbose_traceback = False # environment CONAN_VERBOSE_TRACEBACK
error_on_override = False # environment CONAN_ERROR_ON_OVERRIDE
bash_path = "" # environment CONAN_BASH_PATH (only windows)

(continues on next page)

580 Chapter 17. Reference

https://www.jfrog.com/confluence/display/JFROG/Artifactory+Release+Notes#ArtifactoryReleaseNotes-Artifactory7.3.2
https://trac.nginx.org/nginx/ticket/629

Conan Documentation, Release 1.31.4

(continued from previous page)

read_only_cache = True # environment CONAN_READ_ONLY_CACHE
cache_no_locks = True # environment CONAN_CACHE_NO_LOCKS
user_home_short = your_path # environment CONAN_USER_HOME_SHORT
use_always_short_paths = False # environment CONAN_USE_ALWAYS_SHORT_PATHS
skip_vs_projects_upgrade = False # environment CONAN_SKIP_VS_PROJECTS_UPGRADE
non_interactive = False # environment CONAN_NON_INTERACTIVE
skip_broken_symlinks_check = False # enviornment CONAN_SKIP_BROKEN_SYMLINKS_CHECK
revisions_enabled = False # environment CONAN_REVISIONS_ENABLED

conan_make_program = make # environment CONAN_MAKE_PROGRAM (overrides the␣
→˓make program used in AutoToolsBuildEnvironment.make)
conan_cmake_program = cmake # environment CONAN_CMAKE_PROGRAM (overrides the␣
→˓make program used in CMake.cmake_program)

cmake_generator # environment CONAN_CMAKE_GENERATOR
cmake_generator_platform # environment CONAN_CMAKE_GENERATOR_PLATFORM
http://www.vtk.org/Wiki/CMake_Cross_Compiling
cmake_toolchain_file # environment CONAN_CMAKE_TOOLCHAIN_FILE
cmake_system_name # environment CONAN_CMAKE_SYSTEM_NAME
cmake_system_version # environment CONAN_CMAKE_SYSTEM_VERSION
cmake_system_processor # environment CONAN_CMAKE_SYSTEM_PROCESSOR
cmake_find_root_path # environment CONAN_CMAKE_FIND_ROOT_PATH
cmake_find_root_path_mode_program # environment CONAN_CMAKE_FIND_ROOT_PATH_MODE_
→˓PROGRAM
cmake_find_root_path_mode_library # environment CONAN_CMAKE_FIND_ROOT_PATH_MODE_
→˓LIBRARY
cmake_find_root_path_mode_include # environment CONAN_CMAKE_FIND_ROOT_PATH_MODE_
→˓INCLUDE

msbuild_verbosity = minimal # environment CONAN_MSBUILD_VERBOSITY

cpu_count = 1 # environment CONAN_CPU_COUNT

Change the default location for building test packages to a temporary folder
which is deleted after the test.
temp_test_folder = True # environment CONAN_TEMP_TEST_FOLDER

cacert_path # environment CONAN_CACERT_PATH
scm_to_conandata # environment CONAN_SCM_TO_CONANDATA

config_install_interval = 1h
required_conan_version = >=1.26

[storage]
This is the default path, but you can write your own. It must be an absolute path or a
path beginning with "~" (if the environment var CONAN_USER_HOME is specified, this␣
→˓directory, even
with "~/", will be relative to the conan user home, not to the system user home)
path = ./data
download_cache = /path/to/my/cache

[proxies]

(continues on next page)

17.8. Configuration files 581

Conan Documentation, Release 1.31.4

(continued from previous page)

Empty (or missing) section will try to use system proxies.
As documented in https://requests.readthedocs.io/en/master/user/advanced/#proxies -␣
→˓but see below
for proxies to specific hosts
http = http://user:pass@10.10.1.10:3128/
http = http://10.10.1.10:3128
https = http://10.10.1.10:1080
To specify a proxy for a specific host or hosts, use multiple lines each specifying␣
→˓host = proxy-spec
http =
hostname.to.be.proxied.com = http://user:pass@10.10.1.10:3128
You can skip the proxy for the matching (fnmatch) urls (comma-separated)
no_proxy_match = *bintray.com*, https://myserver.*

[hooks] # environment CONAN_HOOKS
attribute_checker

Default settings now declared in the default profile

Log

The level variable, defaulted to 50 (critical events), declares the LOG level . If you want to show more detailed logging
information, set this variable to lower values, as 10 to show debug information, or use the level names as critical,
error, warning, info and debug. You can also adjust the environment variable CONAN_LOGGING_LEVEL. The level
number is related to the Python Logging Levels.

The print_run_commands, when is 1, Conan will print the executed commands in self.run to the output. You can
also adjust the environment variable CONAN_PRINT_RUN_COMMANDS

The run_to_file variable, defaulted to False, will print the output from the self.run executions to the path that the
variable specifies. You can also adjust the environment variable CONAN_LOG_RUN_TO_FILE.

The run_to_output variable, defaulted to 1, will print to the stdout the output from the self.run executions in the
conanfile. You can also adjust the environment variable CONAN_LOG_RUN_TO_OUTPUT.

The trace_file variable enable extra logging information about your conan command executions. Set it with an
absolute path to a file. You can also adjust the environment variable CONAN_TRACE_FILE.

General

The vs_installation_preference variable determines the preference of usage when searching a Visual in-
stallation. The order of preference by default is Enterprise, Professional, Community and BuildTools. It can
be fixed to just one type of installation like only BuildTools. You can also adjust the environment variable
CONAN_VS_INSTALLATION_PREFERENCE.

The verbose_traceback variable will print the complete traceback when an error occurs in a recipe or even in the
conan code base, allowing to debug the detected error.

The error_on_override turn the messages related to dependencies overriding into errors. When a downstream
package overrides some dependency upstream, if this variable is True then an error will be raised; to bypass these
errors those requirements should be declared explicitly with the override keyword.

The bash_path variable is used only in windows to help the tools.run_in_windows_bash() function to locate our
Cygwin/MSYS2 bash. Set it with the bash executable path if it’s not in the PATH or you want to use a different one.

582 Chapter 17. Reference

https://docs.python.org/3/library/logging.html#logging-levels

Conan Documentation, Release 1.31.4

The cache_no_locks variable is used to disable locking mechanism of local cache. This is primary used for debugging
purposes, and in general it’s not recommended to disable locks otherwise, as it may result in corrupted packages.

The default_package_id_mode changes the way package IDs are computed. By default, if not specified it will be
semver_direct_mode, but can change to any value defined in Using package_id() for Package Dependencies.

The full_transitive_package_id changes the way package IDs are computed regarding transitive dependencies.
By default, if not specified will be disabled (0). Read more about it in Enabling full transitivity in package_id modes.

The parallel_download configuration defines the number of threads to be used to do parallel downloads of different
binaries. This happens when dependencies are installed (conan install, conan create) and when multiple binaries
for the same package are retrieved via conan download command. This is an experimental feature, subject to change.
It is known that the output is still not clean, and will be mangled when using multiple threads. Please report on
https://github.com/conan-io/conan/issues about performance gains, and other issues. You might want to try this one
in combination with the storage.download_cache configuration (see below.)

The revisions_enabled variable controls the package revisioning feature. See Package Revisions for more info`

The cmake_*** variables will declare the corresponding CMake variable when you use the cmake generator and the
CMake build tool.

The msbuild_verbosity variable is used only by MSBuild and CMake build helpers. For the CMake build
helper, it has an effect only for `Visual Studio` generators. Variable defines verbosity level used by
the `msbuild` tool, as documented on MSDN <https://docs.microsoft.com/en-us/visualstudio/msbuild/msbuild-
command-line-reference?view=vs-2017>. By default, `minimal verbosity level is used, matching the Visual Stu-
dio IDE behavior. Allowed values are (in ascending order): `quiet`, `minimal`, `normal`, `detailed`,
`diagnostic`. You can also adjust the environment variable CONAN_MSBUILD_VERBOSITY.

The conan_make_program variable used by CMake and AutotoolsBuildEnvironment build helpers. It overrides a
default `make` executable, might be useful in case you need to use a different make (e.g. BSD Make instead of GNU
Make, or MinGW Make). Set it with the make executable path if it’s not in the PATH or you want to use a different
one.

The conan_cmake_program variable used only by CMake build helper. It overrides a default `cmake` executable,
might be useful in case you need to use a CMake wrapper tool (such as scan build). Set it with the cmake executable
path if it’s not in the PATH or you want to use a different one.

The cpu_count variable set the number of cores that the tools.cpu_count() will return, by default the number of cores
available in your machine. Conan recipes can use the cpu_count() tool to build the library using more than one core.

The retry variable allows to set up the global default value for the number of retries in all commands related to
download/upload. User can override the value provided by the variable if the command provides an argument with the
same name.

The retry_wait variable allows to set up the global default value for the time (in seconds) to wait until the next retry
on failures in all commands related to download/upload. User can override the value provided by the variable if the
command provides an argument with the same name.

The sysrequires_mode variable, defaulted to enabled (allowed modes enabled/verify/disabled) controls
whether system packages should be installed into the system via SystemPackageTool helper, typically used in sys-
tem_requirements(). You can also adjust the environment variable CONAN_SYSREQUIRES_MODE.

The sysrequires_sudo variable, defaulted to True, controls whether sudo is used for installing apt, yum, etc. system
packages via SystemPackageTool. You can also adjust the environment variable CONAN_SYSREQUIRES_SUDO.

The request_timeout variable, defaulted to 30 seconds, controls the time after Conan will stop waiting for a response.
Timeout is not a time limit on the entire response download; rather, an exception is raised if the server has not issued
a response for timeout seconds (more precisely, if no bytes have been received on the underlying socket for timeout
seconds). If no timeout is specified explicitly, it do not timeout.

17.8. Configuration files 583

https://github.com/conan-io/conan/issues

Conan Documentation, Release 1.31.4

The user_home_short specify the base folder to be used with the short paths feature. If not specified, the packages
marked as short_paths will be stored in the C:\.conan (or the current drive letter).

If the variable is set to “None” will disable the short_paths feature in Windows, for modern Windows that enable long
paths at the system level.

Setting this variable equal to, or to a subdirectory of, the local conan cache (e.g. ~/.conan) would result in an invalid
cache configuration and is therefore disallowed.

The verbose_traceback variable will print the complete traceback when an error occurs in a recipe or even in the
conan code base, allowing to debug the detected error.

The cacert_path variable lets the user specify a custom path to the cacert.pem file to use in requests. You can also
adjust this value using the environment variable CONAN_CACERT_PATH.

The client_cert_path and client_cert_key_path variables let the user specify a custom path to the client.crt /
client.key files.

The scm_to_conandata variable tells Conan to store the resolved information of the SCM feature in the conan-
data.yml file instead of modifying the recipe file itself. You can also adjust this value using the environment variable
CONAN_SCM_TO_CONANDATA.

The skip_broken_symlinks_check variable (defaulted to False) allows the existence broken symlinks while cre-
ating a package.

The config_install_interval variable starts a time scheduler which runs conan config install according
the time interval configured. It only accepts the follow time intervals: minutes, hours and days.

The required_conan_version variable validates if the current Conan client version is valid according to its version.
When it’s not according to the required version or its range, Conan raises an exception before running any command.
It accepts SemVer format, including version range. This configuration is useful when a company wants to align the
Conan client version used by all teams. This can be also specified at recipe level if you need adding this information
just for certain recipes.

Storage

The storage.path variable define the path where all the packages will be stored. By default it is ./data, which is
relative to the folder containing this conan.conf file, which by default is the <userhome>/.conan folder. It can start
with “~”, and that will be expanded to the current user home folder. If the environment var CONAN_USER_HOME
is specified, the “~” will be replaced by the current Conan home (the folder pointed by the CONAN_USER_HOME
environment variable).

On Windows:

• It is recommended to assign it to some unit, e.g. map it to X: in order to avoid hitting the 260 chars path name
length limit).

• Also see the short_paths docs to know more about how to mitigate the limitation of 260 chars path name length
limit.

• It is recommended to disable the Windows indexer or exclude the storage path to avoid problems (busy resources).

Note: If you want to change the default “conan home” (directory where conan.conf file is) you can adjust the
environment variable CONAN_USER_HOME.

The storage.download_cache variable defines the path to a folder that can be used to cache the different file down-
loads from Conan servers but also from user downloads via the tools.get() and tools.download() methods that
provide a checksum. Defining this variable will both configure the path and activate the download cache. If it is not
defined, the download cache will not be used.

584 Chapter 17. Reference

Conan Documentation, Release 1.31.4

Read more about the download cache here.

Proxies

Warning: no_proxy is deprecated in favor of no_proxy_match since Conan 1.16.

If you leave the [proxies] section blank or delete the section, conan will copy the system configured proxies, but if
you configured some exclusion rule it won’t work:

[proxies]
Empty (or missing) section will try to use system proxies.

You can specify http and https proxies as follows. Use the no_proxy_match keyword to specify a list of URLs or patterns
that will skip the proxy:

[proxies]
As documented in https://requests.readthedocs.io/en/master/user/advanced/#proxies
http: http://user:pass@10.10.1.10:3128/
http: http://10.10.1.10:3128
https: http://10.10.1.10:1080
http: http://10.10.2.10

hostname1.to.be.proxied.com = http://user:pass@10.10.3.10
hostname2.to.be.proxied.com = http://user:pass@10.10.4.10

no_proxy_match: http://url1, http://url2, https://url3*, https://*.custom_domain.*

Use http=None and/or https=None to disable the usage of a proxy.

To nominate a proxy for a specific scheme and host only, add host.to.proxy= in front of the url of the proxy (the
host.to.proxy name must exactly match the host name that should be proxied). You can list several host name = proxy
pairs on separate indented lines.

You can still specify a default proxy, without a host, which will be used if none of the host names match. If you do not,
then the proxy is disabled for non-matching hosts.

If this fails, you might also try to set environment variables:

linux/osx
$ export HTTP_PROXY="http://10.10.1.10:3128"
$ export HTTPS_PROXY="http://10.10.1.10:1080"

with user/password
$ export HTTP_PROXY="http://user:pass@10.10.1.10:3128/"
$ export HTTPS_PROXY="http://user:pass@10.10.1.10:3128/"

windows (note, no quotes here)
$ set HTTP_PROXY=http://10.10.1.10:3128
$ set HTTPS_PROXY=http://10.10.1.10:1080

17.8. Configuration files 585

Conan Documentation, Release 1.31.4

17.8.4 conandata.yml

This YAML file can be used to declare specific information to be used inside the recipe. This file is specific to each
recipe conanfile.py and it should be placed next to it. The file is automatically exported with the recipe (no need to add
it to exports attribute) and its content is loaded into the conan_data attribute of the recipe.

This file can be used, for example, to declare a list of sources links and checksums for the recipe or a list patches to
apply to them, but you can use it to store any data you want to extract from the recipe. For example:

sources:
"1.70.0":
url: "https://dl.bintray.com/boostorg/release/1.70.0/source/boost_1_70_0.tar.bz2"
sha256: "430ae8354789de4fd19ee52f3b1f739e1fba576f0aded0897c3c2bc00fb38778"

"1.71.0":
url: "https://dl.bintray.com/boostorg/release/1.71.0/source/boost_1_71_0.tar.bz2"
sha256: "d73a8da01e8bf8c7eda40b4c84915071a8c8a0df4a6734537ddde4a8580524ee"

patches:
"1.70.0":
patches: "0001-beast-fix-moved-from-executor.patch,bcp_namespace_issues.patch"

"1.71.0":
patches: "bcp_namespace_issues.patch,boost_build_qcc_fix_debug_build_parameter.patch"

requirements:
- "foo/1.0"
- "bar/1.0"

Usages in a conanfile.py:

def source(self):
tools.get(**self.conan_data["sources"][self.version])
for patch in self.conan_data["patches"][self.version]:

tools.patch(**patch)

def requirements(self):
for req in self.conan_data["requirements"]:

self.requires(req)

Warning: Use always quotes around versions numbers, otherwise YAML parser could interpret those values as
integers or floats and lead to unexpected effects when comparing them against the recipe version inside the recipes.

Note: The first level entry key .conan is reserved for Conan usage.

586 Chapter 17. Reference

Conan Documentation, Release 1.31.4

17.8.5 profiles/default

This is the typical ~/.conan/profiles/default file:

[build_requires]
[settings]

os=Macos
arch=x86_64
compiler=apple-clang
compiler.version=8.1
compiler.libcxx=libc++
build_type=Release

[options]
[env]

The settings defaults are the setting values used whenever you issue a conan install command over a conanfile
in one of your projects. The initial values for these default settings are auto-detected the first time you run a conan
command.

You can override the default settings using the -s parameter in conan install and conan info commands but when
you specify a profile, conan install --profile gcc48, the default profile won’t be applied, unless you specify it
with an include() statement:

Listing 23: my_clang_profile

include(default)

[settings]
compiler=clang
compiler.version=3.5
compiler.libcxx=libstdc++11

[env]
CC=/usr/bin/clang
CXX=/usr/bin/clang++

Tip: Default profile can be overridden using the environment variable CONAN_DEFAULT_PROFILE_PATH.

See also:

Check the section Profiles to read more about this feature.

17.8.6 Editable layout files

This file contain information consumed by editable packages. It is an .ini file listing the directories that Conan should
use for the packages that are opened in editable mode. Before parsing this file Conan runs Jinja2 template engine with
the settings, options and reference objects, so you can add any logic to this files:

Affects to all packages but cool/version@user/dev
[includedirs]
src/include

using placeholders from conan settings and options
(continues on next page)

17.8. Configuration files 587

Conan Documentation, Release 1.31.4

(continued from previous page)

[libdirs]
build/{{settings.build_type}}/{{settings.arch}}

[bindirs]
{% if options.shared %}
build/{{settings.build_type}}/shared
{% else %}
build/{{settings.build_type}}/static
{% endif %}

Affects only to cool/version@user/dev
[cool/version@user/dev:includedirs]
src/core/include
src/cmp_a/include

The source_folder, build_folder are useful for workspaces
[source_folder]
src

[build_folder]
build/{{settings.build_type}}/{{settings.arch}}

The specific sections using a package reference will have higher priority than the general ones.

This file can live in the conan cache, in the .conan/layouts folder, or in a user folder, like inside the source repo.

If there exists a .conan/layouts/default layout file in the cache and no layout file is specified in the conan
editable add <path> <reference> command, that file will be used.

The [source_folder] and [build_folder] are useful for workspaces. For example, when using cmakeworkspace-
generator, it will locate the CMakeLists.txt of each package in editable mode in the [source_folder] and it will
use the [build_folder] as the base folder for the build temporary files.

It is possible to define out-of-source builds for workspaces, using relative paths and the reference argument. The
following could be used to locate the build artifacts of an editable package in a sibling build/<package-name> folder:

[build_folder]
../build/{{reference.name}}/{{settings.build_type}}

[includedirs]
src

[libdirs]
../build/{{reference.name}}/{{settings.build_type}}/lib

See also:

Check the section Packages in editable mode and Workspaces to learn more about this file.

588 Chapter 17. Reference

Conan Documentation, Release 1.31.4

17.8.7 settings.yml

The input settings for packages in Conan are predefined in ~/.conan/settings.yml file, so only a few like os or
compiler are possible. These are the default values, but it is possible to customize them, see Customizing settings.

Only for cross building, 'os_build/arch_build' is the system that runs Conan
os_build: [Windows, WindowsStore, Linux, Macos, FreeBSD, SunOS, AIX]
arch_build: [x86, x86_64, ppc32be, ppc32, ppc64le, ppc64, armv5el, armv5hf, armv6, armv7,
→˓ armv7hf, armv7s, armv7k, armv8, armv8_32, armv8.3, sparc, sparcv9, mips, mips64, avr,␣
→˓s390, s390x, sh4le]

Only for building cross compilation tools, 'os_target/arch_target' is the system for
which the tools generate code
os_target: [Windows, Linux, Macos, Android, iOS, watchOS, tvOS, FreeBSD, SunOS, AIX,␣
→˓Arduino, Neutrino]
arch_target: [x86, x86_64, ppc32be, ppc32, ppc64le, ppc64, armv5el, armv5hf, armv6,␣
→˓armv7, armv7hf, armv7s, armv7k, armv8, armv8_32, armv8.3, sparc, sparcv9, mips, mips64,
→˓ avr, s390, s390x, asm.js, wasm, sh4le]

Rest of the settings are "host" settings:
- For native building/cross building: Where the library/program will run.
- For building cross compilation tools: Where the cross compiler will run.
os:

Windows:
subsystem: [None, cygwin, msys, msys2, wsl]

WindowsStore:
version: ["8.1", "10.0"]

WindowsCE:
platform: ANY
version: ["5.0", "6.0", "7.0", "8.0"]

Linux:
Macos:

version: [None, "10.6", "10.7", "10.8", "10.9", "10.10", "10.11", "10.12", "10.13
→˓", "10.14", "10.15", "11.0"]
Android:

api_level: ANY
iOS:

version: ["7.0", "7.1", "8.0", "8.1", "8.2", "8.3", "9.0", "9.1", "9.2", "9.3",
→˓"10.0", "10.1", "10.2", "10.3", "11.0", "11.1", "11.2", "11.3", "11.4", "12.0", "12.1",
→˓ "12.2", "12.3", "12.4", "13.0", "13.1", "13.2", "13.3", "13.4", "13.5", "13.6"]
watchOS:

version: ["4.0", "4.1", "4.2", "4.3", "5.0", "5.1", "5.2", "5.3", "6.0", "6.1"]
tvOS:

version: ["11.0", "11.1", "11.2", "11.3", "11.4", "12.0", "12.1", "12.2", "12.3",
→˓ "12.4", "13.0"]
FreeBSD:
SunOS:
AIX:
Arduino:

board: ANY
Emscripten:
Neutrino:

version: ["6.4", "6.5", "6.6", "7.0"]
(continues on next page)

17.8. Configuration files 589

Conan Documentation, Release 1.31.4

(continued from previous page)

arch: [x86, x86_64, ppc32be, ppc32, ppc64le, ppc64, armv4, armv4i, armv5el, armv5hf,␣
→˓armv6, armv7, armv7hf, armv7s, armv7k, armv8, armv8_32, armv8.3, sparc, sparcv9, mips,␣
→˓mips64, avr, s390, s390x, asm.js, wasm, sh4le]
compiler:

sun-cc:
version: ["5.10", "5.11", "5.12", "5.13", "5.14"]
threads: [None, posix]
libcxx: [libCstd, libstdcxx, libstlport, libstdc++]

gcc: &gcc
version: ["4.1", "4.4", "4.5", "4.6", "4.7", "4.8", "4.9",

"5", "5.1", "5.2", "5.3", "5.4", "5.5",
"6", "6.1", "6.2", "6.3", "6.4", "6.5",
"7", "7.1", "7.2", "7.3", "7.4", "7.5",
"8", "8.1", "8.2", "8.3", "8.4",
"9", "9.1", "9.2", "9.3",
"10", "10.1"]

libcxx: [libstdc++, libstdc++11]
threads: [None, posix, win32] # Windows MinGW
exception: [None, dwarf2, sjlj, seh] # Windows MinGW
cppstd: [None, 98, gnu98, 11, gnu11, 14, gnu14, 17, gnu17, 20, gnu20]

Visual Studio: &visual_studio
runtime: [MD, MT, MTd, MDd]
version: ["8", "9", "10", "11", "12", "14", "15", "16"]
toolset: [None, v90, v100, v110, v110_xp, v120, v120_xp,

v140, v140_xp, v140_clang_c2, LLVM-vs2012, LLVM-vs2012_xp,
LLVM-vs2013, LLVM-vs2013_xp, LLVM-vs2014, LLVM-vs2014_xp,
LLVM-vs2017, LLVM-vs2017_xp, v141, v141_xp, v141_clang_c2, v142,
llvm, ClangCL]

cppstd: [None, 14, 17, 20]
clang:

version: ["3.3", "3.4", "3.5", "3.6", "3.7", "3.8", "3.9", "4.0",
"5.0", "6.0", "7.0", "7.1",
"8", "9", "10", "11"]

libcxx: [None, libstdc++, libstdc++11, libc++, c++_shared, c++_static]
cppstd: [None, 98, gnu98, 11, gnu11, 14, gnu14, 17, gnu17, 20, gnu20]
runtime: [None, MD, MT, MTd, MDd]

apple-clang: &apple_clang
version: ["5.0", "5.1", "6.0", "6.1", "7.0", "7.3", "8.0", "8.1", "9.0", "9.1",

→˓"10.0", "11.0", "12.0"]
libcxx: [libstdc++, libc++]
cppstd: [None, 98, gnu98, 11, gnu11, 14, gnu14, 17, gnu17, 20, gnu20]

intel:
version: ["11", "12", "13", "14", "15", "16", "17", "18", "19"]
base:

gcc:
<<: *gcc
threads: [None]
exception: [None]

Visual Studio:
<<: *visual_studio

apple-clang:
<<: *apple_clang

(continues on next page)

590 Chapter 17. Reference

Conan Documentation, Release 1.31.4

(continued from previous page)

qcc:
version: ["4.4", "5.4"]
libcxx: [cxx, gpp, cpp, cpp-ne, accp, acpp-ne, ecpp, ecpp-ne]

build_type: [None, Debug, Release, RelWithDebInfo, MinSizeRel]
cppstd: [None, 98, gnu98, 11, gnu11, 14, gnu14, 17, gnu17, 20, gnu20] # Deprecated, use␣
→˓compiler.cppstd

As you can see, the possible values settings can take are restricted in the same file. This is done to ensure matching
naming and spelling as well as defining a common settings model among users and the OSS community. If a setting
is allowed to be set to any value, you can use ANY. If a setting is allowed to be set to any value or it can also be unset,
you can use [None, ANY].

However, this configuration file can be modified to any needs, including new settings or subsettings and their values.
If you want to distribute a unified settings.yml file you can use the conan config install command.

Note: The settings.yml file is not perfect nor definitive and surely incomplete. Please share any suggestion in the
Conan issue tracker with any missing settings and values that could make sense for other users.

To force the creation of the settings.yml the command conan config init is available.

Architectures

Here you can find a brief explanation of each of the architectures defined as arch, arch_build and arch_target
settings.

• x86: The popular 32 bit x86 architecture.

• x86_64: The popular 64 bit x64 architecture.

• ppc64le: The PowerPC 64 bit Big Endian architecture.

• ppc32: The PowerPC 32 bit architecture.

• ppc64le: The PowerPC 64 bit Little Endian architecture.

• ppc64: The PowerPC 64 bit Big Endian architecture.

• armv5el: The ARM 32 bit version 5 architecture, soft-float.

• armv5hf : The ARM 32 bit version 5 architecture, hard-float.

• armv6: The ARM 32 bit version 6 architecture.

• armv7: The ARM 32 bit version 7 architecture.

• armv7hf : The ARM 32 bit version 7 hard-float architecture.

• armv7s: The ARM 32 bit version 7 swift architecture mostly used in Apple’s A6 and A6X chips on iPhone 5,
iPhone 5C and iPad 4.

• armv7k: The ARM 32 bit version 7 k architecture mostly used in Apple’s WatchOS.

• armv8: The ARM 64 bit and 32 bit compatible version 8 architecture. It covers only the aarch64 instruction
set.

• armv8_32: The ARM 32 bit version 8 architecture. It covers only the aarch32 instruction set (a.k.a. ILP32).

17.8. Configuration files 591

Conan Documentation, Release 1.31.4

• armv8.3: The ARM 64 bit and 32 bit compatible version 8.3 architecture. Also known as arm64e, it is used on
the A12 chipset added in the latest iPhone models (XS/XS Max/XR).

• sparc: The SPARC (Scalable Processor Architecture) originally developed by Sun Microsystems.

• sparcv9: The SPARC version 9 architecture.

• mips: The 32 bit MIPS (Microprocessor without Interlocked Pipelined Stages) developed by MIPS Technologies
(formerly MIPS Computer Systems).

• mips64: The 64 bit MIPS (Microprocessor without Interlocked Pipelined Stages) developed by MIPS Technolo-
gies (formerly MIPS Computer Systems).

• avr: The 8 bit AVR microcontroller architecture developed by Atmel (Microchip Technology).

• s390: The 32 bit address Enterprise Systems Architecture 390 from IBM.

• s390x: The 64 bit address Enterprise Systems Architecture 390 from IBM.

• asm.js: The subset of JavaScript that can be used as low-level target for compilers, not really a processor archi-
tecture, it’s produced by Emscripten. Conan treats it as an architecture to align with build systems design (e.g.
GNU auto tools and CMake).

• wasm: The Web Assembly, not really a processor architecture, but byte-code format for Web, it’s produced by
Emscripten. Conan treats it as an architecture to align with build systems design (e.g. GNU auto tools and
CMake).

• sh4le: The Hitachi SH-4 SuperH architecture.

C++ standard libraries (aka compiler.libcxx)

compiler.libcxx sub-setting defines C++ standard libraries implementation to be used. The sub-setting applies only
to certain compilers, e.g. it applies to clang, apple-clang and gcc, but doesn’t apply to Visual Studio.

• libstdc++ (gcc, clang, apple-clang, sun-cc): The GNU C++ Library. NOTE that this implicitly defines
_GLIBCXX_USE_CXX11_ABI=0 to use old ABI. See How to manage the GCC >= 5 ABI for the additional
details. Might be a wise choice for old systems, such as CentOS 6. On Linux systems, you may need to install
libstdc++-dev (package name could be different in various distros) in order to use the standard library. NOTE
that on Apple systems usage of libstdc++ has been deprecated.

• libstdc++11 (gcc, clang, apple-clang): The GNU C++ Library. NOTE that this implicitly defines
_GLIBCXX_USE_CXX11_ABI=1 to use new ABI. See How to manage the GCC >= 5 ABI for the addi-
tional details. Might be a wise choice for newer systems, such as Ubuntu 20. On Linux systems, you may need
to install libstdc++-dev (package name could be different in various distros) in order to use the standard library.
NOTE that on Apple systems usage of libstdc++ has been deprecated.

• libc++ (clang, apple-clang): LLVM libc++. On Linux systems, you may need to install libc++-dev (package
name could be different in various distros) in order to use the standard library.

• c++_shared (clang, Android only): use LLVM libc++ as a shared library. Refer to the C++ Library Support for
the additiona details.

• c++_static (clang, Android only): use LLVM libc++ as a static library. Refer to the C++ Library Support for the
additiona details.

• libCstd (sun-cc): Rogue Wave’s stdlib. See Comparing C++ Standard Libraries libCstd, libstlport, and libstdcxx.

• libstlport (sun-cc): STLport. See Comparing C++ Standard Libraries libCstd, libstlport, and libstdcxx.

• libstdcxx (sun-cc): Apache C++ Standard Library. See Comparing C++ Standard Libraries libCstd, libstlport,
and libstdcxx.

• gpp (qcc): GNU C++ lib. See QCC documentation.

592 Chapter 17. Reference

https://gcc.gnu.org/onlinedocs/libstdc++/
https://packages.debian.org/sid/libstdc++-dev
https://gcc.gnu.org/onlinedocs/libstdc++/
https://packages.debian.org/sid/libstdc++-dev
https://libcxx.llvm.org/
https://packages.debian.org/sid/libc++-dev
https://libcxx.llvm.org/
https://developer.android.com/ndk/guides/cpp-support
https://libcxx.llvm.org/
https://developer.android.com/ndk/guides/cpp-support
https://www.oracle.com/solaris/technologies/cmp-stlport-libcstd.html
http://www.stlport.org/
https://www.oracle.com/solaris/technologies/cmp-stlport-libcstd.html
http://people.apache.org/~gmcdonald/stdcxx/index.html
https://www.oracle.com/solaris/technologies/cmp-stlport-libcstd.html
https://www.oracle.com/solaris/technologies/cmp-stlport-libcstd.html
https://www.qnx.com/developers/docs/6.5.0SP1.update/com.qnx.doc.neutrino_utilities/q/qcc.html

Conan Documentation, Release 1.31.4

• cpp (qcc): Dinkum C++ lib. See QCC documentation.

• cpp-ne (qcc): Dinkum C++ lib (no exceptions). See QCC documentation.

• acpp (qcc): Dinkum Abridged C++ lib. See QCC documentation.

• acpp-ne (qcc): Dinkum Abridged C++ lib (no exceptions). See QCC documentation.

• ecpp (qcc): Embedded Dinkum C++ lib. See QCC documentation.

• ecpp-ne (qcc): Embedded Dinkum C++ lib (no exceptions). See QCC documentation.

• cxx (qcc): LLVM C++. See QCC documentation.

17.9 Environment variables

These are the environment variables used to customize Conan.

Most of them can be set in the conan.conf configuration file (inside your <userhome>/.conan folder).
However, this environment variables will take precedence over the conan.conf configuration.

17.9.1 CMAKE RELATED VARIABLES

There are some Conan environment variables that will set the equivalent CMake variable using the cmake generator
and the CMake build tool:

Variable CMake set variable
CONAN_CMAKE_TOOLCHAIN_FILE CMAKE_TOOLCHAIN_FILE
CONAN_CMAKE_SYSTEM_NAME CMAKE_SYSTEM_NAME
CONAN_CMAKE_SYSTEM_VERSION CMAKE_SYSTEM_VERSION
CONAN_CMAKE_SYSTEM_PROCESSOR CMAKE_SYSTEM_PROCESSOR
CONAN_CMAKE_SYSROOT CMAKE_SYSROOT
CONAN_CMAKE_FIND_ROOT_PATH CMAKE_FIND_ROOT_PATH
CONAN_CMAKE_FIND_ROOT_PATH_MODE_PROGRAMCMAKE_FIND_ROOT_PATH_MODE_PROGRAM
CONAN_CMAKE_FIND_ROOT_PATH_MODE_LIBRARY CMAKE_FIND_ROOT_PATH_MODE_LIBRARY
CONAN_CMAKE_FIND_ROOT_PATH_MODE_INCLUDE CMAKE_FIND_ROOT_PATH_MODE_INCLUDE
CONAN_CMAKE_GENERATOR_PLATFORM CMAKE_GENERATOR_PLATFORM
CONAN_CMAKE_ANDROID_NDK CMAKE_ANDROID_NDK

See also:

See CMake cross building wiki

17.9.2 CONAN_BASH_PATH

Defaulted to: Not defined

Used only in windows to help the tools.run_in_windows_bash() function to locate our Cygwin/MSYS2 bash. Set it
with the bash executable path if it’s not in the PATH or you want to use a different one.

17.9. Environment variables 593

https://www.qnx.com/developers/docs/6.5.0SP1.update/com.qnx.doc.neutrino_utilities/q/qcc.html
https://www.qnx.com/developers/docs/6.5.0SP1.update/com.qnx.doc.neutrino_utilities/q/qcc.html
https://www.qnx.com/developers/docs/6.5.0SP1.update/com.qnx.doc.neutrino_utilities/q/qcc.html
https://www.qnx.com/developers/docs/6.5.0SP1.update/com.qnx.doc.neutrino_utilities/q/qcc.html
https://www.qnx.com/developers/docs/6.5.0SP1.update/com.qnx.doc.neutrino_utilities/q/qcc.html
https://www.qnx.com/developers/docs/6.5.0SP1.update/com.qnx.doc.neutrino_utilities/q/qcc.html
https://www.qnx.com/developers/docs/6.5.0SP1.update/com.qnx.doc.neutrino_utilities/q/qcc.html
https://gitlab.kitware.com/cmake/community/-/wikis/doc/cmake/CrossCompiling

Conan Documentation, Release 1.31.4

17.9.3 CONAN_CACHE_NO_LOCKS

Defaulted to: False/0

Set it to True/1 to disable locking mechanism of local cache. Set it to False/0 to enable locking mechanism of local
cache. Use it with caution, and only for debugging purposes. Disabling locks may easily lead to corrupted packages.
Not recommended for production environments, and in general should be used for conan development and contributions
only.

17.9.4 CONAN_CMAKE_GENERATOR

Conan CMake helper class is just a convenience to help to translate Conan settings and options into CMake parameters,
but you can easily do it yourself, or adapt it.

For some compiler configurations, as gcc it will use by default the Unix Makefiles CMake generator. Note that this
is not a package settings, building it with makefiles or other build system, as Ninja, should lead to the same binary if
using appropriately the same underlying compiler settings. So it doesn’t make sense to provide a setting or option for
this.

So it can be set with the environment variable CONAN_CMAKE_GENERATOR. Just set its value to your desired CMake
generator (as Ninja).

17.9.5 CONAN_CMAKE_GENERATOR_PLATFORM

Defines generator platform to be used by particular CMake generator (see CMAKE_GENERATOR_PLATFORM
documentation <https://cmake.org/cmake/help/latest/variable/CMAKE_GENERATOR_PLATFORM.html>). Result-
ing value is passed to the cmake command line (-A argument) by the Conan CMake helper class during the configuration
step. Passing None causes auto-detection, which currently only happens for the Visual Studio 16 2019 generator.
The detection is according to the following table:

settings.arch generator platform
x86 Win32
x86_64 x64
armv7 ARM
armv8 ARM64
other (none)

For any other generators besides the Visual Studio 16 2019 generator, detection results in no generator platform
applied (and no -A argument passed to the CMake command line).

17.9.6 CLICOLOR

Defaulted to: Not defined

Set it to 0 to disable console output colors, overriding tty detection. Set it to any value other than 0 to enable console
output colors if a tty is detected. If this is left undefined, Conan will use the CONAN_COLOR_DISPLAY logic to determine
whether colors should be enabled.

594 Chapter 17. Reference

Conan Documentation, Release 1.31.4

17.9.7 CLICOLOR_FORCE

Defaulted to: Not defined

Set it to any value other than 0 to force the generation of console output colors, overriding tty detection and CLICOLOR.

17.9.8 NO_COLOR

Defaulted to: Not defined

Set it to any value to force disable console output colors, overriding tty detection and any other color output controls.

17.9.9 CONAN_COLOR_DARK

Defaulted to: False/0

Set it to True/1 to use dark colors in the terminal output, instead of light ones. Useful for terminal or consoles with
light colors as white, so text is rendered in Blue, Black, Magenta, instead of Yellow, Cyan, White.

17.9.10 CONAN_COLOR_DISPLAY

Defaulted to: Not defined

By default if undefined Conan output will use color if a tty is detected.

Set it to False/0 to remove console output colors. Set it to True/1 to force console output colors.

17.9.11 CONAN_COMPRESSION_LEVEL

Defaulted to: 9

Conan uses .tgz compression for archives before uploading them to remotes. The default compression level is good and
fast enough for most cases, but users with huge packages might want to change it and set CONAN_COMPRESSION_LEVEL
environment variable to a lower number, which is able to get slightly bigger archives but much better compression speed.

17.9.12 CONAN_CPU_COUNT

Defaulted to: Number of available cores in your machine.

Set the number of cores that the tools.cpu_count() will return. Conan recipes can use the cpu_count() tool to build
the library using more than one core.

17.9.13 CONAN_DEFAULT_PROFILE_PATH

Defaulted to: Not defined

This variable can be used to define a path to an existing profile file that Conan will use as default. If relative, the path
will be resolved from the profiles folder.

17.9. Environment variables 595

Conan Documentation, Release 1.31.4

17.9.14 CONAN_NON_INTERACTIVE

Defaulted to: False/0

This environment variable, if set to True/1, will prevent interactive prompts. Invocations of Conan commands where
an interactive prompt would otherwise appear, will fail instead.

This variable can also be set in conan.conf as non_interactive = True in the [general] section.

17.9.15 CONAN_ENV_XXXX_YYYY

You can override the default settings (located in your ~/.conan/profiles/default directory) with environment
variables.

The XXXX is the setting name upper-case, and the YYYY (optional) is the sub-setting name.

Examples:

• Override the default compiler:

CONAN_ENV_COMPILER = "Visual Studio"

• Override the default compiler version:

CONAN_ENV_COMPILER_VERSION = "14"

• Override the architecture:

CONAN_ENV_ARCH = "x86"

17.9.16 CONAN_LOG_RUN_TO_FILE

Defaulted to: 0

If set to 1 will log every self.run("{Some command}") command output in a file called conan_run.log. That file
will be located in the current execution directory, so if we call self.run in the conanfile.py’s build method, the file
will be located in the build folder.

In case we execute self.run in our source() method, the conan_run.log will be created in the source directory,
but then conan will copy it to the build folder following the regular execution flow. So the conan_run.log will
contain all the logs from your conanfile.py command executions.

The file can be included in the Conan package (for debugging purposes) using the package method.

def package(self):
self.copy(pattern="conan_run.log", dst="", keep_path=False)

596 Chapter 17. Reference

Conan Documentation, Release 1.31.4

17.9.17 CONAN_LOG_RUN_TO_OUTPUT

Defaulted to: 1

If set to 0 Conan won’t print the command output to the stdout. Can be used with CONAN_LOG_RUN_TO_FILE set to 1
to log only to file and not printing the output.

17.9.18 CONAN_LOGGING_LEVEL

Defaulted to: critical

By default Conan logging level is only set for critical events. If you want to show more detailed logging information,
set this variable according to Python Logging Levels or, use a logging level name:

logging level name logging level id
critical 50
error 40
warning/warn 30
info 20
debug 10

Both names and IDs are acceptable by environment variable, or using the conan.conf file.

17.9.19 CONAN_LOGIN_USERNAME, CONAN_LOGIN_USERNAME_{REMOTE_NAME}

Defaulted to: Not defined

You can define the username for the authentication process using environment variables. Conan will use a variable
CONAN_LOGIN_USERNAME_{REMOTE_NAME}, if the variable is not declared Conan will use the variable
CONAN_LOGIN_USERNAME, if the variable is not declared either, Conan will request to the user to input a user-
name.

These variables are useful for unattended executions like CI servers or automated tasks.

If the remote name contains “-” you have to replace it with “_” in the variable name:

For example: For a remote named “conan-center”:

SET CONAN_LOGIN_USERNAME_CONAN_CENTER=MyUser

See also:

See the conan user command documentation for more information about login to remotes

17.9.20 CONAN_LOGIN_ENCRYPTION_KEY

Defaulted to: Not defined

This variable is used to obfuscate the credential token when it is stored in the database after a successful conan user
command. The encryption algorithm is a basic Vigenere cypher which is not ok for security at all.

This variable, however, is useful for shared CI servers where the stored value can be compromised: assign a random
generated string to this value for each of the builds and configure your server to expire tokens, this will make the value
stored in the database harder to crack.

17.9. Environment variables 597

https://docs.python.org/3/library/logging.html#logging-levels

Conan Documentation, Release 1.31.4

17.9.21 CONAN_MAKE_PROGRAM

Defaulted to: Not defined

Specify an alternative make program to use with:

• The build helper AutoToolsBuildEnvironment. Will invoke the specified executable in the make method.

• The build helper build helper CMake. By adjusting the CMake variable CMAKE_MAKE_PROGRAM.

For example:

CONAN_MAKE_PROGRAM="/path/to/mingw32-make"

Or only the exe name if it is in the path

CONAN_MAKE_PROGRAM="mingw32-make"

17.9.22 CONAN_CMAKE_PROGRAM

Defaulted to: Not defined

Specify an alternative cmake program to use with CMake build helper.

For example:

CONAN_CMAKE_PROGRAM="scan-build cmake"

17.9.23 CONAN_MSBUILD_VERBOSITY

Defaulted to: Not defined

Specify `MSBuild` verbosity level to use with:

• The build helper CMake.

• The build helper MSBuild.

For list of allowed values and their meaning, check out the MSBuild documentation.

17.9.24 CONAN_PASSWORD, CONAN_PASSWORD_{REMOTE_NAME}

Defaulted to: Not defined

You can define the authentication password using environment variables. Conan will use a variable CO-
NAN_PASSWORD_{REMOTE_NAME}, if the variable is not declared Conan will use the variable CO-
NAN_PASSWORD, if the variable is not declared either, Conan will request to the user to input a password.

These variables are useful for unattended executions like CI servers or automated tasks.

The remote name is transformed to all uppercase. If the remote name contains “-“, you have to replace it with “_” in
the variable name.

For example, for a remote named “conan-center”:

SET CONAN_PASSWORD_CONAN_CENTER=Mypassword

598 Chapter 17. Reference

https://cmake.org/cmake/help/v3.0/variable/CMAKE_MAKE_PROGRAM.html
https://docs.microsoft.com/en-us/visualstudio/msbuild/msbuild-command-line-reference?view=vs-2017

Conan Documentation, Release 1.31.4

See also:

See the conan user command documentation for more information about login to remotes

17.9.25 CONAN_HOOKS

Defaulted to: Not defined

Can be set to a comma separated list with the names of the hooks that will be executed when running a Conan command.

17.9.26 CONAN_PRINT_RUN_COMMANDS

Defaulted to: 0

If set to 1, every self.run("{Some command}") call will log the executed command {Some command} to the output.

For example: In the conanfile.py file:

self.run("cd %s && %s ./configure" % (self.ZIP_FOLDER_NAME, env_line))

Will print to the output (stout and/or file):

----Running------
> cd zlib-1.2.9 && env LIBS="" LDFLAGS=" -m64 $LDFLAGS" CFLAGS="-mstackrealign -fPIC
→˓$CFLAGS -m64 -s -DNDEBUG " CPPFLAGS="$CPPFLAGS -m64 -s -DNDEBUG " C_INCLUDE_PATH=
→˓$C_INCLUDE_PATH: CPLUS_INCLUDE_PATH=$CPLUS_INCLUDE_PATH: ./configure

...

17.9.27 CONAN_READ_ONLY_CACHE

Defaulted to: Not defined

This environment variable if defined, will make the Conan cache read-only. This could prevent developers to acciden-
tally edit some header of their dependencies while navigating code in their IDEs.

This variable can also be set in conan.conf as read_only_cache = True in the [general] section.

The packages are made read-only in two points: when a package is built from sources, and when a package is retrieved
from a remote repository.

The packages are not modified for upload, so users should take that into consideration before uploading packages, as
they will be read-only and that could have other side-effects.

Warning: It is not recommended to upload packages directly from developers machines with read-only mode as
it could lead to inconsistencies. For better reproducibility we recommend that packages are created and uploaded
by CI machines.

