
conan Documentation
Release 1.5.2

conan

Jun 30, 2025

CONTENTS

1 Upgrading to conan 1.0 3
1.1 Command line changes . 3
1.2 Deprecations/removals . 4
1.3 Settings and profiles. GCC/CLang versioning . 4
1.4 New features . 4

2 Introduction 7
2.1 Open Source . 7
2.2 Decentralized package manager . 7
2.3 Binary management . 8
2.4 Cross platform, build system agnostic . 9
2.5 Stable . 9

3 Install 11
3.1 Install with pip (recommended) . 11
3.2 Install from brew (OSX) . 12
3.3 Install from AUR (Arch Linux) . 12
3.4 Install the binaries . 12
3.5 Initial configuration . 12
3.6 Install from source . 13

4 Getting started 15
4.1 A Timer using POCO libraries . 15
4.2 Installing dependencies . 17
4.3 Building the timer example . 19
4.4 Inspecting dependencies . 19
4.5 Searching packages . 20
4.6 Building with other configurations . 20

5 Using packages 23
5.1 Installing dependencies . 23
5.2 Using profiles . 28
5.3 Workflows . 29

6 Creating packages 33
6.1 Getting started . 33
6.2 Recipe and sources in a different repo . 37
6.3 Recipe and sources in the same repo . 39
6.4 Packaging existing binaries . 41
6.5 Understanding packaging . 43
6.6 Define package ABI compatibility . 45

i

6.7 Inspecting packages . 52
6.8 Packaging approaches . 53
6.9 Tools for package creators . 58

7 Uploading packages 61
7.1 Remotes . 61
7.2 Uploading packages to remotes . 63
7.3 Using Bintray . 64
7.4 Artifactory Community Edition for C/C++ . 68
7.5 Running conan_server . 69

8 Developing packages 77
8.1 Package development flow . 77
8.2 Workspaces [experimental] . 82

9 Package apps and devtools 85
9.1 Running and deploying packages . 85
9.2 Creating conan packages to install dev tools . 89
9.3 Build requirements . 92

10 Mastering conan 97
10.1 Use conanfile.py for consumers . 97
10.2 Conditional settings, options and requirements . 99
10.3 Version ranges . 101
10.4 Build policies . 102
10.5 Environment variables . 102
10.6 Virtual Environments . 104
10.7 Logging . 106
10.8 Sharing the settings and other configuration . 108
10.9 Conan local cache: concurrency, Continuous Integration, isolation 108

11 Systems and cross building 111
11.1 Cross building . 111
11.2 Windows Subsystems . 119

12 Integrations 123
12.1 CMake . 123
12.2 Autotools: configure/make . 133
12.3 Visual Studio . 133
12.4 Apple/Xcode . 136
12.5 Compilers on command line . 138
12.6 Android Studio . 140
12.7 CLion . 145
12.8 Ninja, NMake, Borland . 150
12.9 pkg-config and pc files . 150
12.10 Boost Build . 154
12.11 QMake . 154
12.12 Premake . 156
12.13 qbs . 156
12.14 Meson Build . 157
12.15 Docker . 157
12.16 Git . 158
12.17 Jenkins . 158
12.18 Travis Ci . 161
12.19 Appveyor . 163

ii

12.20 Gitlab . 165
12.21 Circle CI . 166
12.22 YouCompleteMe (vim) . 168
12.23 SCons . 168
12.24 Custom integrations . 169

13 Howtos 175
13.1 How to package header-only libraries . 175
13.2 How to launch conan install from cmake . 177
13.3 How to create and reuse packages based on Visual Studio . 178
13.4 Creating and reusing packages based on Makefiles . 182
13.5 How to manage the GCC >= 5 ABI . 184
13.6 Using Visual Studio 2017 - CMake integration . 185
13.7 How to manage C++ standard . 188
13.8 How to use docker to create and cross build C and C++ conan packages 190
13.9 How to reuse Python code in recipes . 192
13.10 How to create and share a custom generator with generator packages 195
13.11 How to manage shared libraries . 200
13.12 How to reuse cmake install for package() method . 205
13.13 How to collaborate on other users’ packages . 205
13.14 How to link with Apple Frameworks . 206
13.15 How to collect licenses of dependencies . 207
13.16 How to capture package version from text or build files . 207
13.17 How to use Conan as other language package manager . 208
13.18 How to manage SSL (TLS) certificates . 214
13.19 How to check the version of the Conan client inside a conanfile . 214
13.20 Use a generic CI with Conan and Artifactory . 216

14 Reference 217
14.1 Commands . 217
14.2 conanfile.txt . 264
14.3 conanfile.py . 266
14.4 Generators . 293
14.5 Profiles . 313
14.6 Build helpers . 317
14.7 Tools . 334
14.8 Configuration files . 355
14.9 Environment variables . 361

15 Videos and links 369

16 FAQ 371
16.1 General . 371
16.2 Using conan . 373
16.3 Troubleshooting . 374

17 Changelog 377
17.1 1.5.2 (5-July-2018) . 377
17.2 1.5.1 (29-June-2018) . 377
17.3 1.5.0 (27-June-2018) . 377
17.4 1.4.5 (22-June-2018) . 378
17.5 1.4.4 (11-June-2018) . 378
17.6 1.4.3 (6-June-2018) . 379
17.7 1.4.2 (4-June-2018) . 379
17.8 1.4.1 (31-May-2018) . 379

iii

17.9 1.4.0 (30-May-2018) . 379
17.10 1.3.3 (10-May-2018) . 380
17.11 1.3.2 (7-May-2018) . 380
17.12 1.3.1 (3-May-2018) . 380
17.13 1.3.0 (30-April-2018) . 381
17.14 1.2.3 (10-Apr-2017) . 382
17.15 1.2.1 (3-Apr-2018) . 382
17.16 1.2.0 (28-Mar-2018) . 382
17.17 1.1.1 (5-Mar-2018) . 383
17.18 1.1.0 (27-Feb-2018) . 383
17.19 1.0.4 (30-January-2018) . 385
17.20 1.0.3 (22-January-2018) . 385
17.21 1.0.2 (16-January-2018) . 386
17.22 1.0.1 (12-January-2018) . 386
17.23 1.0.0 (10-January-2018) . 386
17.24 1.0.0-beta5 (8-January-2018) . 386
17.25 1.0.0-beta4 (4-January-2018) . 387
17.26 1.0.0-beta3 (28-December-2017) . 387
17.27 1.0.0-beta2 (23-December-2017) . 387
17.28 0.30.3 (15-December-2017) . 388
17.29 0.30.2 (14-December-2017) . 388
17.30 0.30.1 (12-December-2017) . 388
17.31 0.29.2 (2-December-2017) . 389
17.32 0.29.1 (23-November-2017) . 389
17.33 0.29.0 (21-November-2017) . 390
17.34 0.28.1 (31-October-2017) . 391
17.35 0.28.0 (26-October-2017) . 391
17.36 0.27.0 (20-September-2017) . 393
17.37 0.26.1 (05-September-2017) . 393
17.38 0.26.0 (31-August-2017) . 394
17.39 0.25.1 (20-July-2017) . 395
17.40 0.25.0 (19-July-2017) . 395
17.41 0.24.0 (15-June-2017) . 396
17.42 0.23.1 (05-June-2017) . 397
17.43 0.23.0 (01-June-2017) . 397
17.44 0.22.3 (03-May-2017) . 398
17.45 0.22.2 (20-April-2017) . 398
17.46 0.22.1 (18-April-2017) . 398
17.47 0.22.0 (18-April-2017) . 398
17.48 0.21.2 (04-April-2017) . 399
17.49 0.21.1 (23-March-2017) . 399
17.50 0.21.0 (21-March-2017) . 399
17.51 0.20.3 (06-March-2017) . 400
17.52 0.20.2 (02-March-2017) . 400
17.53 0.20.1 (01-March-2017) . 400
17.54 0.20.0 (27-February-2017) . 400
17.55 0.19.3 (27-February-2017) . 401
17.56 0.19.2 (15-February-2017) . 402
17.57 0.19.1 (02-February-2017) . 402
17.58 0.19.0 (31-January-2017) . 402
17.59 0.18.1 (11-January-2017) . 403
17.60 0.18.0 (3-January-2017) . 403
17.61 0.17.2 (21-December-2016) . 404
17.62 0.17.1 (15-December-2016) . 404

iv

17.63 0.17.0 (13-December-2016) . 404
17.64 0.16.1 (05-December-2016) . 405
17.65 0.16.0 (19-November-2016) . 405
17.66 0.15.0 (08-November-2016) . 405
17.67 0.14.1 (20-October-2016) . 406
17.68 0.14.0 (20-October-2016) . 406
17.69 0.13.3 (13-October-2016) . 407
17.70 0.13.0 (03-October-2016) . 407
17.71 0.12.0 (13-September-2016) . 408
17.72 0.11.1 (31-August-2016) . 409
17.73 0.11.0 (3-August-2016) . 409
17.74 0.10.0 (29-June-2016) . 410
17.75 0.9.2 (11-May-2016) . 411
17.76 0.9 (3-May-2016) . 411
17.77 0.8.4 (28-Mar-2016) . 411
17.78 0.8 (15-Mar-2016) . 412
17.79 0.7 (5-Feb-2016) . 412
17.80 0.6 (11-Jan-2016) . 413
17.81 0.5 (18-Dec-2015) . 413

v

vi

conan Documentation, Release 1.5.2

Conan is a portable package manager, intended for C and C++ developers, but it is able to manage builds from source,
dependencies, and precompiled binaries for any language.

For more information, check conan.io.

Contents:

CONTENTS 1

https://conan.io

conan Documentation, Release 1.5.2

2 CONTENTS

CHAPTER

ONE

UPGRADING TO CONAN 1.0

This section summarizes the most important changes you need to consider when upgrading to Conan v1.0 from version
0.x. For a full list of changes and considerations, please refer to the changelog.

1.1 Command line changes

There are a few breaking changes (compared to v0.30), however, most of them are in command line arguments so
they are quite easy to fix. The most significant change is that now, instead of using --path --file arguments, most
commands now require the path to the conanfile folder or file. Specifically, conan install, conan export and
conan create will be the ones most affected:

instead of --path=myfolder --file=myconanfile.py, now you can do:
$ conan install . # Note the "." is now mandatory
$ conan install folder/myconanfile.txt
$ conan install ../myconanfile.py
$ conan info .
$ conan create . user/channel
$ conan create . Pkg/0.1@user/channel
$ conan create mypkgconanfile.py Pkg/0.1@user/channel
$ conan export . user/channel
$ conan export . Pkg/0.1@user/channel
$ conan export myfolder/myconanfile.py Pkg/0.1@user/channel

This behavior aligns with the conan source, conan build, conan package commands, that all use the same argu-
ments to locate the conanfile.py file containing the logic to be run.

Now, all commands read: command <origin-conanfile> ...

In addition, all command line arguments now use a dash instead of an underscore:

$ conan build .. --source-folder=../src # not --source_folder

3

conan Documentation, Release 1.5.2

1.2 Deprecations/removals

• scopes were completely removed in conan 0.30.X

• self.conanfile_directory has been removed. Instead, use self.source_folder, self.build_folder,
etc.

• self.cpp_info, self.env_info and self.user_info scope are now only included the package_info()
method

• gcc and ConfigureEnvironment were removed in conan 0.30.1

• werror doesn’t exist anymore. It is now built-in behavior.

• The test_package command has been removed. Instead, use conan create and conan test.

• From Conan v0.29, the``CMake`` helper only supports the CMake(self) syntax

• In Conan v0.28, the conan package_files command was replaced by the conan export-pkg command.

1.3 Settings and profiles. GCC/CLang versioning

The GCC and Clang compilers have modified their versioning approach. From GCC version 5 and above and Clang
version 4 and above, minor versions are really bug fixes, and then, they have binary compatibility. To adapt to this,
Conan now includes a major version in the settings.yml default settings file:

gcc:
version: ["4.1", "4.4", "4.5", "4.6", "4.7", "4.8", "4.9",

"5", "5.1", "5.2", "5.3", "5.4",
"6", "6.1", "6.2", "6.3", "6.4",
"7", "7.1", "7.2"]

Most package creators want to use the major-only settings, like -s compiler=gcc -s compiler.version=5, in-
stead of specifying the minors too.

The default profile detection and creation has been modified accordingly, however, if you have a default profile you
may want to update it to reflect this:

[settings]
os=Linux
compiler=gcc
compiler.version=7 #instead of 7.2

Conan associated tools (conan-package-tools, conan.cmake) have been upgraded to accomodate these new defaults.

1.4 New features

• Cross-compilation support with new default settings in settings.yml: os_build, arch_build, os_target,
arch_target. These are automatically removed from the package_id computation, or kept if they are the
only ones defined (as usually happens with dev-tools packages). You can also keep them with the self.info.
include_build_settings() method (call it in your package_id() method).

4 Chapter 1. Upgrading to conan 1.0

conan Documentation, Release 1.5.2

Important: Do not use cross-build settings os_build and arch_build for standard packages and libraries. They
are only useful for packages that are used via build_requires, like cmake_installer or mingw_installer.

• Model and utilities for Windows subsystems

os:
Windows:

subsystem: [None, cygwin, msys, msys2, wsl]

This subsetting can be used by build helpers such as CMake to act accordingly.

1.4. New features 5

conan Documentation, Release 1.5.2

6 Chapter 1. Upgrading to conan 1.0

CHAPTER

TWO

INTRODUCTION

2.1 Open Source

Conan is OSS, with an MIT license. Check out the source code and issue tracking (for reporting bugs and for feature
requests) at https://github.com/conan-io/conan

2.2 Decentralized package manager

Conan is a decentralized package manager with a client-server architecture. This means that clients can fetch packages
from, as well as upload packages to, different servers (“remotes”), similar to the “git” push-pull model to/from git
remotes.

On a high level, the servers are just package storage. They do not build nor create the packages. The packages are
created by the client, and if binaries are built from sources, that compilation is also done by the client application.

The different applications in the image above are:

• The Conan client: this is a console/terminal command line application, containing the heavy logic for package
creation and consumption. Conan client has a local cache for package storage, and so it allows you to fully create
and test packages offline. You can also work offline so long as no new packages are needed from remote servers.

• The Conan server: this is a TCP server that can be easily run as your own server on-premises to host your
private packages. It is also a service application that can be run as a daemon or service, behind a web server
(apache, nginx), or easily as stand-alone application. Both the Conan client and the conan_server are OSS, MIT
license, so you can use them for free in your company, customize them, or redistribute them without any legal
issue.

7

https://github.com/conan-io/conan

conan Documentation, Release 1.5.2

• JFrog Artifactory offers Conan repositories; so it can also be used as an on-premises server. It is a more powerful
solution, featuring a WebUI, multiple auth protocols, High Availability, etc. It also has cloud offerings that will
allow you to have private packages without having any on-premises infrastructure.

• JFrog Bintray provides a public and free hosting service for OSS Conan packages. Users can create their own
repositories under their accounts and organizations, and freely upload Conan packages there, without moderation.
You should, however, take into account that those packages will be public, and so they must conform to the
respective licenses, especially if the packages contain third party code. Just reading or retrieving Conan packages
from Bintray, doesn’t require an account, an account is only needed to upload packages. Besides that, Bintray
provides a central repository called conan-center which is moderated, and packages are reviewed before being
accepted to ensure quality.

2.3 Binary management

One of the most powerful features of Conan is that it can manage pre-compiled binaries for packages. To define a
package, referenced by its name, version, user and channel, a package recipe is needed. Such a package recipe is a
conanfile.py python script that defines how the package is built from sources, what the final binary artifacts are, the
package dependencies, etc.

When a package recipe is used in the Conan client, and a “binary package” is built from sources, that binary package
will be compatible with specific settings, such as the OS it was created for, the compiler and compiler version, or the
computer architecture. If the package is built again from the same sources but with different settings, (e.g. for a different
architecture), a new, different binary will be generated. By the way, “binary package” is in quotes because, strictly, it
is not necessarily a binary. A header-only library, for example, will contain just the headers in the “binary package”.

All the binary packages generated from a package recipe are managed and stored coherently. When they are uploaded
to a remote, they stay connected. Also, different clients building binaries from the same package recipe (like CI build
slaves in different operating systems), will upload their binaries under the same package name to the remotes.

Package consumers (client application users that are installing existing packages to reuse in their projects) will typically
retrieve pre-compiled binaries for their systems in case such compatible binaries exist. Otherwise those packages will
be built from sources on the client machine to create a binary package matching their settings.

8 Chapter 2. Introduction

https://jfrog.com/artifactory/
https://bintray.com/
https://bintray.com/conan/conan-center

conan Documentation, Release 1.5.2

2.4 Cross platform, build system agnostic

Conan works and is being actively used on Windows, Linux (Ubuntu, Debian, RedHat, ArchLinux, Raspbian), OSX,
FreeBSD, and SunOS, and, as it is portable, it might work in any other platform that can run python. In the documen-
tation, examples for a specific OS might be found, such as conan install . -s compiler="Visual Studio",
which will be specific for Windows users. If on a different system, the reader should adapt to their own platform and
settings (for example conan install . -s compiler=gcc).

Also Conan works with any build system. In the documentation, CMake will be widely used, because it is portable
and well known. But Conan does not depend on CMake at all; it is not a requirement. Conan is totally orthogonal to
the build system. There are some utilities that improve the usage of popular build systems such as CMake or Autotools,
but they are just helpers. Furthermore, it is not necessary that all the packages are built with the same build system. It
is possible to depend on packages created with other build system than the one you are using to build your project.

2.5 Stable

From Conan 1.0, there is a commitment to stability, not breaking user space while evolving the tool and the platform.
This means:

• Moving forward to following minor versions 1.1, 1.2, . . . , 1.X should never break existing recipes, packages or
command line flows

• If something is breaking, it will be considered a bug and reverted

• Bug fixes will not be considered breaking, recipes and packages relying on the incorrect behavior of such bug
will be considered already broken.

• Only documented features are considered part of the public interface of Conan. Private implementation details,
and everything not included in the documentation is subject to change.

• Configuration and automatic tools detection, like the detection of the default profile might be subject to change.
Users are encouraged to define their configurations in profiles for repeatability. New installations of conan might
use different configuration.

The compatibility is always considered forward. New APIs, tools, methods, helpers can be added in following 1.X
versions. Recipes and packages created with these features will be backwards incompatible with earlier conan versions.

This means that public repositories, like conan-center assume the use of the latest version of the Conan client, and
using an older version may result in failure of packages and recipes created with a newer version of the client.

If you have any question regarding Conan updates, stability, or any clarification about this definition of stability, please
report in the documentation issue tracker: https://github.com/conan-io/docs.

Got any doubts? Please check out our FAQ section or .

2.4. Cross platform, build system agnostic 9

https://github.com/conan-io/docs

conan Documentation, Release 1.5.2

10 Chapter 2. Introduction

CHAPTER

THREE

INSTALL

Conan can be installed in many Operating Systems. It has been extensively used and tested in Windows, Linux (different
distros), OSX, and is also actively used in FreeBSD and Solaris SunOS. There are also several additional operating
systems on which it has been reported to work.

There are three ways to install Conan:

1. The preferred and strongly recommended way to install Conan is from PyPI, the Python Package Index, using
the pip command.

2. There are other available installers for different systems, which might come with a bundled python interpreter,
so that you don’t have to install python first. Note that some of these installers might have some limitations,
specially those created with pyinstaller (such as Windows exe & Linux deb).

3. Running Conan from sources.

3.1 Install with pip (recommended)

To install Conan using pip, you need Python 2.7 or 3.X distribution installed on your machine. Modern Python distros
come with pip pre-installed. However, if necessary you can install pip by following the instructions in pip docs.

Warning: Python 2 will soon be deprecated by the Python maintainers. It is strongly recommended to use Python
3 with Conan, especially if need to manage non-ascii filenames or file contents. Conan still supports Python 2,
however some of the dependencies have started to be supported only by Python 3. The roadmap for deprecating
Python 2 support in Conan will be defined soon.

Install Conan:

$ pip install conan

Important: Please READ carefully

• Make sure that your pip installation matches your Python (2.7 or 3.X) version.

• In Linux, you may need sudo permissions to install Conan globally.

• We strongly recommend using virtualenvs (virtualenvwrapper works great) for everything related to Python.

• In Windows and Python 2.7, you may need to use 32bit python distribution (which is the Windows default),
instead of 64 bit.

• In OSX, especially the latest versions that may have System Integrity Protection, pip may fail. Try using
virtualenvs, or install with another user $ pip install --user conan.

11

https://pip.pypa.io/en/stable/installing/

conan Documentation, Release 1.5.2

• If you are using Windows and Python <3.5, you may have issues if Python is installed in a path with spaces, such
as “C:/Program Files(x86)/Python”. This is a known Python limitation, and is not related to Conan. Try installing
Python in a path without spaces, use a virtualenv in another location or upgrade your Python installation.

• Some Linux distros, such as Linux Mint, require a restart (shell restart, or logout/system if not enough) after
installation, so Conan is found in the path.

• Windows, Python 3 installation can fail installing the wrapt dependency because of a bug in pip. Information
about this issue and workarounds is available here: https://github.com/GrahamDumpleton/wrapt/issues/112.

3.2 Install from brew (OSX)

There is a brew recipe, so in OSX, you can install Conan as follows:

$ brew update
$ brew install conan

3.3 Install from AUR (Arch Linux)

The easiest way to install Conan on Arch Linux is by using one of the Arch User Repository (AUR) helpers, eg. yay,
aurman, or pakku. For example, the following command installs Conan using yay:

$ yay -S conan

Alternatively, build and install Conan manually using makepkg and pacman as described in the Arch Wiki. Conan
build files can be downloaded from AUR: https://aur.archlinux.org/packages/conan/. Make sure to first install the three
Conan dependencies which are also found in AUR:

• python-patch

• python-node-semver

• python-pluginbase

3.4 Install the binaries

Go to the conan website and download the installer for your platform!

Execute the installer. You don’t need to install python.

3.5 Initial configuration

Check if Conan is installed correctly. Run the following command in your console:

$ conan

The response should be similar to:

12 Chapter 3. Install

https://github.com/GrahamDumpleton/wrapt/issues/112
https://wiki.archlinux.org/index.php/AUR_helpers#Active
https://wiki.archlinux.org/index.php/Arch_User_Repository#Installing_packages
https://aur.archlinux.org/packages/conan/
https://conan.io/downloads.html

conan Documentation, Release 1.5.2

Consumer commands
install Installs the requirements specified in a conanfile (.py or .txt).
config Manages configuration. Edits the conan.conf or installs config files.
get Gets a file or list a directory of a given reference or package.
info Gets information about the dependency graph of a recipe.
...

3.6 Install from source

You can run Conan directly from source code. First, you need to install Python 2.7 or Python 3 and pip.

Clone (or download and unzip) the git repository and install its requirements:

$ git clone https://github.com/conan-io/conan.git
$ cd conan
$ pip install -r conans/requirements.txt

Create a script to run Conan and add it to your PATH.

#!/usr/bin/env python

import sys

conan_repo_path = "/home/your_user/conan" # ABSOLUTE PATH TO CONAN REPOSITORY FOLDER

sys.path.append(conan_repo_path)
from conans.client.command import main
main(sys.argv[1:])

Test your conan script.

$ conan

You should see the Conan commands help.

3.6. Install from source 13

conan Documentation, Release 1.5.2

14 Chapter 3. Install

CHAPTER

FOUR

GETTING STARTED

Let’s start with an example using one of the most popular C++ libraries: POCO. For convenience purposes we’ll use
CMake. Keep in mind that Conan works with any build system and does not depend on CMake.

4.1 A Timer using POCO libraries

First, let’s create a folder for our project:

$ mkdir mytimer
$ cd mytimer

Note: If your code is in a GitHub repository you can simply clone the project, instead of creating this folder, using the
following command:

$ git clone https://github.com/memsharded/example-poco-timer.git mytimer

Next, create the following source files inside this folder:

Listing 1: timer.cpp

// $Id: //poco/1.4/Foundation/samples/Timer/src/Timer.cpp#1 $
// This sample demonstrates the Timer and Stopwatch classes.
// Copyright (c) 2004-2006, Applied Informatics Software Engineering GmbH.
// and Contributors.
// SPDX-License-Identifier: BSL-1.0

#include "Poco/Timer.h"
#include "Poco/Thread.h"
#include "Poco/Stopwatch.h"
#include <iostream>

using Poco::Timer;
using Poco::TimerCallback;
using Poco::Thread;
using Poco::Stopwatch;

class TimerExample{
public:

(continues on next page)

15

https://pocoproject.org/

conan Documentation, Release 1.5.2

(continued from previous page)

TimerExample(){ _sw.start();}

void onTimer(Timer& timer){
std::cout << "Callback called after " << _sw.elapsed()/1000 << " milliseconds."

→˓<< std::endl;
}

private:
Stopwatch _sw;

};

int main(int argc, char** argv){
TimerExample example;
Timer timer(250, 500);
timer.start(TimerCallback<TimerExample>(example, &TimerExample::onTimer));

Thread::sleep(5000);
timer.stop();
return 0;

}

Now create a conanfile.txt inside this folder with the following content:

Listing 2: conanfile.txt

[requires]
Poco/1.9.0@pocoproject/stable

[generators]
cmake

In this example we will use CMake to build the project, which is why the cmake generator is specified. This generator
will create a conanbuildinfo.cmake file that defines CMake variables as include paths and library names, that can be
used in our build.

Note: If you are not a CMake user, change the [generators] section of your conanfile.txt to gcc or a more generic
one txt to handle requirements with any build system. Learn more in Using packages.

Just include the generated file and use these variables inside our CMakeLists.txt:

16 Chapter 4. Getting started

conan Documentation, Release 1.5.2

Listing 3: CMakeLists.txt

project(FoundationTimer)
cmake_minimum_required(VERSION 2.8.12)
add_definitions("-std=c++11")

include(${CMAKE_BINARY_DIR}/conanbuildinfo.cmake)
conan_basic_setup()

add_executable(timer timer.cpp)
target_link_libraries(timer ${CONAN_LIBS})

4.2 Installing dependencies

If you have a terminal with light colors, like the default gnome terminal in Ubuntu, set CONAN_COLOR_DARK=1 to have
a better contrast. Then create a build folder, for temporary build files, and install the requirements (pointing to the
parent directory, as it is where the conanfile.txt is):

$ mkdir build && cd build
$ conan install ..

This conan install command will download the binary package required for your configuration (detected the first
time that you ran the command), together with other (transitively required by Poco) libraries, like OpenSSL and
Zlib. It will also create the conanbuildinfo.cmake file in the current directory, in which you can see the cmake defined
variables, and a conaninfo.txt where information about settings, requirements and options is saved.

It is very important to understand the installation process. When conan install command is issued, it will use some
settings, specified on the command line or taken from the defaults in <userhome>/.conan/profiles/default file.

4.2. Installing dependencies 17

conan Documentation, Release 1.5.2

For a command like conan install . -s os="Linux" -s compiler="gcc", the steps are:

• Check if the package recipe (for Poco/1.9.0@pocoproject/stable package) exists in the local cache. If we
are just starting, the cache will be empty.

• Look for the package recipe in the defined remotes. Conan comes with conan-center Bintray remote by default
(you can change that).

• If the recipe exists, Conan client will fetch and store it in your local cache.

• With the package recipe and the input settings (Linux, gcc), Conan client will check in the local cache if the
corresponding binary is there, if we are installing for the first time, it won’t.

• Conan client will search for the corresponding binary package in the remote, if it exists, it will be fetched.

• Conan client will then finish generating the requested files specified in generators.

If the binary package necessary for some given settings doesn’t exist, Conan client will throw an error. It is possible to
try to build the binary package from sources with the --build=missing command line argument to install. A detailed
description of how a binary package is built from sources will be given in a later section.

Warning: In the Bintray repositories there are binaries for several mainstream compilers and versions, such as
Visual Studio 12, 14, linux-gcc 4.9 and apple-clang 3.5. If you are using another setup, the command might fail
because of the missing package. You could try to change your settings or build the package from source, using
the --build=missing option, instead of retrieving the binaries. Such a build might not have been tested and
eventually fail.

18 Chapter 4. Getting started

https://bintray.com/conan/conan-center

conan Documentation, Release 1.5.2

4.3 Building the timer example

Now you are ready to build and run your project:

(win)
$ cmake .. -G "Visual Studio 14 Win64"
$ cmake --build . --config Release

(linux, mac)
$ cmake .. -G "Unix Makefiles" -DCMAKE_BUILD_TYPE=Release
$ cmake --build .
...
[100%] Built target timer
$./bin/timer
Callback called after 250 milliseconds.
...

4.4 Inspecting dependencies

The retrieved packages are installed to your local user cache (typically .conan/data), and can be reused from there
in other projects. This allows to clean your current project and keep working even without network connection. Search
packages in the local cache using:

$ conan search

Inspect binary package details (for different installed binaries for a given package recipe) using:

$ conan search Poco/1.9.0@pocoproject/stable

There is also the option to generate a table for all binaries from a given recipe with the --table option, even in remotes:

$ conan search zlib/1.2.11@conan/stable --table=file.html -r=conan-center
$ file.html # or open the file, double-click

Check the reference for more information on how to search in remotes, how to remove or clean packages from the local
cache, and how to define custom cache directory per user or per project.

4.3. Building the timer example 19

conan Documentation, Release 1.5.2

Inspect your current project’s dependencies with the info command, pointing it to the folder where the conanfile.txt
is:

$ conan info ..

Generate a graph of your dependencies in dot or html formats:

$ conan info .. --graph=file.html
$ file.html # or open the file, double-click

4.5 Searching packages

The packages that have been used are installed from the remote repository that is configured by default in the conan
client, which is called “conan-center” and is in Bintray. You can search for existing packages there with:

$ conan search "zlib*" -r=conan-center

There are other community repositories that can be configured and used, check them in this section about remotes.

4.6 Building with other configurations

In this example we have built our project using the default configuration detected by conan, this configuration is known
as the default profile.

The first time you run the command that requires a profile, such as conan install, your settings are detected (com-
piler, architecture. . .) automatically and stored as default in a profile. You can change your those settings by editing
~/.conan/profiles/default or create new profiles with the desired configuration.

Attention:

• It is strongly recommended to review the generated default profile and adjust the settings to describe accu-
rately your system.

• When a GCC compiler >= 5.1 is detected, the setting modeling the c++ standard library: compiler.libcxx
will be set to libstdc++ that represent the old ABI compatibility for better compatibility. Your compiler
default is likely the new ABI so you might want to change it to libstdc++11 to use the new ABI compliant
with CXX11 directives. Read more here.

For example, if we have a profile with a gcc configutarion for 32 bits in a profile called gcc_x86, we could issue the
install command like this:

20 Chapter 4. Getting started

conan Documentation, Release 1.5.2

$ conan install . -pr gcc_x86

Tip: Using profiles is strongly recommended. Learn more about them here.

However, the user can always override the default profile settings in install command with the -s parameter. As an
exercise, try building your timer project with a different configuration. For example, you could try building the 32 bits
version:

$ conan install . -s arch=x86

This will install a different package, using the -s arch=x86 setting, instead of the default used previously, that in most
cases will be x86_64.

To use the 32 bits binaries you will also have to change your project build:

• In Windows, change the CMake invocation accordingly to Visual Studio 14.

• In Linux, you have to add the -m32 flag to your CMakeLists.txt with SET(CMAKE_CXX_FLAGS
"${CMAKE_CXX_FLAGS} -m32"), and the same to CMAKE_C_FLAGS, CMAKE_SHARED_LINK_FLAGS and
CMAKE_EXE_LINKER_FLAGS. This can also be done more easily, automatically with Conan, as we’ll see later. -
In Mac, you need to add the definition -DCMAKE_OSX_ARCHITECTURES=i386.

Got any doubts? Check out our FAQ section or .

4.6. Building with other configurations 21

conan Documentation, Release 1.5.2

22 Chapter 4. Getting started

CHAPTER

FIVE

USING PACKAGES

This section shows how to setup your project and manage your dependencies (install existing packages) with conan.

5.1 Installing dependencies

In Getting started we used conan install command to download the Poco library and build an example.

Please take a moment to inspect the generated conanbuildinfo.cmake file that was created when we did conan
install. You can see there that there are many CMake variables declared. For example CONAN_INCLUDE_DIRS_ZLIB,
which defines the include path to the ZLib headers, or CONAN_INCLUDE_DIRS that defines include paths for all depen-
dencies headers.

If you check the full path, you will see that they are pointing to a folder in your <userhome> folder, this is called the
local cache. It is the place where package recipes and binary packages are stored and cached, so they don’t have to be
retrieved again. You can inspect the local cache with conan search, and you can also remove packages from it with
conan remove command.

23

conan Documentation, Release 1.5.2

If you navigate to the paths pointed by the conanbuildinfo.cmake you will be able to see the headers and the libraries
for each package.

If you execute a conan install Poco/1.9.0@pocoproject/stable command in your shell, conan will download
the Poco package and its dependencies (OpenSSL/1.0.2l@conan/stable and zlib/1.2.11@conan/stable) to your local
cache and print information about the folder of the where they are installed. You could handle them manually if you
want. But the recommended approach is using a conanfile.txt.

5.1.1 Requires

We put the required dependencies in the [requires] section. The requirements look like this:

[requires]
Poco/1.9.0@pocoproject/stable

Where:

• Poco is the name of the package, usually the same of the project/library.

• 1.9.0 is the version, usually matching the one of the packaged project/library. Can be any string, not necessarily
a number, so it is possible to have a “develop” or “master” version. Packages can be overwritten, so it is also OK
to have packages like “nightly” or “weekly”, that are regenerated periodically.

• pocoproject is the owner of this package version. It is basically a namespace that allows different users to
have their own packages for the same library with the same name, and interchange them. So, for example, you
can easily upload a certain library under your own user name “lasote”, and later those packages can be uploaded
without modifications to another official group or company username.

• stable is the channel. Channels also allow to have different packages for the same library and use them inter-
changeably. They usually denote the maturity of the package, as an arbitrary string: “stable”, “testing”, but it
can be used for any purpose, like package revisions (the library version has not changed, but the package recipe
has evolved).

Overriding requirements

You can specify multiple requirements and you can override the transitive “require’s requirements”. In our example,
conan installed the Poco package and all its requirements transitively:

• OpenSSL/1.0.2l@conan/stable

• zlib/1.2.11@conan/stable

Tip: This is a good example to explain requirements overriding. We all know the importance of keeping the OpenSSL
library updated.

Now imagine that a new release of OpenSSL library is out, and a new conan package for it is available. Do we need to
wait until the author pocoproject generates a new package of POCO that includes the new OpenSSL library?

Not necessarily, just enter the new version in [requires]:

[requires]
Poco/1.9.0@pocoproject/stable
OpenSSL/1.0.2p@conan/stable

24 Chapter 5. Using packages

https://bintray.com/pocoproject/conan/Poco%3Apocoproject

conan Documentation, Release 1.5.2

The second line will override the OpenSSL/1.0.2l required by POCO, with the (non-existent yet) OpenSSL/1.0.2p.

Other example could be, in order to try out some new zlib alpha features, we could replace the zlib requirement with
one from another user or channel.

[requires]
Poco/1.9.0@pocoproject/stable
OpenSSL/1.0.2p@conan/stable
zlib/1.2.11@otheruser/alpha

5.1.2 Generators

Conan reads the [generators] section from conanfile.txt and creates files for each generator with all the necessary
information to link your program with the specified requirements. The generated files are usually temporary, created
in build folders and not committed to version control, as they have paths to local folder that will not exist in another
machine. Also, it is very important to highlight that generated files match the given configuration (Debug/Release,
x86/x86_64, etc), specified at conan install time. If the configuration changes, the files will change.

Check the complete generators reference.

5.1.3 Options

We have already seen that there are some settings that can be specified at install time, for example conan install
. -s build_type=Debug. The settings are typically a project-wide configuration, defined by the client machine. So
they cannot have a default value in the recipe. For example, it doesn’t make sense for a package recipe to declare as
default compiler “Visual Studio”, because that is something defined by the end consumer, and unlikely to make sense
if they are working in Linux.

On the other hand, options are intended for package specific configuration, that can be set to a default value in the
recipe. For example, one package can define that its default linkage is static, and such default will be used if consumers
don’t specify otherwise.

Note: You can see the available options for a package inspecting the recipe with conan get <reference> command:

$ conan get Poco/1.9.0@pocoproject/stable

As an example, we can modify the previous example to use dynamic linkage instead of the default one, which was
static. Just edit the conanfile.txt:

[requires]
Poco/1.9.0@pocoproject/stable

[generators]
cmake

[options]
Poco:shared=True # PACKAGE:OPTION=VALUE
OpenSSL:shared=True

Install the requirements and compile from the build folder (change the CMake generator if not in Windows):

5.1. Installing dependencies 25

conan Documentation, Release 1.5.2

$ conan install ..
$ cmake .. -G "Visual Studio 14 Win64"
$ cmake --build . --config Release

You can also avoid defining the options in the conanfile.txt and directly define them in the command line:

$ conan install .. -o Poco:shared=True -o OpenSSL:shared=True
or even with wildcards, to apply to many packages
$ conan install .. -o *:shared=True

Conan will install the shared library packages binaries, and the example will link with them. You can again inspect the
different installed binaries, e.g. conan search zlib/1.2.8@lasote/stable.

Finally, launch the executable:

$./bin/timer

What happened? It fails because it can’t find the shared libraries in the path. Remember that shared libraries are used
at runtime, and should be locatable by the OS, which is the one running the application.

We could inspect the generated executable, and see that it is using the shared libraries. For example in Linux, we could
use the objdump tool and see in Dynamic section:

$ cd bin
$ objdump -p timer
...
Dynamic Section:
NEEDED libPocoUtil.so.31
NEEDED libPocoXML.so.31
NEEDED libPocoJSON.so.31
NEEDED libPocoMongoDB.so.31
NEEDED libPocoNet.so.31
NEEDED libPocoCrypto.so.31
NEEDED libPocoData.so.31
NEEDED libPocoDataSQLite.so.31
NEEDED libPocoZip.so.31
NEEDED libPocoFoundation.so.31
NEEDED libpthread.so.0
NEEDED libdl.so.2
NEEDED librt.so.1
NEEDED libssl.so.1.0.0
NEEDED libcrypto.so.1.0.0
NEEDED libstdc++.so.6
NEEDED libm.so.6
NEEDED libgcc_s.so.1
NEEDED libc.so.6

26 Chapter 5. Using packages

conan Documentation, Release 1.5.2

5.1.4 Imports

There are some differences between shared libraries on linux (*.so), windows (*.dll) and MacOS (*.dylib). The shared
libraries must be located in some folder where they can be found, either by the linker, or by the OS runtime.

It is possible to add the folders of the libraries to the path (dynamic linker LD_LIBRARY_PATH path in Linux,
DYLD_LIBRARY_PATH in OSX, or system PATH in Windows), or copy those shared libraries to some system folder,
so they are found by the OS. But those are typical operations of deploys or final installation of apps, not desired while
developing, and conan is intended for developers, so it tries not to mess with the OS.

In Windows and OSX, the simplest approach is just to copy the shared libraries to the executable folder, so they are
found by the executable, without having to modify the path.

We can easily do that with the [imports] section in conanfile.txt. Let’s try it.

Edit the conanfile.txt file and paste the following [imports] section:

[requires]
Poco/1.9.0@pocoproject/stable

[generators]
cmake

[options]
Poco:shared=True
OpenSSL:shared=True

[imports]
bin, *.dll -> ./bin # Copies all dll files from packages bin folder to my "bin" folder
lib, *.dylib* -> ./bin # Copies all dylib files from packages lib folder to my "bin"␣
→˓folder

Note: You can explore the package folder in your local cache (~/.conan/data) and look where the shared libraries are.
It is common that *.dll are copied in /bin the rest of the libraries should be found in the /lib folder. But it’s just a
convention, different layouts are possible.

Install the requirements (from the mytimer/build folder), and run the binary again:

$ conan install ..
$./bin/timer

Now look at the mytimer/build/bin folder and verify that the needed shared libraries are there.

As you can see, the [imports] section is a very generic way to import files from your requirements to your project.

This method can be used for packaging applications and copying the result executables to your bin folder, or for copying
assets, images, sounds, test static files, etc. Conan is a generic solution for package management, not only (but focused
in) for C/C++ or libraries.

See also:

Check the section Howtos/Manage shared libraries to know more about working with shared libraries.

5.1. Installing dependencies 27

conan Documentation, Release 1.5.2

5.2 Using profiles

So far we have used the default settings stored in ~/.conan/profiles/default and defined as command line argu-
ments.

However, configurations can be large, settings can be very different, and we might want to switch easily between
different configurations with different settings, options, etc. The best way to do it is using profiles.

A profile file contains a predefined set of settings, options, environment variables, and build_requires
and has this structure:

[settings]
setting=value

[options]
MyLib:shared=True

[env]
env_var=value

[build_requires]
Tool1/0.1@user/channel
Tool2/0.1@user/channel, Tool3/0.1@user/channel
*: Tool4/0.1@user/channel

Options allow definition with wildcards, to apply same option value to many packages:

[options]
*:shared=True

They would contain the desired configuration, for example:

Listing 1: clang_3.5

[settings]
os=Macos
arch=x86_64
compiler=clang
compiler.version=3.5
compiler.libcxx=libstdc++11
build_type=Release

[env]
CC=/usr/bin/clang
CXX=/usr/bin/clang++

You can store them in the default profile folder or anywhere in you project and you can use it instead of command line
arguments:

$ conan create demo/testing -pr=clang_3.5

If we continue with the example of Poco, we could have a handy profile to help us build our project with the desired
configuration and avoid the usage of all the command line arguments when installing the dependency packages.

A profile to install dependencies as shared and in debug mode will look like this:

28 Chapter 5. Using packages

conan Documentation, Release 1.5.2

Listing 2: debug_shared

include(default)

[settings]
build_type=Debug

[options]
Poco:shared=True
Poco:enable_apacheconnector=False
OpenSSL:shared=True

With this we could just install using the profile:

$ conan install . -pr=debug_shared

We could also create a new profile to use a different compiler version and store it in our project directory:

Listing 3: poco_clang_3.5

include(clang_3.5)

[options]
Poco:shared=True
Poco:enable_apacheconnector=False
OpenSSL:shared=True

Installation will be as easy as:

$ conan install . -pr=./poco_clang_3.5

See also:

Read more about Profiles for full reference.

5.3 Workflows

This section summarizes some possible layouts and workflows while using conan together with other tools as an end-
user, i.e. installing and consuming existing packages. For creating your own packages, have a look at the Packaging
section.

In both cases, the recommended approach is to have a conanfile (either .py or .txt) at the root of your project.

5.3. Workflows 29

conan Documentation, Release 1.5.2

5.3.1 Single configuration

The single configuration is simple. It is the one that has been used so far for the examples and tutorials. In Get-
ting started, we ran the conan install .. command inside the build folder and the conaninfo.txt and conanbuild-
info.cmake files were generated there. The build folder is temporary, you should exclude it from version control, so
those temporary files are excluded too.

Out-of-source builds are also supported. Let’s make a simple example:

$ git clone https://github.com/memsharded/example-hello.git
$ conan install ./example-hello --build=missing --install-folder example-hello-build

So the layout will be:

example-hello-build
conaninfo.txt
conanbuildinfo.txt
conanbuildinfo.cmake

example-hello
conanfile.txt
CMakeLists.txt # If using cmake, but can be Makefile, sln...
main.cpp

Now you are ready to build:

$ cmake ../example-hello -G "Visual Studio 14 Win64" # or other generator
$ cmake --build . --config Release
$./bin/greet

We have created a separate build configuration of the project, without affecting at all the original source directory. The
benefit is that we can experiment freely, and even erase it and create a new build with a new configuration with different
settings, if needed:

$ cd example-hello-build && rm -rf *
$ conan install ../example-hello -s compiler="<other compiler>" --build=missing
$ cmake ../example-hello -G "<other generator>"
$ cmake --build . --config Release

5.3.2 Multi configuration

You can also manage different configurations, in-source or out of source, and you can switch between them without
taking the extra step of re-issuing the conan install command (even though this is not a speed-related issue, since
the second time conan install is executed with the same parameters, it will run very fast: packages are installed in
the local cache, not inside the project).

$ git clone https://github.com/memsharded/example-hello.git
$ conan install ./example-hello -s build_type=Debug --build=missing -if example-hello-
→˓build/debug
$ conan install ./example-hello -s build_type=Release --build=missing -if example-hello-
→˓build/release

$ cd example-hello-build/debug && cmake ../../example-hello -G "Visual Studio 14 Win64" &
→˓& cd ../..

(continues on next page)

30 Chapter 5. Using packages

conan Documentation, Release 1.5.2

(continued from previous page)

$ cd example-hello-build/release && cmake ../../example-hello -G "Visual Studio 14 Win64
→˓" && cd ../..

Note: You can use the --install-folder or -if to specify where to generate the output files or create manually
the directory and change to it before execute the conan install command.

So the layout will be:

example-hello-build
debug

conaninfo.txt
conanbuildinfo.txt
conanbuildinfo.cmake
CMakeCache.txt # and other cmake files

release
conaninfo.txt
conanbuildinfo.txt
conanbuildinfo.cmake
CMakeCache.txt # and other cmake files

example-hello
conanfile.txt
CMakeLists.txt # If using cmake, but can be Makefile, sln...
main.cpp

Now you can switch between your build configurations in exactly the same way you do for CMake or other build
systems, moving to the folder in which the build configuration lives, because the conan configuration files for that build
configuration will also be there.

$ cd example-hello-build/debug && cmake --build . --config Debug && cd ../..
$ cd example-hello-build/release && cmake --build . --config Release && cd ../..

Note that the CMake INCLUDE() of your project must be prefixed with the current cmake binary directory, otherwise
it will not find the necessary file:

include(${CMAKE_BINARY_DIR}/conanbuildinfo.cmake)
conan_basic_setup()

5.3. Workflows 31

conan Documentation, Release 1.5.2

32 Chapter 5. Using packages

CHAPTER

SIX

CREATING PACKAGES

This section shows how to create, build and test your packages.

6.1 Getting started

To start learning about creating packages, we will create a package from an existing source code repository: https:
//github.com/memsharded/hello. You can check that project, it is a very simple “hello world” C++ library, using
CMake as build system to build a library and an executable. It has nothing related to conan in it.

We are using such github repository as an example, but the same process would apply to other source code origins, like
downloading a zip or tarball from the internet.

Note: For this concrete example you will need, besides a C++ compiler, both CMake and git installed and in your
path. They are not required by conan, you could use your own build system and version control instead.

6.1.1 Creating the package recipe

First, let’s create a folder for our package recipe, and use the conan new helper command that will create a working
package recipe for us:

$ mkdir mypkg && cd mypkg
$ conan new Hello/0.1 -t

This will generate the following files:

conanfile.py
test_package
conanfile.py
CMakeLists.txt
example.cpp

At the root level, there is a conanfile.py which is the main recipe file, the one actually defining our package. Also, there
is a test_package folder, which contains a simple example consuming project that will require and link with the created
package. It is useful to make sure that our package is correctly created.

Let’s have a look to the root package recipe conanfile.py:

33

https://github.com/memsharded/hello
https://github.com/memsharded/hello

conan Documentation, Release 1.5.2

from conans import ConanFile, CMake, tools

class HelloConan(ConanFile):
name = "Hello"
version = "0.1"
settings = "os", "compiler", "build_type", "arch"
options = {"shared": [True, False]}
default_options = "shared=False"
generators = "cmake"

def source(self):
self.run("git clone https://github.com/memsharded/hello.git")
self.run("cd hello && git checkout static_shared")
This small hack might be useful to guarantee proper /MT /MD linkage in MSVC
if the packaged project doesn't have variables to set it properly
tools.replace_in_file("hello/CMakeLists.txt", "PROJECT(MyHello)", ''

→˓'PROJECT(MyHello)
include(${CMAKE_BINARY_DIR}/conanbuildinfo.cmake)
conan_basic_setup()''')

def build(self):
cmake = CMake(self)
cmake.configure(source_folder="hello")
cmake.build()

Explicit way:
self.run('cmake "%s/hello" %s' % (self.source_folder, cmake.command_line))
self.run("cmake --build . %s" % cmake.build_config)

def package(self):
self.copy("*.h", dst="include", src="hello")
self.copy("*hello.lib", dst="lib", keep_path=False)
self.copy("*.dll", dst="bin", keep_path=False)
self.copy("*.so", dst="lib", keep_path=False)
self.copy("*.dylib", dst="lib", keep_path=False)
self.copy("*.a", dst="lib", keep_path=False)

def package_info(self):
self.cpp_info.libs = ["hello"]

This is a complete package recipe. Without worrying too much about every detail, these are the basics:

• The settings field defines the configuration that defines the different binary packages. In this example we are
defining that any change to the OS, compiler, architecture or build type will generate a different binary package.
Remember, Conan generates different binary packages for different introduced configuration (in this case settings)
for the same recipe.

Note that the platform where the recipe is running and the package is being built can be different from the final
platform where the code will be running (self.settings.os and self.settings.arch) if the package is
being cross-built. So if you want to apply a different build depending on the current build machine, you need to
check it:

def build(self):
if platform.system() == "Windows":

(continues on next page)

34 Chapter 6. Creating packages

conan Documentation, Release 1.5.2

(continued from previous page)

cmake = CMake(self)
cmake.configure(source_folder="hello")
cmake.build()

else:
env_build = AutoToolsBuildEnvironment(self)
env_build.configure()
env_build.make()

Learn more in the Cross building section.

• This package recipe is also able to create different binary packages for static and shared libraries with the shared
option, which is defaulted to False (i.e. by default it will use static linkage).

• The source()method executes a git clone to retrieve the sources from github. Other origins, as downloading
a zip file are also available. As you can see, any manipulation of the code can be done, such as checking out any
branch or tag, or patching the source code. In this example, we are adding two lines to the existing CMake code,
to ensure binary compatibility. Don’t worry too much about it now, we’ll visit it later.

• The build() first configures the project, then builds it, with standard CMake commands. The CMake object
is just a helper to ease the translation of conan settings to CMake command line arguments. Remember that
CMake is not strictly required. You can build packages directly invoking make, MSBuild, SCons or any other
build system.

See also:

Check the existing build helpers.

• The package() method copies artifacts (headers, libs) from the build folder to the final package folder.

• Finally, the package_info() method defines that consumer must link with the “hello” library when using this
package. Other information as include or lib paths can be defined as well. This information is used for files
created by generators to be used by consumers, as conanbuildinfo.cmake.

6.1.2 The test_package folder

Note: The test_package is different from the library unit or integration tests, which should be more comprehensive.
These tests are “package” tests, and validate that the package is properly created, and that package consumers will be
able to link against it and reuse it.

If you have a look to the test_package folder, you will realize that the example.cpp and the CMakeLists.txt
files don’t have anything special. The test_package/conanfile.py file is just another recipe, you can think of it as the
consumer conanfile.txt we have already seen in previous sections:

from conans import ConanFile, CMake
import os

class HelloTestConan(ConanFile):
settings = "os", "compiler", "build_type", "arch"
generators = "cmake"

def build(self):
cmake = CMake(self)
cmake.configure()

(continues on next page)

6.1. Getting started 35

conan Documentation, Release 1.5.2

(continued from previous page)

cmake.build()

def imports(self):
self.copy("*.dll", dst="bin", src="bin")
self.copy("*.dylib*", dst="bin", src="lib")

def test(self):
os.chdir("bin")
self.run(".%sexample" % os.sep)

The main differences with the above conanfile.py are:

• It doesn’t have a name and version, because we are not creating a package, so they are not necessary.

• The package() and package_info() methods are not required, since we are not creating a package.

• The test() method specifies which binaries have to be run.

• The imports() method is defined to copy shared libraries to the bin folder, so when dynamic linkage is used,
and the test() method launches the example executable, they are found and example runs.

Note: An important difference with respect to normal package recipes, is that this one does not need to declare a
requires attribute, to depend on the Hello/0.1@demo/testing package we are testing. This requires will be
automatically injected by conan while running. You can however declare it explicitly, it will work, but you will have to
remember to bump the version, and possibly the user and channel if you change them.

6.1.3 Creating and testing packages

We can create and test the package with our default settings simply by:

$ conan create . demo/testing
...
Hello world!

If you see “Hello world!”, it worked.

This will perform the following steps:

• Copy (“export” in conan terms) the conanfile.py from the user folder into the local cache.

• Install the package, forcing building it from sources.

• Move to the test_package folder, and create a temporary build folder.

• Execute there a conan install .., so it installs the requirements of the test_package/conanfile.py. Note that
it will build “Hello” from sources.

• Build and launch the example consuming application, calling the test_package/conanfile.py build() and
test() methods respectively.

Using conan commands, the conan create command would be equivalent to:

$ conan export . demo/testing
$ conan install Hello/0.1@demo/testing --build=Hello
package is created now, use test to test it
$ conan test test_package Hello/0.1@demo/testing

36 Chapter 6. Creating packages

conan Documentation, Release 1.5.2

The conan create command receives the same command line parameters as conan install so you can pass to it the
same settings, options, and command line switches. If you want to create and test packages for different configurations,
you could:

$ conan create . demo/testing -s build_type=Debug
$ conan create . demo/testing -o Hello:shared=True -s arch=x86
$ conan create . demo/testing -pr my_gcc49_debug_profile
...
$ conan create ...

6.1.4 Settings vs. options

We have used settings as os, arch and compiler. But the above package recipe also contains a shared option (defined
as options = {"shared": [True, False]}). What is the difference between settings and options?

Settings are project-wide configuration, something that typically affects the whole project that is being built. For
example, the Operating System or the architecture would be naturally the same for all packages in a dependency graph,
linking a Linux library for a Windows app, or mixing architectures is impossible.

Settings cannot be defaulted in a package recipe. A recipe for a given library cannot say that its default os=Windows.
The os will be given by the environment in which that recipe is processed. It is a necessary input.

Settings are configurable. You can edit, add, remove settings or subsettings in your settings.yml file. See the settings.yml
reference.

On the other hand, options are package-specific configuration. Being a static or shared library is not something that
applies to all packages. Some can be header only libraries. Other packages can be just data, or package executables.
Or packages can contain a mixture of different artifacts. shared is a common option, but packages can define and use
any options they want.

Options are defined in the package recipe, including their allowed values, and it can be defaulted by the package recipe
itself. A package for a library can well define that by default it will be a static library (a typical default). If no one else
specifies something different, the package will be static.

There are some exceptions to the above, for example, settings can be defined per-package, like in command line:

$ conan install . -s MyPkg:compiler=gcc -s compiler=clang ..

This will use gcc for MyPkg and clang for the rest of the dependencies (extremely unusual case).

You can also have a very widely-used option in many packages and set its value all at once with patterns, like:

$ conan install . -o *:shared=True

Any doubts? Please check out our FAQ section or .

6.2 Recipe and sources in a different repo

In the previous section we fetched the sources of our library from an external repository. It is a typical workflow for
packaging third party libraries.

There are two different ways to fetch the sources from an external repository:

1. Using the source() method as we saw in the previous section:

6.2. Recipe and sources in a different repo 37

conan Documentation, Release 1.5.2

from conans import ConanFile, CMake, tools

class HelloConan(ConanFile):
...

def source(self):
self.run("git clone https://github.com/memsharded/hello.git")
self.run("cd hello && git checkout static_shared")
...

You can also use the tools.Git class:

from conans import ConanFile, CMake, tools

class HelloConan(ConanFile):
...

def source(self):
git = tools.Git(folder="hello")
git.clone("https://github.com/memsharded/hello.git", "static_shared")
...

2. Using the scm attribute of the conanfile [EXPERIMENTAL]:

from conans import ConanFile, CMake, tools

class HelloConan(ConanFile):
scm = {

"type": "git",
"subfolder": "hello",
"url": "https://github.com/memsharded/hello.git",
"revision": "static_shared"

}
...

Conan will clone the scm url and will checkout the scm revision.

For git (currently the only supported scm), the revision field can be:

• A commit hash

• A branch

• A tag

The source() method will be called after the checkout process, so you can still use it to patch something or retrieve
more sources, but it is not necessary in most cases.

38 Chapter 6. Creating packages

conan Documentation, Release 1.5.2

6.3 Recipe and sources in the same repo

Sometimes it is more convenient to have the recipe and source code together in the same repository. This is true
especially if you are developing and packaging your own library, and not one from a third-party.

There are two different approaches:

1. Using the exports sources attribute of the conanfile to export the source code together with the recipe. This way
the recipe is self-contained and will not need to fetch the code from external origins when building from sources.
It can be considered a “snapshot” of the source code.

2. Using the scm attribute of the conanfile to capture the remote and commit of your repository automatically.

6.3.1 Exporting the sources with the recipe: exports_sources

This could be an appropriate approach if we want the package recipe to live in the same repository as the source code
it is packaging.

First, let’s get the initial source code and create the basic package recipe:

$ conan new Hello/0.1 -t -s

A src folder will be created with the same “hello” source code as in the previous example. You can have a look at it,
the code is straightforward.

Now lets have a look to the conanfile.py:

from conans import ConanFile, CMake

class HelloConan(ConanFile):
name = "Hello"
version = "0.1"
license = "<Put the package license here>"
url = "<Package recipe repository url here, for issues about the package>"
description = "<Description of Hello here>"
settings = "os", "compiler", "build_type", "arch"
options = {"shared": [True, False]}
default_options = "shared=False"
generators = "cmake"
exports_sources = "src/*"

def build(self):
cmake = CMake(self)
cmake.configure(source_folder="src")
cmake.build()

Explicit way:
self.run('cmake "%s/src" %s' % (self.source_folder, cmake.command_line))
self.run("cmake --build . %s" % cmake.build_config)

def package(self):
self.copy("*.h", dst="include", src="src")
self.copy("*.lib", dst="lib", keep_path=False)
self.copy("*.dll", dst="bin", keep_path=False)
self.copy("*.dylib*", dst="lib", keep_path=False)

(continues on next page)

6.3. Recipe and sources in the same repo 39

conan Documentation, Release 1.5.2

(continued from previous page)

self.copy("*.so", dst="lib", keep_path=False)
self.copy("*.a", dst="lib", keep_path=False)

def package_info(self):
self.cpp_info.libs = ["hello"]

There are two important changes:

• Added the exports_sources field, to tell conan to copy all the files from the local src folder into the package
recipe.

• Removed the source() method, since it is no longer necessary to retrieve external sources.

Also, you can notice the two CMake lines:

include(${CMAKE_BINARY_DIR}/conanbuildinfo.cmake)
conan_basic_setup()

They are not added in the package recipe, as they can be directly put in the src/CMakeLists.txt file.

And simply create the package for user and channel demo/testing as previously:

$ conan create . demo/testing
...
Hello/0.1@demo/testing test package: Running test()
Hello world!

6.3.2 Capturing the remote and commit from git: scm [EXPERIMENTAL]

You can use the scm attribute with the url and revision field set to auto. When you export the recipe (or when
conan create is called) the exported recipe will capture the remote and commit of the local repository:

from conans import ConanFile, CMake, tools

class HelloConan(ConanFile):
scm = {

"type": "git",
"subfolder": "hello",
"url": "auto",
"revision": "auto"

}
...

The conanfile.py can be commited and pushed to your origin repository, and will keep always the “auto” values.
But when the file is exported to the conan local cache, the copied recipe in the local cache, will point to the captured
remote and commit:

from conans import ConanFile, CMake, tools

class HelloConan(ConanFile):
scm = {

"type": "git",
"subfolder": "hello",

(continues on next page)

40 Chapter 6. Creating packages

conan Documentation, Release 1.5.2

(continued from previous page)

"url": "https://github.com/memsharded/hello.git",
"revision": "437676e15da7090a1368255097f51b1a470905a0"

}
...

So when you upload the recipe to a conan remote, the recipe will contain the “absolute” url and commit.

When you are requiring your HelloConan the conan install will retrieve the recipe from the remote and if you
build the package, the source code will be fetched from the captured url/commit.

Tip: While you are in the same computer (same conan cache), even when you have exported the recipe and conan
has captured the absolute url and commit, conan will store the local folder where your source code lives. If you build
your package locally it will use the local repository (in the local folder) instead of the remote URL, even if the local
directory contains uncommited changes. It allows to speed up the development of your packages cloning from a local
repository.

6.4 Packaging existing binaries

Sometimes, it is necessary to create packages from existing binaries, like binaries from third parties, or previously built
by another process or team not using conan, so building from sources is not wanted. You would want to package local
files in two situations:

• When it is not possible to build the packages from sources (only pre-built binaries available).

• When you are developing your package locally and want to export the built artifacts to the local cache. As you
don’t want to rebuild again (clean copy) your artifacts, you don’t want to call conan create. This way you can
keep your build cache if you are using an IDE or calling locally to the conan build command.

6.4.1 Packaging pre-built binaries

If the files we want to package are just local, creating a build() method that would copy them from the user folder
is not reproducible, so it doesn’t add any value. For this use case, it is possible to use conan export-pkg command
directly.

A conan recipe is still needed, in this case it will be very simple, just the meta information of the package. A basic
recipe can be created with the conan new command:

$ conan new Hello/0.1 --bare

This will create and store in the local cache the following package recipe:

class HelloConan(ConanFile):
name = "Hello"
version = "0.1"
settings = "os", "compiler", "build_type", "arch"

def package(self):
self.copy("*")

def package_info(self):
self.cpp_info.libs = self.collect_libs()

6.4. Packaging existing binaries 41

conan Documentation, Release 1.5.2

The provided package_info() method will scan the package files to provide the end consumers with the name of
the libraries to link with. This method can be further customized to provide other build flags (typically conditioned to
the settings). The default package_info() applies: it will define headers in “include” folder, libraries in “lib” folder,
binaries in “bin” folder. A different package layout can be defined in package_info() method.

This package recipe can be also extended to provide support for more configurations (for example, adding options:
shared/static, or using different settings), adding dependencies (requires), etc.

Then, we will assume that we have in our current directory a lib folder with some binary for this “hello” library
libhello.a, compatible for example with Windows MinGW (gcc) version 4.9:

$ conan export-pkg . Hello/0.1@myuser/testing -s os=Windows -s compiler=gcc -s compiler.
→˓version=4.9 ...

Having a test_package folder is still very recommended, to locally test the package before uploading. As we don’t want
to build the package from sources, the flow would be:

$ conan new Hello/0.1 --bare --test
customize test_package project
customize package recipe if necessary
$ cd my/path/to/binaries
$ conan export-pkg PATH/TO/conanfile.py Hello/0.1@myuser/testing -s os=Windows -s␣
→˓compiler=gcc -s compiler.version=4.9 ...
$ conan test PATH/TO/test_package/conanfile.py Hello/0.1@myuser/testing -s os=Windows -s␣
→˓compiler=gcc -s ...

The last 2 steps can be repeated for any number of configurations.

6.4.2 Downloading and Packaging pre-built binaries

In this case, having a complete conan recipe, with the detailed retrieval of the binaries could be the preferred way,
because it has better reproducibility, and the original binaries might be traced. Such a recipe would be like:

class HelloConan(ConanFile):
name = "Hello"
version = "0.1"
settings = "os", "compiler", "build_type", "arch"

def build(self):
if self.settings.os == "Windows" and self.compiler == "Visual Studio":

url = ("https://<someurl>/downloads/hello_binary%s_%s.zip"
% (str(self.settings.compiler.version), str(self.settings.build_

→˓type)))
elif ...:

url = ...
else:

raise Exception("Binary does not exist for these settings")
tools.get(url)

def package(self):
self.copy("*") # assume package as-is, but you can also copy specific files or␣

→˓rearrange

(continues on next page)

42 Chapter 6. Creating packages

conan Documentation, Release 1.5.2

(continued from previous page)

def package_info(self): # still very useful for package consumers
self.cpp_info.libs = ["hello"]

Typically, pre-compiled binaries come for different configurations, so the only task that the build() method has to
implement is to map the settings to the different URLs.

Note:

• This is a normal conan package, even if the binaries are being retrieved from somewhere. The recommended
approach is using conan create, and have a small consuming project besides the above recipe, to test locally,
then upload the conan package with the binaries to the conan remote with conan upload.

• The same building policies apply. Having a recipe will fail if no conan packages are created, and the
--build argument is not defined. A typical approach for this kind of packages could be to define a
build_policy="missing", especially if the URLs are also under the team control. If they are external (inter-
net), it could be better to create the packages and store them in your own conan server, so builds do not rely on
the third party URL being available.

6.5 Understanding packaging

6.5.1 Manual package creation and testing

The previous create approach using test_package subfolder, is not strictly necessary, though very strongly recom-
mended. If we didn’t want to use the test_package functionality, we could just write our recipe ourselves or use the
conan new command without the -t. command line argument.

$ mkdir mypkg && cd mypkg
$ conan new Hello/0.1

This will create just the conanfile.py recipe file. Now we could create our package:

$ conan create demo/testing

This would be equivalent to:

$ conan export . demo/testing
$ conan install Hello/0.1@demo/testing --build=Hello

Once the package is there, it can be consumed like any other package, just add Hello/0.1@demo/testing to some
project conanfile.txt or conanfile.py requirements and run:

$ conan install .
build and run your project to ensure the package works

6.5. Understanding packaging 43

conan Documentation, Release 1.5.2

6.5.2 The package creation process

It is very useful for package creators and conan users in general to understand the flow of package creation inside the
conan local cache, and its layout.

For every package recipe, there are 5 important folders in the local cache:

• export: The folder where the package recipe is stored.

• export_source: The folder where code copied with the recipe exports_sources attribute is stored.

• source: Where the source code for building from sources is stored.

• build: Where the actual compilation of sources is done. There will typically be one subfolder for each different
binary configuration

• package: Where the final package artifacts are stored. There will be one subfolder for each different binary
configuration

The source and build folders only exist when the packages have been built from sources.

The process starts when a package is “exported”, via the conan export command or more typically, with the conan
create command. The conanfile.py and files specified by the exports_sources field are copied from the user space
into the local cache.

The export and export_source files are copied to the source folder, and then the source() method is executed (if

44 Chapter 6. Creating packages

conan Documentation, Release 1.5.2

existing). Note that there is only one source folder for all the binary packages. If some source code is to be generated
that will be different for different configurations, it cannot be generated in the source() method, it has to be done in
the build() method.

Then, for each different configuration of settings and options, a package ID will be computed in the form of a SHA-1
hash of such configuration. Sources will be copied to the build/hashXXX folder, and the build() method will be
triggered.

After that, the package() method will be called to copy artifacts from the build/hashXXX folder to the pack-
age/hashXXX folder.

Finally, the package_info() methods of all dependencies will be called and gathered to be able to generate files for
the consumer build system, as the conanbuildinfo.cmake for the cmake generator. Also the imports feature will copy
artifacts from the local cache into user space if specified.

Any doubts? Please check out our FAQ section or .

6.6 Define package ABI compatibility

Each package recipe can generate N binary packages from it, depending on three things: settings, options and
requires.

When any of the settings of a package recipe changes, it will reference a different binary:

class MyLibConanPackage(ConanFile):
name = "MyLib"
version = "1.0"
settings = "os", "arch", "compiler", "build_type"

When this package is installed by a conanfile.txt, another package conanfile.py, or directly:

$ conan install MyLib/1.0@user/channel -s arch=x86_64 -s ...

The process will be:

1. Conan will get the user input settings and options. Those settings and options can come from command line,
profiles or from the values cached in the latest conan install execution.

2. Conan will retrieve the MyLib/1.0@user/channel recipe, read the settings attribute, and assign the neces-
sary values.

3. With the current package values for settings (also options and requires), it will compute a SHA1 hash that
will be the binary package ID, e.g. c6d75a933080ca17eb7f076813e7fb21aaa740f2.

4. Conan will try to find the c6d75... binary package. If it’s present it will retrieve it, if not, it will fail and indicate
that it can be built from sources using conan install --build.

If the package is installed again with different settings, for example, for 32 bits architecture:

$ conan install MyLib/1.0@user/channel -s arch=x86 -s ...

The process will be repeated but generating a different package ID, because the arch setting will have a different value.
The same applies for different compilers, compiler versions, build type, etc., generating multiple binaries, one for each
configuration.

When users of the package define the same settings as one of those binaries that have been uploaded, the computed
package ID will be the same and such binary will be retrieved and reused without building it from sources.

6.6. Define package ABI compatibility 45

conan Documentation, Release 1.5.2

The options behavior is very similar. The main difference is that options can be more easily defined at the package
level and they can be defaulted. Check the options, default_options reference.

Note the simple scenario of a header-only library. Such package does not need to be built, and it will not have any
ABI issues at all. The recipe of such package will have to generate exactly 1 binary package, no more. This is easily
achieved, just by not declaring settings nor options in the recipe:

class MyLibConanPackage(ConanFile):
name = "MyLib"
version = "1.0"
no settings defined!

No matter what are the settings defined by the users, which compiler or version: the package settings and options will
always be the same (empty) and they will hash to the same binary package ID. That package will typically contain just
the header files.

What happens if we have a library that we know it can be built with GCC 4.8 and we know it will keep the ABI
compatibility with GCC 4.9? (This kind of compatibility is easier to achieve for example for pure C libraries).

Although it could be argued that it is worth rebuilding with 4.9 too -to get fixes and performance improvements for
example-, let’s suppose that we don’t want to create 2 different binaries, just one built with GCC 4.8 and we want it to
be compatible for GCC 4.9 installs.

6.6.1 Defining a custom package_id()

The default package_id() uses the settings and options directly as defined, and assumes semantic versioning for
dependencies defined in requires.

This package_id() method can be overridden to control the package ID generation. Within the package_id() we
have access to the self.info object, which is the one that is hashed to compute the binary ID and contains:

• self.info.settings: Contains all the declared settings, always as string values. We can access/alter the settings.
e.g: self.info.settings.compiler.version.

• self.info.options: Contains all the declared options, always as string values too. e.g: self.info.options.
shared.

Initially this info object will contain the original settings and options, but they can be changed without constraints to
any other string value.

For example, if you are sure your package ABI compatibility is fine for GCC versions > 4.5 and < 5.0 you could do
this:

from conans import ConanFile, CMake, tools
from conans.model.version import Version

class PkgConan(ConanFile):
name = "Pkg"
version = "1.0"
settings = "compiler", "build_type"

def package_id(self):
v = Version(str(self.settings.compiler.version))
if self.settings.compiler == "gcc" and (v >= "4.5" and v < "5.0"):

self.info.settings.compiler.version = "GCC version between 4.5 and 5.0"

46 Chapter 6. Creating packages

https://semver.org/

conan Documentation, Release 1.5.2

We have set the self.info.settings.compiler.version with an arbitrary string, the value it’s not important
(could be any string). The only important thing is that it is the same for any GCC version between 4.5 and 5.0. For all
those versions, the compiler version will always be hashed to the same ID.

Let’s try and check that it works properly installing the package for GCC 4.5:

$ conan export myuser/mychannel
$ conan install Pkg/1.0@myuser/mychannel -s compiler=gcc -s compiler.version=4.5 ...

Requirements
Pkg/1.0@myuser/mychannel from local

Packages
Pkg/1.0@myuser/mychannel:mychannel:af044f9619574eceb8e1cca737a64bdad88246ad

...

We can see that the computed package ID is af04...46ad (not real). What would happen if we specify GCC 4.6?

$ conan install Pkg/1.0@myuser/mychannel -s compiler=gcc -s compiler.version=4.6 ...

Requirements
Pkg/1.0@myuser/mychannel from local

Packages
Pkg/1.0@myuser/mychannel:mychannel:af044f9619574eceb8e1cca737a64bdad88246ad

Same result: the required package is again af04...46ad. Now we can try with GCC 4.4 (< 4.5):

$ conan install Pkg/1.0@myuser/mychannel -s compiler=gcc -s compiler.version=4.4 ...

Requirements
Pkg/1.0@myuser/mychannel from local

Packages
Pkg/1.0@myuser/mychannel:mychannel:7d02dc01581029782b59dcc8c9783a73ab3c22dd

Now the computed package ID is different: that means that we need a different binary package for GCC 4.4.

The same way we have adjusted the self.info.settings we could set the self.info.options values if needed.

See also:

Check package_id() to see the available helper methods and change its behavior for things like:

• Recipes packaging header only libraries.

• Adjusting Visual Studio toolsets compatibility.

6.6.2 The problem of dependencies

Let’s define a simple scenario where there are two packages: one for MyOtherLib/2.0 and another one MyLib/1.0
which depends on (requires) MyOtherLib/2.0. Let’s assume that their recipes and binaries have already been created
and uploaded to a Conan remote.

Now, a new release for MyOtherLib/2.1 comes out with improved recipe and new binaries. The MyLib/1.0 is
modified to upgrade the requires to MyOtherLib/2.1.

Note: This scenario will be the same in the case that a consuming project of MyLib/1.0 defines a dependency to
MyOtherLib/2.1, which would have precedence over the existing one in MyLib/1.0.

6.6. Define package ABI compatibility 47

conan Documentation, Release 1.5.2

The question is: Is it necessary to build new MyLib/1.0 binary packages? Or are the existing packages still valid?

The answer: It depends.

Let’s suppose that both are being compiled as static libraries and that the API exposed by MyOtherLib to MyLib/1.
0 through the public headers has not changed at all. Then, it is not necessary to build new binaries for MyLib/1.0
because the final consumer will link against both Mylib/1.0 and MyOtherLib/2.1.

On the other hand, it could happen that the API exposed by MyOtherLib in public headers has changed, but without
affecting the MyLib/1.0 binary for any reason (like changes consisting on new functions not used by MyLib). The
same reasoning would still be valid if MyOtherLib was header only.

But what if one header file of MyOtherLib -named myadd.h- has changed from 2.0 to 2.1:

Listing 1: myadd.h header file in version 2.0

int addition (int a, int b) { return a - b; }

Listing 2: myadd.h header file in version 2.1

int addition (int a, int b) { return a + b; }

And the addition() function is being called from compiled .cpp files of MyLib/1.0?

Then, a new binary for MyLib/1.0 has to be built for the new dependency version. Otherwise it will maintain the
old, buggy addition() version. Even in the case that MyLib/1.0 doesn’t have any change in its code lines neither in
the recipe, the resulting binary rebuilding MyLib requiring MyOtherLib/2.1` will be different and the package needs to
be different.

6.6.3 Using package_id() for package dependencies

The self.info object has also a requires object. It is a dictionary with the necessary information for each require-
ment, all direct and transitive dependencies. e.g. self.info.requires["MyOtherLib"] is a RequirementInfo
object.

• Each RequirementInfo has the following read only reference fields:

– full_name: Full require’s name. E.g MyOtherLib

– full_version: Full require’s version. E.g 1.2

– full_user: Full require’s user. E.g my_user

– full_channel: Full require’s channel. E.g stable

– full_package_id: Full require’s package ID. E.g c6d75a. . .

• The following fields are the ones used in the package_id() evaluation:

– name: By default same value as full_name. E.g MyOtherLib.

– version: By default the major version representation of the full_version. E.g 1.Y for a 1.2
full_version field and 1.Y.Z for a 1.2.3 full_version field.

– user: By default None (doesn’t affect the package ID).

– channel: By default None (doesn’t affect the package ID).

– package_id: By default None (doesn’t affect the package ID).

When defining a package ID to model dependencies, it is necessary to take into account two factors:

• The versioning schema followed by our requirements (semver?, custom?).

48 Chapter 6. Creating packages

conan Documentation, Release 1.5.2

• Type of library being built and type of library being reused (shared (.so, .dll, .dylib), static).

Versioning schema

By default Conan assumes semver compatibility. e.g., if a version changes from minor 2.0 to 2.1 Conan will assume
that the API is compatible (headers not changing), and that it is not necessary to build a new binary for it. Exactly the
same for patches, changing from 2.1.10 to 2.1.11 doesn’t require a re-build.

If it is necessary to change the default behavior, the applied versioning schema can be customized within the
package_id() method:

from conans import ConanFile, CMake, tools
from conans.model.version import Version

class PkgConan(ConanFile):
name = "Mylib"
version = "1.0"
settings = "os", "compiler", "build_type", "arch"
requires = "MyOtherLib/2.0@lasote/stable"

def package_id(self):
myotherlib = self.info.requires["MyOtherLib"]

Any change in the MyOtherLib version will change current Package ID
myotherlib.version = myotherlib.full_version

Changes in major and minor versions will change the Package ID but
only a MyOtherLib patch won't. E.j: From 1.2.3 to 1.2.89 won't change.
myotherlib.version = myotherlib.full_version.minor()

Besides the version, there are some other helpers that can be used to decide whether the channel and user of one
dependency also affects the binary package, or even the required package ID can change your own package ID.