17.9. Environment variables 599

Conan Documentation, Release 1.31.4

17.9.28 CONAN_RUN_TESTS

Defaulted to: Not defined (True/False if defined)

This environment variable (if defined) can be used in conanfile.py to enable/disable the tests for a library or appli-
cation.

It can be used as a convention variable and it’s specially useful if a library has unit tests and you are doing cross building,
the target binary can’t be executed in current host machine building the package.

It can be defined in your profile files at ~/.conan/profiles

...
[env]
CONAN_RUN_TESTS=False

or declared in command line when invoking conan install to reduce the variable scope for conan execution

$ conan install . -e CONAN_RUN_TESTS=0

See how to retrieve the value with tools.get_env() and check a use case with a header only with unit tests recipe while
cross building.

See example of build method in conanfile.py to enable/disable running tests with CMake:

from conans import ConanFile, CMake, tools

class HelloConan(ConanFile):
name = "hello"
version = "0.1"

def build(self):
cmake = CMake(self)
cmake.configure()
cmake.build()
if tools.get_env("CONAN_RUN_TESTS", True):

cmake.test()

17.9.29 CONAN_SKIP_VS_PROJECTS_UPGRADE

Defaulted to: False/0

When set to True/1, the tools.build_sln_command(), the tools.msvc_build_command() and the MSBuild() build helper,
will not call devenv command to upgrade the sln project, irrespective of the upgrade_project parameter value.

17.9.30 CONAN_SYSREQUIRES_MODE

Defaulted to: Not defined (allowed values enabled/verify/disabled)

This environment variable controls whether system packages should be installed into the system via
SystemPackageTool helper, typically used in system_requirements().

See values behavior:

• enabled: Default value and any call to install method of SystemPackageTool helper should modify the system
packages.

600 Chapter 17. Reference

Conan Documentation, Release 1.31.4

• verify: Display a report of system packages to be installed and abort with exception. Useful if you don’t want
to allow Conan to modify your system but you want to get a report of packages to be installed.

• disabled: Display a report of system packages that should be installed but continue the Conan execution and
doesn’t install any package in your system. Useful if you want to keep manual control of these dependencies, for
example in your development environment.

17.9.31 CONAN_SYSREQUIRES_SUDO

Defaulted to: True/1

This environment variable controls whether sudo is used for installing apt, yum, etc. system packages via
SystemPackageTool helper, typically used in system_requirements(). By default when the environment vari-
able does not exist, “True” is assumed, and sudo is automatically prefixed in front of package management commands.
If you set this to “False” or “0” sudo will not be prefixed in front of the commands, however installation or updates of
some packages may fail due to a lack of privilege, depending on the user account Conan is running under.

17.9.32 CONAN_TEMP_TEST_FOLDER

Defaulted to: False/0

Activating this variable will make build folder of test_package to be created in the temporary folder of your machine.

17.9.33 CONAN_TRACE_FILE

Defaulted to: Not defined

If you want extra logging information about your Conan command executions, you can enable it by setting the
CONAN_TRACE_FILE environment variable. Set it with an absolute path to a file.

export CONAN_TRACE_FILE=/tmp/conan_trace.log

When the Conan command is executed, some traces will be appended to the specified file. Each line contains a JSON
object. The _action field contains the action type, like COMMAND for command executions, EXCEPTION for errors and
REST_API_CALL for HTTP calls to a remote.

The logger will append the traces until the CONAN_TRACE_FILE variable is unset or pointed to a different file.

See also:

Read more here: How to log and debug a conan execution

17.9.34 CONAN_USERNAME, CONAN_CHANNEL

Warning: Environment variables CONAN_USERNAME and CONAN_CHANNEL are deprecated and will be removed in
Conan 2.0. Don’t use them to populate the value of self.user and self.channel.

These environment variables will be checked when using self.user or self.channel in package recipes in user
space, where the user and channel have not been assigned yet (they are assigned when exported in the local cache).
More about these variables in the attributes reference.

17.9. Environment variables 601

Conan Documentation, Release 1.31.4

17.9.35 CONAN_USER_HOME

Defaulted to: Not defined

Allows defining a custom base directory for Conan cache directory. Can be useful for concurrent builds under different
users in CI, to retrieve and store per-project specific dependencies (useful for deployment, for example). Conan will
generate the folder .conan under the custom base path.

See also:

Read more about it in Conan local cache: concurrency, Continuous Integration, isolation

17.9.36 CONAN_USER_HOME_SHORT

Defaulted to: Not defined

Specify the base folder to be used with the short paths feature. When not specified, the packages marked as short_paths
will be stored in the C:\.conan (or the current drive letter).

If set to None, it will disable the short_paths feature in Windows for modern Windows that enable long paths at the
system level.

Setting this variable equal to, or to a subdirectory of, the local conan cache (e.g. ~/.conan) would result in an invalid
cache configuration and is therefore disallowed.

17.9.37 CONAN_USE_ALWAYS_SHORT_PATHS

Defaulted to: Not defined

If defined to True or 1, every package will be stored in the short paths directory resolved by Conan after evaluating
CONAN_USER_HOME_SHORT variable (see above). This variable, therefore, overrides the value defined in recipes for the
attribute short paths.

If the variable is not defined or it evaluates to False then every recipe will be stored according to the value of its
short_paths attribute. So, CONAN_USE_ALWAYS_SHORT_PATHS can force every recipe to use short paths, but it won’t
work to force the opposite behavior.

17.9.38 CONAN_VERBOSE_TRACEBACK

Defaulted to: 0

When an error is raised in a recipe or even in the Conan code base, if set to 1 it will show the complete traceback to
ease the debugging.

17.9.39 CONAN_ERROR_ON_OVERRIDE

Defaulted to: False

When a consumer overrides one transitive requirement without using explicitly the keyword override Conan will
raise an error if this environmente variable is set to True.

This variable can also be set in the *conan.conf* file under the section [general].

602 Chapter 17. Reference

Conan Documentation, Release 1.31.4

17.9.40 CONAN_VS_INSTALLATION_PREFERENCE

Defaulted to: Enterprise, Professional, Community, BuildTools

This environment variables defines the order of preference when searching for a Visual installation product. This would
affect every tool that uses tools.vs_installation_path() and will search in the order indicated.

For example:

set CONAN_VS_INSTALLATION_PREFERENCE=Enterprise, Professional, Community, BuildTools

It can also be used to fix the type of installation you want to use indicating just one product type:

set CONAN_VS_INSTALLATION_PREFERENCE=BuildTools

17.9.41 CONAN_CACERT_PATH

Defaulted to: Not defined

Specify an alternative path to a cacert.pem file to be used for requests. This variable overrides the value defined in the
conan.conf as cacert_path = <path/to/cacert.pem> under the section [general].

17.9.42 CONAN_DEFAULT_PACKAGE_ID_MODE

Defaulted to: semver_direct_mode

It changes the way package IDs are computed, but can change to any value defined in Using package_id() for Package
Dependencies.

17.9.43 CONAN_SKIP_BROKEN_SYMLINKS_CHECK

Defaulted to: False/0

When set to True/1, Conan will allow the existence broken symlinks while creating a package.

17.9.44 CONAN_PYLINT_WERR

Defaulted to: Not defined

This environment variable changes the PyLint behavior from warning level to error. Therefore, any inconsistency
found in the recipe will break the process during linter analysis.

17.10 Hooks

Warning: This is an experimental feature subject to breaking changes in future releases.

The Conan hooks are Python functions that are intended to extend the Conan functionalities and let users customize
the client behavior at determined execution points. Check the hooks section in extending Conan to see some examples
of how to use them and already available ones providing useful functionality.

17.10. Hooks 603

Conan Documentation, Release 1.31.4

17.10.1 Hook interface

Here you can see a complete example of all the hook functions available and the different parameters for each of them
depending on the context:

def pre_export(output, conanfile, conanfile_path, reference, **kwargs):
assert conanfile
output.info("conanfile_path={}".format(conanfile_path))
output.info("reference={}".format(reference.full_str()))

def post_export(output, conanfile, conanfile_path, reference, **kwargs):
assert conanfile
output.info("conanfile_path={}".format(conanfile_path))
output.info("reference={}".format(reference.full_str()))

def pre_source(output, conanfile, conanfile_path, **kwargs):
assert conanfile
output.info("conanfile_path={}".format(conanfile_path))
if conanfile.in_local_cache:

output.info("reference={}".format(kwargs["reference"].full_str()))

def post_source(output, conanfile, conanfile_path, **kwargs):
assert conanfile
output.info("conanfile_path={}".format(conanfile_path))
if conanfile.in_local_cache:

output.info("reference={}".format(kwargs["reference"].full_str()))

def pre_build(output, conanfile, **kwargs):
assert conanfile
if conanfile.in_local_cache:

output.info("reference={}".format(kwargs["reference"].full_str()))
output.info("package_id={}".format(kwargs["package_id"]))

else:
output.info("conanfile_path={}".format(kwargs["conanfile_path"]))

def post_build(output, conanfile, **kwargs):
assert conanfile
if conanfile.in_local_cache:

output.info("reference={}".format(kwargs["reference"].full_str()))
output.info("package_id={}".format(kwargs["package_id"]))

else:
output.info("conanfile_path={}".format(kwargs["conanfile_path"]))

def pre_package(output, conanfile, conanfile_path, **kwargs):
assert conanfile
output.info("conanfile_path={}".format(conanfile_path))
if conanfile.in_local_cache:

output.info("reference={}".format(kwargs["reference"].full_str()))
output.info("package_id={}".format(kwargs["package_id"]))

def post_package(output, conanfile, conanfile_path, **kwargs):
assert conanfile
output.info("conanfile_path={}".format(conanfile_path))

(continues on next page)

604 Chapter 17. Reference

Conan Documentation, Release 1.31.4

(continued from previous page)

if conanfile.in_local_cache:
output.info("reference={}".format(kwargs["reference"].full_str()))
output.info("package_id={}".format(kwargs["package_id"]))

def pre_upload(output, conanfile_path, reference, remote, **kwargs):
output.info("conanfile_path={}".format(conanfile_path))
output.info("reference={}".format(reference.full_str()))
output.info("remote.name={}".format(remote.name))

def post_upload(output, conanfile_path, reference, remote, **kwargs):
output.info("conanfile_path={}".format(conanfile_path))
output.info("reference={}".format(reference.full_str()))
output.info("remote.name={}".format(remote.name))

def pre_upload_recipe(output, conanfile_path, reference, remote, **kwargs):
output.info("conanfile_path={}".format(conanfile_path))
output.info("reference={}".format(reference.full_str()))
output.info("remote.name={}".format(remote.name))

def post_upload_recipe(output, conanfile_path, reference, remote, **kwargs):
output.info("conanfile_path={}".format(conanfile_path))
output.info("reference={}".format(reference.full_str()))
output.info("remote.name={}".format(remote.name))

def pre_upload_package(output, conanfile_path, reference, package_id, remote, **kwargs):
output.info("conanfile_path={}".format(conanfile_path))
output.info("reference={}".format(reference.full_str()))
output.info("package_id={}".format(package_id))
output.info("remote.name={}".format(remote.name))

def post_upload_package(output, conanfile_path, reference, package_id, remote, **kwargs):
output.info("conanfile_path={}".format(conanfile_path))
output.info("reference={}".format(reference.full_str()))
output.info("package_id={}".format(package_id))
output.info("remote.name={}".format(remote.name))

def pre_download(output, reference, remote, **kwargs):
output.info("reference={}".format(reference.full_str()))
output.info("remote.name={}".format(remote.name))

def post_download(output, conanfile_path, reference, remote, **kwargs):
output.info("conanfile_path={}".format(conanfile_path))
output.info("reference={}".format(reference.full_str()))
output.info("remote.name={}".format(remote.name))

def pre_download_recipe(output, reference, remote, **kwargs):
output.info("reference={}".format(reference.full_str()))
output.info("remote.name={}".format(remote.name))

def post_download_recipe(output, conanfile_path, reference, remote, **kwargs):
output.info("conanfile_path={}".format(conanfile_path))
output.info("reference={}".format(reference.full_str()))

(continues on next page)

17.10. Hooks 605

Conan Documentation, Release 1.31.4

(continued from previous page)

output.info("remote.name={}".format(remote.name))

def pre_download_package(output, conanfile, conanfile_path, reference, package_id,␣
→˓remote, **kwargs):

output.info("conanfile.name={}".format(conanfile.name))
output.info("conanfile_path={}".format(conanfile_path))
output.info("reference={}".format(reference.full_str()))
output.info("package_id={}".format(package_id))
output.info("remote.name={}".format(remote.name))

def post_download_package(output, conanfile, conanfile_path, reference, package_id,␣
→˓remote, **kwargs):

output.info("conanfile.name={}".format(conanfile.name))
output.info("conanfile_path={}".format(conanfile_path))
output.info("reference={}".format(reference.full_str()))
output.info("package_id={}".format(package_id))
output.info("remote.name={}".format(remote.name))

def pre_package_info(output, conanfile, reference, **kwargs):
output.info("reference={}".format(reference.full_str()))
output.info("conanfile.cpp_info.defines={}".format(conanfile.cpp_info.defines))

def post_package_info(output, conanfile, reference, **kwargs):
output.info("reference={}".format(reference.full_str()))
output.info("conanfile.cpp_info.defines={}".format(conanfile.cpp_info.defines))

Functions of the hooks are intended to be self-descriptive regarding to the execution of them. For example, the
pre_package() function is called just before the package() method of the recipe is executed.

For download/upload functions, the pre_download()/pre_upload() function is executed first in an conan
download/conan upload command. Then pre and post download_recipe()/upload_recipe() and its
subsequent pre/post download_package()/upload_package() if that is the case. Finally the general
post_download()/post_upload() function is called to wrap up the whole execution.

Important: Pre and post download_recipe()/download_package() are also executed when installing new
recipes/packages from remotes using conan create or conan install.

17.10.2 Function parameters

Here you can find the description for each parameter:

• output: Output object to print formatted messages during execution with the name of the hook and the function
executed, e.g., [HOOK - complete_hook] post_download_package(): This is the remote name:
default.

• conanfile: It is a regular ConanFile object loaded from the recipe that received the Conan command. It has its
normal attributes and dynamic objects such as build_folder, package_folder. . .

• conanfile_path: Path to the conanfile.py file whether it is in local cache or in user space.

• reference: Named tuple with attributes name, version, user, and channel. Its representation will be a refer-
ence like: box2d/2.1.0@user/channel

606 Chapter 17. Reference

Conan Documentation, Release 1.31.4

• package_id: String with the computed package ID.

• remote: Named tuple with attributes name, url and verify_ssl.

Hook function* Parameters
conanfile conanfile_path reference package_id remote

export()

Yes pre/post Yes No No

source()

Yes Yes cache No No

build()

Yes user space cache cache No

package()

Yes pre/post cache Yes No

upload()

upload_recipe()

upload_package()

No Yes Yes Yes Yes

download()

download_recipe()

Yes post Yes Yes Yes

download_package()

Yes Yes Yes Yes Yes

package_info()

Yes No Yes No No

*Hook functions are indicated without pre and post prefixes for simplicity.

Table legend:

• Yes: Availability in pre and post functions in any context.

• No: Not available.

• pre / post: Availability in both pre and post functions with different values. e.g. conanfile_path
pointing to user space in pre and to local cache in post.

• post: Only available in post function.

17.10. Hooks 607

Conan Documentation, Release 1.31.4

• cache: Only available when the context of the command executed is the local cache. e.g. conan create,
conan install. . .

• user space: Only available when the context of the command executed is the user space. e.g. conan
build

Note: Path to the different folders of the Conan execution flow may be accessible as usual through the conanfile
object. See source_folder to learn more.

Some of this parameters does not appear in the signature of the function as they may not be always available (Mostly
depending on the recipe living in the local cache or in user space). However, they can be checked with the kwargs
parameter.

Important: Hook functions should have a **kwargs parameter to keep compatibility of new parameters that may be
introduced in future versions of Conan.

17.11 CONAN_V2_MODE

This environment variable activates some behaviors and defaults that are intended to be in the next major release, Conan
2.0. It also turns into errors things that are already deprecated in Conan 1.x.

The objective is to try to minimize the impact on existing recipes when Conan 2.0 will be available and to start gathering
feedback about the new configuration and behavior. This does not resemble the full behavior that Conan 2.0 will bring.
The v2 mode is a work-in-progress, it is highly experimental and there is no commitment for stability here, but
we expect that users with this mode activated will help us to shape the future version of Conan while we keep evolving
the Conan 1.x series.

So, if you are ready to experiment add the variable CONAN_V2_MODE to your environment and, please, report your
feedback about it.

Warning: Do not activate this mode in a production environment! Even if everything seems to work fine,
package ID might change, revisions will be different and the ABI could be incompatible.

17.11.1 Changes related to the default configuration

These changes will be applied when installing Conan for the first time, as these are stored in the autogenerated config-
uration files in the cache:

• First level setting cppstd is removed.

• Revisions are enabled by default (adds revisions_enabled=1 to conan.conf).

• No hooks activated by default.

• SCM data will be stored into conandata.yml.

• GCC >= 5 autodetected profile will use libstdc++11.

• Directory <cache>/python is not added to Python sys.path.

Some of these behaviors will be also activated for existing installations if the conan.conf doesn’t contain a value for
them.

608 Chapter 17. Reference

Conan Documentation, Release 1.31.4

17.11.2 Changes in recipes

These changes could break existing recipes:

• Forbid access to self.cpp_info in conanfile::package_id() method.

• Deprecate conanfile::config() method.

• Deprecate old python_requires syntax.

• Forbid access to self.info in conanfile.package().

• default_options are required to be a dictionary.

• Raise if setting cppstd appears in the recipe.

• Forbid self.settings and self.options in conanfile::source() method.

• Deprecate tools.msvc_build_command.

• Deprecate tools.build_sln_command.

• Deprecate cpp_info.cppflags (use cxxflags instead).

• Deprecate environment variables CONAN_USERNAME and CONAN_CHANNEL.

• PYTHONPATH is not added automatically to the environment before running consumer functions.

• Attribute self.version is ensured to be a string in all the functions and scenarios.

• Access to member name in deps_cpp_info objects is forbidden, use get_name(<generator>) with the name
of the generator.

17.11.3 Changes in profiles

Could break existing profiles:

• Deprecate scopes section in profiles.

17.11.4 Other changes

• Package name used by the pkg_config generator uses the same rules as any other generator. Previously, if it
was not explicit, it was using lowercase cpp_info.name when it was different from the package name.

• If build_type or compiler are not defined when using build helpers Conan will raise an error.

• New compiler detection algorithm is used (e.g. when running conan profile new <name> --detect).
Previously, <compiler> --version was parsed to detect the compiler and its version. Now, using
CONAN_V2_MODE, Conan will try to detect the compiler and its version via compiler’s built-in macro definitions.

Note: More changes will be added, some of them could be reverted and the behavior may change without further
noticing. If you are using CONAN_V2_MODE, thanks! We really appreciate your feedback about the future of Conan.

17.11. CONAN_V2_MODE 609

Conan Documentation, Release 1.31.4

610 Chapter 17. Reference

CHAPTER

EIGHTEEN

VIDEOS AND LINKS

• NDC TechTown 2019: Using Conan in a real-world complex project by Kristian Jerpetjøn.

• Meeting Embedded 2018: “Continuous Integration of C/C++ for embedded and IoT with Jenkins, Docker and
Conan” by Diego Rodriguez-Losada and Daniel Manzaneque.

• CppCon 2018: “Git, CMake, Conan - How to ship and reuse our C++ projects” by Mateusz Pusz.

• JFrog swampUP 2018: “Managing dependencies and toolchains with Conan and Artifactory” by Tobias Hieta

• JFrog swampUP 2018: “Cross building. . . It’s almost too easy!” by Théo Delrieu.

• JFrog Conan Playlist: “Conan - The C/C++ Package Manager”

• FOSDEM 2018: “Packaging C/C++ libraries with Conan” by Théo Delrieu.

Includes AndroidNDK package and cross build to Android

• CppCon 2016: “Introduction to Conan C/C++ Package Manager” by Diego Rodriguez-Losada.

• CppCon 2017: “Faster Delivery of Large C/C++ Projects with Conan Package Manager and Efficient Continuous
Integration” by Diego Rodriguez-Losada.

• “Conan.io C++ Package Manager demo with SFML” by Charl Botha

• CppRussia 2019: “ABI compatibility is not a MAJOR problem” by Javier Garcia Sogo

• CppCon 2019: “Building happiness in your life” by Steve Robinson

Do you have a video, tutorial, blog post that could be useful for other users and would like to share? Please tell us about
it or directly send a PR to our docs: https://github.com/conan-io/docs, and we will link it here.

611

https://charlbotha.com
https://github.com/conan-io/docs

Conan Documentation, Release 1.31.4

612 Chapter 18. Videos and links

CHAPTER

NINETEEN

FAQ

See also:

There is a great community behind Conan with users helping each other in Cpplang Slack. Please join us in the #conan
channel!

19.1 General

19.1.1 Is Conan CMake based, or is CMake a requirement?

No. It isn’t. Conan is build-system agnostic. Package creators could very well use cmake to create their packages,
but you will only need it if you want to build packages from source, or if there are no available precompiled packages
for your system/settings. We use CMake extensively in our examples and documentation, but only because it is very
convenient and most C/C++ devs are familiar with it.

19.1.2 Is build-system XXXXX supported?

Yes. It is. Conan makes no assumption about the build system. It just wraps any build commands specified by the
package creators. There are already some helper methods in code to ease the use of CMake, but similar functions can
be very easily added for your favorite build system. Please check out the alternatives explained in generator packages

19.1.3 Is my compiler, version, architecture, or setting supported?

Yes. Conan is very general, and does not restrict any configuration at all. However, Conan comes with some compilers,
versions, architectures, . . . , etc. pre-configured in the ~/.conan/settings.yml file, and you can get an error if using
settings not present in that file. Go to invalid settings to learn more about it, or see the section Customizing settings.

19.1.4 Does it run offline?

Yes. It runs offline very well. Package recipes and binary packages are stored in your machine, per user, and so you
can start new projects that depend on the same libraries without any Internet connection at all. Packages can be fully
created, tested and consumed locally, without needing to upload them anywhere.

613

https://cpplang-inviter.cppalliance.org/

Conan Documentation, Release 1.31.4

19.1.5 Is it possible to install 2 different versions of the same library?

Yes. You can install as many different versions of the same library as you need, and easily switch among them in the
same project, or have different projects use different versions simultaneously, and without having to install/uninstall or
re-build any of them.

Package binaries are stored per user in (e.g.) ~/.conan/data/Boost/1.59/user/stable/package/{sha_0,
sha_1, sha_2...} with a different SHA signature for every different configuration (debug, release, 32-bit, 64-bit,
compiler. . .). Packages are managed per user, but additionally differentiated by version and channel, and also by their
configuration. So large packages, like Boost, don’t have to be compiled or downloaded for every project.

19.1.6 Can I run multiple Conan isolated instances (virtual environments) on the
same machine?

Yes, Conan supports the concept of virtual environments; so it manages all the information (packages, remotes, user
credentials, . . . , etc.) in different, isolated environments. Check virtual environments for more details.

19.1.7 Can I run the conan_server or Artifactory behind a firewall (on-premises)?

Yes. Conan does not require a connection to conan.io site or any other external service at all for its operation. You
can install packages from the ConanCenter repository if you want, test them, and only after approval, upload them to
your on-premises server and forget about the original repository. Or you can just get the package recipes, re-build from
source on your premises, and then upload the packages to your server.

19.1.8 Can I connect to Conan remote servers through a corporate proxy?

Yes, it can be configured in your ~/.conan/conan.conf configuration file or with some environment variables. Check
proxy configuration for more details.

19.1.9 Can I create packages for third-party libraries?

Of course, as long as their license allows it.

19.1.10 Can I upload closed source libraries to ConanCenter?

No. ConanCenter (https://conan.io/center/) is for Open Source packages only. Binaries in ConanCenter are created by
our build service from recipes in https://github.com/conan-io/conan-center-index. Read how to contribute to Conan-
Center in https://github.com/conan-io/conan-center-index/wiki

19.1.11 Do I always need to specify how to build the package from source?

No. But it is highly recommended. If you want, you can just directly start with the binaries, build elsewhere, and upload
them directly. Maybe your build() step can download pre-compiled binaries from another source and unzip them,
instead of actually compiling from sources. You can also use the conan export-pkg command to create packages from
existing binaries.

614 Chapter 19. FAQ

https://conan.io/center/
https://github.com/conan-io/conan-center-index
https://github.com/conan-io/conan-center-index/wiki

Conan Documentation, Release 1.31.4

19.1.12 Does Conan use semantic versioning (semver) for dependencies?

It uses a convention by which package dependencies follow semver by default; thus it intelligently avoids recompila-
tion/repackaging if you update upstream minor versions, but will correctly do so if you update major versions upstream.
This behavior can be easily configured and changed in the package_id()method of your conanfile, and any versioning
scheme you desire is supported.

19.2 Using Conan

19.2.1 How to package header-only libraries?

Packaging header-only libraries is similar to other packages. Be sure to start by reading and understanding the packaging
getting started guide. The main difference is that a package recipe is typically much simpler. There are different
approaches depending on if you want Conan to run the library unit tests while creating the package or not. Full details
are described in this how-to guide.

19.2.2 When to use settings or options?

While creating a package, you may want to add different configurations and variants of the package. There are two
main inputs that define packages: settings and options. Read more about them in this section.

19.2.3 How to obtain the dependents of a given package?

The search model for Conan in commands such as conan install and conan info is done from the downstream or
“consumer” package as the starting node of the dependency graph and upstream.

$ conan info poco/1.9.4@

19.2. Using Conan 615

Conan Documentation, Release 1.31.4

The inverse model (from upstream to downstream) is not simple to obtain for Conan packages. This is be-
cause the dependency graph is not unique, it changes for every configuration. The graph can be different
for different operating systems or just by changing some package options. So you cannot query which pack-
ages are dependent on my_lib/0.1@user/channel, but which packages are dependent on my_lib/0.1@user/
channel:63da998e3642b50bee33 binary package. Also, the response can contain many different binary pack-
ages for the same recipe, like my_dependent/0.1@user/channel:packageID1... ID2... my_dependent/0.
1@user/channel:packageIDN. That is the reason why conan info and conan install need a profile (default
profile or one given with --profile`) or installation files conanbuildinfo.txt to look for settings and options.

In order to show the inverse graph model, the bottom node is needed to build the graph upstream and an additional
node too to get the inverse list. This is usually done to get the build order in case a package is updated. For example,
if we want to know the build order of the Poco dependency graph in case OpenSSL is changed we could type:

$ conan info poco/1.9.4@ -bo openssl/1.0.2t
WARN: Usage of `--build-order` argument is deprecated and can return wrong results. Use␣
→˓`conan lock build-order ...` instead.
[openssl/1.0.2t], [poco/1.9.4]

If OpenSSL is changed, we would need to rebuild it (of course) and rebuild Poco.

616 Chapter 19. FAQ

Conan Documentation, Release 1.31.4

19.2.4 Packages got outdated when uploading an unchanged recipe from a different
machine

Usually this is caused due to different line endings in Windows and Linux/macOS. Normally this happens when Win-
dows uploads it with CRLF while Linux/macOS do it with only LF. Conan does not change the line endings to not
interfere with user. We suggest always using LF line endings. If this issue is caused by git, it could be solved with git
config --system core.autocrlf input.

The outdated status is computed from the recipe hash, comparing the hash of the recipe used to create a binary package
and the current recipe. The recipe hash is the hash of all the files included in the conanmanifest.txt file (you can
inspect this file in your cache with conan get <ref> conanmanifest.txt). The first value in the manifest file is
a timestamp and is not taken into account to compute the hash. Checking and comparing the contents of the different
conanmanifest.txt files in the different machines can give an idea of what is changing.

If you want to make the solution self-contained, you can add a .git/config file in your project that sets the core.
autocrlf property (for the whole repo), or if you need a per-file configuration, you could use the .gitattributes file to
set the text eol=lf for every file you want.

19.2.5 Is there any recommendation regarding which <user> or <channel> to use in
a reference?

A Conan reference is defined by the following template: <library-name>/<library-version>@<user>/
<channel>

The <user> term in a Conan reference is basically a namespace to avoid collisions of libraries with the same name and
version in the local cache and in the same remote. This field is usually populated with the author’s name of the package
recipe (which could be different from the author of the library itself) or with the name of the organization creating it.
Here are some examples from Conan Center:

OpenSSL/1.1.1@conan/stable
CLI11/1.6.1@cliutils/stable
CTRE/2.1@ctre/stable
Expat/2.2.5@pix4d/stable
FakeIt/2.0.5@gasuketsu/stable
Poco/1.9.0@pocoproject/stable
c-blosc/v1.14.4@francescalted/stable

In the case of the <channel> term, normally OSS package creators use testing when developing a recipe (e.g. it
compiles only in few configurations) and stable when the recipe is ready enough to be used (e.g. it is built and tested
in a wide range of configurations).

From the perspective of a library developer, channels could be used to create different scopes of your library. For
example, use rc channel for release candidates, maybe experimental for those kind of features, or even qa/testing
before the library is checked by QA department or testers.

19.2. Using Conan 617

Conan Documentation, Release 1.31.4

19.2.6 What does “outdated from recipe” mean exactly?

In some output or commands there are references to “outdated” or “outdated from recipe”. For example, there is a flag
--outdated in conan search and conan remove to filter by outdated packages.

When packages are created, Conan stores some metadata of the package such as the settings, the final resolution of the
dependencies. . . and it also saves the recipe hash of the recipe contents they were generated with. This way Conan is
able to know the real relation between a recipe and a package.

Basically outdated packages appear when you modify a recipe and export and/or upload it, without re-building binary
packages with it. This information is displayed in yellow with:

$ conan search pkg/0.1@user/channel --table=file.html
open file.html
It will show outdated binaries in yellow.

This information is important to know if the packages are up to date with the recipe or even if the packages are still
“accessible” from the recipe. That means: if the recipe has completely removed an option (it could be a setting or
a requirement) but there are old packages that were generated previously with that option, those packages will be
impossible to install as their package ID are calculated from the recipe file (and that option does not exist anymore).

19.2.7 How to configure the remotes priority order

The lookup remote order is defined by the command conan remote:

$ conan remote list
conan-center: https://conan.bintray.com [Verify SSL: True]
myremote: https://MyTeamServerIP:8081/artifactory/api/conan/myremote [Verify SSL: True]

As you can see, the remote conan-center is listed on index 0, which means it has the highest priority when searching
or installing a package, followed by myremote, on index 1. To update the index order, the argument --insert can be
added to the command conan remote update:

$ conan remote update myremote https://MyTeamServerIP:8081/artifactory/api/conan/
→˓myremote --insert
$ conan remote list
myremote: https://MyTeamServerIP:8081/artifactory/api/conan/myremote [Verify SSL: True]
conan-center: https://conan.bintray.com [Verify SSL: True]

The --insert argument means index 0, the highest priority, thus the myremote remote will be updated as the first
remote to be used.

It’s also possible to define a specific index when adding a remote to the list:

$ conan remote add otherremote https://MyCompanyOtherIP:8081/artifactory/api/conan/
→˓otherremote --insert 1
$ conan remote list
myremote: https://MyTeamServerIP:8081/artifactory/api/conan/myremote [Verify SSL: True]
otherremote: https://MyCompanyOtherIP:8081/artifactory/api/conan/otherremote [Verify␣
→˓SSL: True]
conan-center: https://conan.bintray.com [Verify SSL: True]

The otherremote remote needs to be added after myremote, so we need to set the remote index as 1.

618 Chapter 19. FAQ

Conan Documentation, Release 1.31.4

19.3 Troubleshooting

19.3.1 ERROR: The recipe is constraining settings

When you install or create a package you might have error like the following one:

ERROR: The recipe is constraining settings. Invalid setting 'Linux' is not a valid
→˓'settings.os' value.
Possible values are ['Windows']
Read "http://docs.conan.io/en/latest/faq/troubleshooting.html#error-the-recipe-is-
→˓contraining-settings"

This means that your target operating system is not supported by the recipe.

19.3.2 ERROR: Missing prebuilt package

When installing packages (with conan install or conan create) it is possible that you get an error like the follow-
ing one:

WARN: Can't find a 'czmq/4.2.0' package for the specified settings, options and␣
→˓dependencies:
- Settings: arch=x86_64, build_type=Release, compiler=Visual Studio, compiler.runtime=MD,
→˓ compiler.version=16, os=Windows
- Options: shared=False, with_libcurl=True, with_libuuid=True, with_lz4=True,␣
→˓libcurl:shared=False, ...
- Dependencies: openssl/1.1.1d, zeromq/4.3.2, libcurl/7.67.0, lz4/1.9.2
- Requirements: libcurl/7.Y.Z, lz4/1.Y.Z, openssl/1.Y.Z, zeromq/4.Y.Z
- Package ID: 7a4079899e0893ca670df1f682b4606abe79ee5b

ERROR: Missing prebuilt package for 'czmq/4.2.0'
Try to build it from sources with '--build czmq'
Use 'conan search <reference> --table table.html'
Or read 'http://docs.conan.io/en/latest/faq/troubleshooting.html#error-missing-prebuilt-
→˓package'

This means that the package recipe czmq/4.2.0@ exists, but for some reason there is no precompiled package for your
current settings. Maybe the package creator didn’t build and shared pre-built packages at all and only uploaded the
package recipe, or they are only providing packages for some platforms or compilers. E.g. the package creator built
packages from the recipe for Visual Studio 14 and 15, but you are using Visual Studio 16. Also you may want to check
your package ID mode as it may have an influence on the packages available for it.

By default, Conan doesn’t build packages from sources. There are several possibilities to overcome this error:

• You can try to build the package for your settings from sources, indicating some build policy as argument, like
--build czmq or --build missing. If the package recipe and the source code work for your settings you will
have your binaries built locally and ready for use.

• If building from sources fails, you might want to fork the original recipe, improve it until it supports your con-
figuration, and then use it. Most likely contributing back to the original package creator is the way to go. But
you can also upload your modified recipe and pre-built binaries under your own username too.

19.3. Troubleshooting 619

Conan Documentation, Release 1.31.4

19.3.3 ERROR: Invalid setting

It might happen sometimes, when you specify a setting not present in the defaults that you receive a message like this:

$ conan install . -s compiler.version=4.19 ...

ERROR: Invalid setting '4.19' is not a valid 'settings.compiler.version' value.
Possible values are ['4.4', '4.5', '4.6', '4.7', '4.8', '4.9', '5.1', '5.2', '5.3', '5.4
→˓', '6.1', '6.2']
Read "http://docs.conan.io/en/latest/faq/troubleshooting.html#error-invalid-setting"

This doesn’t mean that such architecture is not supported by conan, it is just that it is not present in the actual defaults
settings. You can find in your user home folder ~/.conan/settings.yml a settings file that you can modify, edit,
add any setting or any value, with any nesting if necessary. See Customizing settings.

As long as your team or users have the same settings (you can share with them the file), everything will work. The
settings.yml file is just a mechanism so users agree on a common spelling for typical settings. Also, if you think that
some settings would be useful for many other conan users, please submit it as an issue or a pull request, so it is included
in future releases.

It is possible that some build helper, like CMake will not understand the new added settings, don’t use them or even fail.
Such helpers as CMake are simple utilities to translate from conan settings to the respective build system syntax and
command line arguments, so they can be extended or replaced with your own one that would handle your own private
settings.

19.3.4 ERROR: Setting value not defined

When you install or create a package, it is possible to see an error like this:

ERROR: hello/0.1@user/testing: 'settings.arch' value not defined

This means that the recipe defined settings = "os", "arch", ... but a value for the arch setting was not pro-
vided either in a profile or in the command line. Make sure to specify a value for it in your profile, or in the command
line:

$ conan install . -s arch=x86 ...

If you are building a pure C library with gcc/clang, you might encounter an error like this:

ERROR: hello/0.1@user/testing: 'settings.compiler.libcxx' value not defined

Indeed, for building a C library, it is not necessary to define a C++ standard library. And if you provide a value, you
might end with multiple packages for exactly the same binary. What has to be done is to remove such subsetting in
your recipe:

def configure(self):
del self.settings.compiler.libcxx

620 Chapter 19. FAQ

Conan Documentation, Release 1.31.4

19.3.5 ERROR: Failed to create process

When conan is installed via pip/PyPI, and python is installed in a path with spaces (like many times in Windows
“C:/Program Files. . . ”), conan can fail to launch. This is a known python issue, and can’t be fixed from conan. The
current workarounds would be:

• Install python in a path without spaces

• Use virtualenvs. Short guide:

$ pip install virtualenvwrapper-win # virtualenvwrapper if not Windows
$ mkvirtualenv conan
(conan) $ pip install conan
(conan) $ conan --help

Then, when you will be using conan, for example in a new shell, you have to activate the virtualenv:

$ workon conan
(conan) $ conan --help

Virtualenvs are very convenient, not only for this workaround, but to keep your system clean and to avoid unwanted
interaction between different tools and python projects.

19.3.6 ERROR: Failed to remove folder (Windows)

It is possible that operating conan, some random exceptions (some with complete tracebacks) are produced, related to
the impossibility to remove one folder. Two things can happen:

• The user has some file or folder open (in a file editor, in the terminal), so it cannot be removed, and the process
fails. Make sure to close files, specially if you are opening or inspecting the local conan cache.

• In Windows, the Search Indexer might be opening and locking the files, producing random, difficult to reproduce
and annoying errors. Please disable the Windows Search Indexer for the conan local storage folder

19.3.7 ERROR: Error while initializing Options

When installing a Conan package and the follow error occurs:

ERROR: conanfile.py: Error while initializing options. Please define your default_
→˓options as list or multiline string

Probably your Conan version is outdated. The error is related to default_options be used as dictionary and only can be
handled by Conan >= 1.8. To fix this error, update Conan to 1.8 or higher.

19.3.8 ERROR: Error while starting Conan Server with multiple workers

When running gunicorn to start conan_server in an empty environment:

$ gunicorn -b 0.0.0.0:9300 -w 4 -t 300 conans.server.server_launcher:app

**
* *
* ERROR: STORAGE MIGRATION NEEDED! *

(continues on next page)

19.3. Troubleshooting 621

Conan Documentation, Release 1.31.4

(continued from previous page)

* *
**
A migration of your storage is needed, please backup first the storage directory and␣

→˓run:

$ conan_server --migrate

Conan Server will try to create ~/.conan_server/data, ~/.conan_server/server.conf and ~/.conan_server/version.txt at
first time. However, as multiple workers are running at same time, it could result in a conflict. To fix this error, you
should run:

$ conan_server --migrate

This command must be executed before to start the workers. It will not migrate anything, but it will populate the
conan_server folder. The original discussion about this error is here.

19.3.9 ERROR: Requested a package but found case incompatible

When installing a package which is already installed, but using a different case, will result on the follow error:

$ conan install poco/1.10.1@

[...]
ERROR: Failed requirement 'openssl/1.0.2t' from 'poco/1.10.1@'
ERROR: Requested 'openssl/1.0.2t' but found case incompatible 'OpenSSL'
Case insensitive filesystem can not manage this

The package OpenSSL/x.y.z@conan/stable is already installed. To solve this problem the different package with
the same name must be removed:

$ conan remove "OpenSSL/*"

622 Chapter 19. FAQ

https://github.com/conan-io/conan/issues/4723

CHAPTER

TWENTY

GLOSSARY

binary package
Output binary usually obtained with a conan create command applying settings and options as input. Usually,
there are N binary packages inside one Conan package, one for each set of settings and options. Every binary
package is identified by a package_id.

build helper
A build helper is a Python script that translates Conan settings to the specific settings of a build tool. For example,
in the case of CMake, the build helper sets the CMake flag for the generator from Conan settings like the compiler,
operating system, and architecture. Conan provides integration for several build tools such as CMake, Autotools,
MSBuild or Meson. You can also integrate your preferred build system in Conan if it is not available by default.

build requirement
Requirements that are only needed when you need to build a package (that declares the build requirement) from
sources, but if the binary package already exists, the build-require is not retrieved.

build system
Tools used to automate the process of building binaries from sources. Some examples are Make, Autotools,
SCons, CMake, Premake, Ninja or Meson. Conan has integrations with some of these build systems using
generators and build helpers.

conanfile
Can refer to either conanfile.txt or conanfile.py depending on what’s the context it is used in.

conanfile.py
The file that defines a Conan recipe that is typically used to create packages, but can be used also to consume
packages only (see conanfile.txt). Inside of this recipe, it is defined (among other things) how to download the
package’s source code, how to build the binaries from those sources, how to package the binaries and information
for future consumers on how to consume the package.

conanfile.txt
It is a simplified version of the conanfile.py used only for consuming packages. It defines a list of packages to
be consumed by a project and can also define the generators for the build system we are using, and if we want to
import files from the dependencies, as shared libraries, executables or assets.

cross compiler
A cross compiler is a compiler capable of creating an executable intended to run in a platform different from the
one in which the compiler is running.

dependency graph
A directed graph representing dependencies of several Conan packages towards each other. The relations between
the packages are declared with the requirements in the recipes. A dependency graph in Conan depends on the
input profile applied because the requirements can be conditioned to a specific configuration.

editable package
A package that resides in the user workspace, but is consumed as if it was in the cache. This mode is useful when

623

https://blog.conan.io/2019/07/24/C++-build-systems-new-integrations-in-Conan-package-manager.html

Conan Documentation, Release 1.31.4

you are developing the packages, and the projects that consume them at the same time.

generator
A generator provides the information of dependencies calculated by Conan in a suitable format that is usually
injected in a build system. They normally provide a file that can be included or passed as input to the specific
build system to help it to find the packages declared in the recipe. There are other generators that are not intended
to be used with the build system. e.g. “deploy”, “YouCompleteMe”.

hook
Conan Hooks are Python scripts containing functions that will be executed before and after a particular task
performed by the Conan client. Those tasks could be Conan commands, recipe interactions such as exporting
or packaging, or interactions with the remotes. For example, you could have a hook that checks that the recipe
includes attributes like license, url and description.

library
A library is a collection of code and resources to be reused by other programs.

local cache
A folder in which Conan stores the package cache and some configuration files such as the conan.conf or set-
tings.yml. By default, this file will be located in the user home folder ~/.conan/ but it’s configurable with the
environment variable CONAN_USER_HOME. In some scenarios like CI environments or when using per-project
management and storage changing the default conan cache location could be useful.

lockfile
Files that store the information with the exact versions, revisions, options, and configuration of a dependency
graph. They are intended to make the building process reproducible even if the dependency definitions in conan-
file recipes are not fully deterministic.

options
Options are declared in the recipes, it is similar to the setting concept but it is something that can be defaulted
by the recipe creator, like if a library is static or shared. Options are specific to each package (there is not a yml
file like the settings.yml file), and each package creator can define their options “header_only” for example. The
most common example is the “shared” option, with possibles values True/False and typically defaulted to False.

package
A Conan package is a collection of files that include the recipe and the N binary packages generated for different
configurations and settings. It can contain binary files such as libraries, headers or tools to be reused by the
consumer of the package.

package ID
The package id is a hash of the settings options and requirements used to identify the binary packages. Applying
different profiles to the conan create command, it will generate different package IDs. e.g: Windows, x86,
shared. . .

package reference
A package reference is the combination of the recipe reference and the package ID. It adopts the form of name/
version@user/channel:package_id_hash.

package revision
A unique ID using the checksum of the package (all files stored in a binary package). See the revisions mechanism
page.

profile
A profile is the set of different settings, options, environment variables and build requirements used when working
with packages. The settings define the operating system, architecture, compiler, build type, and C++ standard.
Options define, among other things, if dependencies are linked in shared or static mode or other compile options.

recipe
Python script defined in a conanfile.py that specifies how the package is built from sources, what the final binary
artifacts are, the package dependencies, etc.

624 Chapter 20. Glossary

Conan Documentation, Release 1.31.4

recipe reference
A recipe reference is the combination of the package name, version, and two optional fields named user and chan-
nel that could be useful to identify a forked recipe from the community with changes specific to your company.
It adopts the form of name/version@user/channel.

recipe revision
A unique ID using the latest VCS hash or a checksum of the conanfile.py with the exported files if any. See the
revisions mechanism page.

remote
The binary repository that hosts Conan packages inside a server.

requirement
Packages on which another package depends on. They are represented by a conan reference: lib/1.0@

revision
It is the mechanism to implicitly version the changes done in a recipe or package without bumping the actual
reference or package version.

semantic versioning
Versioning system with versions in the form of MAJOR.MINOR.PATCH where PATCH version changes when
you make backward-compatible bug fixes, MINOR version changes when you add functionality in a backward-
compatible manner, and MAJOR version changes when you make incompatible API changes. Conan uses semantic
versioning by default but this behavior can be easily configured and changed in the package_id() method of
your conanfile, and any versioning scheme you desire is supported.

settings
A set of keys and values, like os, compiler and build_type that are declared at the ~/.conan/settings.yml file.

shared library
A library that is loaded at runtime into the target application.

static library
A library that is copied at compile time to the target application.

system packages
System packages are packages that are typically installed system-wide via system package management tools
such as apt, yum, pkg, pkgutil, brew or pacman. It is possible to install system-wide packages methods from
Conan adding a system_requirements() method to the conanfile.

toolchain
A toolchain is the set of tools usually intended for compiling, debugging and profiling applications.

transitive dependency
A dependency that is induced by the dependency that the program references directly. Imagine that your project
uses the Poco library that needs the OpenSSL library, and OpenSSL is calling to the zlib library. In this case,
OpenSSL and zlib would be transitive dependencies.

workspace
Conan workspaces allow us to have more than one package in user folders and have them directly use other
packages from user folders without needing to put them in the local cache. Furthermore, they enable incremental
builds on large projects containing multiple packages.

625

Conan Documentation, Release 1.31.4

626 Chapter 20. Glossary

CHAPTER

TWENTYONE

CHANGELOG

Check https://github.com/conan-io/conan for issues and more details about development, contributors, etc.

Important: Conan 1.31 shouldn’t break any existing 1.0 recipe or command line invocation. If it does, please submit
a report on GitHub. Read more about the Conan stability commitment.