You can decide if those variables of any requirement will change the ID of your binary package using the following
modes:

Modes / Variables name version user channel package_id

semver_mode() Yes Yes, only > 1.0.0 (e.g. 1.2.Z+b102) No No No
major_mode() Yes Yes (e.g. 1.2.Z+b102) No No No
minor_mode() Yes Yes (e.g. 1.2.Z+b102) No No No
patch_mode() Yes Yes (e.g. 1.2.3+b102) No No No
base_mode() Yes Yes (e.g. 1.7+b102) No No No
full_version_mode() Yes Yes (e.g. 1.2.3+b102) No No No
full_recipe_mode() Yes Yes (e.g. 1.2.3+b102) Yes Yes No
full_package_mode() Yes Yes (e.g. 1.2.3+b102) Yes Yes Yes
unrelated_mode() No No No No No

• semver_mode(): This is the default mode. In this mode only major release version (starting from 1.0.0) changes
the package ID. Every version change before 1.0.0 will change the package ID, but only major changes after 1.0.0
will do.

def package_id(self):
self.info.requires["MyOtherLib"].semver_mode()

6.6. Define package ABI compatibility 49

https://semver.org/

conan Documentation, Release 1.5.2

• major_mode(): Any change in the major release version (starting from 0.0.0) changes the package ID.

def package_id(self):
self.info.requires["MyOtherLib"].major_mode()

• minor_mode(): Any change in major or minor (not patch nor build) version of the required dependency changes
the package ID.

def package_id(self):
self.info.requires["MyOtherLib"].patch_mode()

• patch_mode(): Any change in major, minor or patch (not build) version of the required dependency changes
the package ID.

def package_id(self):
self.info.requires["MyOtherLib"].patch_mode()

• base_mode(): Any change in the base of the version (not build) of the required dependency changes the package
ID. Note that in the case of semver notation this may produce same result as patch_mode(), but it is actually
intended to dismiss the build part of the version even without strict semver.

def package_id(self):
self.info.requires["MyOtherLib"].base_mode()

• full_version_mode(): Any change in the version of the required dependency changes the package ID.

def package_id(self):
self.info.requires["MyOtherLib"].full_version_mode()

• full_recipe_mode(): Any change in the reference of the requirement (user & channel too) changes the pack-
age ID.

def package_id(self):
self.info.requires["MyOtherLib"].full_recipe_mode()

• full_package_mode(): Any change in the required version, user, channel or package ID changes the package
ID.

def package_id(self):
self.info.requires["MyOtherLib"].full_package_mode()

• unrelated_mode(): Requirements do not change the package ID.

def package_id(self):
self.info.requires["MyOtherLib"].unrelated_mode()

You can also adjust the individual properties manually:

def package_id(self):
myotherlib = self.info.requires["MyOtherLib"]

Same as myotherlib.semver_mode()
myotherlib.name = myotherlib.full_name
myotherlib.version = myotherlib.full_version.stable() # major(), minor(), patch(),␣

→˓base, build
(continues on next page)

50 Chapter 6. Creating packages

conan Documentation, Release 1.5.2

(continued from previous page)

myotherlib.user = myotherlib.channel = myotherlib.package_id = None

Only the channel (and the name) matters
myotherlib.name = myotherlib.full_name
myotherlib.user = myotherlib.package_id = myotherlib.version = None
myotherlib.channel = myotherlib.full_channel

The result of the package_id() is the package ID hash, but the details can be checked in the generated conaninfo.txt
file. The [requires], [options] and [settings] are those taken into account to generate the SHA1 hash for the
package ID, while the [full_xxxx] fields show the complete reference information.

The default behavior produces a conaninfo.txt that looks like:

[requires]
MyOtherLib/2.Y.Z

[full_requires]
MyOtherLib/2.2@demo/testing:73bce3fd7eb82b2eabc19fe11317d37da81afa56

Library types: Shared, static, header only

Let’s see some examples, corresponding to common scenarios:

• MyLib/1.0 is a shared library that links with a static library MyOtherLib/2.0 package. When a new
MyOtherLib/2.1 version is released: Do I need to create a new binary for MyLib/1.0 to link with it?

Yes, always, as the implementation is embedded in the MyLib/1.0 shared library. If we always want to rebuild
our library, even if the channel changes (we assume a channel change could mean a source code change):

def package_id(self):
Any change in the MyOtherLib version, user or
channel or Package ID will affect our package ID
self.info.requires["MyOtherLib"].full_package_mode()

• MyLib/1.0 is a shared library, requiring another shared library MyOtherLib/2.0 package. When a new
MyOtherLib/2.1 version is released: Do I need to create a new binary for MyLib/1.0 to link with it?

It depends. If the public headers have not changed at all, it is not necessary. Actually it might be necessary to
consider transitive dependencies that are shared among the public headers, how they are linked and if they cross
the frontiers of the API, it might also lead to incompatibilities. If public headers have changed, it would depend
on what changes and how are they used in MyLib/1.0. Adding new methods to the public headers will have no
impact, but changing the implementation of some functions that will be inlined when compiled from MyLib/1.0
will definitely require re-building. For this case, it could make sense to have this configuration:

def package_id(self):
Any change in the MyOtherLib version, user or channel
or Package ID will affect our package ID
self.info.requires["MyOtherLib"].full_package_mode()

Or any change in the MyOtherLib version, user or
channel will affect our package ID
self.info.requires["MyOtherLib"].full_recipe_mode()

6.6. Define package ABI compatibility 51

conan Documentation, Release 1.5.2

• MyLib/1.0 is a header-only library, linking with any kind (header, static, shared) of library in MyOtherLib/2.0
package. When a new MyOtherLib/2.1 version is released: Do I need to create a new binary for MyLib/1.0
to link with it?

Never. The package should always be the same as there are no settings, no options, and in any way a dependency
can affect a binary, because there is no such binary. The default behavior should be changed to:

def package_id(self):
self.info.requires.clear()

• MyLib/1.0 is a static library, linking with a header only library in MyOtherLib/2.0 package. When a new
MyOtherLib/2.1 version is released: Do I need to create a new binary for MyLib/1.0 to link with it? It could
happen that the MyOtherLib headers are strictly used in some MyLib headers, which are not compiled, but tran-
sitively included. But in the general case it is likely that MyOtherLib headers are used in MyLib implementation
files, so every change in them should imply a new binary to be built. If we know that changes in the channel
never imply a source code change, because it is the way we have defined our workflow/lifecycle, we could write:

def package_id(self):
self.info.requires["MyOtherLib"].full_package()
self.info.requires["MyOtherLib"].channel = None # Channel doesn't change out␣

→˓package ID

6.7 Inspecting packages

You can inspect the uploaded packages and also the packages in the local cache with the conan get command.

• List the files of a local recipe folder:

$ conan get zlib/1.2.8@conan/stable .

Listing directory '.':
CMakeLists.txt
conanfile.py
conanmanifest.txt

• Print the conaninfo.txt file of a binary package:

$ conan get zlib/1.2.11@conan/stable -p 09512ff863f37e98ed748eadd9c6df3e4ea424a8

• Print the conanfile.py from a remote package:

$ conan get zlib/1.2.8@conan/stable -r conan-center

from conans import ConanFile, tools, CMake, AutoToolsBuildEnvironment
from conans.util import files
from conans import __version__ as conan_version
import os

class ZlibConan(ConanFile):
name = "zlib"
version = "1.2.8"
ZIP_FOLDER_NAME = "zlib-%s" % version

(continues on next page)

52 Chapter 6. Creating packages

conan Documentation, Release 1.5.2

(continued from previous page)

#...

Check the conan get command command reference and more examples.

6.8 Packaging approaches

Package recipes have three methods to control the package’s binary compatibility and to implement different packaging
approaches: package_id(), build_id() and package_info().

The above methods let package creators follow different package approaches to choose the best fit for each library.

6.8.1 1 config (1 build) -> 1 package

A typical approach is to have one configuration for each package containing the artifacts. In this approach, for example,
the debug pre-compiled libraries will be in a different package than the release pre-compiled libraries.

So if there is a package recipe that builds a “hello” library, there will be one package containing the release version
of the “hello.lib” library and a different package containing a debug version of that library (in the figure denoted as
“hello_d.lib”, to make it clear, it is not necessary to use different names).

In this approach, the package_info() method can just set the appropriate values for consumers, to let them know
about the package library names, and necessary definitions and compile flags.

class HelloConan(ConanFile):

settings = "os", "compiler", "build_type", "arch"

def package_info(self):
self.cpp_info.libs = ["mylib"]

6.8. Packaging approaches 53

conan Documentation, Release 1.5.2

It is very important to note that it is declaring the build_type as a setting. This means that a different package will
be generated for each different value of such setting.

The values that packages declare here (the include, lib and bin subfolders are already defined by default, so they define
the include and library path to the package) are translated to variables of the respective build system by the used
generators. That is, if using the cmake generator, such above definition will be translated in conanbuildinfo.cmake to
something like:

set(CONAN_LIBS_MYPKG mylib)
...
set(CONAN_LIBS mylib ${CONAN_LIBS})

Those variables, will be used in the conan_basic_setup() macro to actually set cmake relevant variables.

If the developer wants to switch configuration of the dependencies, he will usually switch with:

$ conan install -s build_type=Release ...
when need to debug
$ conan install -s build_type=Debug ...

These switches will be fast, since all the dependencies are already cached locally.

This process has some advantages: it is quite easy to implement and maintain. The packages are of minimal size, so
disk space and transfers are faster, and builds from sources are also kept to the necessary minimum. The decoupling
of configurations might help with isolating issues related to mixing different types of artifacts, and also protecting
valuable information from deploy and distribution mistakes. For example, debug artifacts might contain symbols or
source code, which could help or directly provide means for reverse engineering. So distributing debug artifacts by
mistake could be a very risky issue.

Read more about this in package_info().

6.8.2 N configs -> 1 package

It is possible that someone wants to package both debug and release artifacts in the same package, so it can be consumed
from IDEs like Visual Studio changing debug/release configuration from the IDE, and not having to specify it in the
command line. This type of package will include different artifacts for different configurations, like both the release
and debug version of the “hello” library, in the same package.

54 Chapter 6. Creating packages

conan Documentation, Release 1.5.2

Note: A complete working example of the following code can be found in a github repo. You should be able to run:

$ git clone https://github.com/memsharded/hello_multi_config
$ cd hello_multi_config
$ conan create . user/channel -s build_type=Release
$ conan create . user/channel -s build_type=Debug --build=missing

Creating a multi-configuration Debug/Release package is not difficult, see the following example using CMake.

The first step is to remove build_type from the settings. It will not be an input setting, the generated package will
always be the same, containing both Debug and Release artifacts. The Visual Studio runtime is different for debug
and release (MDd or MD), so if we are fine with the default runtime (MD/MDd), it is also good to remove the runtime
subsetting in the configure() method:

class Pkg(ConanFile):
build_type has been ommitted. It is not an input setting.
settings = "os", "compiler", "arch"

def configure(self):
it is also necessary to remove the VS runtime
if self.settings.compiler == "Visual Studio":

del self.settings.compiler.runtime

def build(self):
cmake = CMake(self)
if cmake.is_multi_configuration:

cmmd = 'cmake "%s" %s' % (self.source_folder, cmake.command_line)
self.run(cmmd)
self.run("cmake --build . --config Debug")
self.run("cmake --build . --config Release")

else:
for config in ("Debug", "Release"):

self.output.info("Building %s" % config)
(continues on next page)

6.8. Packaging approaches 55

conan Documentation, Release 1.5.2

(continued from previous page)

self.run('cmake "%s" %s -DCMAKE_BUILD_TYPE=%s'
% (self.source_folder, cmake.command_line, config))

self.run("cmake --build .")
shutil.rmtree("CMakeFiles")
os.remove("CMakeCache.txt")

In this case, we are assuming that the binaries will be differentiated with a suffix, in cmake syntax:

set_target_properties(mylibrary PROPERTIES DEBUG_POSTFIX _d)

Such a package can define its information for consumers as:

def package_info(self):
self.cpp_info.release.libs = ["mylibrary"]
self.cpp_info.debug.libs = ["mylibrary_d"]

This will translate to the cmake variables:

set(CONAN_LIBS_MYPKG_DEBUG mylibrary_d)
set(CONAN_LIBS_MYPKG_RELEASE mylibrary)
...
set(CONAN_LIBS_DEBUG mylibrary_d ${CONAN_LIBS_DEBUG})
set(CONAN_LIBS_RELEASE mylibrary ${CONAN_LIBS_RELEASE})

And these variables will be correctly applied to each configuration by conan_basic_setup() helper.

In this case you can still use the general, not config-specific variables. For example, the include directory, set by default
to include, is still the same for both debug and release. Those general variables will be applied for all configurations.

Important: The above code assumes that the package will always use the default Visual Studio runtime (MD/MDd). If
we want to keep the package configurable for supporting static(MT)/dynamic(MD) linking with the VS runtime library,
some extra work is needed. Basically:

• Keep, the compiler.runtime setting, i.e. do not implement the configure() method removing it

• Don’t let the CMake helper define the CONAN_LINK_RUNTIME env-var to define the runtime, because being defined
by the consumer it would be incorrectly applied to both Debug and Release artifacts. This can be done with a
cmake.command_line.replace("CONAN_LINK_RUNTIME", "CONAN_LINK_RUNTIME_MULTI") to define a
new variable

• Write a package_id() method that defines the packages to be built, one for MD/MDd, and other for MT/MTd

• In CMakeLists.txt, use the CONAN_LINK_RUNTIME_MULTI variable to correctly setup up the runtime for debug
and release flags

All these steps are already coded in the repo https://github.com/memsharded/hello_multi_config and commented out
as “Alternative 2”

Also, you can use any custom configuration you want, they are not restricted. For example, if your package is a multi-
library package, you could try doing something like:

def package_info(self):
self.cpp_info.regex.libs = ["myregexlib1", "myregexlib2"]
self.cpp_info.filesystem.libs = ["myfilesystemlib"]

56 Chapter 6. Creating packages

https://github.com/memsharded/hello_multi_config

conan Documentation, Release 1.5.2

These specific config variables will not be automatically applied, but you can directly use them in your consumer
CMake build script.

Note: The automatic conversion of multi-config variables to generators is currently only implemented in the cmake
and txt generators. If you want to have support for them in another build system, please open a GitHub issue for it.

6.8.3 N configs (1 build) -> N packages

It’s possible that an already existing build script is building binaries for different configurations at once, like de-
bug/release, or different architectures (32/64bits), or library types (shared/static). If such build script is used in the
previous “Single configuration packages” approach, it will definitely work without problems, but we’ll be wasting pre-
cious build time, as we’ll be re-building the whole project for each package, then extracting the relevant artifacts for
the given configuration, leaving the others.

It is possible to specify the logic, so the same build can be reused to create different packages, which will be more
efficient:

This can be done by defining a build_id() method in the package recipe that will specify the logic.

settings = "os", "compiler", "arch", "build_type"

def build_id(self):
self.info_build.settings.build_type = "Any"

def package(self):
if self.settings.build_type == "Debug":

#package debug artifacts
else:

package release

Note that the build_id() method uses the self.info_build object to alter the build hash. If the method doesn’t
change it, the hash will match the package folder one. By setting build_type="Any", we are forcing that for both
Debug and Release values of build_type, the hash will be the same (the particular string is mostly irrelevant, as

6.8. Packaging approaches 57

conan Documentation, Release 1.5.2

long as it is the same for both configurations). Note that the build hash sha3 will be different of both sha1 and sha2
package identifiers.

This doesn’t imply that there will be strictly one build folder. There will be a build folder for every configuration
(architecture, compiler version, etc). So if we just have Debug/Release build types, and we’re producing N packages
for N different configurations, we’ll have N/2 build folders, saving half of the build time.

Read more about this in build_id().

6.9 Tools for package creators

With some python (or just pure shell or bash) scripting, we could easily automate the whole package creation and
testing process, for many different configurations. For example you could put the following script in the package root
folder. Name it build.py:

import os, sys
import platform

def system(command):
retcode = os.system(command)
if retcode != 0:

raise Exception("Error while executing:\n\t %s" % command)

if __name__ == "__main__":
params = " ".join(sys.argv[1:])

if platform.system() == "Windows":
system('conan create demo/testing -s compiler="Visual Studio" -s compiler.

→˓version=14 %s' % params)
system('conan create demo/testing -s compiler="Visual Studio" -s compiler.

→˓version=12 %s' % params)
system('conan create demo/testing -s compiler="gcc" -s compiler.version=4.8 %s'

→˓% params)
else:

pass

This is a pure python script, not related to conan, and should be run as such:

$ python build.py

We have developed another FOSS tool for package creators, Conan Package Tools to ease the task of generating
multiple binary packages from a package recipe. It offers a simple way to define the different configurations and to call
conan test. Also offers CI integration like Travis CI, Appveyor and Bamboo, for cloud based automated binary
package creation, testing and uploading.

This tool enables the creation of hundreds of binary packages in the cloud with a simple $ git push.

• Make easier the generation of multiple conan packages with different configurations.

• Automated/remote package generation in Travis/Appveyor server with distributed builds in CI jobs for big/slow
builds.

• Docker: Automatic generation of packages for several versions of gcc and clang in Linux, also in Travis CI.

• Automatic creation of OSX packages with apple-clang, also in Travis-CI.

• Visual Studio: Automatic configuration of command line environment with detected settings.

58 Chapter 6. Creating packages

conan Documentation, Release 1.5.2

It’s available in pypi:

$ pip install conan_package_tools

Read the README.md in the Conan Package Tools repository.

6.9. Tools for package creators 59

https://github.com/conan-io/conan-package-tools

conan Documentation, Release 1.5.2

60 Chapter 6. Creating packages

CHAPTER

SEVEN

UPLOADING PACKAGES

This section shows how to upload packages using remotes as well as the different binary repositories you can use.

7.1 Remotes

In the previous sections, we built several packages in our computer, those packages are stored in the local cache,
typically ~/.conan/data. Now, you might want to upload them to a conan server for later reuse on another machine,
project, or for sharing them.

Conan packages can be uploaded to different remotes previously configured with a name and an URL. The remotes are
just servers used as binary repositories that store packages by reference.

There are several possibilities to have a server where to upload packages:

For private development:

• Artifactory Community Edition for C/C++: Artifactory Community Edition (CE) for C/C++ is a completely
free Artifactory server that implements both Conan and generic repositories. It is the recommended server for
companies and teams wanting to host their own private repository. It has a web UI, advanced authentication and
permissions, very good performance and scalability, a Rest API, it can host generic artifacts (tarballs, zips, etc).
Check Artifactory Community Edition for C/C++ for more information.

• Artifactory Pro: Artifactory is the binary repository manager for all major packaging formats. It is the recom-
mended remote type for enterprise and professional package management. Check Artifactory documentation for
more information. For comparison between Artifactory editions, check the Artifactory Comparison Matrix.

• Conan server: Simple, free and open source, MIT licensed server that comes bundled with the conan client.
Check Running conan_server for more information.

For distribution:

• Bintray: Bintray is a cloud platform that gives you full control over how you publish, store, promote, and dis-
tribute software. You can create binary repositories in Bintray to share conan packages or even create an orga-
nization. It is free for open source packages, and the recommended server to distribute them to the C and C++
communities. Check Using Bintray for more information.

61

https://www.jfrog.com/confluence/display/RTF/Welcome+to+Artifactory
https://www.jfrog.com/confluence/display/RTF/Artifactory+Comparison+Matrix

conan Documentation, Release 1.5.2

7.1.1 Bintray official repositories

Conan official repositories for open source libraries are hosted in Bintray. These repositories are maintained by the
Conan team. Currently there are two central repositories:

conan-center: https://bintray.com/conan/conan-center

This repository has moderated, curated and well-maintained packages, and is the place where you can
share your packages with the community. To share your package, you can upload it to your own (or your
organization’s) repositories and submit an inclusion request to conan-center. Check conan-center guide
for more information.

conan-transit: https://bintray.com/conan/conan-transit (DEPRECATED)

Deprecated. Contains mostly outdated packages some of them even not compatible with latest Conan
versions, so its usage is discouraged. This repository only exists for backwards compatibility, it is not a
default remote in the Conan client and will be completely removed soon. This repository is an exact copy
of the old server.conan.io repository at June 11, 2017 08:00 CET. It’s a read-only repository, so you
can only download hosted packages.

Conan comes with conan-center repository configured by default. Just in case you want to manually configure this
repository you can always add it like this:

$ conan remote add conan-center https://conan.bintray.com

7.1.2 Bintray community repositories

There are some popular community repositories that may be of interest for conan users to retrieve open source packages
from. Some of these repositories are not affiliated with the Conan team.

bincrafters : https://bintray.com/bincrafters/public-conan

The Bincrafters team builds binary software packages for the OSS community. This repository contains a
wide and growing variety of conan packages from contributors.

Use the following command to add this remote to Conan:

$ conan remote add bincrafters https://api.bintray.com/conan/bincrafters/
→˓public-conan

conan-community : https://bintray.com/conan-community/conan

Created by Conan developers, it should be considered as an incubator to mature packages before contacting
authors or including them in conan-center. This repository contains work-in-progress packages that may
still not work and may not be fully featured.

Use the following command to add this remote to Conan:

$ conan remote add conan-community https://api.bintray.com/conan/conan-
→˓community/conan

Note: If you are working in a team, you probably want to use the same remotes everywhere: developer machines,
CI. The conan config install command can automatically define the remotes in a conan client, as well as other
resources as profiles. Have a look to the conan config install command.

62 Chapter 7. Uploading packages

https://bintray.com/conan/conan-center
https://bintray.com/conan/conan-center
https://bintray.com/conan/conan-transit
https://bintray.com/bincrafters/public-conan
https://bincrafters.github.io
https://bintray.com/conan-community/conan
https://bintray.com/conan/conan-center

conan Documentation, Release 1.5.2

7.2 Uploading packages to remotes

First, check if the remote you want to upload to is already in your current remote list:

$ conan remote list

You can add any remote easily. For a remote running in your machine, you could run:

$ conan remote add my_local_server http://localhost:9300

You can search any remote in the same way you search your computer. Actually, many conan commands can specify a
specific remote.

$ conan search -r=my_local_server

Now, upload the package recipe and all the packages to your remote. In this example we are using our
my_local_server remote, but you could use any other.

$ conan upload Hello/0.1@demo/testing --all -r=my_local_server

You might be prompted for a username and password. The default conan server remote has a demo/demo account we
can use for testing.

The --all option will upload the package recipe plus all the binary packages. Now try again to read the information
from the remote (we refer to it as remote, even if it is running on your local machine, as it could be run on another
server in your LAN):

$ conan search Hello/0.1@demo/testing -r=my_local_server

Note: If package upload fails, you can try to upload it again. Conan keeps track of the upload integrity and will only
upload missing files.

Now we can check if we are able to download and use them in a project. For that purpose, we first have to remove
the local copies, otherwise the remote packages will not be downloaded. Since we have just uploaded them, they are
identical to the local ones.

$ conan remove Hello*
$ conan search

Since we have our test setup from the previous section, we can just use it for our test. Go to your package folder and
run the tests again, now saying that we don’t want to build the sources again, we just want to check if we can download
the binaries and use them:

$ conan create . demo/testing --not-export --build=never

You will see that the test is built, but the packages are not. The binaries are simply downloaded from your local server.
You can check their existence on your local computer again with:

$ conan search

7.2. Uploading packages to remotes 63

conan Documentation, Release 1.5.2

7.3 Using Bintray

On Bintray, you can create and manage as many free, personal Conan repositories as you like. On an OSS account, all
packages you upload are public, and anyone can use them by simply adding your repository to their Conan remotes.

To allow collaboration on open source projects, you can also create Organizations in Bintray and add members who
will be able to create and edit packages in your organization’s repositories.

7.3.1 Uploading to Bintray

Conan packages can be uploaded to Bintray under your own users or organizations. To create a repository you can
follow these steps:

1. Create a Bintray Open Source account

Browse to https://bintray.com/signup/oss and submit the form to create your account. Note that you don’t have
to use the same username that you had in your Conan account.

Warning: Please make sure you use the Open Source Software OSS account. Follow this link: https:
//bintray.com/signup/oss. Bintray provides free conan repositories for OSS projects, no need to open a Pro
or Enterprise Trial account.

2. Create a Conan repository

If you intend to collaborate with other users, you first need to create a Bintray organization, and create your
repository under the organization’s profile rather than under your own user profile.

On your user profile (or organization profile) click “Add new repository”. Fill in the Create Repository form
making sure to select Conan as the Type.

3. Add your Bintray repository

Add a Conan remote in your Conan client pointing to your Bintray repository

$ conan remote add <REMOTE> <YOUR_BINTRAY_REPO_URL>

Use the Set Me Up button on your repository’s page on Bintray to get its URL.

4. Get your API key

Your API key is the “password” used to authenticate the Conan client to Bintray, NOT your Bintray password. To
get your API key, you need to go to “Edit Your Profile” in your Bintray account and check the API Key section.

5. Set your user credentials

Add your conan user with the API Key, your remote and your Bintray user name:

$ conan user -p <APIKEY> -r <REMOTE> <USERNAME>

Setting the remotes in this way will make your Conan client resolve packages and install them from repositories in the
following order of priority:

1. conan-center

2. Your own repository

If you want to have your own repository prioritized, please use the --insert command line option when adding it:

64 Chapter 7. Uploading packages

https://www.jfrog.com/confluence/display/BT/Bintray+Organizations
https://bintray.com/signup/oss
https://bintray.com/signup/oss
https://bintray.com/signup/oss
https://bintray.com/conan/conan-center

conan Documentation, Release 1.5.2

$ conan remote add <your_remote> <your_url> --insert 0
$ conan remote list
<your remote>: <your_url> [Verify SSL: True]
conan-center: https://conan.bintray.com [Verify SSL: True]

Tip: Check the full reference of $ conan remote command.

7.3.2 Contributing packages to conan-center

As a moderated and curated repository, conan-center will not be populated automatically. Initially, it will be empty. To
have your recipe or binary packages available on conan-center, you need to submit an inclusion request to Bintray, and
the Bintray team will review your request.

• If you are the author of an open source library, your package will be approved. Keep in mind that it is your
responsibility to maintain acceptable standards of quality for all packages you submit for inclusion in conan-
center.

• If you are packaging a third-party library you need to follow the guidelines below.

When you know how to upload your packages to your own Bintray repository, contributing a library to Conan Center
is really straightforward. All you have to do is to navigate to the main page of the package in Bintray and click the
“Add to Conan Center” button to start the inclusion request process.

7.3. Using Bintray 65

https://bintray.com/conan/conan-center
https://bintray.com/conan/conan-center
https://bintray.com/conan/conan-center
https://bintray.com/conan/conan-center

conan Documentation, Release 1.5.2

Inclusion guidelines for third party libraries

In the inclusion request process, the JFrog staff will perform a general review and will make suggestions for improve-
ments or better/cleaner ways to implement the package.

One conan package per OSS library

Before creating packages for third party libraries, please read these general guidelines.

• Ensure that there is no other conan package for the same library. If you are planning to support a new version of
a library that already exists in the conan-center repository, please, contact the package author and collaborate.
All the versions of the same library have to be on the same Bintray Conan package.

• It is recommended to contact the library author and suggest to maintain the Conan package. When possible,
open a pull request to the original repository of the library with the conan needed files or suggest to open a new
repository with the recipe.

• If you are going to collaborate with different users to maintain the Conan package, open a Bintray organization.

Recipe quality

• Git public repository: The recipe needs to be hosted in a public Git repository that allows collaboration.

• Recipe fields: description, license and url are required. The license field refers to the library being packaged.

• Linter: Is important to have a reasonable clean Linter, conan export and conan create will output some
warnings and errors, keep it as clean as possible to guarantee a recipe less error prone and more understandable.

• Updated: Not using deprecated features and when possible, using latest conan features, build helpers etc.

• Clean: The code style will be reviewed to guarantee the readability of the recipe.

• test_package: The recipes must contain a test_package

• Maintenance commitment: You will be the responsible to keep the recipe updated, fix issues etc., so a minimal
commitment will be required. Conan organization reserves the right to unlink a poorly maintained package or
replace it with better alternatives.

• Raise errors on invalid configurations: If the library doesn’t work for a specific configuration, e.g. requires
gcc>7 the recipe must contain a configure(self) method that raises an exception in case of invalid set-
tings/options.

def configure():
if self.settings.compiler == "gcc" and self.settings.compiler.version < "7.0":

raise ConanException("GCC > 7.0 is required")
if self.settings.os == "Windows":

raise ConanException("Windows not supported")

• Without version ranges: As many libraries does not follow semantic versioning and the dependency resolution
of version ranges is not always clear, recipes in conan center should fix the version of their dependencies and not
use version ranges.

• LICENSE of the recipe: The public repository must contain a LICENSE file with an OSS license.

• LICENSE of the library: Every built binary package must contain one or more license* file(s), so make sure
that in the package() method of your recipe, you are copying the library licenses to a licenses subfolder.

66 Chapter 7. Uploading packages

conan Documentation, Release 1.5.2

def package():
self.copy("license*", dst="licenses", ignore_case=True, keep_path=False)

Sometimes there is no license file, and you need to extract the license from a header file, this is an example:

def package():
Extract the License/s from the header to a file
tmp = tools.load("header.h")
license_contents = tmp[2:tmp.find("*/", 1)] # The license begins with a C comment /*␣

→˓and ends with */
tools.save("LICENSE", license_contents)

Package it
self.copy("license*", dst="licenses", ignore_case=True, keep_path=False)

CI Integration

• If you are packaging a header only library, it is only needed to provide one CI configuration (e.g. Travis with gcc
6.1) to check that the package is built correctly (use conan create).

• Unless your library is a header only library or doesn’t support a concrete operating system or compiler you will
need to provide a CI systems integration to support:

– Linux: GCC, desirable latest version from each major (4.9, 5.4, 6.3)

– Linux: Clang, desirable latest version from each major (3.9, 4.0)

– Mac OSX: Two latest versions of apple-clang, e.j (8.0, 8.1) or newer.

– Windows: Visual Studio 12, 14 and 15 (or newer)

• The easiest way to provide the CI integration (with Appveyor for Windows builds, Travis.ci for Linux and OSX,
and Gitlab for Linux) is to use the conan new command. Take a look to the options to generate a library layout
with the needed appveyor/travis/gitlab.

You can also copy the following files from this zlib Conan package repository and adapt them:

– .travis folder. Not needed to adjust anything.

– .travis.yml file. Adjust your username, library reference etc

– appveyor.yml file. Adjust your username, library reference etc

• Take a look to the Travis CI , Appveyor and GitLab CI integration guides.

Bintray package information

In the bintray page of your package fill the following fields:

• Description (description of the packaged library)

• Licenses (license of the packaged library)

• Tags

• Maturity

• Website: If any, website of the library

7.3. Using Bintray 67

https://github.com/conan-community/conan-zlib

conan Documentation, Release 1.5.2

• Issues tracker: URL of the issue tracker from your github repository e.j: https://github.com/conan-community/
conan-zlib/issues

• Version control: URL of your recipe github repository. e.j: https://github.com/conan-community/conan-zlib

• GitHub repo (user/repo): e.j lasote/conan-zlib

In each version page (optional, but welcomed):

• Select the README from github.

• Select the Release Notes.

7.4 Artifactory Community Edition for C/C++

Artifactory Community Edition (CE) for C/C++ is the recommended server for development and hosting private pack-
ages for a team or company. It is completely free, and it features a WebUI, advanded authentication and permissions,
great performance and scalability, a Rest API, a generic CLI tool and generic repositories to host any kind of source or
binary artifact.

This is a very brief introduction to Artifactory CE, for the complete Artifactory CE documentation, visit Artifactory
docs.

7.4.1 Running Artifactory CE

There are several ways to download and run Artifactory CE. The simplest one might be to download and unzip the
given zip file, though other installers, included running from a docker image, are available. When the file is unzipped,
Artifactory can be launched double clicking on the .bat or .sh script in the bin subfolder, depending on the OS. Java 8
update 45 or later runtime is required, if you don’t have it, please install it first (newer Java versions preferred).

Once Artifactory has started, navigate to the default URL http://localhost:8081, where the Web UI should be running.
The default user and password are admin:password.

68 Chapter 7. Uploading packages

https://github.com/conan-community/conan-zlib/issues
https://github.com/conan-community/conan-zlib/issues
https://github.com/conan-community/conan-zlib
https://www.jfrog.com/confluence/
https://www.jfrog.com/confluence/

conan Documentation, Release 1.5.2

7.4.2 Creating and using a conan repo

Navigate to Admin -> Repositories -> Local, then click on the “New” button. A dialog for selecting the package type
will appear, select Conan, then type a “Repository Key” (the name of the repository you are about to create), for example
“conan-local”. You can create multiple repositories to serve different flows, teams, or projects.

Now, it is necessary to set-up the client. Go to Artifacts, and click on the created repository. The “Set Me Up” button
in the top right corner will give instructions how to configure the remote in the conan client:

$ conan remote add artifactory http://localhost:8081/artifactory/api/conan/conan-local

From now, you can upload, download, search, etc. this remote as any other one.

$ conan upload * --all -r=artifactory
$ conan search * -r=artifactory

7.4.3 Migrating from other servers

If you are already running another server, like the open source conan_server, it is very easy to migrate your packages,
using the conan client to download the packages and re-upload them to the new server.

This python script might be helpful, given that it had already defined the respective local and artifactory remotes:

import os
import subprocess

def run(cmd):
ret = os.system(cmd)
if ret != 0:

raise Exception("Command failed: %s" % cmd)

Assuming local = conan_server and artifactory remotes
output = subprocess.check_output("conan search -r=local --raw")
packages = output.splitlines()

for package in packages:
print("Downloading %s" % package)
run("conan download %s -r=local" % package)

run("conan upload * --all --confirm -r=artifactory")

7.5 Running conan_server

conan_server is a free and open source server that implements conan remote repositories. It is a very simple application,
bundled with the regular conan client installation. For most cases, it is recommended to use the free Artifactory
Community Edition for C/C++ server, check Artifactory Community Edition for C/C++ for more information.

Running the simple open source conan_server that comes with the conan installers (or pip packages) is simple. Just
open a terminal and type:

$ conan_server

7.5. Running conan_server 69

conan Documentation, Release 1.5.2

Note: On Windows, you might experience problems with the server, if you run it under bash/msys. It is better to
launch it in a regular cmd window.

This server is mainly for testing (though it might work fine for small teams). If you need a more stable, responsive and
robust server, you should run it from source:

7.5.1 Running from source (linux)

The conan installer includes a simple executable conan_server for a server quick start. But you can use the conan
server through the WSGI application, which means that you can use gunicorn to run the app, for example.

First, clone the conan repository from source and install the requirements:

$ git clone https://github.com/conan-io/conan.git
$ cd conan
$ git checkout master
$ pip install -r conans/requirements.txt
$ pip install -r conans/requirements_server.txt
$ pip install gunicorn

Run the server application with gunicorn. In the following example we will run server on port 9300 with 4 workers
and a timeout of 5 minutes (300 seconds, for large uploads/downloads, you can also decrease it if you don’t have very
large binaries):

$ gunicorn -b 0.0.0.0:9300 -w 4 -t 300 conans.server.server_launcher:app

Note: Please note the timeout of -t 300 seconds, 5 minutes parameter. If your transfers are very large or in a slow
network, you might need to increase that value.

You can also bind to an IPV6 address or specify both IPv4 and IPv6 addresses:

$ gunicorn -b 0.0.0.0:9300 -b [::1]:9300 -w 4 -t 300 conans.server.server_launcher:app

7.5.2 Server configuration

Your server configuration lives in ~/.conan_server/server.conf. You can change values there, prior to launching
the server. Note that the server is not reloaded when the values are changed. You have to stop and restart it manually.

The server configuration file is by default:

[server]
jwt_secret: MnpuzsExftskYGOMgaTYDKfw
jwt_expire_minutes: 120

ssl_enabled: False
port: 9300
public_port:
host_name: localhost

store_adapter: disk
(continues on next page)

70 Chapter 7. Uploading packages

conan Documentation, Release 1.5.2

(continued from previous page)

authorize_timeout: 1800

Just for disk storage adapter
disk_storage_path: ~/.conan_server/data
disk_authorize_timeout: 1800

updown_secret: NyiSWNWnwumTVpGpoANuyyhR

[write_permissions]
"opencv/2.3.4@lasote/testing": default_user,default_user2

[read_permissions]
opencv/1.2.3@lasote/testing: default_user default_user2
By default all users can read all blocks
/@*/*: *

[users]
demo: demo

Server parameters

Note: Conan server from v1.1 supports relative URLs, so you can avoid setting host_name, public_port and
ssl_enabled. The URLs used to upload/download packages will be automatically generated in the client following
the URL of the remote. It allows to access the conan server from different networks.

• port: Port where conan_server will run.

• The client server authorization is done with JWT. jwt_secret is a random string used to generate authentication
tokens. You can change it safely anytime (in fact it is a good practice), the change will just force users to log in
again. jwt_expire_minutes is the amount of time that users remain logged-in within the client without having
to introduce their credentials again.

Other parameters (not recommended from Conan 1.1, but necessary for previous versions):

• host_name If you set host_name you must use the machine’s IP where you are running your server (or domain
name), something like host_name: 192.168.1.100. This IP (or domain name) has to be visible (and resolved)
by the conan client, so take it in account if your server has multiple network interfaces.

• public_port Which might be needed if running virtualized, docker or any other kind of port redirection. Files
uploads/downloads are served with their own URLs, generated by the system, so the file storage backend is
independent. Those URLs need the public port they have to communicate from the outside. If you leave it blank,
it will use the port value.

Example: Use conan_server in a docker container that internally runs in the 9300 port but it exposes the 9999
port (where the clients will connect to):

docker run ... -p9300:9999 ... # Check Docker docs for that

server.conf

7.5. Running conan_server 71

conan Documentation, Release 1.5.2

[server]

ssl_enabled: False
port: 9300
public_port: 9999
host_name: localhost

• ssl_enabled Conan doesn’t handle the SSL traffic by itself, but you can use a proxy like nginx to redirect the
SSL traffic to your conan server. If your conan clients are connecting with “https” set ssl_enabled to True. This
way conan_server will generate the upload/download urls with “https” instead of “http”.

Note: Important: Conan client, by default, will validate the server SSL certificates and won’t connect if it’s not valid.
If you have self signed certificates you have two options:

1. Use the conan remote command to disable the SSL certifate checks. e.j: conan remote add/update myremote
https://somedir False

2. Append the server .crt file contents to ~/.conan/cacert.pem file.

Check the section How to manage SSL (TLS) certificates section to know more about it.

Conan has implemented an extensible storage backend, based on the abstract class StorageAdapter. Currently the
server only supports storage in disk. The folder in which uploaded packages are stored (i.e., the folder you would want
to backup) is defined in disk_storage_path.

The storage backend might use a different channel, and uploads/downloads are authorized up to a maximum of
authorize_timeout seconds. The value should be enough so large downloads/uploads are not rejected, but not too
big to prevent hanging up the file transfers. The value disk_authorize_timeout is not currently used. File transfers
are authorized with their own tokens, generated with the secret updown_secret. This value should be different from
the above jwt_secret.

Running conan server with SSL using nginx

server.conf

[server]
port: 9300

nginx conf file

server {
listen 443;
server_name myservername.mydomain.com;

location / {
proxy_pass http://0.0.0.0:9300;

}
ssl on;
ssl_certificate /etc/nginx/ssl/server.crt;
ssl_certificate_key /etc/nginx/ssl/server.key;

}

remote configuration in Conan client

72 Chapter 7. Uploading packages

conan Documentation, Release 1.5.2

$ conan remote add myremote https://myservername.mydomain.com/subdir

Running conan server with SSL using nginx in a subdirectory

server.conf

[server]
port: 9300

nginx conf file

server {

listen 443;
ssl on;
ssl_certificate /usr/local/etc/nginx/ssl/server.crt;
ssl_certificate_key /usr/local/etc/nginx/ssl/server.key;
server_name myservername.mydomain.com;

location ~/subdir/(.*)$ {
proxy_pass http://0.0.0.0:9300/$1;

}
}

remote configuration in Conan client

$ conan remote add myremote https://myservername.mydomain.com/subdir

Running conan server using Apache

You need to install mod_wsgi. If you want to use Conan installed from pip, the conf file should be roughly
as follows:

Apache conf file (e.j /etc/apache2/sites-available/0_conan.conf)

<VirtualHost *:80>
WSGIScriptAlias / /usr/local/lib/python2.7/dist-packages/conans/server/

→˓server_launcher.py
WSGICallableObject app
WSGIPassAuthorization On

<Directory /usr/local/lib/python2.7/dist-packages/conans>
Require all granted

</Directory>
</VirtualHost>

If you want to use Conan checked out from source in, say, /srv/conan, the conf file should be as follows:

Apache conf file (e.j /etc/apache2/sites-available/0_conan.conf)

<VirtualHost *:80>
WSGIScriptAlias / /srv/conan/conans/server/server_launcher.py

(continues on next page)

7.5. Running conan_server 73

conan Documentation, Release 1.5.2

(continued from previous page)

WSGICallableObject app
WSGIPassAuthorization On

<Directory /srv/conan/conans>
Require all granted

</Directory>
</VirtualHost>

The directive WSGIPassAuthorization On is needed to pass the HTTP basic authentication to Conan.

Also take into account that the server config files are located in the home of the configured Apache user,
e.j var/www/.conan_server, so remember to use that directory to configure your conan server.

Permissions parameters

By default, the server configuration is: Read can be done anonymous, but uploading requires registered users. Users
can be easily registered in the [users] section, defining a pair of login: password for each one. Yes, plain text
passwords at the moment, but as the server is on-premises (behind firewall), you just need to trust your sysadmin :)

If you want to restrict read/write access to specific packages, configure it in the [read_permissions] and
[write_permissions] sections. These sections allow a sequence of patterns and allowed users, in the form:

use a comma-separated, no-spaces list of users
package/version@user/channel: allowed_user1,allowed_user2

E.g.:

/@*/*: * # allow all users to all packages
PackageA/*@*/*: john,peter # allow john and peter access to any PackageA
/@project/*: john # Allow john to access any package from the "project" user

The rules are evaluated in order, if the left side of the pattern matches, the rule is applied and it will not look further.

Authentication

Conan provides by default a simple user: password users list in the server.conf file.

There is also a plugin mechanism for setting other authentication methods. The process to install any of them is a
simple 2 step process:

1. Copy the authenticator source file into the .conan_server/plugins/authenticator folder

2. Add custom_authenticator: authenticator_name in the server.conf [server] section

This is a list of available authenticators, visit their URLs to get them, but also to report issues and collaborate:

• htpasswd: Use your server Apache htpasswd file to authenticate users. Get it: https://github.com/d-schiffner/
conan-htpasswd

• LDAP: Use your LDAP server to authenticate users. Get it: https://github.com/uilianries/
conan-ldap-authentication

74 Chapter 7. Uploading packages

https://github.com/d-schiffner/conan-htpasswd
https://github.com/d-schiffner/conan-htpasswd
https://github.com/uilianries/conan-ldap-authentication
https://github.com/uilianries/conan-ldap-authentication

conan Documentation, Release 1.5.2

Create your own custom Authenticator

If you want to create your own Authenticator, create a python module in ~/.conan_server/plugins/
authenticator/my_authenticator.py

Example:

def get_class():
return MyAuthenticator()

class MyAuthenticator(object):
def valid_user(self, username, plain_password):

return username == "foo" and plain_password == "bar"

The module has to implement:

• A factory function get_class() that returns a class with a valid_user() method instance.

• The class containing the valid_user() that has to return True if the user and password are valid or False
otherwise.

Got any doubts? Please check out our FAQ section or .

7.5. Running conan_server 75

conan Documentation, Release 1.5.2

76 Chapter 7. Uploading packages

CHAPTER

EIGHT

DEVELOPING PACKAGES

This section shows how to work on packages which source code is being modified.

8.1 Package development flow

In the previous examples, we used conan create command to create a package of our library. Every time we run it,
Conan will perform some costly operations:

1. Copy the sources to a new and clean build folder.

2. Build the entire library from scratch.

3. Package the library once it is built.

4. Build the test_package example and test if it works.

But sometimes, specially with big libraries, while we are developing the recipe, we cannot afford to perform every
time these operations.

The following section is the local development flow description based on the Bincrafters community blog.

The local workflow encourages users to do trial-and-error in a local sub-directory relative to their recipe, much like how
developers typically test building their projects with other build tools. The strategy is to test the conanfile.py methods
individually during this phase.

We will use this conan flow example to follow the steps in the order below.

8.1.1 conan source

You will generally want to start off with the conan source command. The strategy here is that you’re testing your
source method in isolation, and downloading the files to a temporary sub-folder relative to the conanfile.py. This just
makes it easier to get to the sources and validate them.

This method outputs the source files into the source-folder.

Input folders Output folders
– source-folder

77

https://bincrafters.github.io
https://github.com/memsharded/example_conan_flow

conan Documentation, Release 1.5.2

$ cd example_conan_flow
$ conan source . --source-folder=tmp/source

PROJECT: Configuring sources in C:\Users\conan\example_conan_flow\tmp\source
Cloning into 'hello'...
...

Once you’ve got your source method right and it contains the files you expect, you can move on to testing the various
attributes and methods relating to the downloading of dependencies.

8.1.2 conan install

Conan has multiple methods and attributes which relate to dependencies (all the ones with the word “require” in the
name). The command conan install activates all them.

Input folders Output folders
– install-folder

$ conan install . --install-folder=tmp/build [--profile XXXX]

PROJECT: Installing C:\Users\conan\example_conan_flow\conanfile.py
Requirements
Packages
...

This also generates conaninfo.txt and conanbuildinfo.xyz (extension depends on generator you’ve used) in the temp
folder (install-folder), which will be needed for the next step. Once you’ve got this command working with no
errors, you can move on to testing the build() method.

8.1.3 conan build

The build method takes a path to a folder that has sources and also to the install folder to get the information of the
settings and dependencies. It uses a path to a folder where it will perform the build. In this case, as we are including
the file conanbuildinfo.cmake we will use the folder of the install step.

Input folders Output folders
source-folder
install-folder

build-folder

$ conan build . --source-folder=tmp/source --build-folder=tmp/build

Project: Running build()
...
Build succeeded.

0 Warning(s)
0 Error(s)

Time Elapsed 00:00:03.34

78 Chapter 8. Developing packages

conan Documentation, Release 1.5.2

Here we can avoid the repetition of --install-folder=tmp/build and it will be defaulted to the --build-folder
value.

This is pretty straightforward, but it does add a very helpful new shortcut for people who are packaging their own library.
Now, developers can make changes in their normal source directory and just pass that path as the --source-folder.

8.1.4 conan package

Just as it sounds, this command now simply runs the package() method of a recipe. It needs all the information of the
other folders in order to collect the needed information for the package: header files from source folder, settings and
dependency information from the install folder and built artifacts from the build folder.

Input folders Output folders
source-folder
install-folder
build-folder

package-folder

$ conan package . --source-folder=tmp/source --build-folder=tmp/build --package-
→˓folder=tmp/package

PROJECT: Generating the package
PROJECT: Package folder C:\Users\conan\example_conan_flow\tmp\package
PROJECT: Calling package()
PROJECT package(): Copied 1 '.h' files: hello.h
PROJECT package(): Copied 2 '.lib' files: greet.lib, hello.lib
PROJECT: Package 'package' created

8.1.5 conan export-pkg

When you have checked that the packaged is done correctly, you can generate the package in the local cache. Note that
the package is generated again to make sure this step is always reproducible.

This parameters takes the same parameters as package().

Input folders Output folders
source-folder
install-folder
build-folder
package-folder

–

There are 2 modes of operation:

• Using source-folder and build-folder will use the package() method to extract the artifacts from those
folders and create the package, directly in the Conan local cache. Strictly speaking, it doesn’t require executing
a conan package before, as it packages directly from those source and build folder, though conan package is
still recommended in the dev-flow to debug the package() method.

• Using the package-folder argument (incompatible with the above 2), will not use the package() method, it
will do an exact copy of the provided folder. It assumes the package has already been created by a previous conan
package command or with a conan build command with a build() method running a cmake.install().

8.1. Package development flow 79

conan Documentation, Release 1.5.2

$ conan export-pkg . user/testing --source-folder=tmp/source --build-folder=tmp/build

Packaging to 6cc50b139b9c3d27b3e9042d5f5372d327b3a9f7
Hello/0.1@user/channel: Generating the package
Hello/0.1@user/channel: Package folder C:\Users\conan\.conan\data\Hello\0.1\user\channel\
→˓package\6cc50b139b9c3d27b3e9042d5f5372d327b3a9f7
Hello/0.1@user/channel: Calling package()
Hello/0.1@user/channel package(): Copied 2 '.lib' files: greet.lib, hello.lib
Hello/0.1@user/channel package(): Copied 2 '.lib' files: greet.lib, hello.lib
Hello/0.1@user/channel: Package '6cc50b139b9c3d27b3e9042d5f5372d327b3a9f7' created

8.1.6 conan test

The final step to test the package for consumer is the test command. This step is quite straight-forward:

$ conan test test_package Hello/0.1@user/channel

Hello/0.1@user/channel (test package): Installing C:\Users\conan\repos\example_conan_
→˓flow\test_package\conanfile.py
Requirements

Hello/0.1@user/channel from local
Packages

Hello/0.1@user/channel:6cc50b139b9c3d27b3e9042d5f5372d327b3a9f7

Hello/0.1@user/channel: Already installed!
Hello/0.1@user/channel (test package): Generator cmake created conanbuildinfo.cmake
Hello/0.1@user/channel (test package): Generator txt created conanbuildinfo.txt
Hello/0.1@user/channel (test package): Generated conaninfo.txt
Hello/0.1@user/channel (test package): Running build()
...

There is often a need to repeatedly re-run the test to check the package is well generated for consumers.

As a summary, you could use the default folders and the flow would be as simple as:

$ git clone git@github.com:memsharded/example_conan_flow.git
$ cd example_conan_flow
$ conan source .
$ conan install .
$ conan build .
$ conan package .
...
PROJECT package(): Copied 1 '.h' files: hello.h
PROJECT package(): Copied 2 '.lib' files: greet.lib, hello.lib
PROJECT: Package 'package' created

80 Chapter 8. Developing packages

conan Documentation, Release 1.5.2

8.1.7 conan create

Now we know we have all the steps of a recipe working. Thus, now is an appropriate time to try to run the recipe all
the way through, and put it completely in the local cache.

The usual command for this is conan create and it basically performs the previous commands with conan test for
the test_package folder:

$ conan create . user/channel

Even with this command, the package creator can iterate over the local cache if something does not work. This could
be done with --keep-source and --keep-build flags.

If you see in the traces that the source() method has been properly executed but the package creation finally failed,
you can skip the source() method the next time you issue conan create using --keep-source:

$ conan create . user/channel --keep-source

Hello/0.1@user/channel: A new conanfile.py version was exported
Hello/0.1@user/channel: Folder: C:\Users\conan\.conan\data\Hello\0.1\user\channel\export
Hello/0.1@user/channel (test package): Installing C:\Users\conan\repos\example_conan_
→˓flow\test_package\conanfile.py
Requirements

Hello/0.1@user/channel from local
Packages

Hello/0.1@user/channel:6cc50b139b9c3d27b3e9042d5f5372d327b3a9f7

Hello/0.1@user/channel: WARN: Forced build from source
Hello/0.1@user/channel: Building your package in C:\Users\conan\.conan\data\Hello\0.1\
→˓user\channel\build\6cc50b139b9c3d27b3e9042d5f5372d327b3a9f7
Hello/0.1@user/channel: Configuring sources in C:\Users\conan\.conan\data\Hello\0.1\user\
→˓channel\source
Cloning into 'hello'...
remote: Counting objects: 17, done.
remote: Total 17 (delta 0), reused 0 (delta 0), pack-reused 17
Unpacking objects: 100% (17/17), done.
Switched to a new branch 'static_shared'
Branch 'static_shared' set up to track remote branch 'static_shared' from 'origin'.
Hello/0.1@user/channel: Copying sources to build folder
Hello/0.1@user/channel: Generator cmake created conanbuildinfo.cmake
Hello/0.1@user/channel: Calling build()
...

If you see that library builds correctly too, you can do the same to skip also the build() step with the --keep-build
flag:

$ conan create --keep-build

8.1. Package development flow 81

conan Documentation, Release 1.5.2

8.2 Workspaces [experimental]

Warning: This is an experimental feature. Actually, a preview of the feature, with the main goal of receiving
feedback and improving it. Consider the file formats, commands and flows to be unstable and subject of change in
next releases.

Sometimes, it is necessary to work simultaneously on more than one package. In theory, each package should be
a “work unit”, and developers should be able to work on them in isolation. But sometimes, some changes require
modifications in more than 1 package at the same time. The local development flow can help, but it still requires doing
export-pkg to put the artifacts in the local cache, where other packages under development will consume them.

The conan workspaces allow to have more than one package in user folders, and have them to directly use other packages
from user folders without needing to put them in the local cache.

Lets introduce them with a practical example:

$ git clone https://github.com/memsharded/conan-workspace-example.git
$ cd conan-workspace-example

Note this folder contains a file conanws.yml in the root, with the following contents:

HelloB:
folder: B
includedirs: src
cmakedir: src

HelloC:
folder: C
includedirs: src
cmakedir: src

HelloA:
folder: A
cmakedir: src

root: HelloA
generator: cmake
name: MyProject

Then, we will run a conan install as usual, using a build folder to output the dependencies information:

$ conan install . -if=build
Using conanws.yml file from C:\Users\<youruser>\conan-workspace-example
Workspace: Installing...
Requirements

HelloA/root@project/develop from 'conanws.yml'
HelloB/0.1@user/testing from 'conanws.yml'
HelloC/0.1@user/testing from 'conanws.yml'

Packages
HelloA/root@project/develop:8a1ff0ad9a2a372996a26ff4136faa83268b5442
HelloB/0.1@user/testing:e5affb0ca4e5d6998c29f435daf78ab20ef50be5
HelloC/0.1@user/testing:63da998e3642b50bee33f4449826b2d623661505

Workspace HelloC: Generator cmake created conanbuildinfo.cmake
Workspace HelloC: Generated conaninfo.txt

(continues on next page)

82 Chapter 8. Developing packages

conan Documentation, Release 1.5.2

(continued from previous page)

Workspace HelloC: Generated conanbuildinfo.txt
Workspace HelloB: Generator cmake created conanbuildinfo.cmake
Workspace HelloB: Generated conaninfo.txt
Workspace HelloB: Generated conanbuildinfo.txt
Workspace HelloA: Generator cmake created conanbuildinfo.cmake
Workspace HelloA: Generated conaninfo.txt
Workspace HelloA: Generated conanbuildinfo.txt

Note that nothing was really installed in the local cache, all the dependencies are resolved locally:

$ conan search
There are no packages

Also, all the generated conanbuildinfo.cmake for each dependencies were installed to the build folder. You can inspect
them to check that the paths they define for their dependencies, are user folders, not pointing to the local cache.

As defined in the conanws.yml, a root CMakeLists.txt was generated for us. We can use it to generate the super-project
and build it:

$ cd build
$ cmake .. -G "Visual Studio 14 Win64" # Adapt accordingly to your conan profile
Now build it. You can also open your IDE and build
$ cmake --build . --config Release
$./A/Release/app.exe
Hello World C Release!
Hello World B Release!
Hello World A Release!

Now the project is editable, you can change the code of folder C hello.cpp to say “Bye World” and:

Edit your C/src/hello.cpp file to say "Bye"
Or press the build button of your IDE
$ cmake --build . --config Release
$./A/Release/app.exe
Bye World C Release!
Hello World B Release!
Hello World A Release!

8.2.1 In-source builds

The current approach with the super-project automatic generation, is only valid if all the opened packages are using the
same build system, CMake. However, without using a super-project, it is still possible to use workspaces to simultane-
ously work on different packages with different build systems.

For this case, the conanws.yml won’t have the generator or name fields. The installation will be done without speci-
fying a install folder:

$ conan install .

Each local package will have their own build folder, and the generated conanbuildinfo.cmake will be located in it. You
can do local builds in each of the packages, and they will be referring and linking the other opened packages in user
folders.

8.2. Workspaces [experimental] 83

conan Documentation, Release 1.5.2

8.2.2 conanws.yml syntax

The conanws.yml file can be located in any parent folder of the location pointed by the conan install command.
Conan will search up the folder hierarchy looking for a conanws.yml file. If it is not found, the normal conan install
for a single package will be executed.

Any “opened” package will have an entry in the conanws.yml file. This entry will define the relative location of different
folders:

HelloB:
folder: B
includedirs: src # relative to B, i.e. B/src
cmakedir: src # Where the CMakeLists.txt is, necessary for the super-project
build: "'build' if '{os}'=='Windows' else 'build_{build_type}'.lower()"
libdirs: "'build/{build_type}' if '{os}'=='Windows' else 'build_{build_type}'.lower()

→˓"

The build and libdirs local folders can be parameterized with the build type and the architecture (arch) if necessary,
to account for different layouts and configurations.

The root field of conanws.yml defines which are the end consumers. They are needed as an input to define the de-
pendency graph. There can be more than one root, in a comma separated list, but all of them will share the same
dependency graph, so if they require different versions of the same dependencies, they will conflict.

root: HelloA, Other
generator: cmake # The super-project build system
name: MyProject # Name for the super-project

8.2.3 Known limitations

So far, only the CMake super-project generator is implemented. A Visual Studio one is being under development, and
seems feasible, but it is ongoing work, not yet available.

Important: We really want your feedback. For any suggestion, problem, idea, please submit an issue to https:
//github.com/conan-io/conan/issues and use the [workspaces] prefix in the issue title.

84 Chapter 8. Developing packages

https://github.com/conan-io/conan/issues
https://github.com/conan-io/conan/issues

CHAPTER

NINE

PACKAGE APPS AND DEVTOOLS

With conan it is possible to package and deploy applications. It is also possible that these applications are also dev-tools,
like compilers (e.g. MinGW), or build systems (e.g. CMake).

This section describes how to package and run executables, and also how to package dev-tools. Also, how to ap-
ply applications like dev-tools or even libraries (like testing frameworks) to other packages to build them from
sources:build_requires

9.1 Running and deploying packages

Executables and applications including shared libraries can be also distributed, deployed and run with conan. This
might have some advantages compared to deploying with other systems:

• A unified development and distribution tool, for all systems and platforms

• Manage any number of different deployment configurations in the same way you manage them for development

• Use a conan server remote to store all your applications and runtimes for all Operating Systems, platforms and
targets

There are different approaches:

9.1.1 Using virtual environments

We can create a package that contains an executable, for example from the default package template created by conan
new:

$ conan new Hello/0.1

The source code used contains an executable called greet, but it is not packaged by default. Let’s modify the recipe
package() method to also package the executable:

def package(self):
self.copy("*greet*", src="hello/bin", dst="bin", keep_path=False)

Now we create the package as usual, but if we try to run the executable it won’t be found:

$ conan create . user/testing
...
Hello/0.1@user/testing package(): Copied 1 '.h' files: hello.h
Hello/0.1@user/testing package(): Copied 1 '.exe' files: greet.exe
Hello/0.1@user/testing package(): Copied 1 '.lib' files: hello.lib

(continues on next page)

85

conan Documentation, Release 1.5.2

(continued from previous page)

$ greet
> ... not found...

By default, Conan does not modify by default the environment, it will just create the package in the local cache, and
that is not in the system PATH, so the greet executable is not found.

The virtualrunenv generator generates files that add the package’s default binary locations to the necessary paths:

• It adds the dependencies lib subfolder to the DYLD_LIBRARY_PATH environment variable (for OSX shared
libraries)

• It adds the dependencies lib subfolder to the LD_LIBRARY_PATH environment variable (for Linux shared li-
braries)

• It adds the dependencies bin subfolder to the PATH environment variable (for executables)

So if we install the package, specifying such virtualrunenv like:

$ conan install Hello/0.1@user/testing -g virtualrunenv

This will generate a few files that can be called to activate and deactivate the required environment variables

$ activate_run.sh # $ source activate_run.sh in Unix/Linux
$ greet
> Hello World!
$ deactivate_run.sh # $ source deactivate_run.sh in Unix/Linux

9.1.2 Imports

It is possible to define a custom conanfile (either .txt or .py), with an imports section, that can retrieve from local
cache the desired files. This approach, requires a user conanfile. For more details see example below runtime packages

9.1.3 Deployable packages

With the deploy() method, a package can specify which files and artifacts to copy to user space or to other locations
in the system. Let’s modify the example recipe adding the deploy() method:

def deploy(self):
self.copy("*", dst="bin", src="bin")

And run conan create

$ conan create . user/testing

With that method in our package recipe, it will copy the executable when installed directly:

$ conan install Hello/0.1@user/testing
...
> Hello/0.1@user/testing deploy(): Copied 1 '.exe' files: greet.exe
$ bin\greet.exe
> Hello World!

86 Chapter 9. Package apps and devtools

conan Documentation, Release 1.5.2

The deploy will create a deploy_manifest.txt file with the files that have been deployed.

Sometimes it is useful to adjust the package ID of the deployable package in order to deploy it regardless of the compiler
it was compiled with:

def package_id(self):
del self.info.settings.compiler

See also:

Read more about the deploy() method.

9.1.4 Running from packages

If a dependency has an executable that we want to run in the conanfile it can be done directly in code using the
RunEnvironment helper. For example, if we want to execute the greet app while building the Consumer package:

from conans import ConanFile, tools, RunEnvironment

class ConsumerConan(ConanFile):
name = "Consumer"
version = "0.1"
settings = "os", "compiler", "build_type", "arch"
requires = "Hello/0.1@user/testing"

def build(self):
env = RunEnvironment(self)
with tools.environment_append(env.vars):

self.run("greet")

Now run conan install and conan build for this consumer recipe:

$ conan install . && conan build .
...
Project: Running build()
Hello World!

Instead of using the environment, it is also possible to access the path of the dependencies:

def build(self):
path = os.path.join(self.deps_cpp_info["Hello"].rootpath, "bin")
self.run("%s/greet" % path)

Note that this might not be enough if shared libraries exist. Using the RunEnvironment helper above is a more complete
solution.

Finally, there is another approach: the package containing the executable can add its bin folder directly to the PATH. In
this case the Hello package conanfile would contain:

def package_info(self):
self.cpp_info.libs = ["hello"]
self.env_info.PATH = os.path.join(self.package_folder, "bin")

We may also define DYLD_LIBRARY_PATH and LD_LIBRARY_PATH if they are required for the executable.

The consumer package is simple, as the PATH environment variable contains the greet executable:

9.1. Running and deploying packages 87

conan Documentation, Release 1.5.2

def build(self):
self.run("greet")

9.1.5 Runtime packages and re-packaging

It is possible to create packages that contain only runtime binaries, getting rid of all build-time dependencies. If we
want to create a package from the above “Hello” one, but only containing the executable (remember that the above
package also contains a library, and the headers), we could do:

from conans import ConanFile

class HellorunConan(ConanFile):
name = "HelloRun"
version = "0.1"
build_requires = "Hello/0.1@user/testing"
keep_imports = True

def imports(self):
self.copy("*.exe", dst="bin")

def package(self):
self.copy("*")

This recipe has the following characteristics:

• It includes the Hello/0.1@user/testing package as build_requires. That means that it will be used to
build this “HelloRun” package, but once the “HelloRun” package is built, it will not be necessary to retrieve it.

• It is using imports() to copy from the dependencies, in this case, the executable

• It is using the keep_imports attribute to define that imported artifacts during the build() step (which is not
define, then using the default empty one), are kept and not removed after build

• The package() method packages the imported artifacts that will be in the build folder.

To create and upload this package to a remote:

$ conan create . user/testing
$ conan upload HelloRun* --all -r=my-remote

Installing and running this package can be done using any of the methods presented above. For example:

$ conan install HelloRun/0.1@user/testing -g virtualrunenv
You can specify the remote with -r=my-remote
It will not install Hello/0.1@...
$ activate_run.sh # $ source activate_run.sh in Unix/Linux
$ greet
> Hello World!
$ deactivate_run.sh # $ source deactivate_run.sh in Unix/Linux

88 Chapter 9. Package apps and devtools

conan Documentation, Release 1.5.2

9.2 Creating conan packages to install dev tools

Conan 1.0 introduced two new settings, os_build and arch_build. These settings represent the machine where
Conan is running, and are important settings when we are packaging tools.

These settings are different from os and arch. These mean where the built software by the Conan recipe will run.
When we are packaging a tool, it usually makes no sense, because we are not building any software, but it makes sense
if you are cross building software.

We recommend the use of os_build and arch_build settings instead of os and arch if you are packaging a tool
involved in the building process, like a compiler, a build system etc. If you are building a package to be run on the host
system you can use os and arch.

A Conan package for a tool follows always a similar structure, this is a recipe for packaging the nasm tool for building
assembler:

import os
from conans import ConanFile
from conans.client import tools

class NasmConan(ConanFile):
name = "nasm"
version = "2.13.01"
license = "BSD-2-Clause"
url = "https://github.com/lasote/conan-nasm-installer"
settings = "os_build", "arch_build"
build_policy = "missing"
description="Nasm for windows. Useful as a build_require."

def configure(self):
if self.settings.os_build != "Windows":

raise Exception("Only windows supported for nasm")

@property
def nasm_folder_name(self):

return "nasm-%s" % self.version

def build(self):
suffix = "win32" if self.settings.arch_build == "x86" else "win64"
nasm_zip_name = "%s-%s.zip" % (self.nasm_folder_name, suffix)
tools.download("http://www.nasm.us/pub/nasm/releasebuilds/"

"%s/%s/%s" % (self.version, suffix, nasm_zip_name), nasm_zip_name)
self.output.warn("Downloading nasm: "

"http://www.nasm.us/pub/nasm/releasebuilds"
"/%s/%s/%s" % (self.version, suffix, nasm_zip_name))

tools.unzip(nasm_zip_name)
os.unlink(nasm_zip_name)

def package(self):
self.copy("*", dst="", keep_path=True)
self.copy("license*", dst="", src=self.nasm_folder_name, keep_path=False, ignore_

→˓case=True)

(continues on next page)

9.2. Creating conan packages to install dev tools 89

conan Documentation, Release 1.5.2

(continued from previous page)

def package_info(self):
self.output.info("Using %s version" % self.nasm_folder_name)
self.env_info.path.append(os.path.join(self.package_folder, self.nasm_folder_

→˓name))

There are some remarkable things in the recipe:

• The configure method discards some combinations of settings and options, by throwing an exception. In this
case this package is only for Windows.

• build() downloads the appropriate file and unzips it.

• package() copies all the files from the zip to the package folder.

• package_info() uses self.env_info to append to the environment variable path the package’s bin folder.

This package has only 2 differences from a regular Conan library package:

• source() method is missing. That’s because when you compile a library, the source code is always the same for
all the generated packages, but in this case we are downloading the binaries, so we do it in the build method to
download the appropriate zip file according to each combination of settings/options. Instead of actually building
the tools, we just download them. Of course, if you want to build it from source, you can do it too by creating
your own package recipe.

• The package_info() method uses the new self.env_info object. With self.env_info the package can
declare environment variables that will be set automatically before build(), package(), source() and imports()
methods of a package requiring this build tool. This is a convenient method to use these tools without having to
mess with the system path.

9.2.1 Using the tool packages in other recipes

The self.env_info variables will be automatically applied when you require a recipe that declares them. For exam-
ple, take a look at the MinGW conanfile.py recipe (https://github.com/conan-community/conan-mingw-installer):

class MingwInstallerConan(ConanFile):
name = "mingw_installer"
...

build_requires = "7z_installer/1.0@conan/stable"

def build(self):
keychain = "%s_%s_%s_%s" % (str(self.settings.compiler.version).replace(".", "

→˓"),
self.settings.arch_build,
self.settings.compiler.exception,
self.settings.compiler.threads)

files = {
... }

tools.download(files[keychain], "file.7z")
self.run("7z x file.7z")

...

90 Chapter 9. Package apps and devtools

https://github.com/conan-community/conan-mingw-installer

conan Documentation, Release 1.5.2

We are requiring a build_require to another package: 7z_installer. In this case it will be used to unzip the 7z
compressed files after downloading the appropriate MinGW installer.

That way, after the download of the installer, the 7z executable will be in the PATH, because the 7z_installer
dependency declares the bin folder in its package_info().

Important: Some build requires will need settings such as os, compiler or arch to build themselves from sources.
In that case the recipe might look like this:

class MyAwesomeBuildTool(ConanFile):
settings = "os_build", "arch_build", "arch", "compiler"
...

def build(self):
cmake = CMake(self)
...

def package_id(self):
self.info.include_build_settings()
del self.info.settings.compiler
del self.info.settings.arch

Note package_id() deletes not needed information for the computation of the package ID and includes the build
settings os_build and arch_build that are excluded by default. Read more about self.info.include_build_settings()
in the reference section.

9.2.2 Using the tool packages in your system

You can use the virtualenv generator to get the requirements applied in your system. For example: Working in Windows
with MinGW and CMake.

1. Create a separate folder from your project, this folder will handle our global development environment.

$ mkdir my_cpp_environ
$ cd my_cpp_environ

2. Create a conanfile.txt file:

[requires]
mingw_installer/1.0@conan/stable
cmake_installer/3.10.0@conan/stable

[generators]
virtualenv

Note that you can adjust the options and retrieve a different configuration of the required packages, or leave them
unspecified in the file and pass them as command line parameters.

3. Install them:

$ conan install .

4. Activate the virtual environment in your shell:

9.2. Creating conan packages to install dev tools 91

conan Documentation, Release 1.5.2

$ activate
(my_cpp_environ)$

5. Check that the tools are in the path:

(my_cpp_environ)$ gcc --version

> gcc (x86_64-posix-seh-rev1, Built by MinGW-W64 project) 4.9.2

Copyright (C) 2014 Free Software Foundation, Inc.
This is free software; see the source for copying conditions. There is NO
warranty; not even for MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

(my_cpp_environ)$ cmake --version

> cmake version 3.10

CMake suite maintained and supported by Kitware (kitware.com/cmake).

6. You can deactivate the virtual environment with the deactivate.bat script

(my_cpp_environ)$ deactivate

9.3 Build requirements

There are some requirements that don’t feel natural to add to a package recipe. For example, imagine that you had a
cmake/3.4 package in Conan. Would you add it as a requirement to the ZLib package, so it will install cmake first in
order to build Zlib?

In short:

• There are requirements that are only needed when you need to build a package from sources, but if the binary
package already exists, you don’t want to install or retrieve them.

• These could be dev tools, compilers, build systems, code analyzers, testing libraries, etc.

• They can be very orthogonal to the creation of the package. It doesn’t matter whether you build ZLib with CMake
3.4, 3.5 or 3.6. As long as the CMakeLists.txt is compatible, it will produce the same final package.

• You don’t want to add a lot of different versions (like those of CMake) to be able to use them to build the package.
You want to easily change the requirements, without needing to edit the ZLib package recipe.

• Some of them might not be even be taken into account when a package like ZLib is created, such as cross-
compiling it to Android (in which the Android toolchain would be a build requirement too).

To address these needs Conan implements build_requires.

92 Chapter 9. Package apps and devtools

conan Documentation, Release 1.5.2

9.3.1 Declaring build requirements

Build requirements can be declared in profiles, like:

Listing 1: my_profile

[build_requires]
Tool1/0.1@user/channel
Tool2/0.1@user/channel, Tool3/0.1@user/channel
*: Tool4/0.1@user/channel
MyPkg*: Tool5/0.1@user/channel
&: Tool6/0.1@user/channel
&!: Tool7/0.1@user/channel

Build requirements are specified by a pattern:. If such pattern is not specified, it will be assumed to be *, i.e. to
apply to all packages. Packages can be declared in different lines or by a comma separated list. In this example, Tool1,
Tool2, Tool3 and Tool4 will be used for all packages in the dependency graph (while running conan install or
conan create).

If a pattern like MyPkg* is specified, the declared build requirements will only be applied to packages matching that
pattern. Tool5 will not be applied to Zlib for example, but it will be applied to MyPkgZlib.

The special case of a consumer conanfile (without name or version) it is impossible to match with a pattern, so it is
handled with the special character &:

• & means apply these build requirements to the consumer conanfile

• &! means apply the build requirements to all packages except the consumer one.

Remember that the consumer conanfile is the one inside the test_package folder or the one referenced in the conan
install command.

Build requirements can be also specified in a package recipe, with the build_requires attribute and the
build_requirements() method:

class MyPkg(ConanFile):
build_requires = "ToolA/0.2@user/testing", "ToolB/0.2@user/testing"

def build_requirements(self):
useful for example for conditional build_requires
This means, if we are running on a Windows machine, require ToolWin
if platform.system() == "Windows":

self.build_requires("ToolWin/0.1@user/stable")

The above ToolA and ToolB will be always retrieved and used for building this recipe, while the ToolWin one will
only be used only in Windows.

If some build requirement defined inside build_requirements() has the same package name as the one defined in
the build_requires attribute, the one inside the build_requirements() method will prevail.

As a rule of thumb, downstream defined values always override upstream dependency values. If some build requirement
is defined in the profile, it will overwrite the build requirements defined in package recipes that have the same package
name.

9.3. Build requirements 93

conan Documentation, Release 1.5.2

9.3.2 Properties of build requirements

The behavior of build_requires is the same irrespective if they are defined in the profile or if defined in the package
recipe.

• They will only be retrieved and installed if some package that has to be built from sources and matches the
declared pattern. Otherwise, they will not be even checked for existence.

• Options and environment variables declared in the profile as well as in the command line will affect the build
requirements for packages. In that way, you can define for example for the cmake_installer/0.1 package
which CMake version will be installed.

• Build requirements will be activated for matching packages via the deps_cpp_info and deps_env_infomem-
bers. So, include directories, library names, compile flags (CFLAGS, CXXFLAGS, LINKFLAGS), sysroot, etc.
will be applied from the build requirement’s package self.cpp_info values. The same for self.env_info:
variables such as PATH, PYTHONPATH, and any other environment variables will be applied to the matching pat-
terns and activated as environment variables.

• Build requirements can also be transitive. They can declare their own requirements, both normal requirements
and their own build requirements. Normal logic for dependency graph resolution applies, such as conflict reso-
lution and dependency overriding.

• Each matching pattern will produce a different dependency graph of build requirements. These graphs are cached
so that they are only computed once. If a build requirement applies to different packages with the same configu-
ration it will only be installed once (same behavior as normal dependencies - once they are cached locally, there
is no need to retrieve or build them again).

• Build requirements do not affect the binary package ID. If using a different build requirement produces a different
binary, you should consider adding an option or a setting to model that (if not already modeled).

• Can also use version-ranges, like Tool/[>0.3]@user/channel.

• Build requirements are not listed in conan info nor are represented in the graph (with conan info --graph).

9.3.3 Testing libraries

One example of build requirement could be a testing framework, which is implemented as a library. Let’s call it
mytest_framework, an existing Conan package.

Build requirements can be checked for existence (whether they’ve been applied) in the recipes, which can be useful for
conditional logic in the recipes. In this example, we could have one recipe with the following build() method:

def build(self):
cmake = CMake(self)
enable_testing = "mytest_framework" in self.deps_cpp_info.deps
cmake.configure(defs={"ENABLE_TESTING": enable_testing})
cmake.build()
if enable_testing:

cmake.test()

And the package CMakeLists.txt:

project(PackageTest CXX)
cmake_minimum_required(VERSION 2.8.12)

include(${CMAKE_BINARY_DIR}/conanbuildinfo.cmake)
conan_basic_setup()

(continues on next page)

94 Chapter 9. Package apps and devtools

conan Documentation, Release 1.5.2

(continued from previous page)

if(ENABLE_TESTING)
add_executable(example test.cpp)
target_link_libraries(example ${CONAN_LIBS})

enable_testing()
add_test(NAME example

WORKING_DIRECTORY ${CMAKE_BINARY_DIR}/bin
COMMAND example)

endif()

This package recipe will not retrieve the mytest_framework nor build the tests, for normal installation:

$ conan install .

But if the following profile is defined:

Listing 2: mytest_profile

[build_requires]
mytest_framework/0.1@user/channel

Then the install command will retrieve the mytest_framework, build and run the tests:

$ conan install . --profile=mytest_profile

9.3.4 Common python code

The same technique can be even used to inject and reuse python code in the package recipes, without having to declare
dependencies to such python packages.

If a Conan package is defined to wrap and reuse the mypythontool.py file:

import os
from conans import ConanFile

class Tool(ConanFile):
name = "PythonTool"
version = "0.1"
exports_sources = "mypythontool.py"

def package(self):
self.copy("mypythontool.py")

def package_info(self):
self.env_info.PYTHONPATH.append(self.package_folder)

Then if it is defined in a profile as a build require:

[build_requires]
PythonTool/0.1@user/channel

such package can be reused in other recipes like this:

9.3. Build requirements 95

conan Documentation, Release 1.5.2

def build(self):
self.run("mytool")
import mypythontool
self.output.info(mypythontool.hello_world())

96 Chapter 9. Package apps and devtools

CHAPTER

TEN

MASTERING CONAN

This section provides an introduction to important productivity features and useful functionalities of conan:

10.1 Use conanfile.py for consumers

You can use a conanfile.py for installing/consuming packages, even if you are not creating a package with it. You
can also use the existing conanfile.py in a given package while developing it to install dependencies, no need to
have a separate conanfile.txt.

Let’s take a look at the complete conanfile.txt from the previous timer example with POCO library, in which we
have added a couple of extra generators

[requires]
Poco/1.7.8p3@pocoproject/stable

[generators]
gcc
cmake
txt

[options]
Poco:shared=True
OpenSSL:shared=True

[imports]
bin, *.dll -> ./bin # Copies all dll files from the package "bin" folder to my project
→˓"bin" folder
lib, *.dylib* -> ./bin # Copies all dylib files from the package "lib" folder to my␣
→˓project "bin" folder

The equivalent conanfile.py file is:

from conans import ConanFile, CMake

class PocoTimerConan(ConanFile):
settings = "os", "compiler", "build_type", "arch"
requires = "Poco/1.7.8p3@pocoproject/stable" # comma-separated list of requirements
generators = "cmake", "gcc", "txt"
default_options = "Poco:shared=True", "OpenSSL:shared=True"

(continues on next page)

97

conan Documentation, Release 1.5.2

(continued from previous page)

def imports(self):
self.copy("*.dll", dst="bin", src="bin") # From bin to bin
self.copy("*.dylib*", dst="bin", src="lib") # From lib to bin

Note that this conanfile.py doesn’t have a name, version, or build() or package() method, as it is not creating a
package, they are not required.

With this conanfile.py you can just work as usual, nothing changes from the user’s perspective. You can install the
requirements with (from mytimer/build folder):

$ conan install ..

10.1.1 conan build

One advantage of using conanfile.py is that the project build can be further simplified, using the conanfile.py
build() method.

If you are building your project with CMake, edit your conanfile.py and add the following build() method:

from conans import ConanFile, CMake

class PocoTimerConan(ConanFile):
settings = "os", "compiler", "build_type", "arch"
requires = "Poco/1.7.8p3@pocoproject/stable"
generators = "cmake", "gcc", "txt"
default_options = "Poco:shared=True", "OpenSSL:shared=True"

def imports(self):
self.copy("*.dll", dst="bin", src="bin") # From bin to bin
self.copy("*.dylib*", dst="bin", src="lib") # From lib to bin

def build(self):
cmake = CMake(self)
cmake.configure()
cmake.build()

Then execute, from your project root:

$ conan install . --install-folder build
$ conan build . --build-folder build

The conan install command downloads and prepares the requirements of your project (for the specified settings)
and the conan build command uses all that information to invoke your build() method to build your project, which
in turn calls cmake.

This conan buildwill use the settings used in the conan installwhich have been cached in the local conaninfo.txt
and file in your build folder, which simplifies the process and reduces the errors of mismatches between the installed
packages and the current project configuration. Also, the conanbuildinfo.txt file contains all the needed information
obtained from the requirements: deps_cpp_info, deps_env_info, deps_user_info objects.

If you want to build your project for x86 or another setting just change the parameters passed to conan install:

$ conan install . --install-folder build_x86 -s arch=x86
$ conan build . --build-folder build_x86

98 Chapter 10. Mastering conan

conan Documentation, Release 1.5.2

Implementing and using the conanfile.py build() method ensures that we always use the same settings both in the
installation of requirements and the build of the project, and simplifies calling the build system.

10.1.2 Other local commands

Conan implements other commands that can be executed locally over a consumer conanfile.py which is in user
space, not in the local cache:

• conan source <path>: Execute locally the conanfile.py source() method.

• conan package <path>: Execute locally the conanfile.py package() method.

These commands are mostly used for testing and debugging while developing a new package, before exporting such
package recipe into the local cache.

See also:

Check the section Reference/Commands to find out more.

10.2 Conditional settings, options and requirements

Remember, in your conanfile.py you have also access to the options of your dependencies, and you can use them to:

• Add requirements dynamically

• Change values of options

The configure method might be used to hardcode dependencies options values. It is strongly discouraged to use it
to change the settings values, please remember that settings are a configuration input, so it doesn’t make sense to
modify it in the recipes.

Also, for options, a more flexible solution is to define dependencies options values in the default_options, not in
the configure() method, as this would allow to override them. Hardcoding them in the configure() method won’t
allow that and thus won’t easily allow conflict resolution. Use it only when it is absolutely necessary that the package
dependencies use those options.

Here is an example of what we could do in our configure method:

...
requires = "Poco/1.9.0@pocoproject/stable" # We will add OpenSSL dynamically "OpenSSL/1.
→˓0.2d@lasote/stable"
...

def configure(self):
We can control the options of our dependencies based on current options
self.options["OpenSSL"].shared = self.options.shared

Maybe in windows we know that OpenSSL works better as shared (false)
if self.settings.os == "Windows":

self.options["OpenSSL"].shared = True

Or adjust any other available option
self.options["Poco"].other_option = "foo"

We could check the presence of an option
if "shared" in self.options:

(continues on next page)

10.2. Conditional settings, options and requirements 99

conan Documentation, Release 1.5.2

(continued from previous page)

pass

def requirements(self):
Or add a new requirement!
if self.options.testing:

self.requires("OpenSSL/2.1@memsharded/testing")
else:

self.requires("OpenSSL/1.0.2d@lasote/stable")

10.2.1 Constrain settings and options

Sometimes there are libraries that are not compatible with specific settings like libraries that are not compatible with
an architecture or options that only make sense for an operating system. It can be also useful when there are settings
under development.

There are two approaches for this situation:

• Use configure() to raise an error for non-supported configurations:

This approach is the first one evaluated when Conan loads the recipe so it is quite handy to perform checks of the
input settings. It relies on the set of possible settings inside your settings.yml file so it can be used to constrain
any recipe.

def configure(self):
if self.settings.os == "Windows":
raise ConanException("This library is not compatible with Windows")

This same method is also valid for options and config_options()method and it is commonly used to remove
options for one setting:

def config_options(self):
if self.settings.os == "Windows":

del self.options.fPIC

• Constrain settings inside a recipe:

This approach constrains the settings inside a recipe to a subset of them and it is normally used in recipes that
are never supposed to work out of the restricted settings.

from conans import ConanFile

class MyConan(ConanFile):
name = "myconanlibrary"
version = "1.0.0"
settings = {"os": None, "build_type": None, "compiler": None, "arch": ["x86_64

→˓"]}

The disadvantage of this is that possible settings are hardcoded in the recipe and in case new values are used in
the future, it will require the recipe to be modified explicitly.

Important: Note the use of None value in the os, compiler and build_type settings described above will
allow them to take the values from settings.yml file

100 Chapter 10. Mastering conan

conan Documentation, Release 1.5.2

We strongly recommend the use if the first approach whenever it is possible and use the second one only for those cases
where a stronger constrain is needed for a particular recipe.

See also:

Check the reference section configure(), config_options() to find out more.

10.3 Version ranges

Version range expressions are supported, both in conanfile.txt and in conanfile.py requirements.

The syntax is using brackets. The square brackets are the way to specify conan that is a version range. Otherwise,
versions are plain strings, they can be whatever you want them to be (up to limitations of length and allowed characters).

class HelloConan(ConanFile):
requires = "Pkg/[>1.0,<1.8]@user/stable"

So when specifying Pkg/[expression]@user/stable it means that expression will be evaluated as a version
range. Otherwise it will be understand as plain text, so requires = "Pkg/version@user/stable" always means
to use the version version literally.

There are some packages that do not follow semver, a popular one would be the OpenSSL package with versions as
1.0.2n. They cannot be used with version-ranges, to require such packages you always have to use explicit versions
(without brackets).

The process to manage plain versions vs version-ranges is also different. The second one requires a “search” in the
remote, which is orders of magnitude slower than direct retrieval of the reference (plain versions), so take it into account
if you plan to use it for very large projects.

Expressions are those defined and implemented by https://pypi.org/project/node-semver/, but using a comma instead
of spaces. Accepted expressions would be:

>1.1,<2.1 # In such range
2.8 # equivalent to =2.8
~=3.0 # compatible, according to semver
>1.1 || 0.8 # conditions can be OR'ed

Version range expressions are evaluated at the time of building the dependency graph, from downstream to upstream
dependencies. No joint-compatibility of the full graph is computed, instead, version ranges are evaluated when depen-
dencies are first retrieved.

This means, that if a package A depends on another package B (A->B), and A has a requirement for C/[>1.2,<1.8],
this requirement is evaluated first and it can lead to get the version C/1.7. If package B has the requirement to C/[>1.
3,<1.6], this one will be overwritten by the downstream one, it will output a version incompatibility error. But the
“joint” compatibility of the graph will not be obtained. Downstream packages or consumer projects can impose their
own requirements to comply with upstream constraints, in this case a override dependency to C/[>1.3,<1.6] can be
easily defined in the downstream package or project.

The order of search for matching versions is as follows:

• First, the local conan storage is searched for matching versions, unless the --update flag is provided to conan
install.

• If a matching version is found, it is used in the dependency graph as a solution.

• If no matching version is locally found, it starts to search in the remotes, in order. If some remote is specified
with -r=remote, then only that remote will be used.

10.3. Version ranges 101

https://pypi.org/project/node-semver/

conan Documentation, Release 1.5.2

• If the --update parameter is used, then the existing packages in the local conan cache will not be used, and the
same search of the previous steps is carried out in the remotes. If new matching versions are found, they will be
retrieved, so subsequent calls to install will find them locally and use them.

10.4 Build policies

By default, conan install command will search for a binary package (corresponding to our settings and defined
options) in a remote, if it’s not present the install command will fail.

As previously demonstrated, we can use the --build option to change the default conan install behaviour:

• --build some_package will build only “some_package”.

• --build missing will build only the missing requires.

• --build will build all requirements from sources.

• --build outdated will try to build from code if the binary is not built with the current recipe or when missing
binary package.

With the build_policy attribute the package creator can change the default conan’s build behavior. The allowed
build_policy values are:

• missing: If no binary package is found, conan will build it without the need of invoke conan install with --build
missing option.

• always: The package will be built always, retrieving each time the source code executing the “source” method.

class PocoTimerConan(ConanFile):
settings = "os", "compiler", "build_type", "arch"
requires = "Poco/1.7.8p3@pocoproject/stable" # comma-separated list of requirements
generators = "cmake", "gcc", "txt"
default_options = "Poco:shared=True", "OpenSSL:shared=True"
build_policy = "always" # "missing"

These build policies are especially useful if the package creator doesn’t want to provide binary package, for example,
with header only libraries.

The always policy, will retrieve the sources each time the package is installed so it can be useful for providing a “latest”
mechanism or ignoring the uploaded binary packages.

10.5 Environment variables

There are several use cases for environment variables:

• Conan global configuration environment variables (e.g. CONAN_COMPRESSION_LEVEL). They can be configured
in conan.conf or as system environment variables, and control conan behavior.

• Package recipes can access environment variables to determine their behavior. A typical example would be
when launching CMake, it will check for CC and CXX environment variables to define the compiler to use.
These variables are mostly transparent for conan, and just used by the package recipes.

• Environment variables can be set in different ways:

– global, at the OS level, with export VAR=Value or in Windows SET VAR=Value.

– In the conan command line: conan install -e VAR=Value.

102 Chapter 10. Mastering conan

conan Documentation, Release 1.5.2

– In profile files.

– In package recipes in the self.env_info field, so they are activated for dependent recipes.

10.5.1 Defining environment variables

You can use profiles to define environment variables that will apply to your recipes. You can also use -e parameter in
conan install, conan info and conan create commands.

[env]
CC=/usr/bin/clang
CXX=/usr/bin/clang++

If you want to override an environment variable that a package has inherited from its requirements, you can use either
profiles or -e to do it:

conan install -e MyPackage:PATH=/other/path

If you want to define an environment variable but you want to append the variables declared in your requirements you
can use the [] syntax:

$ conan install -e PYTHONPATH=[/other/path]

This way the first entry in the PYTHONPATH variable will be /other/path but the PYTHONPATH values declared in
the requirements of the project will be appended at the end using the system path separator.

10.5.2 Automatic environment variables inheritance

If your dependencies define some env_info variables in the package_info() method they will be automatically
applied before calling the consumer conanfile.py methods source(), build(), package() and imports(). You can
read more about env_info object here.

For example, if you are creating a package for a tool, you can define the variable PATH:

class ToolExampleConan(ConanFile):
name = "my_tool_installer"
...

def package_info(self):
self.env_info.path.append(os.path.join(self.package_folder, "bin"))

If another conan recipe requires the my_tool_installer in the source(), build(), package() and imports()
the bin folder of the my_tool_installer package will be automatically appended to the system PATH. If
my_tool_installer packages an executable called my_tool_executable in the bin of the package folder we can
directly call the tool, because it will be available in the path:

class MyLibExample(ConanFile):
name = "my_lib_example"
...

def build(self):
self.run("my_tool_executable some_arguments")

You could also set CC, CXX variables if we are packing a compiler to define what compiler to use or any other environ-
ment variable. Read more about tool packages here.

10.5. Environment variables 103

conan Documentation, Release 1.5.2

10.6 Virtual Environments

Conan offer three special conan generators to create virtual environments:

• virtualenv: Declares the self.env_info variables of the requirements.

• virtualbuildenv: Special build environment variables for autotools/visual studio.

• virtualrunenv: Special environment variables to locate executables and shared libraries in the requirements.

These virtual environment generators create two executable script files (.sh or .bat depending on the current operating
system), one for activate the virtual environment (set the environment variables) and one for deactivate it.

You can aggregate two or more virtual environments, that means that you can activate a virtualenv and then acti-
vate a virtualrunenv so you will have available the environment variables declared in the env_info object of the
requirements plus the special enviroment variables to locate executables and shared libraries.

10.6.1 Virtualenv generator

Conan provides a virtualenv generator, able to read from each dependency the self.env_info variables declared in the
package_info()method and generate two scripts “activate” and “deactivate”. These scripts set/unset all env variables
in the current shell.

Example:

The recipe of cmake_installer/3.9.0@conan/stable appends to the PATH variable the package folder/bin.

You can check existing CMake conan package versions in conan-center with:

$ conan search cmake* -r=conan-center

In the bin folder there is a cmake executable:

def package_info(self):
self.env_info.path.append(os.path.join(self.package_folder, "bin"))

Let’s prepare a virtual environment to have available our cmake in the path, open conanfile.txt and change (or add)
virtualenv generator:

[requires]
cmake_installer/3.9.0@conan/stable

[generators]
virtualenv

Run conan install:

$ conan install .

You can also avoid the creation of the conanfile.txt completely and directly do:

$ conan install cmake_installer/3.9.0@conan/stable -g=virtualenv

And activate the virtual environment, and now you can run cmake --version and check that you have the installed
CMake in path.

104 Chapter 10. Mastering conan

conan Documentation, Release 1.5.2

$ source activate.sh # Windows: activate.bat without the source
$ cmake --version

Two sets of scripts are available for Windows - activate.bat/deactivate.bat and activate.ps1/deactivate.
ps1 if you are using powershell. Deactivate the virtual environment (or close the console) to restore the environment
variables:

$ source deactivate.sh # Windows: deactivate.bat without the source

See also:

Read the Howto Create installer packages to know more about virtual environment feature. Check the section Refer-
ence/virtualenv to see the reference of the generator.

10.6.2 Virtualbuildenv environment

Use the generator virtualbuildenv to activate an environment that will set the environment variables for Autotools
and Visual Studio.

The generator will create activate_build and deactivate_build files.

See also:

Read More about the building environment variables defined in the sections Building with autotools and Build with
Visual Studio.

Check the section Reference/virtualbuildenv to see the reference of the generator.

10.6.3 Virtualrunenv generator

Use the generator virtualrunenv to activate an environment that will:

• Append to PATH environment variable every bin folder of your requirements.

• Append to LD_LIBRARY_PATH and DYLD_LIBRARY_PATH environment variables each lib folder of your re-
quirements.

The generator will create activate_run and deactivate_run files. This generator is especially useful:

• If you are requiring packages with shared libraries and you are running some executable that needs those libraries.

• If you have a requirement with some tool (executable) and you need it in the path.

In the previous example of the cmake_installer recipe, even if the cmake_installer package doesn’t declare the
self.env_info.path variable, using the virtualrunenv generator, the bin folder of the package will be available in
the PATH. So after activating the virtual environment we could just run cmake and we will be executing the cmake of
the package.

See also:

• Reference/Tools/environment_append

10.6. Virtual Environments 105

conan Documentation, Release 1.5.2

10.7 Logging

10.7.1 How to log and debug a conan execution

You can use the CONAN_TRACE_FILE environment variable to log and debug several conan command execution. Set
the CONAN_TRACE_FILE environment variable pointing to a log file.

Example:

export CONAN_TRACE_FILE=/tmp/conan_trace.log # Or SET in windows
conan install zlib/1.2.8@lasote/stable

The /tmp/conan_trace.log file:

{"_action": "COMMAND", "name": "install", "parameters": {"all": false, "build": null,
→˓"env": null, "file": null, "generator": null, "manifests": null, "manifests_interactive
→˓": null, "no_imports": false, "options": null, "package": null, "profile": null,
→˓"reference": "zlib/1.2.8@lasote/stable", "remote": null, "scope": null, "settings":␣
→˓null, "update": false, "verify": null, "werror": false}, "time": 1485345289.250117}
{"_action": "REST_API_CALL", "duration": 1.8255090713500977, "headers": {"Authorization
→˓": "**********", "X-Client-Anonymous-Id": "**********", "X-Client-Id": "lasote2", "X-
→˓Conan-Client-Version": "0.19.0-dev"}, "method": "GET", "time": 1485345291.092218, "url
→˓": "https://server.conan.io/v1/conans/zlib/1.2.8/lasote/stable/download_urls"}
{"_action": "DOWNLOAD", "duration": 0.4136989116668701, "time": 1485345291.506399, "url
→˓": "https://conanio-production.s3.amazonaws.com/storage/zlib/1.2.8/lasote/stable/
→˓export/conanmanifest.txt"}
{"_action": "DOWNLOAD", "duration": 0.10367798805236816, "time": 1485345291.610335, "url
→˓": "https://conanio-production.s3.amazonaws.com/storage/zlib/1.2.8/lasote/stable/
→˓export/conanfile.py"}
{"_action": "DOWNLOAD", "duration": 0.059114933013916016, "time": 1485345291.669744, "url
→˓": "https://conanio-production.s3.amazonaws.com/storage/zlib/1.2.8/lasote/stable/
→˓export/conan_export.tgz"}
{"_action": "DOWNLOADED_RECIPE", "_id": "zlib/1.2.8@lasote/stable", "duration": 2.
→˓40762996673584, "files": {"conan_export.tgz": "/home/laso/.conan/data/zlib/1.2.8/
→˓lasote/stable/export/conan_export.tgz", "conanfile.py": "/home/laso/.conan/data/zlib/1.
→˓2.8/lasote/stable/export/conanfile.py", "conanmanifest.txt": "/home/laso/.conan/data/
→˓zlib/1.2.8/lasote/stable/export/conanmanifest.txt"}, "remote": "conan.io", "time":␣
→˓1485345291.670017}
{"_action": "REST_API_CALL", "duration": 0.4844989776611328, "headers": {"Authorization
→˓": "**********", "X-Client-Anonymous-Id": "**********", "X-Client-Id": "lasote2", "X-
→˓Conan-Client-Version": "0.19.0-dev"}, "method": "GET", "time": 1485345292.160912, "url
→˓": "https://server.conan.io/v1/conans/zlib/1.2.8/lasote/stable/packages/
→˓c6d75a933080ca17eb7f076813e7fb21aaa740f2/download_urls"}
{"_action": "DOWNLOAD", "duration": 0.06388187408447266, "time": 1485345292.225308, "url
→˓": "https://conanio-production.s3.amazonaws.com/storage/zlib/1.2.8/lasote/stable/
→˓package/c6d75a933080ca17eb7f076813e7fb21aaa740f2/conaninfo.txt?
→˓Signature=c1KAOqvxtCUnnQOeYizZ9bgcwwY%3D&Expires=1485352492&
→˓AWSAccessKeyId=AKIAJXMWDMVCDMAZQK5Q"}
{"_action": "REST_API_CALL", "duration": 0.8182470798492432, "headers": {"Authorization
→˓": "**********", "X-Client-Anonymous-Id": "**********", "X-Client-Id": "lasote2", "X-
→˓Conan-Client-Version": "0.19.0-dev"}, "method": "GET", "time": 1485345293.044904, "url
→˓": "https://server.conan.io/v1/conans/zlib/1.2.8/lasote/stable/packages/
→˓c6d75a933080ca17eb7f076813e7fb21aaa740f2/download_urls"}

(continues on next page)

106 Chapter 10. Mastering conan

conan Documentation, Release 1.5.2

(continued from previous page)

{"_action": "DOWNLOAD", "duration": 0.07849907875061035, "time": 1485345293.123831, "url
→˓": "https://conanio-production.s3.amazonaws.com/storage/zlib/1.2.8/lasote/stable/
→˓package/c6d75a933080ca17eb7f076813e7fb21aaa740f2/conanmanifest.txt"}
{"_action": "DOWNLOAD", "duration": 0.06638002395629883, "time": 1485345293.190465, "url
→˓": "https://conanio-production.s3.amazonaws.com/storage/zlib/1.2.8/lasote/stable/
→˓package/c6d75a933080ca17eb7f076813e7fb21aaa740f2/conaninfo.txt"}
{"_action": "DOWNLOAD", "duration": 0.3634459972381592, "time": 1485345293.554206, "url
→˓": "https://conanio-production.s3.amazonaws.com/storage/zlib/1.2.8/lasote/stable/
→˓package/c6d75a933080ca17eb7f076813e7fb21aaa740f2/conan_package.tgz"}
{"_action": "DOWNLOADED_PACKAGE", "_id": "zlib/1.2.8@lasote/
→˓stable:c6d75a933080ca17eb7f076813e7fb21aaa740f2", "duration": 1.3279249668121338,
→˓"files": {"conan_package.tgz": "/home/laso/.conan/data/zlib/1.2.8/lasote/stable/
→˓package/c6d75a933080ca17eb7f076813e7fb21aaa740f2/conan_package.tgz", "conaninfo.txt":
→˓"/home/laso/.conan/data/zlib/1.2.8/lasote/stable/package/
→˓c6d75a933080ca17eb7f076813e7fb21aaa740f2/conaninfo.txt", "conanmanifest.txt": "/home/
→˓laso/.conan/data/zlib/1.2.8/lasote/stable/package/
→˓c6d75a933080ca17eb7f076813e7fb21aaa740f2/conanmanifest.txt"}, "remote": "conan.io",
→˓"time": 1485345293.554466}

In the traces we can see:

1. A command install execution.

2. A rest api call to get some download_urls.

3. Three files downloaded (corresponding to the previously retrieved urls).

4. DOWNLOADED_RECIPE tells us that the recipe retrieving is finished. We can see that the whole retrieve process
took 2.4 seconds.

5. conan client has computed the needed binary package SHA and now will get it. So will request and download
the package package_id file to perform some checks like outdated binaries.

6. Another rest api call to get some more download_urls, for the package files and download them.

7. Finally we get a DOWNLOADED_PACKAGE telling us that the package has beed downloaded. It took 1.3 seconds.

If we execute conan install again:

export CONAN_TRACE_FILE=/tmp/conan_trace.log # Or SET in windows
conan install zlib/1.2.8@lasote/stable

The /tmp/conan_trace.log file only three lines will be appended:

{"_action": "COMMAND", "name": "install", "parameters": {"all": false, "build": null,
→˓"env": null, "file": null, "generator": null, "manifests": null, "manifests_interactive
→˓": null, "no_imports": false, "options": null, "package": null, "profile": null,
→˓"reference": "zlib/1.2.8@lasote/stable", "remote": null, "scope": null, "settings":␣
→˓null, "update": false, "verify": null, "werror": false}, "time": 1485346039.817543}
{"_action": "GOT_RECIPE_FROM_LOCAL_CACHE", "_id": "zlib/1.2.8@lasote/stable", "time":␣
→˓1485346039.824949}
{"_action": "GOT_PACKAGE_FROM_LOCAL_CACHE", "_id": "zlib/1.2.8@lasote/
→˓stable:c6d75a933080ca17eb7f076813e7fb21aaa740f2", "time": 1485346039.827915}

1. A command install execution.

2. A GOT_RECIPE_FROM_LOCAL_CACHE because we already have it available in local cache.

10.7. Logging 107

conan Documentation, Release 1.5.2

3. A GOT_PACKAGE_FROM_LOCAL_CACHE because the package is cached too.

10.7.2 How to log the build process

You can log your command executions self.run in a file named conan_run.log using the environment variable CO-
NAN_LOG_RUN_TO_FILE.

You can also use the variable CONAN_PRINT_RUN_COMMANDS to log extra information about the commands being
executed.

Package the log files

The conan_run.log file will be available in your build folder so you can package it the same way you package a library
file:

def package(self):
self.copy(pattern="conan_run.log", dst="", keep_path=False)

10.8 Sharing the settings and other configuration

If you are using Conan in a company or in an organization, sometimes you need to share the settings.yml file or the
profiles, or even the remotes or any other conan local configuration with the team.

You can use the conan config install.

If you want to try this feature without affecting to your current configuration you can declare the CONAN_USER_HOME
environment variable and point to a different directory.

Read more in the section reference/commands/conan config install.

10.9 Conan local cache: concurrency, Continuous Integration, isola-
tion

Conan needs access to some, per user, configuration files, as the conan.conf file that defines the basic client app
configuration. By convention, this file will be located in the user home folder ~/.conan/. This folder will typically
also store the package cache, in ~/.conan/data. Though the latter is configurable in conan.conf, still conan needs some
place to look for this initial configuration file.

There are some scenarios in which you might want to use different initial locations for the conan client application:

• Continuous Integration (CI) environments, in which multiple jobs can also work concurrently. Moreover, these
environments would typically want to run with different user credentials, different remote configurations, etc.
Note that using Continuous Integration with the same user, with isolated machine instances (virtual machines),
or with sequential jobs is perfectly possible. For example, we use a lot CI cloud services of travis-ci and appveyor.

• Independent per project management and storage. If as a single developer you want to manage different projects
with different user credentials (for the same remote, having different users for different remotes is also fine),
consuming packages from different remotes, you might find that having a single user configuration is not enough.
Having independent caches might allow also to take away with you very easily the requirements of a certain
project.

108 Chapter 10. Mastering conan

conan Documentation, Release 1.5.2

Using different caches is very simple. You can just define the environment variable CONAN_USER_HOME. By
setting this variable to different paths, you have multiple conan caches, something like python “virtualenvs”. Just
changing the value of CONAN_USER_HOME you can switch among isolated conan instantes that will have inde-
pendent package storage caches, but also different user credentials, different user default settings, and different remotes
configuration.

Note: Use an absolute path or a path starting with ~/ (relative to user home). In Windows do not use quotes.

Windows users:

$ SET CONAN_USER_HOME=c:\data
$ conan install . # call conan normally, config & data will be in c:\data

Linux/OSx users:

$ export CONAN_USER_HOME=/tmp/conan
$ conan install . # call conan normally, config & data will be in /tmp/conan

You can now:

• Build concurrent jobs, parallel builds in Continous Integration or locally, just setting the variable before launching
conan commands.

• You can test locally different user credentials, default configurations, different remotes, just by switching from
one cache to the others.

$ export CONAN_USER_HOME=/tmp/conan
$ conan search # using that /tmp/conan cache
$ conan user # using that /tmp/conan cache

$ export CONAN_USER_HOME=/tmp/conan2
$ conan search # different packages
$ conan user # can be different users

$ export CONAN_USER_HOME=/tmp/conan # just go back to use the other cache

10.9.1 Concurrency

Conan local cache support some degree of concurrency, allowing simultaneous creation or installation of different
packages, or building different binaries for the same package. However, concurrent operations like removal of packages
while creating them will fail. If you need different environments that operate totally independently, you probably want
to use different conan caches for that.

The concurrency is implemented with a Readers-Writers lock mechanism, which in turn uses fasteners library file
locks to achieve multi-platform portability. As this “mutex” resource is by definition not enough to implement a
Readers-Writers solution, some active-wait with time sleeps in a loop is necessary. However, this time sleeps will
be rare, only sleeping when there is actually a collision and waiting on a lock.

The lock files will be stored inside each Pkg/version/user/channel folder in the local cache, in a rw file for locking
the entire package, or in a set of locks (one per each different binary package, under a subfolder called locks, each
lock named with the binary ID of the package).

It is possible to disable the locking mechanism in conan.conf:

10.9. Conan local cache: concurrency, Continuous Integration, isolation 109

conan Documentation, Release 1.5.2

[general]
cache_no_locks = True

110 Chapter 10. Mastering conan

CHAPTER

ELEVEN

SYSTEMS AND CROSS BUILDING

This section explains how to cross build with Conan to any platform and the Windows subsystems (Cygwin, MSYS2).

11.1 Cross building

Cross building is compiling a library or executable in one platform to be used in a different one.

Cross-compilation is used to build software for embedded devices where you don’t have an operating system nor a
compiler available. Also for building software for not too fast devices, like an Android machine, a Raspberry PI etc.

To cross build code you need the right toolchain. A toolchain is basically a compiler with a set of libraries matching
the host platform.

11.1.1 GNU triplet convention

According to the GNU convention, there are three platforms involved in the software building:

• Build platform: The platform on which the compilation tools are executed

• Host platform: The platform on which the code will run

• Target platform: Only when building a compiler, this is the platform that the compiler will generate code for

When you are building code for your own machine it’s called native building, where the build and the host platforms
are the same. The target platform is not defined in this situation.

When you are building code for a different platform, it’s called cross building, where the build platform is different
from the host platform. The target platform is not defined in this situation.

The use of the target platform is rarely needed, only makes sense when you are building a compiler. For instance,
when you are building in your Linux machine a GCC compiler that will run on Windows, to generate code for Android.
Here, the build is your Linux computer, the host is the Windows computer and the target is Android.

111

conan Documentation, Release 1.5.2

11.1.2 Conan settings

From version 1.0, Conan introduces new settings to model the GNU convention triplet:

build platform settings:

• os_build: Operating system of the build system.

• arch_build: Architecture system of the build system.

These settings are detected the first time you run Conan with the same values than the host settings, so by
default, we are doing native building. Probably you will never need to change the value of this settings
because they describe where are you running Conan.

host platform settings:

• os: Operating system of the host system.

• arch: Architecture of the host system.

• compiler: Compiler of the host system (to declare compatibility of libs in the host platform)

• . . . (all the regular settings)

These settings are the regular Conan settings, already present before supporting the GNU triplet conven-
tion. If you are cross building you have to change them according to the host platform.

target platform:

• os_target: Operating system of the target system.

• arch_target: Architecture of the target system.

If you are building a compiler, specify with these settings where the compiled code will run.

11.1.3 Cross building with Conan

If you want to cross-build a Conan package, for example, in your Linux machine, build the zlib Conan package for
Windows, you need to indicate to Conan where to find your cross-compiler/toolchain.

There are two approaches:

• Install the toolchain in your computer and use a profile to declare the settings and point to the needed
tools/libraries in the toolchain using the [env] section to declare, at least, the CC and CXX environment vari-
ables.

• Package the toolchain as a Conan package and include it as a build_require.

Using profiles

Create a profile with:

• A [settings] section containing the needed settings: os_build, arch_build and the regular settings os, arch,
compiler, build_type and so on.

• An [env] section with a PATH variable pointing to your installed toolchain. Also any other variable that the
toolchain expects (read the docs of your compiler). Some build systems need a variable SYSROOT to locate
where the host system libraries and tools are.

112 Chapter 11. Systems and cross building

conan Documentation, Release 1.5.2

Linux to Windows

• Install the needed toolchain, in ubuntu:

sudo apt-get install g++-mingw-w64 gcc-mingw-w64

• Create a file named linux_to_win64 with the contents:

$toolchain=/usr/x86_64-w64-mingw32 # Adjust this path
target_host=x86_64-w64-mingw32
cc_compiler=gcc
cxx_compiler=g++

[env]
CONAN_CMAKE_FIND_ROOT_PATH=$toolchain
CHOST=$target_host
AR=$target_host-ar
AS=$target_host-as
RANLIB=$target_host-ranlib
CC=$target_host-$cc_compiler
CXX=$target_host-$cxx_compiler
STRIP=$target_host-strip
RC=$target_host-windres

[settings]
We are building in Ubuntu Linux
os_build=Linux
arch_build=x86_64

We are cross building to Windows
os=Windows
arch=x86_64
compiler=gcc

Adjust to the gcc version of your MinGW package
compiler.version=7.3
compiler.libcxx=libstdc++11
build_type=Release

• Clone an example recipe or use your own recipe:

git clone https://github.com/memsharded/conan-hello.git

• Call conan create using the created profile.win

$ cd conan-hello && conan create . conan/testing --profile ../linux_to_win64
...
[50%] Building CXX object CMakeFiles/example.dir/example.cpp.obj
[100%] Linking CXX executable bin/example.exe
[100%] Built target example

A bin/example.exe for Win64 platform has been built.

11.1. Cross building 113

conan Documentation, Release 1.5.2

Windows to Raspberry PI (Linux/ARM)

• Install the toolchain: http://gnutoolchains.com/raspberry/ You can choose different versions of the GCC cross
compiler, choose one and adjust the following settings in the profile accordingly.

• Create a file named win_to_rpi with the contents:

target_host=arm-linux-gnueabihf
standalone_toolchain=C:/sysgcc/raspberry
cc_compiler=gcc
cxx_compiler=g++

[settings]
os_build=Windows
arch_build=x86_64
os=Linux
arch=armv7 # Change to armv6 if you are using Raspberry 1
compiler=gcc
compiler.version=6
compiler.libcxx=libstdc++11
build_type=Release

[env]
CONAN_CMAKE_FIND_ROOT_PATH=$standalone_toolchain/$target_host/sysroot
PATH=[$standalone_toolchain/bin]
CHOST=$target_host
AR=$target_host-ar
AS=$target_host-as
RANLIB=$target_host-ranlib
LD=$target_host-ld
STRIP=$target_host-strip
CC=$target_host-$cc_compiler
CXX=$target_host-$cxx_compiler
CXXFLAGS=-I"$standalone_toolchain/$target_host/lib/include"

The profiles to target Linux are all very similar, probably you just need to adjust the variables declared in the top of the
profile:

• target_host: All the executables in the toolchain starts with this prefix.

• standalone_toolchain: Path to the toolchain installation.

• cc_compiler/cxx_compiler: In this case gcc/g++, but could be clang/clang++.

• Clone an example recipe or use your own recipe:

git clone https://github.com/memsharded/conan-hello.git

• Call conan create using the created profile.

$ cd conan-hello && conan create . conan/testing --profile=../win_to_rpi
...
[50%] Building CXX object CMakeFiles/example.dir/example.cpp.obj
[100%] Linking CXX executable bin/example
[100%] Built target example

A bin/example for Raspberry PI (Linux/armv7hf) platform has been built.

114 Chapter 11. Systems and cross building

http://gnutoolchains.com/raspberry/

conan Documentation, Release 1.5.2

Linux/Windows/Macos to Android

Cross bulding a library for Android is very similar to the previous examples, except the complexity of managing different
architectures (armeabi, armeabi-v7a, x86, arm64-v8a) and the Android API levels.

Download the Android NDK here and unzip it.

Note: If you are in Windows the process will be almost the same, but unzip the file in the root folder of your hard disk
(C:) to avoid issues with path lengths.

Now you have to build a standalone toolchain, we are going to target “arm” architecture and the Android API level 21,
change the --install-dir to any other place that works for you:

$ cd build/tools
$ python make_standalone_toolchain.py --arch=arm --api=21 --stl=libc++ --install-dir=/
→˓myfolder/arm_21_toolchain

Note: You can generate the standalone toolchain with several different options to target different architectures, api
levels etc.

Check the Android docs: standalone toolchain

To use the clang compiler, create a profile android_21_arm_clang. Once again, the profile is very similar to the
RPI one:

standalone_toolchain=/myfolder/arm_21_toolchain # Adjust this path
target_host=arm-linux-androideabi
cc_compiler=clang
cxx_compiler=clang++

[settings]
compiler=clang
compiler.version=5.0
compiler.libcxx=libc++
os=Android
os.api_level=21
arch=armv7
build_type=Release

[env]
CONAN_CMAKE_FIND_ROOT_PATH=$standalone_toolchain/sysroot
PATH=[$standalone_toolchain/bin]
CHOST=$target_host
AR=$target_host-ar
AS=$target_host-as
RANLIB=$target_host-ranlib
CC=$target_host-$cc_compiler
CXX=$target_host-$cxx_compiler
LD=$target_host-ld
STRIP=$target_host-strip
CFLAGS= -fPIE -fPIC -I$standalone_toolchain/include/c++/4.9.x

(continues on next page)

11.1. Cross building 115

https://developer.android.com/ndk/downloads
https://developer.android.com/ndk/guides/standalone_toolchain
https://developer.android.com/ndk/guides/standalone_toolchain

conan Documentation, Release 1.5.2

(continued from previous page)

CXXFLAGS= -fPIE -fPIC -I$standalone_toolchain/include/c++/4.9.x
LDFLAGS= -pie

You could also use gcc using this profile arm_21_toolchain_gcc, changing the cc_compiler and cxx_compiler
variables, removing -fPIE flag and, of course, changing the [settings] to match the gcc toolchain compiler:

standalone_toolchain=/myfolder/arm_21_toolchain
target_host=arm-linux-androideabi
cc_compiler=gcc
cxx_compiler=g++

[settings]
compiler=gcc
compiler.version=4.9
compiler.libcxx=libstdc++
os=Android
os.api_level=21
arch=armv7
build_type=Release

[env]
CONAN_CMAKE_FIND_ROOT_PATH=$standalone_toolchain/sysroot
PATH=[$standalone_toolchain/bin]
CHOST=$target_host
AR=$target_host-ar
AS=$target_host-as
RANLIB=$target_host-ranlib
CC=$target_host-$cc_compiler
CXX=$target_host-$cxx_compiler
LD=$target_host-ld
STRIP=$target_host-strip
CFLAGS= -fPIC -I$standalone_toolchain/include/c++/4.9.x
CXXFLAGS= -fPIC -I$standalone_toolchain/include/c++/4.9.x
LDFLAGS=

• Clone, for example, the zlib library to try to build it to Android

git clone https://github.com/lasote/conan-zlib.git

• Call conan create using the created profile.

$ cd conan-zlib && conan create . conan/testing --profile=../android_21_arm_clang

...
-- Build files have been written to: /tmp/conan-zlib/test_package/build/
→˓ba0b9dbae0576b9a23ce7005180b00e4fdef1198
Scanning dependencies of target enough
[50%] Building C object CMakeFiles/enough.dir/enough.c.o
[100%] Linking C executable bin/enough
[100%] Built target enough
zlib/1.2.11@conan/testing (test package): Running test()

A bin/enough for Android ARM platform has been built.

116 Chapter 11. Systems and cross building

conan Documentation, Release 1.5.2

Using build requires

Instead of downloading manually the toolchain and creating a profile, you can create a Conan package with it. The
toolchain Conan package needs to fill the env_info object in the package_info() method with the same variables we’ve
specified in the examples above in the [env] section of profiles.

A layout of a Conan package for a toolchain could looks like this:

from conans import ConanFile
import os

class MyToolchainXXXConan(ConanFile):
name = "my_toolchain"
version = "0.1"
settings = "os_build", "arch_build"

def build(self):
Typically download the toolchain for the 'build' host
url = "http://fake_url.com/installers/%s/%s/toolchain.tgz" % (os_build, os_arch)
tools.download(url, "toolchain.tgz")
tools.unzip("toolchain.tgz")

def package(self):
Copy all the
self.copy("*", dst="", src="toolchain")

def package_info(self):
bin_folder = os.path.join(self.package_folder, "bin")
self.env_info.path.append(bin_folder)
self.env_info.CC = os.path.join(bin_folder, "mycompiler-cc")
self.env_info.CXX = os.path.join(bin_folder, "mycompiler-cxx")
self.env_info.SYSROOT = self.package_folder

Finally, when you want to cross-build a library, the profile to be used, will include a [build_requires] section with
the reference to our new packaged toolchain. Also will contain a [settings] section with the same settings of the
examples above.

Example: Darwin Toolchain

Check the Darwin Toolchain package in conan-center. You can use a profile like the following to cross build your
packages for iOS, watchOS and tvOS:

Listing 1: ios_profile

include(default)

[settings]
os=iOS
os.version=9.0
arch=armv7

[build_requires]
darwin-toolchain/1.0@theodelrieu/stable

11.1. Cross building 117

https://github.com/theodelrieu/conan-darwin-toolchain

conan Documentation, Release 1.5.2

$ conan install . --profile ios_profile

See also:

• Check the Creating conan packages to install dev tools to learn more about how to create Conan packages for
tools.

• Check the mingw-installer build require recipe as an example of packaging a compiler.

Using Docker images

You can use some available docker images with Conan preinstalled images to cross build conan packages. Currently
there are i386, armv7 and armv7hf images with the needed packages and toolchains installed to cross build.

Example: Cross-building and uploading a package along with all its missing dependencies for Linux/armv7hf is
done in few steps:

$ git clone https://github.com/conan-community/conan-openssl
$ cd conan-openssl
$ docker run -it -v$(pwd):/home/conan/project --rm lasote/conangcc49-armv7hf /bin/bash

Now we are running on the conangcc49-armv7hf container
$ sudo pip install conan --upgrade
$ cd project

$ conan create . user/channel --build missing
$ conan remote add myremoteARMV7 http://some.remote.url
$ conan upload "*" -r myremoteARMV7 --all

Check the section: How to run Conan with Docker to know more.

Preparing recipes to be cross-compiled

If you use the build helpers AutoToolsBuildEnvironment or CMake, Conan will adjust the configuration accordingly to
the specified settings.

If don’t, you can always check the self.settings.os, self.settings.build_os, self.settings.arch and
self.settings.build_arch settings values and inject the needed flags to your build system script.

You can use this tool to check if you are cross building:

• tools.cross_building(self.settings) (returns True or False)

11.1.4 ARM architecture reference

Remember that the conan settings are intended to unify the different names for operating systems, compilers, architec-
tures etc.

Conan has different architecture settings for ARM: armv6, armv7, armv7hf, armv8. The “problem” with ARM archi-
tecture is that frequently are named in different ways, so maybe you are wondering what setting do you need to specify
in your case.

Here is a table with some typical ARM platorms:

118 Chapter 11. Systems and cross building

https://github.com/conan-community/conan-mingw-installer/blob/master/conanfile.py

conan Documentation, Release 1.5.2

Platform Conan setting
Raspberry PI 1 armv6
Raspberry PI 2 armv7 or armv7hf if we want to use the float point hard support
Raspberry PI 3 armv8 also known as armv64-v8a
Visual Studio armv7 currently Visual Studio builds armv7 binaries when you select ARM.
Android armbeabi-v7a armv7
Android armv64-v8a armv8
Android armeabi armv6 (as a minimal compatible, will be compatible with v7 too)

See also:

Reference links

ARM

• https://developer.arm.com/docs/dui0773/latest/compiling-c-and-c-code/specifying-a-target-architecture-processor-and-instruction-set

• https://developer.arm.com/docs/dui0774/latest/compiler-command-line-options/-target

• https://developer.arm.com/docs/dui0774/latest/compiler-command-line-options/-march

ANDROID

• https://developer.android.com/ndk/guides/standalone_toolchain

VISUAL STUDIO

• https://msdn.microsoft.com/en-us/library/dn736986.aspx

See also:

• See conan.conf file and Environment variables sections to know more.

• See AutoToolsBuildEnvironment build helper reference.

• See CMake build helper reference.

• See CMake cross building wiki to know more about cross building with CMake.

11.2 Windows Subsystems

On Windows, you can run different subsystems that enhance with UNIX capabilities the operating system.

Conan supports MSYS2, CYGWIN, WSL and in general any subsystem that is able to run a bash terminal.

Many libraries use these subsystems to be able to use the Unix tools like the Autoconf suite to generate and build
Makefiles.

The difference between MSYS2 and CYGWIN is that MSYS2 is oriented to the development of native Windows pack-
ages, while CYGWIN tries to provide a complete unix-like system to run any Unix application on it.

For that reason, we recommend the use of MSYS2 as a subsystem to be used with Conan.

11.2. Windows Subsystems 119

https://developer.arm.com/docs/dui0773/latest/compiling-c-and-c-code/specifying-a-target-architecture-processor-and-instruction-set
https://developer.arm.com/docs/dui0774/latest/compiler-command-line-options/-target
https://developer.arm.com/docs/dui0774/latest/compiler-command-line-options/-march
https://developer.android.com/ndk/guides/standalone_toolchain
https://msdn.microsoft.com/en-us/library/dn736986.aspx
https://www.vtk.org/Wiki/CMake_Cross_Compiling

conan Documentation, Release 1.5.2

11.2.1 Operation Modes

The MSYS2 and CYGWIN can be used with different operation modes:

• You can use them together with MinGW to build Windows-native software.

• You can use them together with any other compiler to build Windows-native software, even with Visual Studio.

• You can use them with MinGW to build specific software for the subsystem, with a dependency to a runtime
DLL (msys-2.0.dll and cygwin1.dll)

If you are building specific software for the subsystem, you have to specify a value for the setting os.subsystem, if
you are only using the subsystem for taking benefit of the UNIX tools but generating native Windows software, you
shouldn’t specify it.

11.2.2 Running commands inside the subsystem

self.run()

In a Conan recipe, you can use the self.run method specifying the parameter win_bash=True that will call auto-
matically to the tool tools.run_in_windows_bash.

It will use the bash in the path or the bash specified for the environment variable CONAN_BASH_PATH to run the
specified command.

Conan will automatically escape the command to match the detected subsystem. If you also specify the msys_mingw
parameter to False, and the subsystem is MSYS2 it will run in Windows-native mode, the compiler won’t link against
the msys-2.0.dll.

AutoToolsBuildEnvironment

In the constructor of the build helper, you have the win_bash parameter. Set it to True to run the configure and
make commands inside a bash.

11.2.3 Controlling the build environment

Building software in a Windows subsystem for a different compiler than MinGW can be painful sometimes. The reason
is how the subsystem finds your compiler/tools in your system.

For example, the icu library requires Visual Studio to be built in Windows, but also a subsystem able to build the
Makefile. A very common problem and example of the pain is the link.exe program. In the Visual Studio suite,
link.exe is the linker, but in the MSYS2 environment the link.exe is a tool to manage symbolic links.

Conan is able to prioritize the tools when you use build_requires, and put the tools in the PATH in the right order.

There are some packages you can use as build_requires:

• From Conan-center:

– mingw_installer/1.0@conan/stable: MinGW compiler installer as a Conan package.

– msys2_installer/latest@bincrafters/stable: MSYS2 subsystem as a Conan package.

– cygwin_installer/2.9.0@bincrafters/stable: Cygwin subsystem as a Conan package.

For example, create a profile and name it msys2_mingw with the following contents:

120 Chapter 11. Systems and cross building

http://site.icu-project.org/

conan Documentation, Release 1.5.2

[build_requires]
mingw_installer/1.0@conan/stable
msys2_installer/latest@bincrafters/stable

[settings]
os_build=Windows
os=Windows
arch=x86_64
arch_build=x86_64
compiler=gcc
compiler.version=4.9
compiler.exception=seh
compiler.libcxx=libstdc++11
compiler.threads=posix
build_type=Release

Then you can have a conanfile.py that can use self.run() with win_bash=True to run any command in a bash
terminal or use the AutoToolsBuildEnvironment to invoke configure/make in the subsystem:

from conans import ConanFile
import os

class MyToolchainXXXConan(ConanFile):
name = "mylib"
version = "0.1"
...

def build(self):
self.run("some_command", win_bash=True)

env_build = AutoToolsBuildEnvironment(self, win_bash=True)
env_build.configure()
env_build.make()

...

And apply the profile in your recipe to create a package using the MSYS2 and MINGW:

$ conan create . user/testing --profile msys2_mingw

As we included in the profile the MinGW and then the MSYS2 build_require, when we run a command, the PATH will
contain first the MinGW tools and finally the MSYS2.

What could we do with the Visual Studio issue with link.exe? You can pass an additional parameter to
run_in_windows_bash with a dictionary of environment variables to have more priority than the others:

def build(self):
...
vs_path = tools.vcvars_dict(self.settings)["PATH"] # Extract the path from the␣

→˓vcvars_dict tool
tools.run_in_windows_bash(self, command, env={"PATH": vs_path})

So you will get first the link.exe from the Visual Studio.

11.2. Windows Subsystems 121

conan Documentation, Release 1.5.2

Also, Conan has a tool tools.remove_from_path that you can use in a recipe to remove temporally a tool from the
path if you know that it can interfere with your build script:

class MyToolchainXXXConan(ConanFile):
name = "mylib"
version = "0.1"
...

def build(self):
with tools.remove_from_path("link"):

Call something
self.run("some_command", win_bash=True)

...

122 Chapter 11. Systems and cross building

CHAPTER

TWELVE

INTEGRATIONS

This topical list of build systems, IDEs, and CI platforms provides information on how conan packages can be con-
sumed, created, and continuously deployed/tested with each, as applicable.

12.1 CMake

Conan can be integrated with CMake using generators, build helpers and custom findXXX.cmake files:

12.1.1 cmake generator

If you are using CMake to build your project, you can use the cmake generator to define all your requirements informa-
tion in cmake syntax. It creates a file named conanbuildinfo.cmake that can be imported from your CMakeLists.
txt.

conanfile.txt

...

[generators]
cmake

When conan install is executed, a file named conanbuildinfo.cmake is created.

We can include conanbuildinfo.cmake in our project’s CMakeLists.txt to manage our requirements. The inclu-
sion of conanbuildinfo.cmake doesn’t alter cmake environment at all, it just provides CONAN_ variables and some
useful macros.

123

conan Documentation, Release 1.5.2

Global variables approach

The simplest way to consume it would be to invoke the conan_basic_setup() macro, which will basically set global
include directories, libraries directories, definitions, etc. so typically is enough to do:

include(${CMAKE_BINARY_DIR}/conanbuildinfo.cmake)
conan_basic_setup()

add_executable(timer timer.cpp)
target_link_libraries(timer ${CONAN_LIBS})

The conan_basic_setup() is split in smaller macros, that should be self explanatory. If you need to do something
different, you can just use them individually.

Targets approach

For modern cmake (>=3.1.2), you can use the following approach:

include(${CMAKE_BINARY_DIR}/conanbuildinfo.cmake)
conan_basic_setup(TARGETS)

add_executable(timer timer.cpp)
target_link_libraries(timer CONAN_PKG::Poco)

Using TARGETS as argument, conan_basic_setup() will internally call the macro conan_define_targets()
which defines cmake INTERFACE IMPORTED targets, one per package. These targets, named
CONAN_PKG::PackageName can be used to link with, instead of using global cmake setup.

See also:

Check the section Reference/Generators/cmake to read more about this generator.

12.1.2 cmake_multi generator

cmake_multi generator is intended for CMake multi-configuration environments, like Visual Studio and XCode IDEs
that do not configure for a specific build_type, like Debug or Release, but rather can be used for both and switch
among Debug andRelease configurations with a combo box or similar control. The project configuration for cmake is
different, in multi-configuration environments, the flow would be:

$ cmake .. -G "Visual Studio 14 Win64"
Now open the IDE (.sln file) or
$ cmake --build . --config Release

While in single-configuration environments (Unix Makefiles, etc):

$ cmake .. -G "Unix Makefiles" -DCMAKE_BUILD_TYPE=Release
Build from your IDE, launching make, or
$ cmake --build .

The CMAKE_BUILD_TYPE default, if not specified is Debug.

With the regular conan cmake generator, only 1 configuration at a time can be managed. Then, it is a universal,
homogeneous solution for all environments. This is the recommended way, using the regular cmake generator, and just
go to the command line and switch among configurations:

124 Chapter 12. Integrations

conan Documentation, Release 1.5.2

$ conan install -s build_type=Release ...
Work in release, then, to switch to Debug dependencies
$ conan install -s build_type=Debug ...

However, end consumers with heavy usage of the IDE, might want a multi-configuration build. The cmake_multi
experimental generator is able to do that. First, both Debug and Release dependencies have to be installed:

$ conan install -g cmake_multi -s build_type=Release ...
$ conan install -g cmake_multi -s build_type=Debug ...

These commands will generate 3 files: conanbuildinfo_release.cmake, conanbuildinfo_debug.cmake, and
conanbuildinfo_multi.cmake, which includes the other two, and enables its use.

Warning: The cmake_multi generator is designed as a helper for consumers, but not for creating packages. If
you also want to create a package, see Creating packages section.

Global variables approach

The consumer project might write a CMakeLists.txt like:

project(MyHello)
cmake_minimum_required(VERSION 2.8.12)

include(${CMAKE_BINARY_DIR}/conanbuildinfo_multi.cmake)
conan_basic_setup()

add_executable(say_hello main.cpp)
foreach(_LIB ${CONAN_LIBS_RELEASE})

target_link_libraries(say_hello optimized ${_LIB})
endforeach()
foreach(_LIB ${CONAN_LIBS_DEBUG})

target_link_libraries(say_hello debug ${_LIB})
endforeach()

Targets approach

Or, if using the modern cmake syntax with targets (where Hello1 is an example package name that the executable
say_hello depends on):

project(MyHello)
cmake_minimum_required(VERSION 2.8.12)

include(${CMAKE_BINARY_DIR}/conanbuildinfo_multi.cmake)
conan_basic_setup(TARGETS)

add_executable(say_hello main.cpp)
target_link_libraries(say_hello CONAN_PKG::Hello1)

There’s also a convenient macro for linking to all libraries:

12.1. CMake 125

conan Documentation, Release 1.5.2

project(MyHello)
cmake_minimum_required(VERSION 2.8.12)

include(${CMAKE_BINARY_DIR}/conanbuildinfo_multi.cmake)
conan_basic_setup()

add_executable(say_hello main.cpp)
conan_target_link_libraries(say_hello)

With this approach, the end user can open the generated IDE project and switch among both configurations, building
the project, or from the command line:

$ cmake --build . --config Release
And without having to conan install again, or do anything else
$ cmake --build . --config Debug

Creating packages

The cmake_multi generator is just for consumption. It cannot be used to create packages. If you want to be able
to both use the cmake_multi generator to install dependencies and build your project but also to create packages
from that code, you need to specify the regular cmake generator for package creation, and prepare the CMakeLists.txt
accordingly, something like:

project(MyHello)
cmake_minimum_required(VERSION 2.8.12)

if(EXISTS ${CMAKE_BINARY_DIR}/conanbuildinfo_multi.cmake)
include(${CMAKE_BINARY_DIR}/conanbuildinfo_multi.cmake)

else()
include(${CMAKE_BINARY_DIR}/conanbuildinfo.cmake)

endif()

conan_basic_setup()

add_executable(say_hello main.cpp)
conan_target_link_libraries(say_hello)

Then, make sure that the generator cmake_multi is not specified in the conanfiles, but the users specify it in the
command line while installing dependencies:

$ conan install . -g cmake_multi

See also:

Check the section Reference/Generators/cmake to read more about this generator.

126 Chapter 12. Integrations

conan Documentation, Release 1.5.2

12.1.3 cmake_paths generator

This generator is especially useful if you are using CMake based only on the find_package feature to locate the
dependencies.

The cmake_paths generator creates a file named conan_paths.cmake declaring:

• CMAKE_MODULE_PATH with the folders of the required packages, to allow CMake to locate the included cmake
scripts and FindXXX.cmake files. The folder containing the conan_paths.cmake (self.install_folder when
used in a recipe) is also included, so any custom file will be located too. Check cmake_find_package generator.

• CMAKE_PREFIX_PATH used by FIND_LIBRARY() to locate library files (.a, .lib, .so, .dll) in your packages.

Listing 1: conanfile.txt

[requires]
zlib/1.2.11@conan/stable
...

[generators]
cmake_paths

Listing 2: CMakeList.txt

cmake_minimum_required(VERSION 3.0)
project(helloworld)
add_executable(helloworld hello.c)
find_package(Zlib)
if(ZLIB_FOUND)

include_directories(${ZLIB_INCLUDE_DIRS})
target_link_libraries (helloworld ${ZLIB_LIBRARIES})

endif()

In the example above, the zlib/1.2.11@conan/stable package is not packaging a custom FindZLIB.cmake file,
but the FindZLIB.cmake included in the CMake installation directory (/Modules) will locate the zlib library from the
Conan package because of the CMAKE_PREFIX_PATH used by the FIND_LIBRARY().

If the zlib/1.2.11@conan/stable would had included a custom FindZLIB.cmake in the package root folder or
any declared self.cpp_info.builddirs, it would have been located because of the CMAKE_MODULE_PATH variable.

You can use the generated conan_paths.cmake file as a cmake toolchain or including it in a CMakeLists.txt of even
including it in another toolchain:

Included as a toolchain

Without modifying your CMakeLists.txt file you can use the conan_paths.cmake as a toolchain:

$ mkdir build && cd build
$ conan install ..
$ cmake .. -DCMAKE_TOOLCHAIN_FILE=conan_paths.cmake -G "Unix Makefiles" -DCMAKE_BUILD_
→˓TYPE=Release
$ cmake --build .

12.1. CMake 127

conan Documentation, Release 1.5.2

Included using the CMAKE_PROJECT_<PROJECT-NAME>_INCLUDE

With CMAKE_PROJECT_<PROJECT-NAME>_INCLUDE you can specify a file to be included by the project() command. If
you already have a toolchain file you can use this variable to include the conan_paths.cmake and insert your toolchain
with the CMAKE_TOOLCHAIN_FILE.

$ mkdir build && cd build
$ conan install ..
$ cmake .. -G "Unix Makefiles" -DCMAKE_BUILD_TYPE=Release -DCMAKE_PROJECT_helloworld_
→˓INCLUDE=build/conan_paths.cmake
$ cmake --build .

Included in your CMakeLists.txt

Listing 3: CMakeList.txt

cmake_minimum_required(VERSION 3.0)
project(helloworld)
include(${CMAKE_BINARY_DIR}/conan_paths.cmake)
add_executable(helloworld hello.c)
find_package(Zlib)
if(ZLIB_FOUND)

include_directories(${ZLIB_INCLUDE_DIRS})
target_link_libraries (helloworld ${ZLIB_LIBRARIES})

endif()

$ mkdir build && cd build
$ conan install ..
$ cmake .. -G "Unix Makefiles" -DCMAKE_BUILD_TYPE=Release
$ cmake --build .

See also:

Check the section Reference/Generators/cmake_paths to read more about this generator.

Note: The CMAKE_MODULE_PATH and CMAKE_PREFIX_PATH contain the paths to the builddirs of every re-
quired package. By default, the root package folder is the only declared builddirs directory. Check the Refer-
ence/conanfile.py/attributes.

12.1.4 cmake_find_package generator

This generator is especially useful if you are using CMake using the find_package feature to locate the dependencies.

The cmake_find_package generator creates a file for each requirement specified in the conanfile.

The name of the files follows the pattern Find<package_name>.cmake. So for the zlib/1.2.11@conan/stable
package, a Findzlib.cmake file will be generated.

128 Chapter 12. Integrations

conan Documentation, Release 1.5.2

In a conanfile.py

Listing 4: conanfile.py

from conans import ConanFile, tools

class LibConan(ConanFile):
...
requires = "zlib/1.2.11@conan/stable"
generators = "cmake_find_package"

def build(self):
cmake = CMake(self) # it will find the packages by using our auto-generated␣

→˓FindXXX.cmake files
cmake.configure()
cmake.build()

In the previous example, the CMake build helper will adjust automatically the CMAKE_MODULE_PATH to the conanfile.
install_folder, where the generated Find<package_name>.cmake are.

In the CMakeList.txt you do not need to specify or include anything related with Conan at all, just rely on the
find_package feature:

Listing 5: CMakeList.txt

cmake_minimum_required(VERSION 3.0)
project(helloworld)
add_executable(helloworld hello.c)
find_package(Zlib)

Global approach
if(ZLIB_FOUND)

include_directories(${ZLIB_INCLUDE_DIRS})
target_link_libraries (helloworld ${ZLIB_LIBRARIES})

endif()

Modern CMake targets approach
if(TARGET zlib::zlib)

target_link_libraries(helloworld zlib::zlib)
endif()

$ conan create . user/channel

lib/1.0@user/channel: Calling build()
-- The C compiler identification is AppleClang 9.1.0.9020039
...
-- Conan: Using autogenerated Findzlib.cmake
-- Found: /Users/user/.conan/data/zlib/1.2.11/conan/stable/package/

→˓0eaf3bfbc94fb6d2c8f230d052d75c6c1a57a4ce/lib/libz.a
lib/1.0@user/channel: Package '72bce3af445a371b892525bc8701d96c568ead8b' created

12.1. CMake 129

conan Documentation, Release 1.5.2

In a conanfile.txt

If you are using a conanfile.txt file in your project, instead of a conanfile.py, this generator can be used together
with the cmake_paths generator to adjust the CMAKE_MODULE_PATH variable automatically and let CMake to locate the
generated Find<package_name>.cmake files.

With cmake_paths:

Listing 6: conanfile.txt

[requires]
zlib/1.2.11@conan/stable
...

[generators]
cmake_find_package
cmake_paths

Listing 7: CMakeList.txt

cmake_minimum_required(VERSION 3.0)
project(helloworld)
include(${CMAKE_BINARY_DIR}/conan_paths.cmake)
add_executable(helloworld hello.c)
find_package(Zlib)

Global approach
if(ZLIB_FOUND)

include_directories(${ZLIB_INCLUDE_DIRS})
target_link_libraries (helloworld ${ZLIB_LIBRARIES})

endif()

Modern CMake targets approach
if(TARGET zlib::zlib)

target_link_libraries(helloworld zlib::zlib)
endif()

$ mkdir build && cd build
$ conan install ..
$ cmake .. -G "Unix Makefiles" -DCMAKE_BUILD_TYPE=Release
-- Conan: Using autogenerated Findzlib.cmake
-- Found: /Users/user/.conan/data/zlib/1.2.11/conan/stable/package/

→˓0eaf3bfbc94fb6d2c8f230d052d75c6c1a57a4ce/lib/libz.a
...

$ cmake --build .

Or you can also adjust CMAKE_MODULE_PATH manually. Without cmake_paths, adjusting CMAKE_MODULE_PATH man-
ually:

Listing 8: conanfile.txt

[requires]
zlib/1.2.11@conan/stable

(continues on next page)

130 Chapter 12. Integrations

conan Documentation, Release 1.5.2

(continued from previous page)

...

[generators]
cmake_find_package

Listing 9: CMakeList.txt

cmake_minimum_required(VERSION 3.0)
project(helloworld)
set(CMAKE_MODULE_PATH ${CMAKE_BINARY_DIR} ${CMAKE_MODULE_PATH})
add_executable(helloworld hello.c)
find_package(Zlib)

Global approach
if(ZLIB_FOUND)

include_directories(${ZLIB_INCLUDE_DIRS})
target_link_libraries (helloworld ${ZLIB_LIBRARIES})

endif()

Modern CMake targets approach
if(TARGET zlib::zlib)

target_link_libraries(helloworld zlib::zlib)
endif()

See also:

Check the section Reference/Generators/cmake_find_package to read more about this generator and the adjusted CMake
variables/targets.

12.1.5 Build automation

You can invoke CMake from your conanfile.py file and automate the build of your library/project. Conan provides
a CMake() helper. This helper is useful to call cmake command both for creating conan packages or automating
your project build with the conan build . command. The CMake() helper will take into account your settings to
automatically set definitions and a generator according to your compiler, build_type, etc.

See also:

Check the section Building with CMake.

12.1.6 Find Packages

If a FindXXX.cmake file for the library you are packaging is already available, it should work automatically.

Variables CMAKE_INCLUDE_PATH and CMAKE_LIBRARY_PATH are set with the right requirements paths.
CMake find_library function will be able to locate the libraries in the package’s folders.

So, you can use find_package normally:

project(MyHello)
cmake_minimum_required(VERSION 2.8.12)

include(conanbuildinfo.cmake)
(continues on next page)

12.1. CMake 131

conan Documentation, Release 1.5.2

(continued from previous page)

conan_basic_setup()

find_package("ZLIB")

if(ZLIB_FOUND)
add_executable(enough enough.c)
include_directories(${ZLIB_INCLUDE_DIRS})
target_link_libraries(enough ${ZLIB_LIBRARIES})

else()
message(FATAL_ERROR "Zlib not found")

endif()

In addition to automatic find_package support, CMAKE_MODULE_PATH variable is set with your requirements
root package paths. You can override the default behavior of any find_package() by creating a findXXX.cmake file in
your package.

Creating a custom FindXXX.cmake file

Sometimes the “official” CMake FindXXX.cmake scripts are not ready to find our libraries (not supported library names
for specific settings, fixed installation directories like C:\OpenSSL. . . etc) Or maybe there is no “official” CMake script
for our library.

So in these cases we can provide a custom FindXXX.cmake file in our conan packages.

1. Create a file named FindXXX.cmake and save it in your conan package root folder. Where XXX is the name of
the library that we will use in the find_package CMake function. For example, we create a FindZLIB.cmake and
use find_package(ZLIB). We recommend to copy the original FindXXX.cmake file from Kitware (folder Mod-
ules/FindXXX.cmake), if available, and modify it to help finding our library files, but it depends a lot, maybe you are
interested in creating a new one.

If it’s not provided you can create a basic one, take a look at this example with the ZLIB library:

FindZLIB.cmake

find_path(ZLIB_INCLUDE_DIR NAMES zlib.h PATHS ${CONAN_INCLUDE_DIRS_ZLIB})
find_library(ZLIB_LIBRARY NAMES ${CONAN_LIBS_ZLIB} PATHS ${CONAN_LIB_DIRS_ZLIB})

set(ZLIB_FOUND TRUE)
set(ZLIB_INCLUDE_DIRS ${ZLIB_INCLUDE_DIR})
set(ZLIB_LIBRARIES ${ZLIB_LIBRARY})
mark_as_advanced(ZLIB_LIBRARY ZLIB_INCLUDE_DIR)

In the first line we are finding the path where our headers should be found, we suggest the CO-
NAN_INCLUDE_DIRS_XXX. Then the same for the library names with CONAN_LIBS_XXX and the paths where
the libs are CONAN_LIB_DIRS_XXX.

2. In your conanfile.py file add the FindXXX.cmake to the exports_sources field:

class HelloConan(ConanFile):
name = "Hello"
version = "0.1"
...
exports_sources = ["FindXXX.cmake"]

3. In the package method, copy the FindXXX.cmake file to the root:

132 Chapter 12. Integrations

conan Documentation, Release 1.5.2

class HelloConan(ConanFile):
name = "Hello"
version = "0.1"
...
exports_sources = ["FindXXX.cmake"]

def package(self):
...
self.copy("FindXXX.cmake", ".", ".")

12.2 Autotools: configure/make

If you are using configure/make you can use AutoToolsBuildEnvironment helper. This helper sets LIBS, LDFLAGS,
CFLAGS, CXXFLAGS and CPPFLAGS environment variables based on your requirements.

Check Building with Autotools for more info.

12.3 Visual Studio

Conan can be integrated with Visual Studio in two different ways:

• Using the cmake generator to create a conanbuildinfo.cmake file.

• Using the visual_studio generator to create a conanbuildinfo.props file.

12.3.1 With CMake

Use the cmake generator, or cmake_multi, if you are using cmake to machine-generate your Visual Studio projects.

Check the generator section to read about the cmake generator. Check the official CMake docs to find out more about
generating Visual Studio projects with CMake.

However, beware of some current cmake limitations, such as not dealing well with find-packages, because cmake
doesn’t know how to handle finding both debug and release packages.

Note: If you want to use the Visual Studio 2017 + CMake integration, check this how-to

12.2. Autotools: configure/make 133

https://cmake.org/cmake/help/v3.0/manual/cmake-generators.7.html

conan Documentation, Release 1.5.2

12.3.2 With visual_studio generator

Use this, or visual_studio_multi, if you are maintaining your Visual Studio projects, and want to use Conan to to tell
Visual Studio how to find your third-party dependencies.

You can use the visual_studio generator to manage your requirements via your Visual Studio project.

This generator creates a Visual Studio project properties file, with all the include paths, lib paths, libs, flags etc, that
can be imported in your project.

Open conanfile.txt and change (or add) the visual_studio generator:

[requires]
Poco/1.7.8p3@pocoproject/stable

[generators]
visual_studio

Install the requirements:

$ conan install

Go to your Visual Studio project, and open the Property Manager, usually in View -> Other Windows -> Property
Manager.

Click the “+” icon and select the generated conanbuildinfo.props file:

134 Chapter 12. Integrations

https://msdn.microsoft.com/en-us/library/669zx6zc.aspx

conan Documentation, Release 1.5.2

Build your project as usual.

Note: Remember to set your project’s architecture and build type accordingly, explicitly or implicitly, when issuing
the conan install command. If these values don’t match, you build will probably fail.

e.g. Release/x64

See also:

Check the Reference/Generators/visual_studio for the complete reference.

12.3.3 Calling Visual Studio compiler

You can call your Visual Studio compiler from your build() method using the VisualStudioBuildEnvironment
and the tools.vcvars_command.

Check Build with Visual Studio section for more info.

12.3.4 Build an existing Visual Studio project

You can build an existing Visual Studio from your build() method using the MSBuild() build helper.

from conans import ConanFile, MSBuild

class ExampleConan(ConanFile):
...

def build(self):
msbuild = MSBuild(self)
msbuild.build("MyProject.sln")

12.3. Visual Studio 135

conan Documentation, Release 1.5.2

12.3.5 Toolsets

You can use the subsetting toolset of the Visual Studio compiler to specify a custom toolset. It will be automatically
applied when using the CMake() and MSBuild() build helpers. The toolset can be also specified manually in these
build helpers with the toolset parameter.

By default, Conan will not generate a new binary package if the specified compiler.toolset matches an already
generated package for the corresponding compiler.version. Check the package_id() reference to know more.

See also:

• Check the CMake() reference section for more info.

12.4 Apple/Xcode

Conan can be integrated with XCode in two different ways:

• Using the cmake generator to create a conanbuildinfo.cmake file.

• Using the xcode generator to create a conanbuildinfo.xcconfig file.

12.4.1 With CMake

Check the Integrations/cmake section to read about the cmake generator. Check the official CMake docs to find out
more about generating Xcode projects with CMake.

12.4.2 With the xcode generator

You can use the xcode generator to integrate your requirements in your Xcode project. This generator creates an
xcconfig file, with all the include paths, lib paths, libs, flags etc, that can be imported in your project.

Open conanfile.txt and change (or add) the xcode generator:

[requires]
Poco/1.7.8p3@pocoproject/stable

[generators]
xcode

Install the requirements:

$ conan install

Go to your Xcode project, click on the project and select Add files to.

136 Chapter 12. Integrations

https://cmake.org/cmake/help/v3.0/manual/cmake-generators.7.html

conan Documentation, Release 1.5.2

Choose conanbuildinfo.xcconfig generated.

Click on the project again. In the info/configurations section, choose conanbuildinfo for release and debug.

12.4. Apple/Xcode 137

conan Documentation, Release 1.5.2

Build your project as usual.

See also:

Check the Reference/Generators/xcode for the complete reference.

See also:

Check the Tools section about Apple tools to ease the integration with the Apple development tools in your recipes
using the toolchain as a build require.

See also:

Check the Darwin Toolchain package section to know how to cross build for iOS, watchOS and tvOS.

12.5 Compilers on command line

The compiler_args generator creates a file named conanbuildinfo.args containing a command line arguments to
invoke gcc, clang or cl (Visual Studio) compiler.

Now we are going to compile the getting started example using compiler_args instead of the cmake generator.

Open conanfile.txt and change (or add) compiler_args generator:

[requires]
Poco/1.9.0@pocoproject/stable

[generators]
compiler_args

Install the requirements (from the mytimer/build folder):

$ conan install ..

Note: Remember, if you don’t specify settings in install command with -s, conan will use the detected defaults. You
can always change them by editing the ~/.conan/profiles/default or override them with “-s” parameters.

The generated conanbuildinfo.args:

138 Chapter 12. Integrations

conan Documentation, Release 1.5.2

-DPOCO_STATIC=ON -DPOCO_NO_AUTOMATIC_LIBS
-Ipath/to/Poco/1.7.9/pocoproject/stable/package/dd758cf2da203f96c86eb99047ac152bcd0c0fa9/
→˓include
-Ipath/to/OpenSSL/1.0.2l/conan/stable/package/227fb0ea22f4797212e72ba94ea89c7b3fbc2a0c/
→˓include
-Ipath/to/zlib/1.2.11/conan/stable/package/8018a4df6e7d2b4630a814fa40c81b85b9182d2b/
→˓include
-m64 -DNDEBUG -Wl,-rpath,"path/to/Poco/1.7.9/pocoproject/stable/package/
→˓dd758cf2da203f96c86eb99047ac152bcd0c0fa9/lib"
-Wl,-rpath,"path/to/OpenSSL/1.0.2l/conan/stable/package/
→˓227fb0ea22f4797212e72ba94ea89c7b3fbc2a0c/lib"
-Wl,-rpath,"path/to/zlib/1.2.11/conan/stable/package/
→˓8018a4df6e7d2b4630a814fa40c81b85b9182d2b/lib"
-Lpath/to/Poco/1.7.9/pocoproject/stable/package/dd758cf2da203f96c86eb99047ac152bcd0c0fa9/
→˓lib
-Lpath/to/OpenSSL/1.0.2l/conan/stable/package/227fb0ea22f4797212e72ba94ea89c7b3fbc2a0c/
→˓lib
-Lpath/to/zlib/1.2.11/conan/stable/package/8018a4df6e7d2b4630a814fa40c81b85b9182d2b/lib
-lPocoUtil -lPocoMongoDB -lPocoNet -lPocoNetSSL -lPocoCrypto -lPocoData -lPocoDataSQLite␣
→˓-lPocoZip
-lPocoXML -lPocoJSON -lPocoFoundation -lssl -lcrypto -lz -stdlib=libc++

This is hard to read, but those are just the compiler_args parameters needed to compile our program:

• -I options with headers directories

• -L for libraries directories

• -l for library names

• and so on. . . see the complete reference here

It’s almost the same information we can see in conanbuildinfo.cmake and many other generators’ files.

Run:

$ mkdir bin
$ g++ ../timer.cpp @conanbuildinfo.args -std=c++14 -o bin/timer

Note: “@conanbuildinfo.args” appends all the file contents to g++ command parameters

$./bin/timer
Callback called after 250 milliseconds.
...

To invoke cl (Visual Studio compiler):

$ cl /EHsc timer.cpp @conanbuildinfo.args

You can also use the generator within your build() method of your conanfile.py.

Check the Reference, generators, compiler_args section for more info.

12.5. Compilers on command line 139

conan Documentation, Release 1.5.2

12.6 Android Studio

You can use Conan to cross-build your libraries for Android in different architectures. If you are using Android Studio
for your Android application development, you can integrate it conan to automate the library building for the different
architectures that you want to support in your project.

Here is an example of how to integrate the libpng conan package library in an Android application, but any library
that can be cross-compiled to Android could be used using the same procedure.

We are going to start from the “Hello World” wizard application and then will add it the libpng C library:

1. Follow the cross-build your libraries for Android guide to create a standalone toolchain and create a profile
android_21_arm_clang for Android. You can also use the NDK that the Android Studio installs.

2. Create a new Android Studio project and include C++ support.

3. Select your API level and target, the arch and api level have to match with the standalone toolchain created in step 1.

140 Chapter 12. Integrations

conan Documentation, Release 1.5.2

4. Add an empty Activity and name it.

12.6. Android Studio 141

conan Documentation, Release 1.5.2

5. Select the C++ standard

6. Change to the project view and in the app folder create a conanfile.txt with the following contents:

conanfile.txt

[requires]
(continues on next page)

142 Chapter 12. Integrations

conan Documentation, Release 1.5.2

(continued from previous page)

libpng/1.6.23@lasote/stable

[generators]
cmake

7. Open the CMakeLists.txt file from the app folder and replace the contents with:

cmake_minimum_required(VERSION 3.4.1)

include(${CMAKE_CURRENT_SOURCE_DIR}/conan_build/conanbuildinfo.cmake)
set(CMAKE_CXX_COMPILER_VERSION "5.0") # Unknown miss-detection of the compiler by CMake
conan_basic_setup(TARGETS)

add_library(native-lib SHARED src/main/cpp/native-lib.cpp)
target_link_libraries(native-lib CONAN_PKG::libpng)

8. Open the app/build.gradle file, we are configuring the architectures we want to build specifying adding a new task
conanInstall that will call conan install to install the requirements:

• In the defaultConfig section, append:

ndk {
// Specifies the ABI configurations of your native
// libraries Gradle should build and package with your APK.
abiFilters 'armeabi-v7a'

}

• After the android block:

task conanInstall {
def buildDir = new File("app/conan_build")
buildDir.mkdirs()
// if you have problems running the command try to specify the absolute
// path to conan (Known problem in MacOSX) /usr/local/bin/conan
def cmmd = "conan install ../conanfile.txt --profile android_21_arm_clang --build␣

→˓missing "
print(">> ${cmmd} \n")

def sout = new StringBuilder(), serr = new StringBuilder()
def proc = cmmd.execute(null, buildDir)
proc.consumeProcessOutput(sout, serr)
proc.waitFor()
println "$sout $serr"
if(proc.exitValue() != 0){

throw new Exception("out> $sout err> $serr" + "\nCommand: ${cmmd}")
}

}

9. Finally open the default example cpp library in app/src/main/cpp/native-lib.cpp and include some lines
using your library. Be careful with the JNICALL name if you used other app name in the wizard:

#include <jni.h>
#include <string>

(continues on next page)

12.6. Android Studio 143

conan Documentation, Release 1.5.2

(continued from previous page)

#include "png.h"
#include "zlib.h"
#include <sstream>
#include <iostream>

extern "C"
JNIEXPORT jstring JNICALL
Java_com_jfrog_myconanandroidcppapp_MainActivity_stringFromJNI(

JNIEnv *env,
jobject /* this */) {

std::ostringstream oss;
oss << "Compiled with libpng: " << PNG_LIBPNG_VER_STRING << std::endl;
oss << "Running with libpng: " << png_libpng_ver << std::endl;
oss << "Compiled with zlib: " << ZLIB_VERSION << std::endl;
oss << "Running with zlib: " << zlib_version << std::endl;

return env->NewStringUTF(oss.str().c_str());
}

Build your project normally, conan will create a “conan” folder with a folder for each different architecture you have
speified in the abiFilters with a conanbuildinfo.cmake file.