21.1 1.31.4 (25-Nov-2020)

• Feature: Add new CONAN_CMAKE_SYSROOT environment variable to enable the definition of sysroot from
environment, without abusing CONAN_CMAKE_FIND_ROOT_PATH. #8097 . Docs here

• Bugfix: remove definition of sysroot from CONAN_CMAKE_FIND_ROOT_PATH. #8097 . Docs here

• Bugfix: Bugfix: Solve os.rename crash when using short_paths with a short path storage located in another
Windows drive unit. Ported from: #8103

21.2 1.31.3 (17-Nov-2020)

• Bugfix: Fix addition of CMAKE_SYSTEM_NAME for SunOS and AIX 64->32 bits builds #8059

21.3 1.31.2 (11-Nov-2020)

• Bugfix: Recent liburl3 1.26 library updates is breaking the constraints in Conan requirements.txt as
requests 2.24 has a limitation for liburl3. This PR constrains liburl3 version to be less than 1.26, so
it does not break with requests 2.24. #8042

627

https://github.com/conan-io/conan
https://github.com/conan-io/conan/pull/8097
https://github.com/conan-io/docs/pull/1926
https://github.com/conan-io/conan/pull/8097
https://github.com/conan-io/docs/pull/1926
https://github.com/conan-io/conan/pull/8103
https://github.com/conan-io/conan/pull/8059
https://github.com/conan-io/conan/pull/8042

Conan Documentation, Release 1.31.4

21.4 1.31.1 (10-Nov-2020)

• Fix: Bump _cryptography_ dependency in MacOS to equal or later than 3.2. #7962

• Bugfix: Fix a problem with the init() function not being called when the recipe loader uses some cached data,
which can happen when using lockfiles and with python_requires. #8018

• Bugfix: Fixed self.copy() incorrectly handling ignore_case. #8009

• Bugfix: Fixed wrong ignore_case default in [imports] section of conanfile.txt. #8009

• Bugfix: Do not try to encrypt a None value when using CONAN_LOGIN_ENCRYPTION_KEY environment
variable. #8004

21.5 1.31.0 (30-Oct-2020)

• Feature: Add argument conanfile to pre_download_package and post_download_package hook functions. #7968
. Docs here

• Feature: Add CONAN_LOGIN_ENCRYPTION_KEY environment variable to obfuscate stored auth token.
#7958 . Docs here

• Feature: Use profile to filter results in the conan search HTML output. #7956

• Feature: Changed recommended way to launch test suite, with pytest over nosetests. #7952

• Feature: Provide a MSBuildCmd helper class that encapsulates calling MSBuild. #7941 . Docs here

• Feature: Download and keep the conan_export.tgz and conan_source.tgz in the cache, so they are not
affected by different Operating Systems compression and de-compression and uploading is way more efficient.
#7938

• Feature: Add provides and deprecated fields to conan info output #7916

• Feature: Including package revision information in output from conan info (when revisions are enabled).
#7890

• Feature: Download and keep the conan_package.tgz in the cache, so they are not affected by different Operating
Systems compression and de-compression and uploading is way more efficient. #7886

• Feature: Add POC on a toolchain for iOS (using CMake XCode generator). #7855 . Docs here

• Feature: Add POC on a toolchain for Android (using CMake provided modules). #7843 . Docs here

• Feature: Allow conan config install of a single file #7840 . Docs here

• Feature: Use Python loggers for Conan output in cli 2.0. #7502

• Fix: Improve permission error message when migrating cache folder. #7966

• Fix: Make per-package settings definition complete the existing settings values, not requiring a complete redefi-
nition. #7953

• Fix: Avoid unnecessary extra loading of conan.conf file in the version migrations check. #7949

• Fix: Simplified MakeToolchain to remove things that were not checked by tests or unused. #7942

• Fix: displayed message when settings of the recipe are constrained. #7930 . Docs here

• Fix: Set CMAKE_SYSTEM_NAME set to iOS, tvOS or watchOS or Darwin depending on the CMake version.
#7924

628 Chapter 21. Changelog

https://github.com/conan-io/conan/pull/7962
https://github.com/conan-io/conan/pull/8018
https://github.com/conan-io/conan/pull/8009
https://github.com/conan-io/conan/pull/8009
https://github.com/conan-io/conan/pull/8004
https://github.com/conan-io/conan/pull/7968
https://github.com/conan-io/docs/pull/1905
https://github.com/conan-io/conan/pull/7958
https://github.com/conan-io/docs/pull/1903
https://github.com/conan-io/conan/pull/7956
https://github.com/conan-io/conan/pull/7952
https://github.com/conan-io/conan/pull/7941
https://github.com/conan-io/docs/pull/1907
https://github.com/conan-io/conan/pull/7938
https://github.com/conan-io/conan/pull/7916
https://github.com/conan-io/conan/pull/7890
https://github.com/conan-io/conan/pull/7886
https://github.com/conan-io/conan/pull/7855
https://github.com/conan-io/docs/pull/1906
https://github.com/conan-io/conan/pull/7843
https://github.com/conan-io/docs/pull/1902
https://github.com/conan-io/conan/pull/7840
https://github.com/conan-io/docs/pull/1908
https://github.com/conan-io/conan/pull/7502
https://github.com/conan-io/conan/pull/7966
https://github.com/conan-io/conan/pull/7953
https://github.com/conan-io/conan/pull/7949
https://github.com/conan-io/conan/pull/7942
https://github.com/conan-io/conan/pull/7930
https://github.com/conan-io/docs/pull/1890
https://github.com/conan-io/conan/pull/7924

Conan Documentation, Release 1.31.4

• Fix: Remove duplicate entries while modifying PATH-like environment variables internally. Especially impor-
tant for Windows where system PATH size is limited by 8192 charachers (when using cmd.exe). #7891

• Fix: Make default behaviour explicit in search help output. #7877 . Docs here

• Fix: Automatically add OSX deployment flags in AutootoolsBuildEnvironment with the value of
os_version, unless the values are already defined in environment variables CFLAGS or CXXFLAGS. #7862

• Fix: Remove toolset variability from the msbuild generator and MSBuildToolchain. #7825

• Fix: Component requirement checking now properly handles private and override requirements. #7585

• Bugfix: Set default storage_folder to .conan/data in case if storage_path entry fails to be defined by conan.conf.
#7910

• Bugfix: Fix regression in self.run(output=xxxx) that have a write() method but do not wrap a stream. #7905

• Bugfix: Fix local flow (conan install + build) support for cpp_info.names and cpp_info.filenames. #7867

• Bugfix: Fix inspect --remote forcing to retrieve the remote for evaluation, overwriting what is in the local
cache. #7749

• Bugfix: Copy symbolic links to directory with deploy generator. #7655 . Docs here

21.6 1.30.2 (15-Oct-2020)

• Feature: Supports Clang 11. #7871 . Docs here

• Bugfix: Fix regression https://github.com/conan-io/conan/issues/7856, imports failing to match subfolders in
Windows due to backslash differences. #7861

• Bugfix: Allow defining new options values when creating a new lockfile from an existing base lockfile. #7859

21.7 1.30.1 (09-Oct-2020)

• Fix: Use quotes around the install path, it can contain spaces. #7842

• Fix: prefix intel functions with intel_ because they are now exposed via tools. Fixes https://github.com/
conan-io/conan/issues/7820. #7821 . Docs here

• Bugfix: Fix regression introduced in 1.30 (https://github.com/conan-io/conan/pull/7673), with incorrect
matches of user/channel for version ranges. #7847

• Bugfix: Fix CMakeToolchain with multiple variables definitions. #7833

• Bugfix: Check comparing the host and the build architecture to decide if cross building and set
CMAKE_SYSTEM_NAME in the CMake build helper. #7827

21.6. 1.30.2 (15-Oct-2020) 629

https://github.com/conan-io/conan/pull/7891
https://github.com/conan-io/conan/pull/7877
https://github.com/conan-io/docs/pull/1884
https://github.com/conan-io/conan/pull/7862
https://github.com/conan-io/conan/pull/7825
https://github.com/conan-io/conan/pull/7585
https://github.com/conan-io/conan/pull/7910
https://github.com/conan-io/conan/pull/7905
https://github.com/conan-io/conan/pull/7867
https://github.com/conan-io/conan/pull/7749
https://github.com/conan-io/conan/pull/7655
https://github.com/conan-io/docs/pull/1830
https://github.com/conan-io/conan/pull/7871
https://github.com/conan-io/docs/pull/1883
https://github.com/conan-io/conan/issues/7856
https://github.com/conan-io/conan/pull/7861
https://github.com/conan-io/conan/pull/7859
https://github.com/conan-io/conan/pull/7842
https://github.com/conan-io/conan/issues/7820
https://github.com/conan-io/conan/issues/7820
https://github.com/conan-io/conan/pull/7821
https://github.com/conan-io/docs/pull/1875
https://github.com/conan-io/conan/pull/7673
https://github.com/conan-io/conan/pull/7847
https://github.com/conan-io/conan/pull/7833
https://github.com/conan-io/conan/pull/7827

Conan Documentation, Release 1.31.4

21.8 1.30.0 (05-Oct-2020)

• Feature: Implement real detection of compiler.libcxx value for gcc compiler. Only enabled in CO-
NAN_V2_MODE, otherwise it would be breaking. #7776

• Feature: Added [Depends](https://doc.qt.io/qbs/qml-qbslanguageitems-depends.html) items for every public de-
pendency of conanfiles requires/dependencies. #7729 . Docs here

• Feature: Instructions on how to run conan tests against a real Artifactory server. #7697

• Feature: List cpp_info.names and cpp_info.filenames in JSON and Markdown generator. #7690 . Docs here

• Feature: Add information about components to markdown generator. #7677

• Feature: New experimental MSBuildToolchain to generate conan_toolchain.props files (it is multi-config,
will generate one specific toolchain file per configuration) for more transparent integration and better developer
experience with Visual Studio. #7674 . Docs here

• Feature: Allow packages that do not declare components to depend on other packages components and manage
transitivity correctly, with the new self.cpp_info.requires attribute. #7644 . Docs here

• Feature: Add MacOS 11 (“Big Sur”) support. #7601 . Docs here

• Feature: Expose intel_installation_path, compilervars, compilervars_dict, and compilervars_command under
tools module in order to support usage of the intel compiler. #7572 . Docs here

• Feature: Allow user-defined generators to be installed and used from the Conan cache. #7527 . Docs here

• Feature: Add conan remote proposal for cli 2.0. #7401

• Fix: Allow usage of MD5 checksums in FIPS systems that would raise error otherwise. #7807

• Fix: Fix capture output when running tests that call the ConanRunner in the conanfile. #7799

• Fix: Consider absolute paths when parsing conanbuildinfo.txt #7797

• Fix: Update parallel uploads help message. #7785 . Docs here

• Fix: Removed check in lockfiles computed from other lockfile that it should be part of it. Users can check the
resulting lockfile themselves if they want to. #7763 . Docs here

• Fix: Extend help message indicating how to run conan export without user/channel. #7757 . Docs here

• Fix: Conan copy shows better description when using full reference for destination. #7741

• Fix: Do not capture output for normal conan run (no logging or testing) when launching processes via Conan-
Runner so that color from build tools output is not lost. #7740

• Fix: self.copy() follows igore_case correctly on Windows. #7704 . Docs here

• Fix: Use patterns in server query when resolving version ranges. #7673

• Fix: Raising conflict errors when options doesn’t match in the evaluation of graphs with lockfiles. #7513

• Bugfix: Fixed bug where uploading to multiple remotes in a single conan upload command would fail. #7781

• BugFix: Add armv5hf and armv5el to the Android ABI architectures. #7730

• Bugfix: Correctly inherit and use system_requirements when using python_requires. #7721

• Bugfix: Translate settings.os value Macos to Darwin for CMAKE_SYSTEM_NAME to allow compiling CMake-
based packages for MacOS. #7695

630 Chapter 21. Changelog

https://github.com/conan-io/conan/pull/7776
https://doc.qt.io/qbs/qml-qbslanguageitems-depends.html
https://github.com/conan-io/conan/pull/7729
https://github.com/conan-io/docs/pull/1847
https://github.com/conan-io/conan/pull/7697
https://github.com/conan-io/conan/pull/7690
https://github.com/conan-io/docs/pull/1844
https://github.com/conan-io/conan/pull/7677
https://github.com/conan-io/conan/pull/7674
https://github.com/conan-io/docs/pull/1865
https://github.com/conan-io/conan/pull/7644
https://github.com/conan-io/docs/pull/1864
https://github.com/conan-io/conan/pull/7601
https://github.com/conan-io/docs/pull/1819
https://github.com/conan-io/conan/pull/7572
https://github.com/conan-io/docs/pull/1815
https://github.com/conan-io/conan/pull/7527
https://github.com/conan-io/docs/pull/1811
https://github.com/conan-io/conan/pull/7401
https://github.com/conan-io/conan/pull/7807
https://github.com/conan-io/conan/pull/7799
https://github.com/conan-io/conan/pull/7797
https://github.com/conan-io/conan/pull/7785
https://github.com/conan-io/docs/pull/1863
https://github.com/conan-io/conan/pull/7763
https://github.com/conan-io/docs/pull/1868
https://github.com/conan-io/conan/pull/7757
https://github.com/conan-io/docs/pull/1859
https://github.com/conan-io/conan/pull/7741
https://github.com/conan-io/conan/pull/7740
https://github.com/conan-io/conan/pull/7704
https://github.com/conan-io/docs/pull/1862
https://github.com/conan-io/conan/pull/7673
https://github.com/conan-io/conan/pull/7513
https://github.com/conan-io/conan/pull/7781
https://github.com/conan-io/conan/pull/7730
https://github.com/conan-io/conan/pull/7721
https://github.com/conan-io/conan/pull/7695

Conan Documentation, Release 1.31.4

21.9 1.29.2 (21-Sept-2020)

• Feature: Add support for apple-clang 12.0. #7722 . Docs here

21.10 1.29.1 (17-Sept-2020)

• Bugfix: Fix pkg_config generator adding to .pc files empty include and lib dirs. #7703

• Bugfix: Fix non existing (failed import) tools.remove_files_by_mask. #7700

• BugFix: Removed lockfile checking build_requires when they come from 2 different origins: profiles and recipes.
#7698

• Bugfix: CMake build helper: Use actual CMake generator version to append platform generator, instead of the
Conan setting compiler.version. #7684

21.11 1.29.0 (02-Sept-2020)

• Feature: Add QNX Neutrino version 7.1 to settings. #7627

• Feature: Added support for cpp_info.system_libs, cpp_info.framework_paths and cpp_info.frameworks for qbs
generator. #7619

• Feature: Provide useful information trying to compute the build order using a –base lockfile. #7551

• Feature: Add user_info_build field to JSON generator. #7550

• Feature: PkgConfig tools now exposes the packages’s version as property. #7534 . Docs here

• Feature: Support from iOS 13.2 to 13.6. #7507 . Docs here

• Feature: Add an experimental toolchain for gnu make. #7430 . Docs here

• Feature: New tools.rename function to rename a file or folder to avoid ‘Access is denied’ on Windows. #6774
. Docs here

• Fix: Fix conan info –build-order deprecation message. #7632

• Fix: Set CMake targets compile options based on language #7600

• Fix: Support installing configs from non-regular files. #7583 . Docs here

• Fix: Update docs in conan info -bo command. #7570

• Fix: Relax python six dependency to allow 1.15. #7538

• Fix: Add pre-release versions when resolving required_conan_version. #7535

• Fix: Adds support of URL-like git ssh syntax. #7509

• Fix: Improve message of missing dependencies for components. #7483

• Fix: Changed _requirements.txt_ to include distro package version 1.5.0. #7461

• Fix: Avoid requiring the existence of all conanbuildinfo_xxx.cmake files in cmake_multi generator. #7376

• Bugfix: Fix cpp_info filename in FindPackageHandleStandardArgs for cmake_find_package generator. #7610

• Bugfix: Avoid marking as “modified” packages in a lockfile computed from a base lockfile. #7592

21.9. 1.29.2 (21-Sept-2020) 631

https://github.com/conan-io/conan/pull/7722
https://github.com/conan-io/docs/pull/1843
https://github.com/conan-io/conan/pull/7703
https://github.com/conan-io/conan/pull/7700
https://github.com/conan-io/conan/pull/7698
https://github.com/conan-io/conan/pull/7684
https://github.com/conan-io/conan/pull/7627
https://github.com/conan-io/conan/pull/7619
https://github.com/conan-io/conan/pull/7551
https://github.com/conan-io/conan/pull/7550
https://github.com/conan-io/conan/pull/7534
https://github.com/conan-io/docs/pull/1820
https://github.com/conan-io/conan/pull/7507
https://github.com/conan-io/docs/pull/1800
https://github.com/conan-io/conan/pull/7430
https://github.com/conan-io/docs/pull/1808
https://github.com/conan-io/conan/pull/6774
https://github.com/conan-io/docs/pull/1646
https://github.com/conan-io/conan/pull/7632
https://github.com/conan-io/conan/pull/7600
https://github.com/conan-io/conan/pull/7583
https://github.com/conan-io/docs/pull/1818
https://github.com/conan-io/conan/pull/7570
https://github.com/conan-io/conan/pull/7538
https://github.com/conan-io/conan/pull/7535
https://github.com/conan-io/conan/pull/7509
https://github.com/conan-io/conan/pull/7483
https://github.com/conan-io/conan/pull/7461
https://github.com/conan-io/conan/pull/7376
https://github.com/conan-io/conan/pull/7610
https://github.com/conan-io/conan/pull/7592

Conan Documentation, Release 1.31.4

• Bugfix: Update correctly “Package_ID_Unknown” nodes when using conan lock update and
package_revision_mode. #7592

• Bugfix: Respect winsdk_version for WindowsStore. #7584

• Bugfix: Fix frameworks usage with components for cmake_find_package_multi generator. #7580

• Bugfix: Support frameworks and framework_paths in _qmake_ generator. #7579

• Bugfix: Provide a more descriptive error when an unknown statement is added to a profile #7577

• Bugfix: Add support for cpp_info.system_libs to _QMake_ generator. #7563

• Bugfix: Make frogarian show up as a whole (not sliced) on linux terminal. #7553

• Bugfix: Fix import of collections.Iterable compatible with Python2. #7545

• Bugfix: Propagate the global version of the recipe for components. #7524

• Bugfix: Use CMAKE_FIND_ROOT_PATH_BOTH to locate frameworks. #7515

21.12 1.28.2 (31-Aug-2020)

• Fix: Fix import of six.moves.collections_abc non existing for some six versions. #7622

• Fix: Add system libs and frameworks to components targets in cmake_find_package and
cmake_find_package_multi generators. #7611

• Bugfix: Fix cpp_info filename in FindPackageHandleStandardArgs for cmake_find_package generator. #7625

• Bugfix: Fix regression in deps_cpp_info incorrectly adding directories when reading from conanbuildinfo.
txt file. #7599

21.13 1.28.1 (06-Aug-2020)

• Feature: Add user_info_build attribute to txt generator. #7488

• Fix: Attribute user_info_build is available for commands in the local development workflow. #7488

• Fix: Do not override value of public_deps in pkg_config generator. #7482

• Bugfix: correctly set CMAKE_OSX_SYSROOT and CMAKE_OSX_ARCHITECTURES. #7512

• Bugfix: When using build_requires defined in a profile that is passed as profile_host, it was not being
applied to build_requires that live in the host context (with force_host_context=True). #7500

• Bugfix: Fix broken cmake_find_package_multi when using components, as different configurations were
being resolved to the same name, overwriting each other. #7492

• Bugfix: Powershell files generated by virtualenv generators use proper path separators. #7472

632 Chapter 21. Changelog

https://github.com/conan-io/conan/pull/7592
https://github.com/conan-io/conan/pull/7584
https://github.com/conan-io/conan/pull/7580
https://github.com/conan-io/conan/pull/7579
https://github.com/conan-io/conan/pull/7577
https://github.com/conan-io/conan/pull/7563
https://github.com/conan-io/conan/pull/7553
https://github.com/conan-io/conan/pull/7545
https://github.com/conan-io/conan/pull/7524
https://github.com/conan-io/conan/pull/7515
https://github.com/conan-io/conan/pull/7622
https://github.com/conan-io/conan/pull/7611
https://github.com/conan-io/conan/pull/7625
https://github.com/conan-io/conan/pull/7599
https://github.com/conan-io/conan/pull/7488
https://github.com/conan-io/conan/pull/7488
https://github.com/conan-io/conan/pull/7482
https://github.com/conan-io/conan/pull/7512
https://github.com/conan-io/conan/pull/7500
https://github.com/conan-io/conan/pull/7492
https://github.com/conan-io/conan/pull/7472

Conan Documentation, Release 1.31.4

21.14 1.28.0 (31-Jul-2020)

• Feature: Show Conan version on HTML output. #7443 . Docs here

• Feature: Support for cpp_info.components in pkg_config generator. #7413 . Docs here

• Feature: Adds ps1 virtualenv to other OS for use with powershell 7. #7407 #7408 . Docs here

• Feature: Propose init() method to unconditionally initialize class attributes like license or description.
#7404 . Docs here

• Feature: add deprecated attribute #7399 . Docs here

• Feature: Allow conan.conf user configuration of paths to client certificate and key, outside of the Conan cache.
#7398 . Docs here

• Feature: Document return value of self.copy() in the package() method. #7389 . Docs here

• Feature: Complete cli2.0 framework to handle sub-commands and add conan user command for cli 2.0 #7372

• Feature: Implement required_conan_version in conanfile.py, will raise if the current Conan version does
not match the defined version range. #7360 . Docs here

• Feature: Add provides attribute to ConanFile: recipes can declare what they provide and Conan will fail if several
recipes provide the same functionality (ODR violation). #7337 . Docs here

• Feature: When using CONAN_V2_MODE if build_type or compiler are not defined Conan will raise an error.
#7327 . Docs here

• Feature: Adds “filenames” to cppinfo attribute, and changes cmake_find_package and
cmake_find_package_multi generators so that they support it. #7320 . Docs here

• Feature: Define recipe_folder attribute pointing to the folder containing conanfile.py #7314 . Docs here

• Feature: Checking if a Linux distro uses apt is now based on the existence of apt in the system, instead of
checking if the distro currently being used is in a hard-coded list of distros known to use apt. #7309

• Feature: Add commands management for cli 2.0. #7278

• Feature: Complete revamp of the lockfiles feature. Including version-only lockfiles, partial lockfiles, new com-
mand line syntax, improved management of build-order and many pending fixes. #7243 . Docs here

• Feature: More detailed description for –update argument. #7167 . Docs here

• Feature: improve compiler detection for CONAN_V2_MODE. #5740 . Docs here

• Feature: Add settings for clang-cl (clang on Windows). #5705 . Docs here

• Fix: Relax pluginbase requirement to pluginbase>=0.5, including latest 1.0.0 . #7441

• Fix: Make explicit the file writing of toolchain() helpers, so the method can be used to save custom files.
#7435 . Docs here

• Fix: Fixing –help for commands in proposal for command line v2.0. #7394

• Fix: Show outdated packages when running search –table. #7364 . Docs here

• Fix: Relax msbuild generator to not raise in Linux. #7361

• Fix: Conan config install does not trigger scheduled config command. #7311

• Fix: Implement missing __contains__ method, so checking if "myoption" in self.info.options is
possible in package_id(). #7303

• Fix: Build first ocurrence of a node in a lockfile when it is repeated (build requires) #7144

• BugFix: Only add User-Agent to headers dict if it was not provided by the user. #7390

21.14. 1.28.0 (31-Jul-2020) 633

https://github.com/conan-io/conan/pull/7443
https://github.com/conan-io/docs/pull/1782
https://github.com/conan-io/conan/pull/7413
https://github.com/conan-io/docs/pull/1781
https://github.com/conan-io/conan/pull/7408
https://github.com/conan-io/docs/pull/1776
https://github.com/conan-io/conan/pull/7404
https://github.com/conan-io/docs/pull/1791
https://github.com/conan-io/conan/pull/7399
https://github.com/conan-io/docs/pull/1775
https://github.com/conan-io/conan/pull/7398
https://github.com/conan-io/docs/pull/1791
https://github.com/conan-io/conan/pull/7389
https://github.com/conan-io/docs/pull/1773
https://github.com/conan-io/conan/pull/7372
https://github.com/conan-io/conan/pull/7360
https://github.com/conan-io/docs/pull/1788
https://github.com/conan-io/conan/pull/7337
https://github.com/conan-io/docs/pull/1786
https://github.com/conan-io/conan/pull/7327
https://github.com/conan-io/docs/pull/1783
https://github.com/conan-io/conan/pull/7320
https://github.com/conan-io/docs/pull/1768
https://github.com/conan-io/conan/pull/7314
https://github.com/conan-io/docs/pull/1785
https://github.com/conan-io/conan/pull/7309
https://github.com/conan-io/conan/pull/7278
https://github.com/conan-io/conan/pull/7243
https://github.com/conan-io/docs/pull/1790
https://github.com/conan-io/conan/pull/7167
https://github.com/conan-io/docs/pull/1778
https://github.com/conan-io/conan/pull/5740
https://github.com/conan-io/docs/pull/1789
https://github.com/conan-io/conan/pull/5705
https://github.com/conan-io/docs/pull/1784
https://github.com/conan-io/conan/pull/7441
https://github.com/conan-io/conan/pull/7435
https://github.com/conan-io/docs/pull/1793
https://github.com/conan-io/conan/pull/7394
https://github.com/conan-io/conan/pull/7364
https://github.com/conan-io/docs/pull/1771
https://github.com/conan-io/conan/pull/7361
https://github.com/conan-io/conan/pull/7311
https://github.com/conan-io/conan/pull/7303
https://github.com/conan-io/conan/pull/7144
https://github.com/conan-io/conan/pull/7390

Conan Documentation, Release 1.31.4

• Bugfix: cppstd was missing in settings.yml for the qcc compiler and updates to 8.3. #7384

• BugFix: Fix missing download of conan_sources.tgz created using export_sources() method. #7380

• Bugfix: Intel Compiler install location detection on Windows. #7370

• Bugfix: Avoid crash while computing package_idwhen using package_revision_mode, and also incorrectly
using installed binaries and reporting them installed after the re-computation of package_id resolved to a dif-
ferent binary. #7353

• Bugfix: cmake_multi generator used with Xcode CMake generator. #7341

• Bugfix: Do not fail for conan remove -r remote -p when there are no packages in the remote. #7338

• Bugfix: Add system_libs to scons generator. #7302

21.15 1.27.1 (10-Jul-2020)

• Bugfix: Recover quotes around linker flags in CMake generators, fix failure with Macos frameworks #7322

21.16 1.27.0 (01-Jul-2020)

• Feature: (Only if using two profiles) Information from the self.user_info field is provided to consumers: informa-
tion from the _host_ context is accessible via deps_user_info attribute, and information from the _build_ context
via user_info_build attribute. #7266 . Docs here

• Feature: New conan config install --list and conan config install --remove=index arguments
to display and remove conan config install origins. #7263 . Docs here

• Feature: Support components for cmake_find_package_multi generator. #7259 . Docs here

• Feature: Add Pop!_OS to the list of APT based distributions. #7237

• Feature: Use Bootstrap in search table template style. #7224

• Feature: Added support for template dir in conan new. #7215 . Docs here

• Feature: Configuration for checking the required Conan client version. #7183 . Docs here

• Feature: Adds tool to fix symlinks in the package_folder. #7178 . Docs here

• Feature: Templates for conan search –table and conan info –graph can be overridden by the user. #7176 . Docs
here

• Feature: Add support for the CLICOLOR/CLICOLOR_FORCE/NO_COLOR output colorization control vari-
ables. #7154 . Docs here

• Fix: Remove message from the qmake generator. #7228

• Fix: Allow --build=Pkg/0.1@ to match the Pkg/0.1 package, so the conan install Pkg/0.1@
--build=Pkg/0.1@ also works. #7219

• Fix: Improve error message when svn or git are not in the installed or in the path. #7194

• Fix: Graph created for the test_package/conanfile.py recipe takes the profile:build if given. #7182

• Fix: Define user variables in the conan_toolchain.cmake file, not in the project-include file. #7160

• Fix: Set toolset for MSBuild in case of Intel C++. #6809

• Bugfix: Allow to extend classes with python_requires_extend from packages that contain “.” dots in the
package name. #7262

634 Chapter 21. Changelog

https://github.com/conan-io/conan/pull/7384
https://github.com/conan-io/conan/pull/7380
https://github.com/conan-io/conan/pull/7370
https://github.com/conan-io/conan/pull/7353
https://github.com/conan-io/conan/pull/7341
https://github.com/conan-io/conan/pull/7338
https://github.com/conan-io/conan/pull/7302
https://github.com/conan-io/conan/pull/7322
https://github.com/conan-io/conan/pull/7266
https://github.com/conan-io/docs/pull/1753
https://github.com/conan-io/conan/pull/7263
https://github.com/conan-io/docs/pull/1757
https://github.com/conan-io/conan/pull/7259
https://github.com/conan-io/docs/pull/1755
https://github.com/conan-io/conan/pull/7237
https://github.com/conan-io/conan/pull/7224
https://github.com/conan-io/conan/pull/7215
https://github.com/conan-io/docs/pull/1752
https://github.com/conan-io/conan/pull/7183
https://github.com/conan-io/docs/pull/1740
https://github.com/conan-io/conan/pull/7178
https://github.com/conan-io/docs/pull/1751
https://github.com/conan-io/conan/pull/7176
https://github.com/conan-io/docs/pull/1739
https://github.com/conan-io/conan/pull/7154
https://github.com/conan-io/docs/pull/1728
https://github.com/conan-io/conan/pull/7228
https://github.com/conan-io/conan/pull/7219
https://github.com/conan-io/conan/pull/7194
https://github.com/conan-io/conan/pull/7182
https://github.com/conan-io/conan/pull/7160
https://github.com/conan-io/conan/pull/6809
https://github.com/conan-io/conan/pull/7262

Conan Documentation, Release 1.31.4

• Bugfix: Correctly inherit scm definitions from python_requires base classes. #7238

• Bugfix: Change GNU triplet for iOS, watchOS, tvOS to allow simulator builds. #6748

• SCM mode with scm_to_conandata and revisions marked as stable. Docs here

21.17 1.26.1 (23-Jun-2020)

• Fix: Add missing migrations. #7213

• Fix: Packages listed as build_requires in recipes that belong to the _host_ context don’t add as build_requires
those listed in the _host_ profile. #7169

21.18 1.26.0 (10-Jun-2020)

• Feature: Expose msvs_toolset tool. #7134 . Docs here

• Feature: Add components to cmake_find_package generator. #7108 . Docs here

• Feature: Add stdcpp_library tool. #7082 . Docs here

• Feature: Add remove_files_by_mask helper #7080 . Docs here

• Feature: New toolchain() recipe method, as a new paradigm for integrating build systems, and simplifying
developer flows. #7076 . Docs here

• Feature: New experimental msvc generator that generates a .props file per dependency and is also multi-
configuration. #7035 . Docs here

• Feature: Add conan config init command. #6959 . Docs here

• Feature: Add export() and export_sources() methods, that provide the self.copy() helper to add files
to recipe or sources in the same way as the corresponding attributes. #6945 . Docs here

• Feature: Allow access to self.name and self.version in set_name() and set_version()methods. #6940
. Docs here

• Feature: Use a template approach for the html and dot output of the Conan graph. #6833

• Feature: Handle C++ standard flag for Intel C++ compiler. #6766

• Feature: Call compilervars.sh within CMake helper (Intel C++). #6735 . Docs here

• Feature: Pass command to Runner as a sequence instead of string. #5583 . Docs here

• Fix: JSON-serialize sets as a list when using conan inspect –json. #7151

• Fix: Update the lockfile passed as an argument to the install command instead of the default conan.lock. #7127

• Fix: Adding a package as editable stores full path to conanfile.py. #7079

• Fix: Fix broken test PkgGeneratorTest. #7065

• Fix: Fix wrong naming of variables in the pkg_config generator. #7059

• Fix: Do not modify scm attribute when the origin remote cannot be deduced. #7048

• Fix: vcvars_dict should accept a conanfile too. #7010 . Docs here

• Fix: conan config install can overwrite read-only files and won’t copy permissions. #7004

• Fix: Better error message for missing binaries, including multiple “–build=xxx” outputs. #7003

21.17. 1.26.1 (23-Jun-2020) 635

https://github.com/conan-io/conan/pull/7238
https://github.com/conan-io/conan/pull/6748
https://github.com/conan-io/docs/pull/1759
https://github.com/conan-io/conan/pull/7213
https://github.com/conan-io/conan/pull/7169
https://github.com/conan-io/conan/pull/7134
https://github.com/conan-io/docs/pull/1715
https://github.com/conan-io/conan/pull/7108
https://github.com/conan-io/docs/pull/1722
https://github.com/conan-io/conan/pull/7082
https://github.com/conan-io/docs/pull/1714
https://github.com/conan-io/conan/pull/7080
https://github.com/conan-io/docs/pull/1713
https://github.com/conan-io/conan/pull/7076
https://github.com/conan-io/docs/pull/1729
https://github.com/conan-io/conan/pull/7035
https://github.com/conan-io/docs/pull/1732
https://github.com/conan-io/conan/pull/6959
https://github.com/conan-io/docs/pull/1704
https://github.com/conan-io/conan/pull/6945
https://github.com/conan-io/docs/pull/1733
https://github.com/conan-io/conan/pull/6940
https://github.com/conan-io/docs/pull/1710
https://github.com/conan-io/conan/pull/6833
https://github.com/conan-io/conan/pull/6766
https://github.com/conan-io/conan/pull/6735
https://github.com/conan-io/docs/pull/1716
https://github.com/conan-io/conan/pull/5583
https://github.com/conan-io/docs/pull/1385
https://github.com/conan-io/conan/pull/7151
https://github.com/conan-io/conan/pull/7127
https://github.com/conan-io/conan/pull/7079
https://github.com/conan-io/conan/pull/7065
https://github.com/conan-io/conan/pull/7059
https://github.com/conan-io/conan/pull/7048
https://github.com/conan-io/conan/pull/7010
https://github.com/conan-io/docs/pull/1696
https://github.com/conan-io/conan/pull/7004
https://github.com/conan-io/conan/pull/7003

Conan Documentation, Release 1.31.4

• Fix: Add quotes to folders to accept paths with spaces when calling pyinstaller. #6955

• Fix: Previously conan always set cpp_std option in meson project, even if cppstd option was not set in conan
profile. Now it sets the option only if cppstd profile option has a concrete value. #6895

• Fix: Handle compiler flags for Intel C++ (AutoToolsBuildEnvironment, Meson). #6819

• Fix: Set the default CMake generator and toolset for Intel C++. #6804

• Bugfix: Fix iOS CMake architecture. #7164

• Bugfix: Getting attribute of self.deps_user_info["dep"] now raise AttributeError instead of a (wrong)
KeyError, enabling hasattr() and correct getattr() behaviors. #7131

• Bugfix: Fix crash while computing the package_id of a package when different package_id_mode are mixed
and include package_revision_mode. #7051

• Bugfix: Do not allow uploading packages with missing information in the scm attribute. #7048

• Bugfix: Fixes an issue where Apple Framework lookup wasn’t working on RelWithDebInfo CMake build types.
#7024

• Bugfix: Do not check patch compiler version in the cmake generators. #6976

21.19 1.25.2 (19-May-2020)

• Bugfix: Previously conan always set cpp_std option in meson project, even if cppstd option was not set in
conan profile. Now it sets the option only if cppstd profile option has a concrete value. #7047

• Bugfix: Fix deploy generator management of relative symlinks. #7044

• Bugfix: Fixes an issue where Apple Framework lookup wasn’t working on RelWithDebInfo. #7041

• Bugfix: Fix broken AutoToolsBuildEnvironment when a profile:build is defined. #7032

21.20 1.25.1 (13-May-2020)

• Feature: Add missing gcc versions: 6.5, 7.5, 8.4, 10.1. #6993 . Docs here

• Bugfix: Resumable download introduced a bug when there is a fronted (like Apache) to Artifactory or other
server that gzips the returned files, returning an incorrect Content-Length header that doesn’t match the real
content length. #6996

• Bugfix: Set shared_linker_flags to CMake MODULE targets too in cmake generators, not only to
SHARED_LIBRARIES. #6983

• Bugfix: Fix conan_get_policy return value. #6982

• Bugfix: Fix json output serialization for cpp_info.components. #6966

636 Chapter 21. Changelog

https://github.com/conan-io/conan/pull/6955
https://github.com/conan-io/conan/pull/6895
https://github.com/conan-io/conan/pull/6819
https://github.com/conan-io/conan/pull/6804
https://github.com/conan-io/conan/pull/7164
https://github.com/conan-io/conan/pull/7131
https://github.com/conan-io/conan/pull/7051
https://github.com/conan-io/conan/pull/7048
https://github.com/conan-io/conan/pull/7024
https://github.com/conan-io/conan/pull/6976
https://github.com/conan-io/conan/pull/7047
https://github.com/conan-io/conan/pull/7044
https://github.com/conan-io/conan/pull/7041
https://github.com/conan-io/conan/pull/7032
https://github.com/conan-io/conan/pull/6993
https://github.com/conan-io/docs/pull/1689
https://github.com/conan-io/conan/pull/6996
https://github.com/conan-io/conan/pull/6983
https://github.com/conan-io/conan/pull/6982
https://github.com/conan-io/conan/pull/6966

Conan Documentation, Release 1.31.4

21.21 1.25.0 (06-May-2020)

• Feature: Consume settings_build to get the value of the OS and arch from the build machine (only when
--profile:build is provided). #6916 . Docs here

• Feature: Implements cpp_info.components dependencies. #6871 . Docs here

• Feature: Change HTML output for conan search –table command. #6832 . Docs here

• Feature: Execute periodic config install command. #6824 . Docs here

• Feature: Add build_modules to markdown generator output. #6800

• Feature: Resume interrupted file downloads if server supports it. #6791

• Feature: Using CONAN_V2_MODE the version attribute in a ConanFile is always a string (already documented).
#6782 . Docs here

• Feature: Support GCC 9.3. #6772 . Docs here

• Feature: Populate settings_build and settings_target in conanfile (only if provided --profile:build). #6769
. Docs here

• Feature: handle C++ standard for Intel C++ compiler #6766

• Feature: add Intel 19.1 (2020). #6733

• Fix: tools.unix_path is noop in all platforms but Windows (already documented behavior). #6935

• Fix: Preserve symbolic links for deploy generator. #6922 . Docs here

• Fix: Adds missing version GCC 10 to default settings. #6911 . Docs here

• Fix: Populate requires returned by the servers from the search endpoint using requires (Artifactory) or
full_requires (conan_server) fields. #6861

• Fix: Avoid failures that happen when Conan runs in a non-existing folder. #6825

• Fix: Use pep508 environment markers for defining Conan pip requirements. #6798

• Fix: Improve error message when [options] are not specified correctly in conanfile.txt. #6794

• Fix: add missing compiler version check for Intel. #6734

• Bugfix: Prevent crash when mixing package_id modes for the same dependency. #6947

• BugFix: Propagate arch parameter to tools.vcvars_command() in MSBuild() build helper. #6928

• Bugfix: Fix the output of conan info package folder when using build_id() method. #6917

• Bugfix: Generate correct PACKAGE_VERSION in cmake_find_package_multi generator for multi-config
packages. #6914

• Bugfix: enable C++20 on Apple Clang. #6858

• Bugfix: Variable package_name in conan new -t <template> command contains a _CamelCase_ version of the
name of the package. #6821 . Docs here

• Bugfix: Changed the CMake generator template to properly handle exelinkflags and sharedlinkflags using gen-
erator expressions. #6780

21.21. 1.25.0 (06-May-2020) 637

https://github.com/conan-io/conan/pull/6916
https://github.com/conan-io/docs/pull/1678
https://github.com/conan-io/conan/pull/6871
https://github.com/conan-io/docs/pull/1682
https://github.com/conan-io/conan/pull/6832
https://github.com/conan-io/docs/pull/1676
https://github.com/conan-io/conan/pull/6824
https://github.com/conan-io/docs/pull/1679
https://github.com/conan-io/conan/pull/6800
https://github.com/conan-io/conan/pull/6791
https://github.com/conan-io/conan/pull/6782
https://github.com/conan-io/docs/pull/1660
https://github.com/conan-io/conan/pull/6772
https://github.com/conan-io/docs/pull/1644
https://github.com/conan-io/conan/pull/6769
https://github.com/conan-io/docs/pull/1678
https://github.com/conan-io/conan/pull/6766
https://github.com/conan-io/conan/pull/6733
https://github.com/conan-io/conan/pull/6935
https://github.com/conan-io/conan/pull/6922
https://github.com/conan-io/docs/pull/1681
https://github.com/conan-io/conan/pull/6911
https://github.com/conan-io/docs/pull/1675
https://github.com/conan-io/conan/pull/6861
https://github.com/conan-io/conan/pull/6825
https://github.com/conan-io/conan/pull/6798
https://github.com/conan-io/conan/pull/6794
https://github.com/conan-io/conan/pull/6734
https://github.com/conan-io/conan/pull/6947
https://github.com/conan-io/conan/pull/6928
https://github.com/conan-io/conan/pull/6917
https://github.com/conan-io/conan/pull/6914
https://github.com/conan-io/conan/pull/6858
https://github.com/conan-io/conan/pull/6821
https://github.com/conan-io/docs/pull/1663
https://github.com/conan-io/conan/pull/6780

Conan Documentation, Release 1.31.4

21.22 1.24.1 (21-Apr-2020)

• Bugfix: correct the cmake generator target name in the markdown generator output. #6788

• Bugfix: Avoid FileNotFoundError as it is not compatible with Python 2. #6786

21.23 1.24.0 (31-Mar-2020)

• Feature: Add the needed command-line arguments to existing commands to provide information about host and
build profiles. #5594 . Docs: here

• Feature: Add markdown generator, it exposes useful information to consume the installed packages. #6758 .
Docs here

• Feature: Add new tool cppstd_flag to retrieve the compiler flag for the given settings. #6744 . Docs here

• Feature: Short paths feature is available for Cygwin. #6741 . Docs here

• Feature: Add Apple Clang as a base compiler for Intel C++. #6740 . Docs here

• Feature: Make settings.get_safe and options.get_safe accept a default value. #6739 . Docs here

• Feature: CONAN_V2_MODE deprecates two legacy ways of reusing python code: the <cache>/python path and
the automatic PYTHONPATH environment variable. #6737 . Docs here

• Feature: Add the _description_ field to the output of the conan info command. #6724 . Docs here

• Feature: Add more detailed information when there are missing packages. #6700 . Docs here

• Feature: Support mirrors for tools.download and tools.get. #6679 . Docs here

• Feature: Modify the default behaviour in SystemPackageTool to be able to create a recipe that does not install
system requirements by default if the CONAN_SYSREQUIRES_MODE is not set. #6677 . Docs here

• Feature: Add cpp_info.components package creator interface to model internal dependencies inside a recipe.
#6653 . Docs here

• Feature: Add a new init()method to conanfile.py recipes that can be used to add extra logic when inheriting
from python_requires classes. #6614 . Docs here

• Fix: Add Sun C compiler version 5.15 into default settings.yml. #6767

• Fix: Raises ConanException when package folder is invalid for export-pkg. #6720 . Docs here

• Fix: Added print to stderr and exit into pyinstaller script when it detects python usage of python 3.8 or higher as
currently pyinstaller does not support python 3.8. #6686

• Fix: Improve the command line help for the conan install –build option. #6681 . Docs here

• Fix: Add build policy help for –build argument when used in conan graph build-order command. #6650

• Fix: Remove file before copying in conan config install to avoid permission issues. #6601

• Fix: check_min_cppstd raises an exception for an unknown compiler. #6548 . Docs here

• Fix: cmake_find_package no longer seeks to find packages which are already found. #6389

• Bugfix: Fixes the auto-detection of sun-cc compiler when it outputs Studio 12.5 Sun C. #6757

• Bugfix: Add values to definitions passed to MSBuild build helper which values are not None (0, False. . .).
#6730

638 Chapter 21. Changelog

https://github.com/conan-io/conan/pull/6788
https://github.com/conan-io/conan/pull/6786
https://github.com/conan-io/conan/pull/5594
https://github.com/conan-io/docs/pull/1629
https://github.com/conan-io/conan/pull/6758
https://github.com/conan-io/docs/pull/1638
https://github.com/conan-io/conan/pull/6744
https://github.com/conan-io/docs/pull/1639
https://github.com/conan-io/conan/pull/6741
https://github.com/conan-io/docs/pull/1641
https://github.com/conan-io/conan/pull/6740
https://github.com/conan-io/docs/pull/1637
https://github.com/conan-io/conan/pull/6739
https://github.com/conan-io/docs/pull/1631
https://github.com/conan-io/conan/pull/6737
https://github.com/conan-io/docs/pull/1630
https://github.com/conan-io/conan/pull/6724
https://github.com/conan-io/docs/pull/1627
https://github.com/conan-io/conan/pull/6700
https://github.com/conan-io/docs/pull/1616
https://github.com/conan-io/conan/pull/6679
https://github.com/conan-io/docs/pull/1623
https://github.com/conan-io/conan/pull/6677
https://github.com/conan-io/docs/pull/1613
https://github.com/conan-io/conan/pull/6653
https://github.com/conan-io/docs/pull/1363
https://github.com/conan-io/conan/pull/6614
https://github.com/conan-io/docs/pull/1622
https://github.com/conan-io/conan/pull/6767
https://github.com/conan-io/conan/pull/6720
https://github.com/conan-io/docs/pull/1624
https://github.com/conan-io/conan/pull/6686
https://github.com/conan-io/conan/pull/6681
https://github.com/conan-io/docs/pull/1595
https://github.com/conan-io/conan/pull/6650
https://github.com/conan-io/conan/pull/6601
https://github.com/conan-io/conan/pull/6548
https://github.com/conan-io/docs/pull/1559
https://github.com/conan-io/conan/pull/6389
https://github.com/conan-io/conan/pull/6757
https://github.com/conan-io/conan/pull/6730