Then run the app using an x86 emulator for best performance:

See also:

Check the section howtos/Cross building/Android to read more about cross building for Android.

144 Chapter 12. Integrations

conan Documentation, Release 1.5.2

12.7 CLion

CLion uses CMake as the build system of projects, so you can use the CMake generator to manage your requirements
in your CLion project.

Just include the conanbuildinfo.cmake this way:

if(EXISTS ${CMAKE_BINARY_DIR}/conanbuildinfo.cmake)
include(${CMAKE_BINARY_DIR}/conanbuildinfo.cmake)
conan_basic_setup()

else()
message(WARNING "The file conanbuildinfo.cmake doesn't exist, you have to run conan␣

→˓install first")
endif()

If the conanbuildinfo.cmake file is not found, it will print a warning message in the Messages console of your
Clion IDE.

12.7.1 Using packages in a CLion project

Let see an example of how to consume Conan packages in a CLion project. We are going to require and use the zlib
conan package.

1. Create a new CLion project

12.7. CLion 145

conan Documentation, Release 1.5.2

2. Edit the CMakeLists.txt file and add the following lines:

if(EXISTS ${CMAKE_BINARY_DIR}/conanbuildinfo.cmake)
include(${CMAKE_BINARY_DIR}/conanbuildinfo.cmake)
conan_basic_setup()

else()
message(WARNING "The file conanbuildinfo.cmake doesn't exist, you have to run conan␣

→˓install first")
endif()

3. CLion will reload your CMake project and you will be able to see a Warning in the console, because the
conanbuildinfo.cmake file still doesn’t exists:

4. Create a conanfile.txt with all your requirements and use the cmake generator. In this case we are only requiring

146 Chapter 12. Integrations

conan Documentation, Release 1.5.2

zlib library from a conan package:

[requires]
zlib/1.2.11@conan/stable

[generators]
cmake

5. Now you can conan install for debug in the cmake-build-debug folder to install your requirements and gen-
erate the conanbuildinfo.cmake file there:

$ conan install . -s build_type=Debug --install-folder=cmake-build-debug

6. Repeat the last step if you have the release build types configured in your CLion IDE, but changing the build_type
setting accordingly:

$ conan install . -s build_type=Release --install-folder=cmake-build-release

7. Now reconfigure your CLion project, the Warning message is not shown anymore:

8. Open the library.cpp file and include the zlib.h, if you follow the link you can see that CLion automatically
detect the zlib.h header file from the local conan cache.

9. Build your project normally using your CLion IDE:

12.7. CLion 147

conan Documentation, Release 1.5.2

You can check a full example of a CLion project reusing conan packages in this github repository: lasote/clion-conan-
consumer.

12.7.2 Creating conan packages in a CLion project

Now we are going to see how to create a conan package from the previous library.

1. Create a new CLion project

2. Edit the CMakeLists.txt file and add the following lines:

if(EXISTS ${CMAKE_BINARY_DIR}/conanbuildinfo.cmake)
include(${CMAKE_BINARY_DIR}/conanbuildinfo.cmake)
conan_basic_setup()

else()
message(WARNING "The file conanbuildinfo.cmake doesn't exist, you have to run conan␣

→˓install first")
endif()

148 Chapter 12. Integrations

https://github.com/lasote/clion-conan-consumer
https://github.com/lasote/clion-conan-consumer

conan Documentation, Release 1.5.2

3. Create a conanfile.py file. It’s recommended to use the conan new command.

$ conan new mylibrary/1.0@myuser/channel

And edit the conanfile.py:

• We are removing the source method because we have the sources in the same project, so we can use the
exports_sources.

• In the package_info method adjust the library name, in this case our CMakeLists.txt is creating a target
library called mylibrary.

• Adjust the CMake helper in the build() method, the cmake.configure() doesn’t need to specify the
source_folder, because we have the library.* files in the root directory.

• Adjust the copy function calls in the package method to ensure that all your headers and libraries are copied to
the conan package.

from conans import ConanFile, CMake, tools

class MylibraryConan(ConanFile):
name = "mylibrary"
version = "1.0"
license = "<Put the package license here>"
url = "<Package recipe repository url here, for issues about the package>"
description = "<Description of Mylibrary here>"
settings = "os", "compiler", "build_type", "arch"
options = {"shared": [True, False]}
default_options = "shared=False"
generators = "cmake"
requires = "zlib/1.2.11@conan/stable"

def build(self):
cmake = CMake(self)
cmake.configure()
cmake.build()

Explicit way:
self.run('cmake "%s" %s' % (self.source_folder, cmake.command_line))
self.run("cmake --build . %s" % cmake.build_config)

def package(self):
self.copy("*.h", dst="include", src="hello")
self.copy("*.lib", dst="lib", keep_path=False)
self.copy("*.dll", dst="bin", keep_path=False)

(continues on next page)

12.7. CLion 149

conan Documentation, Release 1.5.2

(continued from previous page)

self.copy("*.so", dst="lib", keep_path=False)
self.copy("*.dylib", dst="lib", keep_path=False)
self.copy("*.a", dst="lib", keep_path=False)

def package_info(self):
self.cpp_info.libs = ["mylibrary"]

4. To build your library with CLion follow the guide of Using packages from the step 5.

5. To package your library use the conan export-pkg command passing the used build-folder. It will call your
package() method to extract the artifacts and push the conan package to the local cache:

$ conan export-pkg . mylibrary/1.0@myuser/channel --build-folder cmake-build-debug

7. Now you can upload it to a conan server if needed:

$ conan upload mylibrary/1.0@myuser/channel # This will upload only the recipe, use --
→˓all to upload all the generated binary packages.

8. If you would like to see how the package looks like before exporting it to the local cache (conan export-pkg) you
can use the conan package command to create the package in a local directory:

$ conan package . --build-folder cmake-build-debug --package-folder=mypackage

If we list the mypackage folder we can see:

• A lib folder containing our library

• A include folder containing our header files

• A conaninfo.txt and conanmanifest.txt conan files, always present in all packages.

You can check a full example of a CLion project for creating a conan package in this github repository: lasote/clion-
conan-package.

12.8 Ninja, NMake, Borland

These build systems still don’t have a conan generator for using them natively. However, if you are using cmake, you
can instruct conan to use them instead of the default generator (typically Unix Makefiles) defining the environment
variable CONAN_CMAKE_GENERATOR.

Read more about this variable in Environment variables.

12.9 pkg-config and pc files

12.9.1 Intro

If you are creating a Conan package for a library (A) and the build system uses .pc files to locate its dependencies (B
and C), Conan packages too, you can follow different approaches.

The main issue to solve is the absolute paths. When an user installs a package in the local cache, the directory will
probably be different from the directory where the package was created, because of the different computer, conan home
directory or even different user or channel:

150 Chapter 12. Integrations

https://github.com/lasote/clion-conan-package
https://github.com/lasote/clion-conan-package

conan Documentation, Release 1.5.2

In the machine where the packages were created:

/home/user/lasote/.data/storage/zlib/1.2.11/conan/stable

In the machine where some user are reusing the library:

/custom/dir/.data/storage/zlib/1.2.11/conan/testing

So the .pc files containing absolute paths won’t work to locate the dependencies.

Example of a .pc file with an absolute path:

prefix=/Users/lasote/.conan/data/zlib/1.2.11/lasote/stable/package/
→˓b5d68b3533204ad67e01fa587ad28fb8ce010527
exec_prefix=${prefix}
libdir=${exec_prefix}/lib
sharedlibdir=${libdir}
includedir=${prefix}/include

Name: zlib
Description: zlib compression library
Version: 1.2.11

Requires:
Libs: -L${libdir} -L${sharedlibdir} -lz
Cflags: -I${includedir}

12.9.2 Approach 1: Import and patch the prefix in the pc files

Following this approach your library A will import to a local directory the .pc files from B and C, then, as they will
contain absolute paths, the recipe for A will patch the paths to match the current installation directory.

You will need to package the pc files from your dependencies. You can adjust the PKG_CONFIG_PATH to let
pkg-config tool locate your .pc files.

import os
from conans import ConanFile, tools

class LibAConan(ConanFile):
name = "libA"
version = "1.0"
settings = "os", "compiler", "build_type", "arch"
exports_sources = "*.cpp"
requires = "libB/1.0@conan/stable"

def build(self):
lib_b_path = self.deps_cpp_info["libB"].rootpath
copyfile(os.path.join(lib_b_path, "libB.pc"), "libB.pc")
Patch copied file with the libB path
tools.replace_prefix_in_pc_file("libB.pc", lib_b_path)

with tools.environment_append({"PKG_CONFIG_PATH": os.getcwd()}):
CALL YOUR BUILD SYSTEM (configure, make etc)
E.j: self.run('g++ main.cpp $(pkg-config libB --libs --cflags) -o main')

12.9. pkg-config and pc files 151

conan Documentation, Release 1.5.2

12.9.3 Approach 2: Prepare and package pc files before package them

With this approach you will patch the pc files from B and C before package them. The goal is to replace the absolute
path (the variable part of the path) with a variable placeholder. Then in the consumer package A, declare the variable
using --define-variable when calling the pkg-config command.

This approach is cleaner than approach 1, because the packaged files are already prepared to be reused with or without
conan, just declaring the needed variable. And it’s not needed to import the pc files to the consumer package. However,
you need B and C libraries to package the pc files correctly.

Library B recipe (preparing the pc file):

from conans import ConanFile, tools

class LibraryBrecipe(ConanFile):
....

def build(self):
...
tools.replace_prefix_in_pc_file("mypcfile.pc", "${package_root_path_lib_b}")

def package(self):
self.copy(pattern="*.pc", dst="", keep_path=False)

Library A recipe (importing and consuming pc file):

class LibraryArecipe(ConanFile):
....

requires = "libB/1.0@conan/stable, libC/1.0@conan/stable"

def build(self):

args = '--define-variable package_root_path_lib_b=%s' % self.deps_cpp_info["libB
→˓"].rootpath

args += ' --define-variable package_root_path_lib_c=%s' % self.deps_cpp_info[
→˓"libC"].rootpath

pkgconfig_exec = 'pkg-config ' + args

vars = {'PKG_CONFIG': pkgconfig_exec, # Used by autotools
'PKG_CONFIG_PATH': "%s:%s" % (self.deps_cpp_info["libB"].rootpath,

self.deps_cpp_info["libC"].rootpath)}

with tools.environment_append(vars):
Call autotools (./configure ./make, will read PKG_CONFIG)
Or directly declare the variables:
self.run('g++ main.cpp $(pkg-config %s libB --libs --cflags) -o main' % args)

152 Chapter 12. Integrations

conan Documentation, Release 1.5.2

12.9.4 Approach 3: Use –define-prefix

If you have available pkg-config >= 0.29 and you have only one dependency, you can use directly the
--define-prefix option to declare a custom prefix variable. With this approach you won’t need to patch any-
thing, just declare the correct variable.

12.9.5 Approach 4: Use PKG_CONFIG_$PACKAGE_$VARIABLE

If you have available pkg-config >= 0.29.1 you can manage multiple dependencies declaring N variables with the
prefixes:

class LibraryArecipe(ConanFile):
....

requires = "libB/1.0@conan/stable, libC/1.0@conan/stable"

def build(self):

vars = {'PKG_CONFIG_libB_PREFIX': self.deps_cpp_info["libB"].rootpath,
'PKG_CONFIG_libC_PREFIX': self.deps_cpp_info["libC"].rootpath,
'PKG_CONFIG_PATH': "%s:%s" % (self.deps_cpp_info["libB"].rootpath,

self.deps_cpp_info["libC"].rootpath)}

with tools.environment_append(vars):
Call the build system

12.9.6 Approach 5: Use the pkg_config generator

If you use package_info() in libB and libC, and specify all the library names and any other needed flag, you can use
the pkg_config generator during the libA. Those files doesn’t need to be patched, because are dynamically generated
with the correct path.

So it can be a good solution in case you are building libA with a build system that manages pc files like Meson
Build or AutoTools:

Meson Build

from conans import ConanFile, tools, Meson
import os

class ConanFileToolsTest(ConanFile):
generators = "pkg_config"
requires = "LIB_A/0.1@conan/stable"
settings = "os", "compiler", "build_type"

def build(self):
meson = Meson(self)
meson.configure()
meson.build()

Autotools

12.9. pkg-config and pc files 153

conan Documentation, Release 1.5.2

from conans import ConanFile, tools, Meson
import os

class ConanFileToolsTest(ConanFile):
generators = "pkg_config"
requires = "LIB_A/0.1@conan/stable"
settings = "os", "compiler", "build_type"

def build(self):
autotools = AutoToolsBuildEnvironment(self)
When using the pkg_config generator, self.build_folder will be added to PKG_

→˓CONFIG_PATH
so pkg_config will be able to locate the generated pc files from the requires␣

→˓(LIB_A)
autotools.configure()
autotools.make()

See also:

Check the tools.PkgConfig() class, a wrapper of the pkg-config tool that allows to extract flags, library paths, etc for
any pc file.

12.10
Boost Build

With this generator boost-build you can generate a project-root.jam file to be used with your Boost Build system.

Check the generator boost-build

12.11 QMake

A qmake generator will generate a conanbuildinfo.pri file that can be used for your qmake builds.

$ conan install . -g qmake

Add conan_basic_setup to CONFIG and include the file in your existing project .pro file:

yourproject.pro

...

CONFIG += conan_basic_setup
include(conanbuildinfo.pri)

This will include all the statements in conanbuildinfo.pri in your project. Include paths, libraries, defines, etc.
will be set up for all requirements you have defined in conanfile.txt.

154 Chapter 12. Integrations

conan Documentation, Release 1.5.2

If you’d rather like to manually add the variables for each dependency, you can do so by skipping the CONFIG statement
and only include conanbuildinfo.pri:

yourproject.pro

...

include(conanbuildinfo.pri)

you may now modify your variables manually for each library, such as
INCLUDEPATH += CONAN_INCLUDEPATH_POCO

The qmake generator allows multi-configuration packages, i.e. packages that contains both debug and release artifacts.
Lets see an example:

12.11.1 Example

There is a complete example in https://github.com/memsharded/qmake_example This project will depend on a multi-
configuration (debug/release) “Hello World” package, that should be installed first:

$ git clone https://github.com/memsharded/hello_multi_config
$ cd hello_multi_config
$ conan create user/channel

This hello package is created with cmake, but that doesn’t matter, it can be consumed from a qmake project:

Then, you can get the qmake project and build it, both for debug and release (this example has been tested on linux):

$ git clone https://github.com/memsharded/qmake_example
$ cd qmake_example
$ conan install .
$ qmake
$ make
$./helloworld
> Hello World Release!
now lets build the debug one
$ make clean
$ qmake CONFIG+=debug
$ make
$./helloworld
> Hello World Debug!

See also:

Check the Reference/Generators/qmake for the complete reference.

12.11. QMake 155

https://github.com/memsharded/qmake_example

conan Documentation, Release 1.5.2

12.12 Premake

From conan 0.9, generator packages are available. Premake4 has experimental support in one of those packages. You
can use it as:

[requires]
PremakeGen@0.1@memsharded/testing

[generators]
Premake

Check the generator package examples

https://github.com/memsharded/conan-premake

Link to conan package:

12.13 qbs

Conan provides a qbs generator, it will generate a conanbuildinfo.qbs file that can be used for your qbs builds.

Add conanbuildinfo.qbs as a reference on the project level and a Depends item with the name conanbuildinfo:

yourproject.qbs

import qbs

Project {
references: ["conanbuildinfo.qbs"]
Product {

type: "application"
consoleApplication: true
files: [

"conanfile.txt",
"main.cpp",

]
Depends { name: "cpp" }
Depends { name: "ConanBasicSetup" }

}
}

This will include the product called ConanBasicSetupwhich holds all the necessary settings for all your dependencies.

If you’d rather like to manually add each dependency, just replace ConanBasicSetup with the dependency you would
like to include. You may also specify multiple dependencies:

yourproject.qbs

import qbs

(continues on next page)

156 Chapter 12. Integrations

https://github.com/memsharded/conan-premake

conan Documentation, Release 1.5.2

(continued from previous page)

Project {
references: ["conanbuildinfo.qbs"]
Product {

type: "application"
consoleApplication: true
files: [

"conanfile.txt",
"main.cpp",

]
Depends { name: "cpp" }
Depends { name: "catch" }
Depends { name: "Poco" }

}
}

See also:

Check the Reference/Generators/qbs section for get more details.

12.14 Meson Build

If you are using Meson Build as your library build system, you can use the Meson build helper. This helper have .
configure() and .build() methods available to ease the call to meson build system. It also will take automatically
the pc files of your dependencies when using the pkg_config generator.

Check Building with Meson Build for more info.

12.15 Docker

You can easily run Conan in a Docker container to build and cross build conan packages.

Check the ‘How to use docker to create and cross build C and C++ conan packages’ section to know more.

12.14. Meson Build 157

conan Documentation, Release 1.5.2

12.16 Git

Conan uses plain text files, conanfile.txt or conanfile.py, so it’s perfectly suitable for the use of any version
control system. We use and highly recommend git.

Check workflows section to know more about project layouts that naturally fit version control systems.

12.16.1 Temporary files

Conan generates some files than should not be committed, as conanbuildinfo.* and conaninfo.txt. These files
can change in different computers and are re-generated with the conan install command.

However, these files are typically generated in the build tree not in the source tree, so they will be naturally disregarded.
Just take care in case you have created the build folder inside your project (we do this in several examples in this docs).
In this case, you should add it to your .gitignore file:

.gitignore

...
build/

12.16.2 Package creators

If you are creating a conan package:

• You can use the url field to indicate the origin of your package recipe. If you are using an external package recipe,
this url should point to the package recipe repository not to the external source origin. If a github repository is
detected, the conan website will link your github issues page from your conan’s package page.

• You can use git to obtain your sources (requires the git client in the path) when creating external package recipes.

12.17 Jenkins

You can use Jenkins CI both for:

• Building and testing your project, which manages dependencies with Conan, and probably a conanfile.txt file

• Building and testing conan binary packages for a given conan package recipe (with a conanfile.py) and uploading
to a conan remote (Artifactory or conan_server)

There is no need for any special setup for it, just install conan and your build tools in the Jenkins machine and call the
needed conan commands.

158 Chapter 12. Integrations

conan Documentation, Release 1.5.2

12.17.1 Artifactory and Jenkins integration

If you are using Artifactory you can take advantage of the Jenkins Artifactory Plugin. Check here how to install the
plugin and here you can check the full documentation about the DSL.

The Artifactory Jenkins plugin provides a powerful DSL language to call conan, connect with your Artifactory instance,
upload and download your packages from Artifactory and manage your build information.

Example: Test your project getting requirements from Artifactory

This is a template to use Jenkins with Artifactory plugin and Conan to retrieve your package from Artifactory server
and publish the build information about the downloaded packages to Artifactory.

In this script we assume that we already have all our dependencies in the Artifactory server, and we are building our
project that uses Boost and Poco libraries.

Create a new Jenkins Pipeline task using this script:

//Adjust your artifactory instance name/repository and your source code repository
def artifactory_name = "artifactory"
def artifactory_repo = "conan-local"
def repo_url = 'https://github.com/memsharded/example-boost-poco.git'
def repo_branch = 'master'

node {
def server = Artifactory.server artifactory_name
def client = Artifactory.newConanClient()

stage("Get project"){
git branch: repo_branch, url: repo_url

}

stage("Get dependencies and publish build info"){
sh "mkdir -p build"
dir ('build') {
def b = client.run(command: "install ..")
server.publishBuildInfo b

}
}

stage("Build/Test project"){
dir ('build') {
sh "cmake ../ && cmake --build ."

}
}

}

12.17. Jenkins 159

https://jfrog.com/artifactory/
https://www.jfrog.com/confluence/display/RTF/Jenkins+Artifactory+Plug-in
https://www.jfrog.com/confluence/display/RTF/Jenkins+Artifactory+Plug-in
https://www.jfrog.com/confluence/display/RTF/Jenkins+Artifactory+Plug-in
https://www.jfrog.com/confluence/display/RTF/Working+With+Pipeline+Jobs+in+Jenkins
https://www.jfrog.com/confluence/display/RTF/Build+Integration
https://www.jfrog.com/confluence/display/RTF/Build+Integration

conan Documentation, Release 1.5.2

Example: Build a conan package and upload it to Artifactory

In this example we will call conan test package command to create a binary packages and then upload it to Artifactory.
We also upload the build information:

def artifactory_name = "artifactory"
def artifactory_repo = "conan-local"
def repo_url = 'https://github.com/lasote/conan-zlib.git'
def repo_branch = "release/1.2.11"

node {
def server = Artifactory.server artifactory_name
def client = Artifactory.newConanClient()
def serverName = client.remote.add server: server, repo: artifactory_repo

stage("Get recipe"){
git branch: repo_branch, url: repo_url

}
(continues on next page)

160 Chapter 12. Integrations

https://www.jfrog.com/confluence/display/RTF/Build+Integration

conan Documentation, Release 1.5.2

(continued from previous page)

stage("Test recipe"){
client.run(command: "create")

}

stage("Upload packages"){
String command = "upload * --all -r ${serverName} --confirm"
def b = client.run(command: command)
server.publishBuildInfo b

}
}

12.18 Travis Ci

You can use Travis CI cloud service to automatically build and test your project in Linux/OSX environments in the
cloud. It is free for OSS projects, and offers an easy integration with Github, so builds can be automatically fired in
Travis-CI after a git push to Github.

You can use Travis-CI both for:

• Building and testing your project, which manages dependencies with Conan, and probably a conanfile.txt file

• Building and testing conan binary packages for a given conan package recipe (with a conanfile.py)

12.18. Travis Ci 161

https://travis-ci.org/

conan Documentation, Release 1.5.2

12.18.1 Building and testing your project

We are going to use an example with GTest package now, with Travis CI support to run the tests.

Clone the project from github:

$ git clone https://github.com/lasote/conan-gtest-example

Create a .travis.yml file and paste this code in it:

language: cpp
compiler:
- gcc
install:
Upgrade GCC
- sudo add-apt-repository ppa:ubuntu-toolchain-r/test -y
- sudo apt-get update -qq
- sudo apt-get install -qq g++-4.9
- sudo update-alternatives --install /usr/bin/gcc gcc /usr/bin/gcc-4.9 60 --slave /usr/
→˓bin/g++ g++ /usr/bin/g++-4.9

Install conan
- pip install conan
Automatic detection of your arch, compiler, etc.
- conan user

script:
Download dependencies, build, test and create package
- conan create user/channel

Travis will install the conan tool and will execute the conan install command. Then, the script section creates the
build folder, compiles the project with cmake and runs the tests.

12.18.2 Creating, testing and uploading conan binary packages

You can use Travis to automate the building of binary packages, which will be created in the cloud after pushing to
Github. You can probably setup your own way, but conan has some utilities to help in the process.

The command conan new has arguments to create a default working .travis.yml file. Other setups might be possible,
but for this example we are assuming that you are using github and also uploading your final packages to Bintray. You
could follow these steps:

1. First, create an empty github repository, lets call it “hello”, for creating a “hello world” package. Github allows
to create it with a Readme and .gitignore.

2. Get the credentials User and API Key (remember, Bintray uses the API key as “password”, not your main Bintray
account password)

3. Create a conan repository in Bintray under your user or organization, and get its URL (“Set me up”). We will
call it UPLOAD_URL

4. Activate the repo in your Travis account, so it is built when we push changes to it.

5. Under Travis More Options -> Settings->Environment Variables, add the CONAN_PASSWORD environment vari-
able with the Bintray API Key. If your Bintray user is different from the package user, you can define your Bintray
username too, defining the environment variable CONAN_LOGIN_USERNAME

162 Chapter 12. Integrations

conan Documentation, Release 1.5.2

6. Clone the repo: $ git clone <your_repo/hello> && cd hello

7. Create the package: conan new Hello/0.1@<user>/testing -t -s -cilg -cis -ciu=UPLOAD_URL
where user is your Bintray username.

8. You can inspect the created files: both .travis.yml, .travis/run.sh, and .travis/install.sh and the build.py
script, that is used by conan-package-tools utility to split different builds with different configurations in different
travis jobs.

9. You can test locally, before pushing, with conan test.

10. Add the changes, commit and push: git add . && git commit -m "first commit" && git push.

11. Go to Travis and see the build, with the different jobs.

12. When it finish, go to your Bintray repository, you should see there the uploaded packages for different configu-
rations.

13. Check locally, searching in Bintray: conan search Hello/0.1@<user>/testing -r=mybintray.

If something fails, please report an issue in the conan-package-tools github repository: https://github.com/
conan-io/conan-package-tools

12.19 Appveyor

You can use AppVeyor cloud service to automatically build and test your project in a Windows environment in the
cloud. It is free for OSS projects, and offers an easy integration with Github, so builds can be automatically fired in
Appveyor after a git push to Github.

You can use Appveyor both for:

• Building and testing your project, which manages dependencies with Conan, and probably a conanfile.txt file

• Building and testing conan binary packages for a given conan package recipe (with a conanfile.py)

12.19.1 Building and testing your project

We are going to use an example with GTest package, with AppVeyor support to run the tests.

Clone the project from github:

$ git clone https://github.com/lasote/conan-gtest-example

Create an appveyor.yml file and paste this code in it:

version: 1.0.{build}
platform:
- x64

install:
- cmmd: echo "Downloading conan..."
- cmmd: set PATH=%PATH%;%PYTHON%/Scripts/

(continues on next page)

12.19. Appveyor 163

https://github.com/conan-io/conan-package-tools
https://github.com/conan-io/conan-package-tools
https://ci.appveyor.com

conan Documentation, Release 1.5.2

(continued from previous page)

- cmmd: pip.exe install conan
- cmmd: conan user # Create the conan data directory
- cmmd: conan --version

build_script:
- cmmd: mkdir build
- cmmd: conan install -o gtest:shared=True
- cmmd: cd build
- cmmd: cmake ../ -DBUILD_TEST=TRUE -G "Visual Studio 14 2015 Win64"
- cmmd: cmake --build . --config Release

test_script:
- cmmd: cd bin
- cmmd: encryption_test.exe

Appveyor will install the conan tool and will execute the conan install command. Then, the build_script section
creates the build folder, compiles the project with cmake and the section test_script runs the tests.

12.19.2 Creating, testing and uploading conan binary packages

You can use Appveyor to automate the building of binary packages, which will be created in the cloud after pushing to
Github. You can probably setup your own way, but conan has some utilities to help in the process.

The command conan new has arguments to create a default working appveyor.yml file. Other setups might be possible,
but for this example we are assuming that you are using GitHub and also uploading your final packages to Bintray. You
could follow these steps:

1. First, create an empty github repository, lets call it “hello”, for creating a “hello world” package. Github allows
to create it with a Readme and .gitignore.

2. Get the credentials User and API Key (remember, Bintray uses the API key as “password”, not your main Bintray
account password)

3. Create a conan repository in Bintray under your user or organization, and get its URL (“Set me up”). We will
call it UPLOAD_URL

4. Activate the repo in your Appveyor account, so it is built when we push changes to it.

5. Under Appveyor Settings->Environment, add the CONAN_PASSWORD environment variable with the Bintray API
Key, and encrypt it. If your Bintray user is different from the package user, you can define your Bintray username
too, defining the environment variable CONAN_LOGIN_USERNAME

6. Clone the repo: $ git clone <your_repo/hello> && cd hello

7. Create the package: conan new Hello/0.1@<user>/testing -t -s -ciw -cis -ciu=UPLOAD_URL
where user is your Bintray username

8. You can inspect the created files: both appveyor.yml and the build.py script, that is used by conan-package-tools
utility to split different builds with different configurations in different appveyor jobs.

9. You can test locally, before pushing, with conan create

10. Add the changes, commit and push: git add . && git commit -m "first commit" && git push

11. Go to Appveyor and see the build, with the different jobs.

12. When it finish, go to your Bintray repository, you should see there the uploaded packages for different configu-
rations

164 Chapter 12. Integrations

conan Documentation, Release 1.5.2

13. Check locally, searching in Bintray: conan search Hello/0.1@<user>/testing -r=mybintray

If something fails, please report an issue in the conan-package-tools github repository: https://github.com/
conan-io/conan-package-tools

12.20 Gitlab

You can use Gitlab CI cloud or local service to automatically build and test your project in Linux/OSX/Windows
environments. It is free for OSS projects, and offers an easy integration with Gitlab, so builds can be automatically
fired in Gitlab CI after a git push to Gitlab.

You can use Gitlab CI both for:

• Building and testing your project, which manages dependencies with Conan, and probably a conanfile.txt file

• Building and testing conan binary packages for a given conan package recipe (with a conanfile.py)

12.20.1 Building and testing your project

We are going to use an example with GTest package, with Gitlab CI support to run the tests.

Clone the project from github:

$ git clone https://github.com/lasote/conan-gtest-example

Create a .gitlab-ci.yml file and paste this code in it:

image: lasote/conangcc63

build:
before_script:
Upgrade Conan version
- sudo pip install --upgrade conan
Automatic detection of your arch, compiler, etc.
- conan user

script:
Download dependencies, build, test and create package
- conan create user/channel

Gitlab CI will install the conan tool and will execute the conan install command. Then, the script section creates the
build folder, compiles the project with cmake and runs the tests.

12.20. Gitlab 165

https://github.com/conan-io/conan-package-tools
https://github.com/conan-io/conan-package-tools
https://about.gitlab.com/

conan Documentation, Release 1.5.2

12.20.2 Creating, testing and uploading conan binary packages

You can use Gitlab CI to automate the building of binary packages, which will be created in the cloud after pushing to
Gitlab. You can probably setup your own way, but conan has some utilities to help in the process.

The command conan new has arguments to create a default working .gitlab-ci.yml file. Other setups might be
possible, but for this example we are assuming that you are using github and also uploading your final packages to
Bintray. You could follow these steps:

1. First, create an empty gitlab repository, lets call it “hello”, for creating a “hello world” package. Gitlab allows to
create it with a Readme, license and .gitignore.

2. Get the credentials User and API Key (remember, Bintray uses the API key as “password”, not your main Bintray
account password)

3. Create a conan repository in Bintray under your user or organization, and get its URL (“Set me up”). We will
call it UPLOAD_URL

4. Under your project page, Settings -> Pipelines -> Add a variable, add the CONAN_PASSWORD environment vari-
able with the Bintray API Key. If your Bintray user is different from the package user, you can define your Bintray
username too, defining the environment variable CONAN_LOGIN_USERNAME

5. Clone the repo: git clone <your_repo/hello> && cd hello.

6. Create the package: conan new Hello/0.1@<user>/testing -t -s -ciglg -ciglc -cis
-ciu=UPLOAD_URL where user is your Bintray username.

7. You can inspect the created files: both .gitlab-ci.yml and the build.py script, that is used by conan-package-tools
utility to split different builds with different configurations in different GitLab CI jobs.

8. You can test locally, before pushing, with conan create or by GitLab Runner.

9. Add the changes, commit and push: git add . && git commit -m "first commit" && git push.

10. Go to Pipelines page and see the pipeline, with the different jobs.

11. When it finish, go to your Bintray repository, you should see there the uploaded packages for different configu-
rations.

12. Check locally, searching in Bintray: conan search Hello/0.1@<user>/testing -r=mybintray.

If something fails, please report an issue in the conan-package-tools github repository: https://github.com/conan-io/
conan-package-tools

12.21 Circle CI

You can use Circle CI cloud to automatically build and test your project in Linux/OSX environments. It is free for OSS
projects, and offers an easy integration with Github, so builds can be automatically fired in CircleCI after a git push
to Github.

You can use CircleCI both for:

• Building and testing your project, which manages dependencies with Conan, and probably a conanfile.txt file

• Building and testing conan binary packages for a given conan package recipe (with a conanfile.py)

166 Chapter 12. Integrations

https://github.com/conan-io/conan-package-tools
https://github.com/conan-io/conan-package-tools
https://circleci.com/

conan Documentation, Release 1.5.2

12.21.1 Building and testing your project

We are going to use an example with GTest package, with CircleCI support to run the tests.

Clone the project from github:

$ git clone https://github.com/lasote/conan-gtest-example

Create a .circleci/config.yml file and paste this code in it:

version: 2
gcc-6:
docker:
- image: lasote/conangcc6

steps:
- checkout
- run:

name: Build Conan package
command: |
sudo pip install --upgrade conan
conan user
conan create . user/channel

workflows:
version: 2
build_and_test:
jobs:
- gcc-6

CircleCI will install the conan tool and will execute the conan create command. Then, the script section creates the
build folder, compiles the project with cmake and runs the tests.

12.21.2 Creating, testing and uploading conan package binaries

You can use CircleCI to automate the building of binary packages, which will be created in the cloud after pushing to
Github. You can probably setup your own way, but conan has some utilities to help in the process.

The command conan new has arguments to create a default working .circleci/config.yml file. Other setups
might be possible, but for this example we are assuming that you are using github and also uploading your final packages
to Bintray. You could follow these steps:

1. First, create an empty Github repository, lets call it “hello”, for creating a “hello world” package. Github allows
to create it with a Readme, license and .gitignore.

2. Get the credentials User and API Key (remember, Bintray uses the API key as “password”, not your main Bintray
account password)

3. Create a conan repository in Bintray under your user or organization, and get its URL (“Set me up”). We will
call it UPLOAD_URL

4. Under your project page, Settings -> Pipelines -> Add a variable, add the CONAN_PASSWORD environment vari-
able with the Bintray API Key. If your Bintray user is different from the package user, you can define your Bintray
username too, defining the environment variable CONAN_LOGIN_USERNAME

5. Clone the repo: $ git clone <your_repo/hello> && cd hello

6. Create the package: $ conan new Hello/0.1@<user>/testing -t -s -ciccg -ciccc -cicco -cis
-ciu=UPLOAD_URL where user is your Bintray username

12.21. Circle CI 167

conan Documentation, Release 1.5.2

7. You can inspect the created files: both .circleci/config.yml and the build.py script, that is used by
conan-package-tools utility to split different builds with different configurations in different GitLab CI jobs.

8. You can test locally, before pushing, with $ conan create

9. Add the changes, commit and push: $ git add . && git commit -m "first commit" && git push

10. Go to Pipelines page and see the pipeline, with the different jobs.

11. When it finish, go to your Bintray repository, you should see there the uploaded packages for different configu-
rations

12. Check locally, searching in Bintray: $ conan search Hello/0.1@<user>/testing -r=mybintray

If something fails, please report an issue in the conan-package-tools github repository: https://github.com/
conan-io/conan-package-tools

12.22 YouCompleteMe (vim)

If you are a vim user, you are possibly already also a user of YouCompleteMe.

With this generator, you can create the necessary files for your project dependencies, so YouCompleteMe will show
symbols from your conan installed dependencies for your project. You only have to add the ycm generator to your
conanfile:

Listing 10: conanfile.txt

[generators]
ycm

It will generate a conan_ycm_extra_conf.py and a conan_ycm_flags.json file in your folder. Those files will be over-
written each time you run conan install.

In order to make YouCompleteMe work, copy/move conan_ycm_extra_conf.py to your project base folder (usually the
one containing your conanfile) and rename it to .ycm_extra_conf.py.

You can (and probably should) edit this file to add your project specific configuration. If your base folder is different
from your build folder, link the conan_ycm_flags.json from your build folder to your base folder.

from your base folder
$ cp build/conan_ycm_extra_conf.py .ycm_extra_conf.py
$ ln -s build/conan_ycm_flags.json conan_ycm_flags.json

12.23 SCons

SCons can be used both to generate and consume conan packages, via the scons generator generator. The package
recipe build() method could be similar to:

class PkgConan(ConanFile):
settings = 'os', 'compiler', 'build_type', 'arch'
requires = 'Hello/1.0@user/stable'
generators = "scons"

(continues on next page)

168 Chapter 12. Integrations

https://github.com/conan-io/conan-package-tools
https://github.com/conan-io/conan-package-tools
http://valloric.github.io/YouCompleteMe/

conan Documentation, Release 1.5.2

(continued from previous page)

...

def build(self):
debug_opt = '--debug-build' if self.settings.build_type == 'Debug' else ''
os.makedirs("build")
FIXME: Compiler, version, arch are hardcoded, not parametrized
with tools.chdir("build"):

self.run('scons -C {}/src {}'.format(self.source_folder, debug_opt))

...

The SConscript build script can load the generated SConscript_conan file that contains the information of the
dependencies, and use it to build

conan = SConscript('{}/SConscript_conan'.format(build_path_relative_to_sconstruct))
if not conan:

print 'File `SConscript_conan` is missing.'
print 'It should be generated by running `conan install`.'
sys.exit(1)

flags = conan["conan"]
version = flags.pop("VERSION")
env.MergeFlags(flags)
env.Library("hello", "hello.cpp")

A complete example, with a test_package that also uses SCons is in a github repository, you can try it:

$ git clone https://github.com/memsharded/conan-scons-template
$ cd conan-scons-template
$ conan create . demo/testing
> Hello World Release!
$ conan create . demo/testing -s build_type=Debug
> Hello World Debug!

12.24 Custom integrations

If you intend to use a build system that does not have a built-in generator, you may still be able to do so. There are
several options:

• First, search in bintray. Generators can now be created and contributed by users as regular packages, so you
can depend on them, use versioning, and evolve faster without depending on the conan releases. See generator
packages.

• You can use the text or json generator. It will generate a text file, simple to read and to parse that you can easily
parse with your tools to extract the required information.

• Use the conanfile data model and access its properties and values, so you can directly call your build system
with that information, without requiring to generate a file.

• Write and create your own generator. So you can upload it, version and reuse it, as well as share it with your
team or community. Check generator packages too.

12.24. Custom integrations 169

conan Documentation, Release 1.5.2

Note: Need help integrating your build system? Tell us what you need. info@conan.io

12.24.1 Use the JSON generator

Specify the json generator in your conanfile:

[requires]
fmt/4.1.0@<user>/<stable>
Poco/1.9.0@pocoproject/stable

[generators]
json

A file named conanbuildinfo.json will be generated. It will contain the information about every dependency:

{
"dependencies":
[
{
"name": "fmt",
"version": "4.1.0",
"include_paths": [

"/path/to/.conan/data/fmt/4.1.0/<user>/<channel>/package/<id>/include"
],
"lib_paths": [

"/path/to/.conan/data/fmt/4.1.0/<user>/<channel>/package/<id>/lib"
],
"libs": [

"fmt"
],
"...": "...",

},
{
"name": "Poco",
"version": "1.7.8p3",
"...": "..."

}
]

}

12.24.2 Use the text generator

Just specify the txt generator in your conanfile:

[requires]
Poco/1.9.0@pocoproject/stable

[generators]
txt

170 Chapter 12. Integrations

mailto:info@conan.io

conan Documentation, Release 1.5.2

And a file is generated, with the same information as in the case of CMake and gcc, only in a generic, text format, con-
taining the information from the deps_cpp_info and deps_user_info. Check the conanfile package_info method
to know more about these objects:

[includedirs]
/home/laso/.conan/data/Poco/1.6.1/lasote/stable/package/
→˓afafc631e705f7296bec38318b28e4361ab6787c/include
/home/laso/.conan/data/OpenSSL/1.0.2d/lasote/stable/package/
→˓154942d8bccb87fbba9157e1daee62e1200e80fc/include
/home/laso/.conan/data/zlib/1.2.8/lasote/stable/package/
→˓3b92a20cb586af0d984797002d12b7120d38e95e/include

[libs]
PocoUtil
PocoXML
PocoJSON
PocoMongoDB
PocoNet
PocoCrypto
PocoData
PocoDataSQLite
PocoZip
PocoFoundation
pthread
dl
rt
ssl
crypto
z

[libdirs]
/home/laso/.conan/data/Poco/1.6.1/lasote/stable/package/
→˓afafc631e705f7296bec38318b28e4361ab6787c/lib
/home/laso/.conan/data/OpenSSL/1.0.2d/lasote/stable/package/
→˓154942d8bccb87fbba9157e1daee62e1200e80fc/lib
/home/laso/.conan/data/zlib/1.2.8/lasote/stable/package/
→˓3b92a20cb586af0d984797002d12b7120d38e95e/lib

[bindirs]
/home/laso/.conan/data/Poco/1.6.1/lasote/stable/package/
→˓afafc631e705f7296bec38318b28e4361ab6787c/bin
/home/laso/.conan/data/OpenSSL/1.0.2d/lasote/stable/package/
→˓154942d8bccb87fbba9157e1daee62e1200e80fc/bin
/home/laso/.conan/data/zlib/1.2.8/lasote/stable/package/
→˓3b92a20cb586af0d984797002d12b7120d38e95e/bin

[defines]
POCO_STATIC=ON
POCO_NO_AUTOMATIC_LIBS

[USER_MyRequiredLib1]
somevariable=Some Value
othervar=Othervalue

(continues on next page)

12.24. Custom integrations 171

conan Documentation, Release 1.5.2

(continued from previous page)

[USER_MyRequiredLib2]
myvar=34

12.24.3 Use conan data model (conanfile.py)

If you are using any other build system you can use conan too. In the build() method you can access your settings
and build information from your requirements and pass it to your build system. Note, however, that probably is simpler
and much more reusable to create a generator to simplify the task for your build system.

from conans import ConanFile

class MyProjectWithConan(ConanFile):
settings = "os", "compiler", "build_type", "arch"
requires = "Poco/1.9.0@pocoproject/stable"
########### IT'S IMPORTANT TO DECLARE THE TXT GENERATOR TO DEAL WITH A GENERIC BUILD␣

→˓SYSTEM
generators = "txt"
default_options = "Poco:shared=False", "OpenSSL:shared=False"

def imports(self):
self.copy("*.dll", dst="bin", src="bin") # From bin to bin
self.copy("*.dylib*", dst="bin", src="lib") # From lib to bin

def build(self):
############ Without any helper ###########
Settings
print(self.settings.os)
print(self.settings.arch)
print(self.settings.compiler)

Options
#print(self.options.my_option)
print(self.options["OpenSSL"].shared)
print(self.options["Poco"].shared)

Paths and libraries, all
print("-------- ALL --------------")
print(self.deps_cpp_info.include_paths)
print(self.deps_cpp_info.lib_paths)
print(self.deps_cpp_info.bin_paths)
print(self.deps_cpp_info.libs)
print(self.deps_cpp_info.defines)
print(self.deps_cpp_info.cflags)
print(self.deps_cpp_info.cppflags)
print(self.deps_cpp_info.sharedlinkflags)
print(self.deps_cpp_info.exelinkflags)

Just from OpenSSL
print("--------- FROM OPENSSL -------------")
print(self.deps_cpp_info["OpenSSL"].include_paths)

(continues on next page)

172 Chapter 12. Integrations

conan Documentation, Release 1.5.2

(continued from previous page)

print(self.deps_cpp_info["OpenSSL"].lib_paths)
print(self.deps_cpp_info["OpenSSL"].bin_paths)
print(self.deps_cpp_info["OpenSSL"].libs)
print(self.deps_cpp_info["OpenSSL"].defines)
print(self.deps_cpp_info["OpenSSL"].cflags)
print(self.deps_cpp_info["OpenSSL"].cppflags)
print(self.deps_cpp_info["OpenSSL"].sharedlinkflags)
print(self.deps_cpp_info["OpenSSL"].exelinkflags)

Just from POCO
print("--------- FROM POCO -------------")
print(self.deps_cpp_info["Poco"].include_paths)
print(self.deps_cpp_info["Poco"].lib_paths)
print(self.deps_cpp_info["Poco"].bin_paths)
print(self.deps_cpp_info["Poco"].libs)
print(self.deps_cpp_info["Poco"].defines)
print(self.deps_cpp_info["Poco"].cflags)
print(self.deps_cpp_info["Poco"].cppflags)
print(self.deps_cpp_info["Poco"].sharedlinkflags)
print(self.deps_cpp_info["Poco"].exelinkflags)

self.run("invoke here your configure, make, or others")
self.run("basically you can do what you want with your requirements build info)

Environment variables (from requirements self.env_info objects)
are automatically applied in the python ``os.environ`` but can be accesible as␣

→˓well:
print("--------- Globally -------------")
print(self.env)

print("--------- FROM MyLib -------------")
print(self.deps_env_info["MyLib"].some_env_var)

User declared variables (from requirements self.user_info objects)
are available in the self.deps_user_info object
print("--------- FROM MyLib -------------")
print(self.deps_user_info["MyLib"].some_user_var)

12.24.4 Create your own generator

There are two ways in which generators can be contributed:

• Forking and adding the new generator in the conan codebase. This will be a built-in generator. It might have a
much slower release and update cycle, it needs to pass some tests before being accepted, but it has the advantage
than no extra things are needed to use that generator (once released in conan)

• Creating a custom generator package. You can write a conanfile.py and add the custom logic for a generator
inside that file, then upload, refer and depend on it as any other package. These generators have to be discovered
(search), but they have many advantages: much faster release cycles, independent from the main conan codebase,

12.24. Custom integrations 173

conan Documentation, Release 1.5.2

can be versioned, so backward compatibility and upgrades are much easier.

174 Chapter 12. Integrations

CHAPTER

THIRTEEN

HOWTOS

This section shows common solutions and different approaches to typical problems.

13.1 How to package header-only libraries

13.1.1 Without unit tests

Packaging a header only library, without requiring to build and run unit tests for it within conan, can be done with a
very simple recipe. Assuming you have the recipe in the source repo root folder, and the headers in a subfolder called
include, you could do:

from conans import ConanFile

class HelloConan(ConanFile):
name = "Hello"
version = "0.1"
No settings/options are necessary, this is header only
exports_sources = "include/*"
no_copy_source = True

def package(self):
self.copy("*.h")

If you want to package an external repository, you can use the source() method to do a clone or download instead of
the exports_sources fields.

• There is no need for settings, as changing them will not affect the final package artifacts

• There is no need for build() method, as header-only are not built

• There is no need for a custom package_info() method. The default one already adds “include” subfolder to
the include path

• no_copy_source = True will disable the copy of the source folder to the build directory as there is no need
to do so because source code is not modified at all by the configure() or build() methods.

• Note that this recipe has no other dependencies, settings or options. If it had any of those, it would be very
convenient to add the package_id() method, to ensure that only one package with always the same ID is create
irrespective of the configurations and dependencies:

def package_id(self):
self.info.header_only()

175

conan Documentation, Release 1.5.2

Package is created with:

$ conan create . user/channel

13.1.2 With unit tests

If you want to run the library unit test while packaging, you would need this recipe:

from conans import ConanFile, CMake

class HelloConan(ConanFile):
name = "Hello"
version = "0.1"
settings = "os", "compiler", "arch", "build_type"
exports_sources = "include/*", "CMakeLists.txt", "example.cpp"
no_copy_source = True

def build(self): # this is not building a library, just tests
cmake = CMake(self)
cmake.configure()
cmake.build()
cmake.test()

def package(self):
self.copy("*.h")

def package_id(self):
self.info.header_only()

Tip: If you are cross building your library or app you’ll probably need to skip the unit tests because your target
binary cannot be executed in current building host. To do it you can use tools.get_env() in combination with CO-
NAN_RUN_TESTS env variable, defined as False in profile for cross building and replace cmake.test() with:

if tools.get_env("CONAN_RUN_TESTS", True):
cmake.test()

Which will use a CMakeLists.txt file in the root folder:

project(Package CXX)
cmake_minimum_required(VERSION 2.8.12)

include_directories("include")
add_executable(example example.cpp)

enable_testing()
add_test(NAME example

WORKING_DIRECTORY ${CMAKE_BINARY_DIR}/bin
COMMAND example)

and some example.cpp file, which will be our “unit test” of the library:

176 Chapter 13. Howtos

conan Documentation, Release 1.5.2

#include <iostream>
#include "hello.h"

int main() {
hello();

}

• This will use different compilers and versions, as configured by conan settings (in command line or profiles), but
will always generate just 1 output package, always with the same ID.

• The necessary files for the unit tests, must be exports_sources too (or retrieved from source() method)

• If the package had dependencies, via requires, it would be necessary to add the generators = "cmake" to
the package recipe and adding the conanbuildinfo.cmake file to the testing CMakeLists.txt:

include(${CMAKE_BINARY_DIR}/conanbuildinfo.cmake)
conan_basic_setup()

add_executable(example example.cpp)
target_link_libraries(example ${CONAN_LIBS}) # not necessary if dependencies are also␣
→˓header-only

Package is created with:

$ conan create . user/channel

Note: This with/without tests is referring to running full unitary tests over the library, which is different to the test
functionality that checks the integrityg of the package. The above examples are describing the approaches for unit-
testing the library within the recipe. In either case, it is recommended to have a test_package folder, so the conan
create command checks the package once it is created. Check the packaging getting started guide

13.2 How to launch conan install from cmake

It is possible to launch conan install from cmake, which can be convenient for end users, package consumers, that
are not creating packages themselves.

This is work under testing, please try it and give feedback or contribute. The CMake code to do this task is here:
https://github.com/conan-io/cmake-conan

To be able to use it, you can directly download the code from your CMake script:

Listing 1: CMakeLists.txt

cmake_minimum_required(VERSION 2.8)
project(myproject CXX)

Download automatically, you can also just copy the conan.cmake file
if(NOT EXISTS "${CMAKE_BINARY_DIR}/conan.cmake")

message(STATUS "Downloading conan.cmake from https://github.com/conan-io/cmake-conan
→˓")

file(DOWNLOAD "https://raw.githubusercontent.com/conan-io/cmake-conan/master/conan.
→˓cmake"

(continues on next page)

13.2. How to launch conan install from cmake 177

https://github.com/conan-io/cmake-conan

conan Documentation, Release 1.5.2

(continued from previous page)

"${CMAKE_BINARY_DIR}/conan.cmake")
endif()

include(${CMAKE_BINARY_DIR}/conan.cmake)

conan_cmake_run(REQUIRES Hello/0.1@memsharded/testing
BASIC_SETUP
BUILD missing)

add_executable(main main.cpp)
target_link_libraries(main ${CONAN_LIBS})

If you want to use targets, you could do:

include(conan.cmake)
conan_cmake_run(REQUIRES Hello/0.1@memsharded/testing

BASIC_SETUP CMAKE_TARGETS
BUILD missing)

add_executable(main main.cpp)
target_link_libraries(main CONAN_PKG::Hello)

13.3 How to create and reuse packages based on Visual Studio

Conan has different helpers to manage Visual Studio and MSBuild based projects. This how-to illustrates how to put
them together to create and consume packages that are purely based on Visual Studio. This how-to is using VS2015,
but other versions can be used too.

13.3.1 Creating packages

Start cloning the existing example repository, containing a simple “Hello World” library, and application:

$ git clone https://github.com/memsharded/hello_vs
$ cd hello_vs

It contains a src folder with the source code and a build folder with a Visual Studio 2015 solution, containing 2
projects: the HelloLib static library, and the Greet application. Open it:

$ build\HelloLib\HelloLib.sln

You should be able to select the Greet subproject -> Set as Startup Project. Then build and run the app with
Ctrl+F5. (Debug -> Start Without Debugging)

$ Hello World Debug!
Switch IDE to Release mode, repeat
$ Hello World Release!

Because the hello.cpp file contains an #ifdef _DEBUG to switch between debug and release message.

In the repository, there is already a conanfile.py recipe:

178 Chapter 13. Howtos

conan Documentation, Release 1.5.2

from conans import ConanFile, MSBuild

class HelloConan(ConanFile):
name = "Hello"
version = "0.1"
license = "MIT"
url = "https://github.com/memsharded/hello_vs"
settings = "os", "compiler", "build_type", "arch"
exports_sources = "src/*", "build/*"

def build(self):
msbuild = MSBuild(self)
msbuild.build("build/HelloLib/HelloLib.sln")

def package(self):
self.copy("*.h", dst="include", src="src")
self.copy("*.lib", dst="lib", keep_path=False)

def package_info(self):
self.cpp_info.libs = ["HelloLib"]

This recipe is using the MSBuild() build helper to build the sln project. If our recipe had requires, the MSBUILD
helper will also take care of inject all the needed information from the requirements, as include directories, library
names, definitions, flags etc to allow our project to locate the declared dependencies.

The recipe contains also a test_package folder with a simple example consuming application. In this example, the
consuming application is using cmake to build, but it could also use Visual Studio too. We have left the cmake one
because it is the default generated with conan new, and also to show that packages created from Visual Studio projects
can also be consumed with other build systems like CMake.

Once we want to create a package, it is advised to close VS IDE, clean the temporary build files from VS to avoid
problems, then create and test the package (here it is using system defaults, assuming they are Visual Studio 14, Release,
x86_64):

close VS
$ git clean -xdf
$ conan create . memsharded/testing
...
> Hello World Release!

Instead of closing the IDE and running command:git clean we could also configure a smarter filter in
exports_sources field, so temporary build files are not exported into the recipe.

This process can be repeated to create and test packages for different configurations:

$ conan create . memsharded/testing -s arch=x86
$ conan create . memsharded/testing -s compiler="Visual Studio" -s compiler.runtime=MDd -
→˓s build_type=Debug
$ conan create . memsharded/testing -s compiler="Visual Studio" -s compiler.runtime=MDd -
→˓s build_type=Debug -s arch=x86

Note: It is not mandatory to specify the compiler.runtime setting. If it is not explicitly defined, Conan will
automatically use runtime=MDd for build_type==Debug and runtime=MD for build_type==Release.

13.3. How to create and reuse packages based on Visual Studio 179

conan Documentation, Release 1.5.2

You can list the different created binary packages:

$ conan search Hello/0.1@memsharded/testing

13.3.2 Uploading binaries

Your locally created packages can already be uploaded to a conan remote. If you created them with the original user-
name “memsharded”, as from the git clone, you might want to do a conan copy to put them on your own username.
Of course, you can also directly use your user name in conan create.

Another alternative is to configure the permissions in the remote, to allow uploading packages with different usernames.
By default artifactory will do it but conan server won’t: permissions must be given in [write_permissions] section
of server.conf.

13.3.3 Reusing packages

To use existing packages directly from Visual Studio, conan provides the visual_studio generator. Let’s clone an
existing “Chat” project, consisting of a ChatLib static library that makes use of the previous “Hello World” package,
and a MyChat application, calling the ChatLib library function.

$ git clone https://github.com/memsharded/chat_vs
$ cd chat_vs

As above, the repository contains a Visual Studio solution in the build folder. But if you try to open it, it will fail to
load. This is because it is expecting to find a file with the required information about dependencies, so it is necessary
to obtain that file first. Just run:

$ conan install .

You will see that it created two files, a conaninfo.txt file, containing the current configuration of dependencies, and a
conanbuildinfo.props file, containing the Visual Studio properties (like <AdditionalIncludeDirectories>),
so it is able to find the installed dependencies.

Now you can open the IDE and build and run the app (by the way, the chat function is just calling the hello() function
two or three times, depending on the build type):

$ build\ChatLib\ChatLib.sln
Switch to Release
MyChat -> Set as Startup Project
Ctrl + F5 (Debug -> Run without debugging)
> Hello World Release!
> Hello World Release!

If you wish to link with the debug version of Hello package, just install it and change IDE build type:

$ conan install . -s build_type=Debug -s compiler="Visual Studio" -s compiler.runtime=MDd
Switch to Debug
Ctrl + F5 (Debug -> Run without debugging)
> Hello World Debug!
> Hello World Debug!
> Hello World Debug!

Now you can close the IDE and clean the temporary files:

180 Chapter 13. Howtos

conan Documentation, Release 1.5.2

close VS IDE
$ git clean -xdf

Again, there is a conanfile.py package recipe in the repository, together with a test_package. The recipe is almost
identical to the above one, just with two minor differences:

requires = "Hello/0.1@memsharded/testing"
...
generators = "visual_studio"

This will allow us to create and test the package of the ChatLib library:

$ conan create . memsharded/testing
> Hello World Release!
> Hello World Release!

You can also repeat the process for different build types and architectures.

13.3.4 Other configurations

The above example works as-is for VS2017, because VS supports upgrading from previous versions. The MSBuild()
already implements such functionality, so building and testing packages with VS2017 can be done.

$ conan create . demo/testing -s compiler="Visual Studio" -s compiler.version=15

If you have to build for older versions of Visual Studio, it is also possible. In that case, you would probably have
different solution projects inside your build folder. Then the recipe only has to select the correct one, something like:

def build(self):
assuming HelloLibVS12, HelloLibVS14 subfolders
sln_file = "build/HelloLibVS%s/HelloLib.sln" % self.settings.compiler.version
msbuild = MSBuild(self)
msbuild.build(sln_file)

Finally, we used just one conanbuildinfo.props file, which the solution loaded at a global level. You could also
define multiple conanbuildinfo.props files, one per configuration (Release/Debug, x86/x86_64), and load them
accordingly.

Note: So far, the visual_studio generator is single-configuration (packages containing debug or release artifacts,
the generally recommended approach), it does not support multi-config packages (packages containing both debug and
release artifacts). Please report and provide feedback (submit an issue in github) to request this feature if necessary.

13.3. How to create and reuse packages based on Visual Studio 181

conan Documentation, Release 1.5.2

13.4 Creating and reusing packages based on Makefiles

Conan can create packages and reuse them with Makefiles. The AutoToolsBuildEnvironment build helper helps
with most of the necessary task.

This how-to has been tested in Windows with MinGW and Linux with gcc. It is using static libraries but could be
exteded to shared libraries too. The Makefiles surely can be improved they are just an example.

13.4.1 Creating packages

Start cloning the existing example repository, containing a simple “Hello World” library, and application:

$ git clone https://github.com/memsharded/conan-example-makefiles
$ cd conan-example-makefiles
$ cd hellolib

It contains a src folder with the source code and a conanfile.py file for creating a package.

Inside the src folder, there is Makefile to build the static library. This Makefile is using standard variables like
$(CPPFLAGS) or $(CXX) to build it:

SRC = hello.cpp
OBJ = $(SRC:.cpp=.o)
OUT = libhello.a
INCLUDES = -I.

.SUFFIXES: .cpp

default: $(OUT)

.cpp.o:
$(CXX) $(INCLUDES) $(CPPFLAGS) $(CXXFLAGS) -c $< -o $@

$(OUT): $(OBJ)
ar rcs $(OUT) $(OBJ)

The conanfile.py file uses the AutoToolsBuildEnvironment build helper. This helper defines the necessasry envi-
ronment variables with information from dependencies, as well as other variables to match the current conan settings
(like -m32 or -m64 based on the conan arch setting)

from conans import ConanFile, AutoToolsBuildEnvironment
from conans import tools

class HelloConan(ConanFile):
name = "Hello"
version = "0.1"
settings = "os", "compiler", "build_type", "arch"
generators = "cmake"
exports_sources = "src/*"

def build(self):
with tools.chdir("src"):

env_build = AutoToolsBuildEnvironment(self)
(continues on next page)

182 Chapter 13. Howtos

conan Documentation, Release 1.5.2

(continued from previous page)

env_build.configure() # use it to run "./configure" if using autotools
env_build.make()

def package(self):
self.copy("*.h", dst="include", src="src")
self.copy("*.lib", dst="lib", keep_path=False)
self.copy("*.a", dst="lib", keep_path=False)

def package_info(self):
self.cpp_info.libs = ["hello"]

With this conanfile.py you can create the package:

$ conan create . user/testing -s compiler=gcc -s compiler.version=4.9 -s compiler.
→˓libcxx=libstdc++

13.4.2 Using packages

Now lets move to the application folder:

$ cd ../helloapp

There you can see also a src folder with a Makefile creating an executable:

SRC = app.cpp
OBJ = $(SRC:.cpp=.o)
OUT = app
INCLUDES = -I.

.SUFFIXES: .cpp

default: $(OUT)

.cpp.o:
$(CXX) $(CPPFLAGS) $(CXXFLAGS) -c $< -o $@

$(OUT): $(OBJ)
$(CXX) -o $(OUT) $(OBJ) $(LDFLAGS) $(LIBS)

And also a conanfile.py very similar to the previous one, in this case adding a requires and a deploy() method:

from conans import ConanFile, AutoToolsBuildEnvironment
from conans import tools

class AppConan(ConanFile):
name = "App"
version = "0.1"
settings = "os", "compiler", "build_type", "arch"
exports_sources = "src/*"
requires = "Hello/0.1@user/testing"

(continues on next page)

13.4. Creating and reusing packages based on Makefiles 183

conan Documentation, Release 1.5.2

(continued from previous page)

def build(self):
with tools.chdir("src"):

env_build = AutoToolsBuildEnvironment(self)
env_build.make()

def package(self):
self.copy("*app", dst="bin", keep_path=False)
self.copy("*app.exe", dst="bin", keep_path=False)

def deploy(self):
self.copy("*", src="bin", dst="bin")

Note that in this case, the AutoToolsBuildEnvironment will automatically set values to CPPFLAGS, LDFLAGS, LIBS,
etc. existing in the Makefile with the correct include directories, library names, etc. to properly build and link with the
hello library contained in the “Hello” package.

As above, we can create the package with:

$ conan create . user/testing -s compiler=gcc -s compiler.version=4.9 -s compiler.
→˓libcxx=libstdc++

There are different ways to run executables contained in packages, like using virtualrunenv generators. In this case,
as the package has a deploy() method, we can use it:

$ conan install Hello/0.1user/testing -s compiler=gcc -s compiler.version=4.9 -s␣
→˓compiler.libcxx=libstdc++
$./bin/app
$ Hello World Release!

13.5 How to manage the GCC >= 5 ABI

In the GCC 5.1 release libstdc++ introduced a new library ABI that includes new implementations of std::string
and std::list. These changes were necessary to conform to the 2011 C++ standard which forbids Copy-On-Write
strings and requires lists to keep track of their size.

You can choose which ABI to use in your Conan packages by adjusting the compiler.libcxx:

• libstdc++: Old ABI.

• libstdc++11: New ABI.

When Conan create the default profile the first time it runs, adjust the compiler.libcxx setting to libstdc++ for
backwards compatibility. If you are using GCC >= 5, your compiler is likely using the new CXX11 ABI by default
(libstdc++11).

If you want Conan to use the new ABI, edit the default profile at ~/.conan/profiles/default adjusting compiler.
libcxx=libstdc++11 or override this setting in the profile you are using.

If you are using the CMake build helper or the AutotoolsBuildEnvironment build helper Conan will adjust automatically
the _GLIBCXX_USE_CXX11_ABI flag to manage the ABI.

184 Chapter 13. Howtos

https://gcc.gnu.org/onlinedocs/libstdc++/manual/using_dual_abi.html

conan Documentation, Release 1.5.2

13.6 Using Visual Studio 2017 - CMake integration

Visual Studio 2017 comes with a CMake integration that allows to just open a folder that contains a CMakeLists.txt
and Visual will use it to define the project build.

Conan can also be used in this setup to install dependencies. Let`s say that we are going to build an application, that
depends on an existing conan package called Hello/0.1@user/testing. For the purpose of this example, you can
quickly create this package typing in your terminal:

$ conan new Hello/0.1 -s
$ conan create . user/testing # Default conan profile is Release
$ conan create . user/testing -s build_type=Debug

The project we want to develop will be a simple application, with these 3 files in the same folder:

Listing 2: example.cpp

#include <iostream>
#include "hello.h"

int main() {
hello();
std::cin.ignore();

}

Listing 3: conanfile.txt

[requires]
Hello/0.1@user/testing

[generators]
cmake

Listing 4: CMakeLists.txt

project(Example CXX)
cmake_minimum_required(VERSION 2.8.12)

include(${CMAKE_BINARY_DIR}/conanbuildinfo.cmake)
conan_basic_setup()

add_executable(example example.cpp)
target_link_libraries(example ${CONAN_LIBS})

If we open Visual Studio 2017 (with CMake support installed), and in the Menu, select “Open Folder” and select the
above folder, we will see something like the following error:

1> Command line: C:\PROGRAM FILES (X86)\MICROSOFT VISUAL STUDIO\2017\COMMUNITY\COMMON7\
→˓IDE\COMMONEXTENSIONS\MICROSOFT\CMAKE\CMake\bin\cmake.exe -G "Ninja" -DCMAKE_INSTALL_
→˓PREFIX:PATH="C:\Users\user\CMakeBuilds\df6639d2-3ef2-bc32-abb3-2cd1bdb3c1ab\install\
→˓x64-Debug" -DCMAKE_CXX_COMPILER="C:/Program Files (x86)/Microsoft Visual Studio/2017/
→˓Community/VC/Tools/MSVC/14.12.25827/bin/HostX64/x64/cl.exe" -DCMAKE_C_COMPILER="C:/
→˓Program Files (x86)/Microsoft Visual Studio/2017/Community/VC/Tools/MSVC/14.12.25827/
→˓bin/HostX64/x64/cl.exe" -DCMAKE_BUILD_TYPE="Debug" -DCMAKE_MAKE_PROGRAM="C:\PROGRAM␣

(continues on next page)

13.6. Using Visual Studio 2017 - CMake integration 185

conan Documentation, Release 1.5.2

(continued from previous page)

→˓FILES (X86)\MICROSOFT VISUAL STUDIO\2017\COMMUNITY\COMMON7\IDE\COMMONEXTENSIONS\
→˓MICROSOFT\CMAKE\Ninja\ninja.exe" "C:\Users\user\conanws\visual-cmake"
1> Working directory: C:\Users\user\CMakeBuilds\df6639d2-3ef2-bc32-abb3-2cd1bdb3c1ab\
→˓build\x64-Debug
1> -- The CXX compiler identification is MSVC 19.12.25831.0
1> -- Check for working CXX compiler: C:/Program Files (x86)/Microsoft Visual Studio/
→˓2017/Community/VC/Tools/MSVC/14.12.25827/bin/HostX64/x64/cl.exe
1> -- Check for working CXX compiler: C:/Program Files (x86)/Microsoft Visual Studio/
→˓2017/Community/VC/Tools/MSVC/14.12.25827/bin/HostX64/x64/cl.exe -- works
1> -- Detecting CXX compiler ABI info
1> -- Detecting CXX compiler ABI info - done
1> -- Detecting CXX compile features
1> -- Detecting CXX compile features - done
1> CMake Error at CMakeLists.txt:4 (include):
1> include could not find load file:
1>
1> C:/Users/user/CMakeBuilds/df6639d2-3ef2-bc32-abb3-2cd1bdb3c1ab/build/x64-Debug/
→˓conanbuildinfo.cmake

As expected, our CMakeLists.txt is using a include(${CMAKE_BINARY_DIR}/conanbuildinfo.cmake), and that
file doesn’t exist yet, because conan has not installed the dependencies of this project yet. Visual Studio 2017 uses
different build folders for each configuration. In this case, the default configuration at startup is x64-Debug. This
means that we need to install the dependencies that match this configuration. Assuming that our default profile is using
Visual Studio 2017 for x64 (it should typically be the default one created by conan if VS2017 is present), then all we
need to specify is the -s build_type=Debug setting:

$ conan install . -s build_type=Debug -if=C:\Users\user\CMakeBuilds\df6639d2-3ef2-bc32-
→˓abb3-2cd1bdb3c1ab\build\x64-Debug

Now, you should be able to regenerate the CMake project from the IDE, Menu->CMake, build it, select the “example”
executable to run, and run it.

Now, lets say that you want to build the Release application. You switch configuration from the IDE, and then the above
error happens again. The dependencies for Release mode need to be installed too:

$ conan install . -if=C:\Users\user\CMakeBuilds\df6639d2-3ef2-bc32-abb3-2cd1bdb3c1ab\
→˓build\x64-Release

The process can be extended to x86 (passing -s arch=x86 in the command line), or to other configurations. For
production usage, conan profiles are highly recommended.

13.6.1 Using cmake-conan

The cmake-conan project in https://github.com/conan-io/cmake-conan is a CMake script that runs an
execute_process that automatically launches conan install to install dependencies. The settings passed
in the command line will be deduced from the current CMake configuration, that will match the Visual Studio one.
This script can be used to further automate the installation task:

project(Example CXX)
cmake_minimum_required(VERSION 2.8.12)

Download automatically, you can also just copy the conan.cmake file
(continues on next page)

186 Chapter 13. Howtos

https://github.com/conan-io/cmake-conan

conan Documentation, Release 1.5.2

(continued from previous page)

if(NOT EXISTS "${CMAKE_BINARY_DIR}/conan.cmake")
message(STATUS "Downloading conan.cmake from https://github.com/conan-io/cmake-conan")

file(DOWNLOAD "https://raw.githubusercontent.com/conan-io/cmake-conan/v0.9/conan.
→˓cmake"

"${CMAKE_BINARY_DIR}/conan.cmake")
endif()

include(${CMAKE_BINARY_DIR}/conan.cmake)

conan_cmake_run(CONANFILE conanfile.txt
BASIC_SETUP)

add_executable(example example.cpp)
target_link_libraries(example ${CONAN_LIBS})

This code will manage to download the cmake-conan CMake script, and use it automatically, calling a conan install
automatically.

There could be an issue, though, for the Release configuration. Internally, the Visual Studio 2017 defines the
configurationType As RelWithDebInfo for Release builds. But conan default settings (in the conan settings.yml
file), only have Debug and Release defined. It is possible to modify the settings.yml file, and add those extra build
types. Then you should create the Hello package for those settings. And most existing packages, specially in central
repositories, are built only for Debug and Release modes.

An easier approach is to change the CMake configuration in Visual: go to the Menu -> CMake -> Change CMake
Configuration. That should open the CMakeSettings.json file, and there you can change the configurationType to
Release:

{
"name": "x64-Release",
"generator": "Ninja",
"configurationType": "Release",
"inheritEnvironments": ["msvc_x64_x64"],
"buildRoot": "${env.USERPROFILE}\\CMakeBuilds\\${workspaceHash}\\build\\${name}",
"installRoot": "${env.USERPROFILE}\\CMakeBuilds\\${workspaceHash}\\install\\${name}",
"cmakeCommandArgs": "",
"buildCommandArgs": "-v",
"ctestCommandArgs": ""

}

Note that the above CMake code is only valid for consuming existing packages. If you are also creating a package, you
would need to make sure the right CMake code is executed, please check https://github.com/conan-io/cmake-conan/
blob/master/README.md

13.6. Using Visual Studio 2017 - CMake integration 187

https://github.com/conan-io/cmake-conan/blob/master/README.md
https://github.com/conan-io/cmake-conan/blob/master/README.md

conan Documentation, Release 1.5.2

13.6.2 Using tasks with tasks.vs.json

Another alternative is using file tasks feature of Visual Studio 2017. This way you can install dependencies by running
conan install as task directly in the IDE.

All you need is to right click on your conanfile.py-> Configure Tasks (see the link above) and add the following to your
tasks.vs.json.

Warning: The file tasks.vs.json is added to your local .vs folder so it is not supposed to be added to your version
control system. There is also feature request to improve this process.

{
"tasks": [
{
"taskName": "conan install debug",
"appliesTo": "conanfile.py",
"type": "launch",
"command": "${env.COMSPEC}",
"args": [
"conan install ${file} -s build_type=Debug -if C:/Users/user/CMakeBuilds/

→˓4c2d87b9-ec5a-9a30-a47a-32ccb6cca172/build/x64-Debug/"
]

},
{
"taskName": "conan install release",
"appliesTo": "conanfile.py",
"type": "launch",
"command": "${env.COMSPEC}",
"args": [
"conan install ${file} -s build_type=Release -if C:/Users/user/CMakeBuilds/

→˓4c2d87b9-ec5a-9a30-a47a-32ccb6cca172/build/x64-Release/"
]

}
],
"version": "0.2.1"

}

Then just right click on your conanfile.py and launch your conan install and regenerate your CMakeLists.txt.

13.7 How to manage C++ standard

Warning: This feature is experimental

The setting representing the C++ standard is cppstd. The detected default profile doesn’t set any value for the cppstd
setting.

The consumer can specify it in a profile or with the -s parameter:

conan install . -s cppstd=gnu14

188 Chapter 13. Howtos

https://docs.microsoft.com/en-us/cpp/ide/non-msbuild-projects#define-tasks-with-tasksvsjson
https://docs.microsoft.com/en-us/cpp/ide/non-msbuild-projects#define-tasks-with-tasksvsjson
https://visualstudio.uservoice.com/forums/121579-visual-studio-ide/suggestions/33814138-add-macro-buildroot-to-tasks-vs-json

conan Documentation, Release 1.5.2

This setting will only be applied to the recipes specifying cppstd in the settings field:

class LibConan(ConanFile):
name = "lib"
version = "1.0"
settings = "cppstd", "os", "compiler", "build_type", "arch"

Valid values for compiler=Visual Studio:

VALUE DESCRIPTION
14 C++ 14
17 C++ 17
20 C++ 20 (Still C++20 Working Draft)

Valid values for other compilers:

VALUE DESCRIPTION
98 C++ 98
gnu98 C++ 98 with GNU extensions
11 C++ 11
gnu11 C++ 11 with GNU extensions
14 C++ 14
gnu14 C++ 14 with GNU extensions
17 C++ 17
gnu17 C++ 17 with GNU extensions
20 C++ 20 (Partial support)
gnu20 C++ 20 with GNU extensions (Partial support)

13.7.1 Build helpers

When the cppstd setting is declared in the recipe and the consumer specify a value for it:

• The CMake build helper will set the CONAN_CMAKE_CXX_STANDARD and CONAN_CMAKE_CXX_EXTENSIONS def-
initions, that will be converted to the corresponding CMake variables to activate the standard automatically with
the conan_basic_setup() macro.

• The AutotoolsBuildEnvironment build helper will adjust the needed flag to CXXFLAGS automatically.

• The MSBuild/VisualStudioBuildEnvironment build helper will adjust the needed flag to CL env var automatically.

13.7.2 Package compatibility

By default Conan will detect the default standard of your compiler to not generate different binary packages. For
example, you already built some gcc > 6.1 packages, where the default std is gnu14. If you introduce the cppstd
setting in your recipes and specify the gnu14 value, Conan won’t generate new packages, because it was already the
default of your compiler.

Note: Check the package_id() reference to know more.

13.7. How to manage C++ standard 189

conan Documentation, Release 1.5.2

13.8 How to use docker to create and cross build C and C++ conan
packages

With Docker, you can run different virtual Linux operating systems in a Linux, Mac OSX or Windows machine. It is
useful to reproduce build environments, for example to automate CI processes. You can have different images with
different compilers or toolchains and run containers every time is needed.

In this section you will find a list of pre-built images with common build tools and compilers as well as Conan installed.

13.8.1 Using conan inside a container

$ docker run -it --rm lasote/conangcc7 /bin/bash

Note: Use sudo when needed to run docker.

The previous code will run a shell in container. We have specified:

• -it: Keep STDIN open and allocate a pseudo-tty, in other words, we want to type in the container because we
are opening a bash.

• --rm: Once the container exits, remove the container. Helps to keep clean or hard drive.

• lasote/conangcc7: Image name, check the available docker images.

• /bin/bash: The command to run

Now we are running on the conangcc7 container we can use Conan normally. In the following example we are creating
a package from the recipe by cloning the repository, for OpenSSL. It is always recommended to upgrade conan from
pip first:

$ sudo pip install conan --upgrade # We make sure we are running the latest Conan version
$ git clone https://github.com/conan-community/conan-openssl
$ cd conan-openssl
$ conan create . user/channel

13.8.2 Sharing a local folder with a docker container

You can share a local folder with your container, for example a project:

$ git clone https://github.com/conan-community/conan-openssl
$ cd conan-openssl
$ docker run -it -v$(pwd):/home/conan/project --rm lasote/conangcc7 /bin/bash

• v$(pwd):/home/conan/project: We are mapping the current directory (conan-openssl) to the container /
home/conan/project directory, so anything we change in this shared folder, will be really changed in our host
machine.

Now we are running on the conangcc7 container
$ sudo pip install conan --upgrade # We make sure we are running the latest Conan version
$ cd project
$ conan create . user/channel --build missing

(continues on next page)

190 Chapter 13. Howtos

conan Documentation, Release 1.5.2

(continued from previous page)

$ conan remote add myremote http://some.remote.url
$ conan upload "*" -r myremote --all

13.8.3 Using the images to cross-build packages

You can use the images -i386, -armv7 and -armv7gh to cross build conan packages.

The armv7 images have a cross toolchain for linux ARM installed, and declared as main compiler with the environment
variables CC and CXX. Also, the default Conan profile (~/.conan/profiles/default) is adjusted to declare the
correct arch (armv7 / armv7hf).

Cross-building and uploading a package along with all its missing dependencies for Linux/armv7hf is done in few
steps:

$ git clone https://github.com/conan-community/conan-openssl
$ cd conan-openssl
$ docker run -it -v$(pwd):/home/conan/project --rm lasote/conangcc49-armv7hf /bin/bash

Now we are running on the conangcc49-armv7hf container
The default profile is automatically adjusted to armv7hf
$ cat ~/.conan/profiles/default

[settings]
os=Linux
os_build=Linux
arch=armv7hf
arch_build=x86_64
compiler=gcc
compiler.version=4.9
compiler.libcxx=libstdc++
build_type=Release
[options]
[build_requires]
[env]

$ sudo pip install conan --upgrade # We make sure we are running the latest Conan version
$ cd project

$ conan create . user/channel --build missing
$ conan remote add myremoteARMV7 http://some.remote.url
$ conan upload "*" -r myremoteARMV7 --all

13.8. How to use docker to create and cross build C and C++ conan packages 191

conan Documentation, Release 1.5.2

13.8.4 Available docker images

GCC images

Version Target Arch
lasote/conangcc49 (GCC 4.9) x86_64
lasote/conangcc49-i386 (GCC 4.9) x86
lasote/conangcc49-armv7 (GCC 4.9) armv7
lasote/conangcc49-armv7hf (GCC 4.9) armv7hf
lasote/conangcc5-armv7 (GCC 5) armv7
lasote/conangcc5-armv7hf (GCC 5) armv7hf
lasote/conangcc5 (GCC 5) x86_64
lasote/conangcc5-i386 (GCC 5) x86
lasote/conangcc5-armv7 (GCC 5) armv7
lasote/conangcc5-armv7hf (GCC 5) armv7hf
lasote/conangcc6 (GCC 6) x86_64
lasote/conangcc6-i386 (GCC 6) x86
lasote/conangcc6-armv7 (GCC 6) armv7
lasote/conangcc6-armv7hf: (GCC 6) armv7hf
lasote/conangcc7-i386 (GCC 7) x86
lasote/conangcc7 (GCC 7) x86_64
lasote/conangcc7-armv7 (GCC 7) armv7
lasote/conangcc7-armv7hf (GCC 7) armv7hf

Clang images

Version Target Arch
lasote/conanclang38 (Clang 3.8) x86_64
lasote/conanclang39-i386 (Clang 3.9) x86
lasote/conanclang39 (Clang 3.9) x86_64
lasote/conanclang40-i386 (Clang 4) x86
lasote/conanclang40 (Clang 4) x86_64
lasote/conanclang50-i386 (Clang 5) x86
lasote/conanclang50 (Clang 5) x86_64

The Dockerfiles for all these images can be found here.

13.9 How to reuse Python code in recipes

First, if you feel that you are repeating a lot of Python code, and that repeated code could be useful for other Conan
users, please propose it in a github issue.

There are several ways to handle Python code reuse in package recipes:

• To put common code in files, as explained below. This code has to be exported into the recipe itself.

• To create a Conan package with the common python code, and then require it from the recipe.

This howto explains the latter.

192 Chapter 13. Howtos

https://hub.docker.com/r/lasote/conangcc49/
https://hub.docker.com/r/lasote/conangcc49-i386/
https://hub.docker.com/r/lasote/conangcc49-armv7/
https://hub.docker.com/r/lasote/conangcc49-armv7hf/
https://hub.docker.com/r/lasote/conangcc5-armv7/
https://hub.docker.com/r/lasote/conangcc5-armv7hf/
https://hub.docker.com/r/lasote/conangcc5/
https://hub.docker.com/r/lasote/conangcc5-i386/
https://hub.docker.com/r/lasote/conangcc5-armv7/
https://hub.docker.com/r/lasote/conangcc5-armv7hf/
https://hub.docker.com/r/lasote/conangcc6/
https://hub.docker.com/r/lasote/conangcc6-i386/
https://hub.docker.com/r/lasote/conangcc6-armv7/
https://hub.docker.com/r/lasote/conangcc6-armv7hf/
https://hub.docker.com/r/lasote/conangcc7-i386/
https://hub.docker.com/r/lasote/conangcc7/
https://hub.docker.com/r/lasote/conangcc7-armv7/
https://hub.docker.com/r/lasote/conangcc7-armv7hf/
https://hub.docker.com/r/lasote/conanclang38/
https://hub.docker.com/r/lasote/conanclang39-i386/
https://hub.docker.com/r/lasote/conanclang39/
https://hub.docker.com/r/lasote/conanclang40/-i386
https://hub.docker.com/r/lasote/conanclang40/
https://hub.docker.com/r/lasote/conanclang50-i386/
https://hub.docker.com/r/lasote/conanclang50/
https://github.com/conan-io/conan-docker-tools

conan Documentation, Release 1.5.2

13.9.1 A basic Python package

Let’s begin with a simple python package, a “hello world” functionality that we want to package and reuse:

def hello():
print("Hello World from Python!")

To create a package, all we need to do is create the following layout:

-| hello.py
| __init__.py
| conanfile.py

The __init__.py is blank. It is not necessary to compile code, so the package recipe conanfile.py is quite simple:

from conans import ConanFile

class HelloPythonConan(ConanFile):
name = "HelloPy"
version = "0.1"
exports = '*'
build_policy = "missing"

def package(self):
self.copy('*.py')

def package_info(self):
self.env_info.PYTHONPATH.append(self.package_folder)

The exports will copy both the hello.py and the __init__.py into the recipe. The package() method is also
obvious: to construct the package just copy the python sources.

The package_info() adds the current package folder to the PYTHONPATH conan environment variable. It will not
affect the real environment variable unless the end user wants it.

It can be seen that this recipe would be practically the same for most python packages, so it could be factored in a
PythonConanFile base class to further simplify it (open a feature request, or better a pull request :))

With this recipe, all we have to do is:

$ conan export . memsharded/testing

Of course if you want to share the package with your team, you can conan upload it to a remote server. But to create
and test the package, we can do everything locally.

Now the package is ready for consumption. In another folder, we can create a conanfile.txt (or a conanfile.py if we
prefer):

[requires]
HelloPy/0.1@memsharded/testing

And install it with the following command:

$ conan install . -g virtualenv

Creating the above conanfile.txt might be unnecessary for this simple example, as you can directly run conan
install HelloPy/0.1@memsharded/testing -g virtualenv, however, using the file is the canonical way.

13.9. How to reuse Python code in recipes 193

conan Documentation, Release 1.5.2

The specified virtualenv generator will create an activate script (in Windows activate.bat), that basically contains
the environment, in this case, the PYTHONPATH. Once we activate it, we are able to find the package in the path and use
it:

$ activate
$ python
Python 2.7.12 (v2.7.12:d33e0cf91556, Jun 27 2016, 15:19:22) [MSC v.1500 32 bit (Intel)]␣
→˓on win32
...
>>> import hello
>>> hello.hello()
Hello World from Python!
>>>

The above shows an interactive session, but you can import also the functionality in a regular python script.

13.9.2 Reusing python code in your recipes

Requiring a python conan package

As the conan recipes are python code itself, it is easy to reuse python packages in them. A basic recipe using the created
package would be:

from conans import ConanFile

class HelloPythonReuseConan(ConanFile):
requires = "HelloPy/0.1@memsharded/testing"

def build(self):
from hello import hello
hello()

The requires section is just referencing the previously created package. The functionality of that package can be used
in several methods of the recipe: source(), build(), package() and package_info(), i.e. all of the methods used
for creating the package itself. Note that in other places it is not possible, as it would require the dependencies of the
recipe to be already retrieved, and such dependencies cannot be retrieved until the basic evaluation of the recipe has
been executed.

$ conan install .
...
$ conan build .
Hello World from Python!

194 Chapter 13. Howtos

conan Documentation, Release 1.5.2

Sharing a python module

Another approach is sharing a python module and exporting within the recipe.

Lets write for example a msgs.py file and put it besides the conanfile.py:

def build_msg(output):
output.info("Building!")

And then the main conanfile.py would be:

from conans import ConanFile
from msgs import build_msg

class ConanFileToolsTest(ConanFile):
name = "test"
version = "1.9"
exports = "msgs.py" # Important to remember!

def build(self):
build_msg(self.output)
...

It is important to note that such msgs.py file must be exported too when exporting the package, because package
recipes must be self-contained.

The code reuse can also be done in the form of a base class, something like a file base_conan.py

from conans import ConanFile

class ConanBase(ConanFile):
common code here

And then:

from conans import ConanFile
from base_conan import ConanBase

class ConanFileToolsTest(ConanBase):
name = "test"
version = "1.9"
exports = "base_conan.py"

13.10 How to create and share a custom generator with generator
packages

There are several built-in generators, like cmake, visual_studio, xcode. . . But what if your build system is not
included? Or maybe the existing built-in generators doesn’t satisfy your needs. There are several options:

• Use the txt generator, that generates a plain text file easy to parse, which you might be able to use.

• Use conanfile.py data, and for example in the build() method, access that information directly and generate
a file or call directly your system

13.10. How to create and share a custom generator with generator packages 195

conan Documentation, Release 1.5.2

• Fork the conan codebase and write a built-in generator. Please make a pull request if possible to contribute it to
the community.

• Write a custom generator in a conanfile.py and manage it as a package. You can upload it to your own server
and share with your team, or share with the world uploading it to bintray. You can manage it as a package, you
can version it, overwrite it, delete it, create channels (testing/stable. . .), and the most important: bring it to your
projects as a regular dependency.

This how to will show you how to do the latest one. We will build a generator for premake (https://premake.github.io/)
build system:

13.10.1 Creating a custom generator

Basically a generator is a class that extends Generator and implements two properties: filename, which will be the
name of the file that will be generated, and content with the contents of that file. The name of the generator itself
will be taken from the class name:

class MyGeneratorName(Generator):
@property
def filename(self):

return "mygenerator.file"

@property
def content(self):

return "whatever contents the generator produces"

This class is just included in a conanfile.py that must contain also a ConanFile class that implements the package
itself, with the name of the package, the version, etc. This class typically has no source(), build(), package(),
and even the package_info() method is overridden as it doesn’t have to define any include paths or library paths.

If you want to create a generator that creates more than one file, you can leave the filename() empty, and return a
dictionary of filenames->contents in the content() method:

class MultiGenerator(Generator):

@property
def content(self):

return {"filename1.txt": "contents of file1",
"filename2.txt": "contents of file2"} # any number of files

@property
def filename(self):

pass

Once, it is defined in the conanfile.py you can treat is as a regular package, typically you will export it first to your
local cache, test it, and once it is working fine, you would upload it to a server.

196 Chapter 13. Howtos

https://premake.github.io/

conan Documentation, Release 1.5.2

13.10.2 Premake generator example

Create a project (the best is a git repository):

$ mkdir conan-premake && cd conan-premake

Then, write in it the following conanfile.py:

from conans.model import Generator
from conans import ConanFile

class PremakeDeps(object):
def __init__(self, deps_cpp_info):

self.include_paths = ",\n".join('"%s"' % p.replace("\\", "/")
for p in deps_cpp_info.include_paths)

self.lib_paths = ",\n".join('"%s"' % p.replace("\\", "/")
for p in deps_cpp_info.lib_paths)

self.bin_paths = ",\n".join('"%s"' % p.replace("\\", "/")
for p in deps_cpp_info.bin_paths)

self.libs = ", ".join('"%s"' % p for p in deps_cpp_info.libs)
self.defines = ", ".join('"%s"' % p for p in deps_cpp_info.defines)
self.cppflags = ", ".join('"%s"' % p for p in deps_cpp_info.cppflags)
self.cflags = ", ".join('"%s"' % p for p in deps_cpp_info.cflags)
self.sharedlinkflags = ", ".join('"%s"' % p for p in deps_cpp_info.

→˓sharedlinkflags)
self.exelinkflags = ", ".join('"%s"' % p for p in deps_cpp_info.exelinkflags)

self.rootpath = "%s" % deps_cpp_info.rootpath.replace("\\", "/")

class Premake(Generator):
@property
def filename(self):

return "conanpremake.lua"

@property
def content(self):

deps = PremakeDeps(self.deps_build_info)

template = ('conan_includedirs{dep} = {{{deps.include_paths}}}\n'
'conan_libdirs{dep} = {{{deps.lib_paths}}}\n'
'conan_bindirs{dep} = {{{deps.bin_paths}}}\n'
'conan_libs{dep} = {{{deps.libs}}}\n'
'conan_cppdefines{dep} = {{{deps.defines}}}\n'
'conan_cppflags{dep} = {{{deps.cppflags}}}\n'
'conan_cflags{dep} = {{{deps.cflags}}}\n'
'conan_sharedlinkflags{dep} = {{{deps.sharedlinkflags}}}\n'
'conan_exelinkflags{dep} = {{{deps.exelinkflags}}}\n')

sections = ["#!lua"]
all_flags = template.format(dep="", deps=deps)
sections.append(all_flags)
template_deps = template + 'conan_rootpath{dep} = "{deps.rootpath}"\n'

for dep_name, dep_cpp_info in self.deps_build_info.dependencies:
(continues on next page)

13.10. How to create and share a custom generator with generator packages 197

conan Documentation, Release 1.5.2

(continued from previous page)

deps = PremakeDeps(dep_cpp_info)
dep_name = dep_name.replace("-", "_")
dep_flags = template_deps.format(dep="_" + dep_name, deps=deps)
sections.append(dep_flags)

return "\n".join(sections)

class MyCustomGeneratorPackage(ConanFile):
name = "PremakeGen"
version = "0.1"
url = "https://github.com/memsharded/conan-premake"
license = "MIT"

def build(self):
pass

def package_info(self):
self.cpp_info.includedirs = []
self.cpp_info.libdirs = []
self.cpp_info.bindirs = []

This is a full working example. Note the PremakeDeps class as a helper. The generator is creating premake information
for each individual library separately, then also an aggregated information for all dependencies. This PremakeDeps
wraps a single item of such information.

Note the name of the package will be PremakeGen/0.1@user/channel as that is the name given to it, while the
generator name is Premake. You can give the package any name you want, even matching the generator name if
desired.

You export the package recipe to the local cache, so it can be used by other projects as usual:

$ conan export memsharded/testing

13.10.3 Using the generator

Let’s create a test project that uses this generator, and also an existing library conan package, we will use the simple
“Hello World” package we already created before:

$ cd ..
$ mkdir premake-project && cd premake-project

Now put the following files inside. Note the PremakeGen@0.1@memsharded/testing package reference in conan-
file.txt.

conanfile.txt

[requires]
Hello/0.1@memsharded/testing
PremakeGen@0.1@memsharded/testing

[generators]
Premake

198 Chapter 13. Howtos

conan Documentation, Release 1.5.2

main.cpp

#include "hello.h"

int main (void){
hello();

}

premake4.lua

#!lua

require 'conanpremake'

-- A solution contains projects, and defines the available configurations
solution "MyApplication"

configurations { "Debug", "Release" }
includedirs { conan_includedirs }
libdirs { conan_libdirs }
links { conan_libs }
-- A project defines one build target
project "MyApplication"

kind "ConsoleApp"
language "C++"
files { "**.h", "**.cpp" }

configuration "Debug"
defines { "DEBUG" }
flags { "Symbols" }

configuration "Release"
defines { "NDEBUG" }
flags { "Optimize" }

Let’s install the requirements and build the project:

$ conan install -s compiler=gcc -s compiler.version=4.9 -s compiler.libcxx=libstdc++ --
→˓build
$ premake4 gmake
$ make (or mingw32-make if in windows-mingw)
$./MyApplication
Hello World!

Now, everything works, so you might want to share your generator:

$ conan upload PremakeGen/0.1@memsharded/testing

Note: This is a regular conan package. You could for example embed this example in a test_package folder, create
a conanfile.py that invokes premake4 in the build() method, and use conan test to automatically test your custom
generator with a real project.

13.10. How to create and share a custom generator with generator packages 199

conan Documentation, Release 1.5.2

13.11 How to manage shared libraries

The shared libraries, .DLL in windows, .dylib in OSX and .so in Linux, are loaded at runtime, that means that the
application executable needs to know where are the required shared libraries when it runs.

On Windows, the dynamic linker, will search in the same directory then in the PATH directories. On OSX, it will
search in the directories declared in DYLD_LIBRARY_PATH as on Linux will use the LD_LIBRARY_PATH.

Furthermore in OSX and Linux there is another mechanism to locate the shared libraries: The RPATHs.

13.11.1 Manage Shared Libraries with Environment Variables

The shared libraries, are loaded at runtime. The application executable needs to know where to find the required shared
libraries when it runs.

Depending on the operating system, we can use environment variables to help the dynamic linker to find the shared
libraries:

OPERATING SYSTEM ENVIRONMENT VARIABLE
WINDOWS PATH
LINUX LD_LIBRARY_PATH
OSX DYLD_LIBRARY_PATH

If your package recipe (A) is generating shared libraries you can declare the needed environment variables pointing to
the package directory. This way, any other package depending on (A) will automatically have the right environment
variable set, so they will be able to locate the (A) shared library.

Similarly if you use the virtualenv generator and you activate it, you will get the paths needed to locate the shared
libraries in your terminal.

Example

We are packaging a tool called toolA with a library and an executable that, for example, compress data.

The package offers two flavors, shared library or static library (embedded in the executable of the tool and available
to link with). You can use the toolA package library to develop another executable or library or you can just use the
executable provided by the package. In both cases, if you choose to install the shared package of toolA you will need
to have the shared library available.

import os
from conans import tools, ConanFile

class ToolA(ConanFile):
....
name = "toolA"
version = "1.0"
options = {"shared": [True, False]}
default_options = "shared=False"

def build(self):
build your shared library

(continues on next page)

200 Chapter 13. Howtos

conan Documentation, Release 1.5.2

(continued from previous page)

def package(self):
Copy the executable
self.copy(pattern="toolA*", dst="bin", keep_path=False)

Copy the libraries
if self.options.shared:

self.copy(pattern="*.dll", dst="bin", keep_path=False)
self.copy(pattern="*.dylib", dst="lib", keep_path=False)
self.copy(pattern="*.so*", dst="lib", keep_path=False)

else:
...

Using the tool from a different package

If we are creating now a package that uses the ToolA executable to compress some data. You can execute directly
toolA using RunEnvironment build helper to set the environment variables accordingly:

import os
from conans import tools, ConanFile

class PackageB(ConanFile):
name = "packageB"
version = "1.0"
requires = "toolA/1.0@myuser/stable"

def build(self):
exe_name = "toolA.exe" if self.settings.os == "Windows" else "toolA"
env_build = RunEnvironment(self)
with tools.environment_append(env_build.vars):

self.run("%s --someparams" % exe_name)
...

Building an application using the shared library from toolA

As we are building a final application, probably we will want to distribute it together with the shared library from the
toolA, so we can use the Imports to import the required shared libraries to our user space.

Listing 5: conanfile.txt

[requires]
toolA/1.0@myuser/stable

[generators]
cmake

[options]
toolA:shared=True

[imports]
bin, *.dll -> ./bin # Copies all dll files from packages bin folder to my "bin" folder

(continues on next page)

13.11. How to manage shared libraries 201

conan Documentation, Release 1.5.2

(continued from previous page)

lib, *.dylib* -> ./bin # Copies all dylib files from packages lib folder to my "bin"␣
→˓folder
lib, *.so* -> ./bin # Copies all dylib files from packages lib folder to my "bin" folder

Now you can build the project:

$ mkdir build && cd build
$ conan install ..
$ cmake .. -G "Visual Studio 14 Win64"
$ cmake --build . --config Release
$ cd bin && mytool

The previous example will work only in Windows and OSX (changing the CMake generator), because the dynamic
linker will look in the current directory (the binary directory) where we copied the shared libraries too.

In Linux you still need to set the LD_LIBRARY_PATH, or in OSX, the DYLD_LIBRARY_PATH:

$ cd bin && LD_LIBRARY_PATH=$(pwd) && ./mytool

Using shared libraries from dependencies

If you are executing something that depends on shared libraries belonging to your dependencies, such shared libraries
have to be found at runtime. In Windows, it is enough if the package added its binary folder to the system PATH. In
Linux and OSX, it is necessary that the LD_LIBRARY_PATH and DYLD_LIBRARY_PATH environment variables are used.

Security restrictions might apply in OSX (read this thread), so the DYLD_LIBRARY_PATH environment variable is not
directly transferred to the child process. In that case, you have to use it explicitly in your conanfile.py:

def test(self):
self.run('./myexe") # won't work, even if 'DYLD_LIBRARY_PATH' is in the env
with tools.environment_append({"DYLD_LIBRARY_PATH": [self.deps_cpp_info["toolA"].lib_

→˓paths]}):
self.run('DYLD_LIBRARY_PATH=%s ./myexe" % os.environ['DYLD_LIBRARY_PATH'])

Or you could use RunEnvironment helper described above.

Using virtualrunenv generator

virtualrunenv generator will set the environment variables PATH, LD_LIBRARY_PATH, DYLD_LIBRARY_PATH pointing
to lib and bin folders automatically.

Listing 6: conanfile.txt

[requires]
toolA/1.0@myuser/stable

[options]
toolA:shared=True

[generators]
virtualrunenv

In the terminal window:

202 Chapter 13. Howtos

https://stackoverflow.com/questions/35568122/why-isnt-dyld-library-path-being-propagated-here

conan Documentation, Release 1.5.2

$ conan install .
$ source activate_run
$ toolA --someparams
Only For Mac OS users to avoid restrictions:
$ DYLD_LIBRARY_PATH=$DYLD_LIBRARY_PATH toolA --someparams

13.11.2 Manage RPATHs

The rpath is encoded inside dynamic libraries and executables and helps the linker to find its required shared libraries.

If we have an executable, my_exe, that requires a shared library, shared_lib_1, and shared_lib_1, in turn, requires
another shared_lib_2.

So the rpaths values are:

File rpath
my_exe /path/to/shared_lib_1
shared_lib_1 /path/to/shared_lib_2
shared_lib_2

In linux if the linker doesn’t find the library in rpath, it will continue the search in system defaults paths
(LD_LIBRARY_PATH. . . etc) In OSX, if the linker detects an invalid rpath (the file does not exist there), it will
fail.

Default Conan approach

The consumer project of dependencies with shared libraries needs to import them to the executable directory to be able
to run it:

conanfile.txt

[requires]
Poco/1.9.0@pocoproject/stable

[imports]
bin, *.dll -> ./bin # Copies all dll files from packages bin folder to my "bin" folder
lib, *.dylib* -> ./bin # Copies all dylib files from packages lib folder to my "bin"␣
→˓folder

On Windows this approach works well, importing the shared library to the directory containing your executable is a
very common procedure.

On Linux there is an additional problem, the dynamic linker doesn’t look by default in the executable directory, and
you will need to adjust the LD_LIBRARY_PATH environment variable like this:

LD_LIBRARY_PATH=$(pwd) && ./mybin

On OSX if absolute rpaths are hardcoded in an executable or shared library and they don’t exist the executable will fail
to run. This is the most common problem when we reuse packages in a different environment from where the artifacts
have been generated.

So, for OSX, conan, by default when you build your library with CMake, the rpaths will be generated without any
path:

13.11. How to manage shared libraries 203

conan Documentation, Release 1.5.2

File rpath
my_exe shared_lib_1.dylib
shared_lib_1.dylib shared_lib_2.dylib
shared_lib_2.dylib

The conan_basic_setup() macro will set the set(CMAKE_SKIP_RPATH 1) in OSX.

You can skip this default behavior by passing the KEEP_RPATHS parameter to the conan_basic_setup macro:

include(${CMAKE_BINARY_DIR}/conanbuildinfo.cmake)
conan_basic_setup(KEEP_RPATHS)

add_executable(timer timer.cpp)
target_link_libraries(timer ${CONAN_LIBS})

If you are using autotools conan won’t auto-adjust the rpaths behavior, if you want to follow this default behavior
probably you will need to replace the install_name in the configure or MakeFile generated files in your recipe to
not use $rpath:

replace_in_file("./configure", r"-install_name \$rpath/", "-install_name ")

Different approaches

You can adjust the rpaths in the way that adapts better to your needs.

If you are using CMake take a look to the CMake RPATH handling guide.

Remember to pass the KEEP_RPATHS variable to the conan_basic_setup:

include(${CMAKE_BINARY_DIR}/conanbuildinfo.cmake)
conan_basic_setup(KEEP_RPATHS)

Then, you could, for example, use the @executable_path in OSX and $ORIGIN in Linux to adjust a relative path
from the executable:

if (APPLE)
set(CMAKE_INSTALL_RPATH "@executable_path/../lib")

else()
set(CMAKE_INSTALL_RPATH "$ORIGIN/../lib")

endif()

You can use this imports statements in the consumer project:

[requires]
Poco/1.9.0@pocoproject/stable

[imports]
bin, *.dll -> ./bin # Copies all dll files from packages bin folder to my "bin" folder
lib, *.dylib* -> ./lib # Copies all dylib files from packages lib folder to my "lib"␣
→˓folder
lib, *.so* -> ./lib # Copies all so files from packages lib folder to my "lib" folder

And your finally application can follow this layout:

204 Chapter 13. Howtos

https://cmake.org/Wiki/CMake_RPATH_handling

conan Documentation, Release 1.5.2

bin
|_____ my_executable
|_____ mylib.dll
|
lib
|_____ libmylib.so
|_____ libmylib.dylib

You could move the entire application folder to any location and the shared libraries will be located correctly.

13.12 How to reuse cmake install for package() method

It is possible that your project’s CMakeLists.txt has already defined some functionality that extracts the artifacts (head-
ers, libraries, binaries) from the build and source folder to a predetermined place.

The conan package() method does exactly that: it defines which files have to be copied from the build folder to the
package folder.

If you want to reuse that functionality, you can do it with cmake.

Invoke cmake with CMAKE_INSTALL_PREFIX using the package_folder variable. If the cmake install target
correctly copies all the required libraries, headers, etc. to the package_folder, then the package() method is not
required.

def build(self):
cmake = CMake(self)
cmake.configure()
cmake.build()
cmake.install()
equivalent to
args += ['-DCMAKE_INSTALL_PREFIX="%s"' % self.package_folder]
self.run('cmake "%s/src" %s %s'
% (self.source_folder, cmake.command_line, ' '.join(args)))
self.run("cmake --build . --target install %s" % cmake.build_config)

def package(self):
nothing to do here now

The package_info() method is still necessary, as there is no possible way to automatically extract the information
of the necessary libraries, defines and flags for different build configurations from the cmake install.

13.13 How to collaborate on other users’ packages

If a certain existing package does not work for you, or you need to store pre-compiled binaries for a platform not
provided by the original package creator, you might still be able to do so:

13.12. How to reuse cmake install for package() method 205

conan Documentation, Release 1.5.2

13.13.1 Collaborate from source repository

If the original package creator has the package recipe in a repository, this would be the simplest approach. Just clone
the package recipe in your machine, change something if you want, and then export the package recipe under your own
user name. Point your project’s [requires] to the new package name, and use it as usual:

$ git clone <repository>
$ cd <repository>
//make changes if desired
$ conan export . <youruser/yourchannel>

You can just directly run:

$ conan create . demo/testing

Once you have generated the desired binaries, you can store your pre-compiled binaries in your bintray repository or
in your own Conan server:

$ conan upload Package/0.1@myuser/stable -r=myremote --all

Finally, if you made useful changes, you might want to create a pull request to the original repository of the package
creator.

13.13.2 Copy a package

If you don’t need to modify the original package creator recipe, it is fine to just copy the package in your local storage.
You can copy the recipes and existing binary packages. This could be enough for caching existing binary packages
from the orginal remote into your own remote, under your own username:

$ conan copy Poco/1.7.8p3@pocoproject/stable myuser/testing
$ conan upload Poco/1.7.8p3@myuser/testing -r=myremote --all

13.14 How to link with Apple Frameworks

It is common in OSx that your conan package needs to link with a complete Apple framework, and, of course, you want
to propagate this information to all projects/libraries that uses your package.

With regular libraries we use self.cpp_info.libs object to append to it all the libraries:

def package_info(self):

self.cpp_info.libs = ["SDL2"]
self.cpp_info.libs.append("OpenGL32")

With frameworks we need to declare the “-framework flag” as a linker flag:

def package_info(self):

self.cpp_info.libs = ["SDL2"]

self.cpp_info.exelinkflags.append("-framework Carbon")
self.cpp_info.exelinkflags.append("-framework CoreAudio")

(continues on next page)

206 Chapter 13. Howtos

conan Documentation, Release 1.5.2

(continued from previous page)

self.cpp_info.exelinkflags.append("-framework Security")
self.cpp_info.exelinkflags.append("-framework IOKit")

self.cpp_info.sharedlinkflags = self.cpp_info.exelinkflags

In the previous example we are using self.cpp_info.exelinkflags. If we are using CMake to consume this
package, it will only link those frameworks if we are building an executable and sharedlinkflags will only apply if
we are building a shared library.

If we are not using CMake to consume this package sharedlinkflags and exelinkflags are used indistinctly. In
the example above we are assigning in the last line sharedlinkflags with exelinkflags, so no matter what the
consumer will build, it will indicate to the linker to link with the specified frameworks.

13.15 How to collect licenses of dependencies

With the imports feature it is possible to collect the License files from all packages in the dependency graph. Please
note that the licenses are artifacts that must exist in the binary packages to be collected, as different binary packages
might have different licenses. E.g., A package creator might provide a different license for static or shared linkage with
different “License” files if they want to.

Also, we will assume the convention that the package authors will provide a “License” (case not important) file at the
root of their packages.

In conanfile.txt we would use the following syntax:

[imports]
., license* -> ./licenses @ folder=True, ignore_case=True

And in conanfile.py we will use the imports() method:

def imports(self):
self.copy("license*", dst="licenses", folder=True, ignore_case=True)

In both cases, after conan install, it will store all the found License files inside the local licenses folder, wich will
contain one subfolder per dependency with the license file inside.

13.16 How to capture package version from text or build files

It is common that a library version number would be already encoded in a text file, in some build scripts, etc. Lets take
as an example that we have the following library layout, that we want to create a package from it:

conanfile.py
CMakeLists.txt
src

hello.cpp
...

The CMakeLists.txt will have some variables to define the library version number. Lets assume for simplicity that it
has some line like:

13.15. How to collect licenses of dependencies 207

conan Documentation, Release 1.5.2

cmake_minimum_required(VERSION 2.8)
set(MY_LIBRARY_VERSION 1.2.3) # This is the version we want
add_library(hello src/hello.cpp)

We will typically have in our conanfile.py package recipe:

class HelloConan(ConanFile):
name = "Hello"
version = "1.2.3"

Usually this takes very little maintenance, and when the CMakeLists version is bumped, the conanfile.py version is
bumped too. But if you want to only have to update the CMakeLists.txt version, you can extract the version dynamically,
with:

from conans import ConanFile
from conans.tools import load
import re

def get_version():
try:

content = load("CMakeLists.txt")
version = re.search(b"set\(MY_LIBRARY_VERSION (.*)\)", content).group(1)
return version.strip()

except Exception as e:
return None

class HelloConan(ConanFile):
name = "Hello"
version = get_version()

Even if the CMakeLists.txt file is not exported to the local cache, it will still work, as the get_version() function
returns None when it is not found, then taking the version number from the package metadata (layout).

13.17 How to use Conan as other language package manager

Conan is a generic package manager. In the getting started section we saw how to use conan and manage a C/C++
library, like POCO.

But conan just provided some tools, related with C/C++ (like some generators and the cpp_info), to offer a better user
experience. The general basis of Conan can be used with other programming languages.

Obviously, this does not try to compete with other package managers. Conan is a C and C++ package manager, focused
on C and C++ developers. But when we realized that this was possible, we thought it was a good way to showcase its
power, simplicity and versatility.

And of course, if you are doing C/C++ and occasionally you need some package from other language in your workflow,
as in the conan package recipes themselves, or for some other tooling, you might find this functionality useful.

208 Chapter 13. Howtos

conan Documentation, Release 1.5.2

13.17.1 Conan: A Go package manager

The source code

You can just clone the following example repository:

$ git clone https://github.com/lasote/conan-goserver-example

Or, alternatively, manually create the folder and copy the following files inside:

$ mkdir conan-goserver-example
$ cd conan-goserver-example
$ mkdir src
$ mkdir src/server

The files are:

src/server/main.go is a small http server that will answer “Hello world!” if we connect to it.

package main

import "github.com/go-martini/martini"

func main() {
m := martini.Classic()
m.Get("/", func() string {
return "Hello world!"

})
m.Run()

}

Declaring and installing dependencies

Create a conanfile.txt, with the following content:

Listing 7: conanfile.txt

[requires]
go-martini/1.0@lasote/stable

[imports]
src, * -> ./deps/src

Our project requires a package, go-martini/1.0@lasote/stable, and we indicate that all src contents from all our
requirements have to be copied to ./deps/src.

The package go-martini depends on go-inject, so Conan will handle automatically the go-inject dependency.

$ conan install .

This command will download our packages and will copy the contents in the ./deps/src folder.

13.17. How to use Conan as other language package manager 209

conan Documentation, Release 1.5.2

Running our server

Just add the deps folder to GOPATH:

Linux / Macos
$ export GOPATH=${GOPATH}:${PWD}/deps

Windows
$ SET GOPATH=%GOPATH%;%CD%/deps

And run the server:

$ cd src/server
$ go run main.go

Open your browser and go to localhost:9300

Hello World!

Generating Go packages

Creating a Conan package for a Go library is very simple. In a Go project, you compile all the code from sources in
the project itself, including all of its dependencies.

So we don’t need to take care of settings at all. Architecture, compiler, operating system, etc. are only relevant for
pre-compiled binaries. Source code packages are settings agnostic.

Let’s take a look at the conanfile.py of the go inject library:

Listing 8: conanfile.py

from conans import ConanFile

class InjectConan(ConanFile):
name = "go-inject"
version = "1.0"

def source(self):
self.run("git clone https://github.com/codegangsta/inject.git")
self.run("cd inject && git checkout v1.0-rc1") # TAG v1.0-rc1

def package(self):
self.copy(pattern='*', dst='src/github.com/codegangsta/inject', src="inject",␣

→˓keep_path=True)

If you have read the Building a hello world package, the previous code may look quite simple to you.

We want to pack version 1.0 of the go inject library, so the version variable is “1.0”. In the source() method, we
declare how to obtain the source code of the library, in this case just by cloning the github repository and making
a checkout of the v1.0-rc1 tag. In the package() method, we are just copying all the sources to a folder named
“src/github.com/codegangsta/inject”.

This way, we can keep importing the library in the same way:

import "github.com/codegangsta/inject"

210 Chapter 13. Howtos

conan Documentation, Release 1.5.2

We can export and upload the package to a remote and we are done:

$ conan export . lasote/stable # Or any other user/channel
$ conan upload go-inject/1.0@lasote/stable --all

Now look at the go martini conanfile:

Listing 9: conanfile.py

from conans import ConanFile

class InjectConan(ConanFile):
name = "go-martini"
version = "1.0"
requires = 'go-inject/1.0@lasote/stable'

def source(self):
self.run("git clone https://github.com/go-martini/martini.git")
self.run("cd martini && git checkout v1.0") # TAG v1.0

def package(self):
self.copy(pattern='*', dst='src/github.com/go-martini/martini', src="martini",␣

→˓keep_path=True)

It is very similar. The only difference is the requires variable. It defines the go-inject/1.0@lasote/stable library, as
a requirement.

$ conan export . lasote/stable # Or any other user/channel
$ conan upload go-martini/1.0@lasote/stable --all

Now we are able to use them easily and without the problems of versioning with github checkouts.

13.17.2 Conan: A Python package manager

Conan is a C and C++ package manager, and to deal with the vast variability of C and C++ build systems, compilers,
configurations, etc., it was designed with a great flexibility in mind, trying to let the users do almost what they want.
This is one of the reasons to use Python as the scripting language for Conan package recipes.

With this flexibility, Conan is able to do very different tasks: package Visual Studio modules, package Go code, build
packages from sources or from binaries retrieved from elsewhere, etc.

Python code can be reused and packaged with Conan to share functionalities or tools among conanfile.py files. Here
we can see a full example of Conan as a Python package manager.

A full Python and C/C++ package manager

The real utility of this is that Conan is a C and C++ package manager. So if we want to create a python package that
wraps the functionality of, lets say the Poco C++ library, it can be easily done. Poco itself has transitive (C/C++)
dependencies, but they are already handled by Conan. Furthermore, a very interesting thing is that nothing has to be
done in advance for that library, thanks to useful tools as pybind11, that allows to create python bindings easily.

So let’s build a package with the following files:

• conanfile.py: The package recipe.

• __init__.py: necessary file, blank.

13.17. How to use Conan as other language package manager 211

https://blog.conan.io/2016/06/01/Building-and-packaging-C++-modules-in-VS2015.html

conan Documentation, Release 1.5.2

• pypoco.cpp: The C++ code with the pybind11 wrapper for Poco that generates a python extension (a shared
library that can be imported from python).

• CMakeLists.txt: cmake build file that is able to compile pypoco.cpp into a Python extension (pypoco.pyd in
Windows, pypoco.so in Linux)

• poco.py: A Python file that makes use of the pypoco Python binary extension built with pypoco.cpp.

• test_package/conanfile.py: A test consumer recipe for convenience to create and test the package.

The pypoco.cpp file can be coded easily thanks to the elegant pybind11 library:

Listing 10: pypoco.cpp

#include <pybind11/pybind11.h>
#include "Poco/Random.h"

using Poco::Random;
namespace py = pybind11;

PYBIND11_PLUGIN(pypoco) {
py::module m("pypoco", "pybind11 example plugin");
py::class_<Random>(m, "Random")

.def(py::init<>())

.def("nextFloat", &Random::nextFloat);
return m.ptr();

}

And the poco.py file is straigthforward:

Listing 11: poco.py

import sys
import pypoco

def random_float():
r = pypoco.Random()
return r.nextFloat()

The conanfile.py has a few more lines than the above, but it is still quite easy to understand:

Listing 12: conanfile.py

from conans import ConanFile, tools, CMake

class PocoPyReuseConan(ConanFile):
name = "PocoPy"
version = "0.1"
requires = "Poco/1.9.0@pocoproject/stable", "pybind11/any@memsharded/stable"
settings = "os", "compiler", "arch", "build_type"
exports = "*"
generators = "cmake"
build_policy = "missing"

def build(self):
cmake = CMake(self)

(continues on next page)

212 Chapter 13. Howtos

conan Documentation, Release 1.5.2

(continued from previous page)

pythonpaths = "-DPYTHON_INCLUDE_DIR=C:/Python27/include -DPYTHON_LIBRARY=C:/
→˓Python27/libs/python27.lib"

self.run('cmake %s %s -DEXAMPLE_PYTHON_VERSION=2.7' % (cmake.command_line,␣
→˓pythonpaths))

self.run("cmake --build . %s" % cmake.build_config)

def package(self):
self.copy('*.py*')
self.copy("*.so")

def package_info(self):
self.env_info.PYTHONPATH.append(self.package_folder)

The recipe now declares 2 requires, the Poco library and the pybind11 library that we will be using to create the
binary extension.

As we are actually building some C++ code, we need a few important things:

• Input settings that define the OS, compiler, version and architecture we are using to build our extension. This
is necessary because the binary we are building must match the architecture of the python interpreter that we will
be using.

• The build() method is used actually to invoke CMake. See we had to hardcode the python path in the example,
as the CMakeLists.txt call to find_package(PythonLibs) didn’t find my python installed in C:/Python27,
quite a standard path. I have added the cmake generator too to be able to easily use the declared requires build
information inside my CMakeLists.txt.

• The CMakeLists.txt is not posted here, but is basically the one used in the pybind11 example with just 2 lines to
include the conan generated cmake file for dependencies. It can be inspected in the github repo.

• Note that we are using Python 2.7 as an input option. If necessary, more options for other inter-
preters/architectures could be easily provided, as well as avoiding the hardcoded paths. Even the Python in-
terpreter itself could be packaged in a conan package.

The above recipe will generate a different binary for different compilers or versions. As the binary is being wrapped
by python, we could avoid this and use the same binary for different setups, modifying this behavior with the
conan_info() method.

$ conan export . memsharded/testing
$ conan install PocoPy/0.1@memsharded/testing -s arch=x86 -g virtualenv
$ activate
$ python
>>> import poco
>>> poco.random_float()
0.697845458984375

Now the first invocation of conan install will build retrieve the dependencies and build the package. The next
invocation will use the cached binaries and be much faster. Note how we have to specify -s arch=x86 to build
matching the architecture of the python interpreter to be used, in our case, 32 bits.

We can also read in the output of the conan install the dependencies that are being pulled:

Requirements
OpenSSL/1.0.2l@conan/stable from conan.io
Poco/1.9.0@pocoproject/stable from conan.io
PocoPy/0.1@memsharded/testing from local

(continues on next page)

13.17. How to use Conan as other language package manager 213

conan Documentation, Release 1.5.2

(continued from previous page)

pybind11/any@memsharded/stable from conan.io
zlib/1.2.11@conan/stable from conan.io

This is the great thing about using Conan for this task, by depending on Poco, other C and C++ transitive dependencies
are being retrieved and used in the application.

If you want to have a further look to the code of these examples, you can check this github repo. The above examples
and code have been tested only in Win10, VS14u2, but might work with other configurations with little or no extra
work.

13.18 How to manage SSL (TLS) certificates

13.18.1 Server certificate validation

By default, when a remote is added, if the URL schema is https, the Conan client will verify the certificate using a
list of authorities declared in the cacert.pem file located in the conan home (~/.conan).

If you have a self signed certificate (not signed by any authority) you have two options:

• Use the conan remote command to disable the SSL verification.

• Append your server crt file to the cacert.pem file.

13.18.2 Client certificates

If your server is requiring client certificates to validate a connection from a Conan client, you need to create two files
in the conan home directory (default ~/.conan):

• A file client.crt with the client certificate.

• A file client.key with the private key.

Note: You can create only the client.crt file containing both the certificate and the private key concatenated and
not create the client.key

If you are a familiar with the curl tool, this mechanism is similar to specify the --cert / --key parameters.

13.19 How to check the version of the Conan client inside a conanfile

Sometimes it might be useful to check the Conan version that is running in that moment your recipe. Although we
consider conan-center recipes only forward compatible, this kind of check makes sense to update them so they can
maintain compatibility with old versions of Conan.

Let’s have a look at a basic example of this:

Listing 13: conanfile.py

from conans import ConanFile, CMake, __version__ as conan_version
from conans.model.version import Version

(continues on next page)

214 Chapter 13. Howtos

https://github.com/memsharded/python-conan-packages
https://curl.haxx.se/docs/manpage.html

conan Documentation, Release 1.5.2

(continued from previous page)

class MyLibraryConan(ConanFile):
name = "mylibrary"
version = "1.0"

def build(self):
if conan_version < Version("0.29"):

cmake = CMake(self.settings)
else:

cmake = CMake(self)
...

Here it checks the Conan version to maintain compatibility of the CMake build helper for versions lower than Conan
0.29. It also uses the internal Version() class to perform the semver comparison in the if clause.

You can find a real example of this in the mingw_installer. Here you have the interesting part of the recipe:

Listing 14: conanfile.py

from conans import ConanFile, tools, __version__ as conan_version
from conans.model.version import Version

class MingwInstallerConan(ConanFile):
name = "mingw_installer"
version = "1.0"
license = "http://www.mingw.org/license"
url = "http://github.com/lasote/conan-mingw-installer"

if conan_version < Version("0.99"):
os_name = "os"
arch_name = "arch"

else:
os_name = "os_build"
arch_name = "arch_build"

settings = {os_name: ["Windows"],
arch_name: ["x86", "x86_64"],
"compiler": {"gcc": {"version": None,

"libcxx": ["libstdc++", "libstdc++11"],
"threads": ["posix", "win32"],
"exception": ["dwarf2", "sjlj", "seh"]}}}

...

You can see here the mingw_installer recipe uses new settings os_build and arch_build since Conan 1.0 as
those are the right ones for installer packages. However, it also keeps the old settings so as not to break the recipe for
old version, using normal os and arch.

As said before, this is useful to maintain compatibility of recipes with older Conan versions but remember that since
Conan 1.0 there should not be any breaking changes.

13.19. How to check the version of the Conan client inside a conanfile 215

https://github.com/conan-community/conan-mingw-installer

conan Documentation, Release 1.5.2

13.20 Use a generic CI with Conan and Artifactory

13.20.1 Uploading the BuildInfo

If you are using Jenkins with Conan and Artifactory, with the Jenkins Artifactory Plugin, any Conan package down-
loaded or uploaded during your build will be automatically recorded in the BuildInfo json file, that will be automatically
uploaded to the specified Artifactory instance.

However, you can gather and upload that information using other CI infrastructure with the following steps:

1. Before calling Conan the first time in your build, set the environment variable CONAN_TRACE_FILE to a file
path. The generated file will contain the BuildInfo json.

2. You also need to create the artifacts.properties file in your Conan home containing the build information. All
this properties will be automatically associated to all the published artifacts.

artifact_property_build.name=MyBuild
artifact_property_build.number=23
artifact_property_build.timestamp=1487676992

3. Call Conan as many times as you need. For example, if you are testing a Conan package and uploading it at the
end, you will run something similar to:

$ conan create . user/stable # Will retrieve the dependencies and create the package
$ conan upload mypackage/1.0@user/stable -r artifactory

4. Call the command conan_build_info passing the path to the generated conan traces file and a parameter --output
to indicate the output file. You can also, delete the traces.log` file` otherwise while the CONAN_TRACE_FILE
is present, any Conan command will keep appending actions.

$ conan_build_info /tmp/traces.log --output /tmp/build_info.json
$ rm /tmp/traces.log

5. Edit the build_info.json file to append name (build name), number (build number) and the started (started date)
and any other field that you need according to the Build Info json format.

The started field has to be in the format: yyyy-MM-dd'T'HH:mm:ss.SSSZ

To edit the file you can import the json file using the programming language you are using in your framework,
groovy, java, python. . .

6. Push the json file to Artifactory, using the REST-API:

curl -X PUT -u<username>:<password> -H "Content-type: application/json" -T /tmp/build_
→˓info.json "http://host:8081/artifactory/api/build"

216 Chapter 13. Howtos

https://www.jfrog.com/confluence/display/RTF/Jenkins+Artifactory+Plug-in
https://www.jfrog.com/confluence/display/RTF/Build+Integration#BuildIntegration-BuildInfoJSON
https://github.com/jfrog/build-info

CHAPTER

FOURTEEN

REFERENCE

General information about the commands, configuration files, etc.

Contents:

14.1 Commands

14.1.1 Consumer commands

Commands related with the installation and usage of Conan packages:

conan install

$ conan install [-h] [-g GENERATOR] [-if INSTALL_FOLDER] [-m [MANIFESTS]]
[-mi [MANIFESTS_INTERACTIVE]] [-v [VERIFY]]
[--no-imports] [-j JSON] [-b [BUILD]] [-e ENV]
[-o OPTIONS] [-pr PROFILE] [-r REMOTE] [-s SETTINGS] [-u]
path_or_reference

Installs the requirements specified in a recipe (conanfile.py or conanfile.txt). It can also be used to install a concrete
package specifying a reference. If any requirement is not found in the local cache, it will retrieve the recipe from a
remote, looking for it sequentially in the configured remotes. When the recipes have been downloaded it will try to
download a binary package matching the specified settings, only from the remote from which the recipe was retrieved.
If no binary package is found, it can be build from sources using the ‘–build’ option. When the package is installed,
Conan will write the files for the specified generators.

positional arguments:
path_or_reference Path to a folder containing a recipe (conanfile.py or

conanfile.txt) or to a recipe file. e.g.,
./my_project/conanfile.txt. It could also be a
reference

optional arguments:
-h, --help show this help message and exit
-g GENERATOR, --generator GENERATOR

Generators to use
-if INSTALL_FOLDER, --install-folder INSTALL_FOLDER

Use this directory as the directory where to put the
generatorfiles. e.g., conaninfo/conanbuildinfo.txt

(continues on next page)

217

conan Documentation, Release 1.5.2

(continued from previous page)

-m [MANIFESTS], --manifests [MANIFESTS]
Install dependencies manifests in folder for later
verify. Default folder is .conan_manifests, but can be
changed

-mi [MANIFESTS_INTERACTIVE], --manifests-interactive [MANIFESTS_INTERACTIVE]
Install dependencies manifests in folder for later
verify, asking user for confirmation. Default folder
is .conan_manifests, but can be changed

-v [VERIFY], --verify [VERIFY]
Verify dependencies manifests against stored ones

--no-imports Install specified packages but avoid running imports
-j JSON, --json JSON Path to a json file where the install information will

be written
-b [BUILD], --build [BUILD]

Optional, use it to choose if you want to build from
sources: --build Build all from sources, do not use
binary packages. --build=never Never build, use binary
packages or fail if a binary package is not found.
--build=missing Build from code if a binary package is
not found. --build=outdated Build from code if the
binary is not built with the current recipe or when
missing binary package. --build=[pattern] Build always
these packages from source, but never build the
others. Allows multiple --build parameters. 'pattern'
is a fnmatch file pattern of a package name. Default
behavior: If you don't specify anything, it will be
similar to '--build=never', but package recipes can
override it with their 'build_policy' attribute in the
conanfile.py.

-e ENV, --env ENV Environment variables that will be set during the
package build, -e CXX=/usr/bin/clang++

-o OPTIONS, --options OPTIONS
Define options values, e.g., -o Pkg:with_qt=true

-pr PROFILE, --profile PROFILE
Apply the specified profile to the install command

-r REMOTE, --remote REMOTE
Look in the specified remote server

-s SETTINGS, --settings SETTINGS
Settings to build the package, overwriting the
defaults. e.g., -s compiler=gcc

-u, --update Check updates exist from upstream remotes

conan install executes methods of a conanfile.py in the following order:

1. config_options()

2. configure()

3. requirements()

4. package_id()

5. package_info()

6. deploy()

218 Chapter 14. Reference

conan Documentation, Release 1.5.2

Note this describes the process of installing a pre-built binary package. If the package has to be built, conan install
--build executes the following:

1. config_options()

2. configure()

3. requirements()

4. package_id()

5. build_requirements()

6. build_id()

7. system_requirements()

8. source()

9. imports()

10. build()

11. package()

12. package_info()

13. deploy()

Examples

• Install a package requirement from a conanfile.txt, saved in your current directory with one option and setting
(other settings will be defaulted as defined in <userhome>/.conan/profiles/default):

$ conan install . -o PkgName:use_debug_mode=on -s compiler=clang

Note: You have to take into account that settings are cached as defaults in the conaninfo.txt file, so you don’t
have to type them again and again in the conan install or conan create commands.

However, the default options are defined in your conanfile. If you want to change the default options across all
your conan install commands, change them in the conanfile. When you change the options on the command
line, they are only changed for one shot. Next time, conan install will take the conanfile options as default
values, if you don’t specify them again in the command line.

• Install the OpenCV/2.4.10@lasote/testing reference with its default options and default settings from
<userhome>/.conan/profiles/default:

$ conan install opencv/2.4.10@lasote/testing

• Install the OpenCV/2.4.10@lasote/testing reference updating the recipe and the binary package if new upstream
versions are available:

$ conan install opencv/2.4.10@lasote/testing --update

14.1. Commands 219

conan Documentation, Release 1.5.2

build options

Both the conan install and create commands have options to specify whether conan should try to build things or not:

• --build=never: This is the default option. It is not necessary to write it explicitly. Conan will not try to build
packages when the requested configuration does not match, in which case it will throw an error.

• --build=missing: Conan will try to build from source, all packages of which the requested configuration was
not found on any of the active remotes.

• --build=outdated: Conan will try to build from code if the binary is not built with the current recipe or when
missing binary package.

• --build=[pattern]: A fnmatch file pattern of a package name. e.j zl* will match zlib package. Conan will
force the build of the packages, the name of which matches the given pattern. Several patterns can be specified,
chaining multiple options, e.g. --build=pattern1 --build=pattern2.

• --build: Always build everything from source. Produces a clean re-build of all packages and transitively
dependent packages

env variables

With the -e parameters you can define:

• Global environment variables (-e SOME_VAR="SOME_VALUE"). These variables will be defined before the build
step in all the packages and will be cleaned after the build execution.

• Specific package environment variables (-e zlib:SOME_VAR="SOME_VALUE"). These variables will be defined
only in the specified packages (e.g. zlib).

You can specify this variables not only for your direct requires but for any package in the dependency graph.

If you want to define an environment variable but you want to append the variables declared in your requirements you
can use the [] syntax:

$ conan install . -e PYTHONPATH=[/other/path]

This way the first entry in the PYTHONPATH variable will be /other/path but the PYTHONPATH values declared
in the requirements of the project will be appended at the end using the system path separator.

settings

With the -s parameters you can define:

• Global settings (-s compiler="Visual Studio"). Will apply to all the requires.

• Specific package settings (-s zlib:compiler="MinGW"). Those settings will be applied only to the specified
packages.

You can specify custom settings not only for your direct requires but for any package in the dependency graph.

220 Chapter 14. Reference

conan Documentation, Release 1.5.2

options

With the -o parameters you can only define specific package options.

$ conan install . -o zlib:shared=True
$ conan install . -o zlib:shared=True -o bzip2:option=132
you can also apply the same options to many packages with wildcards:
$ conan install . -o *:shared=True

Note: You can use profiles files to create predefined sets of settings, options and environment variables.

conan config

$ conan config [-h] {rm,set,get,install} ...

Manages Conan configuration. Edits the conan.conf or installs config files.

positional arguments:
{rm,set,get,install} sub-command help
rm Remove an existing config element
set Set a value for a configuration item
get Get the value of configuration item
install install a full configuration from a local or remote

zip file

optional arguments:
-h, --help show this help message and exit

Examples

• Change the logging level to 10:

$ conan config set log.level=10

• Get the logging level:

$ conan config get log.level
$> 10

conan config install

The config install is intended to share the Conan client configuration. For example, in a company or organization,
is important to have common settings.yml, profiles, etc.

It retrieves a zip file from a local directory or url and apply the files in the local Conan configuration.

The zip can contain only a subset of all the allowed configuration files, only the present files will be replaced, except
the conan.conf file, that will apply only the declared variables in the zipped conan.conf file and will keep the rest of
the local variables.

The profiles files, that will be overwritten if already present, but won’t delete any other profile file that the user has in
the local machine.

14.1. Commands 221

conan Documentation, Release 1.5.2

All files in the zip will be copied to the conan home directory. These are the special files and the rules applied to merge
them:

File How it is applied
profiles/MyProfile Overrides the local ~/.conan/profiles/MyProfile if already exists
settings.yml Overrides the local ~/.conan/settings.yml
remotes.txt Overrides remotes. Will remove remotes that are not present in file
config/conan.conf Merges the variables, overriding only the declared variables

The file remotes.txt is the only file listed above which does not have a direct counterpart in the ~/.conan folder. Its
format is a list of entries, one on each line, with the form

[remote name] [remote url] [bool]

where [bool] (either True or False) indicates whether SSL should be used to verify that remote.

The local cache registry.txt file contains the remotes definitions, as well as the mapping from packages to remotes.
In general it is not a good idea to add it to the installed files. That being said, the remote definitions part of the
registry.txt file uses the format required for remotes.txt, so you may find it provides a helpful starting point when
writing a remotes.txt to be packaged in a Conan client configuration.

The specified URL will be stored in the general.config_install variable of the conan.conf file, so following
calls to conan config install command doesn’t need to specify the URL.

Examples:

• Install the configuration from an url:

$ conan config install http://url/to/some/config.zip

Conan config command stores the specified URL in the conan.conf general.config_install variable.

• Install from an url skipping SSL verification:

$ conan config install http://url/to/some/config.zip --verify-ssl=False

This will disable the SSL check of the certificate. This option is defaulted to True.

• Refresh the configuration again:

$ conan config install

It’s not needed to specify the url again, it is already stored.

• Install the configuration from a local path:

$ conan config install /path/to/some/config.zip

222 Chapter 14. Reference

conan Documentation, Release 1.5.2

conan get

$ conan get [-h] [-p PACKAGE] [-r REMOTE] [-raw] reference [path]

Gets a file or list a directory of a given reference or package.

positional arguments:
reference package recipe reference
path Path to the file or directory. If not specified will

get the conanfile if only a reference is specified and
a conaninfo.txt file contents if the package is also
specified

optional arguments:
-h, --help show this help message and exit
-p PACKAGE, --package PACKAGE

Package ID
-r REMOTE, --remote REMOTE

Get from this specific remote
-raw, --raw Do not decorate the text

Examples:

• Print the conanfile.py from a remote package:

$ conan get zlib/1.2.8@conan/stable -r conan-center

• List the files for a local package recipe:

$ conan get zlib/1.2.11@conan/stable .

Listing directory '.':
CMakeLists.txt
conanfile.py
conanmanifest.txt

• Print a file from a recipe folder:

$ conan get zlib/1.2.11@conan/stable conanmanifest.txt

• Print the conaninfo.txt file for a binary package:

$ conan get zlib/1.2.11@conan/stable -p 09512ff863f37e98ed748eadd9c6df3e4ea424a8

[settings]
arch=x86_64
build_type=Release
compiler=apple-clang
compiler.version=8.1
os=Macos

[requires]

(continues on next page)

14.1. Commands 223

conan Documentation, Release 1.5.2

(continued from previous page)

[options]
...

• List the files from a binary package in a remote:

$ conan get zlib/1.2.11@conan/stable . -p 09512ff863f37e98ed748eadd9c6df3e4ea424a8 -
→˓r conan-center

Listing directory '.':
conan_package.tgz
conaninfo.txt
conanmanifest.txt

conan info

$ conan info [-h] [--paths] [-bo BUILD_ORDER] [-g GRAPH]
[-if INSTALL_FOLDER] [-j [JSON]] [-n ONLY]
[--package-filter [PACKAGE_FILTER]] [-db [DRY_BUILD]]
[-b [BUILD]] [-e ENV] [-o OPTIONS] [-pr PROFILE] [-r REMOTE]
[-s SETTINGS] [-u]
path_or_reference

Gets information about the dependency graph of a recipe. It can be used with a recipe or a reference for any existing
package in your local cache.

positional arguments:
path_or_reference Path to a folder containing a recipe (conanfile.py or

conanfile.txt) or to a recipe file. e.g.,
./my_project/conanfile.txt. It could also be a
reference

optional arguments:
-h, --help show this help message and exit
--paths Show package paths in local cache
-bo BUILD_ORDER, --build-order BUILD_ORDER

given a modified reference, return an ordered list to
build (CI)

-g GRAPH, --graph GRAPH
Creates file with project dependencies graph. It will
generate a DOT or HTML file depending on the filename
extension

-if INSTALL_FOLDER, --install-folder INSTALL_FOLDER
local folder containing the conaninfo.txt and
conanbuildinfo.txt files (from a previous conan
install execution). Defaulted to current folder,
unless --profile, -s or -o is specified. If you
specify both install-folder and any setting/option it
will raise an error.

-j [JSON], --json [JSON]
Only with --build_order option, return the information
in a json. e.g --json=/path/to/filename.json or --json

(continues on next page)

224 Chapter 14. Reference

conan Documentation, Release 1.5.2

(continued from previous page)

to output the json
-n ONLY, --only ONLY Show only the specified fields: "id", "build_id",

"remote", "url", "license", "requires", "update",
"required", "date", "author", "None". '--paths'
information can also be filtered with options
"export_folder", "build_folder", "package_folder",
"source_folder". Use '--only None' to show only
references.

--package-filter [PACKAGE_FILTER]
Print information only for packages that match the
filter pattern e.g., MyPackage/1.2@user/channel or
MyPackage*

-db [DRY_BUILD], --dry-build [DRY_BUILD]
Apply the --build argument to output the information,
as it would be done by the install command

-b [BUILD], --build [BUILD]
Given a build policy, return an ordered list of
packages that would be built from sources during the
install command

-e ENV, --env ENV Environment variables that will be set during the
package build, -e CXX=/usr/bin/clang++

-o OPTIONS, --options OPTIONS
Define options values, e.g., -o Pkg:with_qt=true

-pr PROFILE, --profile PROFILE
Apply the specified profile to the install command

-r REMOTE, --remote REMOTE
Look in the specified remote server

-s SETTINGS, --settings SETTINGS
Settings to build the package, overwriting the
defaults. e.g., -s compiler=gcc

-u, --update Check updates exist from upstream remotes

Examples:

$ conan info .
$ conan info myproject_folder
$ conan info myproject_folder/conanfile.py
$ conan info Hello/1.0@user/channel

The output will look like:

Dependency/0.1@user/channel
ID: 5ab84d6acfe1f23c4fae0ab88f26e3a396351ac9
BuildID: None
Remote: None
URL: http://...
License: MIT
Updates: Version not checked
Creation date: 2017-10-31 14:45:34
Required by:

Hello/1.0@user/channel

(continues on next page)

14.1. Commands 225

conan Documentation, Release 1.5.2

(continued from previous page)

Hello/1.0@user/channel
ID: 5ab84d6acfe1f23c4fa5ab84d6acfe1f23c4fa8
BuildID: None
Remote: None
URL: http://...
License: MIT
Updates: Version not checked
Required by:

Project
Requires:

Hello0/0.1@user/channel

conan info builds the complete dependency graph, like conan install does. The main difference is that it doesn’t
try to install or build the binaries, but the package recipes will be retrieved from remotes if necessary.

It is very important to note, that the info command outputs the dependency graph for a given configuration (settings,
options), as the dependency graph can be different for different configurations. Then, the input to the conan info
commmand is the same as conan install, the configuration can be specified directly with settings and options, or
using profiles.

Also, if you did a previous conan install with a specific configuration, or maybe different installs with different
configurations, you can reuse that information with the --install-folder argument:

$ # dir with a conanfile.txt
$ mkdir build_release && cd build_release
$ conan install .. --profile=gcc54release
$ cd .. && mkdir build_debug && cd build_debug
$ conan install .. --profile=gcc54debug
$ cd ..
$ conan info . --install-folder=build_release
> info for the release dependency graph install
$ conan info . --install-folder=build_debug
> info for the debug dependency graph install

It is possible to use the conan info command to extract useful information for Continuous Integration systems. More
precisely, it has the --build_order, -bo option, that will produce a machine-readable output with an ordered list of
package references, in the order they should be built. E.g., lets assume that we have a project that depends on Boost
and Poco, which in turn depends on OpenSSL and ZLib transitively. So we can query our project with a reference that
has changed (most likely due to a git push on that package):

$ conan info . -bo zlib/1.2.11@conan/stable
[zlib/1.2.11@conan/stable], [OpenSSL/1.0.2l@conan/stable], [Boost/1.60.0@lasote/stable,␣
→˓Poco/1.7.8p3@pocoproject/stable]

Note the result is a list of lists. When there is more than one element in one of the lists, it means that they are decoupled
projects and they can be built in parallel by the CI system.

You can also specify the ALL argument, if you want just to compute the whole dependency graph build order

$ conan info . --build_order=ALL
> [zlib/1.2.11@conan/stable], [OpenSSL/1.0.2l@conan/stable], [Boost/1.60.0@lasote/stable,
→˓ Poco/1.7.8p3@pocoproject/stable]

Also you can get a list of nodes that would be built (simulation) in an install command specifying a build policy with
the --build parameter:

226 Chapter 14. Reference

conan Documentation, Release 1.5.2

e.g., If I try to install Boost/1.60.0@lasote/stable recipe with --build missing build policy and arch=x86,
which libraries will be built?

$ conan info Boost/1.60.0@lasote/stable --build missing -s arch=x86
bzip2/1.0.6@lasote/stable, zlib/1.2.8@lasote/stable, Boost/1.60.0@lasote/stable

You can generate a graph of your dependencies, in dot or html formats:

$ conan info .. --graph=file.html
$ file.html # or open the file, double-click

conan search

$ conan search [-h] [-o] [-q QUERY] [-r REMOTE] [--case-sensitive]
[--raw] [--table TABLE] [-j JSON]
[pattern_or_reference]

Searches package recipes and binaries in the local cache or in a remote. If you provide a pattern, then it will search for
existing package recipes matching it. If a full reference is provided (pkg/0.1@user/channel) then the existing binary
packages for that reference will be displayed. If no remote is specified, the serach will be done in the local cache. Search
is case sensitive, exact case has to be used. For case insensitive file systems, like Windows, case sensitive search can
be forced with ‘–case-sensitive’.

positional arguments:
pattern_or_reference Pattern or package recipe reference, e.g., 'boost/*',

'MyPackage/1.2@user/channel'

optional arguments:
-h, --help show this help message and exit
-o, --outdated Show only outdated from recipe packages
-q QUERY, --query QUERY

Packages query: 'os=Windows AND (arch=x86 OR
compiler=gcc)'. The 'pattern_or_reference' parameter
has to be a reference: MyPackage/1.2@user/channel

-r REMOTE, --remote REMOTE
Remote to search in. '-r all' searches all remotes

(continues on next page)

14.1. Commands 227

mailto:pkg/0.1@user/channel

conan Documentation, Release 1.5.2

(continued from previous page)

--case-sensitive Make a case-sensitive search. Use it to guarantee
case-sensitive search in Windows or other case-
insensitive file systems

--raw Print just the list of recipes
--table TABLE Outputs html file with a table of binaries. Only valid

for a reference search
-j JSON, --json JSON json file path where the search information will be

written to

Examples

$ conan search zlib/*
$ conan search zlib/* -r=conan-center

To search for recipes in all defined remotes use --all (this is only valid for searching recipes, not binaries):

$ conan search zlib/* -r=all

If you use instead the full package recipe reference, you can explore the binaries existing for that recipe, also in a remote
or in the local conan cache:

$ conan search Boost/1.60.0@lasote/stable

A query syntax is allowed to look for specific binaries, you can use AND and OR operators and parenthesis, with settings
and also options.

$ conan search Boost/1.60.0@lasote/stable -q arch=x86_64
$ conan search Boost/1.60.0@lasote/stable -q "(arch=x86_64 OR arch=ARM) AND (build_
→˓type=Release OR os=Windows)"

If you specify a query filter for a setting and the package recipe is not restricted by this setting, will find all packages:

class MyRecipe(ConanFile):
settings="arch"

$ conan search MyRecipe/1.0@lasote/stable -q os=Windows

The query above will find all the MyRecipe binary packages, because the recipe doesn’t declare “os” as a setting.

You can generate a table for all binaries from a given recipe with the --table option:

$ conan search zlib/1.2.11@conan/stable --table=file.html -r=conan-center
$ file.html # or open the file, double-click

228 Chapter 14. Reference

conan Documentation, Release 1.5.2

14.1.2 Creator commands

Commands related to the creation of Conan recipes and packages:

conan create

$ conan create [-h] [-j JSON] [-k] [-kb] [-ne] [-tbf TEST_BUILD_FOLDER]
[-tf TEST_FOLDER] [-m [MANIFESTS]]
[-mi [MANIFESTS_INTERACTIVE]] [-v [VERIFY]] [-b [BUILD]]
[-e ENV] [-o OPTIONS] [-pr PROFILE] [-r REMOTE]
[-s SETTINGS] [-u]
path reference

Builds a binary package for a recipe (conanfile.py). Uses the specified configuration in a profile or in -s settings, -
o options etc. If a ‘test_package’ folder (the name can be configured with -tf) is found, the command will run the
consumer project to ensure that the package has been created correctly. Check ‘conan test’ command to know more
about ‘test_folder’ project.

14.1. Commands 229

conan Documentation, Release 1.5.2

positional arguments:
path Path to a folder containing a conanfile.py or to a

recipe file e.g., my_folder/conanfile.py
reference user/channel or pkg/version@user/channel (if name and

version not declared in conanfile.py) where the
package will be created

optional arguments:
-h, --help show this help message and exit
-j JSON, --json JSON json file path where the install information will be

written to
-k, -ks, --keep-source

Do not remove the source folder in local cache. Use
this for testing purposes only

-kb, --keep-build Do not remove the build folder in local cache. Use
this for testing purposes only

-ne, --not-export Do not export the conanfile.py
-tbf TEST_BUILD_FOLDER, --test-build-folder TEST_BUILD_FOLDER

Working directory for the build of the test project.
-tf TEST_FOLDER, --test-folder TEST_FOLDER

Alternative test folder name. By default it is
"test_package". Use "None" to skip the test stage

-m [MANIFESTS], --manifests [MANIFESTS]
Install dependencies manifests in folder for later
verify. Default folder is .conan_manifests, but can be
changed

-mi [MANIFESTS_INTERACTIVE], --manifests-interactive [MANIFESTS_INTERACTIVE]
Install dependencies manifests in folder for later
verify, asking user for confirmation. Default folder
is .conan_manifests, but can be changed

-v [VERIFY], --verify [VERIFY]
Verify dependencies manifests against stored ones

-b [BUILD], --build [BUILD]
Optional, use it to choose if you want to build from
sources: --build Build all from sources, do not use
binary packages. --build=never Never build, use binary
packages or fail if a binary package is not found.
--build=missing Build from code if a binary package is
not found. --build=outdated Build from code if the
binary is not built with the current recipe or when
missing binary package. --build=[pattern] Build always
these packages from source, but never build the
others. Allows multiple --build parameters. 'pattern'
is a fnmatch file pattern of a package name. Default
behavior: If you don't specify anything, it will be
similar to '--build=never', but package recipes can
override it with their 'build_policy' attribute in the
conanfile.py.

-e ENV, --env ENV Environment variables that will be set during the
package build, -e CXX=/usr/bin/clang++

-o OPTIONS, --options OPTIONS
Define options values, e.g., -o Pkg:with_qt=true

-pr PROFILE, --profile PROFILE
(continues on next page)

230 Chapter 14. Reference

conan Documentation, Release 1.5.2

(continued from previous page)

Apply the specified profile to the install command
-r REMOTE, --remote REMOTE

Look in the specified remote server
-s SETTINGS, --settings SETTINGS

Settings to build the package, overwriting the
defaults. e.g., -s compiler=gcc

-u, --update Check updates exist from upstream remotes

This is the recommended way to create packages.

conan create . demo/testing is equivalent to:

$ conan export . demo/testing
$ conan install Hello/0.1@demo/testing --build=Hello
package is created now, use test to test it
$ cd test_package
$ conan test . Hello/0.1@demo/testing

Tip: Sometimes you need to skip/disable test stage to avoid a failure while creating the package, i.e: when you are
cross compiling libraries and target code cannot be executed in current host platform. In that case you can skip/disable
the test package stage:

$ conan create . demo/testing --test-folder=None

conan create executes methods of a conanfile.py in the following order:

1. config_options()

2. configure()

3. requirements()

4. package_id()

5. build_requirements()

6. build_id()

7. system_requirements()

8. source()

9. imports()

10. build()

11. package()

12. package_info()

In case of installing a pre-built binary, steps from 5 to 11 will be skipped. Note that deploy() method is only used in
conan install.

14.1. Commands 231

conan Documentation, Release 1.5.2

conan export

$ conan export [-h] [-k] path reference

Copies the recipe (conanfile.py & associated files) to your local cache. Use the ‘reference’ param to specify a user and
channel where to export it. Once the recipe is in the local cache it can be shared, reused and to any remote with the
‘conan upload’ command.

positional arguments:
path Path to a folder containing a conanfile.py or to a

recipe file e.g., my_folder/conanfile.py
reference user/channel, or Pkg/version@user/channel (if name and

version are not declared in the conanfile.py

optional arguments:
-h, --help show this help message and exit
-k, -ks, --keep-source

Do not remove the source folder in local cache. Use
this for testing purposes only

The export command will run a linting of the package recipe, looking for possible inconsistencies, bugs and py2-
3 incompatibilities. It is possible to customize the rules for this linting, as well as totally disabling it. Look at the
recipe_linter and pylintrc variables in conan.conf and the PYLINTRC environment variable.

Examples

• Export a recipe using a full reference. Only valid if name and version are not declared in the recipe:

$ conan export . mylib/1.0@myuser/channel

• Export a recipe from any folder directory, under the myuser/stable user and channel:

$ conan export ./folder_name myuser/stable

• Export a recipe without removing the source folder in the local cache:

$ conan export . fenix/stable -k

conan export-pkg

$ conan export-pkg [-h] [-bf BUILD_FOLDER] [-e ENV] [-f]
[-if INSTALL_FOLDER] [-o OPTIONS] [-pr PROFILE]
[-pf PACKAGE_FOLDER] [-s SETTINGS] [-sf SOURCE_FOLDER]
path reference

Exports a recipe & creates a package with given files calling the package() method applied to the local folders ‘–source-
folder’ and ‘–build-folder’ and creates a new package in the local cache for the specified ‘reference’ and for the specified
‘–settings’, ‘–options’ and or ‘–profile’.

positional arguments:
path Path to a folder containing a conanfile.py or to a

recipe file e.g., my_folder/conanfile.py
reference user/channel or pkg/version@user/channel (if name and

(continues on next page)

232 Chapter 14. Reference

conan Documentation, Release 1.5.2

(continued from previous page)

version are not declared in the conanfile.py)

optional arguments:
-h, --help show this help message and exit
-bf BUILD_FOLDER, --build-folder BUILD_FOLDER

Directory for the build process. Defaulted to the
current directory. A relative path to current
directory can also be specified

-e ENV, --env ENV Environment variables that will be set during the
package build, -e CXX=/usr/bin/clang++

-f, --force Overwrite existing package if existing
-if INSTALL_FOLDER, --install-folder INSTALL_FOLDER

Directory containing the conaninfo.txt and
conanbuildinfo.txt files (from previous 'conan
install'). Defaulted to --build-folder If these files
are found in the specified folder and any of '-e',
'-o', '-pr' or '-s' arguments are used, it will raise
an error.

-o OPTIONS, --options OPTIONS
Define options values, e.g., -o pkg:with_qt=true

-pr PROFILE, --profile PROFILE
Profile for this package

-pf PACKAGE_FOLDER, --package-folder PACKAGE_FOLDER
folder containing a locally created package. If a
value is given, it won't call the recipe 'package()'
method, and will run a copy of the provided folder.

-s SETTINGS, --settings SETTINGS
Define settings values, e.g., -s compiler=gcc

-sf SOURCE_FOLDER, --source-folder SOURCE_FOLDER
Directory containing the sources. Defaulted to the
conanfile's directory. A relative path to current
directory can also be specified

conan export-pkg executes the following methods of a conanfile.py whenever --package-folder is used:

1. config_options()

2. configure()

3. requirements()

4. package_id()

In case a package folder is not specified, this command will also execute:

5. package()

Note that this is not the normal or recommended flow for creating Conan packages, as packages created this way will
not have a reproducible build from sources. This command should be used when:

• It is not possible to build the packages from sources (only pre-built binaries available).

• You are developing your package locally and want to export the built artifacts to the local cache.

The command conan new <ref> --bare will create a simple recipe that could be used in combination with the
export-pkg command. Check this How to package existing binaries.

export-pkg has two different modes of operation:

14.1. Commands 233

conan Documentation, Release 1.5.2

• Specifying --package-folder will perform a copy of the given folder, without executing the package()
method. Use it if you have already created the package, for example with conan package or with cmake.
install() from the build() step.

• Specifying --build-folder and/or --source-folder will execute the package() method, to filter, select
and arrange the layout of the artifacts.