Conan Documentation, Release 1.31.4

• Bugfix: Include name and version in the data from conanbuildinfo.txt, so it is available in self.
deps_cpp_info["dep"].version and self.deps_cpp_info["dep"].name, so it can be used in conan
build and in test_package/conanfile.py. #6723 . Docs here

• Bugfix: Fix check_output_runner() to handle dirs with whitespaces. #6703

• Bugfix: Fix vcvars_arch usage before assignment, that can cause a crash in tools.vcvars_command() that is
also used internally by MSBuild helper. #6675

• Bugfix: Silent output from cmake_find_package generator with CONAN_CMAKE_SILENT_OUTPUT. #6672

• Bugfix: Use always LF line separator for .sh scripts generated by virtualenv generators. #6670

• Bugfix: Use the real settings value to check the compiler and compiler version in the cmake generator local flow
when the package_id() method changes values. #6659

21.24 1.23.0 (10-Mar-2020)

• Feature: New general.parallel_download=<num threads> configuration, for parallel installation of bina-
ries, to speed up populating packages in a cache. #6632 . Docs here

• Feature: Fixed inability to run execute test and install separately, that is, without build step. Added meson_test()
method, which executes meson test (compared to ninja test in test()). Added meson_install() method, which
executes meson install (compared to ninja install in install()). #6574 . Docs here

• Feature: Update python six dependency to 1.14.0. #6507

• Feature: Add environment variable ‘CONAN_V2_MODE’ to enable Conan v2 behavior. #6490 . Docs here

• Feature: Implement conan graph clean-modified subcommand to be able to clean the modified state of a lockfile
and re-use it later for more operations. #6465 . Docs here

• Feature: Allow building dependency graphs when using lockfiles even if some requirements are not in the lock-
files. This can happen for example when test_package/conanfile.py has other requirements, as they will
not be part of the lockfile. #6457 . Docs here

• Feature: Implement a new package-ID computation that includes transitive dependencies even when the direct
dependencies have remove them, for example when depending on a header-only library that depends on a static
library. #6451 . Docs here

• Fix: inspect command can be executed without remote.json (#6558) #6559

• Fix: Raise an error if MSBuild argument targets is not a list, instead of splitting a string passed as argument
instead of a list. #6555

• Bugfix: Check the CMP0091 policy and set CMAKE_MSVC_RUNTIME_LIBRARY accordingly to CO-
NAN_LINK_RUNTIME if it’s set to NEW. #6626

• Bugfix: Fix error parsing system_libs from conanbuildinfo.txt file. #6616

• Bugfix: Environment variables from the profiles are not set in the _conaninfo.txt_ file of the packages exported
with the export-pkg command. #6607

• BugFix: Set the self.develop=True attribute for recipes when they are used with conan export-pkg, in all
methods, it was previously only setting it for the package() method. #6585

• Bugfix: set CMAKE_OSX_DEPLOYMENT_TARGET for iOS, watchOS and tvOS. #6566

• Bugfix: Parse function of GCC version from command line now works with versions >=10. #6551

• Bugfix: improve Apple frameworks lookups with CMake integration #6533

21.24. 1.23.0 (10-Mar-2020) 639

https://github.com/conan-io/conan/pull/6723
https://github.com/conan-io/docs/pull/1626
https://github.com/conan-io/conan/pull/6703
https://github.com/conan-io/conan/pull/6675
https://github.com/conan-io/conan/pull/6672
https://github.com/conan-io/conan/pull/6670
https://github.com/conan-io/conan/pull/6659
https://github.com/conan-io/conan/pull/6632
https://github.com/conan-io/docs/pull/1583
https://github.com/conan-io/conan/pull/6574
https://github.com/conan-io/docs/pull/1568
https://github.com/conan-io/conan/pull/6507
https://github.com/conan-io/conan/pull/6490
https://github.com/conan-io/docs/pull/1578
https://github.com/conan-io/conan/pull/6465
https://github.com/conan-io/docs/pull/1542
https://github.com/conan-io/conan/pull/6457
https://github.com/conan-io/docs/pull/1585
https://github.com/conan-io/conan/pull/6451
https://github.com/conan-io/docs/pull/1575
https://github.com/conan-io/conan/pull/6559
https://github.com/conan-io/conan/pull/6555
https://github.com/conan-io/conan/pull/6626
https://github.com/conan-io/conan/pull/6616
https://github.com/conan-io/conan/pull/6607
https://github.com/conan-io/conan/pull/6585
https://github.com/conan-io/conan/pull/6566
https://github.com/conan-io/conan/pull/6551
https://github.com/conan-io/conan/pull/6533

Conan Documentation, Release 1.31.4

21.25 1.22.3 (05-Mar-2020)

• Bugfix: Fixed crashing of recipes using both python_requires and build_id(). #6618

• Bugfix: Conan should not append generator_platform to the Visual Studio generator if it is already specified by
the user. #6549

21.26 1.22.2 (13-Feb-2020)

• Bugfix: Do not re-evaluate lockfiles nodes, only update the package reference, otherwise the build-requires are
broken. #6529

• Bugfix: Fixing locking system for metadata file so it can be accessed concurrently. #6524

21.27 1.22.1 (11-Feb-2020)

• Fix: Increase six version to allow more modern releases. #6509

• Fix: remove GLOBAL from targets to avoid conflicts when using add_subdirectory. #6488 . Docs here

• Fix: Avoid caching revision “0” under api V2 (revisions enabled) in the download cache. #6475 . Docs here

• Bugfix: Manage the dirty state of the cache package folder with conan export-pkg. #6498

• BugFix: Add system_libs to premake generator. #6495

• Bugfix: Upload was silently skipping exceptions that could leave the packages dirty. Long uploads or large
compressing times in non-terminals (piped output, like in CI systems) crashed, leaving packages dirty too, but
not reporting any error. #6486

• BugFix: Add quotes to virtualenv scripts, so they don’t crash in pure sh shells. #6265

21.28 1.22.0 (05-Feb-2020)

• Feature: Set conan generated CMake targets as GLOBAL so that they can be used with an ALIAS for consumers.
#6438 . Docs here

• Feature: Deduce compiler.base.runtime for Intel compiler settings when using Visual Studio as the base compiler.
#6424

• Feature: Allow defining an extra user-defined properties .props file in MSBuild build helper. #6374 . Docs here

• Feature: Force the user to read that Python 2 has been deprecated. #6336 . Docs here

• Feature: Add opt-in scm_to_conandata for the SCM feature: Conan will store the data from the SCM attribute
in the conandata.yml file (except the fields username and password). #6334 . Docs here

• Feature: Implement a download cache, which can be shared and concurrently used among different conan user
homes, selectable configuring storage.download_cache in conan.conf. #6287 . Docs here

• Feature: Some improvements in the internal of lockfiles. Better ordering of nodes indexes. Separation of
requires and build-requires. Better status field, with explicit exported, built values. #6237

640 Chapter 21. Changelog

https://github.com/conan-io/conan/pull/6618
https://github.com/conan-io/conan/pull/6549
https://github.com/conan-io/conan/pull/6529
https://github.com/conan-io/conan/pull/6524
https://github.com/conan-io/conan/pull/6509
https://github.com/conan-io/conan/pull/6488
https://github.com/conan-io/docs/pull/1551
https://github.com/conan-io/conan/pull/6475
https://github.com/conan-io/docs/pull/1552
https://github.com/conan-io/conan/pull/6498
https://github.com/conan-io/conan/pull/6495
https://github.com/conan-io/conan/pull/6486
https://github.com/conan-io/conan/pull/6265
https://github.com/conan-io/conan/pull/6438
https://github.com/conan-io/docs/pull/1534
https://github.com/conan-io/conan/pull/6424
https://github.com/conan-io/conan/pull/6374
https://github.com/conan-io/docs/pull/1533
https://github.com/conan-io/conan/pull/6336
https://github.com/conan-io/docs/pull/1523
https://github.com/conan-io/conan/pull/6334
https://github.com/conan-io/docs/pull/1522
https://github.com/conan-io/conan/pull/6287
https://github.com/conan-io/docs/pull/1544
https://github.com/conan-io/conan/pull/6237

Conan Documentation, Release 1.31.4

• Feature: imports functionality can import from “symbolic” names, preceded with @, like @bindirs, @libdirs,
etc. This allows importing files from variable package layouts, including custom package_info() layouts (like
cpp_info.bindirs = ["mybin"] can be used with src="@bindirs"), and editable package layouts #6208
. Docs here

• Feature: Improve output messages for parallel uploads: the text of the uploaded files contains to which packages
they belong and the output for CI is clearer. #6184

• Feature: Adds vcvars_append variable (defaulting to False) to CMake and Meson build helpers constructors,
so when they need to activate the Visual Studio environment via vcvars (for Ninja and NMake generators), the
vcvars environment is appended at the end, giving precedence to the environment previously defined. #6000 .
Docs here

• Fix: Use CCI package reference for example command. #6463

• Fix: Generators cmake and cmake_multi use the name defined in cpp_info.name (reverts change from 1.21.1 as
stated). #6429

• Fix: Cleaning LD_LIBRARY_PATH environment in SCM commands for “pyinstaller” installations, as SSL can fail
due to using old SSL stuff from Conan instead from git/svn. #6380

• Fix: Recipe substitution for scm (old behavior) fixed for multiline comments in Python 3.8. #6355 . Docs here

• Fix: Avoid warning in “detect” process with Python 3.8, due to Popen with bufsize=1 #6333

• Fix: Propagate server error (500) in checksum_deploy. #6324

• Fix: Fixed wrong CMake command line with -G Visual Studio 15 ARM for armv8 architectures. #6312

• Fix: Add all the system_libs and requirements to the CMake targets constructed by the generators. It will impact
header-only libraries that are consumed using targets (previously they were missing some information). #6298

• Fix: Avoid WindowsStore tools.vcvars() management when the environment is already set. #6296

• Fix: When the token is empty, and conan user myuser -p=mypass -r=remote is used, the user-password
are send in HttpBasic so it can be used for completely protected servers that do not expose the ping endpoint.
#6254

• Fix: Add cpp_info.<config> information to cmake_find_package_multi and cmake_find_package generators.
#6230 . Docs here

• Fix: Multi-generators cannot be used without build_type setting. A failure is forced to
cmake_find_package_multi and visual_studio_multi as it was in cmake_multi. #6228

• Fix: Fix typo in error message from tools.get(). #6204

• Fix: Raise error for symlinks in Windows that point to a different unit. #6201

• BugFix: Avoid included profiles overwriting variables in the current profile. #6398

• Bugfix: Lockfiles were not correctly applying locked options to packages, which produced incorrect evaluation
of requirements() method. #6395

• Bugfix: Fix broken compression of .tgz files due to Python 3.8 changing tar default schema. #6355 . Docs here

• Bugfix: Include MacOS frameworks definitions in autotools LDFLAGS (also Meson). #6309

• Bugfix: Apply system_libs information in autotools build helper. #6309

• Bugfix: The environment_append() helper does not modify the argument anymore, which caused problems
if the argument was reused. #6285

• Bugfix: Include “Package ID Unknown” nodes in conan graph build-order, as they need to be processed
in that order. #6251

• Bugfix: –raw argument is ignored when searching for a specific reference. #6241

21.28. 1.22.0 (05-Feb-2020) 641

https://github.com/conan-io/conan/pull/6208
https://github.com/conan-io/docs/pull/1547
https://github.com/conan-io/conan/pull/6184
https://github.com/conan-io/conan/pull/6000
https://github.com/conan-io/docs/pull/1543
https://github.com/conan-io/conan/pull/6463
https://github.com/conan-io/conan/pull/6429
https://github.com/conan-io/conan/pull/6380
https://github.com/conan-io/conan/pull/6355
https://github.com/conan-io/docs/pull/1526
https://github.com/conan-io/conan/pull/6333
https://github.com/conan-io/conan/pull/6324
https://github.com/conan-io/conan/pull/6312
https://github.com/conan-io/conan/pull/6298
https://github.com/conan-io/conan/pull/6296
https://github.com/conan-io/conan/pull/6254
https://github.com/conan-io/conan/pull/6230
https://github.com/conan-io/docs/pull/1508
https://github.com/conan-io/conan/pull/6228
https://github.com/conan-io/conan/pull/6204
https://github.com/conan-io/conan/pull/6201
https://github.com/conan-io/conan/pull/6398
https://github.com/conan-io/conan/pull/6395
https://github.com/conan-io/conan/pull/6355
https://github.com/conan-io/docs/pull/1526
https://github.com/conan-io/conan/pull/6309
https://github.com/conan-io/conan/pull/6309
https://github.com/conan-io/conan/pull/6285
https://github.com/conan-io/conan/pull/6251
https://github.com/conan-io/conan/pull/6241

Conan Documentation, Release 1.31.4

• Bugfix: Avoid raising a version conflict error when aliases have not been resolved yet, typically for aliased
build-requires that are also in the requires. #6236

• Bugfix: conan inspect now is able to properly show name and version coming from set_name() and
set_version() methods. #6214

21.29 1.21.3 (03-Mar-2020)

• Bugfix: Fixing locking system for metadata file so it can be accessed concurrently. #6543

• Bugfix: Manage the dirty state of the cache package folder with conan export-pkg. #6517

• Bugfix: BugFix: Add quotes to virtualenv scripts, so they don’t crash in pure sh shells. #6516

• Bugfix: Upload was silently skipping exceptions, which could result in packages not uploaded, but user not
realizing about the error. #6515

• BugFix: Add system_libs to premake generator. #6496

21.30 1.21.2 (31-Jan-2020)

• Fix: Recipe substitution for scm (old behavior) fixed for multiline comments in Python 3.8 #6439

• Bugfix: Fix broken compression of .tgz files due to Python 3.8 changing tar default schema. #6439

• Bugfix: Append CONAN_LIBS in cmake generator to avoid overwriting user-defined libs. #6433

21.31 1.21.1 (14-Jan-2020)

• Fix: Fix options type detection using six.string_types. #6322

• Fix: Fix minor issues in cmake and cmake_multi generators: wrong variable used in co-
nan_find_apple_frameworks macro. #6295

• Fix: Generators cmake and cmake_multi use the name of the package instead of cpp_info.name (this change is
to be reverted in 1.22) #6288

• Bugfix: Fixing readout of backslashes for virtualenv generator files so they are not interpreted as escape charac-
ters. #6320

• Bugfix: Fix uninformative crash when tools.download() gets a 403 and it is not providing an auth field.
#6317

• Bugfix: Enhance validation of the short_paths_home property to correctly handle the scenarios where it is set to
a path that contains the value of the Conan cache path, but is not a subdirectory of it. #6304

• Bugfix: Fixes cpp_info.name vs. cpp_info.names issue in pkg_config generator #6223

642 Chapter 21. Changelog

https://github.com/conan-io/conan/pull/6236
https://github.com/conan-io/conan/pull/6214
https://github.com/conan-io/conan/pull/6543
https://github.com/conan-io/conan/pull/6517
https://github.com/conan-io/conan/pull/6516
https://github.com/conan-io/conan/pull/6515
https://github.com/conan-io/conan/pull/6496
https://github.com/conan-io/conan/pull/6439
https://github.com/conan-io/conan/pull/6439
https://github.com/conan-io/conan/pull/6433
https://github.com/conan-io/conan/pull/6322
https://github.com/conan-io/conan/pull/6295
https://github.com/conan-io/conan/pull/6288
https://github.com/conan-io/conan/pull/6320
https://github.com/conan-io/conan/pull/6317
https://github.com/conan-io/conan/pull/6304
https://github.com/conan-io/conan/pull/6223

Conan Documentation, Release 1.31.4

21.32 1.21.0 (10-Dec-2019)

• Feature: The generator cmake_find_package_multi generates a PackageConfigVersion.cmake file that allows us-
ing find_package with the VERSION argument. #6063 . Docs here

• Feature: Settings support for Intel compiler. #6052 . Docs here

• Feature: Allow setting different cpp_info name for each generator that supports that property using the new
cpp_info.names[“generator_name”] property. #6033 . Docs here

• Feature: Provide _INCLUDE_DIR variables in the cmake_find_package generator #6017

• Feature: Information in the artifacts.properties file is sent using matrix-params too when a package is uploaded
to a server (if it has the capability). This will be the recommended way to send these properties to Artifactory
(release TBD) to bypass Nginx blocking properties with periods. #6014 . Docs here

• Feature: New tools.check_min_cppstd and tools.valid_min_cppstd to check if the cppstd version is valid for a
specific package. #5997 . Docs here

• Feature: New parameter for tools.patch to opt-in applying fuzzy patches. #5996 . Docs here

• Feature: Environment variables for virtual environments are stored in .env files containing just the key-value
pairs. It will help other processes that need to read these variables to run their own commands. #5989

• Feature: New argument of conan upload command –parallel to upload packages using multithreading. #5856
. Docs here

• Feature: New python_requires declared as Conanfile class attributes. Includes extension of base class, they
affect the binary packageID with minor_mode default mode. They are also locked in lockfiles. #5804 . Docs
here

• Feature: Accept logging level as logging names #5772 . Docs here

• Fix: Add the RES_DIRS as variable to the variables when using the cmake_find_package generator. #6166

• Fix: Fix SyntaxWarning when comparing a literal with for identity in Python 3.8 #6165

• Fix: Remove recipe linter from codebase, it is no longer a built-in feature. It has been moved to hooks. Install
the hook and update your “conan.conf” to activate it. #6152 . Docs here

• Fix: Make lockfiles invariant when the graph doesn’t change. Now 2 different lockfiles captured with the same
resulting graph in 2 different instants will be identical. #6139

• Fix: Make the compatible_packages feature to follow the --build=missing build policy. Packages that find
a compatible binary will not fire a binary build with the “missing” build policy. #6134 . Docs here

• Fix: Fix create command build policy help message to reflect correct behavior. #6131 . Docs here

• Fix: Improved error message when sources can’t be retrieved from remote #6085

• Fix: Raise a meaningful error when the settings.yml file is invalid #6059

• Fix: Move the warning about mixing ‘os’ and ‘os_build’ to just before the pre_export stage #6021

• Bugfix: Implement SystemPackageTool.installed(package_name) as described in the documentation.
#6198

• Bugfix: Remove carriage returns from build info .json file to avoid Artifactory errors in some cases when pub-
lishing the build info to the remote. #6180

• Bugfix: Upload correct packages when specifying revisions and fail with incorrect ones. #6143

• Bugfix: Fix different problems when using conan download with revisions. #6138

21.32. 1.21.0 (10-Dec-2019) 643

https://github.com/conan-io/conan/pull/6063
https://github.com/conan-io/docs/pull/1484
https://github.com/conan-io/conan/pull/6052
https://github.com/conan-io/docs/pull/1479
https://github.com/conan-io/conan/pull/6033
https://github.com/conan-io/docs/pull/1489
https://github.com/conan-io/conan/pull/6017
https://github.com/conan-io/conan/pull/6014
https://github.com/conan-io/docs/pull/1487
https://github.com/conan-io/conan/pull/5997
https://github.com/conan-io/docs/pull/1467
https://github.com/conan-io/conan/pull/5996
https://github.com/conan-io/docs/pull/1466
https://github.com/conan-io/conan/pull/5989
https://github.com/conan-io/conan/pull/5856
https://github.com/conan-io/docs/pull/1250
https://github.com/conan-io/conan/pull/5804
https://github.com/conan-io/docs/pull/1495
https://github.com/conan-io/conan/pull/5772
https://github.com/conan-io/docs/pull/1419
https://github.com/conan-io/conan/pull/6166
https://github.com/conan-io/conan/pull/6165
https://github.com/conan-io/conan/pull/6152
https://github.com/conan-io/docs/pull/1488
https://github.com/conan-io/conan/pull/6139
https://github.com/conan-io/conan/pull/6134
https://github.com/conan-io/docs/pull/1491
https://github.com/conan-io/conan/pull/6131
https://github.com/conan-io/docs/pull/1483
https://github.com/conan-io/conan/pull/6085
https://github.com/conan-io/conan/pull/6059
https://github.com/conan-io/conan/pull/6021
https://github.com/conan-io/conan/pull/6198
https://github.com/conan-io/conan/pull/6180
https://github.com/conan-io/conan/pull/6143
https://github.com/conan-io/conan/pull/6138

Conan Documentation, Release 1.31.4

• Bugfix: Make sure set_version() runs in the conanfile.py folder, not in the current folder, so relative paths
are not broken if executing from a different location. #6130 . Docs here

• Bugfix: Fix the help message for conan export-pkg command for the –options parameter. #6092

• Bugfix: Use a context manager to change the folder during build_package to avoid propagating the directory
change to other tasks. #6060

• Bugfix: The AutoToolsBuildEnvironment build helper now uses the win_bash parameter of the constructor when
calling to configure(). #6026

• Bugfix: Conan’s virtualenvironments restore the environment to the state it was before activating them (previ-
ously it was restored to the state it was when the conan install was run). #5989

21.33 1.20.5 (3-Dec-2019)

• Bugfix: Removing –skip-env and –multi-module arguments for conan_build_info –v2. Now the environment is
not captured (will be handled by the Artifactory plugin) and recipes and packages are saved as different modules
in build info. #6169 . Docs here

21.34 1.20.4 (19-Nov-2019)

• Feature: Added traces to check_output internal call to log the called command and the output as INFO traces
(can be adjusted with export CONAN_LOGGING_LEVEL=20) #6091

• Bugfix: Using scm with auto values with a conanfile.py not being in the root scm folder it failed to export the
right source code directory if not using –ignore-dirty and the repo was not pristine. #6098

• Bugfix: Fix conan_build_info command when conan_sources.tgz not present in remote. #6088

21.35 1.20.3 (11-Nov-2019)

• Bugfix: Using the scm feature with auto fields was not using correctly the freeze sources from the local user
directory from the second call to conan create. #6048

• Bugfix: Each Apple framework found using CMake find_library is stored in a different CO-
NAN_FRAMEWORK_<name>_FOUND variable #6042

21.36 1.20.2 (6-Nov-2019)

• Bugfix: Fix Six package version to be compatible with Astroid #6031

644 Chapter 21. Changelog

https://github.com/conan-io/conan/pull/6130
https://github.com/conan-io/docs/pull/1490
https://github.com/conan-io/conan/pull/6092
https://github.com/conan-io/conan/pull/6060
https://github.com/conan-io/conan/pull/6026
https://github.com/conan-io/conan/pull/5989
https://github.com/conan-io/conan/pull/6169
https://github.com/conan-io/docs/pull/1486
https://github.com/conan-io/conan/pull/6091
https://github.com/conan-io/conan/pull/6098
https://github.com/conan-io/conan/pull/6088
https://github.com/conan-io/conan/pull/6048
https://github.com/conan-io/conan/pull/6042
https://github.com/conan-io/conan/pull/6031

Conan Documentation, Release 1.31.4

21.37 1.20.1 (5-Nov-2019)

• Bugfix: Fixed authentication with an Artifactory repository without anonymous access enabled. #6022

21.38 1.20.0 (4-Nov-2019)

• Feature: Provide CONAN_FRAMEWORKS and CONAN_FRAMEWORKS_FOUND for Apple frameworks in
CMake generators and conan_find_apple_frameworks() macro helper in CMake generators. #6003 . Docs here

• Feature: Saving profile list as a json file #5954 . Docs here

• Feature: Improve conan_build_info command maintaining old functionality. #5950 . Docs here

• Feature: Add –json `argument to the `config home subcommand to output the result to a JSON file. #5946 . Docs
here

• Feature: Add cpp_info.build_modules to manage build system modules like additional CMake functions in pack-
ages #5940 . Docs here

• Feature: Add support for Clang 10. #5936

• Feature: Store md5 and sha1 checksums of downloaded and uploaded packages in metadata.json. #5910

• Feature: Allow the possibility to avoid x86_64 to x86 building when cross-building. #5904 . Docs here

• Feature: Allow to specify encoding for tools.load, tools.save and tools.replace_in_files. #5902 . Docs here

• Feature: Add support for gcc 7.4. #5898 . Docs here

• Feature: New set_name() and set_version() member methods to dynamically obtain the name and version
(at export time). #5881 . Docs here

• Feature: New binary compatibility mode. Recipes can define in their package_id() an ordered list of binary
package variants that would be binary compatible with the default one. These variants will be checked in order
if the main package ID is not found (missing), and the first one will be installed and used. #5837 . Docs here

• Feature: Support for DNF system package manager (Fedora 31+ and others) when present. #5791 . Docs here

• Feature: Refactor Conan Upload, Download and Compress progress bars. #5763

• Feature: Add system_deps attribute for cpp_info and deps_cpp_info. #5582 . Docs here

• Feature: The scm feature does not replace the scm.revision=”auto” field with the commit when uncommit-
ted changes unless --scm-dirty argument is specified. The recipe in the local cache will be kept with revi-
sion=auto. #5543 . Docs here

• Feature: The conan upload command forbids to upload a recipe that uses the scm feature containing revi-
sion=auto or url=auto, unless –force is used. #5543 . Docs here

• Feature: The scm feature captures the local sources in the local cache during the export, avoiding later issues of
modified local sources. #5543 . Docs here

• Fix: Deprecate argument –build-order in conan info command. #5965 . Docs here

• Fix: Avoid doing complex conan search --query in the server, do them always in the client. #5960

• Fix: Improved conan remove --help message for --packages #5899

• Fix: Improved cmake compiler check message to explain the problem with different compiler versions when
installing dependencies #5858

• Fix: Adds support for transitive dependencies to b2 generator. #5812

21.37. 1.20.1 (5-Nov-2019) 645

https://github.com/conan-io/conan/pull/6022
https://github.com/conan-io/conan/pull/6003
https://github.com/conan-io/docs/pull/1472
https://github.com/conan-io/conan/pull/5954
https://github.com/conan-io/docs/pull/1449
https://github.com/conan-io/conan/pull/5950
https://github.com/conan-io/docs/pull/1456
https://github.com/conan-io/conan/pull/5946
https://github.com/conan-io/docs/pull/1464
https://github.com/conan-io/conan/pull/5940
https://github.com/conan-io/docs/pull/1465
https://github.com/conan-io/conan/pull/5936
https://github.com/conan-io/conan/pull/5910
https://github.com/conan-io/conan/pull/5904
https://github.com/conan-io/docs/pull/1445
https://github.com/conan-io/conan/pull/5902
https://github.com/conan-io/docs/pull/1446
https://github.com/conan-io/conan/pull/5898
https://github.com/conan-io/docs/pull/1438
https://github.com/conan-io/conan/pull/5881
https://github.com/conan-io/docs/pull/1444
https://github.com/conan-io/conan/pull/5837
https://github.com/conan-io/docs/pull/1468
https://github.com/conan-io/conan/pull/5791
https://github.com/conan-io/docs/pull/1462
https://github.com/conan-io/conan/pull/5763
https://github.com/conan-io/conan/pull/5582
https://github.com/conan-io/docs/pull/1395
https://github.com/conan-io/conan/pull/5543
https://github.com/conan-io/docs/pull/1471
https://github.com/conan-io/conan/pull/5543
https://github.com/conan-io/docs/pull/1471
https://github.com/conan-io/conan/pull/5543
https://github.com/conan-io/docs/pull/1471
https://github.com/conan-io/conan/pull/5965
https://github.com/conan-io/docs/pull/1451
https://github.com/conan-io/conan/pull/5960
https://github.com/conan-io/conan/pull/5899
https://github.com/conan-io/conan/pull/5858
https://github.com/conan-io/conan/pull/5812

Conan Documentation, Release 1.31.4

• Fix: Add support for recipes without settings.compiler in b2 generator. #5810

• Fix: Add and remove out-of-tree git patches (#5320) #5761

• Fix: Add quiet output for inspect –raw. #5702

• Bugfix: Allow conan download for packages without user/channel #6010

• Bugfix: Avoid erroneous case-sensitive conflict for packages without user/channel. #5981

• Bugfix: Fix crashing when using lockfiles with a conanfile.txt instead of conanfile.py. #5894

• Bugfix: Fix incorrect propagation of build-requires to downstream consumers, resulting in missing dependencies
in deps_cpp_info. #5886

• Bugfix: Adds the short_paths_home property to ConanClientConfigParser to validate that it is not a subdirectory
of the conan cache. #5864 . Docs here

• Bugfix: Use imported python requires’ short_path value instead of the defined in the conanfile that imports it.
#5841

• Bugfix: Avoid repeated copies of absolute paths when using self.copy(). #5792

• Bugfix: Downstream overrides to exact dependencies versions are always used, even if the upstream has a version
range that does not satisfy the override. #5713

21.39 1.19.3 (29-Oct-2019)

• Fix: Fixed range of pylint and astroid requirements to keep compatibility with python 2 #5987

• Fix: Force conan search --query queries to be resolved always in the client to avoid servers failures due to
unsupported syntax #5970

• Bugfix: Use cpp_info.name lower case in pkg-config generator when defined #5988

• Bugfix: Fix cpp_info.name not used in cmake find generators for dependencies #5973

• Bugfix: Fixed bug when overriden dependencies that don’t exist and make the CMake generated code crash
#5971

• Bugfix: Fixed bug when overriden dependencies that don’t exist and make the CMake generated code crash
#5945

21.40 1.19.2 (16-Oct-2019)

• Feature: Implement self.info.shared_library_package_id() to better manage shared libraries package-
ID, specially when they depend on static libraries #5893 . Docs here

• Bugfix: Allow conan install pkg/[*]@user/channel resolving to a reference, not a path. #5908

• Bugfix: The dependency overriding mechanism was not working properly when using the same version with
different build metadata (1.2.0+xyz vs 1.2.0+abc). #5903

• Bugfix: Artifactory was returning an error on the first login attempt because the server capabilities were not
assigned correctly. #5880

• Bugfix: conan export failed if there is no user/channel and a lockfile is applied #5875

• Bugfix: SCM component failed for url pointing to local path in Windows with backslash. #5875

• Bugfix: Fix conan graph build-order output so it uses references including its recipe revision #5863

646 Chapter 21. Changelog

https://github.com/conan-io/conan/pull/5810
https://github.com/conan-io/conan/pull/5761
https://github.com/conan-io/conan/pull/5702
https://github.com/conan-io/conan/pull/6010
https://github.com/conan-io/conan/pull/5981
https://github.com/conan-io/conan/pull/5894
https://github.com/conan-io/conan/pull/5886
https://github.com/conan-io/conan/pull/5864
https://github.com/conan-io/docs/pull/1436
https://github.com/conan-io/conan/pull/5841
https://github.com/conan-io/conan/pull/5792
https://github.com/conan-io/conan/pull/5713
https://github.com/conan-io/conan/pull/5987
https://github.com/conan-io/conan/pull/5970
https://github.com/conan-io/conan/pull/5988
https://github.com/conan-io/conan/pull/5973
https://github.com/conan-io/conan/pull/5971
https://github.com/conan-io/conan/pull/5945
https://github.com/conan-io/conan/pull/5893
https://github.com/conan-io/docs/pull/1442
https://github.com/conan-io/conan/pull/5908
https://github.com/conan-io/conan/pull/5903
https://github.com/conan-io/conan/pull/5880
https://github.com/conan-io/conan/pull/5875
https://github.com/conan-io/conan/pull/5875
https://github.com/conan-io/conan/pull/5863

Conan Documentation, Release 1.31.4

21.41 1.19.1 (3-Oct-2019)

• Bugfix: Use imported python requires’ short_path value instead of the defined in the conanfile that imports it.
#5849

• Bugfix: Fix regression in visual_studio generator adding a <Lib> task. #5846 . Docs here

21.42 1.19.0 (30-Sept-2019)

• Feature: Update settings.yml file with macOS, watchOS, tvOS, iOS version numbers #5823

• Feature: Add clang 9 to the settings.yml file #5786 . Docs here

• Feature: Show suggestions when typing an incorrect command conan command. #5725

• Feature: Client support for using refresh tokens in the auth process with Artifactory. #5662

• Feature: Add GCC 9.2 to default settings.yml file #5650 . Docs here

• Feature: Add subcommand for enabling and disabling remotes #5623 . Docs here

• Feature: New conan config home command for getting Conan home directory #5613 . Docs here

• Feature: Adds name attribute to CppInfo and use cpp_info.name in all CMake and pkg-config generators as the
find scripts files names, target names, etc. #5598 . Docs here

• Feature: Enhanced vs-generator by providing more properties that can be referenced by other projects; added
library paths also to <Lib> so it’s possible to compile static libraries that reference other libs #5564

• Feature: Better support OSX frameworks by declaring cppinfo.frameworks. #5552 . Docs here

• Feature: Virtual environment generator for gathering only the PYTHONPATH. #5511 . Docs here

• Fix: conan upload with a reference without user and channel and package id name/version:package_id
should work #5824

• Fix: Dropped support for python 3.4. That version is widely being dropped by the python community. Since
Conan 1.19, the tests won’t be run with python 3.4 and we won’t be aware if something is not working correctly.
#5820 . Docs here

• Fix: Apply lockfile to the node before updating with downstream requirements #5771

• Fix: Make conan new generate default options as a dictionary #5767

• Fix: Output search result for remotes in order by version, as local search #5723

• Fix: Excluded also ftp_proxy and all_proxy variables from the environment when proxy configuration is specified
in the conan.conf file. #5697

• Fix: Relax restriction on the future python dependency #5692

• Fix: Call post_package hook before computing the manifest #5647

• Fix: Show friendly message when can’t get remote path #5638

• Fix: Detect the number of CPUs used by Docker (#5464) #5466 . Docs here

• Bugfix: Set Ninja to use cpu_count value when building with parallel option with CMake #5832

• Bugfix: output of references without user/channel is done with _/_, like in lockfiles. #5817

• Bugfix: A lockfile generated from a consumer should be able to generate a build-order too. #5800

• Bugfix: Fix system detection on Solaris. #5630

21.41. 1.19.1 (3-Oct-2019) 647

https://github.com/conan-io/conan/pull/5849
https://github.com/conan-io/conan/pull/5846
https://github.com/conan-io/docs/pull/1430
https://github.com/conan-io/conan/pull/5823
https://github.com/conan-io/conan/pull/5786
https://github.com/conan-io/docs/pull/1420
https://github.com/conan-io/conan/pull/5725
https://github.com/conan-io/conan/pull/5662
https://github.com/conan-io/conan/pull/5650
https://github.com/conan-io/docs/pull/1394
https://github.com/conan-io/conan/pull/5623
https://github.com/conan-io/docs/pull/1392
https://github.com/conan-io/conan/pull/5613
https://github.com/conan-io/docs/pull/1387
https://github.com/conan-io/conan/pull/5598
https://github.com/conan-io/docs/pull/1393
https://github.com/conan-io/conan/pull/5564
https://github.com/conan-io/conan/pull/5552
https://github.com/conan-io/docs/pull/1414
https://github.com/conan-io/conan/pull/5511
https://github.com/conan-io/docs/pull/1369
https://github.com/conan-io/conan/pull/5824
https://github.com/conan-io/conan/pull/5820
https://github.com/conan-io/docs/pull/1424
https://github.com/conan-io/conan/pull/5771
https://github.com/conan-io/conan/pull/5767
https://github.com/conan-io/conan/pull/5723
https://github.com/conan-io/conan/pull/5697
https://github.com/conan-io/conan/pull/5692
https://github.com/conan-io/conan/pull/5647
https://github.com/conan-io/conan/pull/5638
https://github.com/conan-io/conan/pull/5466
https://github.com/conan-io/docs/pull/1359
https://github.com/conan-io/conan/pull/5832
https://github.com/conan-io/conan/pull/5817
https://github.com/conan-io/conan/pull/5800
https://github.com/conan-io/conan/pull/5630

Conan Documentation, Release 1.31.4

• Bugfix: SVN uses username and password if provided #5601

• Bugfix: Use the final package folder as the conanfile.package_folder attribute for the pre_package hook. #5600

• BugFix: Fix crash with custom generators using install_folder #5569

21.43 1.18.5 (24-Sept-2019)

• Bugfix: A bug in urllib3 caused bad encoded URLs causing failures when using any repository from Bintray,
like conan-center. #5801

21.44 1.18.4 (12-Sept-2019)

• Fix: package_id should be used for recipe_revision_mode #5729 . Docs here

21.45 1.18.3 (10-Sept-2019)

• Fix: Version ranges resolution using references without user/channel #5707

21.46 1.18.2 (30-Aug-2019)

• Feature: Add opt-out for Git shallow clone in SCM feature #5677 . Docs here

• Fix: Use the value of argument useEnv provided by the user to the MSBuild helper also to adjust /p:UseEnv=false
when the arg is False. #5609

• Bugfix: Fixed assertion when using nested build_requires that depend on packages that are also used in the main
dependency graph #5689

• Bugfix: When Artifactory doesn’t have the anonymous access activated, the conan client wasn’t able to capture
the server capabilities and therefore never used the revisions mechanism. #5688

• Bugfix: When no user/channel is specified creating a package, upload it to a remote using None as the “folder”
in the storage, instead of _. #5671

• Bugfix: Using the version ranges mechanism Conan wasn’t able to resolve the correct reference if a library with
the same name but different user/channel was found in an earlier remote. #5657

• Bugfix: Broken cache package collection for packages without user/channel #5607

21.47 1.18.1 (8-Aug-2019)

• Bugfix: The scm feature was trying to run a checkout after a shallow clone. #5571

648 Chapter 21. Changelog

https://github.com/conan-io/conan/pull/5601
https://github.com/conan-io/conan/pull/5600
https://github.com/conan-io/conan/pull/5569
https://github.com/urllib3/urllib3/issues/1683
https://github.com/conan-io/conan/pull/5801
https://github.com/conan-io/conan/pull/5729
https://github.com/conan-io/docs/pull/1410
https://github.com/conan-io/conan/pull/5707
https://github.com/conan-io/conan/pull/5677
https://github.com/conan-io/docs/pull/1400
https://github.com/conan-io/conan/pull/5609
https://github.com/conan-io/conan/pull/5689
https://github.com/conan-io/conan/pull/5688
https://github.com/conan-io/conan/pull/5671
https://github.com/conan-io/conan/pull/5657
https://github.com/conan-io/conan/pull/5607
https://github.com/conan-io/conan/pull/5571

Conan Documentation, Release 1.31.4

21.48 1.18.0 (30-Jul-2019)

• Feature: The “user/channel” fields are now optional. e.g: conan create . is valid if the name and version are
declared in the recipe. e.g: conan create . lib/1.0@ to omit user and channel. The same for other commands.
The user and channel can also be omitted while specifying requirements in the conanfiles. #5381 . Docs here

• Feature: Output current revision from references in local cache when using a pattern #5537 . Docs here

• Feature: New parameter --skip-auth for the conan user command to avoid trying to authenticate when the
client already has credentials stored. #5532 . Docs here

• Feature: Allow patterns in per-package settings definitions, not only the package name #5523 . Docs here

• Feature: Search custom settings (#5378) #5521 . Docs here

• Feature: shallow git clone #5514 . Docs here

• Fix: Remove conan graph clean-modified command, it is automatic and no longer necessary. #5533 . Docs
here

• Fix: Incomplete references (for local conanfile.py files) are not printed with @None/None anymore. #5509

• Fix: Discard empty string values in SCM including subfolder #5459

• Bugfix: The stderr was not printed when a command failed running the tools.check_output function. #5548

• Bugfix: Avoid dependency (mainly build-requires) being marked as skipped when another node exists in the
graph that is being skipped because of being private #5547

• Bugfix: fix processing of UTF-8 files with BOM #5506

• Bugfix: apply http.sslVerify to the current Git command only #5470

• Bugfix: Do not raise when accessing the metadata of editable packages #5461

• Bugfix: Use cxxFlags instead of cppFlags in qbs generator. #5452 . Docs here

21.49 1.17.2 (25-Jul-2019)

• Bugfix: Lock transitive python-requires in lockfiles, not only direct ones. #5531

21.50 1.17.1 (22-Jul-2019)

• Feature: support 7.1 clang version #5492

• Bugfix: When a profile was detected, for GCC 5.X the warning message about the default libcxx was not shown.
#5524

• Bugfix: Update python-dateutil dependency to ensure availability of dateutil.parser.isoparse #5485

• Bugfix: Solve regression in conan info <ref> command, incorrectly reading the graph_info.json and lockfiles
#5481

• Bugfix: Trailing files left when packages are not found in conan info and install, restricted further installs with
different case in Windows, without rm -rf ~/.conan/data/pkg_name #5480

• Bugfix: The lock files mechanism now allows to update a node providing new information, like a retrieved
package revision, if the “base” reference was the same. #5467

• Bugfix: search command table output has invalid HTML code syntax #5460

21.48. 1.18.0 (30-Jul-2019) 649

https://github.com/conan-io/conan/pull/5381
https://github.com/conan-io/docs/pull/1375
https://github.com/conan-io/conan/pull/5537
https://github.com/conan-io/docs/pull/1381
https://github.com/conan-io/conan/pull/5532
https://github.com/conan-io/docs/pull/1377
https://github.com/conan-io/conan/pull/5523
https://github.com/conan-io/docs/pull/1372
https://github.com/conan-io/conan/pull/5521
https://github.com/conan-io/docs/pull/1371
https://github.com/conan-io/conan/pull/5514
https://github.com/conan-io/docs/pull/1380
https://github.com/conan-io/conan/pull/5533
https://github.com/conan-io/docs/pull/1378
https://github.com/conan-io/conan/pull/5509
https://github.com/conan-io/conan/pull/5459
https://github.com/conan-io/conan/pull/5548
https://github.com/conan-io/conan/pull/5547
https://github.com/conan-io/conan/pull/5506
https://github.com/conan-io/conan/pull/5470
https://github.com/conan-io/conan/pull/5461
https://github.com/conan-io/conan/pull/5452
https://github.com/conan-io/docs/pull/1354
https://github.com/conan-io/conan/pull/5531
https://github.com/conan-io/conan/pull/5492
https://github.com/conan-io/conan/pull/5524
https://github.com/conan-io/conan/pull/5485
https://github.com/conan-io/conan/pull/5481
https://github.com/conan-io/conan/pull/5480
https://github.com/conan-io/conan/pull/5467
https://github.com/conan-io/conan/pull/5460

Conan Documentation, Release 1.31.4

21.51 1.17.0 (9-Jul-2019)

• Feature: Better UX for no_proxy (#3943) #5438 . Docs here

• Feature: Show warning when URLs for remotes is invalid (missing schema, host, etc). #5418

• Feature: Implementation of lockfiles. Lockfiles store in a file all the configuration, exact versions (including
revisions), necessary to achieve reproducible builds, even when using version-ranges or package revisions. #5412
. Docs here

• Feature: Change progress bar output to tqdm to make it look better #5407

• Feature: Define 2 new modes and helpers for the package binary ID: recipe_revision_mode and
package_revision_mode, that take into account the revisions. The second one will use all the information
from dependencies, resulting in fully deterministic and complete package IDs: if some dependency change, it
will be necessary to build a new binary of consumers #5363 . Docs here

• Feature: Add apple-clang 11.0 to settings.yml (#5328) #5357 . Docs here

• Feature: SystemPackageTool platform detection (#5026) #5215 . Docs here

• Fix: Enable the definition of revisions in conanfile.txt #5435

• Fix: Improve resolution of version ranges for remotes #5433

• Fix: The conan process returns 6 when a ConanInvalidConfiguration is thrown during conan info. #5421

• Fix: Inspect missing attribute is not an error (#3953) #5419

• Fix: Allow –build-order and –graph together for conan info (#3447) #5417

• Fix: Handling error when reference not found using conan download #5399

• Fix: Update Yum cache (#5370) #5387

• Fix: Remove old folder for conan install (#5376) #5384

• Fix: Add missing call to super constructor to VirtualEnvGenerator. #5375

• Fix: Force forward slashes in the variable $PROFILE_DIR #5373 . Docs here

• Fix: Accept a list for the requires attribute #5371 . Docs here

• Fix: Remove packages when version is asterisk (#5297) #5346

• Fix: Make conan_data visible to pylint (#5327) #5337

• Fix: Improve the output to show the remote (or cache) that a version range is resolved to. #5336

• Fix: Deprecated conan copy|download|upload <ref> -p=ID, use conan <pref> instead #5293 .
Docs here

• Fix: AutoToolsBuildEnvironment is now aware of os_target and arch_target to calculate the gnu triplet when
declared. #5283

• Fix: Better message for gcc warning of libstdc++ at default profile detection #5275

• Bugfix: verify_ssl field in SCM being discarded when used with False value. #5441

• Bugfix: enable retry for requests #5400

• Bugfix: Allow creation and deletion of files in tools.patch with strip>0 #5334

• Bugfix: Use case insensitive comparison for SHA256 checksums #5306

650 Chapter 21. Changelog

https://github.com/conan-io/conan/pull/5438
https://github.com/conan-io/docs/pull/1347
https://github.com/conan-io/conan/pull/5418
https://github.com/conan-io/conan/pull/5412
https://github.com/conan-io/docs/pull/1350
https://github.com/conan-io/conan/pull/5407
https://github.com/conan-io/conan/pull/5363
https://github.com/conan-io/docs/pull/1345
https://github.com/conan-io/conan/pull/5357
https://github.com/conan-io/docs/pull/1327
https://github.com/conan-io/conan/pull/5215
https://github.com/conan-io/docs/pull/1291
https://github.com/conan-io/conan/pull/5435
https://github.com/conan-io/conan/pull/5433
https://github.com/conan-io/conan/pull/5421
https://github.com/conan-io/conan/pull/5419
https://github.com/conan-io/conan/pull/5417
https://github.com/conan-io/conan/pull/5399
https://github.com/conan-io/conan/pull/5387
https://github.com/conan-io/conan/pull/5384
https://github.com/conan-io/conan/pull/5375
https://github.com/conan-io/conan/pull/5373
https://github.com/conan-io/docs/pull/1333
https://github.com/conan-io/conan/pull/5371
https://github.com/conan-io/docs/pull/1332
https://github.com/conan-io/conan/pull/5346
https://github.com/conan-io/conan/pull/5337
https://github.com/conan-io/conan/pull/5336
https://github.com/conan-io/conan/pull/5293
https://github.com/conan-io/docs/pull/1317
https://github.com/conan-io/conan/pull/5283
https://github.com/conan-io/conan/pull/5275
https://github.com/conan-io/conan/pull/5441
https://github.com/conan-io/conan/pull/5400
https://github.com/conan-io/conan/pull/5334
https://github.com/conan-io/conan/pull/5306

Conan Documentation, Release 1.31.4

21.52 1.16.1 (14-Jun-2019)

• Feature: Print nicer error messages when receive an error from Artifactory. #5326

• Fix: Make conan config get storage.path return an absolute, resolved path #5350

• Fix: Skipped the compiler version check in the cmake generator when a -s compiler.toolset is specified (Visual
Studio). #5348

• Fix: Constraint transitive dependency typed-ast (required by astroid) in python3.4, as they stopped releasing
wheels, and it fails to build in some Windows platforms with older SDKs. #5324

• Fix: Accept v140 and VS 15.0 for CMake generator (#5318) #5321

• Fix: Accept only .lib and .dll as Visual extensions (#5316) #5319

• Bugfix: Do not copy directories inside a symlinked one #5342

• Bugfix: Conan was retrying the upload when failed with error 400 (request error). #5326

21.53 1.16.0 (4-Jun-2019)

• Feature: The conan upload command can receive now the full package reference to upload a binary package.
The -p argument is now deprecated. #5224 . Docs here

• Feature: Add hooks pre_package_info and post_package_info #5223 . Docs here

• Feature: New build mode –build cascade that forces building from sources any node with dependencies also
built from sources. #5218 . Docs here

• Feature: Print errors and warnings to stderr #5206

• Feature: New conan new --template=mytemplate to initialize recipes with your own templates #5189 .
Docs here

• Feature: Allow using wildcards to remove system requirements sentinel from cache. #5176 . Docs here

• Feature: Implement conan.conf retry and retry-wait and CONAN_RETRY and CONAN_RETRY_WAIT to con-
figure all retries for all transfers, including upload, download, and tools.download(). #5174 . Docs here

• Feature: Support yaml lists in workspace root field. #5156 . Docs here

• Feature: Add gcc 8.3 and 9.1 new versions to default settings.yml #5112

• Feature: Retry upload or download for error in response message (e.g. status is ‘500’) #4984

• Fix: Do not retry file transfer operations for 401 and 403 auth and permissions errors. #5278

• Fix: Copy symlinked folder when using merge_directories function #5237

• Fix: Add the ability to avoid the /verbosity argument in CMake command line for MSBuild #5220 . Docs here

• Fix: self.copy with symlinks=True does not copy symlink if the .conan directory is a symlink #5114 #5125

• Fix: Export detected_os from tools.oss (#5101) #5102 . Docs here

• Fix: Use revision as the SVN’s peg_revision (broken for an edge case) #5029

• Bugfix: --update was not updating python_requires using version ranges. #5265

• Bugfix: visual_studio generator only adds “.lib” extension for lib names without extension, otherwise (like
“.a”) respect it. #5254

• Bugfix: Fix conan search command showing revisions timestamps in a different time offset than UTC. #5232

21.52. 1.16.1 (14-Jun-2019) 651

https://github.com/conan-io/conan/pull/5326
https://github.com/conan-io/conan/pull/5350
https://github.com/conan-io/conan/pull/5348
https://github.com/conan-io/conan/pull/5324
https://github.com/conan-io/conan/pull/5321
https://github.com/conan-io/conan/pull/5319
https://github.com/conan-io/conan/pull/5342
https://github.com/conan-io/conan/pull/5326
https://github.com/conan-io/conan/pull/5224
https://github.com/conan-io/docs/pull/1300
https://github.com/conan-io/conan/pull/5223
https://github.com/conan-io/docs/pull/1293
https://github.com/conan-io/conan/pull/5218
https://github.com/conan-io/docs/pull/1296
https://github.com/conan-io/conan/pull/5206
https://github.com/conan-io/conan/pull/5189
https://github.com/conan-io/docs/pull/1286
https://github.com/conan-io/conan/pull/5176
https://github.com/conan-io/docs/pull/1294
https://github.com/conan-io/conan/pull/5174
https://github.com/conan-io/docs/pull/1295
https://github.com/conan-io/conan/pull/5156
https://github.com/conan-io/docs/pull/1288
https://github.com/conan-io/conan/pull/5112
https://github.com/conan-io/conan/pull/4984
https://github.com/conan-io/conan/pull/5278
https://github.com/conan-io/conan/pull/5237
https://github.com/conan-io/conan/pull/5220
https://github.com/conan-io/docs/pull/1292
https://github.com/conan-io/conan/pull/5125
https://github.com/conan-io/conan/pull/5102
https://github.com/conan-io/docs/pull/1276
https://github.com/conan-io/conan/pull/5029
https://github.com/conan-io/conan/pull/5265
https://github.com/conan-io/conan/pull/5254
https://github.com/conan-io/conan/pull/5232

Conan Documentation, Release 1.31.4

• Bugfix: Meson build-helper gets correct compiler flags, AutoTools build environment adds compiler.runtime
flags #5222

• Bugfix: The cmake_multi generator was not managing correctly the RelWithDebInfo and MinSizeRel build types.
#5221

• Bugfix: Check that registry file exists before removing it #5219

• Bugfix: do not append “-T “ if generator doesn’t support it #5201

• Bugfix: conan download always retrieve the sources, also with --recipe argument, which should only skip
download binaries, not the sources. #5194

• Bugfix: Using scm declared in a superclass failed exporting the recipe with the error ERROR: The conanfile.py
defines more than one class level ‘scm’ attribute. #5185

• Bugfix: Conan command returns 6 (Invalid configuration) also when the settings are restricted in the recipe
#5178

• Bugfix: Make sure that proxy “http_proxy”, “https_proxy”, “no_proxy” vars are correctly removed if custom ones
are defined in the conan.conf. Also, avoid using urllib.request.getproxies(), they are broken. #5162

• Bugfix: Use copy() for deploy generator so that permissions of files are preserved. Required if you want to use
the deploy generator to deploy executables. #5136

21.54 1.15.4

• Fix: Accept v140 and VS 15.0 for CMake generator (#5318) #5331

• Fix: Constraint transitive dependency typed-ast (required by astroid) in python3.4, as they stopped releasing
wheels, and it fails to build in some Windows platforms with older SDKs. #5331

21.55 1.15.3

• Please, do not use this version, there was a critical error in the release process and changes from the 1.16 branch
were merged.