Examples:

• Create a package from a directory containing the binaries for Windows/x86/Release:

Having these files:

Release_x86/lib/libmycoollib.a
Release_x86/lib/other.a
Release_x86/include/mylib.h
Release_x86/include/other.h

Run:

$ conan new Hello/0.1 --bare # In case you still don't have a recipe for the␣
→˓binaries
$ conan export-pkg . Hello/0.1@user/stable -s os=Windows -s arch=x86 -s build_
→˓type=Release --build-folder=Release_x86

• Create a package from a user folder build and sources folders:

Given these files in the current folder

sources/include/mylib.h
sources/src/file.cpp
build/lib/mylib.lib
build/lib/mylib.tmp
build/file.obj

And assuming the Hello/0.1@user/stable recipe has a package() method like this:

def package(self):
self.copy("*.h", dst="include", src="include")
self.copy("*.lib", dst="lib", keep_path=False)

Then, the following code will create a package in the conan local cache:

$ conan export-pkg . Hello/0.1@user/stable -pr=myprofile --source-folder=sources --
→˓build-folder=build

And such package will contain just the files:

include/mylib.h
lib/mylib.lib

• Building a conan package (for architecture x86) in a local directory and then send it to the local cache:

conanfile.py

from conans import ConanFile, CMake, tools

class LibConan(ConanFile):
(continues on next page)

234 Chapter 14. Reference

conan Documentation, Release 1.5.2

(continued from previous page)

name = "Hello"
version = "0.1"
...

def source(self):
self.run("git clone https://github.com/memsharded/hello.git")

def build(self):
cmake = CMake(self)
cmake.configure(source_folder="hello")
cmake.build()

def package(self):
self.copy("*.h", dst="include", src="include")
self.copy("*.lib", dst="lib", keep_path=False)

First we will call conan source to get our source code in the src directory, then conan install to install the
requirements and generate the info files, conan build to build the package, and finally conan export-pkg to
send the binary files to a package in the local cache:

$ conan source . --source-folder src
$ conan install --install-folder build_x86 -s arch=x86
$ conan build . --build-folder build_x86 --source-folder src
$ conan export-pkg . Hello/0.1@user/stable --build-folder build_x86

In this case, in the conan export-pkg, you don’t need to specify the -s arch=x86 or any other setting, option,
or profile, because it will all the information in the --build-folder the conaninfo.txt and conanbuildinfo.txt`
that have been created with conan install.

conan new

$ conan new [-h] [-t] [-i] [-c] [-s] [-b] [-cis] [-cilg] [-cilc] [-cio]
[-ciw] [-ciglg] [-ciglc] [-ciccg] [-ciccc] [-cicco] [-gi]
[-ciu CI_UPLOAD_URL]
name

Creates a new package recipe template with a ‘conanfile.py’ and optionally, ‘test_package’ testing files.

positional arguments:
name Package name, e.g.: "Poco/1.7.3" or complete reference

for CI scripts: "Poco/1.7.3@conan/stable"

optional arguments:
-h, --help show this help message and exit
-t, --test Create test_package skeleton to test package
-i, --header Create a headers only package template
-c, --pure-c Create a C language package only package, deleting

"self.settings.compiler.libcxx" setting in the
configure method

-s, --sources Create a package with embedded sources in "src"
folder, using "exports_sources" instead of retrieving

(continues on next page)

14.1. Commands 235

conan Documentation, Release 1.5.2

(continued from previous page)

external code with the "source()" method
-b, --bare Create the minimum package recipe, without build()

methodUseful in combination with "export-pkg" command
-cis, --ci-shared Package will have a "shared" option to be used in CI
-cilg, --ci-travis-gcc

Generate travis-ci files for linux gcc
-cilc, --ci-travis-clang

Generate travis-ci files for linux clang
-cio, --ci-travis-osx

Generate travis-ci files for OSX apple-clang
-ciw, --ci-appveyor-win

Generate appveyor files for Appveyor Visual Studio
-ciglg, --ci-gitlab-gcc

Generate GitLab files for linux gcc
-ciglc, --ci-gitlab-clang

Generate GitLab files for linux clang
-ciccg, --ci-circleci-gcc

Generate CicleCI files for linux gcc
-ciccc, --ci-circleci-clang

Generate CicleCI files for linux clang
-cicco, --ci-circleci-osx

Generate CicleCI files for OSX apple-clang
-gi, --gitignore Generate a .gitignore with the known patterns to

excluded
-ciu CI_UPLOAD_URL, --ci-upload-url CI_UPLOAD_URL

Define URL of the repository to upload

Examples:

• Create a new conanfile.py for a new package mypackage/1.0@myuser/stable

$ conan new mypackage/1.0

• Create also a test_package folder skeleton:

$ conan new mypackage/1.0 -t

• Create files for travis (both Linux and OSX) and appveyor Continuous Integration:

$ conan new mypackage/1.0@myuser/stable -t -cilg -cio -ciw

• Create files for gitlab (linux) Continuous integration and set upload conan server:

$ conan new mypackage/1.0@myuser/stable -t -ciglg -ciglc -ciu https://api.bintray.
→˓com/conan/myuser/myrepo

236 Chapter 14. Reference

conan Documentation, Release 1.5.2

conan upload

$ conan upload [-h] [-p PACKAGE] [-r REMOTE] [--all] [--skip-upload]
[--force] [--check] [-c] [--retry RETRY]
[--retry-wait RETRY_WAIT] [-no [{all,recipe}]] [-j JSON]
pattern_or_reference

Uploads a recipe and binary packages to a remote. If no remote is specified, the first configured remote (by default
conan-center, use ‘conan remote list’ to list the remotes) will be used.

positional arguments:
pattern_or_reference Pattern or package recipe reference, e.g., 'boost/*',

'MyPackage/1.2@user/channel'

optional arguments:
-h, --help show this help message and exit
-p PACKAGE, --package PACKAGE

package ID to upload
-r REMOTE, --remote REMOTE

upload to this specific remote
--all Upload both package recipe and packages
--skip-upload Do not upload anything, just run the checks and the

compression
--force Do not check conan recipe date, override remote with

local
--check Perform an integrity check, using the manifests,

before upload
-c, --confirm Upload all matching recipes without confirmation
--retry RETRY In case of fail retries to upload again the specified

times. Defaulted to 2
--retry-wait RETRY_WAIT

Waits specified seconds before retry again
-no [{all,recipe}], --no-overwrite [{all,recipe}]

Uploads package only if recipe is the same as the
remote one

-j JSON, --json JSON json file path where the upload information will be
written to

Examples:

Uploads a package recipe (conanfile.py and the exported files):

$ conan upload OpenCV/1.4.0@lasote/stable

Uploads a package recipe and all the generated binary packages to a specified remote:

$ conan upload OpenCV/1.4.0@lasote/stable --all -r my_remote

Uploads all recipes and binary packages from our local cache to my_remote without confirmation:

$ conan upload "*" --all -r my_remote -c

Upload all local packages and recipes beginning with “Op” retrying 3 times and waiting 10 seconds between upload
attempts:

14.1. Commands 237

conan Documentation, Release 1.5.2

$ conan upload "Op*" --all -r my_remote -c --retry 3 --retry-wait 10

Upload packages without overwriting the recipe and packages if the recipe has changed:

$ conan upload OpenCV/1.4.0@lasote/stable --all --no-overwrite # defaults to --no-
→˓overwrite all

Upload packages without overwriting the recipe if the packages have changed:

$ conan upload OpenCV/1.4.0@lasote/stable --all --no-overwrite recipe

conan test

$ conan test [-h] [-tbf TEST_BUILD_FOLDER] [-b [BUILD]] [-e ENV]
[-o OPTIONS] [-pr PROFILE] [-r REMOTE] [-s SETTINGS] [-u]
path reference

Test a package consuming it from a conanfile.py with a test() method. This command installs the conanfile dependencies
(including the tested package), calls a ‘conan build’ to build test apps and finally executes the test() method. The testing
recipe does not require name or version, neither definition of package() or package_info() methods. The package to be
tested must exist in the local cache or in any configured remote.

positional arguments:
path Path to the "testing" folder containing a conanfile.py

or to a recipe file with test() methode.g. conan
test_package/conanfile.py pkg/version@user/channel

reference pkg/version@user/channel of the package to be tested

optional arguments:
-h, --help show this help message and exit
-tbf TEST_BUILD_FOLDER, --test-build-folder TEST_BUILD_FOLDER

Working directory of the build process.
-b [BUILD], --build [BUILD]

Optional, use it to choose if you want to build from
sources: --build Build all from sources, do not use
binary packages. --build=never Never build, use binary
packages or fail if a binary package is not found.
--build=missing Build from code if a binary package is
not found. --build=outdated Build from code if the
binary is not built with the current recipe or when
missing binary package. --build=[pattern] Build always
these packages from source, but never build the
others. Allows multiple --build parameters. 'pattern'
is a fnmatch file pattern of a package name. Default
behavior: If you don't specify anything, it will be
similar to '--build=never', but package recipes can
override it with their 'build_policy' attribute in the
conanfile.py.

-e ENV, --env ENV Environment variables that will be set during the
package build, -e CXX=/usr/bin/clang++

-o OPTIONS, --options OPTIONS
Define options values, e.g., -o Pkg:with_qt=true

(continues on next page)

238 Chapter 14. Reference

conan Documentation, Release 1.5.2

(continued from previous page)

-pr PROFILE, --profile PROFILE
Apply the specified profile to the install command

-r REMOTE, --remote REMOTE
Look in the specified remote server

-s SETTINGS, --settings SETTINGS
Settings to build the package, overwriting the
defaults. e.g., -s compiler=gcc

-u, --update Check updates exist from upstream remotes

This command is util for testing existing packages, that have been previously built (with conan create, for example).
conan create will automatically run this test if a test_package folder is found besides the conanfile.py, or if the
--test-folder argument is provided to conan create.

Example:

$ conan new Hello/0.1 -s -t
$ mv test_package test_package2
$ conan create . user/testing
doesn't automatically run test, it has been renamed
now run test
$ conan test test_package2 Hello/0.1@user/testing

The test package folder, could be elsewhere, or could be even applied to different versions of the package.

14.1.3 Package development commands

Commands related to the local (user space) development of a Conan package:

conan source

$ conan source [-h] [-sf SOURCE_FOLDER] [-if INSTALL_FOLDER] path

Calls your local conanfile.py ‘source()’ method. e.g., Downloads and unzip the package sources.

positional arguments:
path Path to a folder containing a conanfile.py or to a

recipe file e.g., my_folder/conanfile.py

optional arguments:
-h, --help show this help message and exit
-sf SOURCE_FOLDER, --source-folder SOURCE_FOLDER

Destination directory. Defaulted to current directory
-if INSTALL_FOLDER, --install-folder INSTALL_FOLDER

Directory containing the conaninfo.txt and
conanbuildinfo.txt files (from previous 'conan
install'). Defaulted to --build-folder Optional,
source method will run without the information
retrieved from the conaninfo.txt and
conanbuildinfo.txt, only required when using
conditional source() based on settings, options,
env_info and user_info

14.1. Commands 239

conan Documentation, Release 1.5.2

The source() method might use (optional) settings, options and environment variables from the specified profile and
dependencies information from the declared deps_XXX_info objects in the conanfile requirements.

All that information is saved automatically in the conaninfo.txt and conanbuildinfo.txt files respectively, when you run
the conan install command. Those files have to be located in the specified --install-folder.

Examples:

• Call a local recipe’s source method: In user space, the command will execute a local conanfile.py source()
method, in the src folder in the current directory.

$ conan new lib/1.0@conan/stable
$ conan source . --source-folder mysrc

• In case you need the settings/options or any info from the requirements, perform first an install:

$ conan install . --install-folder mybuild
$ conan source . --source-folder mysrc --install-folder mybuild

conan build

$ conan build [-h] [-b] [-bf BUILD_FOLDER] [-c] [-i] [-if INSTALL_FOLDER]
[-pf PACKAGE_FOLDER] [-sf SOURCE_FOLDER]
path

Calls your local conanfile.py ‘build()’ method. The recipe will be built in the local directory specified by –build-folder,
reading the sources from –source-folder. If you are using a build helper, like CMake(), the –package- folder will be
configured as destination folder for the install step.

positional arguments:
path Path to a folder containing a conanfile.py or to a

recipe file e.g., my_folder/conanfile.py

optional arguments:
-h, --help show this help message and exit
-b, --build Execute the build step (variable should_build=True).

When specified, configure/install won't run unless
--configure/--install specified

-bf BUILD_FOLDER, --build-folder BUILD_FOLDER
Directory for the build process. Defaulted to the
current directory. A relative path to current
directory can also be specified

-c, --configure Execute the configuration step (variable
should_configure=True). When specified, build/install
won't run unless --build/--install specified

-i, --install Execute the install step (variable
should_install=True). When specified, configure/build
won't run unless --configure/--build specified

-if INSTALL_FOLDER, --install-folder INSTALL_FOLDER
Directory containing the conaninfo.txt and
conanbuildinfo.txt files (from previous 'conan
install'). Defaulted to --build-folder

-pf PACKAGE_FOLDER, --package-folder PACKAGE_FOLDER
Directory to install the package (when the build

(continues on next page)

240 Chapter 14. Reference

conan Documentation, Release 1.5.2

(continued from previous page)

system or build() method does it). Defaulted to the
'{build_folder}/package' folder. A relative path can
be specified, relative to the current folder. Also an
absolute path is allowed.

-sf SOURCE_FOLDER, --source-folder SOURCE_FOLDER
Directory containing the sources. Defaulted to the
conanfile's directory. A relative path to current
directory can also be specified

The build() method might use settings, options and environment variables from the specified profile and depen-
dencies information from the declared deps_XXX_info objects in the conanfile requirements. All that information is
saved automatically in the conaninfo.txt and conanbuildinfo.txt files respectively, when you run the conan install
command. Those files have to be located in the specified --build-folder or in the --install-folder if specified.

The --configure, --build, --install arguments control which parts of the build() are actually executed.
They have related conanfile boolean variables should_configure, should_build, should_install, which are
True by default, but that will change if some of these arguments are used in the command line. The CMake and Meson
and AutotoolsBuildEnvironment helpers already use these variables.

Example: Building a conan package (for architecture x86) in a local directory.

Listing 1: conanfile.py

from conans import ConanFile, CMake, tools

class LibConan(ConanFile):
...

def source(self):
self.run("git clone https://github.com/memsharded/hello.git")

def build(self):
cmake = CMake(self)
cmake.configure(source_folder="hello")
cmake.build()

First we will call conan source to get our source code in the src directory, then conan install to install the re-
quirements and generate the info files, and finally conan build to build the package:

$ conan source . --source-folder src
$ conan install . --install-folder build_x86 -s arch=x86
$ conan build . --build-folder build_x86 --source-folder src

Or if we want to create the conaninfo.txt and conanbuildinfo.txt files in a different folder:

$ conan source . --source-folder src
$ conan install . --install-folder install_x86 -s arch=x86
$ conan build . --build-folder build_x86 --install-folder install_x86 --source-folder␣
→˓src

However, we recommend the conaninfo.txt and conanbuildinfo.txt to be generated in the same –build-folder,
otherwise, you will need to specify a different folder in your build system to include the files generators file. e.j
conanbuildinfo.cmake

Example: Control the build stages

14.1. Commands 241

conan Documentation, Release 1.5.2

Given a conanfile with this build() method:

def build(self):
cmake = CMake(self)
cmake.configure()
cmake.build()
cmake.install()

If nothing is specified, all three methods will be called. But using command line arguments, this can be changed:

$ conan build . -c # only run cmake.configure(). Other methods will do nothing
$ conan build . -b # only run cmake.build(). Other methods will do nothing
$ conan build . -i # only run cmake.install(). Other methods will do nothing
They can be combined
$ conan build . -c -b # run cmake.configure() + cmake.build(), but not cmake.install()

Autotools and Meson helpers already implement the same functionality. For other build systems, you can use the
following variables in the build() method:

def build(self):
if self.should_configure:

Run my configure stage
if self.should_build:

Run my build stage
if self.should_install: # If my build has install, otherwise use package()

Run my install stage

Note these should_configure, should_build, should_install variables will always be True while building
in the local cache. They can only be modified for the local flow with conan build.

conan package

$ conan package [-h] [-bf BUILD_FOLDER] [-if INSTALL_FOLDER]
[-pf PACKAGE_FOLDER] [-sf SOURCE_FOLDER]
path

Calls your local conanfile.py ‘package()’ method. This command works in the user space and it will copy artifacts
from the –build-folder and –source- folder folder to the –package-folder one. It won’t create a new package in the local
cache, if you want to do it, use ‘conan create’ or ‘conan export- pkg’ after a ‘conan build’ command.

positional arguments:
path Path to a folder containing a conanfile.py or to a

recipe file e.g., my_folder/conanfile.py

optional arguments:
-h, --help show this help message and exit
-bf BUILD_FOLDER, --build-folder BUILD_FOLDER

Directory for the build process. Defaulted to the
current directory. A relative path to current
directory can also be specified

-if INSTALL_FOLDER, --install-folder INSTALL_FOLDER
Directory containing the conaninfo.txt and
conanbuildinfo.txt files (from previous 'conan

(continues on next page)

242 Chapter 14. Reference

conan Documentation, Release 1.5.2

(continued from previous page)

install'). Defaulted to --build-folder
-pf PACKAGE_FOLDER, --package-folder PACKAGE_FOLDER

folder to install the package. Defaulted to the
'{build_folder}/package' folder. A relative path can
be specified (relative to the current directory). Also
an absolute path is allowed.

-sf SOURCE_FOLDER, --source-folder SOURCE_FOLDER
Directory containing the sources. Defaulted to the
conanfile's directory. A relative path to current
directory can also be specified

The package() method might use settings, options and environment variables from the specified profile and depen-
dencies information from the declared deps_XXX_info objects in the conanfile requirements.

All that information is saved automatically in the conaninfo.txt and conanbuildinfo.txt files respectively, when you run
conan install. Those files have to be located in the specified --build-folder.

$ conan install . --build-folder=build

Examples

This example shows how package() works in a package which can be edited and built in user folders instead of the
local cache.

$ conan new Hello/0.1 -s
$ conan install . --install-folder=build_x86 -s arch=x86
$ conan build . --build-folder=build_x86
$ conan package . --build-folder=build_x86 --package-folder=package_x86
$ ls package/x86
> conaninfo.txt conanmanifest.txt include/ lib/

Note: The packages created locally are just for the user, but cannot be directly consumed by other packages, nor they
can be uploaded to a remote repository. In order to make these packages available to the system, they have to be put in
the conan local cache, which can be done with the conan export-pkg command instead of using conan package
command:

$ conan new Hello/0.1 -s
$ conan install . --install-folder=build_x86 -s arch=x86
$ conan build . --build-folder=build_x86
$ conan export-pkg . Hello/0.1@user/stable --build-folder=build_x86 -s arch=x86

14.1.4 Misc commands

Other useful commands:

14.1. Commands 243

conan Documentation, Release 1.5.2

conan profile

$ conan profile [-h] {list,show,new,update,get,remove} ...

Lists profiles in the ‘.conan/profiles’ folder, or shows profile details. The ‘list’ subcommand will always use the default
user ‘conan/profiles’ folder. But the ‘show’ subcommand is able to resolve absolute and relative paths, as well as to
map names to ‘.conan/profiles’ folder, in the same way as the ‘– profile’ install argument.

positional arguments:
{list,show,new,update,get,remove}
list List current profiles
show Show the values defined for a profile
new Creates a new empty profile
update Update a profile with desired value
get Get a profile key
remove Remove a profile key

optional arguments:
-h, --help show this help message and exit

Examples

• List the profiles:

$ conan profile list
> myprofile1
> myprofile2

• Print profile contents:

$ conan profile show myprofile1
Profile myprofile1
[settings]
...

• Print profile contents (in the standard directory .conan/profiles):

$ conan profile show myprofile1
Profile myprofile1
[settings]
...

• Print profile contents (in a custom directory):

$ conan profile show /path/to/myprofile1
Profile myprofile1
[settings]
...

• Update a setting from a profile located in a custom directory:

$ conan profile update settings.build_type=Debug /path/to/my/profile

• Add a new option to the default profile:

244 Chapter 14. Reference

conan Documentation, Release 1.5.2

$ conan profile update options.zlib:shared=True default

• Create a new empty profile:

$ conan profile new /path/to/new/profile

• Create a new profile detecting the settings:

$ conan profile new /path/to/new/profile --detect

conan remote

$ conan remote [-h]
{list,add,remove,update,rename,list_ref,add_ref,remove_ref,update_ref}
...

Manages the remote list and the package recipes associated to a remote.

positional arguments:
{list,add,remove,update,rename,list_ref,add_ref,remove_ref,update_ref}

sub-command help
list List current remotes
add Add a remote
remove Remove a remote
update Update the remote url
rename Update the remote name
list_ref List the package recipes and its associated remotes
add_ref Associate a recipe's reference to a remote
remove_ref Dissociate a recipe's reference and its remote
update_ref Update the remote associated with a package recipe

optional arguments:
-h, --help show this help message and exit

Examples

• List remotes:

$ conan remote list
conan-center: https://conan.bintray.com [Verify SSL: True]
local: http://localhost:9300 [Verify SSL: True]

• Add a new remote:

$ conan remote add remote_name remote_url [verify_ssl]

Verify SSL option can be True or False (default True). Conan client will verify the SSL certificates.

• Insert a new remote:

Insert as the first one (position/index 0), so it is the first one to be checked:

$ conan remote add remote_name remote_url [verify_ssl] --insert

Insert as the second one (position/index 1), so it is the second one to be checked:

14.1. Commands 245

conan Documentation, Release 1.5.2

$ conan remote add remote_name remote_url [verify_ssl] --insert=1

• Add or insert a remote:

Adding the --force argument to conan remote addwill always work, and won’t raise an error. If an existing remote
exists with that remote name or URL, it will be updated with the new information. The --insert works the same. If
not specified, the remote will be appended the last one. If specified, the command will insert the remote in the specified
position

$ conan remote add remote_name remote_url [verify_ssl] --force --insert=1

• Remove a remote:

$ conan remote remove remote_name

• Update a remote:

$ conan remote update remote_name new_url [verify_ssl]

• Rename a remote:

$ conan remote rename remote_name new_remote_name

• Change an existing remote to the first position:

$ conan remote update remote_name same_url --insert 0

• List the package recipes and its associated remotes:

$ conan remote list_ref
bzip2/1.0.6@lasote/stable: conan.io
Boost/1.60.0@lasote/stable: conan.io
zlib/1.2.8@lasote/stable: conan.io

• Associate a recipe’s reference to a remote:

$ conan remote add_ref OpenSSL/1.0.2i@conan/stable conan-center

• Update the remote associated with a package recipe:

$ conan remote update_ref OpenSSL/1.0.2i@conan/stable local-remote

Note: Check the section How to manage SSL (TLS) certificates section to know more about server certificates verifi-
cation and client certifications management .

246 Chapter 14. Reference

conan Documentation, Release 1.5.2

conan user

$ conan user [-h] [-c] [-p [PASSWORD]] [-r REMOTE] [-j JSON] [name]

Authenticates against a remote with user/pass, caching the auth token. Useful to avoid the user and password being
requested later. e.g. while you’re uploading a package. You can have one user for each remote. Changing the user, or
introducing the password is only necessary to perform changes in remote packages.

positional arguments:
name Username you want to use. If no name is provided it

will show the current user

optional arguments:
-h, --help show this help message and exit
-c, --clean Remove user and tokens for all remotes
-p [PASSWORD], --password [PASSWORD]

User password. Use double quotes if password with
spacing, and escape quotes if existing. If empty, the
password is requested interactively (not exposed)

-r REMOTE, --remote REMOTE
Use the specified remote server

-j JSON, --json JSON json file path where the user list will be written to

Examples:

• List my user for each remote:

$ conan user
Current user of remote 'conan-center' set to: 'danimtb' [Authenticated]
Current user of remote 'bincrafters' set to: 'None' (anonymous)
Current user of remote 'upload_repo' set to: 'danimtb' [Authenticated]
Current user of remote 'conan-community' set to: 'danimtb' [Authenticated]
Current user of remote 'the_remote' set to: 'None' (anonymous)

• Change bar remote user to foo:

$ conan user foo -r bar
Changed user of remote 'bar' from 'None' (anonymous) to 'foo'

• Change bar remote user to foo, authenticating against the remote and storing the user and authentication token
locally, so a later upload won’t require entering credentials:

$ conan user foo -r bar -p mypassword

• Clean all local users and tokens:

$ conan user --clean

• Change bar remote user to foo, asking user password to authenticate against the remote and storing the user
and authentication token locally, so a later upload won’t require entering credentials:

$ conan user foo -r bar -p
Please enter a password for "foo" account:
Change 'bar' user from None (anonymous) to foo

14.1. Commands 247

conan Documentation, Release 1.5.2

Note: The password is not stored in the client computer at any moment. Conan uses JWT, so it gets a token (expirable
by the server) checking the password against the remote credentials. If the password is correct, an authentication token
will be obtained, and that token is the information cached locally. For any subsequent interaction with the remotes, the
Conan client will only use that JWT token.

conan imports

$ conan imports [-h] [-if INSTALL_FOLDER] [-imf IMPORT_FOLDER] [-u] path

Calls your local conanfile.py or conanfile.txt ‘imports’ method. It requires to have been previously installed and have
a conanbuildinfo.txt generated file in the –install-folder (defaulted to current directory).

positional arguments:
path Path to a folder containing a conanfile.py or to a

recipe file e.g., my_folder/conanfile.py With --undo
option, this parameter is the folder containing the
conan_imports_manifest.txt file generated in a
previous execution. e.g.: conan imports
./imported_files --undo

optional arguments:
-h, --help show this help message and exit
-if INSTALL_FOLDER, --install-folder INSTALL_FOLDER

Directory containing the conaninfo.txt and
conanbuildinfo.txt files (from previous 'conan
install'). Defaulted to --build-folder

-imf IMPORT_FOLDER, --import-folder IMPORT_FOLDER
Directory to copy the artifacts to. By default it will
be the current directory

-u, --undo Undo imports. Remove imported files

The imports() method might use settings, options and environment variables from the specified profile and depen-
dencies information from the declared deps_XXX_info objects in the conanfile requirements.

All that information is saved automatically in the conaninfo.txt and conanbuildinfo.txt files respectively, when you run
conan install. Those files have to be located in the specified --install-folder.

Examples

• Import files from a current conanfile in current directory:

$ conan install . --no-imports # Creates the conanbuildinfo.txt
$ conan imports .

• Remove the copied files (undo the import):

$ conan imports . --undo

248 Chapter 14. Reference

https://en.wikipedia.org/wiki/JSON_Web_Token

conan Documentation, Release 1.5.2

conan copy

$ conan copy [-h] [-p PACKAGE] [--all] [--force] reference user_channel

Copies conan recipes and packages to another user/channel. Useful to promote packages (e.g. from “beta” to “stable”)
or transfer them from one user to another.

positional arguments:
reference package reference. e.g., MyPackage/1.2@user/channel
user_channel Destination user/channel. e.g., lasote/testing

optional arguments:
-h, --help show this help message and exit
-p PACKAGE, --package PACKAGE

copy specified package ID
--all Copy all packages from the specified package recipe
--force Override destination packages and the package recipe

Examples

• Promote a package to stable from beta:

$ conan copy OpenSSL/1.0.2i@lasote/beta lasote/stable

• Change a package’s username:

$ conan copy OpenSSL/1.0.2i@lasote/beta foo/beta

conan download

$ conan download [-h] [-p PACKAGE] [-r REMOTE] [-re] reference

Downloads recipe and binaries to the local cache, without using settings. It works specifying the recipe reference and
package ID to be installed. Not transitive, requirements of the specified reference will NOT be retrieved. Useful together
with ‘conan copy’ to automate the promotion of packages to a different user/channel. Only if a reference is specified, it
will download all packages from the specified remote. Otherwise, it will search sequentially in the configured remotes.

positional arguments:
reference pkg/version@user/channel

optional arguments:
-h, --help show this help message and exit
-p PACKAGE, --package PACKAGE

Force install specified package ID (ignore
settings/options)

-r REMOTE, --remote REMOTE
look in the specified remote server

-re, --recipe Downloads only the recipe

Examples

• Download all OpenSSL/1.0.2i@conan/stable binary packages from the remote foo:

14.1. Commands 249

conan Documentation, Release 1.5.2

$ conan download OpenSSL/1.0.2i@conan/stable -r foo

• Download a single binary package of OpenSSL/1.0.2i@conan/stable from the remote foo:

$ conan download OpenSSL/1.0.2i@conan/stable -r foo -p␣
→˓8018a4df6e7d2b4630a814fa40c81b85b9182d2

• Download only the recipe of package OpenSSL/1.0.2i@conan/stable from the remote foo:

$ conan download OpenSSL/1.0.2i@conan/stable -r foo -re

conan remove

$ conan remove [-h] [-b [BUILDS [BUILDS ...]]] [-f] [-o]
[-p [PACKAGES [PACKAGES ...]]] [-q QUERY] [-r REMOTE] [-s]
[-l]
[pattern_or_reference]

Removes packages or binaries matching pattern from local cache or remote. It can also be used to remove temporary
source or build folders in the local conan cache. If no remote is specified, the removal will be done by default in the
local conan cache.

positional arguments:
pattern_or_reference Pattern or package recipe reference, e.g., 'boost/*',

'MyPackage/1.2@user/channel'

optional arguments:
-h, --help show this help message and exit
-b [BUILDS [BUILDS ...]], --builds [BUILDS [BUILDS ...]]

By default, remove all the build folders or select
one, specifying the package ID

-f, --force Remove without requesting a confirmation
-o, --outdated Remove only outdated from recipe packages
-p [PACKAGES [PACKAGES ...]], --packages [PACKAGES [PACKAGES ...]]

Select package to remove specifying the package ID
-q QUERY, --query QUERY

Packages query: 'os=Windows AND (arch=x86 OR
compiler=gcc)'. The 'pattern_or_reference' parameter
has to be a reference: MyPackage/1.2@user/channel

-r REMOTE, --remote REMOTE
Will remove from the specified remote

-s, --src Remove source folders
-l, --locks Remove locks

The -q parameter can’t be used along with -p nor -b parameters.

Examples:

• Remove from the local cache the binary packages (the package recipes will not be removed) from all the recipes
matching OpenSSL/* pattern:

$ conan remove OpenSSL/* --packages

250 Chapter 14. Reference

conan Documentation, Release 1.5.2

• Remove the temporary build folders from all the recipes matching OpenSSL/* pattern without requesting con-
firmation:

$ conan remove OpenSSL/* --builds --force

• Remove the recipe and the binary packages from a specific remote:

$ conan remove OpenSSL/1.0.2@lasote/stable -r myremote

• Remove only Windows OpenSSL packages from local cache:

$ conan remove OpenSSL/1.0.2@lasote/stable -q "os=Windows"

conan alias

$ conan alias [-h] reference target

Creates and exports an ‘alias package recipe’. An “alias” package is a symbolic name (reference) for another package
(target). When some package depends on an alias, the target one will be retrieved and used instead, so the alias reference,
the symbolic name, does not appear in the final dependency graph.

positional arguments:
reference Alias reference. e.g.: mylib/1.X@user/channel
target Target reference. e.g.: mylib/1.12@user/channel

optional arguments:
-h, --help show this help message and exit

The command:

$ conan alias Hello/0.X@user/testing Hello/0.1@user/testing

Creates and exports a package recipe for Hello/0.X@user/testing with the following content:

from conans import ConanFile

class AliasConanfile(ConanFile):
alias = "Hello/0.1@user/testing"

Such package recipe acts as a “proxy” for the aliased reference. Users depending on Hello/0.X@user/testing will
actually use version Hello/0.1@user/testing. The alias package reference will not appear in the dependency graph
at all. It is useful to define symbolic names, or behaviors like “always depend on the latest minor”, but defined upstream
instead of being defined downstream with version-ranges.

The “alias” package should be uploaded to servers in the same way as regular package recipes, in order to enable usage
from servers.

14.1. Commands 251

conan Documentation, Release 1.5.2

conan help

$ conan help [-h] [command]

Show help of a specific commmand.

positional arguments:
command command

optional arguments:
-h, --help show this help message and exit

This command is equivalent to the --help and -h arguments

Example:

$ conan help get
> usage: conan get [-h] [-p PACKAGE] [-r REMOTE] [-raw] reference [path]
> Gets a file or list a directory of a given reference or package.

same as
$ conan get -h

14.1.5 Output

JSON documents generated by the commands:

Install and Create output [EXPERIMENTAL]

The conan install and conan create provide a --json parameter to generate a file containing the information of
the installation process.

The output JSON contains a two first level keys:

• error: True if the install completed without error, False otherwise.

• installed: A list of installed packages. Each element contains:

– recipe: Document representing the downloaded recipe.

∗ remote: remote URL if the recipe has been downloaded. null otherwise.

∗ cache: true/false. Retrieved from cache (not downloaded).

∗ downloaded: true/false. Downloaded from a remote (not in cache).

∗ time: ISO 8601 string with the time the recipe was downloaded/retrieved.

∗ error: true/false.

∗ id: Reference. e.j: “OpenSSL/1.0.2n@conan/stable”

∗ dependency: true/false. Is the package being installed/created or a dependency. Same as develop
conanfile attribute.

– packages: List of elements, representing the binary packages downloaded for the recipe. Normally there
will be only 1 element in this list, only in special cases with build requires, private dependencies and settings
overrided this list could have more than one element.

252 Chapter 14. Reference

mailto:OpenSSL/1.0.2n@conan/stable

conan Documentation, Release 1.5.2

∗ remote: remote URL if the recipe has been downloaded. null otherwise.

∗ cache: true/false. Retrieved from cache (not downloaded).

∗ downloaded: true/false. Downloaded from a remote (not in cache).

∗ time: ISO 8601 string with the time the recipe was downloaded/retrieved.

∗ error: true/false.

∗ id: Package ID. e.j: “8018a4df6e7d2b4630a814fa40c81b85b9182d2b”

Example:

$ conan install OpenSSL/1.0.2n@conan/stable --json install.json

Listing 2: install.json

{
"installed":[

{
"packages":[

{
"remote":null,
"built":false,
"cache":true,
"downloaded":false,
"time":"2018-03-28T08:39:41.385285",
"error":null,
"id":"227fb0ea22f4797212e72ba94ea89c7b3fbc2a0c"

}
],
"recipe":{
"remote":null,
"cache":true,
"downloaded":false,
"time":"2018-03-28T08:39:41.365836",
"error":null,
"id":"OpenSSL/1.0.2n@conan/stable"

}
},
{
"packages":[

{
"remote":null,
"built":false,
"cache":true,
"downloaded":false,
"time":"2018-03-28T08:39:41.384952",
"error":null,
"id":"8018a4df6e7d2b4630a814fa40c81b85b9182d2b"

}
],
"recipe":{
"remote":null,
"cache":true,

(continues on next page)

14.1. Commands 253

conan Documentation, Release 1.5.2

(continued from previous page)

"downloaded":false,
"time":"2018-03-28T08:39:41.379354",
"error":null,
"id":"zlib/1.2.11@conan/stable"

}
}

],
"error":false

}

Search output [EXPERIMENTAL]

The conan search provides a --json parameter to generate a file containing the information of the search process.

The output JSON contains a two first level keys:

• error: True if the upload completed without error, False otherwise.

• results: A list of the remotes with the packages found. Each element contains:

– remote: Name of the remote.

– items: List of the items found in that remote. For each item there will always be a

recipe and optionally also packages when searching them.

∗ recipe: Document representing the uploaded recipe.

· id: Reference. e.j: “OpenSSL/1.0.2n@conan/stable”

∗ packages: List of elements representing the binary packages found for the recipe.

· id: Package ID. e.j: “8018a4df6e7d2b4630a814fa40c81b85b9182d2b”

· options: Dictionary of options of the package.

· settings: Dictionary with settings of the package.

· requires: List of requires of the package.

· outdated: Boolean to show whether package is outdated from recipe or not.

Examples:

• Search references in all remotes: conan search eigen* -r all

{
"error":false,
"results":[

{
"remote":"conan-center",
"items":[

{
"recipe":{

"id":"eigen/3.3.4@conan/stable"
}

}
]

},
(continues on next page)

254 Chapter 14. Reference

mailto:OpenSSL/1.0.2n@conan/stable

conan Documentation, Release 1.5.2

(continued from previous page)

{
"remote":"upload_repo",
"items":[

{
"recipe":{

"id":"eigen/3.3.4@danimtb/stable"
}

},
{

"recipe":{
"id":"eigen/3.3.4@danimtb/testing"

}
}

]
},
{

"remote":"conan-community",
"items":[

{
"recipe":{

"id":"eigen/3.3.4@conan/stable"
}

}
]

}
]

}

• Search packages of a reference in a remote: conan search paho-c/1.2.0@conan/stable -r
conan-center --json search.json

{
"error":false,
"results":[

{
"remote":"conan-center",
"items":[

{
"recipe":{

"id":"paho-c/1.2.0@conan/stable"
},
"packages":[

{
"id":"0000193ac313953e78a4f8e82528100030ca70ee",
"options":{

"shared":"False",
"asynchronous":"False",
"SSL":"False"

},
"settings":{

"os":"Linux",
"arch":"x86_64",

(continues on next page)

14.1. Commands 255

conan Documentation, Release 1.5.2

(continued from previous page)

"compiler":"gcc",
"build_type":"Debug",
"compiler.version":"4.9"

},
"requires":[

],
"outdated":false

},
{

"id":"014be746b283391f79d11e4e8af3154344b58223",
"options":{

"shared":"False",
"asynchronous":"False",
"SSL":"False"

},
"settings":{

"os":"Windows",
"compiler.threads":"posix",
"compiler.exception":"seh",
"arch":"x86_64",
"compiler":"gcc",
"build_type":"Debug",
"compiler.version":"5"

},
"requires":[

],
"outdated":false

},
{
"id":"0188020dbfd167611b967ad2fa0e30710d23e920",
"options":{

"shared":"True",
"asynchronous":"False",
"SSL":"False"

},
"settings":{

"os":"Macos",
"arch":"x86_64",
"compiler":"apple-clang",
"build_type":"Debug",
"compiler.version":"9.1"

},
"requires":[

],
"outdated":false

},
{

"id":"03369b0caf8c0c8d4bb84d5136112596bde4652d",
"options":{

(continues on next page)

256 Chapter 14. Reference

conan Documentation, Release 1.5.2

(continued from previous page)

"shared":"True",
"asynchronous":"False",
"SSL":"False"

},
"settings":{

"os":"Linux",
"arch":"x86",
"compiler":"gcc",
"build_type":"Release",
"compiler.version":"5"

},
"requires":[

],
"outdated":false

}
]

}
]

}
]

}

• Search references in local cache: conan search paho-c* --json search.json

{
"error":false,
"results":[

{
"remote":"None",
"items":[

{
"recipe":{

"id":"paho-c/1.2.0@danimtb/testing"
}

}
]

}
]

}

• Search packages of a reference in local cache: conan search paho-c/1.2.0@danimtb/testing --json
search.json

{
"error":false,
"results":[

{
"remote":"None",
"items":[

{
"recipe":{

(continues on next page)

14.1. Commands 257

conan Documentation, Release 1.5.2

(continued from previous page)

"id":"paho-c/1.2.0@danimtb/testing"
},
"packages":[

{
"id":"6cc50b139b9c3d27b3e9042d5f5372d327b3a9f7",
"options":{

"SSL":"False",
"asynchronous":"False",
"shared":"False"

},
"settings":{

"arch":"x86_64",
"build_type":"Release",
"compiler":"Visual Studio",
"compiler.runtime":"MD",
"compiler.version":"15",
"os":"Windows"

},
"requires":[

],
"outdated":false

},
{
"id":"95cd13dfc3f6b80d3ccb2a38441e3a1ad88e5a15",
"options":{

"SSL":"False",
"asynchronous":"True",
"shared":"True"

},
"settings":{

"arch":"x86_64",
"build_type":"Release",
"compiler":"Visual Studio",
"compiler.runtime":"MD",
"compiler.version":"15",
"os":"Windows"

},
"requires":[

],
"outdated":true

},
{

"id":"970e773c5651dc2560f86200a4ea56c23f568ff9",
"options":{

"SSL":"False",
"asynchronous":"False",
"shared":"True"

},
"settings":{

"arch":"x86_64",
(continues on next page)

258 Chapter 14. Reference

conan Documentation, Release 1.5.2

(continued from previous page)

"build_type":"Release",
"compiler":"Visual Studio",
"compiler.runtime":"MD",
"compiler.version":"15",
"os":"Windows"

},
"requires":[

],
"outdated":true

},
{

"id":"c4c0a49b09575515ce1dd9841a48de0c508b9d7c",
"options":{

"SSL":"True",
"asynchronous":"False",
"shared":"True"

},
"settings":{

"arch":"x86_64",
"build_type":"Release",
"compiler":"Visual Studio",
"compiler.runtime":"MD",
"compiler.version":"15",
"os":"Windows"

},
"requires":[

"OpenSSL/1.0.2n@conan/
→˓stable:606fdb601e335c2001bdf31d478826b644747077",

"zlib/1.2.11@conan/
→˓stable:6cc50b139b9c3d27b3e9042d5f5372d327b3a9f7"

],
"outdated":true

},
{

"id":"db9d6ba7004592ed2598f2c369484d4a01269110",
"options":{

"SSL":"True",
"asynchronous":"False",
"shared":"True"

},
"settings":{

"arch":"x86_64",
"build_type":"Release",
"compiler":"gcc",
"compiler.exception":"seh",
"compiler.threads":"posix",
"compiler.version":"7",
"os":"Windows"

},
"requires":[

"OpenSSL/1.0.2n@conan/

(continues on next page)

14.1. Commands 259

conan Documentation, Release 1.5.2

(continued from previous page)

→˓stable:f761d91cef7988eafb88c6b6179f4cf261609f26",
"zlib/1.2.11@conan/

→˓stable:6dc82da13f94df549e60f9c1ce4c5d11285a4dff"
],
"outdated":true

}
]

}
]

}
]

}

Upload output [EXPERIMENTAL]

The conan upload provides a --json parameter to generate a file containing the information of the upload process.

The output JSON contains a two first level keys:

• error: True if the upload completed without error, False otherwise.

• uploaded: A list of uploaded packages. Each element contains:

– recipe: Document representing the uploaded recipe.

∗ id: Reference. e.j: “OpenSSL/1.0.2n@conan/stable”

∗ remote_name: Remote name where the recipe was uploaded.

∗ remote_url: Remote URL where the recipe was uploaded.

∗ time: ISO 8601 string with the time the recipe was uploaded.

– packages: List of elements, representing the binary packages uploaded for the recipe.

∗ id: Package ID. e.j: “8018a4df6e7d2b4630a814fa40c81b85b9182d2b”

∗ time: ISO 8601 string with the time the recipe was uploaded.

Example:

$ conan upload h* -all -r conan-center --json upload.json

Listing 3: install.json

{
"error":false,
"uploaded":[

{
"recipe":{

"id":"Hello/0.1@conan/testing",
"remote_name":"conan-center",
"remote_url":"https://conan.bintray.com",
"time":"2018-04-30T11:18:19.204728"

},
"packages":[

{
(continues on next page)

260 Chapter 14. Reference

mailto:OpenSSL/1.0.2n@conan/stable

conan Documentation, Release 1.5.2

(continued from previous page)

"id":"3f3387d49612e03a5306289405a2101383b861f0",
"time":"2018-04-30T11:18:21.534877"

},
{

"id":"6cc50b139b9c3d27b3e9042d5f5372d327b3a9f7",
"time":"2018-04-30T11:18:23.934152"

},
{

"id":"889d5d7812b4723bd3ef05693ffd190b1106ea43",
"time":"2018-04-30T11:18:28.195266"

},
{

"id":"e98aac15065fc710dffd1b4fbee382b087c3ad1d",
"time":"2018-04-30T11:18:30.495989"

}
]

},
{

"recipe":{
"id":"Hello0/1.2.1@conan/testing",
"remote_name":"conan-center",
"remote_url":"https://conan.bintray.com",
"time":"2018-04-30T11:18:32.688651"

},
"packages":[

{
"id":"5ab84d6acfe1f23c4fae0ab88f26e3a396351ac9",
"time":"2018-04-30T11:18:34.991721"

}
]

},
{

"recipe":{
"id":"HelloApp/0.1@conan/testing",
"remote_name":"conan-center",
"remote_url":"https://conan.bintray.com",
"time":"2018-04-30T11:18:36.901333"

},
"packages":[

{
"id":"6cc50b139b9c3d27b3e9042d5f5372d327b3a9f7",
"time":"2018-04-30T11:18:39.243895"

}
]

},
{

"recipe":{
"id":"HelloPythonConan/0.1@conan/testing",
"remote_name":"conan-center",
"remote_url":"https://conan.bintray.com",
"time":"2018-04-30T11:18:41.181543"

},

(continues on next page)

14.1. Commands 261

conan Documentation, Release 1.5.2

(continued from previous page)

"packages":[
{

"id":"5ab84d6acfe1f23c4fae0ab88f26e3a396351ac9",
"time":"2018-04-30T11:18:43.749422"

}
]

},
{

"recipe":{
"id":"HelloPythonReuseConan/0.1@conan/testing",
"remote_name":"conan-center",
"remote_url":"https://conan.bintray.com",
"time":"2018-04-30T11:18:45.614096"

},
"packages":[

{
"id":"6a051b2648c89dbd1f8ada0031105b287deea9d2",
"time":"2018-04-30T11:18:47.942491"

}
]

},
{

"recipe":{
"id":"hdf5/1.8.20@acri/testing",
"remote_name":"conan-center",
"remote_url":"https://conan.bintray.com",
"time":"2018-04-30T11:18:48.291756"

},
"packages":[

]
},
{

"recipe":{
"id":"http_parser/2.8.0@conan/testing",
"remote_name":"conan-center",
"remote_url":"https://conan.bintray.com",
"time":"2018-04-30T11:18:48.637576"

},
"packages":[

{
"id":"6cc50b139b9c3d27b3e9042d5f5372d327b3a9f7",
"time":"2018-04-30T11:18:51.125189"

}
]

}
]

}

262 Chapter 14. Reference

conan Documentation, Release 1.5.2

User output [EXPERIMENTAL]

The conan user provides a --json parameter to generate a file containing the information of the users configured
per remote.

The output JSON contains a two first level keys:

• error: Boolean indicating whether command completed with error.

• remotes: A list of the remotes with the packages found. Each element contains:

– name: Name of the remote.

– user_name: Name of the user set for that remote.

– authenticated: Boolean indicating if user is authenticated or not.

Example:

List users per remote: conan user --json user.json

Listing 4: user.json

{
"error":false,
"remotes":[

{
"name":"conan-center",
"user_name":"danimtb",
"authenticated":true

},
{

"name":"bincrafters",
"user_name":null,
"authenticated":false

},
{

"name":"conan-community",
"user_name":"danimtb",
"authenticated":true

},
{

"name":"the_remote",
"user_name":"foo",
"authenticated":false

}
]

}

14.1. Commands 263

conan Documentation, Release 1.5.2

14.2 conanfile.txt

14.2.1 Sections

[requires]

List of requirements, specifing the full reference.

[requires]
Poco/1.9.0@pocoproject/stable
zlib/1.2.11@conan/stable

Also support version ranges:

[requires]
Poco/[>1.0,<1.8]@pocoproject/stable
zlib/1.2.11@conan/stable

[build_requires]

List of build requirements, specifing the full reference.

[build_requires]
7z_installer/1.0@conan/stable

Also support version ranges

In practice the [build_requires] will be always installed, the same as [requires]. Installing from a conanfile.txt
means that something is going to be built, so the build requirements are indeed needed.

Still, it is useful and conceptually cleaner to have them in separate sections, so users of this conanfile.txt might quickly
identify some dev-tools that they have already installed on their machine, differentiating them from the required libraries
to link with.

[generators]

List of generators

[requires]
Poco/1.9.0@pocoproject/stable
zlib/1.2.11@conan/stable

[generators]
xcode
cmake
qmake

264 Chapter 14. Reference

conan Documentation, Release 1.5.2

[options]

List of options. Always specifying package_name:option = Value

[requires]
Poco/1.9.0@pocoproject/stable
zlib/1.2.11@conan/stable

[generators]
cmake

[options]
Poco:shared=True
OpenSSL:shared=True

[imports]

List of files to be imported to a local directory. Read more: imports.

[requires]
Poco/1.9.0@pocoproject/stable
zlib/1.2.11@conan/stable

[generators]
cmake

[options]
Poco:shared=True
OpenSSL:shared=True

[imports]
bin, *.dll -> ./bin # Copies all dll files from packages bin folder to my local "bin"␣
→˓folder
lib, *.dylib* -> ./bin # Copies all dylib files from packages lib folder to my local "bin
→˓" folder

The first item is the subfolder of the packages (could be the root “.” one), the second is the pattern to match. Both relate
to the local cache. The third (after the arrow) item, is the destination folder, living in user space, not in the local cache.

The [imports] section also support the same arguments as the equivalent imports() method in conanfile.py, sepa-
rated with an @.

• root_package (Optional, Defaulted to all packages in deps): fnmatch pattern of the package name (“OpenCV”,
“Boost”) from which files will be copied.

• folder: (Optional, Defaulted to False). If enabled, it will copy the files from the local cache to a subfolder
named as the package containing the files. Useful to avoid conflicting imports of files with the same name (e.g.
License).

• ignore_case: (Optional, Defaulted to False). If enabled will do a case-insensitive pattern matching.

• excludes: (Optional, Defaulted to None). Allows defining a list of patterns (even a single pattern) to be excluded
from the copy, even if they match the main pattern.

• keep_path (Optional, Defaulted to True): Means if you want to keep the relative path when you copy the files
from the src folder to the dst one. Useful to ignore (keep_path=False) path of library.dll files in the package

14.2. conanfile.txt 265

conan Documentation, Release 1.5.2

it is imported from.

Example to collect license files from dependencies, into a licenses folder, excluding (just an example) html and jpeg
files:

[imports]
., license* -> ./licenses @ folder=True, ignore_case=True, excludes=*.html *.jpeg

14.3 conanfile.py

Reference for conanfile.py: attributes, methods, etc.

Contents:

14.3.1 Attributes

name

This is a string, with a minimun of 2 and a maximum of 50 characters (though shorter names are recommended), that
defines the package name. It will be the <PkgName>/version@user/channel of the package reference. It should
match the following regex ^[a-zA-Z0-9_][a-zA-Z0-9_\+\.-]$, so start with alphanumeric or underscore, then
alphanumeric, underscore, +, ., - characters.

The name is only necessary for export-ing the recipe into the local cache (export and create commands), if they
are not defined in the command line. It might take its value from an environment variable, or even any python code
that defines it (e.g. a function that reads an environment variable, or a file from disk). However, the most common and
suggested approach would be to define it in plain text as a constant, or provide it as command line arguments.

version

The version attribute will define the version part of the package reference: PkgName/<version>@user/channel It
is a string, and can take any value, matching the same constraints as the name attribute. In case the version follows
semantic versioning in the form X.Y.Z-pre1+build2, that value might be used for requiring this package through
version ranges instead of exact versions.

The version is only strictly necessary for export-ing the recipe into the local cache (export and create commands),
if they are not defined in the command line. It might take its value from an environment variable, or even any python
code that defines it (e.g. a function that reads an environment variable, or a file from disk). Please note that this value
might be used in the recipe in other places (as in source() method to retrieve code from elsewhere), making this value
not constant means that it may evaluate differently in different contexts (e.g., on different machines or for different users)
leading to unrepeatable or unpredictable results. The most common and suggested approach would be to define it in
plain text as a constant, or provide it as command line arguments.

266 Chapter 14. Reference

conan Documentation, Release 1.5.2

description

This is an optional, but strongly recommended text field, containing the description of the package, and any information
that might be useful for the consumers. The first line might be used as a short description of the package.

class HelloConan(ConanFile):
name = "Hello"
version = "0.1"
description = """This is a Hello World library.

A fully featured, portable, C++ library to say Hello World in the␣
→˓stdout,

with incredible iostreams performance"""

homepage

Use this attribute to indicate the home web page of the library being packaged. This is useful to link the recipe to
further explanations of the library itself like an overview of its features, documentation, FAQ as well as other related
information.

class EigenConan(ConanFile):
name = "eigen"
version = "3.3.4"
homepage = "http://eigen.tuxfamily.org"

url

It is possible, even typical, if you are packaging a thid party lib, that you just develop the packaging code. Such code
is also subject to change, often via collaboration, so it should be stored in a VCS like git, and probably put on GitHub
or a similar service. If you do indeed maintain such a repository, please indicate it in the url attribute, so that it can
be easily found.

class HelloConan(ConanFile):
name = "Hello"
version = "0.1"
url = "https://github.com/memsharded/hellopack.git"

The url is the url of the package repository, i.e. not necessarily the original source code. It is optional, but highly
recommended, that it points to GitHub, Bitbucket or your preferred code collaboration platform. Of course, if you have
the conanfile inside your library source, you can point to it, and afterwards use the url in your source() method.

This is a recommended, but not mandatory attribute.

license

This field is intended for the license of the target source code and binaries, i.e. the code that is being packaged, not the
conanfile.py itself. This info is used to be displayed by the conan info command and possibly other search and
report tools.

class HelloConan(ConanFile):
name = "Hello"
version = "0.1"
license = "MIT"

14.3. conanfile.py 267

conan Documentation, Release 1.5.2

This attribute can contain several, comma separated licenses. It is a text string, so it can contain any text, including
hyperlinks to license files elsewhere.

This is a recommended, but not mandatory attribute.

author

Intended to add information about the author, in case it is different from the conan user. It is possible that the conan
user is the name of an organization, project, company or group, and many users have permissions over that account. In
this case, the author information can explicitely define who is the creator/maintainer of the package

class HelloConan(ConanFile):
name = "Hello"
version = "0.1"
author = "John J. Smith (john.smith@company.com)"

This is an optional attribute

user, channel

The fields user and channel can be accessed from within a conanfile.py. Though their usage is usually not
encouraged, it could be useful in different cases, e.g. to define requirements with the same user and channel than the
current package, which could be achieved with something like:

from conans import ConanFile

class HelloConan(ConanFile):
name = "Hello"
version = "0.1"

def requirements(self):
self.requires("Say/0.1@%s/%s" % (self.user, self.channel))

Only package recipes that are in the conan local cache (i.e. “exported”) have an user/channel assigned. For package
recipes working in user space, there is no current user/channel. The properties self.user and self.channel will
then look for environment variables CONAN_USERNAME and CONAN_CHANNEL respectively. If they are not defined, an
error will be raised.

settings

There are several things that can potentially affect a package being created, i.e. the final package will be different (a
different binary, for example), if some input is different.

Development project-wide variables, like the compiler, its version, or the OS itself. These variables have to be defined,
and they cannot have a default value listed in the conanfile, as it would not make sense.

It is obvious that changing the OS produces a different binary in most cases. Changing the compiler or compiler version
changes the binary too, which might have a compatible ABI or not, but the package will be different in any case.

For these reasons, the most common convention among Conan recipes is to distinguish binaries by the following four
settings, which is reflected in the conanfile.py template used in the conan new command:

settings = "os", "compiler", "build_type", "arch"

268 Chapter 14. Reference

conan Documentation, Release 1.5.2

When Conan generates a compiled binary for a package with a given combination of the settings above, it generates a
unique ID for that binary by hashing the current values of these settings.

But what happens for example to header only libraries? The final package for such libraries is not binary and, in most
cases it will be identical, unless it is automatically generating code. We can indicate that in the conanfile:

from conans import ConanFile

class HelloConan(ConanFile):
name = "Hello"
version = "0.1"
We can just omit the settings attribute too
settings = None

def build(self):
#empty too, nothing to build in header only

You can restrict existing settings and accepted values as well, by redeclaring the settings attribute:

class HelloConan(ConanFile):
settings = {"os": ["Windows"],

"compiler": {"Visual Studio": {"version": [11, 12]}},
"arch": None}

In this example we have just defined that this package only works in Windows, with VS 10 and 11. Any attempt to build
it in other platforms with other settings will throw an error saying so. We have also defined that the runtime (the MD
and MT flags of VS) is irrelevant for us (maybe we using a universal one?). Using None as a value means, maintain the
original values in order to avoid re-typing them. Then, “arch”: None is totally equivalent to “arch”: [“x86”, “x86_64”,
“arm”] Check the reference or your ~/.conan/settings.yml file.

As re-defining the whole settings attribute can be tedious, it is sometimes much simpler to remove or tune specific
fields in the configure() method. For example, if our package is runtime independent in VS, we can just remove that
setting field:

settings = "os", "compiler", "build_type", "arch"

def configure(self):
self.settings.compiler["Visual Studio"].remove("runtime")

options, default_options

Conan packages recipes can generate different binary packages when different settings are used, but can also customize,
per-package any other configuration that will produce a different binary.

A typical option would be being shared or static for a certain library. Note that this is optional, different packages can
have this option, or not (like header-only packages), and different packages can have different values for this option, as
opposed to settings, which typically have the same values for all packages being installed (though this can be controlled
too, defining different settings for specific packages)

Options are defined in package recipes as dictionaries of name and allowed values:

class MyPkg(ConanFile):
...
options = {"shared": [True, False]}

14.3. conanfile.py 269

conan Documentation, Release 1.5.2

There is an special value ANY to allow any value for a given option. The range of values for such an option will not be
checked, and any value (as string) will be accepted:

class MyPkg(ConanFile):
...
options = {"shared": [True, False], "commit": "ANY"}

When a package is installed, it will need all its options be defined a value. Those values can be defined in command
line, profiles, but they can also (and they will be typically) defined in conan package recipes:

class MyPkg(ConanFile):
...
options = {"shared": [True, False], "fPIC": [True, False]}
default_options = "shared=False", "fPIC=False"

The options will typically affect the build() of the package in some way, for example:

class MyPkg(ConanFile):
...
options = {"shared": [True, False]}
default_options = "shared=False"

def build(self):
shared = "-DBUILD_SHARED_LIBS=ON" if self.options.shared else ""
cmake = CMake(self)
self.run("cmake . %s %s" % (cmake.command_line, shared))
self.run("cmake --build . %s" % cmake.build_config)

Note that you have to consider the option properly in your build scripts. In this case, we are using the CMake way. So
if you had explicit STATIC linkage in the CMakeLists.txt file, you have to remove it. If you are using VS, you also
need to change your code to correctly import/export symbols for the dll.

This is only an example. Actually, the CMake helper already automates this, so it is enough to do:

def build(self):
cmake = CMake(self) # internally it will check self.options.shared
self.run("cmake . %s" % cmake.command_line) # or cmake.configure()
self.run("cmake --build . %s" % cmake.build_config) # or cmake.build()

You can also specify default option values of the required dependencies:

class OtherPkg(ConanFile):
requires = "Pkg/0.1@user/channel"
default_options = "Pkg:pkg_option=value"

You can also specify default option values of the conditional required dependencies:

class OtherPkg(ConanFile):
default_options = "Pkg:pkg_option=value"

def requirements(self):
if self.settings.os != "Windows":

self.requires("Pkg/0.1@user/channel")

This will always work, on Windows the default_options for the Pkg/0.1@user/channel will be ignored, they will only
be used on every other os.

270 Chapter 14. Reference

conan Documentation, Release 1.5.2

If you need to dynamically set some dependency options, you could do:

class OtherPkg(ConanFile):
requires = "Pkg/0.1@user/channel"

def configure(self):
self.options["Pkg"].pkg_option = "value"

Option values can be given in command line, and they will have priority over the default values in the recipe:

$ conan install -o Pkg:shared=True -o OtherPkg:option=value

You can also defined them in consumer conanfile.txt, as described in this section

[requires]
Poco/1.9.0@pocoproject/stable

[options]
Poco:shared=True
OpenSSL:shared=True

And finally, you can define options in profiles too, with the same syntax:

file "myprofile"
use it as $ conan install -pr=myprofile
[settings]
setting=value

[options]
MyLib:shared=True

You can inspect available package options, reading the package recipe, which is conveniently done with:

$ conan get Pkg/0.1@user/channel

requires

Specify package dependencies as a list of other packages:

class MyLibConan(ConanFile):
requires = "Hello/1.0@user/stable", "OtherLib/2.1@otheruser/testing"

You can specify further information about the package requirements:

class MyLibConan(ConanFile):
requires = (("Hello/0.1@user/testing"),

("Say/0.2@dummy/stable", "override"),
("Bye/2.1@coder/beta", "private"))

Requirements can be complemented by 2 different parameters:

private: a dependency can be declared as private if it is going to be fully embedded and hidden from consumers of
the package. Typical examples could be a header only library which is not exposed through the public interface of the
package, or the linking of a static library inside a dynamic one, in which the functionality or the objects of the linked
static library are not exposed through the public interface of the dynamic library.

14.3. conanfile.py 271

conan Documentation, Release 1.5.2

override: packages can define overrides of their dependencies, if they require the definition of specific versions of the
upstream required libraries, but not necessarily direct dependencies. For example, a package can depend on A(v1.0),
which in turn could conditionally depend on Zlib(v2), depending on whether the compression is enabled or not. Now,
if you want to force the usage of Zlib(v3) you can:

class HelloConan(ConanFile):
requires = ("A/1.0@user/stable", ("Zlib/3.0@other/beta", "override"))

This will not introduce a new dependency, it will just change Zlib v2 to v3 if A actually requires it. Otherwise Zlib
will not be a dependency of your package.

version ranges

The syntax is using brackets:

class HelloConan(ConanFile):
requires = "Pkg/[>1.0,<1.8]@user/stable"

Expressions are those defined and implemented by [python node-semver](https://pypi.org/project/node-semver/), but
using a comma instead of spaces. Accepted expressions would be:

>1.1,<2.1 # In such range
2.8 # equivalent to =2.8
~=3.0 # compatible, according to semver
>1.1 || 0.8 # conditions can be OR'ed

Go to Mastering/Version Ranges if you want to learn more about version ranges.

build_requires

Build requirements are requirements that are only installed and used when the package is built from sources. If there
is an existing pre-compiled binary, then the build requirements for this package will not be retrieved.

They can be specified as a comma separated tuple in the package recipe:

class MyPkg(ConanFile):
build_requires = "ToolA/0.2@user/testing", "ToolB/0.2@user/testing"

Read more: Build requiremens

exports

If a package recipe conanfile.py requires other external files, like other python files that it is importing (python
importing), or maybe some text file with data it is reading, those files must be exported with the exports field, so they
are stored together, side by side with the conanfile.py recipe.

The exports field can be one single pattern, like exports="*", or several inclusion patterns. For example, if we have
some python code that we want the recipe to use in a helpers.py file, and have some text file, info.txt, we want to
read and display during the recipe evaluation we would do something like:

exports = "helpers.py", "info.txt"

Exclude patterns are also possible, with the ! prefix:

272 Chapter 14. Reference

https://pypi.org/project/node-semver/

conan Documentation, Release 1.5.2

exports = "*.py", "!*tmp.py"

This is an optional attribute, only to be used if the package recipe requires these other files for evaluation of the recipe.

exports_sources

There are 2 ways of getting source code to build a package. Using the source() recipe method and using the
exports_sources field. With exports_sources you specify which sources are required, and they will be exported
together with the conanfile.py, copying them from your folder to the local conan cache. Using exports_sources the
package recipe can be self-contained, containing the source code like in a snapshot, and then not requiring downloading
or retrieving the source code from other origins (git, download) with the source() method when it is necessary to
build from sources.

The exports_sources field can be one single pattern, like exports_sources="*", or several inclusion patterns.
For example, if we have the source code inside “include” and “src” folders, and there are other folders that are not
necessary for the package recipe, we could do:

exports_sources = "include*", "src*"

Exclude patterns are also possible, with the ! prefix:

exports_sources = "include*", "src*", "!src/build/*"

This is an optional attribute, used typically when source() is not specified. The main difference with exports is
that exports files are always retrieved (even if pre-compiled packages exist), while exports_sources files are only
retrieved when it is necessary to build a package from sources.

generators

Generators specify which is the output of the install command in your project folder. By default, a conanbuildinfo.txt
file is generated, but you can specify different generators and even use more than one.

class MyLibConan(ConanFile):
generators = "cmake", "gcc"

Check the full generators list.

build_policy

With the build_policy attribute the package creator can change the default conan’s build behavior. The allowed
build_policy values are:

• missing: If no binary package is found, conan will build it without the need of invoke conan install with –build
missing option.

• always: The package will be built always, retrieving each time the source code executing the “source” method.

class PocoTimerConan(ConanFile):
build_policy = "always" # "missing"

14.3. conanfile.py 273

conan Documentation, Release 1.5.2

short_paths

If one of the packages you are creating hits the limit of 260 chars path length in Windows, add short_paths=True in
your conanfile.py:

from conans import ConanFile

class ConanFileTest(ConanFile):
...
short_paths = True

This will automatically “link” the source and build directories of the package to the drive root, something like
C:/.conan/tmpdir. All the folder layout in the conan cache is maintained.

This attribute will not have any effect in other OS, it will be discarded.

From Windows 10 (ver. 10.0.14393), it is possible to opt-in disabling the path limits. Check this link for more info.
Latest python installers might offer to enable this while installing python. With this limit removed, the short_paths
functionality is totally unnecessary. Please note that this only works with Python 3.6 and newer.

no_copy_source

The attribute no_copy_source tells the recipe that the source code will not be copied from the source folder to the
build folder. This is mostly an optimization for packages with large source codebases, to avoid extra copies. It is
mandatory that the source code must not be modified at all by the configure or build scripts, as the source code will
be shared among all builds.

To be able to use it, the package recipe can access the self.source_folder attribute, which will point to
the build folder when no_copy_source=False or not defined, and will point to the source folder when
no_copy_source=True

When this attribute is set to True, the package() method will be called twice, one copying from the source folder
and the other copying from the build folder.

folders

In the package recipe methods, some attributes pointing to the relevant folders can be defined. Not all of them will be
defined always, only in those relevant methods that might use them.

• self.source_folder: the folder in which the source code to be compiled lives. When a package is built in
the conan local cache, by default it is the build folder, as the source code is copied from the source folder to
the build folder, to ensure isolation and avoiding modifications of shared common source code among builds
for different configurations. Only when no_copy_source=True this folder will actually point to the package
source folder in the local cache.

• self.build_folder: the folder in which the build is being done

• self.install_folder: the folder in which the install has outputed the generator files, by default, and always
in the local cache, is the same self.build_folder

• self.package_folder: the folder to copy the final artifacts for the binary package

When executing local conan commands (for a package not in the local cache, but in user folder), those fields would be
pointing to the corresponding local user folder.

274 Chapter 14. Reference

https://docs.microsoft.com/es-es/windows/desktop/FileIO/naming-a-file#maximum-path-length-limitation

conan Documentation, Release 1.5.2

cpp_info

This attribute is only defined inside package_info() method, being None elsewhere, so please use it only inside this
method.

The self.cpp_info object can be filled with the needed information for the consumers of the current package:

NAME DESCRIPTION
self.cpp_info.includedirsOrdered list with include paths, by default [‘include’]
self.cpp_info.libdirs Ordered list with lib paths, by default [‘lib’]
self.cpp_info.resdirs Ordered list of resource (data) paths, by default [‘res’]
self.cpp_info.bindirs Ordered list with include paths, by default [‘bin’]
self.cpp_info.builddirs Ordered list with build scripts paths, by default [‘’]. CMake will search in these dirs for

cmake files, like findXXX.cmake
self.cpp_info.libs Ordered list with the library names, by default empty []
self.cpp_info.defines Preprocessor definitions, by default empty []
self.cpp_info.cflags Ordered list with pure C flags, by default empty []
self.cpp_info.cppflags Ordered list with C++ flags, by default empty []
self.cpp_info.sharedlinkflagsOrdered list with linker flags (shared libs), by default empty []
self.cpp_info.exelinkflagsOrdered list with linker flags (executables), by default empty []
self.cpp_info.rootpath Filled with the root directory of the package, see deps_cpp_info

See also:

Read package_info() method docs for more info.

deps_cpp_info

Contains the cpp_info object of the requirements of the recipe. In addition of the above fields, there are also properties
to obtain the absolute paths:

NAME DESCRIPTION
self.cpp_info.include_paths Same as includedirs but transformed to absolute paths
self.cpp_info.lib_paths Same as libdirs but transformed to absolute paths
self.cpp_info.bin_paths Same as bindirs but transformed to absolute paths
self.cpp_info.build_paths Same as builddirs but transformed to absolute paths
self.cpp_info.res_paths Same as resdirs but transformed to absolute paths

To get a list of all the dependency names from `deps_cpp_info`, you can call the deps member:

class PocoTimerConan(ConanFile):
...
def build(self):

deps is a list of package names: ["Poco", "zlib", "OpenSSL"]
deps = self.deps_cpp_info.deps

It can be used to get information about the dependencies, like used compilation flags or the root folder of the package:

class PocoTimerConan(ConanFile):
...
requires = "zlib/1.2.11@conan/stable", "OpenSSL/1.0.2l@conan/stable"

(continues on next page)

14.3. conanfile.py 275

conan Documentation, Release 1.5.2

(continued from previous page)

...

def build(self):
Get the directory where zlib package is installed
self.deps_cpp_info["zlib"].rootpath

Get the absolute paths to zlib include directories (list)
self.deps_cpp_info["zlib"].include_paths

Get the sharedlinkflags property from OpenSSL package
self.deps_cpp_info["OpenSSL"].sharedlinkflags

env_info

This attribute is only defined inside package_info() method, being None elsewhere, so please use it only inside this
method.

The self.env_info object can be filled with the environment variables to be declared in the packages reusing the
recipe.

See also:

Read package_info() method docs for more info.

deps_env_info

You can access to the declared environment variables of the requirements of the recipe.

Note: The environment variables declared in the requirements of a recipe are automatically applied and it can be
accesed with the python os.environ dictionary. Nevertheless if you want to access to the variable declared by some
specific requirement you can use the self.deps_env_info object.

import os

class RecipeConan(ConanFile):
...
requires = "package1/1.0@conan/stable", "package2/1.2@conan/stable"
...

def build(self):
Get the SOMEVAR environment variable declared in the "package1"
self.deps_env_info["package1"].SOMEVAR

Access to the environment variables globally
os.environ["SOMEVAR"]

276 Chapter 14. Reference

conan Documentation, Release 1.5.2

info

Object used to control the unique ID for a package. Check the package_id() to see the details of the self.info object.

apply_env

When True (Default), the values from self.deps_env_info (corresponding to the declared env_info in the
requires and build_requires) will be automatically applied to the os.environ.

Disable it setting apply_env to False if you want to control by yourself the environment variables applied to your
recipes.

You can apply manually the environment variables from the requires and build_requires:

import os
from conans import tools

class RecipeConan(ConanFile):
apply_env = False

def build(self):
with tools.environment_append(self.env):

The same if we specified apply_env = True
pass

in_local_cache

A boolean attribute useful for conditional logic to apply in user folders local commands. It will return True if the
conanfile resides in the local cache (we are installing the package) and False if we are running the conanfile in a user
folder (local Conan commands).

import os

class RecipeConan(ConanFile):
...

def build(self):
if self.in_local_cache:

we are installing the package
else:

we are building the package in a local directory

develop

A boolean attribute useful for conditional logic. It will be True if the package is created with conan create, or if the
conanfile.py is in user space:

class RecipeConan(ConanFile):

def build(self):
if self.develop:

self.output.info("Develop mode")

14.3. conanfile.py 277

conan Documentation, Release 1.5.2

It can be used for conditional logic in other methods too, like requirements(), package(), etc.

This recipe will output “Develop mode” if:

$ conan create user/testing
or
$ mkdir build && cd build && conan install ..
$ conan build ..

But it will not output that when it is a transitive requirement or installed with conan install.

keep_imports

Just before the build() method is executed, if the conanfile has an imports() method, it is executed into the build
folder, to copy binaries from dependencies that might be necessary for the build() method to work. After the method
finishes, those copied (imported) files are removed, so they are not later unnecessarily repackaged.

This behavior can be avoided declaring the keep_imports=True attribute. This can be useful, for example to repack-
age artifacts

scm

Used to clone/checkout a repository. It is a dictionary with the following possible values:

from conans import ConanFile, CMake, tools

class HelloConan(ConanFile):
scm = {

"type": "git",
"subfolder": "hello",
"url": "https://github.com/memsharded/hello.git",
"revision": "static_shared"

}
...

• type (Required): Currently only git supported. Others like svn will be added eventually.

• url (Required): URL of the remote or auto to capture the remote from the local directory.

• revision (Required):
When type is git, it can be a string with a branch name, a commit or a tag.

• subfolder (Optional, Defaulted to .): A subfolder where the repository will be cloned.

• username (Optional, Defauted to None): When present, it will be used as the login to authenticate with the
remote.

• password (Optional, Defauted to None): When present, it will be used as the password to authenticate with the
remote.

• verify_ssl (Optional, Defaulted to True): Verify SSL certificate of the specified url.

• submodule (Optional, Defaulted to None):

– shallow: Will sync the git submodules using submodule sync

– recursive: Will sync the git submodules using submodule sync --recursive

To know more about the usage of scm check:

278 Chapter 14. Reference

conan Documentation, Release 1.5.2

• Creating packages/Recipe and sources in a different repo

• Creating packages/Recipe and sources in the same repo

14.3.2 Methods

source()

Method used to retrieve the source code from any other external origin like github using $ git clone or just a regular
download.

For example, “exporting” the source code files, together with the conanfile.py file, can be handy if the source code is
not under version control. But if the source code is available in a repository, you can directly get it from there:

from conans import ConanFile

class HelloConan(ConanFile):
name = "Hello"
version = "0.1"
settings = "os", "compiler", "build_type", "arch"

def source(self):
self.run("git clone https://github.com/memsharded/hello.git")
You can also change branch, commit or whatever
self.run("cd hello && git checkout 2fe5...")
#
Or using the Git class:
git = tools.Git(folder="hello")
git.clone("https://github.com/memsharded/hello.git", "static_shared")

This will work, as long as git is in your current path (so in Win you probably want to run things in msysgit, cmder,
etc). You can also use another VCS or direct download/unzip. For that purpose, we have provided some helpers, but
you can use your own code or origin as well. This is a snippet of the conanfile of the Poco library:

from conans import ConanFile
from conans.tools import download, unzip, check_md5, check_sha1, check_sha256
import os
import shutil

class PocoConan(ConanFile):
name = "Poco"
version = "1.6.0"

def source(self):
zip_name = "poco-1.6.0-release.zip"
download("https://github.com/pocoproject/poco/archive/poco-1.6.0-release.zip",␣

→˓zip_name)
check_md5(zip_name, "51e11f2c02a36689d6ed655b6fff9ec9")
check_sha1(zip_name, "8d87812ce591ced8ce3a022beec1df1c8b2fac87")
check_sha256(zip_name,

→˓"653f983c30974d292de58444626884bee84a2731989ff5a336b93a0fef168d79")
unzip(zip_name)
shutil.move("poco-poco-1.6.0-release", "poco")
os.unlink(zip_name)

14.3. conanfile.py 279

conan Documentation, Release 1.5.2

The download, unzip utilities can be imported from conan, but you can also use your own code here to retrieve source
code from any origin. You can even create packages for pre-compiled libraries you already have, even if you don’t
have the source code. You can download the binaries, skip the build() method and define your package() and
package_info() accordingly.

You can also use check_md5(), check_sha1() and check_sha256() from the tools module to verify that a package
is downloaded correctly.

Note: It is very important to recall that the source() method will be executed just once, and the source code will
be shared for all the package builds. So it is not a good idea to conditionally use settings or options to make changes
or patches on the source code. Maybe the only setting that makes sense is the OS self.settings.os, if not doing
cross-building, for example to retrieve different sources:

def source(self):
if platform.system() == "Windows":

download some Win source zip
else:

download sources from Nix systems in a tgz

If you need to patch the source code or build scripts differently for different variants of your packages, you can do it in
the build() method, which uses a different folder and source code copy for each variant.

build()

This method is used to build the source code of the recipe using the desired commands. You can use your command
line tools to invoke your build system or any of the build helpers provided with Conan.

def build(self):
cmake = CMake(self)
self.run("cmake . %s" % (cmake.command_line))
self.run("cmake --build . %s" % cmake.build_config)

Build helpers

You can use these classes to prepare your build system’s command invocation:

• CMake: Prepares the invocation of cmake command with your settings.

• AutoToolsBuildEnvironment: If you are using configure/Makefile to build your project you can use this helper.
Read more: Building with Autotools.

• MSBuild: If you are using Visual Studio compiler directly to build your project you can use this helper MS-
Build(). For lower level control, the VisualStudioBuildEnvironment can also be used: VisualStudioBuildEn-
vironment.

280 Chapter 14. Reference

conan Documentation, Release 1.5.2

(Unit) Testing your library

We have seen how to run package tests with conan, but what if we want to run full unit tests on our library before
packaging, so that they are run for every build configuration? Nothing special is required here. We can just launch the
tests from the last command in our build() method:

def build(self):
cmake = CMake(self)
cmake.configure()
cmake.build()
here you can run CTest, launch your binaries, etc
cmake.test()

package()

The actual creation of the package, once that it is built, is done in the package() method. Using the self.copy()
method, artifacts are copied from the build folder to the package folder.

The syntax of self.copy inside package() is as follows:

self.copy(pattern, dst="", src="", keep_path=True, symlinks=None, excludes=None, ignore_
→˓case=False)

Parameters:

• pattern (Required): A pattern following fnmatch syntax of the files you want to copy, from the build to the
package folders. Typically something like *.lib or *.h.

• src (Optional, Defaulted to ""): The folder where you want to search the files in the build folder. If you
know that your libraries when you build your package will be in build/lib, you will typically use build/lib
in this parameter. Leaving it empty means the root build folder in local cache.

• dst (Optional, Defaulted to ""): Destination folder in the package. They will typically be include for
headers, lib for libraries and so on, though you can use any convention you like. Leaving it empty means
the root package folder in local cache.

• keep_path (Optional, Defaulted to True): Means if you want to keep the relative path when you copy the
files from the src folder to the dst one. Typically headers are packaged with relative path.

• symlinks (Optional, Defaulted to None): Set it to True to activate symlink copying, like typical lib.so-
>lib.so.9.

• excludes (Optional, Defaulted to None): Single pattern or a tuple of patterns to be excluded from the copy.
If a file matches both the include and the exclude pattern, it will be excluded.