21.56 1.15.2 (31-May-2019)

• Bugfix: Fix bug with python-requires not being updated with --update if using version-ranges. #5266

• Bugfix: Fix computation of ancestors performance regression #5260

21.57 1.15.1 (16-May-2019)

• Fix: Fix regression of conan remote update --insert using the same URL it had before #5110

• Fix: Fix migration of registry.json|txt file including reference to non existing remotes. #5103

• Bugfix: Avoid crash of commands copy, imports, editable-add for packages using python_requires #5150

652 Chapter 21. Changelog

https://github.com/conan-io/conan/pull/5222
https://github.com/conan-io/conan/pull/5221
https://github.com/conan-io/conan/pull/5219
https://github.com/conan-io/conan/pull/5201
https://github.com/conan-io/conan/pull/5194
https://github.com/conan-io/conan/pull/5185
https://github.com/conan-io/conan/pull/5178
https://github.com/conan-io/conan/pull/5162
https://github.com/conan-io/conan/pull/5136
https://github.com/conan-io/conan/pull/5331
https://github.com/conan-io/conan/pull/5331
https://github.com/conan-io/conan/pull/5266
https://github.com/conan-io/conan/pull/5260
https://github.com/conan-io/conan/pull/5110
https://github.com/conan-io/conan/pull/5103
https://github.com/conan-io/conan/pull/5150

Conan Documentation, Release 1.31.4

21.58 1.15.0 (6-May-2019)

• Feature: Updated the generated conanfile.py in conan new to the new conan-io/hello repository #5069 . Docs
here

• Feature: The MSBuild build helper allows the parameter toolset with False value to skip the toolset adjustment.
#5052 . Docs here

• Feature: Add GCC 9 to default settings.yml #5046 . Docs here

• Feature: You can disable broken symlinks checks when packaging using CO-
NAN_SKIP_BROKEN_SYMLINKS_CHECK env var or config.skip_broken_symlinks_check=1 #4991 .
Docs here

• Feature: New deploy generator to export files from a dependency graph to an installation folder #4972 . Docs
here

• Feature: Create tools.Version with _limited_ capabilities #4963 . Docs here

• Feature: Default filename for workspaces: conanws.yml (used in install command) #4941 . Docs here

• Feature: Add install folder to command ‘conan workspace install’ #4940 . Docs here

• Feature: Add compiler.cppstd setting (mark cppstd as deprecated) #4917 . Docs here

• Feature: Add a –raw argument to conan inspect command to get an output only with the value of the requested
attributes #4903 . Docs here

• Feature: tools.get() and tools.unzip() now handle also .gz compressed files #4883 . Docs here

• Feature: Add argument –force to command profile new to overwrite existing one #4880 . Docs here

• Feature: Get commit message #4877 . Docs here

• Fix: Remove sudo from Travis CI template #5073 . Docs here

• Fix: Handle quoted path and libraries in the premake generator #5051

• Fix: A simple addition to ensure right compiler version is found on windows. #5041

• Fix: Include CMAKE_MODULE_PATH for CMake find_dependency (#4956) #5021

• Fix: Add default_package_id_mode in the default conan.conf (#4947) #5005 . Docs here

• Fix: Use back slashes for visual_studio generator instead of forward slashes #5003

• Fix: Adding subparsers.required = True makes both Py2 and Py3 print an error when no arguments are entered
in commands that have subarguments #4902

• Fix: Example bare package recipe excludes conanfile.py from copy #4892

• Fix: More meaningful error message when a remote communication fails to try to download a binary package.
#4888

• Bugfix: conan upload --force force also the upload of package binaries, not only recipes #5088

• BugFix: MSYS 3.x detection #5078

• Bugfix: Don’t crash when an editable declare a build_folder in the layout, but not used in a workspace #5070

• Bugfix: Made compatible the cmake_find_package_multi generator with CMake < 3.9 #5042

• Bugfix: Fix broken local development flow (conan source, conan build, conan package, conan
export-pkg) with recipes with python-requires #4979

• Bugfix: ‘tar_extract’ function was failing if there was a linked folder in the working dir that matches one inside
the tar file. Now we use the destination_dir as base directory to check this condition. #4965

21.58. 1.15.0 (6-May-2019) 653

https://github.com/conan-io/hello
https://github.com/conan-io/conan/pull/5069
https://github.com/conan-io/docs/pull/1269
https://github.com/conan-io/conan/pull/5052
https://github.com/conan-io/docs/pull/1260
https://github.com/conan-io/conan/pull/5046
https://github.com/conan-io/docs/pull/1257
https://github.com/conan-io/conan/pull/4991
https://github.com/conan-io/docs/pull/1272
https://github.com/conan-io/conan/pull/4972
https://github.com/conan-io/docs/pull/1262
https://github.com/conan-io/conan/pull/4963
https://github.com/conan-io/docs/pull/1253
https://github.com/conan-io/conan/pull/4941
https://github.com/conan-io/docs/pull/1243
https://github.com/conan-io/conan/pull/4940
https://github.com/conan-io/docs/pull/1261
https://github.com/conan-io/conan/pull/4917
https://github.com/conan-io/docs/pull/1266
https://github.com/conan-io/conan/pull/4903
https://github.com/conan-io/docs/pull/1240
https://github.com/conan-io/conan/pull/4883
https://github.com/conan-io/docs/pull/1230
https://github.com/conan-io/conan/pull/4880
https://github.com/conan-io/docs/pull/1176
https://github.com/conan-io/conan/pull/4877
https://github.com/conan-io/docs/pull/1175
https://github.com/conan-io/conan/pull/5073
https://github.com/conan-io/docs/pull/1270
https://github.com/conan-io/conan/pull/5051
https://github.com/conan-io/conan/pull/5041
https://github.com/conan-io/conan/pull/5021
https://github.com/conan-io/conan/pull/5005
https://github.com/conan-io/docs/pull/1248
https://github.com/conan-io/conan/pull/5003
https://github.com/conan-io/conan/pull/4902
https://github.com/conan-io/conan/pull/4892
https://github.com/conan-io/conan/pull/4888
https://github.com/conan-io/conan/pull/5088
https://github.com/conan-io/conan/pull/5078
https://github.com/conan-io/conan/pull/5070
https://github.com/conan-io/conan/pull/5042
https://github.com/conan-io/conan/pull/4979
https://github.com/conan-io/conan/pull/4965

Conan Documentation, Release 1.31.4

• Bugfix: Remove package folder in conan create even when using --keep-build #4918

21.59 1.14.5 (30-Apr-2019)

• Bugfix: Uncompressing a tgz package with a broken symlink failed while touching the destination file. #5065

• Bugfix: The symlinks compressed in a tgz had invalid nonzero size. #5064

• Bugfix: Fixing exception of transitive build-requires mixed with normal requires #5056

21.60 1.14.4 (25-Apr-2019)

• Bugfix: Fixed error while using Visual Studio 2019 with Ninja generator. #5028

• Bugfix: Fixed error while using Visual Studio 2019 with Ninja generator. #5025

• Bugfix: Solved errors in concurrent uploads of same recipe #5014

• Bugfix: Fixed a bug that intermittently raised ERROR: ‘NoneType’ object has no attribute ‘file_sums’ when
uploading a recipe. #5012

• Bugfix: Bug in cmake_find_package_multi caused CMake to find incorrect modules in CMake modules paths
when only Config files should be taken into account. #4995

• Bugfix: Fix skipping binaries because of transitive private requirements #4987

• Bugfix: Fix broken local development flow (conan source, conan build, conan package, conan export-pkg) with
recipes with python-requires #4983

21.61 1.14.3 (11-Apr-2019)

• Bugfix: build-requires and private requirements that resolve to a dependency that is already in the graph
won’t span a new node, nor will be build-requires or private. They can conflict too. #4937

21.62 1.14.2 (11-Apr-2019)

• Bugfix: Run a full metadata migration in the cache to avoid old null revisions in package metadata #4934

21.63 1.14.1 (1-Apr-2019)

• Fix: Print a message for unhandled Conan errors building the API and collaborators #4869

• Bugfix: Client does not require credentials for anonymous downloads from remotes. #4872

• Bugfix: Fix a migration problem of conan config install for Conan versions 1.9 and older #4870

• Feature: Now Conan will crush your enemies, see them driven before you, and to hear the lamentation of their
women! (April’s fools)

654 Chapter 21. Changelog

https://github.com/conan-io/conan/pull/4918
https://github.com/conan-io/conan/pull/5065
https://github.com/conan-io/conan/pull/5064
https://github.com/conan-io/conan/pull/5056
https://github.com/conan-io/conan/pull/5028
https://github.com/conan-io/conan/pull/5025
https://github.com/conan-io/conan/pull/5014
https://github.com/conan-io/conan/pull/5012
https://github.com/conan-io/conan/pull/4995
https://github.com/conan-io/conan/pull/4987
https://github.com/conan-io/conan/pull/4983
https://github.com/conan-io/conan/pull/4937
https://github.com/conan-io/conan/pull/4934
https://github.com/conan-io/conan/pull/4869
https://github.com/conan-io/conan/pull/4872
https://github.com/conan-io/conan/pull/4870

Conan Documentation, Release 1.31.4

21.64 1.14.0 (28-Mar-2019)

• Feature: support new architectures s390 and s390x #4810 . Docs here

• Feature: –build parameter now applies fnmatching onto the whole reference, allowing to control rebuilding in a
much broader way. #4787 . Docs here

• Feature: Add config variable general.error_on_override and environment variable CO-
NAN_ERROR_ON_OVERRIDE (defaulting to False) to configure if an overridden requirement should
raise an error when overridden from downstream consumers. #4771 . Docs here

• Feature: Allow to specify revision_mode for each recipe, values accepted are scm or hash (default) #4767 . Docs
here

• Feature: Sort library list name when calling tools.collect_libs #4761 . Docs here

• Feature: Add cmake_find_package_multi generator. #4714 . Docs here

• Feature: Implement --source-folder and --target-folder to conan config install command to se-
lect subfolder to install from the source origin, and also the destination folder within the cache. #4709 . Docs
here

• Feature: Implement --update argument for python-requires too. #4660

• Fix: Apply environment variables from profile and from requirements to conan export-pkg #4852

• Fix: Do not run export_sources automatically for python_requires #4838

• Fix: Show the correct profile name when detect a new one (#4818) #4824

• Fix: Allow using reference object in workspaces in templates for out of source builds #4812 . Docs here

• Fix: Look for vswhere in PATH when using tools.vswhere() #4805

• Fix: SystemPackageTools doesn’t run sudo when it’s not found (#4470) #4774 . Docs here

• Fix: Show warning if repo is not pristine and using SCM mode to set the revisions #4764

• Fix: avoid double call to package() method #4748 . Docs here

• Fix: The cmake_paths generator now declares the CONAN_XXX_ROOT variables in case some exported cmake
module file like XXXConfig.cmake has been patched with the cmake.patch_config_paths() to replace absolute
paths to the local cache. #4719 . Docs here

• Fix: Do not distribute the tests in the python package nor in the installers. #4713

• Fix: add support for CMake generator platform #4708 . Docs here

• Fix: Fix corrupted packages with missing conanmanifest.txt files #4662

• Fix: Include information about all the configurations in the JSON generator #4657 . Docs here

• Bugfix: Fixed authentication management when a server returns 401 uploading a file. #4857

• Bugfix: Fixed recipe revision detection when some error output or unexpected output was printed to the stdout
running the git command. #4854

• Bugfix: The error output was piped to stdout causing issues while running git commands, especially during the
detection of the scm revision #4853

• Bugfix: conan export-pkg should never resolve build-requires #4851

• bugfix: The –build pattern was case sensitive depending on the os file system, now it is always case sensitive,
following the conan search behavior. #4842

• Bugfix: Fix metadata not being updated for conan export-pkg when using --package-folder #4834

21.64. 1.14.0 (28-Mar-2019) 655

https://github.com/conan-io/conan/pull/4810
https://github.com/conan-io/docs/pull/1140
https://github.com/conan-io/conan/pull/4787
https://github.com/conan-io/docs/pull/1141
https://github.com/conan-io/conan/pull/4771
https://github.com/conan-io/docs/pull/1128
https://github.com/conan-io/conan/pull/4767
https://github.com/conan-io/docs/pull/1126
https://github.com/conan-io/conan/pull/4761
https://github.com/conan-io/docs/pull/1124
https://github.com/conan-io/conan/pull/4714
https://github.com/conan-io/docs/pull/1114
https://github.com/conan-io/conan/pull/4709
https://github.com/conan-io/docs/pull/1131
https://github.com/conan-io/conan/pull/4660
https://github.com/conan-io/conan/pull/4852
https://github.com/conan-io/conan/pull/4838
https://github.com/conan-io/conan/pull/4824
https://github.com/conan-io/conan/pull/4812
https://github.com/conan-io/docs/pull/1135
https://github.com/conan-io/conan/pull/4805
https://github.com/conan-io/conan/pull/4774
https://github.com/conan-io/docs/pull/1127
https://github.com/conan-io/conan/pull/4764
https://github.com/conan-io/conan/pull/4748
https://github.com/conan-io/docs/pull/1133
https://github.com/conan-io/conan/pull/4719
https://github.com/conan-io/docs/pull/1115
https://github.com/conan-io/conan/pull/4713
https://github.com/conan-io/conan/pull/4708
https://github.com/conan-io/docs/pull/1125
https://github.com/conan-io/conan/pull/4662
https://github.com/conan-io/conan/pull/4657
https://github.com/conan-io/docs/pull/1129
https://github.com/conan-io/conan/pull/4857
https://github.com/conan-io/conan/pull/4854
https://github.com/conan-io/conan/pull/4853
https://github.com/conan-io/conan/pull/4851
https://github.com/conan-io/conan/pull/4842
https://github.com/conan-io/conan/pull/4834

Conan Documentation, Release 1.31.4

• Bugfix: –build parameter now is always case-sensitive, previously it depended to the file system type. #4787 .
Docs here

• Bugfix: Raise an error if source files cannot be correctly copied to build folder because of long paths in Windows.
#4766

• Bugfix: Use the same interface in conan_basic_setup() for the cmake_multi generator #4721 . Docs here

21.65 1.13.3 (27-Mar-2019)

• Bugfix: Revision computation failed when a git repo was present but without commits #4830

21.66 1.13.2 (21-Mar-2019)

• Bugfix: Installing a reference with “update” and “build outdated” options raised an exception. #4790

• Bugfix: Solved bug with build-requires transitive build-requires #4783

• Bugfix: Fixed workspace crash when no layout was specified #4783

• Bugfix: Do not generate multiple add_subdirectories() for workspaces build-requires #4783

21.67 1.13.1 (15-Mar-2019)

• Bugfix: Fix computation of graph when transitive diamonds are processed. #4737

21.68 1.13.0 (07-Mar-2019)

• Feature: Added with_login parameter to tools.run_in_windows_bash() #4673 . Docs here

• Feature: The deb and windows Conan installers now use Python 3. #4663

• Feature: Allow configuring in conan.conf a different default package_id mode. #4644 . Docs here

• Feature: Apply Jinja2 to layout files before parsing them #4596 . Docs here

• Feature: Accept a PackageReference for the command conan get (argument -p is accepted, but hidden) #4494
. Docs here

• Feature: Re-implement Workspaces based on Editable packages. #4481 . Docs here

• Feature: Removed old “compatibility” mode of revisions. #4462 . Docs here

• Fix: When revisions enabled, add the revision to the json output of the info/install commands. #4667

• Fix: JSON output for multi_config now works in install and create commands #4656

• Fix: Deprecate ‘cppflags’ in favor of ‘cxxflags’ in class CppInfo #4611 . Docs here

• Fix: Return empty list if env variable is an empty string #4594

• Fix: conan profile list will now recursively list profiles. #4591

• Fix: Instance of ‘TestConan’ has no ‘install_folder’ member when exporting recipe #4585

• Fix: SCM replacement with comments below it #4580

656 Chapter 21. Changelog

https://github.com/conan-io/conan/pull/4787
https://github.com/conan-io/docs/pull/1141
https://github.com/conan-io/conan/pull/4766
https://github.com/conan-io/conan/pull/4721
https://github.com/conan-io/docs/pull/1121
https://github.com/conan-io/conan/pull/4830
https://github.com/conan-io/conan/pull/4790
https://github.com/conan-io/conan/pull/4783
https://github.com/conan-io/conan/pull/4783
https://github.com/conan-io/conan/pull/4783
https://github.com/conan-io/conan/pull/4737
https://github.com/conan-io/conan/pull/4673
https://github.com/conan-io/docs/pull/1103
https://github.com/conan-io/conan/pull/4663
https://github.com/conan-io/conan/pull/4644
https://github.com/conan-io/docs/pull/1106
https://github.com/conan-io/conan/pull/4596
https://github.com/conan-io/docs/pull/1093
https://github.com/conan-io/conan/pull/4494
https://github.com/conan-io/docs/pull/1070
https://github.com/conan-io/conan/pull/4481
https://github.com/conan-io/docs/pull/1086
https://github.com/conan-io/conan/pull/4462
https://github.com/conan-io/docs/pull/1105
https://github.com/conan-io/conan/pull/4667
https://github.com/conan-io/conan/pull/4656
https://github.com/conan-io/conan/pull/4611
https://github.com/conan-io/docs/pull/1091
https://github.com/conan-io/conan/pull/4594
https://github.com/conan-io/conan/pull/4591
https://github.com/conan-io/conan/pull/4585
https://github.com/conan-io/conan/pull/4580

Conan Documentation, Release 1.31.4

• Fix: Remove package references associated to a remote in registry.json when that remote is deleted #4568

• Fix: Fixed issue with Artifactory when the anonymous user is enabled, causing the uploads to fail without
requesting the user and password. #4526

• Fix: Do not allow an alias to override an existing package #4495

• Fix: Do not display the warning when there are files in the package folder (#4438). #4464

• Fix: Renamed the conan link command to conan editable to put packages into editable mode. #4481 .
Docs here

• Bugfix: Solve problem with loading recipe python files in Python 3.7 because of module.__file__ = None
#4669

• Bugfix: Do not attempt to upload non-existing packages, due to empty short_paths folders, or to explicit upload
-p=id command. #4615

• Bugfix: Fix LIB overwrite in virtualbuildenv generator #4583

• Bugfix: Avoid str(self.settings.xxx) crash when the value is None. #4571 . Docs here

• Bugfix: Build-requires expand over the closure of the package they apply to, so they can create conflicts too.
Previously, those conflicts were silently skipped, and builds would use an undetermined version and configuration
of dependencies. #4514

• Bugfix: meson build type actually reflects recipe shared option #4489

• Bugfix: Fixed several bugs related to revisions. #4462 . Docs here

• Bugfix: Fixed several bugs related to the package metadata.json #4462 . Docs here

21.69 1.12.3 (18-Feb-2019)

• Fix: Fix potential downgrade from future 1.13 to 1.12 #4547

• Fix: Remove output warnings in MSBuild helper. #4518

• Fix: Revert default cmake generator on Windows (#4265) #4509 . Docs here

• Bugfix: Fixed problem with conanfile.txt [imports] sections using the ‘@’ character. #4539 . Docs here

• Bugfix: Fix search packages function when remote is called all #4502

21.70 1.12.2 (8-Feb-2019)

• Bugfix: Regression in MSBuild helper, incorrectly ignoring the conan_build.props file because of using a
relative path instead of absolute one. #4488

21.69. 1.12.3 (18-Feb-2019) 657

https://github.com/conan-io/conan/pull/4568
https://github.com/conan-io/conan/pull/4526
https://github.com/conan-io/conan/pull/4495
https://github.com/conan-io/conan/pull/4464
https://github.com/conan-io/conan/pull/4481
https://github.com/conan-io/docs/pull/1086
https://github.com/conan-io/conan/pull/4669
https://github.com/conan-io/conan/pull/4615
https://github.com/conan-io/conan/pull/4583
https://github.com/conan-io/conan/pull/4571
https://github.com/conan-io/docs/pull/1089
https://github.com/conan-io/conan/pull/4514
https://github.com/conan-io/conan/pull/4489
https://github.com/conan-io/conan/pull/4462
https://github.com/conan-io/docs/pull/1105
https://github.com/conan-io/conan/pull/4462
https://github.com/conan-io/docs/pull/1105
https://github.com/conan-io/conan/pull/4547
https://github.com/conan-io/conan/pull/4518
https://github.com/conan-io/conan/pull/4509
https://github.com/conan-io/docs/pull/1072
https://github.com/conan-io/conan/pull/4539
https://github.com/conan-io/docs/pull/1078
https://github.com/conan-io/conan/pull/4502
https://github.com/conan-io/conan/pull/4488

Conan Documentation, Release 1.31.4

21.71 1.12.1 (5-Feb-2019)

• Bugfix: GraphInfo parsing of existing graph_info.json files raises KeyError over “root”. #4458

• Bugfix: Transitive Editable packages fail to install #4448

21.72 1.12.0 (30-Jan-2019)

• Feature: Add JSON output to ‘info’ command #4359 . Docs here

• Feature: Remove system requirements conan folders (not installed binaries) from cache #4354 . Docs here

• Feature: Updated CONTRIBUTING.md with code style #4348

• Feature: Updated OS versions for apple products #4345

• Feature: add environment variable CONAN_CACHE_NO_LOCKS to simplify debugging #4309 . Docs here

• Feature: The commands conan install, conan info, conan create and conan export-pkg now can
receive multiple profile arguments. The applied profile will be the composition of them, prioritizing the latest
applied. #4308 . Docs here

• Feature: Added get_tag() methods to tools.Git() and tools.SVN() helpers. #4306 . Docs here

• Feature: Package reference is now accepted as an argument in conan install --build #4305 . Docs here

• Feature: define environment variables for CTest #4299 . Docs here

• Feature: Added a configuration entry at the conan.conf file to be able to specify a custom CMake executable.
#4298 . Docs here

• Feature: Skip “README.md” and “LICENSE.txt” during the installation of a custom config via conan config
install. #4259 . Docs here

• Feature: allow to specify MSBuild verbosity level #4251 . Docs here

• Feature: add definitions to MSBuild build helper (and tools.build_sln_command()) #4239 . Docs here

• Feature: Generate deterministic short paths on Windows #4238

• Feature: The tools.environment_append() now accepts unsetting variables by means of appending such variable
with a value equal to None. #4224 . Docs here

• Feature: Enable a new reference argument in conan install <path> <reference>, where reference
can be a partial reference too (identical to what is passed to conan create or conan export. This allows
defining all pkg,version,user,channel fields of the recipe for the local flow. #4197 . Docs here

• Feature: Added support for new architecture ppc32 #4195 . Docs here

• Feature: Added support for new architecture armv8.3 #4195 . Docs here

• Feature: Added support for new architecture armv8_32 #4195 . Docs here

• Feature: Add experimental support for packages in editable mode #4181 . Docs here

• Fix: Conditionally expand list-like environment variables in virtualenv generator #4396

• Fix: get_cross_building_settings for MSYS #4390

• Fix: Implemented retrial of output to stdout stream when the OS (Windows) is holding it and producing IOError
for output #4375

• Fix: Validate CONAN_CPU_COUNT and output user-friendly message for invalid values #4372

658 Chapter 21. Changelog

https://github.com/conan-io/conan/pull/4458
https://github.com/conan-io/conan/pull/4448
https://github.com/conan-io/conan/pull/4359
https://github.com/conan-io/docs/pull/1050
https://github.com/conan-io/conan/pull/4354
https://github.com/conan-io/docs/pull/1038
https://github.com/conan-io/conan/pull/4348
https://github.com/conan-io/conan/pull/4345
https://github.com/conan-io/conan/pull/4309
https://github.com/conan-io/docs/pull/1019
https://github.com/conan-io/conan/pull/4308
https://github.com/conan-io/docs/pull/1036
https://github.com/conan-io/conan/pull/4306
https://github.com/conan-io/docs/pull/1020
https://github.com/conan-io/conan/pull/4305
https://github.com/conan-io/docs/pull/1017
https://github.com/conan-io/conan/pull/4299
https://github.com/conan-io/docs/pull/1018
https://github.com/conan-io/conan/pull/4298
https://github.com/conan-io/docs/pull/1025
https://github.com/conan-io/conan/pull/4259
https://github.com/conan-io/docs/pull/1016
https://github.com/conan-io/conan/pull/4251
https://github.com/conan-io/docs/pull/1012
https://github.com/conan-io/conan/pull/4239
https://github.com/conan-io/docs/pull/1024
https://github.com/conan-io/conan/pull/4238
https://github.com/conan-io/conan/pull/4224
https://github.com/conan-io/docs/pull/1003
https://github.com/conan-io/conan/pull/4197
https://github.com/conan-io/docs/pull/1045
https://github.com/conan-io/conan/pull/4195
https://github.com/conan-io/docs/pull/1001
https://github.com/conan-io/conan/pull/4195
https://github.com/conan-io/docs/pull/1001
https://github.com/conan-io/conan/pull/4195
https://github.com/conan-io/docs/pull/1001
https://github.com/conan-io/conan/pull/4181
https://github.com/conan-io/docs/pull/1009
https://github.com/conan-io/conan/pull/4396
https://github.com/conan-io/conan/pull/4390
https://github.com/conan-io/conan/pull/4375
https://github.com/conan-io/conan/pull/4372

Conan Documentation, Release 1.31.4

• Fix: Map cpp_info.cppflags to CONAN_CXXFLAGS in make generator. #4349 . Docs here

• Fix: Use *_DIRS instead of *_PATHS ending for varaibles generated by the make generator: INCLUDE_DIRS,
LIB_DIRS, BIN_DIRS, BUILD_DIRS and RES_DIRS #4349 . Docs here

• Fix: Bumped requirement of pyOpenSSL on OSX to >=16.0.0, <19.0.0 #4333

• Fix: Fixed a bug in the migration of the server storage to the revisions layout. #4325

• Fix: ensure tools.environment_append doesn’t raise trying to unset variables #4324 . Docs here

• Fix: Improve error message when a server (like a proxy), returns 200-OK for a conan api call, but with an
unexpected message. #4317

• Fix: ensure is_windows, detect_windows_subsystem, uname work under MSYS/Cygwin #4313

• Fix: uname shouldn’t use -o flag, which is GNU extention #4311

• Fix: get_branch() method of tools.SVN() helper now returns only the branch name, not the tag when
present. #4306 . Docs here

• Fix: Conan client now always include the X-Checksum-Sha1 header in the file uploads, not only when checking
if the file is already there with a remote supporting checksum deploy (Artifactory) #4303

• Fix: SCM optimization related to scm_folder.txt is taken into account only for packages under development.
#4301

• Fix: Update premake generator, rename conanbuildinfo.premake -> conanbuildinfo.premake.lua, co-
nan_cppdefines -> conan_defines #4296 . Docs here

• Fix: Using yaml.safe_load instead of load #4285

• Fix: Fixes default CMake generator on Windows to use MinGW Makefiles. #4281 . Docs here

• Fix: Visual Studio toolset is passed from settings to the MSBuild helper #4250 . Docs here

• Fix: Handle corner cases related to SCM with local sources optimization #4249

• Fix: Allow referring to projects created by b2 generator for dependencies with absolute paths. #4211

• Fix: Credentials are removed from SCM url attribute if Conan is automatically resolving it. #4207 . Docs here

• Fix: Remove client/server versions check on every request. Return server capabilities only in ping endpoint.
#4205

• Fix: Updated contributing guidelines to the new workflow #4173

• Bugfix: Fixes config install when copying hooks #4412

• BugFix: Meson generator was failing in case of package_folder == None (test_package using Meson) #4391

• BugFix: Prepend environment variables are applied twice in conanfile #4380

• Bugfix: Caching of several internal loaders broke the conan_api usage #4362

• Bugfix: Removing usage of FileNotFoundError which is Py3 only #4361

• Bugfix: Custom generator allow to use imports #4358 . Docs here

• Bugfix: conanbuildinfo.cmake won’t fail if project() LANGUAGE is None, but the user defines
CONAN_DISABLE_CHECK_COMPILER. #4276

• Bugfix: Fix version ranges containing spaces and not separated by commas. #4273

• Bugfix: When running consecutively Conan python API calls to create the default profile object became modified
and cached between calls. #4256

• Bugfix: Fixes a bug in the CMake build helper about how flags are appended #4227

21.72. 1.12.0 (30-Jan-2019) 659

https://github.com/conan-io/conan/pull/4349
https://github.com/conan-io/docs/pull/1037
https://github.com/conan-io/conan/pull/4349
https://github.com/conan-io/docs/pull/1037
https://github.com/conan-io/conan/pull/4333
https://github.com/conan-io/conan/pull/4325
https://github.com/conan-io/conan/pull/4324
https://github.com/conan-io/docs/pull/1023
https://github.com/conan-io/conan/pull/4317
https://github.com/conan-io/conan/pull/4313
https://github.com/conan-io/conan/pull/4311
https://github.com/conan-io/conan/pull/4306
https://github.com/conan-io/docs/pull/1020
https://github.com/conan-io/conan/pull/4303
https://github.com/conan-io/conan/pull/4301
https://github.com/conan-io/conan/pull/4296
https://github.com/conan-io/docs/pull/1032
https://github.com/conan-io/conan/pull/4285
https://github.com/conan-io/conan/pull/4281
https://github.com/conan-io/docs/pull/1026
https://github.com/conan-io/conan/pull/4250
https://github.com/conan-io/docs/pull/1052
https://github.com/conan-io/conan/pull/4249
https://github.com/conan-io/conan/pull/4211
https://github.com/conan-io/conan/pull/4207
https://github.com/conan-io/docs/pull/996
https://github.com/conan-io/conan/pull/4205
https://github.com/conan-io/conan/pull/4173
https://github.com/conan-io/conan/pull/4412
https://github.com/conan-io/conan/pull/4391
https://github.com/conan-io/conan/pull/4380
https://github.com/conan-io/conan/pull/4362
https://github.com/conan-io/conan/pull/4361
https://github.com/conan-io/conan/pull/4358
https://github.com/conan-io/docs/pull/1043
https://github.com/conan-io/conan/pull/4276
https://github.com/conan-io/conan/pull/4273
https://github.com/conan-io/conan/pull/4256
https://github.com/conan-io/conan/pull/4227

Conan Documentation, Release 1.31.4

• Bugfix: Apply the environment to the local conan package command #4204

• Bugfix: b2 generator was failing when package recipe didn’t use compiler setting #4202

21.73 1.11.2 (8-Jan-2019)

• Bugfix: The migrated data in the server from a version previous to Conan 1.10.0 was not migrated creating the
needed indexes. This fixes the migration and creates the index on the fly for fixing broken migrations. Also the
server doesn’t try to migrate while running but warns the user to run conan server –migrate after doing a backup
of the data, avoiding issues when running the production servers like gunicorn where the process doesn’t accept
input from the user. #4229

21.74 1.11.1 (20-Dec-2018)

• BugFix: Fix conan config install requester for zip file download #4172

21.75 1.11.0 (19-Dec-2018)

• Feature: Store verify_ssl argument in conan config install #4158 . Docs here

• Feature: Tox launcher to run the test suite. #4151

• Feature: Allow --graph=file.html html output using local vis.min.js and vis.min.css resources if they are
found in the local cache (can be deployed via conan config install) #4133 . Docs here

• Feature: Improve client DEBUG traces with better and more complete messages. #4128

• Feature: Server prints the configuration used at startup to help debugging issues. #4128

• Feature: Allow hooks to be stored in folders #4106 . Docs here

• Feature: Remove files containing Macos meta-data (files beginning by ._) #4103 . Docs here

• Feature: Allow arguments in git clone for conan config install #4083 . Docs here

• Feature: Display the version-ranges resolutions in a cleaner way. #4065

• Feature: allow conan export . version@user/channel and conan create . version@user/channel
#4062 . Docs here

• Fix: cmake_find_package generator not forwarding all dependency properties #4125

• Fix: Recent updates in python break ConfigParser with % in values, like in path names containing % (jenkins)
#4122

• Fix: The property file that the MSBuild() is now generated in the build_folder instead of a temporary folder to
allow more reproducible builds. #4113 . Docs here

• Fix: Fixed the check of the return code from Artifactory when using the checksum deploy feature. #4100

• Fix: Evaluate always SCM attribute before exporting the recipe #4088 . Docs here

• Fix: Reordered Python imports #4064

• Bugfix: In ftp_download function there is extra call to ftp.login() with empty args. This causes ftp lib to
login again with empty credentials and throwing exception because authentication is required by server. #4092

• Bugfix: Take into account os_build and arch_build for search queries. #4061

660 Chapter 21. Changelog

https://github.com/conan-io/conan/pull/4204
https://github.com/conan-io/conan/pull/4202
https://github.com/conan-io/conan/pull/4229
https://github.com/conan-io/conan/pull/4172
https://github.com/conan-io/conan/pull/4158
https://github.com/conan-io/docs/pull/976
https://github.com/conan-io/conan/pull/4151
https://github.com/conan-io/conan/pull/4133
https://github.com/conan-io/docs/pull/972
https://github.com/conan-io/conan/pull/4128
https://github.com/conan-io/conan/pull/4128
https://github.com/conan-io/conan/pull/4106
https://github.com/conan-io/docs/pull/979
https://github.com/conan-io/conan/pull/4103
https://github.com/conan-io/docs/pull/978
https://github.com/conan-io/conan/pull/4083
https://github.com/conan-io/docs/pull/975
https://github.com/conan-io/conan/pull/4065
https://github.com/conan-io/conan/pull/4062
https://github.com/conan-io/docs/pull/982
https://github.com/conan-io/conan/pull/4125
https://github.com/conan-io/conan/pull/4122
https://github.com/conan-io/conan/pull/4113
https://github.com/conan-io/docs/pull/980
https://github.com/conan-io/conan/pull/4100
https://github.com/conan-io/conan/pull/4088
https://github.com/conan-io/docs/pull/981
https://github.com/conan-io/conan/pull/4064
https://github.com/conan-io/conan/pull/4092
https://github.com/conan-io/conan/pull/4061

Conan Documentation, Release 1.31.4

21.76 1.10.2 (17-Dec-2018)

• Bugfix: Fixed bad URL schema in ApiV2 that could cause URLs collisions #4138

21.77 1.10.1 (11-Dec-2018)

• Fix: Handle some corner cases of python_requires #4099

• Bugfix: Add v1_only argument in Conan server class #4096

• Bugfix: Handle invalid use of python_requires when imported like conans.python_requires #4090

21.78 1.10.0 (4-Dec-2018)

• Feature: Add include_prerelease and loose option to version range expression #3898

• Feature: Merged “revisions” feature code in develop branch, still disabled by default until it gets stabilized. #3055

• Feature: CMake global variable to disable Conan output CONAN_CMAKE_SILENT_OUTPUT #4042

• Feature: Added new make generator. #4003

• Feature: Deploy a conan snapshot package to test.pypi.org for every develop commit. #4000

• Fix: Using the scm feature when Conan is not able to read the gitignored files (local optimization mechanism)
print a warning to improve the debug information but not crash. #4045

• Fix: The tools.get tool (download + unzip) now supports all the arguments of the download tool. e.g: verify,
retry, retry_wait etc. #4041

• Fix: Improve make generator test #4018

• Fix: Add space and dot in conan new --help #3999

• Fix: Resolve aliased packages in python_requires #3957

• Bugfix: Better checks of package reference pkg/version@user/channel, avoids bugs for conanfile in 4 nested
folders and conan install path/to/the/file #4044

• Bugfix: Running Windows subsystem scripts crashed when the PATH environment variable passed as a list.
#4039

• Bugfix: Fix removal of conanfile.py with conan source command and the removal of source folder in the local
cache when something fails #4033

• Bugfix: A conan install with a reference failed when running in the operating system root folder because
python tried to create the directory even when nothing is going to be written. #4012

• Bugfix: Fix qbs generator mixing sharedlinkflags and exelinkflags #3980

• Bugfix: compiler_args generated “mytool.lib.lib” for Visual Studio libraries that were defined with the .lib
extension in the self.cpp_info.libs field of package_info(). #3976

21.76. 1.10.2 (17-Dec-2018) 661

https://github.com/conan-io/conan/pull/4138
https://github.com/conan-io/conan/pull/4099
https://github.com/conan-io/conan/pull/4096
https://github.com/conan-io/conan/pull/4090
https://github.com/conan-io/conan/pull/3898
https://github.com/conan-io/conan/pull/3055
https://github.com/conan-io/conan/pull/4042
https://github.com/conan-io/conan/pull/4003
https://test.pypi.org/project/conan/
https://github.com/conan-io/conan/pull/4000
https://github.com/conan-io/conan/pull/4045
https://github.com/conan-io/conan/pull/4041
https://github.com/conan-io/conan/pull/4018
https://github.com/conan-io/conan/pull/3999
https://github.com/conan-io/conan/pull/3957
https://github.com/conan-io/conan/pull/4044
https://github.com/conan-io/conan/pull/4039
https://github.com/conan-io/conan/pull/4033
https://github.com/conan-io/conan/pull/4012
https://github.com/conan-io/conan/pull/3980
https://github.com/conan-io/conan/pull/3976

Conan Documentation, Release 1.31.4

21.79 1.9.2 (20-Nov-2018)

• Bugfix: SVN API changes are relevant since version 1.9 #3954

• Bugfix: Fixed bug in vcvars_dict tool when using filter_known_paths argument. #3941

21.80 1.9.1 (08-Nov-2018)

• Fix: Fix regression introduced in 1.7, setting amd64_x86 when no arch_build is defined. #3918

• Fix: Do not look for binaries in other remotes than the recipe, if it is defined. #3890

• Bugfix: sudo --askpass breaks CentOS 6 package installation. The sudo version on CentOS 6 is 1.8.6. The
option of askpass for sudo version 1.8.7 or older is sudo -A. #3885

21.81 1.9.0 (30-October-2018)

• Feature: Support for srcdirs in package_info(). Packages can package sources, and specify their location,
which will be propagated to consumers. Includes support for CMake generator. #3857

• Feature: Added remote_name and remote_url to upload json output. #3850

• Feature: Add environment variable CONAN_USE_ALWAYS_SHORT_PATHS to let the consumer override
short_paths behavior from recipes #3846

• Feature: Added --json output to conan export_pkg command #3809

• Feature: Add conan remote clean subcommand #3767

• Feature: New premake generator incorporated to the Conan code base from the external generator at https:
//github.com/memsharded/conan-premake. #3751

• Feature: New conan remote list_pref/add_pref/remove_pref/update_pref commands added to manage the new
Registry entries for binary packages. #3726

• Feature: Add cpp_info data to json output of install and create commands at package level. #3717

• Feature: Now the default templates of the conan new command use the docker images from the conanio orga-
nization: https://hub.docker.com/u/conanio #3710

• Feature: Added topics attribute to the ConanFile to specify topics (a.k.a tags, a.k.a keywords) to the recipe.
#3702

• Feature: Internal refactor to the remote registry to manage a json file. Also improved internal interface. #3676

• Feature: Implement reuse of sources (exports_sources) in recipes used as python_requires(). #3661

• Feature: Added support for Clang >=8 and the new versioning schema, where only the major and the patch is
used. #3643

• Fix: Renamed Plugins as Hooks #3867

• Fix: Adds GCC 8.2 to default settings.yml #3865

• Fix: Hidden confusing messages download conaninfo.txt when requesting the server to check package manifests.
#3861

• Fix: The MSBuild() build helper doesn’t adjust the compiler flags for the build_type anymore because they are
adjusted by the project itself. #3860

662 Chapter 21. Changelog

https://github.com/conan-io/conan/pull/3954
https://github.com/conan-io/conan/pull/3941
https://github.com/conan-io/conan/pull/3918
https://github.com/conan-io/conan/pull/3890
https://github.com/conan-io/conan/pull/3885
https://github.com/conan-io/conan/pull/3857
https://github.com/conan-io/conan/pull/3850
https://github.com/conan-io/conan/pull/3846
https://github.com/conan-io/conan/pull/3809
https://github.com/conan-io/conan/pull/3767
https://github.com/memsharded/conan-premake
https://github.com/memsharded/conan-premake
https://github.com/conan-io/conan/pull/3751
https://github.com/conan-io/conan/pull/3726
https://github.com/conan-io/conan/pull/3717
https://hub.docker.com/u/conanio
https://github.com/conan-io/conan/pull/3710
https://github.com/conan-io/conan/pull/3702
https://github.com/conan-io/conan/pull/3676
https://github.com/conan-io/conan/pull/3661
https://github.com/conan-io/conan/pull/3643
https://github.com/conan-io/conan/pull/3867
https://github.com/conan-io/conan/pull/3865
https://github.com/conan-io/conan/pull/3861
https://github.com/conan-io/conan/pull/3860

Conan Documentation, Release 1.31.4

• Fix: Add neon as linux distro for SystemPackageTools #3845

• Fix: remove error that was raised for custom compiler & compiler version, while checking cppstd setting. #3844

• Fix: do not allow wildcards in command conan download <ref-without-wildcards> #3843

• Fix: do not populate arch nor arch_build in autodetected profile if platform.machine returns an empty
string. #3841

• Fix: The registry won’t remove a reference to a remote removed recipe or package. #3838

• Fix: Internal improvements of the ConanFile loader #3837

• Fix: environment variables are passed verbatim to generators. #3836

• Fix: Implement dirty checks in the cache build folder, so failed builds are not packaged when there is a
build_id() method. #3834

• Fix: vcvars is also called in the CMake() build helper when clang compiler is used, not only with Visual
Studio`compiler. `#3832

• Fix: Ignore empty line when parsing output inside SVN::excluded_files function. #3830

• Fix: Bump version of tqdm requirement to >=4.28.0 #3823

• Fix: Handling corrupted lock files in cache #3816

• Fix: Implement download concurrency checks, to allow simultaneous download of the same package (as header-
only) while installing different configurations that depend on that package. #3806

• Fix: vcvars is also called in the CMake() build helper when using Ninja or NMake generators. #3803

• Fix: Fixed link_flags management in MSBuild build helper #3791

• Fix: Allow providing --profile argument (and settings, options, env, too) to conan export-pkg, so it is
able to correctly compute the binary package_id in case the information captured in the installed conaninfo.txt
in previous conan install does not contain all information to reconstruct the graph. #3768

• Fix: Upgrade dependency of tqdm to >=4.27: solves issue with weakref assertion. #3763

• Fix: Use XML output to retrieve information from SVN command line if its client version is less than 1.8
(command --show-item is not available). #3757

• Fix: SVN v1.7 does not have -r argument in svn status, so functionality SVN::is_pristine won’t be avail-
able. #3757

• Fix: Add --askpass argument to sudo if it is not an interactive terminal #3727

• Fix: The remote used to download a binary package is now stored, so any update for the specific binary will
come from the right remote. #3726

• Fix: Use XML output from SVN command line interface to compute if the repository is pristine. #3653

• Fix: Updated templates of the conan new command with the latest conan package tools changes. #3651

• Fix: Improve error messages if conanfile was not found #3554

• BugFix: Fix conflicting multiple local imports for python_requires #3876

• Bugfix: do not ask for the username if it is already given when login into a remote. #3839

• Bugfix: yum update needs user’s confirmation, which breaks system update in CentOS non-interactive terminal.
#3747

21.81. 1.9.0 (30-October-2018) 663

https://github.com/conan-io/conan/pull/3845
https://github.com/conan-io/conan/pull/3844
https://github.com/conan-io/conan/pull/3843
https://github.com/conan-io/conan/pull/3841
https://github.com/conan-io/conan/pull/3838
https://github.com/conan-io/conan/pull/3837
https://github.com/conan-io/conan/pull/3836
https://github.com/conan-io/conan/pull/3834
https://github.com/conan-io/conan/pull/3832
https://github.com/conan-io/conan/pull/3832
https://github.com/conan-io/conan/pull/3830
https://github.com/conan-io/conan/pull/3823
https://github.com/conan-io/conan/pull/3816
https://github.com/conan-io/conan/pull/3806
https://github.com/conan-io/conan/pull/3803
https://github.com/conan-io/conan/pull/3791
https://github.com/conan-io/conan/pull/3768
https://github.com/conan-io/conan/pull/3763
https://github.com/conan-io/conan/pull/3757
https://github.com/conan-io/conan/pull/3757
https://github.com/conan-io/conan/pull/3727
https://github.com/conan-io/conan/pull/3726
https://github.com/conan-io/conan/pull/3653
https://github.com/conan-io/conan/pull/3651
https://github.com/conan-io/conan/pull/3554
https://github.com/conan-io/conan/pull/3876
https://github.com/conan-io/conan/pull/3839
https://github.com/conan-io/conan/pull/3747

Conan Documentation, Release 1.31.4

21.82 1.8.4 (19-October-2018)

• Feature: Increase debugging information when an error uploading a recipe with different timestamp occurs.
#3801

• Fix: Changed tqdm dependency to a temporarily forked removing the “man” directory write permissions issue
installing the pip package. #3802

• Fix: Removed ndg-httpsclient and pyasn dependencies from OSX requirements file because they shouldn’t be
necessary. #3802

21.83 1.8.3 (17-October-2018)

• Feature: New attributes default_user and default_channel that can be declared in a conanfile to specify
the user and channel for conan local methods when neither CONAN_USERNAME and CONAN_CHANNEL
environment variables exist. #3758

• Bugfix: AST parsing of conanfile.py with shebang and encoding header lines was failing in python 2. This
fix also allows non-ascii chars in conanfile.py if proper encoding is declared. #3750

21.84 1.8.2 (10-October-2018)

• Fix: Fix misleading warning message in tools.collect_libs() #3718

• BugFix: Fixed wrong naming of --sbindir and --libexecdir in AutoTools build helper. #3715

21.85 1.8.1 (10-October-2018)

• Fix: Remove warnings related to python_requires(), both in linter and due to Python2. #3706

• Fix: Use share folder for DATAROOTDIR in CMake and AutoTools build helpers. #3705

• Fix: Disabled apiv2 until the new protocol becomes stable. #3703

21.86 1.8.0 (9-October-2018)

• Feature: Allow conan config install to install configuration from a folder and not only from compressed files.
#3680

• Feature: The environment variable CONAN_DEFAULT_PROFILE_PATH allows the user to define the path
(existing) to the default profile that will be used by Conan. #3675

• Feature: New conan inspect command that provides individual attributes of a recipe, like name, version, or
options. Work with -r=remote repos too, and is able to produce --json output. #3634

• Feature: Validate parameter for ConanFileReference objects to avoid unnecessary checks #3623

• Feature: The environment variable CONAN_DEFAULT_PROFILE_PATH allows the user to define the path
(absolute and existing) to the default profile that will be used by Conan. #3615

• Feature: Warning message printed if Conan cannot deduce an architecture of a GNU triplet. #3603

664 Chapter 21. Changelog

https://github.com/conan-io/conan/pull/3801
https://github.com/conan-io/conan/pull/3802
https://github.com/conan-io/conan/pull/3802
https://github.com/conan-io/conan/pull/3758
https://github.com/conan-io/conan/pull/3750
https://github.com/conan-io/conan/pull/3718
https://github.com/conan-io/conan/pull/3715
https://github.com/conan-io/conan/pull/3706
https://github.com/conan-io/conan/pull/3705
https://github.com/conan-io/conan/pull/3703
https://github.com/conan-io/conan/pull/3680
https://github.com/conan-io/conan/pull/3675
https://github.com/conan-io/conan/pull/3634
https://github.com/conan-io/conan/pull/3623
https://github.com/conan-io/conan/pull/3615
https://github.com/conan-io/conan/pull/3603

Conan Documentation, Release 1.31.4

• Feature: The AutotoolsBuildEnvironment and CMake build helpers now adjust default for the GNU standard
installation directories: bindir, sbin, libexec, includedir, oldincludedir, datarootdir #3599

• Feature: Added use_default_install_dirs in AutotoolsBuildEnvironment.configure() to opt-out
from the defaulted installation dirs. #3599

• Feature: Clean repeated entries in the PATH when vcvars is run, mitigating the max size of the env var issues.
#3598

• Feature: Allow vcvars to run if clang-cl compiler is detected. #3574

• Feature: Added python 2 deprecation message in the output of the conan commands. #3567

• Feature: The conan install command now prints information about the applied configuration. #3561

• Feature: New naming convention for conanfile reserved/public/private attributes. #3560

• Feature: Experimental support for Conan plugins. #3555

• Feature: Progress bars for files unzipping. #3545

• Feature: Improved graph propagation performance from O(n2) to O(n). #3528

• Feature: Added ConanInvalidConfiguration as the standard way to indicate that a specific configuration is
not valid for the current package. e.g library not compatible with Windows. #3517

• Feature: Added libtool() function to the tools.XCRun() tool to locate the system libtool. #3515

• Feature: The tool tools.collect_libs() now search into each folder declared in self.cpp_info.libdirs.
#3503

• Feature: Added definition CMAKE_OSX_DEPLOYMENT_TARGET to the CMake build helper following the os.
version setting for Macos. #3486

• Feature: The upload of files now uses the conanmanifest.txt file to know if a file has to be uploaded or not. It
avoids issues associated with the metadata of the files permissions contained in the tgz files. #3480

• Feature: The default_options in a conanfile.py can be specified now as a dictionary. #3477

• Feature: The command conan config install now support relative paths. #3468

• Feature: Added a definition CONAN_IN_LOCAL_CACHE to the CMake() build helper. #3450

• Feature: Improved AptTool at SystemPackageTool adding a function add_repository to add new apt repositories.
#3445

• Feature: Experimental and initial support for the REST apiv2 that will allow transfers in one step and revisions
in the future. #3442

• Feature: Improve the output of a conan install command printing dependencies when a binary is not found.
#3438

• Feature: New b2 generator. It replaces the old incomplete boost_build generator that is now deprecated. #3416

• Feature: New tool.replace_path_in_file to replace Windows paths in a file doing case-insensitive com-
parison and indistinct path separators comparison: “/” == “\” #3399

• Feature: [Experimental] Add SCM support for SVN. #3192

• Fix: None option value was not being propagated upstream in the dependency graph #3684

• Fix: Apply system_requirements() always on install, in case the folder was removed. #3647

• Fix: Included bottle package in the development requirements #3646

• Fix: More complete architecture list in the detection of the gnu triplet and the detection of the build machine
architecture. #3581

21.86. 1.8.0 (9-October-2018) 665

https://github.com/conan-io/conan/pull/3599
https://github.com/conan-io/conan/pull/3599
https://github.com/conan-io/conan/pull/3598
https://github.com/conan-io/conan/pull/3574
https://github.com/conan-io/conan/pull/3567
https://github.com/conan-io/conan/pull/3561
https://github.com/conan-io/conan/pull/3560
https://github.com/conan-io/conan/pull/3555
https://github.com/conan-io/conan/pull/3545
https://github.com/conan-io/conan/pull/3528
https://github.com/conan-io/conan/pull/3517
https://github.com/conan-io/conan/pull/3515
https://github.com/conan-io/conan/pull/3503
https://github.com/conan-io/conan/pull/3486
https://github.com/conan-io/conan/pull/3480
https://github.com/conan-io/conan/pull/3477
https://github.com/conan-io/conan/pull/3468
https://github.com/conan-io/conan/pull/3450
https://github.com/conan-io/conan/pull/3445
https://github.com/conan-io/conan/pull/3442
https://github.com/conan-io/conan/pull/3438
https://github.com/conan-io/conan/pull/3416
https://github.com/conan-io/conan/pull/3399
https://github.com/conan-io/conan/pull/3192
https://github.com/conan-io/conan/pull/3684
https://github.com/conan-io/conan/pull/3647
https://github.com/conan-io/conan/pull/3646
https://github.com/conan-io/conan/pull/3581

Conan Documentation, Release 1.31.4

• Fix: Avoid downloading the manifest of the recipe twice for uploads. Making this download quiet, without
output. #3552

• Fix: Fixed Git scm class avoiding to replace any character in the get_branch() function. #3496

• Fix: Removed login username syntax checks that were no longer necessary. #3464

• Fix: Removed bad duplicated messages about dependency overriding when using conan alias. #3456

• Fix: Improve conan info help message. #3415

• Fix: The generator files are only written in disk if the content of the generated file changes. #3412

• Fix: Improved error message when parsing a bad conanfile reference. #3410

• Fix: Paths are replaced correctly on Windows when using CMake().patch_config_files(). #3399

• Fix: Fixed AptTool at SystemPackageTool to improve the detection of an installed package. #3033

• BugFix: Fixes python_requires overwritten when using more than one of them in a recipe #3628

• BugFix: Fix output overlap of decompress progress and plugins #3622

• Bugfix: Check if the system_requirements() have to be executed even when the package is retrieved from
the local cache. #3616

• Bugfix: All API calls are now logged into the CONAN_TRACE_FILE log file. #3613

• Bugfix: Renamed os (reserved symbol) parameter to os_ in the get_gnu_triplet tool. #3603

• Bugfix: conan get command now works correctly with enabled short paths. #3600

• Bugfix: Fixed scm replacement of the variable when exporting a conanfile. #3576

• Bugfix: apiv2 was retrying the downloads even when a 404 error was raised. #3562

• Bugfix: Fixed export_sources excluded patterns containing symlinks. #3537

• Bugfix: Fixed bug with transitive private dependencies. #3525

• Bugfix: get_cased_path crashed when the path didn’t exist. #3516

• BugFix: Fixed failures when Conan walk directories with files containing not ASCCI characters in the file name.
#3505

• Bugfix: The scm feature now looks for the repo root even when the conanfile.py is in a subfolder. #3479

• Bugfix: Fixed OSInfo.bash_path() when there is no windows_subsystem. #3455

• Bugfix: AutotoolsBuildEnvironment was not defaulting the output library directory causing broken consumption
of packages when rebuilding from sources in different Linux distros using lib64 default. Read more here. #3388

21.87 1.7.4 (18-September-2018)

• Bugfix: Fixed a bug in apiv2.

• Fix: Disabled apiv2 by default until it gets more stability.

666 Chapter 21. Changelog

https://github.com/conan-io/conan/pull/3552
https://github.com/conan-io/conan/pull/3496
https://github.com/conan-io/conan/pull/3464
https://github.com/conan-io/conan/pull/3456
https://github.com/conan-io/conan/pull/3415
https://github.com/conan-io/conan/pull/3412
https://github.com/conan-io/conan/pull/3410
https://github.com/conan-io/conan/pull/3399
https://github.com/conan-io/conan/pull/3033
https://github.com/conan-io/conan/pull/3628
https://github.com/conan-io/conan/pull/3622
https://github.com/conan-io/conan/pull/3616
https://github.com/conan-io/conan/pull/3613
https://github.com/conan-io/conan/pull/3603
https://github.com/conan-io/conan/pull/3600
https://github.com/conan-io/conan/pull/3576
https://github.com/conan-io/conan/pull/3562
https://github.com/conan-io/conan/pull/3537
https://github.com/conan-io/conan/pull/3525
https://github.com/conan-io/conan/pull/3516
https://github.com/conan-io/conan/pull/3505
https://github.com/conan-io/conan/pull/3479
https://github.com/conan-io/conan/pull/3455
https://github.com/conan-io/conan/pull/3388

Conan Documentation, Release 1.31.4

21.88 1.7.3 (6-September-2018)

• Bugfix: Uncontrolled exception was raised while printing the output of an error downloading a file.

• Bugfix: Fixed *:option pattern for conanfile consumers.

21.89 1.7.2 (4-September-2018)

• Bugfix: Reverted default options initialization to empty string with varname=.

• Bugfix: Fixed conan build command with –test and –install arguments.

21.90 1.7.1 (31-August-2018)

• Fix: Trailing sentences in Conan help command.

• Fix: Removed hardcoded -c init.templateDir= argument in git clone for conan config install, in
favor of a new --args parameter that allows custom arguments.

• Fix: SCM can now handle nested subfolders.

• BugFix: Fix conan export-pkg unnecessarily checking remotes.

21.91 1.7.0 (29-August-2018)

• Feature: Support for C++20 in CMake > 3.12.

• Feature: Included support for Python 3.7 in all platforms.

• Feature: [Experimental] New python_requires function that allows you to reuse Python code by “requiring”
it in Conan packages, even to extend the ConanFile class. See: Python requires: reusing python code in recipes

• Feature: CMake method patch_config_paths replaces absolute paths to a Conan package’s dependencies as
well as to the Conan package itself.

• Feature: MSBuild and VisualStudioBuildEnvironment build helpers adjust the /MP flag to build code in
parallel using multiple cores.

• Feature: Added a print_errors parameter to tools.PkgConfig() helper.

• Feature: Added --query argument to conan upload.

• Feature: virtualenv/virtualbuildenv/virtualrunenv generators now create bash scripts in Windows for
use in subsystems.

• Feature: Improved resolution speed for version ranges through caching of remote requests.

• Feature: Improved the result of tools.vcvars_dict(only_diff=True) including a “list” return type that
can be used with tools.environment_append().

• Fix: AutoToolsBuildEnvironment build helper now keeps the PKG_CONFIG_PATHS variable previously set
in the environment.

• Fix: The SCM feature keeps the .git folder during the copy of a local directory to the local cache.

• Fix: The SCM feature now correctly excludes the folders ignored by Git during the copy of a local directory to
the local cache.

21.88. 1.7.3 (6-September-2018) 667

Conan Documentation, Release 1.31.4

• Fix: Conan messages now spell “overridden” correctly.

• Fix: MSBuild build helper arguments using quotes.

• Fix: vcvars_command and MSBuild build helper use the amd64_x86 parameter when Visual Studio > 12 and
when cross building for x86.

• Fix: Disabled -c init.TemplateDir in conan config install from a Git repository.

• Fix: Clang compiler check in cmake generator.

• Fix: Detection of Zypper package tool on latest versions of openSUSE.

• Fix: Improved help output of some commands.

• BugFix: qmake generator hyphen.

• Bugfix: Git submodules are now initialized from repo HEAD after checking out the referenced revision when
using the scm attribute.

• BugFix: Declaration default_options without value, e.g. default_options = "config=". Now it will
throw an exception.

• BugFix: Deactivate script in virtualenv generator causes PS1 to go unset.

• BugFix: Apply general scope options to a consumer ConanFile first.

• BugFix: Fixed detection of a valid repository for Git in the SCM feature.

21.92 1.6.1 (27-July-2018)

• Bugfix: conan info --build-order was showing duplicated nodes for build-requires and private dependen-
cies.

• Fix: Fixed failure with the alias packages when the name of the package (excluded the version) was different
from the aliased package. Now it is limited in the conan alias command.

21.93 1.6.0 (19-July-2018)

• Feature: Added a new self.run(..., run_environment=True) argument, that automatically applies PATH,
LD_LIBRARY_PATH and DYLD_LIBRARY_PATH environment variables from the dependencies, to the execution
of the current command.

• Feature: Added a new tools.run_environment() method as a shortcut to using tools.
environment_append and RunEnvironment() together.

• Feature: Added a new self.run(..., ignore_errors=True) argument that represses launching an excep-
tion if the commands fails, so user can capture the return code.

• Feature: Improved tools.Git to allow capturing the current branch and enabling the export of a package whose
version is based on the branch and commit.

• Feature: The json generator now outputs settings and options

• Feature: conan remote list --raw prints remote information in a format valid for remotes.txt, so it can be
used for conan config install

• Feature: Visual Studio generator creates the conanbuildinfo.props file using the $(USERPROFILE) macro.

• Feature: Added a filename parameter to tools.get() in case it cannot be deduced from the URL.

668 Chapter 21. Changelog

Conan Documentation, Release 1.31.4

• Feature: Propagated keep_permissions and pattern parameters from tools.get() to tools.unzip().

• Feature: Added XZ extensions to unzip(). This will only work in Python 3 with lzma support enabled, other-
wise, and error is produced.

• Feature: Added FRAMEWORK_SEARCH_PATHS var to the Xcode generator to support packaging Apple Frame-
works. Read more here.

• Feature: Added conan build --test and a should_configure attribute to control the test stage. Read more
here.

• Feature: New tools to convert between files with LF and CRLF line endings: tools.unix2dos() and
tools.dos2unix().

• Feature: Added conan config install [url] --type=git to force cloning of a Git repo for http://...
git urls.

• Feature: Improved output information when a package is missing in a remote to show which package requires
the missing one.

• Feature: Improved the management of an upload interruption to avoid uploads of incomplete tarballs.

• Feature: Added new LLVM toolsets to the base settings.yml (Visual Studio).

• Feature: Created a plugin for pylint with the previous Conan checks (run in the export) enabling usage of the
plugin in IDEs and command line to check if recipes are correct.

• Feature: Improved the deb installer to guarantee that it runs correctly in Debian 9 and other distros.

• Fix: Fixed conan search -q and conan remove -q to not return packages that don’t have the setting specified
in the query.

• Fix: Fixed SystemPackageTool when calling to update with sudo is not enabled and mode=verify.

• Fix: Removed pyinstaller shared libraries from the linker environment for any Conan subprocess.

• BugFix: The YumTool now calls yum update instead of yum check-update.

• Bugfix: Solved a bug in which using --manifest parameter with conan create caused the deletion of infor-
mation in the dependency graph.

• Bugfix: Solved bug in which the build method of the Version model was not showing the version build field
correctly .

• Bugfix: Fixed a Conan crash caused by a dependency tree containing transitive private nodes.

21.94 1.5.2 (5-July-2018)

• Bugfix: Fixed bug with pre-1.0 packages with sources.

• Bugfix: Fixed regression in private requirements.

21.94. 1.5.2 (5-July-2018) 669

Conan Documentation, Release 1.31.4

21.95 1.5.1 (29-June-2018)

• Bugfix: Sources in the local cache weren’t removed when using scm pointing to the local source directory,
causing changes in local sources not applied to the conan create process.

• Bugfix: Fixed bug causing duplication of build requires in the dependency graph.

21.96 1.5.0 (27-June-2018)

• Feature: conan search <pkg-ref> -r=all now is able to search for binaries too in all remotes

• Feature: Dependency graph improvements: build_requires are represented in the graph (visible in conan
info`, also in the HTML graph). conan install and conan info commands shows extended information
of the binaries status (represented in colors in HTML graph). The dependencies declaration order in recipes is
respected (as long as it doesn’t break the dependency graph order).

• Feature: improved remote management, it is possible to get binaries from different remotes.

• Feature: conan user command is now able to show authenticated users.

• Feature: Added conan user --json json output to the command.

• Feature: New pattern argument to tools.unzip() and tools.untargz functions, that allow efficient ex-
traction of certain files only.

• Feature : Added Manjaro support for SystemPackageTools.

• Feature: Added Macos version subsetting in the default settings.yml file, to account for the “min OSX version”
configuration.

• Feature: SCM helper argument to recursively clone submodules

• Feature: SCM helper management of subfolder, allows using exports and exports_sources, manage sym-
links, and do not copy files that are .gitignored. Also, works better in the local development flow.

• Feature: Modifies user agent header to output the Conan client version and the Python version. Example: Conan/
1.5.0 (Python 2.7.1)

• Fix: The CMake() helper now doesn’t require a compiler input to deduce the default generator.

• Fix: conan search <pattern> now works consistently in local cache and remotes.

• Fix: Proxy related environment variables are removed if conan.conf declares proxy configuration.

• Fix: Fixed the parsing of invalid JSON when Microsoft vswhere tool outputs invalid non utf-8 text.

• Fix: Applying winsdk and vcvars_ver to MSBuild and vcvars_command for VS 14 too.

• Fix: Workspaces now support build_requires.

• Fix: CMake() helper now defines by default CMAKE_EXPORT_NO_PACKAGE_REGISTRY.

• Fix: Settings constraints declared in recipes now don’t error for single strings (instead of a list with a string
element).

• Fix: cmake_minimum_required() is now before project() in templates and examples.

• Fix: CONAN_SYSREQUIRES_MODE=Disabled now doesn’t try to update the system packages registry.

• Bugfix: Fixed SCM origin path of windows folder (with backslashes).

• Bugfix: Fixed SCM dictionary order when doing replacement.

• Bugfix: Fixed auto-detection of apple-clang 10.0.

670 Chapter 21. Changelog

Conan Documentation, Release 1.31.4

• Bugfix: Fixed bug when doing a conan search without registry file (just before installation).

21.97 1.4.5 (22-June-2018)

• Bugfix: The package_id recipe method was being called twice causing issues with info objects being populated
with wrong information.

21.98 1.4.4 (11-June-2018)

• Bugfix: Fix link order with private requirements.

• Bugfix: Removed duplicate -std flag in CMake < 3 or when the standard is not yet supported by
CMAKE_CXX_STANDARD.

• Bugfix: Check scm attribute to avoid breaking recipes with already defined one.

• Feature: Conan workspaces.

21.99 1.4.3 (6-June-2018)

• Bugfix: Added system libraries to the cmake_find_package generator.

• Fix: Added SIGTERM signal handler to quit safely.

• Bugfix: Fixed miss-detection of gcc 1 when no gcc was on a Linux machine.

21.100 1.4.2 (4-June-2018)

• Bugfix: Fixed multi-config packages.

• Bugfix: Fixed cppstd management with CMake and 20 standard version.

21.101 1.4.1 (31-May-2018)

• Bugfix: Solved issue with symlinks making recipes to fail with self.copy.

• Bugfix: Fixed c++20 standard usage with modern compilers and the creation of the settings.yml containing the
settings values.

• Bugfix: Fixed error with cased directory names in Windows.

• BugFix: Modified confusing warning message in the SCM tool when the remote couldn’t be detected.

21.97. 1.4.5 (22-June-2018) 671

Conan Documentation, Release 1.31.4

21.102 1.4.0 (30-May-2018)

• Feature: Added scm conanfile attribute, to easily clone/checkout from remote repositories and to capture the
remote and commit in the exported recipe when the recipe and the sources lives in the same repository. Read
more in “Recipe and sources in a different repo” and “Recipe and sources in the same repo”.

• Feature: Added cmake_paths generator to create a file setting CMAKE_MODULE_PATH and CMAKE_PREFIX_PATH
to the packages folders. It can be used as a CMake toolchain to perform a transparent CMake usage, without
include any line of cmake code related to Conan. Read more here.

• Feature: Added cmake_find_package generator that generates one FindXXX.cmake file per each dependency
both with classic CMake approach and modern using transitive CMake targets. Read more here.

• Feature: Added conan search --json json output to the command.

• Feature: CMake build helper now sets PKG_CONFIG_PATH automatically and receives new parameter
pkg_config_paths to override it.

• Feature: CMake build helper doesn’t require to specify “arch” nor “compiler” anymore when the generator is
“Unix Makefiles”.

• Feature: Introduced default settings for GCC 8, Clang 7.

• Feature: Introduced support for c++ language standard c++20.

• Feature: Auto-managed fPIC option in AutoTools build helper.

• Feature: tools.vcvars_command() and tools.vcvars_dict() now take vcvars_ver and
winsdk_version as parameters.

• Feature: tools.vcvars_dict() gets only the env vars set by vcvars with new parameter only_diff=True.

• Feature: Generator virtualbuildenv now sets Visual Studio env vars via tool.vcvars_dict().

• Feature: New tools for Apple development including XCRun wrapper.

• Fix: Message “Package ‘1’ created” in package commands with short_paths=True now shows package ID.

• Fix: tools.vcvars_dict() failing to create dictionary due to newlines in vcvars command output.

• Bugfix: tools.which() returning directories instead of only files.

• Bugfix: Inconsistent local cache when developing a recipe with short_paths=True.

• Bugfix: Fixed reusing MSBuild() helper object for multi-configuration packages.

• Bugfix: Fixed authentication using env vars such as CONAN_PASSWORD when CONAN_NON_INTERACTIVE=True.

• Bugfix: Fixed Android api_level was not used to adjust CMAKE_SYSTEM_VERSION.

• Bugfix: Fixed MSBuild() build helper creating empty XML node for runtime when the setting was not declared.

• Bugfix: Fixed default_options not supporting = in value when specified as tuple.

• Bugfix: AutoToolsBuildEnvironment build helper’s pkg_config_paths parameter now sets paths relative to
the install folder or absolute ones if provided.

672 Chapter 21. Changelog

Conan Documentation, Release 1.31.4

21.103 1.3.3 (10-May-2018)

• Bugfix: Fixed encoding issues writing to files and calculating md5 sums.

21.104 1.3.2 (7-May-2018)

• Bugfix: Fixed broken run_in_windows_bash due to wrong argument.

• Bugfix: Fixed VisualStudioBuildEnvironment when toolset was not defined.

• Bugfix: Fixed md5 computation of conan .tgz files for recipe, exported sources and packages due to file ordering
and flags.

• Bugfix: Fixed conan download -p=wrong_id command

• Fix: Added apple-clang 9.1

21.105 1.3.1 (3-May-2018)

• Bugfix: Fixed regression with AutoToolsBuildEnvironment build helper that raised exception with not sup-
ported architectures during the calculation of the GNU triplet.

• Bugfix: Fixed pkg_config generator, previously crashing when there was no library directories in the require-
ments.

• Bugfix: Fixed conanfile.run() with win_bash=True quoting the paths correctly.

• Bugfix: Recovered parameter “append” to the tools.save function.

• Bugfix: Added support (documented but missing) to delete options in package_id() method using del self.
info.options.<option>

21.106 1.3.0 (30-April-2018)

• Feature: Added new build types to default settings.yml: RelWithDebInfo and MinSizeRel. Com-
piler flags will be automatically defined in build helpers that do not understand them (MSBuild,
AutotoolsBuildEnvironment)

• Feature: Improved package integrity. Interrupted downloads or builds shouldn’t leave corrupted packages.

• Feature: Added conan upload --json json output to the command.

• Feature: new conan remove --locks to clear cache locks. Useful when killing conan.

• Feature: New CircleCI template scripts can be generated with the conan new command.

• Feature: The CMake() build helper manages the fPIC flag automatically based on the options fPIC and shared
when present.

• Feature: Allowing requiring color output with CONAN_COLOR_DISPLAY=1 environment variable. If
CONAN_COLOR_DISPLAY is not set rely on tty detection for colored output.

• Feature: New conan remote rename and conan add --force commands to handle remotes.

• Feature: Added parameter use_env to the MSBuild().build() build helper method to control the /p:UseEnv
msbuild argument.

21.103. 1.3.3 (10-May-2018) 673

Conan Documentation, Release 1.31.4

• Feature: Timeout for downloading files from remotes is now configurable (defaulted to 60 seconds)

• Feature: Improved Autotools build helper with new parameters and automatic set of --prefix to self.
package_folder.

• Feature: Added new tool to compose GNU like triplets for cross-building: tools.get_gnu_triplet()

• Fix: Use International Units for download/upload transfer sizes (Mb, Kb, etc).

• Fix: Removed duplicated paths in cmake_multi generated files.

• Fix: Removed false positive linter warning for local imports.

• Fix: Improved command line help for positional arguments

• Fix -ks alias for --keep-source argument in conan create and conan export.

• Fix: removed confusing warnings when self.copy() doesn’t copy files in the package() method.

• Fix: None is now a possible value for settings with nested subsettings in settings.yml.

• Fix: if vcvars_command is called and Visual is not found, raise an error instead of warning.

• Bugfix: self.env_info.paths and self.env_info.PATHS both map now to PATHS env-var.

• Bugfix: Local flow was not correctly recovering state for option values.

• Bugfix: Windows NTFS permissions failed in case USERDOMAIN env-var was not defined.

• Bugfix: Fixed generator pkg_config when there are absolute paths (not use prefix)

• Bugfix: Fixed parsing of settings values with "=" character in conaninfo.txt files.

• Bugfix: Fixed misdetection of MSYS environments (generation of default profile)

• Bugfix: Fixed string escaping in CMake files for preprocessor definitions.

• Bugfix: upload --no-overwrite failed when the remote package didn’t exist.

• Bugfix: Don’t raise an error if detect_windows_subsystem doesn’t detect a subsystem.

21.107 1.2.3 (10-Apr-2017)

• Bugfix: Removed invalid version field from scons generator.

21.108 1.2.1 (3-Apr-2018)

• Feature: Support for apple-clang 9.1

• Bugfix: compiler_args generator manage correctly the flag for the cppstd setting.

• Bugfix: Replaced exception with a warning message (recommending the six module) when using StringIO class
from the io module.

674 Chapter 21. Changelog

Conan Documentation, Release 1.31.4

21.109 1.2.0 (28-Mar-2018)

• Feature: The command conan build has new --configure, --build, --install arguments to control
the different stages of the build() method.

• Feature: The command conan export-pkg now has a --package-folder that can be used to export an exact
copy of the provided folder, irrespective of the package() method. It assumes the package has been locally
created with a previous conan package or with a conan build using a cmake.install() or equivalent
feature.

• Feature: New json generator, generates a json file with machine readable information from dependencies.

• Feature: Improved proxies configuration with no_proxy_match configuration variable.

• Feature: New conan upload parameter --no-overwrite to forbid the overwriting of recipe/packages if they
have changed.

• Feature: Exports are now copied to source_folder when doing conan source.

• Feature: tools.vcvars() context manager has no effect if platform is different from Windows.

• Feature: conan download has new optional argument --recipe to download only the recipe of a package.

• Feature: Added CONAN_NON_INTERACTIVE environment variable to disable interactive prompts.

• Feature: Improved MSbuild() build helper using vcvars() and generating property file to adjust the run-
time automatically. New method get_command() with the call to msbuild tool. Deprecates tools.
build_sln_command() and tools.msvc_build_command().

• Feature: Support for clang 6.0 correctly managing cppstd flags.

• Feature: Added configuration to specify a client certificate to connect to SSL server.

• Feature: Improved ycm generator to show json dependencies.

• Feature: Experimental --json parameter for conan install and conan create to generate a JSON file with
install information.

• Fix: conan install --build does not absorb more than one parameter.

• Fix: Made conanfile templates generated with conan new PEP8 compliant.

• Fix: conan search output improved when there are no packages for the given reference.

• Fix: Made conan download also retrieve sources.

• Fix: Pylint now runs as an external process.

• Fix: Made self.user and self.channel available in test_package.

• Fix: Made files writable after a deploy() or imports() when CONAN_READ_ONLY_CACHE`/general.
read_only_cache environment/config variable is True.

• Fix: Linter showing warnings with cpp_info object in deploy() method.

• Fix: Disabled linter for Conan pyinstaller as it was not able to find the python modules.

• Fix: conan user -r=remote_name showed all users for all remotes, not the one given.

• BugFix: Python reuse code failing to import module in package_info().

• BugFix: Added escapes for backslashes in cmake generator.

• BugFix: conan config install now raises error if git clone fails.

• BugFix: Alias resolution not working in diamond shaped dependency trees.

21.109. 1.2.0 (28-Mar-2018) 675

Conan Documentation, Release 1.31.4

• BugFix: Fixed builds with Cygwin/MSYS2 failing in Windows with self.short_paths=True and NTFS file sys-
tems due to ACL permissions.

• BugFix: Failed to adjust architecture when running Conan platform detection in ARM devices.

• BugFix: Output to StringIO failing in Python 2.

• BugFix: conan profile update not working to update [env] section.

• BugFix: conan search not creating default remotes when running it as the very first command after Conan
installation.

• BugFix: Package folder was not cleaned after the installation and download of a package had failed.

21.110 1.1.1 (5-Mar-2018)

• Feature: build_sln_command() and msvc_build_command() receive a new optional parameter platforms
to match the definition of the .sln Visual Studio project architecture. (Typically Win32 vs x86 problem).

• Bugfix: Flags for Visual Studio command (cl.exe) using “-” instead of “/” to avoid problems in builds using
AutoTools scripts with Visual Studio compiler.

• Bugfix: Visual Studio runtime flags adjusted correctly in AutoToolsBuildEnvironment() build helper

• Bugfix: AutoToolsBuildEnvironment() build helper now adjust the correct build flag, not using eabi suffix,
for architecture x86.

21.111 1.1.0 (27-Feb-2018)

• Feature: New conan create --keep-build option that allows re-packaging from conan local cache, without
re-building.

• Feature: conan search <pattern> -r=all now searches in all defined remotes.

• Feature: Added setting cppstd to manage the C++ standard. Also improved build helpers to adjust the standard
automatically when the user activates the setting. AutoToolsBuildEnvironment(), CMake(), MSBuild()
and VisualStudioBuildEnvironment().

• Feature: New compiler_args generator, for directly calling the compiler from command line, for multiple
compilers: VS, gcc, clang.

• Feature: Defined sysrequires_mode variable (CONAN_SYSREQUIRES_MODE env-var) with values enabled,
verify, disabled to control the installation of system dependencies via SystemPackageTool typically used
in system_requirements().

• Feature: automatically apply pythonpath environment variable for dependencies containing python code to be
reused to recipe source(), build(), package() methods.

• Feature: CMake new patch_config_paths() methods that will replace absolute paths to conan package path
variables, so cmake find scripts are relocatable.

• Feature: new --test-build-folder command line argument to define the location of the test_package build
folder, and new conan.conf temp_test_folder and environment variable CONAN_TEMP_TEST_FOLDER, that if
set to True will automatically clean the test_package build folder after running.

• Feature: Conan manages relative urls for upload/download to allow access the server from different configured
networks or in domain subdirectories.

676 Chapter 21. Changelog

Conan Documentation, Release 1.31.4

• Feature: Added CONAN_SKIP_VS_PROJECTS_UPGRADE environment variable to skip the upgrade of Visual Stu-
dio project when using tools.build_sln_command() [DEPRECATED], the msvc_build_command and the MS-
Build() build helper.

• Feature: Improved detection of Visual Studio installations, possible to prioritize between multiple installed Vi-
sual tools with the CONAN_VS_INSTALLATION_PREFERENCE env-var and vs_installation_preference co-
nan.conf variable.

• Feature: Added keep_path parameter to self.copy() within the imports() method.

• Feature: Added [build_requires] section to conanfile.txt.

• Feature: Added new conan help <command> command, as an alternative to --help.

• Feature: Added target parameter to AutoToolsBuildEnvironment.make method, allowing to select build
target on running make

• Feature: The CONAN_MAKE_PROGRAM environment variable now it is used by the CMake() build helper to set a
custom make program.

• Feature: Added --verify-ssl optional parameter to conan config install to allow self-signed SSL cer-
tificates in download.

• Feature: tools.get_env() helper method to automatically convert environment variables to python types.

• Fix: Added a visible warning about libcxx compatibility and the detected one for the default profile.

• Fix: Wrong detection of compiler in OSX for gcc frontend to clang.

• Fix: Disabled conanbuildinfo.cmake compiler checks for unknown compilers.

• Fix: visual_studio generator added missing ResourceCompile information.

• Fix: Don’t output password from URL for conan config install command.

• Fix: Signals exit with error code instead of 0.

• Fix: Added package versions to generated SCons file.

• Fix: Error message when package was not found in remotes has been improved.

• Fix: conan profile help message.

• Fix: Use gcc architecture flags -m32, -m64 for MinGW as well.

• Fix: CMake() helper do not require settings if CONAN_CMAKE_GENERATOR is defined.

• Fix: improved output of package remote origins.

• Fix: Profiles files use same structure as conan profile show command.

• Fix: conanpath.bat file is removed after conan Windows installer uninstall.

• Fix: Do not add GCC-style flags -m32, -m64, -g, -s to MSVC when using AutoToolsBuildEnvironment

• Fix: “Can’t find a binary package” message now includes the Package ID.

• Fix: added clang 5.0 and gcc 7.3 to default settings.yml.

• Bugfix: build_id() logic does not apply unless the build_id is effectively changed.

• Bugfix: self.install_folder was not correctly set in all necessary cases.

• Bugfix: --update option does not ignore local packages for version-ranges.

• Bugfix: Set self.develop=True for export-pkg command.

• Bugfix: Server HTTP responses were incorrectly captured, not showing errors for some server errors.

21.111. 1.1.0 (27-Feb-2018) 677

Conan Documentation, Release 1.31.4

• Bugfix: Fixed config section update for sequential calls over the python API.

• Bugfix: Fixed wrong self.develop set to False for conan create with test_package.

• Deprecation: Removed conan-transit from default remotes registry.

21.112 1.0.4 (30-January-2018)

• Bugfix: Fixed default profile defined in conan.conf that includes another profile

• Bugfix: added missing management of sysroot in conanbuildinfo.txt affecting conan build and test_package.

• Bugfix: Fixed warning in conan source because of incorrect management of settings.

• Bugfix: Fixed priority order of environment variables defined in included profiles

• Bugfix: NMake error for parallel builds from the CMake build helper have been fixed

• Bugfix: Fixed options pattern not applied to root node (-o *:shared=True not working for consuming package)

• Bugfix: Fixed shadowed options by package name (-o *:shared=True -o Pkg:other=False was not ap-
plying shared value to Pkg)

• Fix: Using filter_known_paths=False as default to vcvars_dict() helper.

• Fix: Fixed wrong package name for output messages regarding build-requires

• Fix: Added correct metadata to conan.exe when generated via pyinstaller

21.113 1.0.3 (22-January-2018)

• Bugfix: Correct load of stored settings in conaninfo.txt (for conan build) when configure() remove some
setting.

• Bugfix: Correct use of unix paths in Windows subsystems (msys, cygwin) when needed.

• Fix: fixed wrong message for conan alias --help.

• Fix: Normalized all arguments to --xxx-folder in command line help.

21.114 1.0.2 (16-January-2018)

• Fix: Adding a warning message for simultaneous use of os and os_build settings.

• Fix: Do not raise error from conanbuildinfo.cmake for Intel MSVC toolsets.

• Fix: Added more architectures to default settings.yml arch_build setting.

• Fix: using --xxx-folder in command line help messages.

• Bugfix: using quotes for Windows bash path with spaces.

• Bugfix: vcvars/vcvars_dict not including windows and windows/system32 directories in the path.

678 Chapter 21. Changelog

Conan Documentation, Release 1.31.4

21.115 1.0.1 (12-January-2018)

• Fix: conan new does not generate cross-building (like os_build) settings by default. They make only sense
for dev-tools used as build_requires

• Fix: conaninfo.txt file does not dump settings with None values

21.116 1.0.0 (10-January-2018)

• Bugfix: Fixed bug from remove_from_path due to Windows path backslash

• Bugfix: Compiler detection in conanbuildinfo.cmake for Visual Studio using toolchains like LLVM (Clang)

• Bugfix: Added quotes to bash path.

21.117 1.0.0-beta5 (8-January-2018)

• Fix: Errors from remotes different to a 404 will raise an error. Disconnected remotes have to be removed from
remotes or use explicit remote with -r myremote

• Fix: cross-building message when building different architecture in same OS

• Fix: conan profile show now shows profile with same syntax as profile files

• Fix: generated test code in conan new templates will not run example app if cross building.

• Fix: conan export-pkg uses the conanfile.py folder as the default --source-folder.

• Bugfix: conan download didn’t download recipe if there are no binaries. Force recipe download.

• Bugfix: Fixed blocked self.run() when stderr outputs large tests, due to full pipe.

21.118 1.0.0-beta4 (4-January-2018)

• Feature: run_in_windows_bash accepts a dict of environment variables to be prioritized inside the bash
shell, mainly intended to control the priority of the tools in the path. Use with vcvars context manager and
vcvars_dict, that returns the PATH environment variable only with the Visual Studio related directories

• Fix: Adding all values to arch_target

• Fix: conan new templates now use new os_build and arch_build settings

• Fix: Updated CMake helper to account for os_build and arch_build new settings

• Fix: Automatic creation of default profile when it is needed by another one (like include(default))

• BugFix: Failed installation (non existing package) was leaving lock files in the cache, reporting a package for
conan search.

• BugFix: Environment variables are now applied to build_requirements() for conan install ..

• BugFix: Dependency graph was raising conflicts for diamonds with alias packages.

• BugFix: Fixed conan export-pkg after a conan install when recipe has options.

21.115. 1.0.1 (12-January-2018) 679

Conan Documentation, Release 1.31.4

21.119 1.0.0-beta3 (28-December-2017)

• Fix: Upgraded pylint and astroid to latest

• Fix: Fixed build_requires with transitive dependencies to other build_requires

• Fix: Improved pyinstaller creation of executable, to allow for py3-64 bits (windows)

• Deprecation: removed all --some_argument, use instead --some-argument in command line.

21.120 1.0.0-beta2 (23-December-2017)

• Feature: New command line UI. Most commands use now the path to the package recipe, like conan export
. user/testing or conan create folder/myconanfile.py user/channel.

• Feature: Better cross-compiling. New settings model for os_build, arch_build, os_target, arch_target.

• Feature: Better Windows OSS ecosystem, with utilities and settings model for MSYS, Cygwin, Mingw, WSL

• Feature: package() will not warn of not copied files for known use cases.

• Feature: reduce the scope of definition of cpp_info, env_info, user_info attributes to package_info()
method, to avoid unexpected errors.

• Feature: extended the use of addressing folder and conanfiles with different names for source, package and
export-pkg commands

• Feature: added support for Zypper system package tool

• Fix: Fixed application of build requires from profiles that didn’t apply to requires in recipes

• Fix: Improved “test package” message in output log

• Fix: updated CI templates generated with conan new

• Deprecation: Removed self.copy_headers and family for the package() method

• Deprecation: Removed self.conanfile_directory attribute.

Note: This is a beta release, shouldn’t be installed unless you do it explicitly

$ pip install conan==1.0.0b2 –upgrade

Breaking changes

• The new command line UI breaks command line tools and integration. Most cases, just add a . to the command.

• Removed self.copy_headers, self.copy_libs, methods for package(). Use self.copy() instead.

• Removed self.conanfile_directory attribute. Use self.source_folder, self.build_folder, etc. in-
stead

680 Chapter 21. Changelog

Conan Documentation, Release 1.31.4

21.121 0.30.3 (15-December-2017)

• Reverted CMake() and Meson() build helpers to keep old behavior.

• Forced Astroid dependency to < 1.6 because of py3 issues.