• ignore_case (Optional, Defaulted to False): If enabled, it will do a case-insensitive pattern matching.

For example:

self.copy("*.h", "include", "build/include") #keep_path default is True

The final path in the package will be: include/mylib/path/header.h, and as the include is usually added to the
path, the includes will be in the form: #include "mylib/path/header.h" which is something desired.

keep_path=False is something typically desired for libraries, both static and dynamic. Some compilers as MSVC,
put them in paths as Debug/x64/MyLib/Mylib.lib. Using this option, we could write:

14.3. conanfile.py 281

conan Documentation, Release 1.5.2

self.copy("*.lib", "lib", "", keep_path=False)

And it will copy the lib to the package folder lib/Mylib.lib, which can be linked easily.

Note: If you are using CMake and you have an install target defined in your CMakeLists.txt, you might be able to
reuse it for this package() method. Please check How to reuse cmake install for package() method.

This method copies files from build/source folder to the package folder depending on two situations:

• Build folder and source folder are the same: Normally during conan create source folder content is copied
to the build folder. In this situation src parameter of self.copy() will point to the build folder in the local
cache.

• Build folder is different from source folder: When developing a package recipe and source and build
folder are different (conan package . --source-folder=source --build-folder=build) or when
no_copy_source is defined, package() method is called twice: One will copy from the source folder (src
parameter of self.copy() will point to the source folder), and the other will copy from the build folder (src
parameter of self.copy() will point to the build folder).

package_info()

cpp_info

Each package has to specify certain build information for its consumers. This can be done in the cpp_info attribute
within the package_info() method.

The cpp_info attribute has the following properties you can assign/append to:

self.cpp_info.includedirs = ['include'] # Ordered list of include paths
self.cpp_info.libs = [] # The libs to link against
self.cpp_info.libdirs = ['lib'] # Directories where libraries can be found
self.cpp_info.resdirs = ['res'] # Directories where resources, data, etc can be found
self.cpp_info.bindirs = ['bin'] # Directories where executables and shared libs can be␣
→˓found
self.cpp_info.defines = [] # preprocessor definitions
self.cpp_info.cflags = [] # pure C flags
self.cpp_info.cppflags = [] # C++ compilation flags
self.cpp_info.sharedlinkflags = [] # linker flags
self.cpp_info.exelinkflags = [] # linker flags

• includedirs: List of relative paths (starting from the package root) of directories where headers can be found.
By default it is initialized to ['include'], and it is rarely changed.

• libs: Ordered list of libs the client should link against. Empty by default, it is common that different configura-
tions produce different library names. For example:

def package_info(self):
if not self.settings.os == "Windows":

self.cpp_info.libs = ["libzmq-static.a"] if self.options.static else ["libzmq.so
→˓"]
else:

...

282 Chapter 14. Reference

conan Documentation, Release 1.5.2

• libdirs: List of relative paths (starting from the package root) of directories in which to find library object binaries
(*.lib, *.a, *.so, *.dylib). By default it is initialized to ['lib'], and it is rarely changed.

• resdirs: List of relative paths (starting from the package root) of directories in which to find resource files
(images, xml, etc). By default it is initialized to ['res'], and it is rarely changed.

• bindirs: List of relative paths (starting from the package root) of directories in which to find library runtime
binaries (like Windows .dlls). By default it is initialized to ['bin'], and it is rarely changed.

• defines: Ordered list of preprocessor directives. It is common that the consumers have to specify some sort of
defines in some cases, so that including the library headers matches the binaries:

• cflags, cppflags, sharedlinkflags, exelinkflags: List of flags that the consumer should activate for proper behav-
ior. Usage of C++11 could be configured here, for example, although it is true that the consumer may want to do
some flag processing to check if different dependencies are setting incompatible flags (c++11 after c++14).

if self.options.static:
if self.settings.compiler == "Visual Studio":

self.cpp_info.libs.append("ws2_32")
self.cpp_info.defines = ["ZMQ_STATIC"]

if not self.settings.os == "Windows":
self.cpp_info.cppflags = ["-pthread"]

If your recipe has requirements, you can access to your requirements cpp_info as well using the deps_cpp_info
object.

class OtherConan(ConanFile):
name = "OtherLib"
version = "1.0"
requires = "MyLib/1.6.0@conan/stable"

def build(self):
self.output.warn(self.deps_cpp_info["MyLib"].libdirs)

Note: Please take into account that defining self.cpp_info.bindirs directories, does not have any effect on system
paths, PATH environment variable, nor will be directly accessible by consumers. self.cpp_info information is trans-
lated to build-systems information via generators, for example for CMake, it will be a variable in conanbuildinfo.
cmake. If you want a package to make accessible its executables to its consumers, you have to specify it with self.
env_info as described in env_info.

env_info

Each package can also define some environment variables that the package needs to be reused. It’s specially useful for
installer packages, to set the path with the “bin” folder of the packaged application. This can be done in the env_info
attribute within the package_info() method.

self.env_info.path.append("ANOTHER VALUE") # Append "ANOTHER VALUE" to the path variable
self.env_info.othervar = "OTHER VALUE" # Assign "OTHER VALUE" to the othervar variable
self.env_info.thirdvar.append("some value") # Every variable can be set or appended a␣
→˓new value

One of the most typical usages for the PATH environment variable, would be to add the current binary package direc-
tories to the path, so consumers can use those executables easily:

14.3. conanfile.py 283

conan Documentation, Release 1.5.2

assuming the binaries are in the "bin" subfolder
self.env_info.PATH.append(os.path.join(self.package_folder, "bin")

The virtualenv generator will use the self.env_info variables to prepare a script to activate/deactive a virtual envi-
ronment. However, this could be directly done using the virtualrunenv generator.

They will be automatically applied before calling the consumer conanfile.py methods source(), build(), package()
and imports().

If your recipe has requirements, you can access to your requirements env_info as well using the deps_env_info
object.

class OtherConan(ConanFile):
name = "OtherLib"
version = "1.0"
requires = "MyLib/1.6.0@conan/stable"

def build(self):
self.output.warn(self.deps_env_info["MyLib"].othervar)

user_info

If you need to declare custom variables not related with C/C++ (cpp_info) and the variables are not environment
variables (env_info), you can use the self.user_info object.

Currently only the cmake, cmake_multi and txt generators supports user_info variables.

class MyLibConan(ConanFile):
name = "MyLib"
version = "1.6.0"

...

def package_info(self):
self.user_info.var1 = 2

For the example above, in the cmake and cmake_multi generators, a variable CONAN_USER_MYLIB_var1 will be
declared. If your recipe has requirements, you can access to your requirements user_info using the deps_user_info
object.

class OtherConan(ConanFile):
name = "OtherLib"
version = "1.0"
requires = "MyLib/1.6.0@conan/stable"

def build(self):
self.out.warn(self.deps_user_info["MyLib"].var1)

284 Chapter 14. Reference

conan Documentation, Release 1.5.2

configure(), config_options()

If the package options and settings are related, and you want to configure either, you can do so in the configure()
and config_options() methods.

class MyLibConan(ConanFile):
name = "MyLib"
version = "2.5"
settings = "os", "compiler", "build_type", "arch"
options = {"static": [True, False],

"header_only": [True False]}

def configure(self):
If header only, the compiler, etc, does not affect the package!
if self.options.header_only:

self.settings.clear()
self.options.remove("static")

The package has 2 options set, to be compiled as a static (as opposed to shared) library, and also not to involve any
builds, because header-only libraries will be used. In this case, the settings that would affect a normal build, and
even the other option (static vs shared) do not make sense, so we just clear them. That means, if someone consumes
MyLib with the header_only=True option, the package downloaded and used will be the same, irrespective of the
OS, compiler or architecture the consumer is building with.

You can also restrict the settings used deleting any specific one. For example, it is quite common for C libraries to
delete the libcxx as your library does not depend on any C++ standard library:

def configure(self):
del self.settings.compiler.libcxx

The most typical usage would be the one with configure()while config_options() should be used more sparingly.
config_options() is used to configure or constraint the available options in a package, before they are given a value.
So when a value is tried to be assigned it will raise an error. For example, let’s suppose that a certain package library
cannot be built as shared library in Windows, it can be done:

def config_options(self):
if self.settings.os == "Windows":

del self.options.shared

This will be executed before the actual assignment of options (then, such options values cannot be used inside this
function), so the command conan install -o Pkg:shared=True will raise an exception in Windows saying that
shared is not an option for such package.

requirements()

Besides the requires field, more advanced requirement logic can be defined in the requirements() optional method,
using for example values from the package settings or options:

def requirements(self):
if self.options.myoption:

self.requires("zlib/1.2@drl/testing")
else:

self.requires("opencv/2.2@drl/stable")

14.3. conanfile.py 285

conan Documentation, Release 1.5.2

This is a powerful mechanism for handling conditional dependencies.

When you are inside the method, each call to self.requires() will add the corresponding requirement to the current
list of requirements. It also has optional parameters that allow defining the special cases, as is shown below:

def requirements(self):
self.requires("zlib/1.2@drl/testing", private=True, override=False)

self.requires() parameters:

• override (Optional, Defaulted to False): True means that this is not an actual requirement, but something
to be passed upstream and override possible existing values.

• private (Optional, Defaulted to False): True means that this requirement will be somewhat embedded
(like a static lib linked into a shared lib), so it is not required to link.

build_requirements()

Build requirements are requirements that are only installed and used when the package is built from sources. If there
is an existing pre-compiled binary, then the build requirements for this package will not be retrieved.

This method is useful for defining conditional build requirements, for example:

class MyPkg(ConanFile):

def build_requirements(self):
if self.settings.os == "Windows":

self.build_requires("ToolWin/0.1@user/stable")

See also:

Build requirements

system_requirements()

It is possible to install system-wide packages from conan. Just add a system_requirements() method to your
conanfile and specify what you need there.

For a special use case you can use also conans.tools.os_info object to detect the operating system, version and
distribution (linux):

• os_info.is_linux: True if Linux.

• os_info.is_windows: True if Windows.

• os_info.is_macos: True if OSx.

• os_info.is_freebsd: True if FreeBSD.

• os_info.is_solaris: True if SunOS.

• os_info.os_version: OS version.

• os_info.os_version_name: Common name of the OS (Windows 7, Mountain Lion, Wheezy. . .).

• os_info.linux_distro: Linux distribution name (None if not Linux).

• os_info.bash_path: Returns the absolute path to a bash in the system.

• os_info.uname(options=None): Runs the “uname” command and returns the ouput. You can pass arguments
with the options parameter.

286 Chapter 14. Reference

conan Documentation, Release 1.5.2

• os_info.detect_windows_subsystem(): Returns “MSYS”, “MSYS2”, “CYGWIN” or “WSL” if any of
these Windows subsystems are detected.

You can also use SystemPackageTool class, that will automatically invoke the right system package tool: apt, yum,
pkg, pkgutil, brew and pacman depending on the system we are running.

from conans.tools import os_info, SystemPackageTool

def system_requirements(self):
pack_name = None
if os_info.linux_distro == "ubuntu":

if os_info.os_version > "12":
pack_name = "package_name_in_ubuntu_10"

else:
pack_name = "package_name_in_ubuntu_12"

elif os_info.linux_distro == "fedora" or os_info.linux_distro == "centos":
pack_name = "package_name_in_fedora_and_centos"

elif os_info.is_macos:
pack_name = "package_name_in_macos"

elif os_info.is_freebsd:
pack_name = "package_name_in_freebsd"

elif os_info.is_solaris:
pack_name = "package_name_in_solaris"

if pack_name:
installer = SystemPackageTool()
installer.install(pack_name) # Install the package, will update the package␣

→˓database if pack_name isn't already installed

On Windows, there is no standard package manager, however choco can be invoked as an optional:

from conans.tools import os_info, SystemPackageTool, ChocolateyTool

def system_requirements(self):
if os_info.is_windows:

pack_name = "package_name_in_windows"
installer = SystemPackageTool(tool=ChocolateyTool()) # Invoke choco package␣

→˓manager to install the package
installer.install(pack_name)

SystemPackageTool

def SystemPackageTool(tool=None)

Available tool classes: AptTool, YumTool, BrewTool, PkgTool, PkgUtilTool, ChocolateyTool, PacManTool.

Methods:

• update(): Updates the system package manager database. It’s called automatically from the install()
method by default.

• install(packages, update=True, force=False): Installs the packages (could be a list or a string). If
update is True it will execute update() first if it’s needed. The packages won’t be installed if they are
already installed at least of force parameter is set to True. If packages is a list the first available package
will be picked (short-circuit like logical or).

14.3. conanfile.py 287

conan Documentation, Release 1.5.2

The use of sudo in the internals of the install() and update() methods is controlled by the
CONAN_SYSREQUIRES_SUDO environment variable, so if the users don’t need sudo permissions, it is easy to
opt-in/out.

Conan will keep track of the execution of this method, so that it is not invoked again and again at every Conan command.
The execution is done per package, since some packages of the same library might have different system dependencies.
If you are sure that all your binary packages have the same system requirements, just add the following line to your
method:

def system_requirements(self):
self.global_system_requirements=True
if ...

imports()

Importing files copies files from the local store to your project. This feature is handy for copying shared libraries (dylib
in Mac, dll in Win) to the directory of your executable, so that you don’t have to mess with your PATH to run them.
But there are other use cases:

• Copy an executable to your project, so that it can be easily run. A good example is the Google’s protobuf code
generator.

• Copy package data to your project, like configuration, images, sounds. . . A good example is the OpenCV demo,
in which face detection XML pattern files are required.

Importing files is also very convenient in order to redistribute your application, as many times you will just have to
bundle your project’s bin folder.

A typical imports() method for shared libs could be:

def imports(self):
self.copy("*.dll", "", "bin")
self.copy("*.dylib", "", "lib")

The self.copy() method inside imports() supports the following arguments:

def copy(pattern, dst="", src="", root_package=None, folder=False, ignore_case=False,␣
→˓excludes=None, keep_path=True)

Parameters:

• pattern (Required): An fnmatch file pattern of the files that should be copied.

• dst (Optional, Defaulted to ""): Destination local folder, with reference to current directory, to which the
files will be copied.

• src (Optional, Defaulted to ""): Source folder in which those files will be searched. This folder will be
stripped from the dst parameter. Eg.: lib/Debug/x86

• root_package (Optional, Defaulted to all packages in deps): An fnmatch pattern of the package name
(“OpenCV”, “Boost”) from which files will be copied.

• folder (Optional, Defaulted to False): If enabled, it will copy the files from the local cache to a subfolder
named as the package containing the files. Useful to avoid conflicting imports of files with the same name
(e.g. License).

• ignore_case (Optional, Defaulted to False): If enabled, it will do a case-insensitive pattern matching.

288 Chapter 14. Reference

conan Documentation, Release 1.5.2

• excludes (Optional, Defaulted to None): Allows defining a list of patterns (even a single pattern) to be
excluded from the copy, even if they match the main pattern.

• keep_path (Optional, Defaulted to True): Means if you want to keep the relative path when you copy the
files from the src folder to the dst one. Useful to ignore (keep_path=False) path of library.dll files in
the package it is imported from.

Example to collect license files from dependencies:

def imports(self):
self.copy("license*", dst="licenses", folder=True, ignore_case=True)

If you want to be able to customize the output user directory to work with both the cmake and cmake_multi generators,
then you can do:

def imports(self):
dest = os.getenv("CONAN_IMPORT_PATH", "bin")
self.copy("*.dll", dst=dest, src="bin")
self.copy("*.dylib*", dst=dest, src="lib")

And then use, for example: conan install . -e CONAN_IMPORT_PATH=Release -g cmake_multi

When a conanfile recipe has an imports() method and it builds from sources, it will do the following:

• Before running build() it will execute imports() in the build folder, copying dependencies artifacts

• Run the build() method, which could use such imported binaries.

• Remove the copied (imported) artifacts after build() is finished.

You can use the keep_imports attribute to keep the imported artifacts, and maybe repackage them.

package_id()

Creates a unique ID for the package. Default package ID is calculated using settings, options and requires
properties. When a package creator specifies the values for any of thoses properties, it is telling that any value change
will require a different binary package.

However, sometimes a package creator would need to alter the default behavior, for example, to have only one binary
package for several different compiler versions. In that case you can set a custom self.info object implementing this
method and the package ID will be computed with the given information:

def package_id(self):
v = Version(str(self.settings.compiler.version))
if self.settings.compiler == "gcc" and (v >= "4.5" and v < "5.0"):

self.info.settings.compiler.version = "GCC 4 between 4.5 and 5.0"

Please, check the section Define package ABI compatibility to get more details.

14.3. conanfile.py 289

conan Documentation, Release 1.5.2

self.info

This self.info object stores the information that will be used to compute the package ID.

This object can be manipulated to reflect the information you want in the computation of the package ID. For example,
you can delete any setting or option:

def package_id(self):
del self.info.settings.compiler
del self.info.options.shared

self.info.header_only()

The package will always be the same, irrespective of the OS, compiler or architecture the consumer is building with.

def package_id(self):
self.info.header_only()

self.info.vs_toolset_compatible() / self.info.vs_toolset_incompatible()

By default (vs_toolset_compatible() mode) Conan will generate the same binary package when the compiler is
Visual Studio and the compiler.toolsetmatches the specified compiler.version. For example, if we install some
packages specifying the following settings:

def package_id(self):
self.info.vs_toolset_compatible()
self.info.vs_toolset_incompatible()

compiler="Visual Studio"
compiler.version=14

And then we install again specifying these settings:

compiler="Visual Studio"
compiler.version=15
compiler.toolset=v140

The compiler version is different, but Conan will not install a different package, because the used toolchain
in both cases are considered the same. You can deactivate this default behavior using calling self.info.
vs_toolset_incompatible().

This is the relation of Visual Studio versions and the compatible toolchain:

Visual Studio Version Compatible toolset
15 v141
14 v140
13 v120
12 v120
11 v110
10 v100
9 v90
8 v80

290 Chapter 14. Reference

conan Documentation, Release 1.5.2

self.info.discard_build_settings() / self.info.include_build_settings()

By default (discard_build_settings()) Conan will generate the same binary when you change the os_build
or arch_build when the os and arch are declared respectively. This is because os_build represent the machine
running Conan, so, for the consumer, the only setting that matters is where the built software will run, not where is
running the compilation. The same applies to arch_build.

With self.info.include_build_settings(), Conan will generate different packages when you change the
os_build or arch_build.

def package_id(self):
self.info.discard_build_settings()
self.info.include_build_settings()

self.info.default_std_matching() / self.info.default_std_non_matching()

By default (default_std_matching()) Conan will detect the default C++ standard of your compiler to not generate
different binary packages.

For example, you already built some gcc > 6.1 packages, where the default std is gnu14. If you introduce the cppstd
setting in your recipes and specify the gnu14 value, Conan won’t generate new packages, because it was already the
default of your compiler.

With self.info.default_std_non_matching(), Conan will generate different packages when you specify the
cppstd even if it matches with the default of the compiler being used:

def package_id(self):
self.info.default_std_non_matching()
self.info.default_std_matching()

build_id()

In the general case, there is one build folder for each binary package, with the exact same hash/ID of the package.
However this behavior can be changed, there are a couple of scenarios that this might be interesting:

• You have a build script that generates several different configurations at once, like both debug and release artifacts,
but you actually want to package and consume them separately. Same for different architectures or any other
setting.

• You build just one configuration (like release), but you want to create different binary packages for different
consuming cases. For example, if you have created tests for the library in the build step, you might want to create
two packages: one just containing the library for general usage, and another one also containing the tests. First
package could be used as a reference and the other one as a tool to debug errors.

In both cases, if using different settings, the system will build twice (or more times) the same binaries, just to produce
a different final binary package. With the build_id() method this logic can be changed. build_id() will create a
new package ID/hash for the build folder, and you can define the logic you want in it. For example:

settings = "os", "compiler", "arch", "build_type"

def build_id(self):
self.info_build.settings.build_type = "Any"

So this recipe will generate a final different package for each debug/release configuration. But as the build_id()
will generate the same ID for any build_type, then just one folder and one build will be done. Such build should

14.3. conanfile.py 291

conan Documentation, Release 1.5.2

build both debug and release artifacts, and then the package() method should package them accordingly to the self.
settings.build_type value. Different builds will still be executed if using different compilers or architectures. This
method is basically an optimization of build time, avoiding multiple re-builds.

Other information like custom package options can also be changed:

def build_id(self):
self.info_build.options.myoption = 'MyValue' # any value possible
self.info_build.options.fullsource = 'Always'

If the build_id() method does not modify the build_id, and produce a different one than the package_id, then
the standard behavior will be applied. Consider the following:

settings = "os", "compiler", "arch", "build_type"

def build_id(self):
if self.settings.os == "Windows":

self.info_build.settings.build_type = "Any"

This will only produce a build ID different if the package is for Windows. So the behavior in any other OS will be the
standard one, as if the build_id() method was not defined: the build folder will be wiped at each conan create
command and a clean build will be done.

deploy()

This method can be used in a conanfile.py to install in the system or user folder artifacts from packages.

def deploy(self):
self.copy("*.exe") # copy from current package
self.copy_deps("*.dll") # copy from dependencies

Where:

• self.copy() is the self.copy() method executed inside package() method.

• self.copy_deps() is the same as self.copy() method inside imports() method.

Both methods allow the definition of absolute paths (to install in the system), in the dst argument. By default, the dst
destionation folder will be the current one.

The deploy() method is designed to work on a package that is installed directly from its reference, as:

$ conan install Pkg/0.1@user/channel
> ...
> Pkg/0.1@user/testing deploy(): Copied 1 '.dll' files: mylib.dll
> Pkg/0.1@user/testing deploy(): Copied 1 '.exe' files: myexe.exe

All other packages and dependencies, even transitive dependencies of “Pkg/0.1@user/testing” will not be deployed, it
is the responsibility of the installed package to deploy what it needs from its dependencies.

292 Chapter 14. Reference

mailto:Pkg/0.1@user/testing

conan Documentation, Release 1.5.2

14.3.3 Output and Running

Output contents

Use the self.output to print contents to the output.

self.output.success("This is a good, should be green")
self.output.info("This is a neutral, should be white")
self.output.warn("This is a warning, should be yellow")
self.output.error("Error, should be red")
self.output.rewrite_line("for progress bars, issues a cr")

Check the source code. You might be able to produce different outputs with different colors.

Running commands

run(self, command, output=True, cwd=None, win_bash=False, subsystem=None, msys_
→˓mingw=True):

self.run() is a helper to run system commands and throw exceptions when errors occur, so that command errors are
do not pass unnoticed. It is just a wrapper for os.system()

Optional parameters:

• output (Optional, Defaulted to True) When True it will write in stdout.
You can pass any stream that accepts a write method like a six.StringIO():

from six import StringIO # Python 2 and 3 compatible
mybuf = StringIO()
self.run("mycommand", output=mybuf)
self.output.warn(mybuf.getvalue())

• cwd (Optional, Defaulted to . current directory): Current directory to run the command.

• win_bash (Optional, Defaulted to False): When True, it will run the configure/make commands inside a bash.

• subsystem (Optional, Defaulted to None will autodetect the subsystem). Used to escape the command according
to the specified subsystem.

• msys_mingw (Optional, Defaulted to True) If the specified subsystem is MSYS2, will start it in MinGW mode
(native windows development).

14.4 Generators

You can specify a generator in:

• The [generators] section from conanfile.txt

• The generators attribute in conanfile.py

Available generators:

14.4. Generators 293

conan Documentation, Release 1.5.2

14.4.1 cmake

This is the reference page for cmake generator. Go to Integrations/CMake if you want to learn how to integrate your
project or recipes with CMake.

It generates a file named conanbuildinfo.cmake and declares some variables and methods

Variables in conanbuildinfo.cmake

• Package declared vars

For each requirement conanbuildinfo.cmake file declares the following variables. XXX is the name of the require in
uppercase. e.k “ZLIB” for zlib/1.2.8@lasote/stable requirement:

NAME VALUE
CONAN_XXX_ROOT Abs path to root package folder.
CONAN_INCLUDE_DIRS_XXX Header’s folders
CONAN_LIB_DIRS_XXX Library folders (default {CONAN_XXX_ROOT}/lib)
CONAN_BIN_DIRS_XXX Binary folders (default {CONAN_XXX_ROOT}/bin)
CONAN_LIBS_XXX Library names to link
CONAN_DEFINES_XXX Library defines
CONAN_COMPILE_DEFINITIONS_XXX Compile definitions
CONAN_CXX_FLAGS_XXX CXX flags
CONAN_SHARED_LINK_FLAGS_XXX Shared link flags
CONAN_C_FLAGS_XXX C flags

• Global declared vars

Conan also declares some global variables with the aggregated values of all our requirements. The values are ordered
in the right order according to the dependency tree.

NAME VALUE
CONAN_INCLUDE_DIRS Aggregated header’s folders
CONAN_LIB_DIRS Aggregated library folders
CONAN_BIN_DIRS Aggregated binary folders
CONAN_LIBS Aggregated library names to link
CONAN_DEFINES Aggregated library defines
CONAN_COMPILE_DEFINITIONS Aggregated compile definitions
CONAN_CXX_FLAGS Aggregated CXX flags
CONAN_SHARED_LINK_FLAGS Aggregated Shared link flags
CONAN_C_FLAGS Aggregated C flags

• Variables from user_info

If any of the requirements is filling the user_info object in the package_info method a set of variables will be declared
following this naming:

NAME VALUE
CONAN_USER_XXXX_YYYY User declared value

XXXX is the name of the requirement in uppercase and YYYY the variable name. e.j:

294 Chapter 14. Reference

conan Documentation, Release 1.5.2

class MyLibConan(ConanFile):
name = "MyLib"
version = "1.6.0"

...

def package_info(self):
self.user_info.var1 = 2

When other library requires MyLib and uses the cmake generator:

conanbuildinfo.cmake:

...
set(CONAN_USER_MYLIB_var1 "2")

Methods available in conanbuildinfo.cmake

conan_basic_setup

Setup all the CMake vars according to our settings, by default with the global approach (no targets).

parameters: You can combine several parameters to the conan_basic_setup macro. e.j:
conan_basic_setup(TARGETS KEEP_RPATHS)

• TARGETS: Setup all the CMake vars by target (only CMake > 3.1.2)

• NO_OUTPUT_DIRS: Do not adjust the output directories

• KEEP_RPATHS: Do not adjust the CMAKE_SKIP_RPATH variable in OSX

conan_target_link_libraries

Helper to link all libraries to a specified target.

14.4. Generators 295

conan Documentation, Release 1.5.2

Other optional methods

There are other methods automatically called by conan_basic_setup() but you can use them directly:

NAME DESCRIPTION
co-
nan_check_compiler()

Checks that your compiler matches the one declared in settings
Can be disabled setting CONAN_DISABLE_CHECK_COMPILER CMake var

co-
nan_output_dirs_setup()

Adjust the bin/ and lib/ output directories

co-
nan_set_find_library_paths()

Set CMAKE_INCLUDE_PATH and CMAKE_INCLUDE_PATH

co-
nan_global_flags()

Set include_directories, link_directories, link_directories, flags

co-
nan_define_targets()

Define the targets (target flags instead of global flags)

conan_set_rpath() Set CMAKE_SKIP_RPATH=1 if APPLE
co-
nan_set_vs_runtime()

Adjust the runtime flags (/MD /MDd /MT /MTd)

co-
nan_set_libcxx(TARGETS)

Adjust the standard library flags (libstdc++, libc++, libstdc++11)

co-
nan_set_find_paths()

Adjust CMAKE_MODULE_PATH and CMAKE_PREFIX_PATH

Targets generated by conanbuildinfo.cmake

If you use conan_basic_setup(TARGETS), then some cmake targets will be generated (this only works for CMake
> 3.1.2)

These targets are:

• A CONAN_PKG::PkgName target per package in the dependency graph. This is an IMPORTED INTERFACE target.
IMPORTED because it is external, a pre-compiled library. INTERFACE, because it doesn’t necessarily match a
library, it could be a header-only library, or the package could even contain several libraries. It contains all the
properties (include paths, compile flags, etc) that are defined in the package_info() method of the package.

• Inside each package a CONAN_LIB::PkgName_LibName target will be generated for each library. Its type is
IMPORTED UNKNOWN, its mainly purpose is to provide a correct link order. Their only properties are the location
and the dependencies

• A CONAN_PKG depends on every CONAN_LIB that belongs to it, and to its direct public dependencies (i.e. other
CONAN_PKG targets from its requires)

• Each CONAN_LIB depends on the direct public dependencies CONAN_PKG targets of its container package. This
guarantees correct link order.

296 Chapter 14. Reference

conan Documentation, Release 1.5.2

14.4.2 cmake_multi

This is the reference page for cmake_multi generator. Go to Integrations/CMake if you want to learn how to integrate
your project or recipes with CMake.

Usage

$ conan install -g cmake_multi -s build_type=Release ...
$ conan install -g cmake_multi -s build_type=Debug ...

These commands will generate 3 files:

• conanbuildinfo_release.cmake: Variables adjusted only for build_type Release

• conanbuildinfo_debug.cmake: Variables adjusted only for build_type Debug

• conanbuildinfo_multi.cmake: Which includes the other two, and enables its use

Variables in conanbuildinfo_release.cmake

Same as conanbuildinfo.cmake with suffix _RELEASE

Variables in conanbuildinfo_debug.cmake

Same as conanbuildinfo.cmake with suffix _DEBUG

Available Methods

Same as conanbuildinfo.cmake

14.4.3 cmake_paths

This is the reference page for cmake_paths generator. Go to Integrations/CMake if you want to learn how to integrate
your project or recipes with CMake.

It generates a file named conan_paths.cmake and declares two variables:

Variables in conan_paths.cmake

NAME VALUE
CMAKE_MODULE_PATHContaining all requires root folders and any declared self.cpp_info.builddirs and the cur-

rent directory
CMAKE_PREFIX_PATH Containing all requires root folders and any declared self.cpp_info.builddirs and the cur-

rent directory

14.4. Generators 297

conan Documentation, Release 1.5.2

14.4.4 cmake_find_package

This is the reference page for cmake_find_package generator. Go to Integrations/CMake if you want to learn how to
integrate your project or recipes with CMake.

The cmake_find_package generator creates a file for each requirement specified in the conanfile.

The name of the files follow the pattern Find<package_name>.cmake. So for the zlib/1.2.11@conan/stable
package, a Findzlib.cmake file will be generated.

Variables in Find{name}.cmake

Being {name} the package name:

NAME VALUE
{name}_FOUND Set to 1
{name}_INCLUDE_DIRS Containing all the include directories of the package
{name}_INCLUDES Same as the XXX_INCLUDE_DIRS
{name}_DEFINITIONS Definitions of the library
{name}_LIBRARIES Library paths to link
{name}_LIBS Same as XXX_LIBRARIES

Target in Find<package_name>.cmake

A target named {name}:{name} target is generated with the following properties adjusted:

• INTERFACE_INCLUDE_DIRECTORIES: Containing all the include directories of the package.

• INTERFACE_LINK_LIBRARIES: Library paths to link.

• INTERFACE_COMPILE_DEFINITIONS: Definitions of the library.

The targets are transitive. So, if your project depends on a packages A and B, and at the same time A depends on C, the
A target will contain automatically the properties of the C dependency, so in your CMakeLists.txt file you only need to
find_package(A) and find_package(B).

14.4.5 visual_studio

This is the reference page for visual_studio generator. Go to Integrations/Visual Studio if you want to learn how to
integrate your project or recipes with Visual Studio.

Generates a file named conanbuildinfo.props containing an XML that can be imported to your Visual Studio
project.

Generated xml structure:

<?xml version="1.0" encoding="utf-8"?>
<Project ToolsVersion="4.0" xmlns="http://schemas.microsoft.com/developer/msbuild/2003">
<ImportGroup Label="PropertySheets" />
<PropertyGroup Label="UserMacros" />
<PropertyGroup Label="Conan-RootDirs">
<Conan-Lib1-Root>{PACKAGE LIB1 FOLDER}</Conan-Poco-Root>
<Conan-Lib2-Root>{PACKAGE LIB2 FOLDER}</Conan-Poco-Root>
...

(continues on next page)

298 Chapter 14. Reference

conan Documentation, Release 1.5.2

(continued from previous page)

</PropertyGroup>
<PropertyGroup Label="ConanVariables">
<ConanBinaryDirectories>{CONAN BINARY DIRECTORIES LIST}</ConanBinaryDirectories>
<ConanResourceDirectories>{CONAN RESOURCE DIRECTORIES LIST}</

→˓ConanResourceDirectories>
</PropertyGroup>
<PropertyGroup>
<LocalDebuggerEnvironment>PATH=%PATH%;{CONAN BINARY DIRECTORIES LIST}</

→˓LocalDebuggerEnvironment>
<DebuggerFlavor>WindowsLocalDebugger</DebuggerFlavor>

</PropertyGroup>
<ItemDefinitionGroup>
<ClCompile>
<AdditionalIncludeDirectories>{CONAN INCLUDE DIRECTORIES LIST}

→˓%(AdditionalIncludeDirectories)</AdditionalIncludeDirectories>
<PreprocessorDefinitions>{CONAN DEFINITIONS}%(PreprocessorDefinitions)</

→˓PreprocessorDefinitions>
<AdditionalOptions> %(AdditionalOptions)</AdditionalOptions>

</ClCompile>
<Link>
<AdditionalLibraryDirectories>{CONAN LIB DIRECTORIES LIST}

→˓%(AdditionalLibraryDirectories)</AdditionalLibraryDirectories>
<AdditionalDependencies>{CONAN LIBS LIST}</AdditionalDependencies>
<AdditionalOptions> %(AdditionalOptions)</AdditionalOptions>

</Link>
</ItemDefinitionGroup>
<ItemGroup />

</Project>

Note that for single-configuration packages, which is the most typical, conan install Debug/Release, 32/64bits, packages
separately. So a different property sheet will be generated for each configuration. The process could be:

Given for example a conanfile.txt like:

[requires]
Pkg/0.1@user/channel

[generators]
visual_studio

And assuming that binary packages exist for Pkg/0.1@user/channel, we could do:

$ mkdir debug32 && cd debug32
$ conan install .. -s compiler="Visual Studio" -s compiler.version=15 -s arch=x86 -s␣
→˓build_type=Debug
$ cd ..
$ mkdir debug64 && cd debug64
$ conan install .. -s compiler="Visual Studio" -s compiler.version=15 -s arch=x86_64 -s␣
→˓build_type=Debug
$ cd ..
$ mkdir release32 && cd release32
$ conan install .. -s compiler="Visual Studio" -s compiler.version=15 -s arch=x86 -s␣
→˓build_type=Release

(continues on next page)

14.4. Generators 299

conan Documentation, Release 1.5.2

(continued from previous page)

$ cd ..
$ mkdir release64 && cd release64
$ conan install .. -s compiler="Visual Studio" -s compiler.version=15 -s arch=x86_64 -s␣
→˓build_type=Release
...
Now go to VS 2017 Property Manager, load the respective sheet into each configuration

The above process can be simplified using profiles (assuming you have created the respective profiles), and you can
also specify the generators in the command line:

$ conan install .. -pr=vs15release64 -g visual_studio
...

14.4.6 visual_studio_multi

This is the reference page for visual_studio_multi generator. Go to Integrations/Visual Studio if you want to learn
how to integrate your project or recipes with Visual Studio.

Usage

$ conan install . -g visual_studio_multi -s arch=x86 -s build_type=Debug
$ conan install . -g visual_studio_multi -s arch=x86_64 -s build_type=Debug
$ conan install . -g visual_studio_multi -s arch=x86 -s build_type=Release
$ conan install . -g visual_studio_multi -s arch=x86_64 -s build_type=Release

These commands will generate 5 files for each compiler version:

• conanbuildinfo_multi.props: All properties

• conanbuildinfo_release_x64_v141.props.props: Variables for release/64bits/VS2015 (toolset v141)

• conanbuildinfo_debug_x64_v141.props.props: Variables for debug/64bits/VS2015 (toolset v141)

• conanbuildinfo_release_win32_v141.props.props: Variables for release/32bits/VS2015 (toolset v141)

• conanbuildinfo_debug_win32_v141.props.props: Variables for debug/32bits/VS2015 (toolset v141)

You can now load conanbuildinfo_multi.props in your Visual Studio IDE property manager, and all configura-
tions will be loaded at once.

Each one of the configurations will have the format and information defined in the visual_studio generator

14.4.7 visual_studio_legacy

Generates a file named conanbuildinfo.vsprops containing an XML that can be imported to your Visual Studio
2008 project. Note that the format of this file is different and incompatible with the conanbuildinfo.props file
generated with the visual_studio generator for newer VS.

Generated xml structure:

<?xml version="1.0" encoding="Windows-1252"?>
<VisualStudioPropertySheet

ProjectType="Visual C++"
(continues on next page)

300 Chapter 14. Reference

conan Documentation, Release 1.5.2

(continued from previous page)

Version="8.00"
Name="conanbuildinfo"
>
<Tool

Name="VCCLCompilerTool"
AdditionalOptions="{compiler_flags}"
AdditionalIncludeDirectories="{include_dirs}"
PreprocessorDefinitions="{definitions}"

/>
<Tool

Name="VCLinkerTool"
AdditionalOptions="{linker_flags}"
AdditionalDependencies="{libs}"
AdditionalLibraryDirectories="{lib_dirs}"

/>
</VisualStudioPropertySheet>

This file can be loaded from the Menu->View->PropertyManager window, selecting “Add Existing Property Sheet” for
the desired configuration.

Note that for single-configuration packages, which is the most typical, conan install Debug and Release packages
separately. So a different property sheet will be generated for each configuration. The process could be:

14.4. Generators 301

conan Documentation, Release 1.5.2

Given for example a conanfile.txt like:

[requires]
Pkg/0.1@user/channel

[generators]
visual_studio_legacy

And assuming that binary packages exist for Pkg/0.1@user/channel, we could do:

$ mkdir debug && cd debug
$ conan install .. -s compiler="Visual Studio" -s compiler.version=9 -s arch=x86 -s␣
→˓build_type=Debug
$ cd ..
$ mkdir release && cd release
$ conan install .. -s compiler="Visual Studio" -s compiler.version=9 -s arch=x86 -s␣
→˓build_type=Release
Now go to VS 2008 Property Manager, load the respective sheet into each configuration

The above process can be simplified using profiles (assuming you have created “vs9release” profile), and you can also
specify the generators in the command line:

$ conan install .. -pr=vs9release -g visual_studio_legacy

14.4.8 xcode

This is the reference page for xcode generator. Go to Integrations/Xcode if you want to learn how to integrate your
project or recipes with Xcode.

The xcode generator creates a file named conanbuildinfo.xcconfig that can be imported to your Xcode project.

The file declare these variables:

VARIABLE VALUE
HEADER_SEARCH_PATHS The requirements include dirs
LIBRARY_SEARCH_PATHS The requirements lib dirs
OTHER_LDFLAGS -lXXX corresponding to library names
GCC_PREPROCESSOR_DEFINITIONS The requirements definitions
OTHER_CFLAGS The requirements cflags
OTHER_CPLUSPLUSFLAGS The requirements cxxflags

14.4.9 compiler_args

This is the reference page for compiler_args generator. Go to Integrations/Compilers on command line if you want
to learn how to integrate your project calling your compiler in the command line.

Generates a file named conanbuildinfo.args containing a command line parameters to invoke gcc, clang or cl
compiler.

You can use the compiler_args generator directly to build simple programs:

gcc/clang:

302 Chapter 14. Reference

conan Documentation, Release 1.5.2

> g++ timer.cpp @conanbuildinfo.args -o bin/timer

cl:

$ cl /EHsc timer.cpp @conanbuildinfo.args

gcc/clang

FLAG MEANING
-DXXX Corresponding to requirements defines
-IXXX Corresponding to requirements include dirs
-Wl,-rpathXXX Corresponding to requirements lib dirs
-LXXX Corresponding to requirements lib dirs
-lXXX Corresponding to requirements libs
-m64 For x86_64 architecture
-m32 For x86 architecture
-DNDEBUG For Release builds
-s For Release builds (only gcc)
-g For Debug builds
-D_GLIBCXX_USE_CXX11_ABI=0 When setting libcxx == “libstdc++”
-D_GLIBCXX_USE_CXX11_ABI=1 When setting libcxx == “libstdc++11”
Other flags cppflags, cflags, sharedlinkflags, exelinkflags (applied directly)

cl (Visual Studio)

FLAG MEANING
/DXXX Corresponding to requirements defines
/IXXX Corresponding to requirements include dirs
/LIBPATH:XX Corresponding to requirements lib dirs
/MT, /MTd, /MD, /MDd Corresponding to Runtime
-DNDEBUG For Release builds
/Zi For Debug builds

You can also use it in a recipe:

from conans import ConanFile

class PocoTimerConan(ConanFile):
settings = "os", "compiler", "build_type", "arch"
requires = "Poco/1.9.0@pocoproject/stable"
generators = "compiler_args"
default_options = "Poco:shared=True", "OpenSSL:shared=True"

def imports(self):
self.copy("*.dll", dst="bin", src="bin") # From bin to bin
self.copy("*.dylib*", dst="bin", src="lib") # From lib to bin

def build(self):
self.run("mkdir -p bin")
command = 'g++ timer.cpp @conanbuildinfo.args -o bin/timer'
self.run(command)

14.4. Generators 303

conan Documentation, Release 1.5.2

14.4.10 gcc

Deprecated, use compiler_args generator instead.

14.4.11 Boost Build

The boost-build generator creates a file named project-root.jam that can be used with your Boost Build build
system script.

The generated project-root.jam will generate several sections, and an alias conan-deps with the sections name:

lib ssl :
: # requirements
<name>ssl
<search>/path/to/package/227fb0ea22f4797212e72ba94ea89c7b3fbc2a0c/lib
: # default-build
: # usage-requirements
<include>/path/to/package/227fb0ea22f4797212e72ba94ea89c7b3fbc2a0c/include
;

lib crypto :
: # requirements
<name>crypto
<search>/path/to/package/227fb0ea22f4797212e72ba94ea89c7b3fbc2a0c/lib
: # default-build
: # usage-requirements
<include>/path/to/package/227fb0ea22f4797212e72ba94ea89c7b3fbc2a0c/include
;

lib z :
: # requirements
<name>z
<search>/path/to/package/8018a4df6e7d2b4630a814fa40c81b85b9182d2b/lib
: # default-build
: # usage-requirements
<include>/path/to/package/8018a4df6e7d2b4630a814fa40c81b85b9182d2b/include
;

alias conan-deps :
ssl
crypto
z

;

304 Chapter 14. Reference

conan Documentation, Release 1.5.2

14.4.12 qbs

This is the reference page for qbs generator. Go to Integrations/Qbs if you want to learn how to integrate your project
or recipes with Qbs.

Generates a file named conanbuildinfo.qbs that can be used for your qbs builds.

A Product ConanBasicSetup contains the aggregated requirement values and also there is N Product declared, one
per requirement.

import qbs 1.0

Project {
Product {

name: "ConanBasicSetup"
Export {

Depends { name: "cpp" }
cpp.includePaths: [{INCLUDE DIRECTORIES REQUIRE 1}, {INCLUDE DIRECTORIES␣

→˓REQUIRE 2}]
cpp.libraryPaths: [{LIB DIRECTORIES REQUIRE 1}, {LIB DIRECTORIES REQUIRE 2}]
cpp.systemIncludePaths: [{BIN DIRECTORIES REQUIRE 1}, {BIN DIRECTORIES␣

→˓REQUIRE 2}]
cpp.dynamicLibraries: [{LIB NAMES REQUIRE 1}, {LIB NAMES REQUIRE 2}]
cpp.defines: []
cpp.cppFlags: []
cpp.cFlags: []
cpp.linkerFlags: []

}
}

Product {
name: "REQUIRE1"
Export {

Depends { name: "cpp" }
cpp.includePaths: [{INCLUDE DIRECTORIES REQUIRE 1}]
cpp.libraryPaths: [{LIB DIRECTORIES REQUIRE 1}]
cpp.systemIncludePaths: [{BIN DIRECTORIES REQUIRE 1}]
cpp.dynamicLibraries: ["{LIB NAMES REQUIRE 1}"]
cpp.defines: []
cpp.cppFlags: []
cpp.cFlags: []
cpp.linkerFlags: []

}
}
// lib root path: {ROOT PATH REQUIRE 1}

Product {
name: "REQUIRE2"
Export {

Depends { name: "cpp" }
cpp.includePaths: [{INCLUDE DIRECTORIES REQUIRE 2}]
cpp.libraryPaths: [{LIB DIRECTORIES REQUIRE 2}]
cpp.systemIncludePaths: [{BIN DIRECTORIES REQUIRE 2}]
cpp.dynamicLibraries: ["{LIB NAMES REQUIRE 2}"]

(continues on next page)

14.4. Generators 305

conan Documentation, Release 1.5.2

(continued from previous page)

cpp.defines: []
cpp.cppFlags: []
cpp.cFlags: []
cpp.linkerFlags: []

}
}
// lib root path: {ROOT PATH REQUIRE 2}

}

14.4.13 qmake

This is the reference page for qmake generator. Go to Integrations/Qmake if you want to learn how to integrate your
project or recipes with qmake.

Generates a file named conanbuildinfo.pri that can be used for your qbs builds. The file contains:

• N groups of variables, one group per require, declaring the same individual values: include_paths, libs, bin dirs,
libraries, defines etc.

• One group of global variables with the aggregated values for all requirements.

Package declared vars

For each requirement conanbuildinfo.pri file declares the following variables. XXX is the name of the require in
uppercase. e.k “ZLIB” for zlib/1.2.8@lasote/stable requirement:

NAME VALUE
CONAN_XXX_ROOT Abs path to root package folder.
CONAN_INCLUDEPATH_XXX Header’s folders
CONAN_LIB_DIRS_XXX Library folders (default {CONAN_XXX_ROOT}/lib)
CONAN_BINDIRS_XXX Binary folders (default {CONAN_XXX_ROOT}/bin)
CONAN_LIBS_XXX Library names to link
CONAN_DEFINES_XXX Library defines
CONAN_COMPILE_DEFINITIONS_XXX Compile definitions
CONAN_QMAKE_CXXFLAGS_XXX CXX flags
CONAN_QMAKE_LFLAGS_XXX Shared link flags
CONAN_QMAKE_CFLAGS_XXX C flags

Global declared vars

Conan also declares some global variables with the aggregated values of all our requirements. The values are ordered
in the right order according to the dependency tree.

306 Chapter 14. Reference

conan Documentation, Release 1.5.2

NAME VALUE
CONAN_INCLUDEPATH Aggregated header’s folders
CONAN_LIB_DIRS Aggregated library folders
CONAN_BINDIRS Aggregated binary folders
CONAN_LIBS Aggregated library names to link
CONAN_DEFINES Aggregated library defines
CONAN_COMPILE_DEFINITIONS Aggregated compile definitions
CONAN_QMAKE_CXXFLAGS Aggregated CXX flags
CONAN_QMAKE_LFLAGS Aggregated Shared link flags
CONAN_QMAKE_CFLAGS Aggregated C flags

Methods available in conanbuildinfo.pri

NAME DESCRIPTION
conan_basic_setup() Setup all the qmake vars according to our settings with the global approach

14.4.14 scons

Conan provides integration with SCons with this generator.

The generated SConscript_conan will generate several dictionaries, like:

"conan" : {
"CPPPATH" : ['/path/to/include'],
"LIBPATH" : ['/path/to/lib'],
"BINPATH" : ['/path/to/bin'],
"LIBS" : ['hello'],
"CPPDEFINES" : [],
"CXXFLAGS" : [],
"CCFLAGS" : [],
"SHLINKFLAGS" : [],
"LINKFLAGS" : [],

},

"Hello" : {
"CPPPATH" : ['/path/to/include'],
"LIBPATH" : ['/path/to/lib'],
"BINPATH" : ['/path/to/bin'],
"LIBS" : ['hello'],
"CPPDEFINES" : [],
"CXXFLAGS" : [],
"CCFLAGS" : [],
"SHLINKFLAGS" : [],
"LINKFLAGS" : [],

},

The conan dictionary will contain the aggregated values for all dependencies, while the individual "Hello" dictionar-
ies, one per package, will contain just the values for that specific dependency.

These dictionaries can be directly loaded into the environment like:

14.4. Generators 307

conan Documentation, Release 1.5.2

conan = SConscript('{}/SConscript_conan'.format(build_path_relative_to_sconstruct))
env.MergeFlags(conan['conan'])

14.4.15 pkg_config

Generates N files named {dep_name}.pc, containing a valid pkg-config file syntax. The prefix variable is automat-
ically adjusted to the package_folder.

Go to Integrations/pkg-config and pc files/Use the pkg_config generator if you want to learn how to use this generator.

14.4.16 virtualenv

This is the reference page for virtualenv generator. Go to Mastering/Virtual Environments if you want to learn how
to use conan virtual environments.

Created files

• activate.{sh|bat|ps1}

• deactivate.{sh|bat|ps1}

Usage

Linux/OSX:

> source activate.sh

Windows:

> activate.bat

Variables declared

ENVIRONMENT VAR VALUE
PS1 New shell prompt value corresponding to the current directory name
OLD_PS1 Old PS1 value, to recover it in deactivation
XXXX Any variable declared in the self.env_info object of the requirements.

308 Chapter 14. Reference

conan Documentation, Release 1.5.2

14.4.17 virtualbuildenv

This is the reference page for virtualbuildenv generator. Go to Mastering/Virtual Environments if you want to learn
how to use Conan virtual environments.

Created files

• activate_build.{sh|bat}

• deactivate_build.{sh|bat}

Usage

Linux/OSX:

$ source activate_build.sh

Windows:

$ activate_build.bat

Variables declared

ENVIRONMENT VAR DESCRIPTION
LIBS Library names to link
LDFLAGS Link flags, (-L, -m64, -m32)
CFLAGS Options for the C compiler (-g, -s, -m64, -m32, -fPIC)
CXXFLAGS Options for the C++ compiler (-g, -s, -stdlib, -m64, -m32, -fPIC)
CPPFLAGS Preprocessor definitions (-D, -I)
LIB Library paths separated with “;” (Visual Studio)
CL “/I” flags with include directories (Visual Studio)

In the case of using this generator to compile with Visual Studio, it also sets the environment variables needed via
tools.vcvars() to build your project. Some of these variables are:

VSINSTALLDIR=C:/Program Files (x86)/Microsoft Visual Studio/2017/Community/
WINDIR=C:/WINDOWS
WindowsLibPath=C:/Program Files (x86)/Windows Kits/10/UnionMetadata/10.0.16299.0;
WindowsSdkBinPath=C:/Program Files (x86)/Windows Kits/10/bin/
WindowsSdkDir=C:/Program Files (x86)/Windows Kits/10/
WindowsSDKLibVersion=10.0.16299.0/
WindowsSdkVerBinPath=C:/Program Files (x86)/Windows Kits/10/bin/10.0.16299.0/

14.4. Generators 309

conan Documentation, Release 1.5.2

14.4.18 virtualrunenv

This is the reference page for virtualrunenv generator. Go to Mastering/Virtual Environments if you want to learn
how to use conan virtual environments.

Created files

• activate_run.{sh|bat}

• deactivate_run.{sh|bat}

Usage

Linux/OSX:

> source activate_run.sh

Windows:

> activate_run.bat

Variables declared

ENVIRONMENT VAR DESCRIPTION
PATH With every bin folder of your requirements.
LD_LIBRARY_PATH lib folders of your requirements.
DYLD_LIBRARY_PATH lib folders of your requirements.

14.4.19 youcompleteme

Go to Integrations/YouCompleteMe to see the details of the YouCompleteMe generator.

14.4.20 txt

This is the reference page for txt generator. Go to Integrations/Custom integrations / Use the text generator to know
how to use it.

File format

The generated conanbuildinfo.txt file is a generic config file with [sections] and values.

310 Chapter 14. Reference

conan Documentation, Release 1.5.2

Package declared vars

For each requirement conanbuildinfo.txt file declares the following sections. XXX is the name of the require in
lowercase. e.k “zlib” for zlib/1.2.8@lasote/stable requirement:

SECTION DESCRIPTION
[include_dirs_XXX] List with the include paths of the requirement
[libdirs_XXX] List with library paths of the requirement
[bindirs_XXX] List with binary directories of the requirement
[resdirs_XXX] List with the resource directories of the requirement
[builddirs_XXX] List with the build directories of the requirement
[libs_XXX] List with library names of the requirement
[defines_XXX] List with the defines of the requirement
[cflags_XXX] List with C compilation flags
[sharedlinkflags_XXX] List with shared libraries link flags
[exelinkflags_XXX] List with executable link flags
[cppflags_XXX] List with C++ compilation flags
[rootpath_XXX] Root path of the package

Global declared vars

Conan also declares some global variables with the aggregated values of all our requirements. The values are ordered
in the right order according to the dependency tree.

SECTION DESCRIPTION
[include_dirs] List with the aggregated include paths of the requirements
[libdirs] List with aggregated library paths of the requirements
[bindirs] List with aggregated binary directories of the requirements
[resdirs] List with the aggregated resource directories of the requirements
[builddirs] List with the aggregated build directories of the requirements
[libs] List with aggregated library names of the requirements
[defines] List with the aggregated defines of the requirements
[cflags] List with aggregated C compilation flags
[sharedlinkflags] List with aggregated shared libraries link flags
[exelinkflags] List with aggregated executable link flags
[cppflags] List with aggregated C++ compilation flags

14.4.21 json

A file named conanbuildinfo.json will be generated. It will contain the information about every dependency:

{
"deps_env_info": {
"MY_ENV_VAR": "foo"

},
"deps_user_info": {
"Hello": {
"my_var": "my_value"

}
},

(continues on next page)

14.4. Generators 311

conan Documentation, Release 1.5.2

(continued from previous page)

"dependencies":
[
{
"name": "fmt",
"version": "4.1.0",
"include_paths": [

"/path/to/.conan/data/fmt/4.1.0/<user>/<channel>/package/<id>/include"
],
"lib_paths": [

"/path/to/.conan/data/fmt/4.1.0/<user>/<channel>/package/<id>/lib"
],
"libs": [

"fmt"
],
"...": "...",

},
{
"name": "Poco",
"version": "1.7.8p3",
"...": "..."

}
],

}

The generated conanbuildinfo.json file is a json file with the following keys:

dependencies

The dependencies is a list, with each item belonging to one dependency, and each one with the following keys: - name
- version - description - rootpath - sysroot - include_paths, lib_paths, bin_paths, build_paths, res_paths - libs - defines,
cflags, cppflags, sharedlinkflags, exelinkflags

Plese note it is an ordered list, not a map, and dependency order is relevant. Upstream dependencies, i.e. the ones that
do not depend on other packages, will be first, and their direct dependencies after them, and so on.

deps_env_info

The environment variables defined by upstream dependencies

deps_user_info

The user variables defined by upstream dependencies

312 Chapter 14. Reference

conan Documentation, Release 1.5.2

14.5 Profiles

Profiles allows users to set a complete configuration set for settings, options, environment variables, and build
requirements in a file. They have this structure:

[settings]
setting=value

[options]
MyLib:shared=True

[env]
env_var=value

[build_requires]
Tool1/0.1@user/channel
Tool2/0.1@user/channel, Tool3/0.1@user/channel
*: Tool4/0.1@user/channel

Profile files can be used with -pr/--profile option in conan install and conan create commands.

$ conan create . demo/testing -pr=myprofile

Profiles can be located in different folders. For example, the default <userhome>/.conan/profiles, and be referenced
by absolute or relative path:

$ conan install . --profile /abs/path/to/profile # abs path
$ conan install . --profile ./relpath/to/profile # resolved to current dir
$ conan install . --profile profile # resolved to user/.conan/profiles/profile

Listing existing profiles in the profiles folder can be done like this:

$ conan profile list
default
myprofile1
myprofile2
...

You can also show profile’s content:

$ conan profile show myprofile1
Configuration for profile myprofile1:

[settings]
os=Windows
arch=x86_64
compiler=Visual Studio
compiler.version=15
build_type=Release
[options]
[build_requires]
[env]

Use $PROFILE_DIR in your profile and it will be replaced with the absolute path to the profile file. It is useful to declare
relative folders:

14.5. Profiles 313

conan Documentation, Release 1.5.2

[env]
PYTHONPATH=$PROFILE_DIR/my_python_tools

14.5.1 Package settings and env vars

Profiles also support package settings and package environment variables definition, so you can override some
settings or environment variables for some specific package:

Listing 5: .conan/profiles/zlib_with_clang

[settings]
zlib:compiler=clang
zlib:compiler.version=3.5
zlib:compiler.libcxx=libstdc++11
compiler=gcc
compiler.version=4.9
compiler.libcxx=libstdc++11

[env]
zlib:CC=/usr/bin/clang
zlib:CXX=/usr/bin/clang++

Your build tool will locate clang compiler only for the zlib package and gcc (default one) for the rest of your dependency
tree.

Note: If you want to override existing system environment variables, you should use the key=value syntax. If you
need to pre-pend to the system environment variables you should use the syntax key=[value] or key=[value1,
value2, ...]. A typical example is the PATH environment variable, when you want to add paths to the existing
system PATH, not override it, you would use:

[env]
PATH=[/some/path/to/my/tool]

14.5.2 Profile includes

You can include other profiles using the include() statement. The path can be relative to the current profile, absolute,
or a profile name from the default profile location in the local cache.

The include() statement has to be at the top of the profile file:

Listing 6: gcc_49

[settings]
compiler=gcc
compiler.version=4.9
compiler.libcxx=libstdc++11

314 Chapter 14. Reference

conan Documentation, Release 1.5.2

Listing 7: myprofile

include(gcc_49)

[settings]
zlib:compiler=clang
zlib:compiler.version=3.5
zlib:compiler.libcxx=libstdc++11

[env]
zlib:CC=/usr/bin/clang
zlib:CXX=/usr/bin/clang++

14.5.3 Variable declaration

In a profile you can declare variables that will be replaced automatically by Conan before the profile is applied. The
variables have to be declared at the top of the file, after the include() statements.

Listing 8: myprofile

include(gcc_49)
CLANG=/usr/bin/clang

[settings]
zlib:compiler=clang
zlib:compiler.version=3.5
zlib:compiler.libcxx=libstdc++11

[env]
zlib:CC=$CLANG/clang
zlib:CXX=$CLANG/clang++

The variables will be inherited too, so you can declare variables in a profile and then include the profile in a different
one, all the variables will be available:

Listing 9: gcc_49

GCC_PATH=/my/custom/toolchain/path/

[settings]
compiler=gcc
compiler.version=4.9
compiler.libcxx=libstdc++11

Listing 10: myprofile

include(gcc_49)

[settings]
zlib:compiler=clang
zlib:compiler.version=3.5
zlib:compiler.libcxx=libstdc++11

(continues on next page)

14.5. Profiles 315

conan Documentation, Release 1.5.2

(continued from previous page)

[env]
zlib:CC=$GCC_PATH/gcc
zlib:CXX=$GCC_PATH/g++

14.5.4 Examples

If you are working with Linux and you usually work with gcc compiler, but you have installed clang compiler and want
to install some package for clang compiler, you could do:

• Create a .conan/profiles/clang file:

[settings]
compiler=clang
compiler.version=3.5
compiler.libcxx=libstdc++11

[env]
CC=/usr/bin/clang
CXX=/usr/bin/clang++

• Execute an install command passing the --profile or -pr parameter:

$ conan install . --profile clang

Without profiles you would have needed to set CC and CXX variables in the environment to point to your clang compiler
and use -s parameters to specify the settings:

$ export CC=/usr/bin/clang
$ export CXX=/usr/bin/clang++
$ conan install -s compiler=clang -s compiler.version=3.5 -s compiler.libcxx=libstdc++11

A profile can also be used in conan create and conan info:

$ conan create . demo/testing --profile clang

See also:

• Check the section Build requirements to read more about its usage in a profile.

• Check conan profile for full reference.

• Check profiles/default for full reference.

• Related section: Cross building.

316 Chapter 14. Reference

conan Documentation, Release 1.5.2

14.6 Build helpers

There are several helpers that can assist to automate the build() method for popular build systems

Contents:

14.6.1 CMake

The CMake class helps us to invoke cmake command with the generator, flags and definitions, reflecting the specified
Conan settings.

There are two ways to invoke your cmake tools:

• Using the helper attributes cmake.command_line and cmake.build_config:

from conans import ConanFile, CMake

class ExampleConan(ConanFile):
...

def build(self):
cmake = CMake(self)
self.run('cmake "%s" %s' % (self.source_folder, cmake.command_line))
self.run('cmake --build . %s' % cmake.build_config)
self.run('cmake --build . --target install')

• Using the helper methods:

from conans import ConanFile, CMake

class ExampleConan(ConanFile):
...

def build(self):
cmake = CMake(self)
same as cmake.configure(source_folder=self.source_folder, build_folder=self.

→˓build_folder)
cmake.configure()
cmake.build()
cmake.test() # Build the "RUN_TESTS" or "test" target
Build the "install" target, defining CMAKE_INSTALL_PREFIX to self.package_

→˓folder
cmake.install()

14.6. Build helpers 317

conan Documentation, Release 1.5.2

Constructor

class CMake(object):

def __init__(self, conanfile, generator=None, cmake_system_name=True,
parallel=True, build_type=None, toolset=None, make_program=None,
set_cmake_flags=False)

Parameters:

• conanfile (Required): Conanfile object. Usually self in a conanfile.py

• generator (Optional, Defaulted to None): Specify a custom generator instead of autodetect it. e.j: “MinGW
Makefiles”

• cmake_system_name (Optional, Defaulted to True): Specify a custom value for CMAKE_SYSTEM_NAME
instead of autodetect it.

• parallel (Optional, Defaulted to True): If True, will append the -jN attribute for parallel building being
N the cpu_count().

• build_type (Optional, Defaulted to None): Force the build type to be declared in CMAKE_BUILD_TYPE. If
you set this parameter the build type not will be taken from the settings.

• toolset (Optional, Defaulted to None): Specify a toolset for Visual Studio.

• make_program (Optional, Defaulted to None): Indicate path to make.

• set_cmake_flags (Optional, Defaulted to None): Whether or not to set CMake flags like
CMAKE_CXX_FLAGS, CMAKE_C_FLAGS, etc.

Attributes

verbose

Defaulted to: False

Set it to True or False to automatically set the definition CMAKE_VERBOSE_MAKEFILE.

from conans import ConanFile, CMake

class ExampleConan(ConanFile):
...

def build(self):
cmake = CMake(self)
cmake.verbose = True
cmake.configure()
cmake.build()

318 Chapter 14. Reference

conan Documentation, Release 1.5.2

command_line (read only)

Generator, conan definitions and flags that reflects the specified Conan settings.

-G "Unix Makefiles" -DCMAKE_BUILD_TYPE=Release ... -DCONAN_C_FLAGS=-m64 -Wno-dev

build_config (read only)

Value for --config option for Multi-configuration IDEs.

--config Release

definitions

The CMake helper will automatically append some definitions based on your settings:

Variable Description
CMAKE_BUILD_TYPE Debug or Release (from self.settings.build_type)
CMAKE_OSX_ARCHITECTURES “i386” if architecture is x86 in an OSX system
BUILD_SHARED_LIBS Only If your conanfile has a “shared” option
CONAN_COMPILER Conan internal variable to check compiler
CMAKE_SYSTEM_NAME If detected cross building it’s set to self.settings.os
CMAKE_SYSTEM_VERSION If detected cross building it’s set to the self.settings.os_version
CMAKE_ANDROID_ARCH_ABI If detected cross building to Android
CONAN_LIBCXX from self.settings.compiler.libcxx
CONAN_CMAKE_SYSTEM_PROCESSORDefinition only set if same environment variable is declared by user
CONAN_CMAKE_FIND_ROOT_PATH Definition only set if same environment variable is declared by user
CONAN_CMAKE_FIND_ROOT_PATH_MODE_PROGRAMDefinition only set if same environment variable is declared by user
CONAN_CMAKE_FIND_ROOT_PATH_MODE_LIBRARYDefinition only set if same environment variable is declared by user
CONAN_CMAKE_FIND_ROOT_PATH_MODE_INCLUDEDefinition only set if same environment variable is declared by user
CONAN_CMAKE_POSITION_INDEPENDENT_CODEWhen fPIC option is present and True or when fPIC is present and False

but and option shared is present and True
CONAN_SHARED_LINKER_FLAGS -m32 and -m64 based on your architecture
CONAN_C_FLAGS -m32 and -m64 based on your architecture and /MP for MSVS
CONAN_C_FLAGS -m32 and -m64 based on your architecture and /MP for MSVS
CONAN_LINK_RUNTIME Runtime from self.settings.compiler.runtime for MSVS
CONAN_CMAKE_CXX_STANDARD From setting cppstd
CONAN_CMAKE_CXX_EXTENSIONSFrom setting cppstd, when GNU extensions are enabled
CONAN_STD_CXX_FLAG From setting cppstd. Flag for compiler directly (for CMake < 3.1)
CMAKE_EXPORT_NO_PACKAGE_REGISTRYBy default, disable the package registry

But you can change the automatic definitions after the CMake() object creation using the definitions property:

from conans import ConanFile, CMake

class ExampleConan(ConanFile):
...

def build(self):
(continues on next page)

14.6. Build helpers 319

conan Documentation, Release 1.5.2

(continued from previous page)

cmake = CMake(self)
cmake.definitions["CMAKE_SYSTEM_NAME"] = "Generic"
cmake.configure()
cmake.build()
cmake.install() # Build --target=install

Methods

configure()

def configure(self, args=None, defs=None, source_folder=None, build_folder=None,
cache_build_folder=None, pkg_config_paths=None)

Configures CMake project with the given parameters.

Parameters:

• args (Optional, Defaulted to None): A list of additional arguments to be passed to the cmake com-
mand. Each argument will be escaped according to the current shell. No extra arguments will be added if
args=None

• definitions (Optional, Defaulted to None): A dict that will be converted to a list of CMake command line
variable definitions of the form -DKEY=VALUE. Each value will be escaped according to the current shell
and can be either str, bool or of numeric type

• source_folder: CMake’s source directory where CMakeLists.txt is located. The default value is the
self.source_folder. Relative paths are allowed and will be relative to self.source_folder.

• build_folder: CMake’s output directory. The default value is the self.build_folder if None is speci-
fied. The CMake object will store build_folder internally for subsequent calls to build().

• cache_build_folder (Optional, Defaulted to None): Use the given subfolder as build folder when build-
ing the package in the local cache. This argument doesn’t have effect when the package is being built
in user folder with conan build but overrides build_folder when working in the local cache. See
self.in_local_cache.

• pkg_config_paths (Optional, Defaulted to None): Specify folders (in a list) of relative paths to the install
folder or absolute ones where to find *.pc files (by using the env var PKG_CONFIG_PATH). If None is
specified but the conanfile is using the pkg_config generator, the self.install_folder will be added
to the PKG_CONFIG_PATH in order to locate the pc files of the requirements of the conanfile.

build()

def build(self, args=None, build_dir=None, target=None)

Builds CMake project with the given parameters.

Parameters:

• args (Optional, Defaulted to None): A list of additional arguments to be passed to the cmake com-
mand. Each argument will be escaped according to the current shell. No extra arguments will be added if
args=None

• build_dir (Optional, Defaulted to None): CMake’s output directory. If None is specified the build_dir
from configure() will be used.

320 Chapter 14. Reference

conan Documentation, Release 1.5.2

• target (Optional, Defaulted to None): Specifies the target to execute. The default all target will be built if
None is specified. "install" can be used to relocate files to aid packaging.

test()

def test(args=None, build_dir=None, target=None)

Build CMake test target (could be RUN_TESTS in multi-config projects or test in single-config projects), which
usually means building and running unit tests

Parameters:

• args (Optional, Defaulted to None): A list of additional arguments to be passed to the cmake com-
mand. Each argument will be escaped according to the current shell. No extra arguments will be added if
args=None.

• build_dir (Optional, Defaulted to None): CMake’s output directory. If None is specified the
build_folder from configure() will be used.

• target (Optional, default to None). Alternative target name for running the tests. If not defined
RUN_TESTS or test will be used

install()

def install(args=None, build_dir=None)

Installs CMake project with the given parameters.

Parameters:

• args (Optional, Defaulted to None): A list of additional arguments to be passed to the cmake com-
mand. Each argument will be escaped according to the current shell. No extra arguments will be added if
args=None.

• build_dir (Optional, Defaulted to None): CMake’s output directory. If None is specified the
build_folder from configure() will be used.

patch_config_paths() [EXPERIMENTAL]

def patch_config_paths()

This method changes references to the absolute path of the installed package in exported CMake config files to the
appropriate Conan variable. This makes most CMake config files portable.

For example, if a package foo installs a file called fooConfig.cmake to be used by cmake’s find_package() method,
normally this file will contain absolute paths to the installed package folder, for example it will contain a line such as:

SET(Foo_INSTALL_DIR /home/developer/.conan/data/Foo/1.0.0/...)

This will cause cmake’s find_package() method to fail when someone else installs the package via Conan. This
function will replace such paths to:

SET(Foo_INSTALL_DIR ${CONAN_FOO_ROOT})

14.6. Build helpers 321

conan Documentation, Release 1.5.2

Which is a variable that is set by conanbuildinfo.cmake, so that find_package() now correctly works on this Conan
package.

If the install() method of the CMake object in the conanfile is used, this function should be called after that
invocation. For example:

def build(self):
cmake = CMake(self)
cmake.configure()
cmake.build()
cmake.install()
cmake.patch_config_paths()

Environment variables

There are some environment variables that will also affect the CMake() helper class. Check them in the CMAKE
RELATED VARIABLES section.

14.6.2 AutoToolsBuildEnvironment (configure/make)

If you are using configure/make you can use AutoToolsBuildEnvironment helper. This helper sets LIBS, LDFLAGS,
CFLAGS, CXXFLAGS and CPPFLAGS environment variables based on your requirements.

from conans import ConanFile, AutoToolsBuildEnvironment

class ExampleConan(ConanFile):
settings = "os", "compiler", "build_type", "arch"
requires = "Poco/1.9.0@pocoproject/stable"
default_options = "Poco:shared=True", "OpenSSL:shared=True"

def imports(self):
self.copy("*.dll", dst="bin", src="bin")
self.copy("*.dylib*", dst="bin", src="lib")

def build(self):
autotools = AutoToolsBuildEnvironment(self)
autotools.configure()
autotools.make()

It also works using the environment_append context manager applied to your configure and make commands, calling
configure and make manually:

from conans import ConanFile, AutoToolsBuildEnvironment

class ExampleConan(ConanFile):
...

def build(self):
env_build = AutoToolsBuildEnvironment(self)
with tools.environment_append(env_build.vars):

self.run("./configure")
self.run("make")

322 Chapter 14. Reference

conan Documentation, Release 1.5.2

You can change some variables like fpic, libs, include_paths and defines before accessing the vars to override
an automatic value or add new values:

from conans import ConanFile, AutoToolsBuildEnvironment

class ExampleConan(ConanFile):
...

def build(self):
env_build = AutoToolsBuildEnvironment(self)
env_build.fpic = True
env_build.libs.append("pthread")
env_build.defines.append("NEW_DEFINE=23")
env_build.configure()
env_build.make()

You can use it also with MSYS2/MinGW subsystems installed by setting the win_bash parameter in the constructor. It will
run the the configure and make commands inside a bash that has to be in the path or declared in CONAN_BASH_PATH:

from conans import ConanFile, AutoToolsBuildEnvironment
import platform

class ExampleConan(ConanFile):
settings = "os", "compiler", "build_type", "arch"

def imports(self):
self.copy("*.dll", dst="bin", src="bin")
self.copy("*.dylib*", dst="bin", src="lib")

def build(self):
in_win = platform.system() == "Windows"
env_build = AutoToolsBuildEnvironment(self, win_bash=in_win)
env_build.configure()
env_build.make()

Constructor

class AutoToolsBuildEnvironment(object):

def __init__(self, conanfile, win_bash=False)

Parameters:

• conanfile (Required): Conanfile object. Usually self in a conanfile.py

• win_bash: (Optional, Defaulted to False): When True, it will run the configure/make commands inside
a bash.

14.6. Build helpers 323

conan Documentation, Release 1.5.2

Attributes

You can adjust the automatically filled values modifying the attributes like this:

from conans import ConanFile, AutoToolsBuildEnvironment

class ExampleConan(ConanFile):
...

def build(self):
autotools = AutoToolsBuildEnvironment(self)
autotools.fpic = True
autotools.libs.append("pthread")
autotools.defines.append("NEW_DEFINE=23")
autotools.configure()
autotools.make()

fpic

Defaulted to: True if fPIC option exists and True or when fPIC exists and
False but option shared exists and True. Otherwise None.

Set it to True if you want to append the -fPIC flag.

libs

List with library names of the requirements (-l in LIBS).

include_paths

List with the include paths of the requires (-I in CPPFLAGS).

library_paths

List with library paths of the requirements (-L in LDFLAGS).

defines

List with variables that will be defined with -D in CPPFLAGS.

324 Chapter 14. Reference

conan Documentation, Release 1.5.2

flags

List with compilation flags (CFLAGS and CXXFLAGS).

cxx_flags

List with only C++ compilation flags (CXXFLAGS).

link_flags

List with linker flags

Properties

vars

Environment variables CPPFLAGS, CXXFLAGS, CFLAGS, LDFLAGS, LIBS generated by the build helper to use them in
the configure, make and install steps. This variables are generated dynamically with the values of the attributes and
can also be modified to be used in the following configure, make or install steps:

def build():
auotools = AutoToolsBuildEnvironment()
autotools.fpic = True
env_build_vars = autotools.vars
env_build_vars['RCFLAGS'] = '-O COFF'
autotools.configure(vars=env_build_vars)
autotools.make(vars=env_build_vars)
autotools.install(vars=env_build_vars)

vars_dict

Same behavior as vars but this property returns each variable CPPFLAGS, CXXFLAGS, CFLAGS, LDFLAGS, LIBS as
dictionaries.

Methods

configure()

def configure(self, configure_dir=None, args=None, build=None, host=None, target=None,
pkg_config_paths=None, vars=None)

Configures Autotools project with the given parameters.

Important: This method sets by default the --prefix argument to self.package_folder whenever --prefix is
not provided in the args parameter during the configure step.

Parameters:

14.6. Build helpers 325

conan Documentation, Release 1.5.2

• configure_dir (Optional, Defaulted to None): Directory where the configure script is. If None, it will
use the current directory.

• args (Optional, Defaulted to None): A list of additional arguments to be passed to the configure script.
Each argument will be escaped according to the current shell. No extra arguments will be added if
args=None.

• build (Optional, Defaulted to None): To specify a value for the parameter --build. If None it will try
to detect the value if cross-building is detected according to the settings. If False, it will not use this
argument at all.

• host (Optional, Defaulted to None): To specify a value for the parameter --host. If None it will try to
detect the value if cross-building is detected according to the settings. If False, it will not use this argument
at all.

• target (Optional, Defaulted to None): To specify a value for the parameter --target. If None it will try
to detect the value if cross-building is detected according to the settings. If False, it will not use this
argument at all.

• pkg_config_paths (Optional, Defaulted to None): Specify folders (in a list) of relative paths to the install
folder or absolute ones where to find *.pc files (by using the env var PKG_CONFIG_PATH). If None is
specified but the conanfile is using the pkg_config generator, the self.install_folder will be added
to the PKG_CONFIG_PATH in order to locate the pc files of the requirements of the conanfile.

• vars (Optional, Defaulted to None): Overrides custom environment variables in the configure step.

make()

def make(self, args="", make_program=None, target=None, vars=None)

Builds Autotools project with the given parameters.

Parameters:

• args (Optional, Defaulted to ""): A list of additional arguments to be passed to the make command. Each
argument will be escaped accordingly to the current shell. No extra arguments will be added if args="".

• make_program (Optional, Defaulted to None): Allows to specify a different make executable, e.j:
mingw32-make. The environment variable CONAN_MAKE_PROGRAM can be used too.

• target (Optional, Defaulted to None): Choose which target to build. This allows building of e.g. docs,
shared libraries or install for some AutoTools projects.

• vars (Optional, Defaulted to None): Overrides custom environment variables in the make step.

install()

def install(self, args="", make_program=None, vars=None)

Performs the install step of autotools calling make(target="install").

Paramenters:

• args (Optional, Defaulted to ""): A list of additional arguments to be passed to the make command. Each
argument will be escaped accordingly to the current shell. No extra arguments will be added if args="".

• make_program (Optional, Defaulted to None): Allows to specify a different make executable, e.j:
mingw32-make. The environment variable CONAN_MAKE_PROGRAM can be used too.

326 Chapter 14. Reference

conan Documentation, Release 1.5.2

• vars (Optional, Defaulted to None): Overrides custom environment variables in the install step.

Environment variables

The following environment variables will also affect the AutoToolsBuildEnvironment helper class.