21.122 0.30.2 (14-December-2017)

• Fix: CMake() and Meson() build helpers and relative directories regression.

• Fix: ycm generator, removed the access of cpp_info to generators, keeping the access to deps_cpp_info.

21.123 0.30.1 (12-December-2017)

• Feature: Introduced major versions for gcc (5, 6, 7) as defaults settings for OSS packages, as minors are compat-
ible by default

• Feature: VisualStudioBuildEnvironment has added more compilation and link flags.

• Feature: new MSBuild() build helper that wraps the call to msvc_build_command() with the correct applica-
tion of environment variables with the improved VisualStudioBuildEnvironment

• Feature: CMake and Meson build helpers got a new cache_build_dir argument for
configure(cache_build_dir=None) that will be used to define a build directory while the package is
being built in local cache, but not when built locally

• Feature: conanfiles got a new apply_env attribute, defaulted to True. If false, the environment variables
from dependencies will not be automatically applied. Useful if you don’t want some dependency adding itself to
the PATH by default, for example

• Feature: allow recipes to use and run python code installed with conan config install.

• Feature: conanbuildinfo.cmake now has KEEP_RPATHS as argument to keep the RPATHS, as opposed to
old SKIP_RPATH which was confusing. Also, it uses set(CMAKE_INSTALL_NAME_DIR “”) to keep the old
behavior even for CMake >= 3.9

• Feature: conan info is able to get profile information from the previous install, instead of requiring it as input
again

• Feature: tools.unix_path support MSYS, Cygwin, WSL path flavors

• Feature: added destination folder argument to tools.get() function

• Feature: SystemPackageTool for apt-get now uses --no-install-recommends automatically.

• Feature: visual_studio_multi generator now uses toolsets instead of IDE version to identify files.

• Fix: generators failures print traces to help debugging

• Fix: typos in generator names, or non-existing generator now raise an Error instead of a warning

• Fix: short_paths feature is active by default in Windows. If you want to opt-out, you can use
CONAN_USER_HOME_SHORT=None

• Fix: SystemPackageTool doesn’t use sudo in Windows

• BugFix: Not using parallel builds for Visual<10 in CMake build helper.

21.121. 0.30.3 (15-December-2017) 681

Conan Documentation, Release 1.31.4

• Deprecation: conanfile_directory` shouldn't be used anymore in recipes. Use
``source_folder, build_folder, etc.

Note: Breaking changes

• scopes have been completely removed. You can use environment variables, or the conanfile.develop or
conanfile.in_local_cache attributes instead.

• Command test_package has been removed. Use conan create` instead, and conan test` for just running
package tests.

• werror behavior is now by default. Dependencies conflicts will now error, and have to be fixed.

• short_paths feature is again active by default in Windows, even with Py3.6 and system LongPathsEnabled.

• ConfigureEnvironment and GCC build helpers have been completely removed

21.124 0.29.2 (2-December-2017)

• Updated python cryptography requirement for OSX due the pyOpenSSL upgrade. See more: https://pypi.org/
project/pyOpenSSL/

21.125 0.29.1 (23-November-2017)

• Support for OSX High Sierra

• Reverted concurrency locks to counters, removed psutil dependency

• Implemented migration for settings.yml (for new VS toolsets)

• Fixed encoding issues in conan_server

21.126 0.29.0 (21-November-2017)

• Feature: Support for WindowsStore (WinRT, UWP)

• Feature: Support for Visual Studio Toolsets.

• Feature: New boost-build generator for generic bjam (not only Boost)

• Feature: new tools.PkgConfig helper to parse pkg-config (.pc) files.

• Feature: Added self.develop conanfile variable. It is true for conan create packages and for local devel-
opment.

• Feature: Added self.keep_imports to avoid removal of imported files in the build() method. Convenient
for re-packaging.

• Feature: Autodetected MSYS2 for SystemPackageTool

• Feature: AutoToolsBuildEnvironment now auto-loads pkg_config_path (to use with pkg_config gener-
ator)

• Feature: Changed search for profiles. Profiles not found in the default profiles folder, will be searched for
locally. Use ./myprofile to force local search only.

682 Chapter 21. Changelog

https://pypi.org/project/pyOpenSSL/
https://pypi.org/project/pyOpenSSL/

Conan Documentation, Release 1.31.4

• Feature: Parallel builds for Visual Studio (previously it was only parallel compilation within builds)

• Feature: implemented syntax to check options with if "something" in self.options.myoption

• Fix: Fixed CMake dependency graph when using TARGETS, that produced wrong link order for transitive
dependencies.

• Fix: Trying to download the exports_sources is not longer done if such attribute is not defined

• Fix: Added output directories in cmake generator for RelWithDebInfo and MinSizeRel configs

• Fix: Locks for concurrent access to local cache now use process IDs (PIDs) to handle interruptions and incon-
sistent states. Also, adding messages when locking.

• Fix: Not remove the .zip file after a conan config install if such file is local

• Fix: Fixed CMake.test() for the Ninja generator

• Fix: Do not create local conaninfo.txt file for conan install <pkg-ref> commands.

• Fix: Solved issue with multiple repetitions of the same command line argument

• BugFix: Don’t rebuild conan created (with conan-create) packages when build_policy="always"

• BugFix: conan copy was always copying binaries, now can copy only recipes

• BugFix: A bug in download was causing appends instead of overwriting for repeated downloads.

• Development: Large restructuring of files (new cmd and build folders)

• Deprecation: Removed old CMake helper methods (only valid constructor is CMake(self))

• Deprecation: Removed old conan_info() method, that was superseded by package_id()

Note: Breaking changes

• CMAKE_LIBRARY_OUTPUT_DIRECTORY definition has been introduced in conan_basic_setup(), it
will send shared libraries .so to the lib folder in Linux systems. Right now it was undefined.

• Profile search logic has slightly changed. For -pr=myprofile, such profile will be searched both in the default
folder and in the local one if not existing. Use -pr=./myprofile to force local search only.

• The conan copy command has been fixed. To copy all binaries, it is necessary to explicit --all, as other
commands do.

• The only valid use of CMake helper is CMake(self) syntax.

• If using conan_info(), replace it with package_id().

• Removed environment variable CONAN_CMAKE_TOOLSET, now the toolset can be specified as a subsetting of
Visual Studio compiler or specified in the build helpers.

21.127 0.28.1 (31-October-2017)

• BugFix: Downloading (tools.download) of files with content-encoding=gzip were raising an exception
because the downloaded content length didn’t match the http header content-length

21.127. 0.28.1 (31-October-2017) 683

Conan Documentation, Release 1.31.4

21.128 0.28.0 (26-October-2017)

This is a big release, with many important and core changes. Also with a huge number of community contributions,
thanks very much!

• Feature: Major revamp of most conan commands, making command line arguments homogeneous. Much
better development flow adapting to user layouts, with install-folder, source-folder, build-folder,
package-folder.

• Feature: new deploy() method, useful for installing binaries from conan packages

• Feature: Implemented some concurrency support for the conan local cache. Parallel conan install and
conan create for different configurations should be possible.

• Feature: options now allow patterns in command line: -o *:myoption=myvalue applies to all packages

• Feature: new pc generator that generates files from dependencies for pkg-config

• Feature: new Meson helper, similar to CMake for Meson build system. Works well with pc generator.

• Feature: Support for read-only cache with CONAN_READ_ONLY_CACHE environment variable

• Feature: new visual_studio_multi generator to load Debug/Release, 32/64 configs at once

• Feature: new tools.which helper to locate executables

• Feature: new conan --help layout

• Feature: allow to override compiler version in vcvars_command

• Feature: conan user interactive (and not exposed) password input for empty -p argument

• Feature: Support for PacManTool for system_requirements() for ArchLinux

• Feature: Define VS toolset in CMake constructor and from environment variable CONAN_CMAKE_TOOLSET

• Feature: conan create now accepts werror argument

• Feature: AutoToolsBuildEnvironment can use CONAN_MAKE_PROGRAM env-var to define make program

• Feature: added xcode9 for apple-clang 9.0, clang 5 to default settings.yml

• Feature: deactivation of short_paths in Windows 10 with Py3.6 and long path support is automatic

• Feature: show unzip progress by percentage, not by file (do not clutters output)

• Feature: do not use sudo for system requirements if already running as root

• Feature: tools.download able to use headers/auth

• Feature: conan does not longer generate bytecode from recipes (no more .pyc, and more efficient)

• Feature: add parallel argument to build_sln_command for VS

• Feature: Show warning if vs150comntools is an invalid path

• Feature: tools.get() now has arguments for hash checking

• Fix: upload pattern now accepts Pkg/*

• Fix: improved downloader, make more robust, better streaming

• Fix: tools.patch now support adding/removal of files

• Fix: The default profile is no longer taken as a base and merged with user profile. Use explicit
include(default) instead.

• Fix: properly manage x86 as cross building with autotools

684 Chapter 21. Changelog

Conan Documentation, Release 1.31.4

• Fix: tools.unzip removed unnecessary long-paths check in Windows

• Fix: package_info() is no longer executed at install for the consumer conanfile.py

• BugFix: source folder was not being correctly removed when recipe was updated

• BugFix: fixed CMAKE_C_FLAGS_DEBUG definition in cmake generator

• BugFix: CMAKE_SYSTEM_NAME is now Darwin for iOS, watchOS and tvOS

• BugFix: xcode generator fixed handling of compiler flags

• BugFix: pyinstaller hidden import that broke .deb installer

• BugFix: conan profile list when local files matched profile names

Note: Breaking changes

This is an important release towards stabilizing conan and moving out of beta. Some breaking changes have been
done, but mostly to command line arguments, so they should be easy to fix. Package recipes or existing packages
shouldn’t break. Please update, it is very important to ease the transition of future stable releases. Do not hesitate to
ask questions, or for help if you need it. This is a possibly not complete list of things to take into account:

• The command conan install doesn’t accept cwd anymore, to change the directory where the generator files
are written, use the --install-folder parameter.

• The command conan install doesn’t accept --all anymore. Use conan download <ref> instead.

• The command conan build now requires the path to the conanfile.py (optional before)

• The command conan package not longer re-package a package in the local cache, now it only operates in
a user local folder. The recommended way to re-package a package is using conan build and then conan
export-pkg.

• Removed conan package_files in favor of a new command conan export-pkg. It requires a local recipe
with a package() method.

• The command conan source no longer operates in the local cache. now it only operates in a user local folder.
If you used conan source with a reference to workaround the concurrency, now it natively supported, you can
remove the command call and trust concurrent install processes.

• The command conan imports doesn’t accept -d, --dest anymore, use --imports-folder parameter in-
stead.

• If you specify a profile in a conan command, like conan create or conan install the base profile ~/.co-
nan/profiles/default won’t be applied. Use explicit include to keep the old behavior.

21.129 0.27.0 (20-September-2017)

• Feature: conan config install <url> new command. Will install remotes, profiles, settings, conan.conf
and other files into the local conan installation. Perfect to synchronize configuration among teams

• Feature: improved traceback printing when errors are raised for more context. Configurable via env

• Feature: filtering out non existing directories in cpp_info (include, lib, etc), so some build systems don’t com-
plain about them.

• Feature: Added include directories to ResourceCompiler and to MIDL compiler in visual_studio generator

• Feature: new visual_studio_legacy generator for Visual Studio 2008

21.129. 0.27.0 (20-September-2017) 685

Conan Documentation, Release 1.31.4

• Feature: show path where manifests are locally stored

• Feature: replace_in_file now raises error if replacement is not done (opt-out parameter)

• Feature: enabled in conan.conf [proxies] section no_proxy=url1,url2 configuration (to skip proxying for
those URLs), as well as http=None and https=None to explicitly disable them.

• Feature: new conanfile self.in_local_cache attribute for conditional logic to apply in user folders local
commands

• Feature: CONAN_USER_HOME_SHORT=None can disable the usage of short_paths in Windows, for modern
Windows that enable long paths at the system level

• Feature: if "arm" in self.settings.arch is now a valid check (without casting to str(self.settings.arch))

• Feature: added cwd`` argument to conan source local method.

• Fix: unzip crashed for 0 Bytes zip files

• Fix: collect_libs moved to the tools module

• Bugfix: fixed wrong regex in deps_cpp_info causing issues with dots and dashes in package names

• Development: Several internal refactorings (tools module, installer), testing (using VS2015 as default, removing
VS 12 in testing). Conditional CI in travis for faster builds in developers, downgrading to CMake 3.7 in appveyor

• Deprecation: dev_requires have been removed (it was not documented, but accessible via the
requires(dev=True) parameter. Superseded by build_requires.

• Deprecation: sources tgz files for exported sources no longer contain “.c_src” subfolder. Packages created with
0.27 will be incompatible with conan < 0.25

21.130 0.26.1 (05-September-2017)

• Feature: added apple-clang 9.0 to default settings.

• Fix: conan copy command now supports symlinks.

• Fix: fixed removal of “export_source” folder when files have no permissions

• Bugfix: fixed parsing of conanbuildinfo.txt with package names containing dots.

21.131 0.26.0 (31-August-2017)

• Feature: conan profile command has implemented update, new, remove subcommands, with detect``, to
allow creation, edition and management of profiles.

• Feature: conan package_files command now can call recipe package() method if build_folder`` or
source_folder`` arguments are defined

• Feature: graph loading algorithm improved to avoid repeating nodes. Results in much faster times for dense
graphs, and avoids duplications of private requirements.

• Feature: authentication based on environment variables. Allows very long processes without tokens being ex-
pired.

• Feature: Definition of Visual Studio runtime setting MD or MDd is now automatic based on build type, not neces-
sary to default in profile.

• Feature: Capturing SystemExit to return user error codes to the system with sys.exit(code)

686 Chapter 21. Changelog

Conan Documentation, Release 1.31.4

• Feature: Added SKIP_RPATH argument to cmake conan_basic_setup() function

• Feature: Optimized uploads, now uploads will be skipped if there are no changes, irrespective of timestamp

• Feature: Automatic detection of VS 15-2017, via both a vs150comntools variable, and using vswhere.exe

• Feature: Added NO_OUTPUT_DIRS argument to cmake conan_basic_setup() function

• Feature: Add support for Chocolatey system package manager for Windows.

• Feature: Improved in conan user home and path storage configuration, better error checks.

• Feature: export command is now able to export recipes without name or version, specifying the full reference.

• Feature: Added new default settings, Arduino, gcc-7.2

• Feature: Add conan settings to cmake generated file

• Feature: new tools.replace_prefix_in_pc_file() function to help with .pc files.

• Feature: Adding support for system package tool pkgutil on Solaris

• Feature: conan remote update now allows --insert argument to change remote order

• Feature: Add verbose definition to CMake helper.

• Fix: conan package working locally failed if not specified build_folder

• Fix: Search when using wildcards for version like Pkg/*@user/channel

• Fix: Change current working directory to the conanfile.py one before loading it, so relative python imports or
code work.

• Fix: package_files command now works with short_paths too.

• Fix: adding missing require of tested package in test_package/conanfile build() method

• Fix: path joining in vcvars_command for custom VS paths defined via env-vars

• Fix: better managing string escaping in CMake variables

• Fix: ExecutablePath assignment has been removed from the visual_studio generator.

• Fix: removing export_source folder containing exported code, fix issues with read-only files and keeps cache
consistency better.

• Fix: Accept 100 return code from yum check-update

• Fix: importing *.so files from the conan new generated test templates

• Fix: progress bars display when download/uploads are not multipart (reported size 0)

• Bugfix: fixed wrong OSX DYLD_LIBRARY_PATH variable for virtual environments

• Bugfix: FileCopier had a bug that affected self.copy() commands, changing base reference directory.

21.132 0.25.1 (20-July-2017)

• Bugfix: Build requires are now applied correctly to test_package projects.

• Fix: Fixed search command to print an error when –table parameter is used without a reference.

• Fix: install() method of the CMake() helper, allows parallel building, change build folder and custom parameters.

• Fix: Controlled errors in migration, print warning if conan is not able to remove a package directory.

21.132. 0.25.1 (20-July-2017) 687

Conan Documentation, Release 1.31.4

21.133 0.25.0 (19-July-2017)

Note: This release introduces a new layout for the local cache, with dedicated export_source folder to store the
source code exported with exports_sources feature, which is much cleaner than the old .c_src subfolder. A mi-
gration is included to remove from the local cache packages with the old layout.

• Feature: new conan create command that supersedes test_package for creating and testing package. It works
even without the test_package folder, and have improved management for user, channel. The test_package recipe
no longer defines requires

• Feature: new conan get command that display (with syntax highlight) package recipes, and any other file from
conan: recipes, conaninfo.txt, manifests, etc.

• Feature: new conan alias command that creates a special package recipe, that works like an alias or a proxy
to other package, allowing easy definition and transparent management of “using the latest minor” and similar
policies. Those special alias packages do not appear in the dependency graph.

• Feature: new conan search --table=file.html command that will output an html file with a graphical
representation of available binaries

• Feature: created default profile, that replace the [settings_default] in conan.conf and augments it, allow-
ing to define more things like env-vars, options, build_requires, etc.

• Feature: new self.user_info member that can be used in package_info() to define custom user variables,
that will be translated to general purpose variables by generators.

• Feature: conan remove learned the --outdated argument, to remove those binary packages that are outdated
from the recipe, both from local cache and remotes

• Feature: conan search learned the --outdated argument, to show only those binary packages that are out-
dated from the recipe, both from local cache and remotes

• Feature: Automatic management CMAKE_TOOLCHAIN_FILE in CMake helper for cross-building.

• Feature: created conan_api, a python API interface to conan functionality.

• Feature: new cmake.install() method of CMake helper.

• Feature: short_paths feature now applies also to exports_sources

• Feature: SystemPackageTool now supports FreeBSD system packages

• Feature: build_requires now manage options too, also default options in package recipes

• Feature: conan build learned new --package_folder argument, useful if the build system perform the pack-
aging

• Feature: CMake helper now defines by default CMAKE_INSTALL_PREFIX pointing to the current package_folder,
so cmake.install() can transparently execute the packaging.

• Feature: improved command UX with cwd`` arguments to allow define the current directory for the command

• Feature: improved VisualStudioBuildEnvironment

• Feature: transfers now show size (MB, KB) of download/uploaded files, and current status of transfer.

• Feature: conan new now has arguments to generate CI scripts for Gitlab CI.

• Feature: Added MinRelSize and RelWithDebInfo management in CMake helper.

• Fix: make mkdir, rmdir, relative_dirs available for import from conans module.

• Fix: improved detection of Visual Studio default under cygwin environment.

688 Chapter 21. Changelog

Conan Documentation, Release 1.31.4

• Fix: package_files now allows symlinks

• Fix: Windows installer now includes conan_build_info tool.

• Fix: appending environment variables instead of overwriting them when they come from different origins: up-
stream dependencies and profiles.

• Fix: made opt-in the check of package integrity before uploads, it was taking too much time, and provide little
value for most users.

• Fix: Package recipe linter removed some false positives

• Fix: default settings from conan.conf do not fail for constrained settings in recipes.

• Fix: Allowing to define package remote with conan remote add_ref before download/upload.

• Fix: removed duplicated BUILD_SHARED_LIBS in test_package

• Fix: add “rhel” to list of distros using yum.

• Bugfix: allowing relative paths in exports and exports_sources fields

• Bugfix: allow custom user generators with underscore

21.134 0.24.0 (15-June-2017)

• Feature: conan new new arguments to generate Travis-CI and Appveyor files for Continuous Integration

• Feature: Profile files with include() and variable declaration

• Feature: Added RelWithDebInfo/MinRelSize to cmake generators

• Feature: Improved linter, removing false positives due to dynamic conanfile attributes

• Feature: Added tools.ftp_download() function for FTP retrieval

• Feature: Managing symlinks between folders.

• Feature: conan remote add command learned new insert`` option to add remotes in specific order.

• Feature: support multi-config in the SCons generator

• Feature: support for gcc 7.1+ detection

• Feature: tools now are using global requests and output instances. Proxies will work for tools.
download()

• Feature: json`` parameter added to conan info` command to create a JSON with the build_order.

• Fix: update default repos, now pointing to Bintray.

• Fix: printing outdated from recipe also for remotes

• Fix: Fix required slash in configure_dir of AutoToolsBuildEnvironment

• Fix: command new with very short names, now errors earlier.

• Fix: better error detection for incorrect Conanfile.py letter case.

• Fix: Improved some cmake robustness using quotes to avoid cmake errors

• BugFix: Fixed incorrect firing of building due to build`` patterns error

• BugFix: Fixed bug with options incorrectly applied to build_requires and crashing

• Refactor: internal refactorings toward having a python api to conan functionality

21.134. 0.24.0 (15-June-2017) 689

Conan Documentation, Release 1.31.4

21.135 0.23.1 (05-June-2017)

• BugFix: Fixed bug while packaging symlinked folders in build folder, and target not being packaged.

• Relaxed OSX requirement of pyopenssl to <18

21.136 0.23.0 (01-June-2017)

• Feature: new build_requires field and build_requirements() in package recipes

• Feature: improved commands (source, build, package, package_files) and workflows for local development of
packages in user folders.

• Feature: implemented no_copy_source attribute in recipes to avoid the copy of source code from “source”
to “build folder”. Created new self.source_folder, self.build_folder, self.package_folder for
recipes to use.

• Feature: improved qmake generator with multi-config support, resource directories

• Feature: improved exception capture and formatting for all recipe user methods exceptions

• Feature: new tools.sha256() method

• Feature: folder symlinks working now for packages and upload/download

• Feature: added set_find_paths() to cmake-multi, to set CMake FindXXX.cmake paths. This will work
only for single-config build-systems.

• Feature: using environment variables for configure(), requirements() and test() methods

• Feature: added a pylintrc environment variable in conan.conf to define a PYLINTRC file with custom style
definitions (like indents).

• Feature: fixed vcvars architecture setting

• Fix: Make cacert.pem folder use CONAN_USER_HOME if existing

• Fix: fixed options=a=b option definition

• Fix: package_files command allows force`` argument to overwrite existing instead of failing

• BugFix: Package names with underscore when parsing conanbuildinfo.txt

21.137 0.22.3 (03-May-2017)

• Fix: Fixed CMake generator (in targets mode) with linker/exe flags like –framework XXX containing spaces.

690 Chapter 21. Changelog

Conan Documentation, Release 1.31.4

21.138 0.22.2 (20-April-2017)

• Fix: Fixed regression with usernames starting with non-alphabetical characters, introduced by 0.22.0

21.139 0.22.1 (18-April-2017)

• Fix: “-” symbol available again in usernames.

• Fix: Added future requirement to solve an error with pyinstaller generating the Windows installer.

21.140 0.22.0 (18-April-2017)

• Feature: [build_requires] can now be declared in profiles and apply them to build packages. Those
requirements are only installed if the package is required to build from sources, and do not affect its package
ID hash, and it is not necessary to define them in the package recipe. Ideal for testing libraries, cross compiling
toolchains (like Android), development tools, etc.

• Feature: Much improved support for cross-building. Support for cross-building to Android provided, with
toolchains installable via build_requires.

• Feature: New package_files command, that is able to create binary packages directly from user files, without
needing to define build() or package() methods in the the recipes.

• Feature: command conan new with a new bare`` option that will create a minimal package recipe, usable with
the package_files command.

• Feature: Improved CMake helper, with test() method, automatic setting of BUILD_SHARED_LIBS, better
management of variables, support for parallel compilation in MSVC (via /MP)

• Feature: new tools.msvc_build_command() helper that both sets the Visual vcvars and calls Visual to build
the solution. Also vcvars_command is improved to return non-empty string even if vcvars is set, for easier
concatenation.

• Feature: Added package recipe linter, warning for potential errors and also about Python 3 incompatibilities
when running from Python 2. Enabled by default can be opt-out.

• Feature: Improvements in HTML output of conan info --graph.

• Feature: allow custom path to bash, as configuration and environment variable.

• Fix: Not issuing an unused variable warning in CMake for the CONAN_EXPORTED variable

• Fix: added new mips architectures and latest compiler versions to default settings.yml

• Fix: Unified username allowed patterns to those used in package references.

• Fix: hardcoded vs15 version in tools.vcvars

• BugFix: Clean crash and improved error messages when manifests mismatch exists in conan upload.

21.138. 0.22.2 (20-April-2017) 691

Conan Documentation, Release 1.31.4

21.141 0.21.2 (04-April-2017)

• Bugfix: virtualenv generator quoting environment variables in Windows.

21.142 0.21.1 (23-March-2017)

• BugFix: Fixed missing dependencies in AutoToolsBuildEnvironment

• BugFix: Escaping single quotes in html graph of conan info --graph=file.html.

• BugFix: Fixed loading of auth plugins in conan_server

• BugFix: Fixed visual_studio generator creating XML with dots.

21.143 0.21.0 (21-March-2017)

• Feature: conan info --graph or graph=file.html`` will generate a dependency graph representation in dot or
html formats.

• Feature: Added better support and tests for Solaris Sparc.

• Feature: custom authenticators are now possible in conan_server` with plugins.

• Feature: extended conan info command with path information and filter by packages.

• Feature: enabled conditional binary packages removal with conan remove with query syntax

• Feature: enabled generation and validation of manifests from test_package.

• Feature: allowing options definitions in profiles

• Feature: new RunEnvironment helper, that makes easier to run binaries from dependent packages

• Feature: new virtualrunenv generator that activates environment variable for execution of binaries from in-
stalled packages, without requiring imports of shared libraries.

• Feature: adding new version modes for ABI compatibility definition in package_id().

• Feature: Extended conan new command with new option for exports_sources example recipe.

• Feature: CMake helper defining parallel builds for gcc-like compilers via jN``, allowing user definition with
environment variable and in conan.conf.

• Feature: conan profile` command now show profiles in alphabetical order.

• Feature: extended visual_studio generator with more information and binary paths for execution with DLLs
paths.

• Feature: Allowing relative paths with $PROFILE_DIR place holder in profiles

• Fix: using only file checksums to decide for modified recipe in remote, for possible concurrent builds & uploads.

• Fix: Improved build`` modes management, with better checks and allowing multiple definitions and mixtures of
conditions

• Fix: Replaced warning for non-matching OS to one message stating the cross-build

• Fix: local conan source` command (working in user folder) now properly executes the equivalent of exports
functionality

692 Chapter 21. Changelog

Conan Documentation, Release 1.31.4

• Fix: Setting command line arguments to cmake command as CMake flags, while using the TARGETS approach.
Otherwise, arch flags like -m32 -m64 for gcc were not applied.

• BugFix: fixed conan imports destination folder issue.

• BugFix: Allowing environment variables with spaces

• BugFix: fix for CMake with targets usage of multiple flags.

• BugFix: Fixed crash of cmake_multi generator for “multi-config” packages.

21.144 0.20.3 (06-March-2017)

• Fix: Added opt-out for CMAKE_SYSTEM_NAME automatically added when cross-building, causing users providing
their own cross-build to fail

• BugFix: Corrected usage of CONAN_CFLAGS instead of CONAN_C_FLAGS in cmake targets

21.145 0.20.2 (02-March-2017)

• Fix: Regression of visual_studio``generator using ``%(ExecutablePath) instead of
$(ExecutablePath)

• Fix: Regression for build=outdated –build=Pkg`` install pattern

21.146 0.20.1 (01-March-2017)

• Fix: Disabled the use of cached settings and options from installed conaninfo.txt

• Fix: Revert the use of quotes in cmake generator for flags.

• Fix: Allow comments in artifacts.properties

• Fix: Added missing commit for CMake new helpers

21.147 0.20.0 (27-February-2017)

NOTE: It is important that if you upgrade to this version, all the clients connected to the same remote, should upgrade
too. Packages created with conan>=0.20.0 might not be usable with conan older conan clients.

• Feature: Largely improved management of environment variables, declaration in package_info(), definition
in profiles, in command line, per package, propagation to consumers.

• Feature: New build helpers AutotoolsBuildEnvironment, VisualStudioBuildEnvironment, which dep-
recate ConfigureEnvironment, with much better usage of environment variables

• Feature: New virtualbuildenv generator that will generate a composable environment with build information
from installed dependencies.

• Feature: New build_id() recipe method that allows to define logic to build once, and package multiple times
without building. E.g.: build once both debug and release artifacts, then package separately.

21.144. 0.20.3 (06-March-2017) 693

Conan Documentation, Release 1.31.4

• Feature: Multi-config packages. Now packages can provide multi-configuration packages, like both de-
bug/release artifacts in the same package, with self.cpp_info.debug.libs = [...] syntax. Not restricted
to debug/release, can be used for other purposes.

• Feature: new conan config command to manage, edit, display conan.conf entries

• Feature: Improvements to CMake build helper, now it has configure() and build() methods for common
operations.

• Feature: Improvements to SystemPackageToolwith detection of installed packages, improved implementation,
installation of multi-name packages.

• Feature: Unzip with tools.unzip maintaining permissions (Linux, OSX)

• Feature: conan info command now allows profiles too

• Feature: new tools unix_path(), escape_windows_cmd(), run_in_windows_bash(), useful for autotools
projects in Win/MinGW/Msys

• Feature: new context manager tools.chdir, to temporarily change directory.

• Feature: CMake using CMAKE_SYSTEM_NAME for cross-compiling.

• Feature: Artifactory build-info extraction from traces

• Feature: Attach custom headers to artifacts uploads with an artifacts.properties file.

• Feature: allow and copy symlinks while conan export

• Fix: removing quotes in some cmake variables that were generating incorrect builds

• Fix: providing better error messages for non existing binaries, with links to the docs

• Fix: improved error messages if tools.patch failed

• Fix: adding resdirs to cpp_info propagated information, and cmake variables, for directories containing
resources and other data.

• Fix: printing error messages if a build`` policy doesn’t match any package

• Fix: managing VS2017 by tools. Still the manual definition of vs150comntools required.

• Bug fix: crashes when not supported characters were dumped to terminal by logger

• Bug fix: wrong executable path in Visual Studio generator

21.148 0.19.3 (27-February-2017)

• Fix: backward compatibility for new environment variables. New features to be introduced in 0.20 will produce
that conaninfo.txt will not be correctly parsed, and then package would be “missing”. This will happen for
packages created with 0.20, and consumed with older than 0.19.3

NOTE: It is important that you upgrade at least to this version if you are using remotes with packages that might be
created with latest conan releases (like conan.io).

694 Chapter 21. Changelog

Conan Documentation, Release 1.31.4

21.149 0.19.2 (15-February-2017)

• Bug fix: Fixed bug with remotes behind proxies

• Bug fix: Fixed bug with exports_sources feature and nested folders

21.150 0.19.1 (02-February-2017)

• Bug fix: Fixed issue with conan copy` followed by conan upload` due to the new exports_sources feature.

21.151 0.19.0 (31-January-2017)

• Feature: exports_sources allows to snapshot sources (like exports) but retrieve them strictly when necessary,
to build from sources. This can largely improve install times for package recipes containing sources

• Feature: new configurable tracer able to create structured logs of conan actions: commands, API calls, etc

• Feature: new logger for self.run actions, able to log information from builds and other commands to files, that
can afterwards be packaged together with the binaries.

• Feature: support for Solaris SunOS

• Feature: Version helper improved with patch, pre, build capabilities to handle 1.3.4-alpha2+build1
versions

• Feature: compress level of tgz is now configurable via CONAN_COMPRESSION_LEVEL environment variable,
default 9. Reducing it can lead to faster compression times, at the expense of slightly bigger archives

• Feature: Add powershell support for virtualenv generator in Windows

• Feature: Improved system_requirements() raising errors when failing, retrying if not successful, being able
to execute in user space for local recipes

• Feature: new cmake helper macro conan_target_link_libraries().

• Feature: new cmake CONAN_EXPORTED variable, can be used in CMakeLists.txt to differentiate building in the
local conan cache as package and building in user space

• Fix: improving the caching of options from conan install in conaninfo.txt and precedence.

• Fix: conan definition of cmake output dirs has been disabled for cmake_multi generator

• Fix: imports() now uses environment variables at “conan install” (but not at “conan imports” yet)

• Fix: conan_info() method has been renamed to package_id(). Backward compatibility is maintained, but
it is strongly encouraged to use the new name.

• Fix: conan_find_libraries now use the NO_CMAKE_FIND_ROOT_PATH parameter for avoiding issue
while cross-compiling

• Fix: disallowing duplicate URLs in remotes, better error management

• Fix: improved error message for wildcard uploads not matching any package

• Fix: remove deprecated platform.linux_distribution(), using new “distro” package

• Bugfix: fixed management of VerifySSL parameter for remotes

• Bugfix: fixed misdetection of compiler version in conanbuildinfo.cmake for apple-clang

21.149. 0.19.2 (15-February-2017) 695

Conan Documentation, Release 1.31.4

• Bugfix: fixed trailing slash in remotes URLs producing crashes

• Refactor: A big refactor has been do to options. Nested options are no longer supported, and option.
suboption will be managed as a single string option.

This has been a huge release with contributors of 11 developers. Thanks very much to all of them!

21.152 0.18.1 (11-January-2017)

• Bug Fix: Handling of transitive private dependencies in modern cmake targets

• Bug Fix: Missing quotes in CMake macro for modern cmake targets

• Bug Fix: Handling LINK_FLAGS in cmake modern targets

• Bug Fix: Environment variables no propagating to test project with test_package command

21.153 0.18.0 (3-January-2017)

• Feature: uploads and downloads with retries on failures. This helps to avoid having to fully rebuild on CI when
a network transfer fails

• Feature: added SCons generator

• Feature: support for Python 3.6, with several fixes. Added Python 3.6 to CI.

• Feature: show package dates in conan info command

• Feature: new cmake_multi generator for multi-configuration IDEs like Visual Studio and Xcode

• Feature: support for Visual Studio 2017, VS-15

• Feature: FreeBSD now passes test suite

• Feature: conan upload showing error messages or URL of remote

• Feature: wildcard or pattern upload. Useful to upload multiple packages to a remote.

• Feature: allow defining settings as environment variables. Useful for use cases like dockerized builds.

• Feature: improved help`` messages

• Feature: cmake helper tools to launch conan directly from cmake

• Added code coverage for code repository

• Fix: conan.io badges when containing dash

• Fix: manifests errors due to generated .pyc files

• Bug Fix: unicode error messages crashes

• Bug Fix: duplicated build of same binary package for private dependencies

• Bug Fix: duplicated requirement if using version-ranges and requirements() method.

696 Chapter 21. Changelog

Conan Documentation, Release 1.31.4

21.154 0.17.2 (21-December-2016)

• Bug Fix: ConfigureEnvironment helper ignoring libcxx setting. #791

21.155 0.17.1 (15-December-2016)

• Bug Fix: conan install –all generating corrupted packages. Thanks to @yogeva

• Improved case sensitive folder management.

• Fix: appveyor links in README.

21.156 0.17.0 (13-December-2016)

• Feature: support for modern cmake with cmake INTERFACE IMPORTED targets defined per package

• Feature: support for more advanced queries in search.

• Feature: new profile list|show command, able to list or show details of profiles

• Feature: adding preliminary support for FreeBSD

• Feature: added new description field, to document package contents.

• Feature: generation of imports manifest and conan imports --undo functionality to remove imported files

• Feature: optional SSL certificate verification for remotes, to allow self signed certificates

• Feature: allowing custom paths in profiles, so profiles can be easily shared in teams, just inside the source
repository or elsewhere.

• Feature: fields user and channel now available in conan recipes. That allows to declare requirements for the
same user/channel as the current package.

• Feature: improved conan.io package web, adding description.

• Fix: allow to modify cmake generator in CMake helper class.

• Fix: added strip parameter to tools.patch() utility

• Fix: removed unused dependency to Boto

• Fix: wrong line endings in Windows for conan.conf

• Fix: proper automatic use of txt and env generators in test_package

• Bug fix: solved problem when uploading python packages that generated .pyc at execution

• Bug fix: crash when duplicate requires were declared in conanfile

• Bug fix: crash with existing imported files with symlinks

• Bug fix: options missing in “copy install command to clipboard” in web

21.154. 0.17.2 (21-December-2016) 697

Conan Documentation, Release 1.31.4

21.157 0.16.1 (05-December-2016)

• Solved bug with test_package with arguments, like scopes.

21.158 0.16.0 (19-November-2016)

Upgrade: The build=outdated`` feature had a change in the hash computation, it might report outdated binaries from
recipes. You can re-build the binaries or ignore it (if you haven’t changed your recipes without re-generating binaries)

• Feature: version ranges. Conan now supports defining requirements with version range expressions like Pkg/
[>1.2,<1.9||1.0.1]@user/channel. Check the version ranges reference for details

• Feature: decoupled imports from normal install. Now conan install --no-imports skips the imports
section.

• Feature: new conan imports command that will execute the imports section without running install

• Feature: overriding settings per package. Now it is possible to specify individual settings for each package.
This can be specified both in the command line and in profiles

• Feature: environment variables definition in the command line, global and per package. This allows to define
specific environment variables as the compiler (CC, CXX) for a specific package. These environment variables
can also be defined in profiles. Check profiles reference

• Feature: Now conan files copies handle symlinks, so files are not duplicated. This will save some space and
improve download speed in some large packages. To enable it, use self.copy(..., links=True)

• Fix: Enabling correct use of MSYS in Windows, by using the Windows C:/... path instead of the MSYS ones

• Fix: Several fixes in conan search, both local and in remotes

• Fix: Manifests line endings and order fix, and hash computation fixed (it had wrong ordering)

• Fix: Removed http->https redirection in conan_server that produced some issues for SSL reversed proxies

• Fix: Taking into account “ANY” definition of settings and options

• Fix: Improved some error messages and failures to encode OS errors with unicode characters

• Update: added new arch ppc64 to default settings

• Update: updated python-requests library version

• Fix: Using generator() instead of compiler to decide on cmake multi-configuration for Ninja+cl builds

• Improved and completed documentation

21.159 0.15.0 (08-November-2016)

Upgrade: If you were using the short_paths feature in Windows for packages with long paths, please reset your
local cache. You could manually remove packages or just run conan remove "*"

• Feature: New build=outdated`` functionality, that allows to build the binary packages for those dependencies
whose recipe has been changed, or if the binary is not existing. Each binary package stores a hash of the recipe
to know if they have to be regenerated (are outdated). This information is also provided in the conan search
<ref>` command. Useful for package creators and CI.

• Feature: Extended the short_paths feature for Windows path limit to the package folder, so package with
very long paths, typically in headers in nested folder hierarchies are supported.

698 Chapter 21. Changelog

Conan Documentation, Release 1.31.4

• Feature: New tool.build_sln_command() helper to build()Microsoft Visual Studio solution (.sln) projects

• Feature: Extended the source and package command, so together with build they can be fully executed in a
user folder, as a convenience for package creation and testing.

• Feature: Extending the scope of tools.pythonpath to work in local commands too

• Improved the parsing of profiles and better error messages

• Not adding -s compiler flag for clang, as it doesn’t use it.

• Automatic generation of conanenv.txt in local cache, warnings if using local commands and no
conanbuildinfo.txt and no conanenv.txt are present to cache the information form install

• Fix: Fixed bug when using empty initial requirements (requires = "")

• Fix: Added glob hidden import to pyinstaller

• Fix: Fixed minor bugs with short_paths as local search not listing packages

• Fix: Fixed problem with virtual envs in Windows with paths separator (using / instead of)

• Fix: Fixed parsing of conanbuildinfo.txt, so the root folder for each dependency is available in local commands
too

• Fix: Fixed bug in test_package with the test project using the requirements() method.

21.160 0.14.1 (20-October-2016)

• Fixed bug with short_paths feature in windows.

• Improved error messages for non-valid profile test files.

• Remove downloaded tgz package files from remotes after decompress them.

• Fixes bug with install –all and short_paths

21.161 0.14.0 (20-October-2016)

• Feature: Added profiles, as user predefined settings and environment variables (as CC and CXX for compiler
paths). They are stored in files in the conan cache, so they can be easily edited, added, and shared. Use them
with conan install --profile=name

• Feature: short_paths feature for Windows now also handle long paths for the final package, in case that a user
library has a very long final name, with nested subfolders.

• Feature: Added tools.cpu_count() as a helper to retrieve the number of cores, so it can be used in concurrent
builds

• Feature: Detects cycles in the dependency graph, and raise error instead of exhausting recursion limits

• Feature: Conan learned the werror`` option that will raise error and stop installation under some cases treated as
warnings otherwise: Duplicated dependencies, or dependencies conflicts

• Feature: New env generator that generates a text file with the environment variables defined by dependencies,
so it can be stored. Such file is parsed by conan build to be able to use such environment variables for self.
deps_env_info too, in the same way it uses the txt generator to load variables for self.deps_cpp_info.

• Fix: Do not print progress bars when output is a file

• Fix: Improved the local conan search, using options too in the query conan search -q option=value

21.160. 0.14.1 (20-October-2016) 699

Conan Documentation, Release 1.31.4

• Fix: Boto dependency updated to 2.43.0 (necessary for ArchLinux)

• Fix: Simplified the conan package command, removing unused and confusing options, and more informative
messages about errors and utility of this command.

• Fix: More fixes and improvements on ConfigureEnvironment, mainly for Windows

• Fix: Conan now does not generate a conanbuildinfo.txt file when doing conan install <PkgRef>.

• Bug fix: Files of a package recipe are “touched” to update their timestamps to current time when retrieved,
otherwise some build systems as Ninja can have problems with them.

• Bug fix: qmake generator now uses quotes to handle paths with spaces

• Bug fix: Fixed OSInfo to return the short distro name instead of the long one.

• Bug fix: fixed transitivity of private dependencies

21.162 0.13.3 (13-October-2016)

This minor solves some problems with ConfigureEnvironment, mainly for Windows, but also fixes other things:

• Fixed concatenation problems in Windows for several environment variables. Fixed problems with path with
spaces

• A batch file is created in Windows to be called, as if defined structures doesn’t seem to work in the command
line.

• The vcvars_command from tools now checks the Visual Studio environment variable, if it is already set, it
will check it with the current project settings, throwing an error if not matching, returning an empty command
if matches.

• Added a compile_flags property to ConfigureEnvironment, to be passed in the command line to the com-
piler, but not as environment variables

• Added defines to environment for nix systems, it was not being handled before

• Added new tests, compiling simple projects and diamond dependencies with cmake, cl (msvc), gcc (gcc in linux,
mingw in win) and clang (OSX), for a better coverage of the ConfigureEnvironment functionality.

• Fixed wrong CPP_INCLUDE_PATH, it is now CPLUS_INCLUDE_PATH

21.163 0.13.0 (03-October-2016)

IMPORTANT UPGRADE ISSUE: There was a small error in the computation of binary packages IDs, that has been
addressed by conan 0.13. It affects to third level (and higher) binary packages, i.e. A and B in A->B->C->D, which
binaries must be regenerated for the new hashes. If you don’t plan to provide support for older conan releases (<=0.12),
which would be reasonable, you should remove all binaries first (conan remove -p, works both locally and remotely),
then re-build your binaries.

Features:

• Streaming from/to disk for all uploads/downloads. Previously, this was done for memory, but conan started to
have issues for huge packages (>many hundreds MBs), that sometimes could be alleviated using Python 64 bits
distros. This issues should be alleviated now

• New security system that allows capturing and checking the package recipes and binaries manifests into user
folders (project or any other folder). That ensures that packages cannot be replaced, hacked, forged, changed or
wrongly edited, either locally or in any remote server, without notice.

700 Chapter 21. Changelog

Conan Documentation, Release 1.31.4

• Possible to handle and reuse python code in recipes. Actually, conan can be used as a package manager for
python, by adding the package path to env_info.PYTHONPATH. Useful if you want to reuse common python
code between different package recipes.

• Avoiding re-compress the tgz for packages after uploads if it didn’t change.

• New command conan source that executes the source() method of a given conanfile. Very useful for CI, if
desired to run in parallel the construction of different binaries.

• New propagation of cpp_info, so it now allows for capturing binary packages libraries with new
collect_libs() helper, and access to created binaries to compute the package_info() in general.

• Command test_package now allows the update`` option, to automatically update dependencies.

• Added new architectures for ppc64le and detection for AArch64

• New methods for defining requires effect over binary packages ID (hash) in conan_info()

• Many bugs fixes: error in tools.downloadwith python 3, restore correct prompt in virtualenvs, bug if removing
an option in config_options(), setup.py bug. . .

This release has contributions from @tru, @raulbocanegra, @tivek, @mathieu, and the feedback of many other conan
users, thanks very much to all of them!

21.164 0.12.0 (13-September-2016)

• Major changes to search api and commands. Decoupled the search of package recipes, from the search of binary
packages.

• Fixed bug that didn’t allow to export or upload packages with settings restrictions if the restrictions didn’t
match the host settings

• Allowing disabling color output with CONAN_COLOR_DISPLAY=0 environment variable, or to configure color
schema for light console backgrounds with CONAN_COLOR_DARK=1 environment variable

• Imports can use absolute paths, and files copied from local conan cache to those paths will not be removed when
conan install. Can be used as a way to install machine-wise things (outside conan local cache)

• More robust handling of failing transfers (network disconnect), and inconsistent status after such

• Large internal refactor for storage managers. Improved implementations and decoupling between server and
client

• Fixed slow conan remove for caches with many packages due to slow deletion of empty folders

• Always allowing explicit options scopes, - o Package:option=value as well as the implicit -o
option=value for current Package, for consistency

• Fixed some bugs in client-server auth process.

• Allow to extract .tar files in tools.unzip()

• Some helpers for conan_info(), as self.info.requires.clear() and removal of settings and options

21.164. 0.12.0 (13-September-2016) 701

Conan Documentation, Release 1.31.4

21.165 0.11.1 (31-August-2016)

• New error reporting for failures in conanfiles, including line number and offending line, much easier for package
creators

• Removed message requesting to create an account in conan.io for other remotes

• Removed localhost:9300 remote that was added by default mostly for demo purposes. Clarified in docs.

• Fixed usernames case-sensitivity in conan_server, due to ConfigParser it was forcing lowercase

• Handling unicode characters in remote responses, fixed crash

• Added new compilers gcc 6.2, clang 8.0 to the default settings.yml

• Bumped cryptography, boto and other conan dependencies, mostly for ArchLinux compatibility and new OSX
security changes

21.166 0.11.0 (3-August-2016)

• New solution for the path length limit in Windows, more robust and complete. Package conanfile.py just have to
declare an attribute short_paths=True and everything will be managed. The old approach is deprecated and
totally removed, so no shorts_paths.conf file is necessary. It should fix also the issues with uploads/retrievals.

• New virtualenv generator that generates activate and deactivate scripts that set environment variables
in the current shell. It is very useful, for example to install tools (like CMake, MinGW) with conan packages, so
multiple versions can be installed in the same machine, and switch between them just by activating such virtual
environments. Packages for MinGW and CMake are already available as a demo

• ConfigureEnvironment takes into account environment variables, defined in packages in new env_info, which
is similar to cpp_info but for environment information (like paths).

• New per-package build_policy, which can be set to always or missing, so it is not necessary to create
packages or specify the build`` parameter in command line. Useful for example in header only libraries or to
create packages that always get the latest code from a branch in a github repository.

• Command conan test_package` now executes by default a conan export with smarter package reference
deduction. It is introduced as opt-out behavior.

• Conan :command`export` command avoids copying test_package/build temporary files in case of export=*

• Now, package_info() allows absolute paths in includedir, libdirs and bindirs, so wrapper packages
can be defined that use system or manually installed libraries.

• LDFLAGS in ConfigureEnvironment management of OSX frameworks.

• Options allow the ANY value, so such option would accept any value. For example a commit of a git repository,
useful to create packages that can build any specific commit of a git repo.

• Added gcc 5.4 to the default settings, as well as MinGW options (Exceptions, threads. . .)

• Command conan info learned a new option to output the packages from a project dependency tree that should
be rebuilt in case of a modification of a certain package. It outputs a machine readable ordered list of packages
to be built in that order. Useful for CI systems.

• Better management of incomplete, dirty or failed source directories (e.g. in case of a user interrupting with
Ctrl+C a git clone inside the source() method.

• Added tools for easier detection of different OS versions and distributions, as well as command wrappers to install
system packages (apt, yum). They use sudo via a new environment variable CONAN_SYSREQUIRES_SUDO,
so using sudo is opt-in/out, for users with different sudo needs. Useful for system_requirements()

702 Chapter 21. Changelog

Conan Documentation, Release 1.31.4

• Deprecated the config() method (still works, for backwards compatibility), but has been replaced by a
config_options() to modify options based on settings, and a configure() method for most use cases. This
removes a nasty behavior of having the config() method called twice with side effects.

• Now, running a conan install MyLib/0.1@user/channel to directly install packages without any consum-
ing project, is also able to generate files with the -g option. Useful for installing tool packages (MinGW, CMake)
and generate virtualenvs.

• Many small fixes and improvements: detect compiler bug in Py3, search was crashing for remotes, conan new
failed if the package name had a dash, etc.

• Improved some internal duplications of code, refactored many tests.

This has been a big release. Practically 100% of the released features are thanks to active users feedback and contribu-
tions. Thanks very much again to all of them!

21.167 0.10.0 (29-June-2016)

• conan new command, that creates conan package conanfile.py templates, with a test_package package test (-t
option), also for header only packages (-i option)

• Definition of scopes. There is a default dev scope for the user project, but any other scope (test, profile. . .) can
be defined and used in packages. They can be used to fire extra processes (as running tests), but they do not affect
the package binaries, and are not included in the package IDs (hash).

• Definition of dev_requires. Those are requirements that are only retrieved when the package is in dev scope,
otherwise they are not. They do not affect the binary packages. Typical use cases would be test libraries or build
scripts.

• Allow shorter paths for specific packages, which can be necessary to build packages with very long path names
(e.g. Qt) in Windows.

• Support for bzip2 and gzip decompression in tools

• Added package_folder attribute to conanfile, so the package()method can for example call cmake install
to create the package.

• Added CONAN_CMAKE_GENERATOR environment variable that allows to override the CMake default generator.
That can be useful to build with Ninja instead of the default Unix Makefiles

• Improved ConfigureEnvironment with include paths in CFLAGS and CPPFLAGS, and fixed bug.

• New conan user --clean option, to completely remove all user data for all remotes.

• Allowed to raise Exceptions in config() method, so it is easier for package creators to raise under non-
supported configurations

• Fixed many small bugs and other small improvements

As always, thanks very much to all contributors and users providing feedback.

21.167. 0.10.0 (29-June-2016) 703

Conan Documentation, Release 1.31.4

21.168 0.9.2 (11-May-2016)

• Fixed download bug that made it specially slow to download, even crash. Thanks to github @melmdk for fixing
it.

• Fixed cmake check of CLang, it was being skipped

• Improved performance. Check for updates has been removed from install, made it opt-in in conan info
command, as it was very slow, seriously affecting performance of large projects.

• Improved internal representation of graph, also improves performance for large projects.

• Fixed bug in conan install --update.

21.169 0.9 (3-May-2016)

• Python 3 “experimental” support. Now the main conan codebase is Python 2 and 3 compatible. Python 2 still
the reference platform, Python 3 stable support in next releases.

• Create and share your own custom generators for any build system or tool. With “generator packages”, you
can write a generator just as any other package, upload it, modify and version it, etc. Require them by reference,
as any other package, and pull it into your projects dynamically.

• Premake4 initial experimental support via a generator package.

• Very large re-write of the documentation. New “creating packages” sections with in-source and out-source
explicit examples. Please read it! :)

• Improved conan test. Renamed test to test_package both for the command and the folder, but backwards
compatibility remains. Custom folder name also possible. Adapted test layout might require minor changes to
your package test, automatic warnings added for your convenience.

• Upgraded pyinstaller to generate binary OS installers from 2.X to 3.1

• conan search now has command line options:, less verbose, verbose, extra verbose

• Added variable with full list of dependencies in conanbuildinfo.cmake

• Several minor bugfixes (check github issues)

• Improved conan user to manage user login to multiple remotes

21.170 0.8.4 (28-Mar-2016)

• Fixed linker problems with the new apple-clang 7.3 due to libraries with no timestamp set.

• Added apple-clang 7.3 to default settings

• Fixed default libcxx for apple-clang in auto detection of base conan.conf

704 Chapter 21. Changelog

Conan Documentation, Release 1.31.4

21.171 0.8 (15-Mar-2016)

• New conan remote command to manage remotes. Redesigned remotes architecture, now allows to work with
several remotes in a more consistent, powerful and “git-like” way. New remotes registry keeps track of the remote
of every installed package, and this information is shown in conan info command too. Also, it keeps different
user logins for different remotes, to improve support in corporate environments running in-house servers.

• New update functionality. Now it is possible to conan install --update to update packages that became
obsolete because new ones were uploaded to the corresponding remote. Conan commands as install and info
show information about the status of the local packages compared with the remote ones. In this way, using latest
versions during development is much more natural.

• Added new compiler.libcxx setting in order to support the different c++ standard libraries. It can take libstdc++,
libstdc++11 or libc++ values to take into account different standard libraries for modern gcc and clang compilers.
It is also possible to remove not needed settings, like this one in pure C projects, with the new syntax: del self.
settings.compiler.libcxx

• Conan virtual environment: Define a custom conan directory with CONAN_USER_HOME env variable, and
have a per project or per workspace storage for your dependencies. So you can isolate your dependencies and even
bundle them within your project, by just setting the CONAN_USER_HOME variable to your <project>/deps
folder, for example. This also improves support for continuous integration CI systems, in which many builds
from different users could be run in parallel.

• Better conanfile download method. More stable and now checks (opt-out) the ssl certificates.

• Lots of improvements: Increased library name length limit, Improved and cleaner output messages.

• Fixed several minor bugs: removing empty folders, case sensitive exports, arm settings detection.

• Introduced the concept of “package recipe” that refers to conanfile.py and exported files.

• Improved settings display in web, with new “copy install command to clipboard” to assist in installing packages
discovered in web.

• The macOS installer, problematic with latest macOS releases, has been deprecated in favor of homebrew and pip
install procedures.

21.172 0.7 (5-Feb-2016)

• Custom conanfile names are allowed for developing. With file`` option you can define the file you want to
use, allowing for .conaninfo.txt or having multiple conanfile_dev.py, conanfile_test.py besides the
standard conanfile.pywhich is used for sharing the package. Inheritance is allowed, e.g. conanfile_dev.py
might extend/inherit from conanfile.py.

• New conan copy command that can be used to copy/rename packages, promote them between channels, forking
other users packages.

• New all`` and package`` options for conan install that allows to download one, several, or all package con-
figurations for a given reference.

• Added patch() tool to easily patch sources if necessary.

• New qmake and qbs generators

• Upload of conanfile exported files is also tgz’d, allowing fast upload/downloads of full sources if desired, avoid-
ing retrieval of sources from externals sources.

• conan info command improved showing info of current project too

• Output of run() can be redirected to buffer string for processing, or even removed.

21.171. 0.8 (15-Mar-2016) 705

Conan Documentation, Release 1.31.4

• Added proxy configuration to conan.conf for users behinds proxies.

• Large improvements in commands output, prefixed with package reference, and much clear.

• Updated settings for more versions of gcc and new arm architectures

• Treat dependencies includes as SYSTEM in cmake, so no warnings are raised

• Deleting source folder after conan export so no manual removal is needed

• Normalizing to CRLF generated user files in Win

• Better detection and checks for compilers as VS, apple-clang

• Fixed CMAKE_SHARED_LINKER_FLAGS typo in cmake files

• Large internal refactor in generators

21.173 0.6 (11-Jan-2016)

• New cmake variables in cmake generator to make FindPackage work better thanks to the underlaying FindLibrary.
Now many FindXXX.cmake work “as-is” and the package creator does not have to create a custom override, and
consumers can use packages transparently with the originals FindXXX.cmakes

• New “conan info” command that shows the full dependency graph and details (license, author, url, dependants,
dependencies) for each dependency.

• New environment helper with a ConfigureEnvironment class, that is able to translate conan information to auto-
tools configure environment definition

• Relative importing from conanfiles now is possible. So if you have common functionality between different
packages, you can reuse those python files by importing them from the conanfile.py. Note that export=”. . . ”
might be necessary, as packages as to be self-contained.

• Added YouCompleteMe generator for vim auto-completion of dependencies.

• New “conanfile_directory” property that points to the file in which the conanfile.py is located. This helps if
using the conanfile.py “build” method to build your own project as a project, not a package, to be able to use any
workflow, out-of-source builds, etc.

• Many edits and improvements in help, docs, output messages for many commands.

• All cmake syntax in modern lowercase

• Fixed several minor bugs: gcc detection failure when gcc not installed, missing import, copying source->build
failing when symlinks

21.174 0.5 (18-Dec-2015)

• New cmake functionality allows package creators to provide cmake finders, so that package consumers can
use their CMakeLists.txt with typical FindXXX.cmake files, without any change to them. CMake CO-
NAN_CMAKE_MODULES_PATH added, so that package creators can provide any additional cmake scripts
for consumers.

• Now it is possible to generate out-of-source and multiple configuration installations for the same project, so you
can switch between them without having to conan install again. Check the new workflows

• New qmake generator (thanks @dragly)

706 Chapter 21. Changelog

Conan Documentation, Release 1.31.4

• Improved removal/deletion of folders with shutil.rmtree, so conan remove commands and other processes re-
quiring deletion of folders do not fail due to permissions and require manual deletion. This is an improvement,
especially in Win.

• Created pip package, so conan can be installed via: pip install conan

• Released pyinstaller code for the creation of binaries from conan python source code. Distros package cre-
ators can create packages for the conan apps easily from those binaries.

• Added md5, sha1, sha256 helpers in tools, so external downloads from conanfile.py files source() can be
checked.

• Added latest gcc versions to default settings.yml

• Added CI support for conan development: travis-ci, appveyor

• Improved human-readability for download progress, help messages.

• Minor bug fixes

21.174. 0.5 (18-Dec-2015) 707

Conan Documentation, Release 1.31.4

708 Chapter 21. Changelog

CHAPTER

TWENTYTWO

ROAD TO CONAN 2.0

Conan has started to think about the next major release. We’ve been gathering feedback from the community about our
features and we think it’s time to break some default behaviors, clean the codebase and add space for new developments.

In the future, this section will contain relevant information and changes regarding Conan 2.0, there is a lot of work
ahead, as you can see in our backlog.

Meanwhile, in version 1.23 we have introduced an environment variable to activate new defaults and best practices, and
to detect things that are already almost deprecated. Read more about CONAN_V2_MODE in this section (this mode is only
for developers and for testing purpose, it doesn’t expose a stable set of features and there is no stability commitment).

Stay tuned!

709

https://github.com/conan-io/conan/milestones

Conan Documentation, Release 1.31.4

710 Chapter 22. Road to Conan 2.0

INDEX

B
binary package, 623
build helper, 623
build requirement, 623
build system, 623

C
conanfile, 623
conanfile.py, 623
conanfile.txt, 623
cross compiler, 623

D
dependency graph, 623

E
editable package, 623

G
generator, 624

H
hook, 624

L
library, 624
local cache, 624
lockfile, 624

O
options, 624

P
package, 624
package ID, 624
package reference, 624
package revision, 624
profile, 624

R
recipe, 624

recipe reference, 625
recipe revision, 625
remote, 625
requirement, 625
revision, 625

S
semantic versioning, 625
settings, 625
shared library, 625
static library, 625
system packages, 625

T
toolchain, 625
transitive dependency, 625

W
workspace, 625

711

	Introduction
	Open Source
	Decentralized package manager
	Binary management
	All platforms, all build systems and compilers
	Stable
	Community

	Training Courses
	Install
	Install with pip (recommended)
	Known installation issues with pip

	Install from brew (OSX)
	Install from AUR (Arch Linux)
	Install the binaries
	Initial configuration
	Install from source
	Update
	Python 2 Deprecation Notice

	Getting Started
	An MD5 hash calculator using the Poco Libraries
	Installing Dependencies
	Inspecting Dependencies
	Searching Packages
	Building with other configurations

	Using packages
	Installing dependencies
	Requires
	Optional user/channel
	Overriding requirements

	Generators
	Options
	Imports

	Using profiles
	Workflows
	Single configuration
	Multi configuration

	Debugging packages

	Creating Packages
	Getting Started
	Creating the Package Recipe
	The test_package Folder
	Creating and Testing Packages
	Omitting user/channel
	Examples

	Settings vs. Options

	Recipe and Sources in a Different Repo
	Recipe and Sources in the Same Repo
	Exporting the Sources with the Recipe: exports_sources
	Capturing the Remote and Commit: scm

	Packaging Existing Binaries
	Packaging Pre-built Binaries
	Downloading and Packaging Pre-built Binaries

	Understanding Packaging
	Creating and Testing Packages Manually
	Package Creation Process

	Defining Package ABI Compatibility
	Defining a Custom package_id()
	Compatible packages
	Compatible Compilers
	Dependency Issues
	Using package_id() for Package Dependencies
	Versioning Schema
	Changing the default package-id mode
	Enabling full transitivity in package_id modes
	Library Types: Shared, Static, Header-only

	Define the package information
	Using Components

	Toolchains
	Built-in toolchains
	CMakeToolchain
	constructor
	preprocessor_definitions
	generators
	Using the toolchain in developer flow
	CMake build helper

	constructor
	configure()
	build()
	install()
	test()
	Examples

	MakeToolchain
	definitions
	generators
	Using the toolchain in developer flow
	Autotools Build Helper

	MSBuildToolchain
	Generators
	Using the toolchain in developer flow
	MSBuild build helper

	Inspecting Packages
	Packaging Approaches
	1 config (1 build) -> 1 package
	N configs -> 1 package
	N configs (1 build) -> N packages

	Package Creator Tools

	Uploading Packages
	Remotes
	Conan-center
	Bintray Community Repositories
	Bincrafters
	Conan Community

	Uploading Packages to Remotes
	Using Bintray
	Uploading to Bintray
	Contributing Packages to Conan-center

	Artifactory Community Edition for C/C++
	Running Artifactory CE
	Creating and Using a Conan Repo
	Migrating from Other Servers

	Running conan_server
	Running from Source (linux)
	Server Configuration
	Server Parameters
	Running the Conan Server with SSL using Nginx
	Running the Conan Server with SSL using Nginx in a Subdirectory
	Running Conan Server using Apache
	Permissions Parameters
	Authentication
	Create Your Own Custom Authenticator

	Developing packages
	Package development flow
	conan source
	conan install
	conan build
	conan package
	conan export-pkg
	conan test
	conan create

	Packages in editable mode
	Put a package in editable mode
	Editable packages layouts
	Recipe defined layout
	Layout files
	Specifying layout files
	Evaluation order and priority

	Using a package in editable mode
	Revert the editable mode

	Workspaces
	Conan workspace definition
	Single configuration build environments
	Multi configuration build environments
	Out of source builds
	Notes

	Package apps and devtools
	Running and deploying packages
	Using virtual environments
	Imports
	Deployable packages
	Using the deploy generator
	Using the json generator
	Running from packages
	Runtime packages and re-packaging
	Deployment challenges
	The C standard library
	C++ standard library
	Compiler runtime
	System API (system calls)

	Creating conan packages to install dev tools
	Using the tool packages in other recipes
	Using the tool packages in your system

	Build requirements
	Declaring build requirements
	Build and Host contexts
	Properties of build requirements
	Example: testing framework and build tool

	Versioning
	Introduction to versioning
	Versioning approaches
	Fixed versions
	Version ranges
	Package alias
	Package revisions

	Version and configuration conflicts
	Dependencies overriding
	Versioning and binary compatibility

	Version ranges
	Package Revisions
	How it works
	How to activate the revisions
	Server support

	Lockfiles
	Introduction
	Locking dependencies
	Immutability
	Reproducibility

	Multiple configurations
	Base lockfiles
	Locked configuration

	Evolving lockfiles
	Deriving a partial lockfile
	Integrating a partial lockfile

	Build order in lockfiles
	Defining builds

	Lockfiles in Continuous Integration
	Repositories
	Package pipeline
	Products pipeline

	Mastering Conan
	Use conanfile.py for consumers
	conan build
	Other local commands

	Conditional settings, options and requirements
	Constrain settings and options

	Build policies
	Environment variables
	Defining environment variables
	Automatic environment variables inheritance

	Virtual Environments
	Virtualenv generator
	Virtualbuildenv environment
	Virtualrunenv generator

	Logging
	How to log and debug a conan execution
	How to log the build process
	Package the log files

	Sharing the settings and other configuration
	Conan local cache: concurrency, Continuous Integration, isolation
	Concurrency
	System Requirements

	Systems and cross building
	Cross building
	GNU triplet convention
	Cross building with Conan
	Using a profile
	Using build requires
	Conan v1.24 and newer
	Conan older than v1.24

	Host settings os_build, arch_build, os_target and arch_target

	ARM architecture reference
	Examples
	Examples using profiles
	Linux to Windows
	Windows to Raspberry Pi (Linux/ARM)
	Windows to Windows CE
	Linux/Windows/macOS to Android

	Examples using build requires

	Windows Subsystems
	Operation Modes
	Running commands inside the subsystem
	self.run()
	AutoToolsBuildEnvironment

	Controlling the build environment

	Extending Conan
	Customizing settings
	Adding new settings
	Adding new sub-settings
	Add new values

	Python requires
	Introduction
	Extending base classes
	Limitations

	Reusing files
	PackageID
	Resolution of python-requires

	Python requires (legacy)
	Import a python requires
	Reuse python sources
	Reuse source files

	Creating a custom build helper for Conan
	Hooks
	Hook structure
	Importing from a module
	Storage, activation and sharing
	Official Hooks

	Template system
	HTML output for conan search table
	Context

	Graph output for conan info command
	Context
	Examples
	Dot files:
	HTML files:

	Package scaffolding for conan new command
	Context
	Example

	Integrations
	Compilers
	Build systems
	CMake
	cmake generator
	Global variables approach
	Targets approach

	cmake_multi generator
	Global variables approach
	Targets approach
	Creating packages

	cmake_paths generator
	Included as a toolchain
	Included using the CMAKE_PROJECT_<PROJECT-NAME>_INCLUDE
	Included in your CMakeLists.txt

	cmake_find_package generator
	In a conanfile.py
	In a conanfile.txt

	cmake_find_package_multi
	Usage

	Build automation
	Find Packages
	Creating a custom FindXXX.cmake file

	MSBuild (Visual Studio)
	With CMake
	With visual_studio generator
	Calling Visual Studio compiler
	Build an existing Visual Studio project
	Toolsets

	Autotools: configure/make
	Ninja, NMake, Borland
	pkg-config and .pc files
	Approach 1: Import and patch the prefix in the .pc files
	Approach 2: Prepare and package .pc files before packaging them
	Approach 3: Use --define-prefix
	Approach 4: Use PKG_CONFIG_$PACKAGE_$VARIABLE
	Approach 5: Use the pkg_config generator

	Boost Build
	B2 (Boost Build)
	QMake
	Example

	Premake
	Example

	XMake
	Install third-party packages:
	Find a conan package
	Test command for finding package

	Make
	Example

	qbs
	Meson Build
	SCons
	Compilers on command line

	IDEs
	Visual Studio
	Conan Extension for Visual Studio
	General Integration

	CLion
	General Integration
	Using packages in a CLion project
	Creating Conan packages in a CLion project

	Apple/Xcode
	With CMake
	With the xcode generator

	Android Studio
	YouCompleteMe (vim)

	CI Platforms
	Jenkins
	Artifactory and Jenkins integration
	Example: Test your project getting requirements from Artifactory
	Example: Build a Conan package and upload it to Artifactory

	Travis CI
	Installing dependencies and building your project
	Creating, testing and uploading Conan binary packages

	Appveyor
	Building and testing your project
	Creating, testing and uploading Conan binary packages

	Gitlab
	Building and testing your project
	Creating, testing and uploading Conan binary packages

	Circle CI
	Building and testing your project
	Creating, testing and uploading Conan package binaries

	Microsoft’s Azure DevOps (TFS, VSTS)
	Configuring DevOps Azure to use Artifactory with Conan
	Steps to follow
	STEP 1: Configure the Artifactory instance
	To add Artifactory to Azure DevOps:

	STEP 2: Add a Conan task
	To add a Conan task:

	STEP 3: Configure the Push task buildinfo to Artifactory

	Other Systems
	Buildroot
	Integration with Conan
	Creating Conan packages with Buildroot
	Installing Conan Zlib

	Customizing Conan remote

	Docker
	Emscripten
	Running the code inside the browser

	QNX Neutrino
	Yocto
	Integration with Conan
	Creating Conan packages with Yocto’s SDK
	Prepare your recipes
	Setting up a Yocto SDK
	Cross-building Conan packages with the SDK toolchain

	Deploying an application to a Yocto image
	Set up the Conan layer
	Write the Bitbake recipe for the Conan package
	Configure Conan variables for the build
	Architecture conversion table

	Deploy the application and its dependencies to the final image

	Android
	Using android_ndk_installer package (build require)
	Use built-in Conan toolchain
	Using Docker images
	Using existing NDK
	Using toolchain from Android NDK
	Using CMake build-in Android NDK support

	iOS, tvOS, watchOS
	Using Darwin toolchain package (build require)
	Use built-in Conan toolchain

	Version Control System
	Git
	Temporary files
	Package creators

	SVN

	Custom integrations
	Use the JSON generator
	Use the text generator
	Use the Conan data model (in a conanfile.py)
	Create your own generator
	Extending Conan

	Linting
	Linting the recipe
	IDE
	Hook

	Linting binary packages

	Deployment
	System package manager
	Makeself
	AppImage
	Snap
	Flatpak

	Configuration
	Download cache
	Activating/deactivating the download cache
	Concurrency, multiple caches and CI
	Removing cached files

	Howtos
	How to package header-only libraries
	Without unit tests
	With unit tests

	How to launch conan install from cmake
	How to create and reuse packages based on Visual Studio
	Creating packages
	Uploading binaries
	Reusing packages
	Other configurations

	Creating and reusing packages based on Makefiles
	Creating packages
	Using packages

	How to manage the GCC >= 5 ABI
	Using Visual Studio 2017 - CMake integration
	Using cmake-conan
	Using tasks with tasks.vs.json

	Working with Intel compiler
	How to manage C++ standard [EXPERIMENTAL]
	Build helpers
	Package compatibility
	Required version

	How to use Docker to create and cross-build C and C++ Conan packages
	Using Conan inside a container
	Sharing a local folder with a Docker container
	Using the images to cross build packages
	Available Docker images

	How to reuse Python code in recipes
	A basic Python package
	Reusing Python code in your recipes
	Requiring a Python Conan package
	Sharing a Python module

	How to create and share a custom generator with generator packages
	Creating a Premake generator
	Using the generator
	Using template files for custom generators
	Storing generators in the Conan local cache

	How to manage shared libraries
	Manage Shared Libraries with Environment Variables
	Example
	Using the tool from a different package
	Building an application using the shared library from tool_a
	Using shared libraries from dependencies
	Using virtualrunenv generator

	Manage RPATHs
	Default Conan approach
	Different approaches

	How to reuse cmake install for package() method
	How to collaborate with other users’ packages
	Collaborate from source repository
	Copy a package

	How to link with Apple Frameworks
	How to package Apple Frameworks
	How to collect licenses of dependencies
	How to extract licenses from headers
	How to dynamically define the name and version of a package
	How to capture package version from SCM: git
	How to capture package version from SCM: svn
	How to capture package version from text or build files
	How to use Conan as other language package manager
	Conan: A Go package manager
	The source code
	Declaring and installing dependencies
	Running our server
	Generating Go packages

	Conan: A Python package manager
	A full Python and C/C++ package manager

	How to manage SSL (TLS) certificates
	Server certificate validation
	Client certificates

	How to check the version of the Conan client inside a conanfile
	Use a generic CI with Conan and Artifactory
	Uploading the BuildInfo
	Extracting build-info from the Conan trace log
	Generating build info from lockfiles information

	Compiler sanitizers
	Adding custom settings
	Adding a list of commonly used values
	Adding different values to combine

	Passing the information to the compiler or build system
	Using from custom profiles
	Managing sanitizer settings with the build system
	Using conan Hooks to set compiler environment variables

	Reference
	Commands
	Consumer commands
	conan install
	build options
	env variables
	settings
	options
	reference

	conan config
	conan config install

	conan get
	conan info
	conan search
	Examples
	Query syntax
	Tabular output
	Recipe and package revisions

	Creator commands
	conan create
	conan export
	conan export-pkg
	conan new
	conan upload
	conan test

	Package development commands
	conan source
	conan build
	conan package
	conan editable
	conan editable add
	conan editable remove
	conan editable list

	conan workspace
	conan workspace install

	Misc commands
	conan profile
	conan remote
	conan user
	Using environment variables

	conan imports
	conan copy
	conan download
	conan remove
	conan alias
	conan inspect
	conan lock
	conan lock create
	conan lock update
	conan lock build-order
	conan lock clean-modified

	conan help
	conan_build_info v1
	conan_build_info v2

	JSON Output
	Install and Create output
	Search output
	Upload output
	User output
	Info output
	Build order
	Nodes to build
	Info output

	Config output

	Return codes
	Return Codes
	Success
	General error
	Migration error
	User Ctrl+C
	User Ctrl+Break
	SIGTERM
	Invalid configuration

	conanfile.txt
	Sections
	[requires]
	[build_requires]
	[generators]
	[options]
	[imports]
	Comments

	conanfile.py
	Attributes
	name
	version
	description
	homepage
	url
	license
	author
	topics
	user, channel
	default_user, default_channel
	settings
	options
	default_options
	requires
	version ranges

	build_requires
	exports
	exports_sources
	generators
	should_configure, should_build, should_install, should_test
	build_policy
	short_paths
	no_copy_source
	source_folder
	install_folder
	build_folder
	package_folder
	recipe_folder
	cpp_info
	deps_cpp_info
	env_info
	deps_env_info
	user_info
	deps_user_info
	user_info_build
	info
	apply_env
	in_local_cache
	develop
	keep_imports
	scm
	revision_mode
	python_requires (legacy)
	python_requires
	python_requires_extend
	conan_data
	deprecated
	provides

	Methods
	source()
	build()
	Build helpers
	(Unit) Testing your library

	package()
	package_info()
	cpp_info
	env_info
	user_info

	set_name(), set_version()
	configure(), config_options()
	Invalid configuration

	requirements()
	build_requirements()
	system_requirements()
	SystemPackageTool

	imports()
	package_id()
	self.info
	self.info.header_only()
	self.info.shared_library_package_id()
	self.info.vs_toolset_compatible() / self.info.vs_toolset_incompatible()
	self.info.discard_build_settings() / self.info.include_build_settings()
	self.info.default_std_matching() / self.info.default_std_non_matching()
	Compatible packages

	build_id()
	deploy()
	init()
	export()
	export_sources()

	Python requires
	Output and Running
	Output contents
	Running commands
	Requiring a Conan version for the recipe

	Generators
	cmake
	Variables in conanbuildinfo.cmake
	Macros available in conanbuildinfo.cmake
	conan_basic_setup()
	conan_target_link_libraries()
	conan_check_compiler()
	conan_output_dirs_setup()
	conan_set_find_library_paths()
	conan_global_flags()
	conan_define_targets()
	conan_set_rpath()
	conan_set_vs_runtime()
	conan_set_std()
	conan_set_libcxx()
	conan_set_find_paths()
	conan_include_build_modules()
	conan_find_apple_frameworks(FRAMEWORKS_FOUND FRAMEWORKS)

	Input variables for conanbuildinfo.cmake
	CONAN_CMAKE_SILENT_OUTPUT
	CONAN_DISABLE_CHECK_COMPILER

	cmake_multi
	Variables in conanbuildinfo_release.cmake
	Variables in conanbuildinfo_debug.cmake
	Macros available in conanbuildinfo_multi.cmake
	conan_basic_setup()
	conan_target_link_libraries()
	conan_check_compiler()
	conan_output_dirs_setup()
	conan_global_flags()
	conan_define_targets()
	conan_set_rpath()
	conan_set_vs_runtime()
	conan_set_std()
	conan_set_libcxx()
	conan_set_find_paths()
	conan_include_build_modules()
	conan_find_apple_frameworks(FRAMEWORKS_FOUND FRAMEWORKS)

	Input variables for conanbuildinfo_multi.cmake
	CONAN_CMAKE_SILENT_OUTPUT

	cmake_paths
	Variables in conan_paths.cmake

	cmake_find_package
	Variables in Find<PKG-NAME>.cmake
	Targets in Find<PKG-NAME>.cmake
	Components

	cmake_find_package_multi
	Generated files
	Targets
	Components

	msbuild
	visual_studio
	visual_studio_multi
	Usage

	visual_studio_legacy
	xcode
	compiler_args
	With gcc or clang
	With cl (Visual Studio)
	Directly inside a recipe

	gcc
	boost-build
	b2
	Usage
	Sub-projects in conanbuildinfo-XXX.jam
	Targets in conanbuildinfo-XXX.jam
	Constants in conanbuildinfo-XXX.jam

	qbs
	qmake
	Package declared vars
	Global declared vars
	Methods available in conanbuildinfo.pri

	scons
	pkg_config
	Components

	virtualenv
	Created files
	Usage
	Variables declared

	virtualenv_python
	Created files
	Usage
	Variables declared

	virtualbuildenv
	Created files
	Usage
	Variables declared

	virtualrunenv
	Created files
	Usage
	Variables declared

	youcompleteme
	txt
	Package declared vars
	Global declared vars

	json
	dependencies
	deps_env_info
	deps_user_info
	settings
	options

	premake
	Variables
	Package declared variables
	Global declared variables

	Functions
	conan_basic_setup()

	make
	Variables

	markdown
	deploy

	Profiles
	Package settings and env vars
	Profile composition
	Profile includes
	Variable declaration
	Build profiles and host profiles
	Examples

	Build helpers
	CMake
	Constructor
	Attributes
	generator
	generator_platform
	verbose
	build_folder (Read only)
	build_type [Deprecated]
	flags (Read only)
	is_multi_configuration (Read only)
	command_line (Read only)
	build_config (Read only)
	parallel
	definitions

	Methods
	configure()
	build()
	test()
	install()
	patch_config_paths() [EXPERIMENTAL]
	get_version()

	Environment variables
	Example
	Default used generators

	AutoToolsBuildEnvironment (configure/make)
	Constructor
	Attributes
	fpic
	libs
	include_paths
	library_paths
	defines
	flags
	cxx_flags
	link_flags

	Properties
	vars
	vars_dict

	Methods
	configure()
	make()
	install()

	Environment variables

	MSBuild
	Constructor
	Attributes
	build_env

	Methods
	build()
	get_command()
	get_version()

	VisualStudioBuildEnvironment
	Constructor
	Environment variables
	Attributes
	include_paths
	lib_paths
	defines
	runtime
	flags
	cxx_flags
	link_flags
	std
	parallel

	Meson
	Constructor
	Methods
	configure()
	build()
	test()
	install()
	meson_test()
	meson_install()

	Example

	RunEnvironment

	Tools
	tools.cpu_count()
	tools.vcvars_command()
	tools.vcvars_dict()
	tools.vcvars()
	tools.build_sln_command() [DEPRECATED]
	tools.msvc_build_command() [DEPRECATED]
	tools.unzip()
	tools.untargz()
	tools.get()
	tools.get_env()
	tools.download()
	tools.ftp_download()
	tools.replace_in_file()
	tools.replace_path_in_file()
	tools.run_environment()
	tools.check_with_algorithm_sum()
	tools.patch()
	tools.environment_append()
	tools.chdir()
	tools.pythonpath()
	tools.no_op()
	tools.human_size()
	tools.OSInfo and tools.SystemPackageTool
	tools.cross_building()
	tools.get_gnu_triplet()
	tools.run_in_windows_bash()
	tools.get_cased_path()
	tools.detected_os()
	tools.remove_from_path()
	tools.unix_path()
	tools.escape_windows_cmd()
	tools.sha1sum(), sha256sum(), md5sum()
	tools.md5()
	tools.save()
	tools.load()
	tools.mkdir(), tools.rmdir()
	tools.which()
	tools.unix2dos()
	tools.dos2unix()
	tools.rename()
	tools.touch()
	tools.relative_dirs()
	tools.vswhere()
	tools.vs_comntools()
	tools.vs_installation_path()
	tools.replace_prefix_in_pc_file()
	tools.collect_libs()
	tools.PkgConfig()
	tools.Git()
	tools.SVN()
	tools.is_apple_os()
	tools.to_apple_arch()
	tools.apple_sdk_name()
	tools.apple_deployment_target_env()
	tools.apple_deployment_target_flag()
	tools.XCRun()
	tools.latest_vs_version_installed()
	tools.apple_dot_clean()
	tools.Version()
	tools.to_android_abi()
	tools.check_min_cppstd()
	tools.valid_min_cppstd()
	tools.cppstd_flag():
	tools.msvs_toolset()
	tools.intel_compilervars_command()
	tools.intel_compilervars_dict()
	tools.intel_compilervars()
	tools.intel_installation_path()
	tools.remove_files_by_mask()
	tools.stdcpp_library():
	tools.fix_symlinks():

	Configuration files
	artifacts.properties
	client.crt / client.key
	conan.conf
	Log
	General
	Storage
	Proxies

	conandata.yml
	profiles/default
	Editable layout files
	settings.yml
	Architectures
	C++ standard libraries (aka compiler.libcxx)

	Environment variables
	CMAKE RELATED VARIABLES
	CONAN_BASH_PATH
	CONAN_CACHE_NO_LOCKS
	CONAN_CMAKE_GENERATOR
	CONAN_CMAKE_GENERATOR_PLATFORM
	CLICOLOR
	CLICOLOR_FORCE
	NO_COLOR
	CONAN_COLOR_DARK
	CONAN_COLOR_DISPLAY
	CONAN_COMPRESSION_LEVEL
	CONAN_CPU_COUNT
	CONAN_DEFAULT_PROFILE_PATH
	CONAN_NON_INTERACTIVE
	CONAN_ENV_XXXX_YYYY
	CONAN_LOG_RUN_TO_FILE
	CONAN_LOG_RUN_TO_OUTPUT
	CONAN_LOGGING_LEVEL
	CONAN_LOGIN_USERNAME, CONAN_LOGIN_USERNAME_{REMOTE_NAME}
	CONAN_LOGIN_ENCRYPTION_KEY
	CONAN_MAKE_PROGRAM
	CONAN_CMAKE_PROGRAM
	CONAN_MSBUILD_VERBOSITY
	CONAN_PASSWORD, CONAN_PASSWORD_{REMOTE_NAME}
	CONAN_HOOKS
	CONAN_PRINT_RUN_COMMANDS
	CONAN_READ_ONLY_CACHE
	CONAN_RUN_TESTS
	CONAN_SKIP_VS_PROJECTS_UPGRADE
	CONAN_SYSREQUIRES_MODE
	CONAN_SYSREQUIRES_SUDO
	CONAN_TEMP_TEST_FOLDER
	CONAN_TRACE_FILE
	CONAN_USERNAME, CONAN_CHANNEL
	CONAN_USER_HOME
	CONAN_USER_HOME_SHORT
	CONAN_USE_ALWAYS_SHORT_PATHS
	CONAN_VERBOSE_TRACEBACK
	CONAN_ERROR_ON_OVERRIDE
	CONAN_VS_INSTALLATION_PREFERENCE
	CONAN_CACERT_PATH
	CONAN_DEFAULT_PACKAGE_ID_MODE
	CONAN_SKIP_BROKEN_SYMLINKS_CHECK
	CONAN_PYLINT_WERR

	Hooks
	Hook interface
	Function parameters

	CONAN_V2_MODE
	Changes related to the default configuration
	Changes in recipes
	Changes in profiles
	Other changes

	Videos and links
	FAQ
	General
	Is Conan CMake based, or is CMake a requirement?
	Is build-system XXXXX supported?
	Is my compiler, version, architecture, or setting supported?
	Does it run offline?
	Is it possible to install 2 different versions of the same library?
	Can I run multiple Conan isolated instances (virtual environments) on the same machine?
	Can I run the conan_server or Artifactory behind a firewall (on-premises)?
	Can I connect to Conan remote servers through a corporate proxy?
	Can I create packages for third-party libraries?
	Can I upload closed source libraries to ConanCenter?
	Do I always need to specify how to build the package from source?
	Does Conan use semantic versioning (semver) for dependencies?

	Using Conan
	How to package header-only libraries?
	When to use settings or options?
	How to obtain the dependents of a given package?
	Packages got outdated when uploading an unchanged recipe from a different machine
	Is there any recommendation regarding which <user> or <channel> to use in a reference?
	What does “outdated from recipe” mean exactly?
	How to configure the remotes priority order

	Troubleshooting
	ERROR: The recipe is constraining settings
	ERROR: Missing prebuilt package
	ERROR: Invalid setting
	ERROR: Setting value not defined
	ERROR: Failed to create process
	ERROR: Failed to remove folder (Windows)
	ERROR: Error while initializing Options
	ERROR: Error while starting Conan Server with multiple workers
	ERROR: Requested a package but found case incompatible

	Glossary
	Changelog
	1.31.4 (25-Nov-2020)
	1.31.3 (17-Nov-2020)
	1.31.2 (11-Nov-2020)
	1.31.1 (10-Nov-2020)
	1.31.0 (30-Oct-2020)
	1.30.2 (15-Oct-2020)
	1.30.1 (09-Oct-2020)
	1.30.0 (05-Oct-2020)
	1.29.2 (21-Sept-2020)
	1.29.1 (17-Sept-2020)
	1.29.0 (02-Sept-2020)
	1.28.2 (31-Aug-2020)
	1.28.1 (06-Aug-2020)
	1.28.0 (31-Jul-2020)
	1.27.1 (10-Jul-2020)
	1.27.0 (01-Jul-2020)
	1.26.1 (23-Jun-2020)
	1.26.0 (10-Jun-2020)
	1.25.2 (19-May-2020)
	1.25.1 (13-May-2020)
	1.25.0 (06-May-2020)
	1.24.1 (21-Apr-2020)
	1.24.0 (31-Mar-2020)
	1.23.0 (10-Mar-2020)
	1.22.3 (05-Mar-2020)
	1.22.2 (13-Feb-2020)
	1.22.1 (11-Feb-2020)
	1.22.0 (05-Feb-2020)
	1.21.3 (03-Mar-2020)
	1.21.2 (31-Jan-2020)
	1.21.1 (14-Jan-2020)
	1.21.0 (10-Dec-2019)
	1.20.5 (3-Dec-2019)
	1.20.4 (19-Nov-2019)
	1.20.3 (11-Nov-2019)
	1.20.2 (6-Nov-2019)
	1.20.1 (5-Nov-2019)
	1.20.0 (4-Nov-2019)
	1.19.3 (29-Oct-2019)
	1.19.2 (16-Oct-2019)
	1.19.1 (3-Oct-2019)
	1.19.0 (30-Sept-2019)
	1.18.5 (24-Sept-2019)
	1.18.4 (12-Sept-2019)
	1.18.3 (10-Sept-2019)
	1.18.2 (30-Aug-2019)
	1.18.1 (8-Aug-2019)
	1.18.0 (30-Jul-2019)
	1.17.2 (25-Jul-2019)
	1.17.1 (22-Jul-2019)
	1.17.0 (9-Jul-2019)
	1.16.1 (14-Jun-2019)
	1.16.0 (4-Jun-2019)
	1.15.4
	1.15.3
	1.15.2 (31-May-2019)
	1.15.1 (16-May-2019)
	1.15.0 (6-May-2019)
	1.14.5 (30-Apr-2019)
	1.14.4 (25-Apr-2019)
	1.14.3 (11-Apr-2019)
	1.14.2 (11-Apr-2019)
	1.14.1 (1-Apr-2019)
	1.14.0 (28-Mar-2019)
	1.13.3 (27-Mar-2019)
	1.13.2 (21-Mar-2019)
	1.13.1 (15-Mar-2019)
	1.13.0 (07-Mar-2019)
	1.12.3 (18-Feb-2019)
	1.12.2 (8-Feb-2019)
	1.12.1 (5-Feb-2019)
	1.12.0 (30-Jan-2019)
	1.11.2 (8-Jan-2019)
	1.11.1 (20-Dec-2018)
	1.11.0 (19-Dec-2018)
	1.10.2 (17-Dec-2018)
	1.10.1 (11-Dec-2018)
	1.10.0 (4-Dec-2018)
	1.9.2 (20-Nov-2018)
	1.9.1 (08-Nov-2018)
	1.9.0 (30-October-2018)
	1.8.4 (19-October-2018)
	1.8.3 (17-October-2018)
	1.8.2 (10-October-2018)
	1.8.1 (10-October-2018)
	1.8.0 (9-October-2018)
	1.7.4 (18-September-2018)
	1.7.3 (6-September-2018)
	1.7.2 (4-September-2018)
	1.7.1 (31-August-2018)
	1.7.0 (29-August-2018)
	1.6.1 (27-July-2018)
	1.6.0 (19-July-2018)
	1.5.2 (5-July-2018)
	1.5.1 (29-June-2018)
	1.5.0 (27-June-2018)
	1.4.5 (22-June-2018)
	1.4.4 (11-June-2018)
	1.4.3 (6-June-2018)
	1.4.2 (4-June-2018)
	1.4.1 (31-May-2018)
	1.4.0 (30-May-2018)
	1.3.3 (10-May-2018)
	1.3.2 (7-May-2018)
	1.3.1 (3-May-2018)
	1.3.0 (30-April-2018)
	1.2.3 (10-Apr-2017)
	1.2.1 (3-Apr-2018)
	1.2.0 (28-Mar-2018)
	1.1.1 (5-Mar-2018)
	1.1.0 (27-Feb-2018)
	1.0.4 (30-January-2018)
	1.0.3 (22-January-2018)
	1.0.2 (16-January-2018)
	1.0.1 (12-January-2018)
	1.0.0 (10-January-2018)
	1.0.0-beta5 (8-January-2018)
	1.0.0-beta4 (4-January-2018)
	1.0.0-beta3 (28-December-2017)
	1.0.0-beta2 (23-December-2017)
	0.30.3 (15-December-2017)
	0.30.2 (14-December-2017)
	0.30.1 (12-December-2017)
	0.29.2 (2-December-2017)
	0.29.1 (23-November-2017)
	0.29.0 (21-November-2017)
	0.28.1 (31-October-2017)
	0.28.0 (26-October-2017)
	0.27.0 (20-September-2017)
	0.26.1 (05-September-2017)
	0.26.0 (31-August-2017)
	0.25.1 (20-July-2017)
	0.25.0 (19-July-2017)
	0.24.0 (15-June-2017)
	0.23.1 (05-June-2017)
	0.23.0 (01-June-2017)
	0.22.3 (03-May-2017)
	0.22.2 (20-April-2017)
	0.22.1 (18-April-2017)
	0.22.0 (18-April-2017)
	0.21.2 (04-April-2017)
	0.21.1 (23-March-2017)
	0.21.0 (21-March-2017)
	0.20.3 (06-March-2017)
	0.20.2 (02-March-2017)
	0.20.1 (01-March-2017)
	0.20.0 (27-February-2017)
	0.19.3 (27-February-2017)
	0.19.2 (15-February-2017)
	0.19.1 (02-February-2017)
	0.19.0 (31-January-2017)
	0.18.1 (11-January-2017)
	0.18.0 (3-January-2017)
	0.17.2 (21-December-2016)
	0.17.1 (15-December-2016)
	0.17.0 (13-December-2016)
	0.16.1 (05-December-2016)
	0.16.0 (19-November-2016)
	0.15.0 (08-November-2016)
	0.14.1 (20-October-2016)
	0.14.0 (20-October-2016)
	0.13.3 (13-October-2016)
	0.13.0 (03-October-2016)
	0.12.0 (13-September-2016)
	0.11.1 (31-August-2016)
	0.11.0 (3-August-2016)
	0.10.0 (29-June-2016)
	0.9.2 (11-May-2016)
	0.9 (3-May-2016)
	0.8.4 (28-Mar-2016)
	0.8 (15-Mar-2016)
	0.7 (5-Feb-2016)
	0.6 (11-Jan-2016)
	0.5 (18-Dec-2015)

	Road to Conan 2.0
	Index