NAME DESCRIPTION
LIBS Library names to link
LDFLAGS Link flags, (-L, -m64, -m32)
CFLAGS Options for the C compiler (-g, -s, -m64, -m32, -fPIC)
CXXFLAGS Options for the C++ compiler (-g, -s, -stdlib, -m64, -m32, -fPIC, -std)
CPPFLAGS Preprocessor definitions (-D, -I)

See also:

• Reference/Tools/environment_append

14.6.3 MSBuild

Calls Visual Studio msbuild command to build a sln project:

from conans import ConanFile, MSBuild

class ExampleConan(ConanFile):
...

def build(self):
msbuild = MSBuild(self)
msbuild.build("MyProject.sln")

Internally the MSBuild build helper uses:

• VisualStudioBuildEnvironment to adjust the LIB and CL environment variables with all the information from the
requirements: include directories, library names, flags etc.

• tools.msvc_build_command to call msbuild.

You can adjust all the information from the requirements accessing to the build_env that it is a VisualStudioBuildEn-
vironment object:

from conans import ConanFile, MSBuild

class ExampleConan(ConanFile):
...

def build(self):
msbuild = MSBuild(self)
msbuild.build_env.include_paths.append("mycustom/directory/to/headers")
msbuild.build_env.lib_paths.append("mycustom/directory/to/libs")
msbuild.build_env.link_flags = []

msbuild.build("MyProject.sln")

14.6. Build helpers 327

conan Documentation, Release 1.5.2

Constructor

class MSBuild(object):

def __init__(self, conanfile)

Parameters:

• conanfile (Required): ConanFile object. Usually self in a conanfile.py.

Methods

build()

def build(self, project_file, targets=None, upgrade_project=True, build_type=None,␣
→˓arch=None,

parallel=True, force_vcvars=False, toolset=None, platforms=None, use_env=True)

Builds Visual Studio project with the given parameters. It will call tools.msvc_build_command().

Parameters:

• project_file (Required): Path to the sln file.

• targets (Optional, Defaulted to None): List of targets to build.

• upgrade_project (Optional, Defaulted to True): Will call devenv to upgrade the solution to your current
Visual Studio.

• build_type (Optional, Defaulted to None): Optional. Defaulted to None, will use the settings.
build_type

• arch (Optional, Defaulted to None): Optional. Defaulted to None, will use settings.arch

• force_vcvars (Optional, Defaulted to False): Will ignore if the environment is already set for a different
Visual Studio version.

• parallel (Optional, Defaulted to True): Will use the configured number of cores in the conan.conf file
(cpu_count).

• toolset (Optional, Defaulted to None): Specify a toolset. Will append a /p:PlatformToolset option.

• platforms (Optional, Defaulted to None): Dictionary with the mapping of archs/platforms from Conan
naming to another one. It is useful for Visual Studio solutions that have a different naming in architec-
tures. Example: platforms={"x86":"Win32"} (Visual solution uses “Win32” instead of “x86”). This
dictionary will update the default one:

msvc_arch = {'x86': 'x86',
'x86_64': 'x64',
'armv7': 'ARM',
'armv8': 'ARM64'}

• use_env (Optional, Defaulted to True: Applies the argument /p:UseEnv=true to the msbuild() call.

328 Chapter 14. Reference

conan Documentation, Release 1.5.2

get_command()

Returns a string command calling msbuild

def get_command(self, project_file, props_file_path=None, targets=None, upgrade_
→˓project=True, build_type=None,

arch=None, parallel=True, toolset=None, platforms=None, use_env=False):

Parameters:

• project_file (Optional, defaulted to None): Path to a properties file to include in the project.

• Same other parameters than build()

14.6.4 VisualStudioBuildEnvironment

Prepares the needed environment variables to invoke the Visual Studio compiler. Use it together with vcvars_command
tool

from conans import ConanFile, VisualStudioBuildEnvironment

class ExampleConan(ConanFile):

...

def build(self):
if self.settings.compiler == "Visual Studio":

env_build = VisualStudioBuildEnvironment(self)
with tools.environment_append(env_build.vars):

vcvars = tools.vcvars_command(self.settings)
self.run('%s && cl /c /EHsc hello.cpp' % vcvars)
self.run('%s && lib hello.obj -OUT:hello.lib' % vcvars

Set environment variables:

NAME DESCRIPTION
LIB Library paths separated with “;”
CL “/I” flags with include directories, Runtime (/MT, /MD. . .), Definitions (/DXXX), and any other C and

CXX flags.

Attributes

PROPERTY DESCRIPTION
.include_paths List with directories of include paths
.lib_paths List with directories of libraries
.defines List with definitions (from requirements cpp_info.defines)
.runtime List with directories (from settings.compiler.runtime)
.flags List with flag (from requirements cpp_info.cflags
.cxx_flags List with cxx flags (from requirements cpp_info.cppflags
.link_flags List with linker flags (from requirements cpp_info.sharedlinkflags and cpp_info.exelinkflags

You can adjust the automatically filled values modifying the attributes above:

14.6. Build helpers 329

conan Documentation, Release 1.5.2

def build(self):
if self.settings.compiler == "Visual Studio":

env_build = VisualStudioBuildEnvironment(self)
env_build.include_paths.append("mycustom/directory/to/headers")
env_build.lib_paths.append("mycustom/directory/to/libs")
env_build.link_flags = []
with tools.environment_append(env_build.vars):

vcvars = tools.vcvars_command(self.settings)
self.run('%s && cl /c /EHsc hello.cpp' % vcvars)
self.run('%s && lib hello.obj -OUT:hello.lib' % vcvars

See also:

• Reference/Tools/environment_append

14.6.5 Meson

If you are using Meson Build as your build system, you can use the Meson build helper. Specially useful with the
pkg_config generator that will generate the *.pc files of our requirements, then Meson() build helper will locate them
automatically.

from conans import ConanFile, tools, Meson
import os

class ConanFileToolsTest(ConanFile):
generators = "pkg_config"
requires = "LIB_A/0.1@conan/stable"
settings = "os", "compiler", "build_type"

def build(self):
meson = Meson(self)
meson.configure()
meson.build()

Constructor

class Meson(object):

def __init__(self, conanfile, backend=None, build_type=None)

Parameters:

• conanfile (Required): Use self inside a conanfile.py.

• backend (Optional, Defaulted to None): Specify a backend to be used, otherwise it will use "Ninja".

• build_type (Optional, Defaulted to None): Force to use a build type, ignoring the value from the settings.

330 Chapter 14. Reference

conan Documentation, Release 1.5.2

Methods

configure()

def configure(self, args=None, defs=None, source_folder=None, build_folder=None,
pkg_config_paths=None, cache_build_folder=None)

Configures Meson project with the given parameters.

Parameters:

• args (Optional, Defaulted to None): A list of additional arguments to be passed to the configure script.
Each argument will be escaped according to the current shell. No extra arguments will be added if
args=None.

• defs (Optional, Defaulted to None): A list of definitions.

• source_folder (Optional, Defaulted to None): Meson’s source directory where meson.build is located.
The default value is the self.source_folder. Relative paths are allowed and will be relative to self.
source_folder.

• build_folder (Optional, Defaulted to None): Meson’s output directory. The default value is the self.
build_folder if None is specified. The Meson object will store build_folder internally for subsequent
calls to build().

• pkg_config_paths (Optional, Defaulted to None): A list containing paths to locate the pkg-config files
(*.pc). If None, it will be set to conanfile.build_folder.

• cache_build_folder (Optional, Defaulted to None): Subfolder to be used as build folder when building the
package in the local cache. This argument doesn’t have effect when the package is being built in user folder
with conan build but overrides build_folder when working in the local cache. See self.in_local_cache.

build()

def build(self, args=None, build_dir=None, targets=None)

Builds Meson project with the given parameters.

Parameters:

• args (Optional, Defaulted to None): A list of additional arguments to be passed to the make command. Each
argument will be escaped according to the current shell. No extra arguments will be added if args=None.

• build_dir (Optional, Defaulted to None): Build folder. If None, it will be set to conanfile.
build_folder.

• targets (Optional, Defaulted to None): A list of targets to be built. No targets will be added if
targets=None.

14.6. Build helpers 331

conan Documentation, Release 1.5.2

Example

A typical usage of the Meson build helper, if you want to be able to both execute conan create and also build your
package for a library locally (in your user folder, not in the local cache), could be:

from conans import ConanFile, Meson

class HelloConan(ConanFile):
name = "Hello"
version = "0.1"
settings = "os", "compiler", "build_type", "arch"
generators = "pkg_config"
exports_sources = "src/*"

def build(self):
meson = Meson(self)
meson.configure(source_folder="%s/src" % self.source_folder,

build_folder="build")
meson.build()

def package(self):
self.copy("*.h", dst="include", src="src")
self.copy("*.lib", dst="lib", keep_path=False)
self.copy("*.dll", dst="bin", keep_path=False)
self.copy("*.dylib*", dst="lib", keep_path=False)
self.copy("*.so", dst="lib", keep_path=False)
self.copy("*.a", dst="lib", keep_path=False)

def package_info(self):
self.cpp_info.libs = ["hello"]

Note the pkg_config generator, which generates .pc files, which are understood by Meson to process dependencies
informations (no need for a “meson” generator).

The layout is:

<folder>
| - conanfile.py
| - src

| - meson.build
| - hello.cpp
| - hello.h

And the meson.build could be as simple as:

project('hello', 'cpp', version : '0.1.0',
default_options : ['cpp_std=c++11'])

library('hello', ['hello.cpp'])

This allows, to create the package with conan create as well as to build the package locally:

$ cd <folder>
$ conan create user/testing

(continues on next page)

332 Chapter 14. Reference

conan Documentation, Release 1.5.2

(continued from previous page)

Now local build
$ mkdir build && cd build
$ conan install ..
$ conan build ..

14.6.6 RunEnvironment

The RunEnvironment helper prepare PATH, LD_LIBRARY_PATH and DYLD_LIBRARY_PATH environment variables to
locate shared libraries and executables of your requirements at runtime.

This helper is specially useful:

• If you are requiring packages with shared libraries and you are running some executable that needs those libraries.

• If you have a requirement with some tool (executable) and you need it in the path.

from conans import ConanFile, RunEnvironment

class ExampleConan(ConanFile):
...

def build(self):
env_build = RunEnvironment(self)
with tools.environment_append(env_build.vars):

self.run("....")
All the requirements bin folder will be available at PATH
All the lib folders will be available in LD_LIBRARY_PATH and DYLD_LIBRARY_PATH

It sets the following environment variables:

NAME DESCRIPTION
PATH Containing all the requirements bin folders.
LD_LIBRARY_PATH Containing all the requirements lib folders. (Linux)
DYLD_LIBRARY_PATH Containing all the requirements lib folders. (OSX)

Important: Security restrictions might apply in OSX (read this thread), so the DYLD_LIBRARY_PATH environment
variable is not directly transferred to the child process. In that case, you have to use it explicitly in your conanfile.py:

def build(self):
env_build = RunEnvironment(self)
with tools.environment_append(env_build.vars):

self.run('./myexetool") # won't work, even if 'DYLD_LIBRARY_PATH' is in the env
self.run('DYLD_LIBRARY_PATH=%s ./myexetool" % os.environ['DYLD_LIBRARY_PATH'])

See also:

• Manage Shared Libraries with Environment Variables

• tools.environment_append()

14.6. Build helpers 333

https://stackoverflow.com/questions/35568122/why-isnt-dyld-library-path-being-propagated-here

conan Documentation, Release 1.5.2

14.7 Tools

Under the tools module there are several functions and utilities that can be used in conan package recipes:

from conans import ConanFile
from conans import tools

class ExampleConan(ConanFile):
...

14.7.1 tools.cpu_count()

def tools.cpu_count()

Returns the number of CPUs available, for parallel builds. If processor detection is not enabled, it will safely return 1.
Can be overwritten with the environment variable CONAN_CPU_COUNT and configured in the conan.conf file.

14.7.2 tools.vcvars_command()

def vcvars_command(settings, arch=None, compiler_version=None, force=False, vcvars_
→˓ver=None,

winsdk_version=None)

Returns, for given settings, the command that should be called to load the Visual Studio environment variables for a
certain Visual Studio version. It wraps thefunctionality of vcvarsall but does not execute the command, as that typically
have to be done in the same command as the compilation, so the variables are loaded for the same subprocess. It will
be typically used in the build() method, like this:

from conans import tools

def build(self):
if self.settings.build_os == "Windows":

vcvars = tools.vcvars_command(self.settings)
build_command = ...
self.run("%s && configure %s" % (vcvars, " ".join(args)))
self.run("%s && %s %s" % (vcvars, build_command, " ".join(build_args)))

The vcvars_command string will contain something like call "%vsXX0comntools%../../VC/vcvarsall.bat"
for the corresponding Visual Studio version for the current settings.

This is typically not needed if using CMake, as the cmake generator will handle the correct Visual Studio version.

If arch or compiler_version is specified, it will ignore the settings and return the command to set the Visual Studio
environment for these parameters.

Parameters:

• settings (Required): Conanfile settings. Use self.settings.

• arch (Optional, Defaulted to None): Will use settings.arch.

• compiler_version (Optional, Defaulted to None): Will use settings.compiler.version.

• force (Optional, Defaulted to False): Will ignore if the environment is already set for a different Visual
Studio version.

334 Chapter 14. Reference

https://docs.microsoft.com/en-us/cpp/build/building-on-the-command-line

conan Documentation, Release 1.5.2

• winsdk_version (Optional, Defaulted to None): Specifies the version of the Windows SDK to use.

• vcvars_ver (Optional, Defaulted to None): Specifies the Visual Studio compiler toolset to use.

14.7.3 tools.vcvars_dict()

vcvars_dict(settings, arch=None, compiler_version=None, force=False, filter_known_
→˓paths=False,

vcvars_ver=None, winsdk_version=None, only_diff=True)

Returns a dictionary with the variables set by the tools.vcvars_command.

from conans import tools

def build(self):
env_vars = tools.vcvars_dict(self.settings):
with tools.environment_append(env_vars):

Do something

Parameters:

• Same as vcvars_command.

• filter_known_paths (Optional, Defaulted to False): When True, the function will only keep the PATH
entries that follows some known patterns, filtering all the non-Visual Studio ones. When False, it will keep
the PATH will all the system entries.

• only_diff (Optional, Defaulted to True): Returns only the variables set by vcvarsall and not the whole
environment.

14.7.4 tools.vcvars()

vcvars(settings, arch=None, compiler_version=None, force=False, filter_known_paths=False)

Note: This context manager tool has no effect if used in a platform different from Windows.

This is a context manager that allows to append to the environment all the variables set by the tools.vcvars_dict(). You
can replace tools.vcvars_command() and use this context manager to get a cleaner way to activate the Visual Studio
environment:

from conans import tools

def build(self):
with tools.vcvars(self.settings):

do_something()

14.7. Tools 335

conan Documentation, Release 1.5.2

14.7.5 tools.build_sln_command() (DEPRECATED)

Warning: This tool is deprecated and will be removed in Conan 2.0. Use MSBuild() build helper instead.

def build_sln_command(settings, sln_path, targets=None, upgrade_project=True, build_
→˓type=None,

arch=None, parallel=True, toolset=None, platforms=None)

Returns the command to call devenv and msbuild to build a Visual Studio project. It’s recommended to use it along
with vcvars_command(), so that the Visual Studio tools will be in path.

from conans import tools

def build(self):
build_command = build_sln_command(self.settings, "myfile.sln", targets=["SDL2_image

→˓"])
command = "%s && %s" % (tools.vcvars_command(self.settings), build_command)
self.run(command)

Parameters:

• settings (Required): Conanfile settings. Use “self.settings”.

• sln_path (Required): Visual Studio project file path.

• targets (Optional, Defaulted to None): List of targets to build.

• upgrade_project (Optional, Defaulted to True): If True, the project file will be upgraded if the project’s
VS version is older than current. When CONAN_SKIP_VS_PROJECTS_UPGRADE environment variable
is set to True/1, this parameter will be ignored and the project won’t be upgraded.

• build_type (Optional, Defaulted to None): Override the build type defined in the settings (settings.
build_type).

• arch (Optional, Defaulted to None): Override the architecture defined in the settings (settings.arch).

• parallel (Optional, Defaulted to True): Enables VS parallel build with /m:X argument, where X is defined
by CONAN_CPU_COUNT environment variable or by the number of cores in the processor by default.

• toolset (Optional, Defaulted to None): Specify a toolset. Will append a /p:PlatformToolset option.

• platforms (Optional, Defaulted to None): Dictionary with the mapping of archs/platforms from Conan
naming to another one. It is useful for Visual Studio solutions that have a different naming in architec-
tures. Example: platforms={"x86":"Win32"} (Visual solution uses “Win32” instead of “x86”). This
dictionary will update the default one:

msvc_arch = {'x86': 'x86',
'x86_64': 'x64',
'armv7': 'ARM',
'armv8': 'ARM64'}

336 Chapter 14. Reference

conan Documentation, Release 1.5.2

14.7.6 tools.msvc_build_command() (DEPRECATED)

Warning: This tool is deprecated and will be removed in Conan 2.0. Use MSBuild().get_command() instead.

def msvc_build_command(settings, sln_path, targets=None, upgrade_project=True, build_
→˓type=None,

arch=None, parallel=True, force_vcvars=False, toolset=None,␣
→˓platforms=None)

Returns a string with a joint command consisting in setting the environment variables via vcvars.bat with the above
tools.vcvars_command() function, and building a Visual Studio project with the tools.build_sln_command()
function.

Parameters:

• Same parameters as the above tools.build_sln_command().

• force_vcvars: Optional. Defaulted to False. Will set vcvars_command(force=force_vcvars).

14.7.7 tools.unzip()

def unzip(filename, destination=".", keep_permissions=False, pattern=None)

Function mainly used in source(), but could be used in build() in special cases, as when retrieving pre-built binaries
from the Internet.

This function accepts .tar.gz, .tar, .tzb2, .tar.bz2, .tgz and .zip files, and decompress them into the given
destination folder (the current one by default).

from conans import tools

tools.unzip("myfile.zip")
or to extract in "myfolder" sub-folder
tools.unzip("myfile.zip", "myfolder")

You can keep the permissions of the files using the keep_permissions=True parameter.

from conans import tools

tools.unzip("myfile.zip", "myfolder", keep_permissions=True)

Use the pattern=None parameter if you want to filter specific files and paths to decompress from the archive.

from conans import tools

Extract only files inside relative folder "small"
tools.unzip("bigfile.zip", pattern="small/*")
Extract only txt files
tools.unzip("bigfile.zip", pattern="*.txt")

Parameters:

• filename (Required): File to be unzipped.

14.7. Tools 337

conan Documentation, Release 1.5.2

• destination (Optional, Defaulted to "."): Destination folder for unzipped files.

• keep_permissions (Optional, Defaulted to False): Keep permissions of files. WARNING: Can be dan-
gerous if the zip was not created in a NIX system, the bits could produce undefined permission schema.
Use only this option if you are sure that the zip was created correctly.

• pattern (Optional, Defaulted to None): Extract from the archive only paths matching the pattern. This
should be a Unix shell-style wildcard, see fnmatch documentation for more details.

14.7.8 tools.untargz()

def untargz(filename, destination=".", pattern=None)

Extract tar gz files (or in the family). This is the function called by the previous unzip() for the matching extensions,
so generally not needed to be called directly, call unzip() instead unless the file had a different extension.

from conans import tools

tools.untargz("myfile.tar.gz")
or to extract in "myfolder" sub-folder
tools.untargz("myfile.tar.gz", "myfolder")
or to extract only txt files
tools.untargz("myfile.tar.gz", pattern="*.txt")

Parameters:

• filename (Required): File to be unzipped.

• destination (Optional, Defaulted to "."): Destination folder for untargzed files.

• pattern (Optional, Defaulted to None): Extract from the archive only paths matching the pattern. This
should be a Unix shell-style wildcard, see fnmatch documentation for more details.

14.7.9 tools.get()

def get(url, md5="", sha1="", sha256="")

Just a high level wrapper for download, unzip, and remove the temporary zip file once unzipped. You can pass hash
checking parameters: md5, sha1, sha256. All the specified algorithms will be checked, if any of them doesn’t match,
it will raise a ConanException.

from conans import tools

tools.get("http://url/file", md5='d2da0cd0756cd9da6560b9a56016a0cb')
also, specify a destination folder
tools.get("http://url/file", destination="subfolder")

Parameters:

• url (Required): URL to download

• md5 (Optional, Defaulted to ""): MD5 hash code to check the downloaded file.

• sha1 (Optional, Defaulted to ""): SHA1 hash code to check the downloaded file.

• sha256 (Optional, Defaulted to ""): SHA256 hash code to check the downloaded file.

338 Chapter 14. Reference

https://docs.python.org/3/library/fnmatch.html
https://docs.python.org/3/library/fnmatch.html

conan Documentation, Release 1.5.2

14.7.10 tools.get_env()

def get_env(env_key, default=None, environment=None)

Parses an environment and cast its value against the default type passed as an argument.

Following python conventions, returns default if env_key is not defined.

See an usage example with an environment variable defined while executing conan

$ TEST_ENV="1" conan <command> ...

from conans import tools

tools.get_env("TEST_ENV") # returns "1", returns current value
tools.get_env("TEST_ENV_NOT_DEFINED") # returns None, TEST_ENV_NOT_DEFINED not declared
tools.get_env("TEST_ENV_NOT_DEFINED", []) # returns [], TEST_ENV_NOT_DEFINED not declared
tools.get_env("TEST_ENV", "2") # returns "1"
tools.get_env("TEST_ENV", False) # returns True (default value is boolean)
tools.get_env("TEST_ENV", 2) # returns 1
tools.get_env("TEST_ENV", 2.0) # returns 1.0
tools.get_env("TEST_ENV", []) # returns ["1"]

Parameters:

• env_key (Required): environment variable name.

• default (Optional, Defaulted to None): default value to return if not defined or cast value against.

• environment (Optional, Defaulted to None): os.environ if None or environment dictionary to look for.

14.7.11 tools.download()

def download(url, filename, verify=True, out=None, retry=2, retry_wait=5,␣
→˓overwrite=False,

auth=None, headers=None)

Retrieves a file from a given URL into a file with a given filename. It uses certificates from a list of known verifiers for
https downloads, but this can be optionally disabled.

from conans import tools

tools.download("http://someurl/somefile.zip", "myfilename.zip")

to disable verification:
tools.download("http://someurl/somefile.zip", "myfilename.zip", verify=False)

to retry the download 2 times waiting 5 seconds between them
tools.download("http://someurl/somefile.zip", "myfilename.zip", retry=2, retry_wait=5)

Use https basic authentication
tools.download("http://someurl/somefile.zip", "myfilename.zip", auth=("user", "password
→˓"))

(continues on next page)

14.7. Tools 339

conan Documentation, Release 1.5.2

(continued from previous page)

Pass some header
tools.download("http://someurl/somefile.zip", "myfilename.zip", headers={"Myheader": "My␣
→˓value"})

Parameters:

• url (Required): URL to download

• filename (Required): Name of the file to be created in the local storage

• verify (Optional, Defaulted to True): When False, disables https certificate validation.

• out: (Optional, Defaulted to None): An object with a write() method can be passed to get the output, stdout
will use if not specified.

• retry (Optional, Defaulted to 2): Number of retries in case of failure.

• retry_wait (Optional, Defaulted to 5): Seconds to wait between download attempts.

• overwrite: (Optional, Defaulted to False): When True Conan will overwrite the destination file if exists,
if False it will raise.

• auth (Optional, Defaulted to None): A tuple of user, password can be passed to use HTTPBasic authenti-
cation. This is passed directly to the requests python library, check here other uses of the auth parameter:
http://docs.python-requests.org/en/master/user/authentication

• headers (Optional, Defaulted to None): A dict with additional headers.

14.7.12 tools.ftp_download()

def ftp_download(ip, filename, login="", password="")

Retrieves a file from an FTP server. Right now it doesn’t support SSL, but you might implement it yourself using the
standard python FTP library, and also if you need some special functionality.

from conans import tools

def source(self):
tools.ftp_download('ftp.debian.org', "debian/README")
self.output.info(load("README"))

Parameters:

• ip (Required): The IP or address of the ftp server.

• filename (Required): The filename, including the path/folder where it is located.

• login (Optional, Defaulted to ""): Login credentials for the ftp server.

• password (Optional, Defaulted to ""): Password credentials for the ftp server.

340 Chapter 14. Reference

http://docs.python-requests.org/en/master/user/authentication

conan Documentation, Release 1.5.2

14.7.13 tools.replace_in_file()

def replace_in_file(file_path, search, replace, strict=True)

This function is useful for a simple “patch” or modification of source files. A typical use would be to augment some li-
brary existing CMakeLists.txt in the source()method, so it uses conan dependencies without forking or modifying
the original project:

from conans import tools

def source(self):
get the sources from somewhere
tools.replace_in_file("hello/CMakeLists.txt", "PROJECT(MyHello)",

'''PROJECT(MyHello)
include(${CMAKE_BINARY_DIR}/conanbuildinfo.cmake)
conan_basic_setup()''')

Parameters:

• file_path (Required): File path of the file to perform the replace in.

• search (Required): String you want to be replaced.

• replace (Required): String to replace the searched string.

• strict (Optional, Defaulted to True): If True, it raises an error if the searched string is not found, so nothing
is actually replaced.

14.7.14 tools.check_with_algorithm_sum()

def check_with_algorithm_sum(algorithm_name, file_path, signature)

Useful to check that some downloaded file or resource has a predefined hash, so integrity and security are guaranteed.
Something that could be typically done in source() method after retrieving some file from the internet.

Parameters:

• algorithm_name (Required): Name of the algorithm to be checked.

• file_path (Required): File path of the file to be checked.

• signature (Required): Hash code that the file should have.

There are specific functions for common algorithms:

def check_sha1(file_path, signature)
def check_md5(file_path, signature)
def check_sha256(file_path, signature)

For example:

from conans import tools

tools.check_sha1("myfile.zip", "eb599ec83d383f0f25691c184f656d40384f9435")

Other algorithms are also possible, as long as are recognized by python hashlib implementation, via hashlib.
new(algorithm_name). The previous is equivalent to:

14.7. Tools 341

conan Documentation, Release 1.5.2

from conans import tools

tools.check_with_algorithm_sum("sha1", "myfile.zip",
"eb599ec83d383f0f25691c184f656d40384f9435")

14.7.15 tools.patch()

def patch(base_path=None, patch_file=None, patch_string=None, strip=0, output=None)

Applies a patch from a file or from a string into the given path. The patch should be in diff (unified diff) format. To be
used mainly in the source() method.

from conans import tools

tools.patch(patch_file="file.patch")
from a string:
patch_content = " real patch content ..."
tools.patch(patch_string=patch_content)
to apply in subfolder
tools.patch(base_path=mysubfolder, patch_string=patch_content)

If the patch to be applied uses alternate paths that have to be stripped, like:

--- old_path/text.txt\t2016-01-25 17:57:11.452848309 +0100
+++ new_path/text_new.txt\t2016-01-25 17:57:28.839869950 +0100
@@ -1 +1 @@
- old content
+ new content

Then it can be done specifying the number of folders to be stripped from the path:

from conans import tools

tools.patch(patch_file="file.patch", strip=1)

Parameters:

• base_path (Optional, Defaulted to None): Base path where the patch should be applied.

• patch_file (Optional, Defaulted to None): Patch file that should be applied.

• patch_string (Optional, Defaulted to None): Patch string that should be applied.

• strip (Optional, Defaulted to 0): Number of folders to be stripped from the path.

• output (Optional, Defaulted to None): Stream object.

342 Chapter 14. Reference

conan Documentation, Release 1.5.2

14.7.16 tools.environment_append()

def environment_append(env_vars)

This is a context manager that allows to temporary use environment variables for a specific piece of code in your
conanfile:

from conans import tools

def build(self):
with tools.environment_append({"MY_VAR": "3", "CXX": "/path/to/cxx"}):

do_something()

The environment variables will be overridden if the value is a string, while it will be prepended if the value is a list.
When the context manager block ends, the environment variables will be unset.

Parameters:

• env_vars (Required): Dictionary object with environment variable name and its value.

14.7.17 tools.chdir()

def chdir(newdir)

This is a context manager that allows to temporary change the current directory in your conanfile:

from conans import tools

def build(self):
with tools.chdir("./subdir"):

do_something()

Parameters:

• newdir (Required): Directory path name to change the current directory.

14.7.18 tools.pythonpath()

This tool is automatically applied in the conanfile methods unless apply_env is deactivated, so any PYTHONPATH
inherited from the requirements will be automatically available.

def pythonpath(conanfile)

This is a context manager that allows to load the PYTHONPATH for dependent packages, create packages with python
code, and reuse that code into your own recipes.

It is automatically applied

from conans import tools

def build(self):
with tools.pythonpath(self):

from module_name import whatever
whatever.do_something()

14.7. Tools 343

conan Documentation, Release 1.5.2

When the apply_env is activated (default) the above code could be simplified as:

from conans import tools

def build(self):
from module_name import whatever
whatever.do_something()

For that to work, one of the dependencies of the current recipe, must have a module_name file or folder with a whatever
file or object inside, and should have declared in its package_info():

from conans import tools

def package_info(self):
self.env_info.PYTHONPATH.append(self.package_folder)

Parameters:

• conanfile (Required): Current ConanFile object.

14.7.19 tools.no_op()

def no_op()

Context manager that performs nothing. Useful to condition any other context manager to get a cleaner code:

from conans import tools

def build(self):
with tools.chdir("some_dir") if self.options.myoption else tools.no_op():

if not self.options.myoption, we are not in the "some_dir"
pass

14.7.20 tools.human_size()

def human_size(size_bytes)

Will return a string from a given number of bytes, rounding it to the most appropriate unit: GB, MB, KB, etc. It is
mostly used by the conan downloads and unzip progress, but you can use it if you want too.

from conans import tools

tools.human_size(1024)
>> 1.0KB

Parameters:

• size_bytes (Required): Number of bytes.

344 Chapter 14. Reference

conan Documentation, Release 1.5.2

14.7.21 tools.OSInfo and tools.SystemPackageTool

These are helpers to install system packages. Check system_requirements().

14.7.22 tools.cross_building()

def cross_building(settings, self_os=None, self_arch=None)

Reading the settings and the current host machine it returns True if we are cross building a conan package:

from conans import tools

if tools.cross_building(self.settings):
Some special action

Parameters:

• settings (Required): Conanfile settings. Use self.settings.

• self_os (Optional, Defaulted to None): Current operating system where the build is being done.

• self_arch (Optional, Defaulted to None): Current architecture where the build is being done.

14.7.23 tools.get_gnu_triplet()

def get_gnu_triplet(os, arch, compiler=None)

Returns string with GNU like <machine>-<vendor>-<op_system> triplet.

Parameters:

• os (Required): Operating system to be used to create the triplet.

• arch (Required): Architecture to be used to create the triplet.

• compiler (Optional, Defaulted to None): Compiler used to create the triplet (only needed for Windows).

14.7.24 tools.run_in_windows_bash()

def run_in_windows_bash(conanfile, bashcmd, cwd=None, subsystem=None, msys_mingw=True,␣
→˓env=None)

Runs an unix command inside a bash shell. It requires to have “bash” in the path. Useful to build libraries using
configure and make in Windows. Check Windows subsytems section.

You can customize the path of the bash executable using the environment variable CONAN_BASH_PATH or the conan.conf
bash_path variable to change the default bash location.

from conans import tools

command = "pwd"
tools.run_in_windows_bash(self, command) # self is a conanfile instance

Parameters:

14.7. Tools 345

conan Documentation, Release 1.5.2

• conanfile (Required): Current ConanFile object.

• bashcmd (Required): String with the command to be run.

• cwd (Optional, Defaulted to None): Path to directory where to apply the command from.

• subsystem (Optional, Defaulted to None will autodetect the subsystem). Used to escape the command
according to the specified subsystem.

• msys_mingw (Optional, Defaulted to True) If the specified subsystem is MSYS2, will start it in MinGW
mode (native windows development).

• env (Optional, Defaulted to None) You can pass a dict with environment variable to be applied at first
place so they will have more priority than others.

14.7.25 tools.get_cased_path()

get_cased_path(abs_path)

For Windows, for any abs_path parameter containing a case-insensitive absolute path, returns it case-sensitive, that
is, with the real cased characters. Useful when using Windows subsystems where the file system is case-sensitive.

14.7.26 tools.remove_from_path()

remove_from_path(command)

This is a context manager that allows you to remove a tool from the PATH. Conan will locate the executable (using
tools.which()) and will remove from the PATH the directory entry that contains it. It’s not necessary to specify the
extension.

from conans import tools

with tools.remove_from_path("make"):
self.run("some command")

14.7.27 tools.unix_path()

def unix_path(path, path_flavor=None)

Used to translate Windows paths to MSYS/CYGWIN unix paths like c/users/path/to/file.

Parameters:

• path (Required): Path to be converted.

• path_flavor (Optional, Defaulted to None, will try to autodetect the subsystem): Type of unix path to be
returned. Options are MSYS, MSYS2, CYGWIN, WSL and SFU.

346 Chapter 14. Reference

conan Documentation, Release 1.5.2

14.7.28 tools.escape_windows_cmd()

def escape_windows_cmd(command)

Useful to escape commands to be executed in a windows bash (msys2, cygwin etc).

• Adds escapes so the argument can be unpacked by CommandLineToArgvW().

• Adds escapes for cmmd.exe so the argument survives cmmd.exe’s substitutions.

Parameters:

• command (Required): Command to execute.

14.7.29 tools.sha1sum(), sha256sum(), md5sum()

def def md5sum(file_path)
def sha1sum(file_path)
def sha256sum(file_path)

Return the respective hash or checksum for a file:

from conans import tools

md5 = tools.md5sum("myfilepath.txt")
sha1 = tools.sha1sum("myfilepath.txt")

Parameters:

• file_path (Required): Path to the file.

14.7.30 tools.md5()

def md5(content)

Returns the MD5 hash for a string or byte object:

from conans import tools

md5 = tools.md5("some string, not a file path")

Parameters:

• content (Required): String or bytes to calculate its md5.

14.7. Tools 347

conan Documentation, Release 1.5.2

14.7.31 tools.save()

def save(path, content, append=False)

Utility function to save files in one line. It will manage the open and close of the file and creating directories if necessary.

from conans import tools

tools.save("otherfile.txt", "contents of the file")

Parameters:

• path (Required): Path to the file.

• content (Required): Content that should be saved into the file.

• append (Optional, Defaulted to False): If True, it will append the content.

14.7.32 tools.load()

def load(path, binary=False)

Utility function to load files in one line. It will manage the open and close of the file, and load binary encodings.
Returns the content of the file.

from conans import tools

content = tools.load("myfile.txt")

Parameters:

• path (Required): Path to the file.

• binary (Optional, Defaulted to False): If True, it reads the the file as binary code.

14.7.33 tools.mkdir(), tools.rmdir()

def mkdir(path)
def rmdir(path)

Utility functions to create/delete a directory. The existance of the specified directory is checked, so mkdir() will do
nothing if the directory already exists and rmdir() will do nothing if the directory does not exists.

This makes it safe to use these functions in the package()method of a conanfile.pywhen no_copy_source=True.

from conans import tools

tools.mkdir("mydir") # Creates mydir if it does not already exist
tools.mkdir("mydir") # Does nothing

tools.rmdir("mydir") # Deletes mydir
tools.rmdir("mydir") # Does nothing

Parameters:

• path (Required): Path to the directory.

348 Chapter 14. Reference

conan Documentation, Release 1.5.2

14.7.34 tools.which()

def which(filename)

Returns the path to a specified executable searching in the PATH environment variable. If not found, it returns None.

This tool also looks for filenames with following extensions if no extension provided:

• .com, .exe, .bat .cmd for Windows.

• .sh if not Windows.

from conans import tools

abs_path_make = tools.which("make")

Parameters:

• filename (Required): Name of the executable file. It doesn’t require the extension of the executable.

14.7.35 tools.touch()

def touch(fname, times=None)

Updates the timestamp (last access and last modificatiion times) of a file. This is similar to Unix’ touch command,
except the command fails if the file does not exist.

Optionally, a tuple of two numbers can be specified, which denotes the new values for the ‘last access’ and ‘last modified’
times respectively.

from conans import tools
import time

tools.touch("myfile") # Sets atime and mtime to the current␣
→˓time
tools.touch("myfile", (time.time(), time.time()) # Similar to above
tools.touch("myfile", (time.time(), 1)) # Modified long, long ago

Parameters:

• fname (Required): File name of the file to be touched.

• times (Optional, Defaulted to None: Tuple with ‘last access’ and ‘last modified’ times.

14.7.36 tools.relative_dirs()

def relative_dirs(path)

Recursively walks a given directory (using os.walk()) and returns a list of all contained file paths relative to the given
directory.

from conans import tools

tools.relative_dirs("mydir")

14.7. Tools 349

conan Documentation, Release 1.5.2

Parameters:

• path (Required): Path of the directory.

14.7.37 tools.vswhere()

def vswhere(all_=False, prerelease=False, products=None, requires=None, version="",
latest=False, legacy=False, property_="", nologo=True)

Wrapper of vswhere tool to look for details of Visual Studio installations. Its output is always a list with a dictionary
for each installation found.

from conans import tools

vs_legacy_installations = tool.vswhere(legacy=True)

Parameters:

• all_ (Optional, Defaulted to False): Finds all instances even if they are incomplete and may not launch.

• prerelease (Optional, Defaulted to False): Also searches prereleases. By default, only releases are
searched.

• products (Optional, Defaulted to None): List of one or more product IDs to find. Defaults to Community,
Professional, and Enterprise. Specify ["*"] by itself to search all product instances installed.

• requires (Optional, Defaulted to None): List of one or more workload or component IDs required when
finding instances. See https://docs.microsoft.com/en-us/visualstudio/install/workload-and-component-ids
for a list of workload and component IDs.

• version (Optional, Defaulted to ""): A version range for instances to find. Example: "[15.0,16.0)" will
find versions 15.*.

• latest (Optional, Defaulted to False): Return only the newest version and last installed.

• legacy (Optional, Defaulted to False): Also searches Visual Studio 2015 and older products. Information
is limited. This option cannot be used with either products or requires parameters.

• property_ (Optional, Defaulted to ""): The name of a property to return. Use delimiters ., /, or _ to
separate object and property names. Example: "properties.nickname" will return the “nickname”
property under “properties”.

• nologo (Optional, Defaulted to True): Do not show logo information.

14.7.38 tools.vs_comntools()

def vs_comntools(compiler_version)

Returns the value of the environment variable VS<compiler_version>.0COMNTOOLS for the compiler version indi-
cated.

from conans import tools

vs_path = tools.vs_comntools("14")

Parameters:

• compiler_version (Required): String with the version number: "14", "12". . .

350 Chapter 14. Reference

https://docs.microsoft.com/en-us/visualstudio/install/workload-and-component-ids

conan Documentation, Release 1.5.2

14.7.39 tools.vs_installation_path()

def vs_installation_path(version, preference=None)

Returns the Visual Studio installation path for the given version. It uses tools.vswhere() and tool.
vs_comntools(). It will also look for the installation paths following CONAN_VS_INSTALLATION_PREFERENCE en-
vironment variable or the preference parameter itself. If the tool is not able to return the path it returns None.

from conans import tools

vs_path_2017 = tools.vs_installation_path("15", preference=["Community", "BuildTools",
→˓"Professional", "Enterprise"])

Parameters:

• version (Required): Visual Studio version to locate. Valid version numbers are strings: "10", "11", "12",
"13", "14", "15". . .

• preference (Optional, Defaulted to None): Set to value of CONAN_VS_INSTALLATION_PREFERENCE or
defaulted to ["Enterprise", "Professional", "Community", "BuildTools"]. If only set to one
type of preference, it will return the installation path only for that Visual type and version, otherwise None.

14.7.40 tools.replace_prefix_in_pc_file()

def replace_prefix_in_pc_file(pc_file, new_prefix)

Replaces the prefix variable in a package config file .pc with the specified value.

from conans import tools

lib_b_path = self.deps_cpp_info["libB"].rootpath
tools.replace_prefix_in_pc_file("libB.pc", lib_b_path)

Parameters:

• pc_file (Required): Path to the pc file

• new_prefix (Required): New prefix variable value (Usually a path pointing to a package).

See also:

Check section integrations/pkg-config and pc files to know more.

14.7.41 tools.collect_libs()

def collect_libs(conanfile, folder="lib")

Fetches a list of all libraries in the package folder. Useful to collect not inter-dependent libraries or with complex names
like libmylib-x86-debug-en.lib.

from conans import tools

def package_info(self):
self.cpp_info.libs = tools.collect_libs(self)

14.7. Tools 351

conan Documentation, Release 1.5.2

Parameters:

• conanfile (Required): A ConanFile object from which to get the package_folder.

• folder (Optional, Defaulted to "lib"): The subfolder where the library files are.

Warning: This tool collects the libraries searching directly inside the package folder and returns them in no
specific order. If libraries are inter-dependent, then package_info() method should order them to achieve correct
linking order.

14.7.42 tools.PkgConfig()

class PkgConfig(object):

def __init__(self, library, pkg_config_executable="pkg-config", static=False, msvc_
→˓syntax=False, variables=None)

Wrapper of the pkg-config tool.

from conans import tools

with environment_append({'PKG_CONFIG_PATH': tmp_dir}):
pkg_config = PkgConfig("libastral")
print(pkg_config.cflags)
print(pkg_config.cflags_only_I)
print(pkg_config.variables)

Parameters of the constructor:

• library (Required): Library (package) name, such as libastral.

• pkg_config_executable (Optional, Defaulted to "pkg-config"): Specify custom pkg-config executable
(e.g. for cross-compilation).

• static (Optional, Defaulted to False): Output libraries suitable for static linking (adds --static to
pkg-config command line).

• msvc_syntax (Optional, Defaulted to False): MSVC compatibility (adds --msvc-syntax to
pkg-config command line).

• variables (Optional, Defaulted to None): Dictionary of pkg-config variables (passed as
--define-variable=VARIABLENAME=VARIABLEVALUE).

Properties:

352 Chapter 14. Reference

conan Documentation, Release 1.5.2

PROPERTY DESCRIPTION
.cflags get all pre-processor and compiler flags
.cflags_only_I get -I flags
.cflags_only_other get cflags not covered by the cflags-only-I option
.libs get all linker flags
.libs_only_L get -L flags
.libs_only_l get -l flags
.libs_only_other get other libs (e.g. -pthread)
.provides get which packages the package provides
.requires get which packages the package requires
.requires_private get packages the package requires for static linking
.variables get list of variables defined by the module

14.7.43 tools.Git()

class Git(object):

def __init__(self, folder=None, verify_ssl=True, username=None, password=None, force_
→˓english=True, runner=None):

Wrapper of the git tool.

Parameters of the constructor:

• folder (Optional, Defaulted to None): Specify a subfolder where the code will be cloned. If not specified it will
clone in the current directory.

• verify_ssl (Optional, Defaulted to True): Verify SSL certificate of the specified url.

• username (Optional, Defauted to None): When present, it will be used as the login to authenticate with the
remote.

• password (Optional, Defauted to None): When present, it will be used as the password to authenticate with the
remote.

• force_english (Optional, Defaulted to True): The encoding of the tool will be forced to use en_US.UTF-8 to
ease the output parsing.

• runner (Optional, Defaulted to None): By default subprocess.check_output will be used to invoke the git
tool.

Methods:

• run(command):
Run any “git” command. e.j run("status")

• get_url_with_credentials(url):
Returns the passed url but containing the username and password in the URL to authenticate (only if
username and password is specified)

• clone(url, branch=None):
Clone a repository. Optionally you can specify a branch. Note: If you want to clone a repository and the
specified folder already exist you have to specify a branch.

• checkout(element):
Checkout a branch, commit or tag.

14.7. Tools 353

conan Documentation, Release 1.5.2

• get_remote_url(remote_name=None):
Returns the remote url of the specified remote. If not remote_name is specified origin will be used.

• get_revision():
Gets the current commit hash.

14.7.44 tools.is_apple_os()

def is_apple_os(os_)

Returns True if OS is an Apple one: Macos, iOS, watchOS or tvOS.

Parameters:

• os_ (Required): OS to perform the check. Usually this would be self.settings.os.

14.7.45 tools.to_apple_arch()

def to_apple_arch(arch)

Converts conan-style architecture into Apple-style architecture.

Parameters:

• arch (Required): arch to perform the conversion. Usually this would be self.settings.arch.

14.7.46 tools.apple_sdk_name()

def apple_sdk_name(settings)

Returns proper SDK name suitable for OS and architecture you are building for (considering simulators).

Parameters:

• settings (Required): Conanfile settings.

14.7.47 tools.apple_deployment_target_env()

def apple_deployment_target_env(os_, os_version)

Environment variable name which controls deployment target: MACOSX_DEPLOYMENT_TARGET,
IOS_DEPLOYMENT_TARGET, WATCHOS_DEPLOYMENT_TARGET or TVOS_DEPLOYMENT_TARGET.

Parameters:

• os_ (Required): OS of the settings. Usually self.settings.os.

• os_version (Required): OS version.

354 Chapter 14. Reference

conan Documentation, Release 1.5.2

14.7.48 tools.apple_deployment_target_flag()

def apple_deployment_target_flag(os_, os_version)

Compiler flag name which controls deployment target. For example: -mappletvos-version-min=9.0

Parameters:

• os_ (Required): OS of the settings. Usually self.settings.os.

• os_version (Required): OS version.

14.7.49 tools.XCRun()

class XCRun(object):

def __init__(self, settings, sdk=None):

XCRun wrapper used to get information for building.

Properties:

• sdk_path: Obtain SDK path (a.k.a. Apple sysroot or -isysroot).

• sdk_version: Obtain SDK version.

• sdk_platform_path: Obtain SDK platform path.

• sdk_platform_version: Obtain SDK platform version.

• cc: Path to C compiler (CC).

• cxx: Path to C++ compiler (CXX).

• ar: Path to archiver (AR).

• ranlib: Path to archive indexer (RANLIB).

• strip: Path to symbol removal utility (STRIP).

14.8 Configuration files

These are the most important configuration files, used to customize conan.

14.8.1 conan.conf

The typical location of the conan.conf file is the directory ~/.conan/:

[log]
run_to_output = True # environment CONAN_LOG_RUN_TO_OUTPUT
run_to_file = False # environment CONAN_LOG_RUN_TO_FILE
level = 50 # environment CONAN_LOGGING_LEVEL
trace_file = # environment CONAN_TRACE_FILE
print_run_commands = False # environment CONAN_PRINT_RUN_COMMANDS

[general]
(continues on next page)

14.8. Configuration files 355

conan Documentation, Release 1.5.2

(continued from previous page)

default_profile = default
compression_level = 9 # environment CONAN_COMPRESSION_LEVEL
sysrequires_sudo = True # environment CONAN_SYSREQUIRES_SUDO
request_timeout = 60 # environment CONAN_REQUEST_TIMEOUT (seconds)
sysrequires_mode = enabled # environment CONAN_SYSREQUIRES_MODE (allowed␣
→˓modes enabled/verify/disabled)
vs_installation_preference = Enterprise, Professional, Community, BuildTools #␣
→˓environment CONAN_VS_INSTALLATION_PREFERENCE
verbose_traceback = False # environment CONAN_VERBOSE_TRACEBACK
bash_path = "" # environment CONAN_BASH_PATH (only windows)
recipe_linter = False # environment CONAN_RECIPE_LINTER
read_only_cache = True # environment CONAN_READ_ONLY_CACHE
pylintrc = path/to/pylintrc_file # environment CONAN_PYLINTRC
cache_no_locks = True # Disable locking mechanism of local cache
user_home_short = your_path # environment CONAN_USER_HOME_SHORT
skip_vs_projects_upgrade = False # environment CONAN_SKIP_VS_PROJECTS_UPGRADE
non_interactive = False # environment CONAN_NON_INTERACTIVE

conan_make_program = make # environment CONAN_MAKE_PROGRAM (overrides the␣
→˓make program used in AutoToolsBuildEnvironment.make)

cmake_generator # environment CONAN_CMAKE_GENERATOR
http://www.vtk.org/Wiki/CMake_Cross_Compiling
cmake_toolchain_file # environment CONAN_CMAKE_TOOLCHAIN_FILE
cmake_system_name # environment CONAN_CMAKE_SYSTEM_NAME
cmake_system_version # environment CONAN_CMAKE_SYSTEM_VERSION
cmake_system_processor # environment CONAN_CMAKE_SYSTEM_PROCESSOR
cmake_find_root_path # environment CONAN_CMAKE_FIND_ROOT_PATH
cmake_find_root_path_mode_program # environment CONAN_CMAKE_FIND_ROOT_PATH_MODE_
→˓PROGRAM
cmake_find_root_path_mode_library # environment CONAN_CMAKE_FIND_ROOT_PATH_MODE_
→˓LIBRARY
cmake_find_root_path_mode_include # environment CONAN_CMAKE_FIND_ROOT_PATH_MODE_
→˓INCLUDE

cpu_count = 1 # environment CONAN_CPU_COUNT

Change the default location for building test packages to a temporary folder
which is deleted after the test.
temp_test_folder = True # environment CONAN_TEMP_TEST_FOLDER

[storage]
This is the default path, but you can write your own. It must be an absolute path or a
path beginning with "~" (if the environment var CONAN_USER_HOME is specified, this␣
→˓directory, even
with "~/", will be relative to the conan user home, not to the system user home)
path = ~/.conan/data

[proxies]
Empty section will try to use system proxies.
If don't want proxy at all, remove section [proxies]
As documented in http://docs.python-requests.org/en/latest/user/advanced/#proxies

(continues on next page)

356 Chapter 14. Reference

conan Documentation, Release 1.5.2

(continued from previous page)

http = http://user:pass@10.10.1.10:3128/
http = http://10.10.1.10:3128
https = http://10.10.1.10:1080
You can skip the proxy for the matching (fnmatch) urls (comma-separated)
no_proxy_match = *bintray.com*, https://myserver.*

Default settings now declared in the default profile

Log

The level variable, defaulted to 50 (critical events), declares the LOG level . If you want to show more detailed logging
information, set this variable to lower values, as 10 to show debug information. You can also adjust the environment
variable CONAN_LOGGING_LEVEL.

The print_run_commands, when is 1, Conan will print the executed commands in self.run to the output. You can
also adjust the environment variable CONAN_PRINT_RUN_COMMANDS

The run_to_file variable, defaulted to False, will print the output from the self.run executions to the path that the
variable specifies. You can also adjust the environment variable CONAN_LOG_RUN_TO_FILE.

The run_to_output variable, defaulted to 1, will print to the stdout the output from the self.run executions in the
conanfile. You can also adjust the environment variable CONAN_LOG_RUN_TO_OUTPUT.

The trace_file variable enable extra logging information about your conan command executions. Set it with an
absolute path to a file. You can also adjust the environment variable CONAN_TRACE_FILE.

General

The vs_installation_preference variable determines the preference of usage when searching a Visual in-
stallation. The order of preference by default is Enterprise, Professional, Community and BuildTools. It can
be fixed to just one type of installation like only BuildTools. You can also adjust the environment variable
CONAN_VS_INSTALLATION_PREFERENCE.

The verbose_traceback variable will print the complete traceback when an error occurs in a recipe or even in the
conan code base, allowing to debug the detected error.

The bash_path variable is used only in windows to help the tools.run_in_windows_bash() function to locate our
Cygwin/MSYS2 bash. Set it with the bash executable path if it’s not in the PATH or you want to use a different one.

The cmake_*** variables will declare the corresponding CMake variable when you use the cmake generator and the
CMake build tool.

The cpu_count variable set the number of cores that the tools.cpu_count() will return, by default the number of cores
available in your machine. Conan recipes can use the cpu_count() tool to build the library using more than one core.

The pylintrc variable points to a custom pylintrc file that allows configuring custom rules for the python linter
executed at export time. A use case could be to define some custom indents (though the standard pep8 4-spaces indent
is recommended, there are companies that define different styles). The pylintrc file has the form:

[FORMAT]
indent-string=' '

Running pylint --generate-rcfile will output a complete rcfile with commments explaining the fields.

14.8. Configuration files 357

conan Documentation, Release 1.5.2

The recipe_linter variable allows to disable the package recipe analysis (linting) executed at conan install.
Please note that this linting is very recommended, specially for sharing package recipes and collaborating with others.

The sysrequires_mode variable, defaulted to enabled (allowed modes enabled/verify/disabled) controls
whether system packages should be installed into the system via SystemPackageTool helper, typically used in sys-
tem_requirements(). You can also adjust the environment variable CONAN_SYSREQUIRES_MODE.

The sysrequires_sudo variable, defaulted to True, controls whether sudo is used for installing apt, yum, etc. system
packages via SystemPackageTool. You can also adjust the environment variable CONAN_SYSREQUIRES_SUDO.

The request_timeout variable, defaulted to 30 seconds, controls the time after Conan will stop waiting for a response.
Timeout is not a time limit on the entire response download; rather, an exception is raised if the server has not issued
a response for timeout seconds (more precisely, if no bytes have been received on the underlying socket for timeout
seconds). If no timeout is specified explicitly, it do not timeout.

The user_home_short specify the base folder to be used with the short paths feature. If not specified, the packages
marked as short_paths will be stored in the C:\.conan (or the current drive letter).

If the variable is set to “None” will disable the short_paths feature in Windows, for modern Windows that enable long
paths at the system level.

The verbose_traceback variable will print the complete traceback when an error occurs in a recipe or even in the
conan code base, allowing to debug the detected error.

Storage

The storage.path variable define the path where all the packages will be stored.

On Windows:

• It is recommended to assign it to some unit, e.g. map it to X: in order to avoid hitting the 260 chars path name
length limit).

• Also see the short_paths docs to know more about how to mitigate the limitation of 260 chars path name length
limit.

• It is recommended to disable the Windows indexer or exclude the storage path to avoid problems (busy resources).

Note: If you want to change the default “conan home” (directory where conan.conf file is) you can adjust the
environment variable CONAN_USER_HOME.

Proxies

If you are not using proxies at all, or you want to use the proxies specified by the operating system, just remove the
[proxies] section completely. You can run conan config rm proxies.

If you leave the [proxies] section blank, conan will copy the system configured proxies, but if you configured some
exclusion rule it won’t work:

[proxies]
Empty section will try to use system proxies.
If you don't want Conan to mess with proxies at all, remove section [proxies]

You can specify http and https proxies as follows. Use the no_proxy_match keyword to specify a list of URLs or patterns
that will skip the proxy:

358 Chapter 14. Reference

conan Documentation, Release 1.5.2

[proxies]
As documented in http://docs.python-requests.org/en/latest/user/advanced/#proxies
http: http://user:pass@10.10.1.10:3128/
http: http://10.10.1.10:3128
https: http://10.10.1.10:1080
no_proxy_match: http://url1, http://url2, https://url3*, https://*.custom_domain.*

Use http=None and/or https=None to disable the usage of a proxy.

If this fails, you might also try to set environment variables:

linux/osx
$ export HTTP_PROXY="http://10.10.1.10:3128"
$ export HTTPS_PROXY="http://10.10.1.10:1080"

with user/password
$ export HTTP_PROXY="http://user:pass@10.10.1.10:3128/"
$ export HTTPS_PROXY="http://user:pass@10.10.1.10:3128/"

windows (note, no quotes here)
$ set HTTP_PROXY=http://10.10.1.10:3128
$ set HTTPS_PROXY=http://10.10.1.10:1080

14.8.2 profiles/default

This is the typical ~/.conan/profiles/default file:

[build_requires]
[settings]

os=Macos
arch=x86_64
compiler=apple-clang
compiler.version=8.1
compiler.libcxx=libc++
build_type=Release

[options]
[env]

The settings defaults are the setting values used whenever you issue a conan install command over a conanfile
in one of your projects. The initial values for these default settings are auto-detected the first time you run a conan
command.

You can override the default settings using the -s parameter in conan install and conan info commands but when
you specify a profile, conan install --profile gcc48, the default profile won’t be applied, unless you specify it
with an include() statement:

Listing 11: my_clang_profile

include(default)

[settings]
compiler=clang
compiler.version=3.5

(continues on next page)

14.8. Configuration files 359

conan Documentation, Release 1.5.2

(continued from previous page)

compiler.libcxx=libstdc++11

[env]
CC=/usr/bin/clang
CXX=/usr/bin/clang++

See also:

Check the section Mastering conan/Profiles to read more about this feature.

14.8.3 settings.yml

The settings are predefined, so only a few, like “os” or “compiler”, are possible. They are defined in your ~/.
conan/settings.yml file. Also, the possible values they can take are restricted in the same file. This is done to
ensure matching naming and spelling between users, and settings that commonly make sense to most users. Anyway,
you can add/remove/modify those settings and their possible values in the settings.yml file, according to your needs,
just be sure to share changes with colleagues or consumers of your packages.

If you want to distribute a unified settings.yml file you can use the conan config install command.

Note: The settings.yml file is not perfect nor definitive, surely incomplete. Please send us any suggestion (or better
a PR) with settings and values that could make sense for other users.

14.8.4 registry.txt

This file is generally automatically managed, and it has also access via the conan remote command but just in case
you might need to change it. It contains information about the known remotes and from which remotes are each package
retrieved:

conan-center https://conan.bintray.com True
local http://localhost:9300 True

Hello/0.1@demo/testing local

The first section of the file is listing remote-name: remote-url verify_ssl. Adding, removing or changing those
lines, will add, remove or change the respective remote. If verify_ssl, conan client will verify the SSL certificates for
that remote server.

The second part of the file contains a list of conan-package-reference: remote-name. This is a reference to which remote
was that package retrieved from, which will act also as the default for operations on that package.

Be careful when modifying the remotes, as the information of the packages has to remain consistent, e.g. if removing
a remote, all package references referencing that remote has to be removed too.

360 Chapter 14. Reference

conan Documentation, Release 1.5.2

14.8.5 client.crt / client.key

Conan support client TLS certificates. Create a client.crt with the client certificate in the conan home directory
(default ~/.conan) and a client.key with the private key.

You could also create only the client.crt file containing both the certificate and the private key concatenated.

14.8.6 artifacts.properties

This file is used to send custom headers in the PUT requests that conan upload command does:

.conan/artifacts.properties

custom_header1=Value1
custom_header2=45

Artifactory users can use this file to set file properties for the uploaded files. The variables should have the prefix
artifact_property. You can use ; to set multiple values to a property:

.conan/artifacts.properties

artifact_property_build.name=Build1
artifact_property_build.number=23
artifact_property_build.timestamp=1487676992
artifact_property_custom_multiple_var=one;two;three;four

14.9 Environment variables

These are the environment variables used to customize conan.

Most of them can be set in the conan.conf configuration file (inside your <userhome>/.conan folder).

14.9.1 CMAKE RELATED VARIABLES

There are some conan environment variables that will set the equivalent CMake variable using the cmake generator
and the CMake build tool:

Variable CMake set variable
CONAN_CMAKE_TOOLCHAIN_FILE CMAKE_TOOLCHAIN_FILE
CONAN_CMAKE_SYSTEM_NAME CMAKE_SYSTEM_NAME
CONAN_CMAKE_SYSTEM_VERSION CMAKE_SYSTEM_VERSION
CONAN_CMAKE_SYSTEM_PROCESSOR CMAKE_SYSTEM_PROCESSOR
CONAN_CMAKE_FIND_ROOT_PATH CMAKE_FIND_ROOT_PATH
CONAN_CMAKE_FIND_ROOT_PATH_MODE_PROGRAMCMAKE_FIND_ROOT_PATH_MODE_PROGRAM
CONAN_CMAKE_FIND_ROOT_PATH_MODE_LIBRARY CMAKE_FIND_ROOT_PATH_MODE_LIBRARY
CONAN_CMAKE_FIND_ROOT_PATH_MODE_INCLUDE CMAKE_FIND_ROOT_PATH_MODE_INCLUDE

See also:

See CMake cross building wiki

14.9. Environment variables 361

https://www.vtk.org/Wiki/CMake_Cross_Compiling

conan Documentation, Release 1.5.2

14.9.2 CONAN_BASH_PATH

Defaulted to: Not defined

Used only in windows to help the tools.run_in_windows_bash() function to locate our Cygwin/MSYS2 bash. Set it
with the bash executable path if it’s not in the PATH or you want to use a different one.

14.9.3 CONAN_CMAKE_GENERATOR

Conan CMake helper class is just a convenience to help to translate conan settings and options into cmake parameters,
but you can easily do it yourself, or adapt it.

For some compiler configurations, as gcc it will use by default the Unix Makefiles cmake generator. Note that this
is not a package settings, building it with makefiles or other build system, as Ninja, should lead to the same binary if
using appropriately the same underlying compiler settings. So it doesn’t make sense to provide a setting or option for
this.

So it can be set with the environment variable CONAN_CMAKE_GENERATOR. Just set its value to your desired cmake
generator (as Ninja).

14.9.4 CONAN_COLOR_DARK

Defaulted to: False/0

Set it to True/1 to use dark colors in the terminal output, instead of light ones. Useful for terminal or consoles with
light colors as white, so text is rendered in Blue, Black, Magenta, instead of Yellow, Cyan, White.

14.9.5 CONAN_COLOR_DISPLAY

Defaulted to: Not defined

By default if undefined conan output will use color if a tty is detected.

Set it to False/0 to remove console output colors. Set it to True/1 to force console output colors.

14.9.6 CONAN_COMPRESSION_LEVEL

Defaulted to: 9

Conan uses tgz compression for archives before uploading them to remotes. The default compression level is good and
fast enough for most cases, but users with huge packages might want to change it and set CONAN_COMPRESSION_LEVEL
environment variable to a lower number, which is able to get slightly bigger archives but much better compression speed.

14.9.7 CONAN_CPU_COUNT

Defaulted to: Number of available cores in your machine.

Set the number of cores that the tools.cpu_count() will return. Conan recipes can use the cpu_count() tool to build the
library using more than one core.

362 Chapter 14. Reference

conan Documentation, Release 1.5.2

14.9.8 CONAN_NON_INTERACTIVE

Defaulted to: False/0

This environment variable, if set to True/1, will prevent interactive prompts. Invocations of Conan commands where
an interactive prompt would otherwise appear, will fail instead.

This variable can also be set in conan.conf as non_interactive = True in the [general] section.

14.9.9 CONAN_ENV_XXXX_YYYY

You can override the default settings (located in your ~/.conan/profiles/default directory) with environment
variables.

The XXXX is the setting name upper-case, and the YYYY (optional) is the sub-setting name.

Examples:

• Override the default compiler:

CONAN_ENV_COMPILER = "Visual Studio"

• Override the default compiler version:

CONAN_ENV_COMPILER_VERSION = "14"

• Override the architecture:

CONAN_ENV_ARCH = "x86"

14.9.10 CONAN_LOG_RUN_TO_FILE

Defaulted to: 0

If set to 1 will log every self.run("{Some command}") command output in a file called conan_run.log. That file
will be located in the current execution directory, so if we call self.run in the conanfile.py’s build method, the file
will be located in the build folder.

In case we execute self.run in our source() method, the conan_run.log will be created in the source directory,
but then conan will copy it to the build folder following the regular execution flow. So the conan_run.log will
contain all the logs from your conanfile.py command executions.

The file can be included in the conan package (for debugging purposes) using the package method.

def package(self):
self.copy(pattern="conan_run.log", dst="", keep_path=False)

14.9. Environment variables 363

conan Documentation, Release 1.5.2

14.9.11 CONAN_LOG_RUN_TO_OUTPUT

Defaulted to: 1

If set to 0 conan won’t print the command output to the stdout. Can be used with CONAN_LOG_RUN_TO_FILE set to 1
to log only to file and not printing the output.

14.9.12 CONAN_LOGGING_LEVEL

Defaulted to: 50

By default conan logging level is only set for critical events. If you want to show more detailed logging information,
set this variable to lower values, as 10 to show debug information.

14.9.13 CONAN_LOGIN_USERNAME, CONAN_LOGIN_USERNAME_{REMOTE_NAME}

Defaulted to: Not defined

You can define the username for the authentication process using environment variables. Conan will use a variable
CONAN_LOGIN_USERNAME_{REMOTE_NAME}, if the variable is not declared Conan will use the variable
CONAN_LOGIN_USERNAME, if the variable is not declared either, Conan will request to the user to input a user-
name.

These variables are useful for unattended executions like CI servers or automated tasks.

If the remote name contains “-” you have to replace it with “_” in the variable name:

For example: For a remote named “conan-center”:

SET CONAN_LOGIN_USERNAME_CONAN_CENTER=MyUser

14.9.14 CONAN_MAKE_PROGRAM

Defaulted to: Not defined

Specify an alternative make program to use with:

• The build helper AutoToolsBuildEnvironment. Will invoke the specified executable in the make method.

• The build helper build helper CMake. By adjusting the CMake variable CMAKE_MAKE_PROGRAM.

For example:

CONAN_MAKE_PROGRAM="/path/to/mingw32-make"

Or only the exe name if it is in the path

CONAN_MAKE_PROGRAM="mingw32-make"

364 Chapter 14. Reference

https://cmake.org/cmake/help/v3.0/variable/CMAKE_MAKE_PROGRAM.html

conan Documentation, Release 1.5.2

14.9.15 CONAN_PASSWORD, CONAN_PASSWORD_{REMOTE_NAME}

Defaulted to: Not defined

You can define the authentication password using environment variables. Conan will use a variable CO-
NAN_PASSWORD_{REMOTE_NAME}, if the variable is not declared Conan will use the variable CO-
NAN_PASSWORD, if the variable is not declared either, Conan will request to the user to input a password.

These variables are useful for unattended executions like CI servers or automated tasks.

If the remote name contains “-” you have to replace it with “_” in the variable name:

For example: For a remote named “conan-center”:

SET CONAN_PASSWORD_CONAN_CENTER=Mypassword

14.9.16 CONAN_PRINT_RUN_COMMANDS

Defaulted to: 0

If set to 1, every self.run("{Some command}") call will log the executed command {Some command} to the output.

For example: In the conanfile.py file:

self.run("cd %s && %s ./configure" % (self.ZIP_FOLDER_NAME, env_line))

Will print to the output (stout and/or file):

----Running------
> cd zlib-1.2.9 && env LIBS="" LDFLAGS=" -m64 $LDFLAGS" CFLAGS="-mstackrealign -fPIC
→˓$CFLAGS -m64 -s -DNDEBUG " CPPFLAGS="$CPPFLAGS -m64 -s -DNDEBUG " C_INCLUDE_PATH=
→˓$C_INCLUDE_PATH: CPLUS_INCLUDE_PATH=$CPLUS_INCLUDE_PATH: ./configure

...

14.9.17 CONAN_READ_ONLY_CACHE

Defaulted to: Not defined

This environment variable if defined, will make the conan cache read-only. This could prevent developers to acciden-
tally edit some header of their dependencies while navigating code in their IDEs.

This variable can also be set in conan.conf as read_only_cache = True in the [general] section.

The packages are made read-only in two points: when a package is built from sources, and when a package is retrieved
from a remote repository.

The packages are not modified for upload, so users should take that into consideration before uploading packages, as
they will be read-only and that could have other side-effects.

Warning: It is not recommended to upload packages directly from developers machines with read-only mode as
it could lead to insconsistencies. For better reproducibility we recommend that packages are created and uploaded
by CI machines.

14.9. Environment variables 365

conan Documentation, Release 1.5.2

14.9.18 CONAN_RUN_TESTS

Defaulted to: Not defined (True/False if defined)

This environment variable (if defined) can be used in conanfile.py to enable/disable the tests for a library or appli-
cation.

It can be used as a convention variable and it’s specially useful if a library has unit tests and you are doing cross building,
the target binary can’t be executed in current host machine building the package.

It can be defined in your profile files at ~/.conan/profiles

...
[env]
CONAN_RUN_TESTS=False

or declared in command line when invoking conan install to reduce the variable scope for conan execution

$ conan install . -e CONAN_RUN_TEST=0

See how to retrieve the value with tools.get_env() and check an use case with a header only with unit tests recipe while
cross building.

See example of build method in conanfile.py to enable/disable running tests with CMake:

from conans import ConanFile, CMake, tools

class HelloConan(ConanFile):
name = "Hello"
version = "0.1"

def build(self):
cmake = CMake(self)
cmake.configure()
cmake.build()
if tools.get_env("CONAN_RUN_TESTS", True):

cmake.test()

14.9.19 CONAN_SKIP_VS_PROJECTS_UPGRADE

Defaulted to: False/0

When set to True/1, the build_sln_commmand, the msvc_build_command and the MSBuild() build helper, will not
call devenv command to upgrade the sln project, irrespective of the upgrade_project parameter value.

14.9.20 CONAN_SYSREQUIRES_MODE

Defaulted to: enabled allowed values enabled/verify/disabled

This environment variable controls whether system packages should be installed into the system via
SystemPackageTool helper, typically used in system_requirements().

See values behaviour:

• enabled: Default value and any call to install method of SystemPackageTool helper should modify the system
packages.

366 Chapter 14. Reference

conan Documentation, Release 1.5.2

• verify: Display a report of system packages to be installed and abort with exception. Useful if you don’t want
to allow conan to modify your system but you want to get a report of packages to be installed.

• disabled: Display a report of system packages that should be installed but continue the conan execution and
doesn’t install any package in your system. Useful if you want to keep manual control of these dependencies, for
example in your development environment.

14.9.21 CONAN_SYSREQUIRES_SUDO

Defaulted to: True/1

This environment variable controls whether sudo is used for installing apt, yum, etc. system packages via
SystemPackageTool helper, typically used in system_requirements(). By default when the environment vari-
able does not exist, “True” is assumed, and sudo is automatically prefixed in front of package management commands.
If you set this to “False” or “0” sudo will not be prefixed in front of the comands, however installation or updates of
some packages may fail due to a lack of privilege, depending on the user account Conan is running under.

14.9.22 CONAN_TEMP_TEST_FOLDER

Defaulted to: False/0

Activating this variable will make build folder of test_package to be created in the temporary folder of your machine.

14.9.23 CONAN_TRACE_FILE

Defaulted to: Not defined

If you want extra logging information about your conan command executions, you can enable it by setting the
CONAN_TRACE_FILE environment variable. Set it with an absolute path to a file.

export CONAN_TRACE_FILE=/tmp/conan_trace.log

When the conan command is executed, some traces will be appended to the specified file. Each line contains a JSON
object. The _action field contains the action type, like COMMAND for command executions, EXCEPTION for errors and
REST_API_CALL for HTTP calls to a remote.

The logger will append the traces until the CONAN_TRACE_FILE variable is unset or pointed to a different file.

See also:

Read more here: How to log and debug a conan execution

14.9.24 CONAN_USER, CONAN_CHANNEL

Environment variables commonly used in test_package conanfiles, to allow package creation for different users and
channel without modifying the code. They are also the environment variables that will be checked when using self.
user or self.channel in conanfile.py package recipes in user space, where a user/channel has not been assigned
yet (it is assigned when exported in the local cache).

See also:

Read more about it in user, channel

14.9. Environment variables 367

conan Documentation, Release 1.5.2

14.9.25 CONAN_USER_HOME

Defaulted to: Not defined

Allows defining a custom conan cache directory. Can be useful for concurrent builds under different users in CI, to
retrieve and store per-project specific dependencies (useful for deployment, for example).

See also:

Read more about it in Conan local cache: concurrency, Continuous Integration, isolation

14.9.26 CONAN_USER_HOME_SHORT

Defaulted to: Not defined

Specify the base folder to be used with the short paths feature. When not specified, the packages marked as short_paths
will be stored in the C:\.conan (or the current drive letter).

If set to “None”, it will disable the short_paths feature in Windows for modern Windows that enable long paths at the
system level.

Note: Please note that this only works with Python 3.6 and newer.

14.9.27 CONAN_VERBOSE_TRACEBACK

Defaulted to: 0

When an error is raised in a recipe or even in the conan code base, if set to 1 it will show the complete traceback to
ease the debugging.

14.9.28 CONAN_VS_INSTALLATION_PREFERENCE

Defaulted to: Enterprise, Professional, Community, BuildTools

This envirnoment variables defines the order of preference when searching for a Visual installation product. This would
affect every tool that uses tools.vs_installation_path() and will search in the order indicated.

For example:

set CONAN_VS_INSTALLATION_PREFERENCE=Enterprise, Professional, Community, BuildTools

It can also be used to fix the type of installation you want to use indicating just one product type:

set CONAN_VS_INSTALLATION_PREFERENCE=BuildTools

368 Chapter 14. Reference

CHAPTER

FIFTEEN

VIDEOS AND LINKS

• Packaging C/C++ libraries with Conan. 30 min talk by Théo Delrieu at FOSDEM 2018. Includes AndroidNDK
package and cross build to Android

• Introduction to Conan C/C++ package manager. 30 min talk in CppCon 2016.

• Faster Delivery of Large C/C++ Projects with Conan Package Manager and Efficient Continuous Integration. 60
min talk in CppCon 2017.

• Conan.io c++ package manager demo with SFML, by Charl Botha

Do you have your own video, tutorial, blog post that could be useful for other users? Please tell us and we will link it
here, or directly send a PR to the docs: https://github.com/conan-io/docs.

369

http://charlbotha.com/
https://github.com/conan-io/docs

conan Documentation, Release 1.5.2

370 Chapter 15. Videos and links

CHAPTER

SIXTEEN

FAQ

See also:

There is a great community behind Conan with users helping each other in Cpplang Slack. Please join us in the #conan
channel!

16.1 General

16.1.1 Is Conan CMake based, or is CMake a requirement?

No. It isn’t. Conan is build-system agnostic. Package creators could very well use cmake to create their packages,
but you will only need it if you want to build packages from source, or if there are no available precompiled packages
for your system/settings. We use CMake extensively in our examples and documentation, but only because it is very
convenient and most C/C++ devs are familiar with it.

16.1.2 Is build-system XXXXX supported?

Yes. It is. Conan makes no assumption about the build system. It just wraps any build commands specified by the
package creators. There are already some helper methods in code to ease the use of CMake, but similar functions can
be very easily added for your favourite build system. Please check out the alternatives explained in generator packages

16.1.3 Is my compiler, version, architecture, or setting supported?

Yes. Conan is very general, and does not restrict any configuration at all. However, conan comes with some compilers,
versions, architectures, . . . , etc. pre-configured in the ~/.conan/settings.yml file, and you can get an error if using
settings not present in that file. Go to invalid settings to learn more about it.

16.1.4 Does it run offline?

Yes. It runs offline very well. Package recipes and binary packages are stored in your machine, per user, and so you
can start new projects that depend on the same libraries without any Internet connection at all. Packages can be fully
created, tested and consumed locally, without needing to upload them anywhere.

371

https://cpplang.now.sh/

conan Documentation, Release 1.5.2

16.1.5 Is it possible to install 2 different versions of the same library?

Yes. You can install as many different versions of the same library as you need, and easily switch among them in the
same project, or have different projects use different versions simultaneously, and without having to install/uninstall or
re-build any of them.

Package binaries are stored per user in (e.g.) ~/.conan/data/Boost/1.59/user/stable/package/{sha_0,
sha_1, sha_2...} with a different SHA signature for every different configuration (debug, release, 32-bit, 64-bit,
compiler. . .). Packages are managed per user, but additionally differentiated by version and channel, and also by their
configuration. So large packages, like Boost, don’t have to be compiled or downloaded for every project.

16.1.6 Can I run multiple conan isolated instances (virtual environments) on the
same machine?

Yes, conan supports the concept of virtual environments; so it manages all the information (packages, remotes, user
credentials, . . . , etc.) in different, isolated environments. Check virtual environments for more details.

16.1.7 Can I run the conan_server behind a firewall (on-premises)?

Yes. Conan does not require a connection to conan.io site or any other external service at all for its operation. You can
install packages from the bintray conan-center repository if you want, test them, and only after approval, upload them
to your on-premises server and forget about the original repository. Or you can just get the package recipes, re-build
from source on your premises, and then upload the packages to your server.

16.1.8 Can I connect to conan remote servers through a corporate proxy?

Yes, it can be configured in your ~/.conan/conan.conf configuration file or with some environment variables. Check
proxy configuration for more details.

16.1.9 Can I create packages for third-party libraries?

Of course, as long as their license allows it.

16.1.10 Can I upload closed source libraries?

Yes. As long as the resulting binary artifact can be distributed freely and free of charge, at least for educational and
research purposes, and as long as you comply with all licenses and IP rights of the original authors, as well as the Terms
of Service. If you want to distribute your libraries only for your paying customers, please contact us.

16.1.11 Do I always need to specify how to build the package from source?

No. But it is highly recommended. If you want, you can just directly start with the binaries, build elsewhere, and upload
them directly. Maybe your build() step can download pre-compiled binaries from another source and unzip them,
instead of actually compiling from sources.

372 Chapter 16. FAQ

conan Documentation, Release 1.5.2

16.1.12 Does conan use semantic versioning (semver) for dependencies?

It uses a convention by which package dependencies follow semver by default; thus it intelligently avoids recompila-
tion/repackaging if you update upstream minor versions, but will correctly do so if you update major versions upstream.
This behavior can be easily configured and changed in the package_id()method of your conanfile, and any versioning
scheme you desire is supported.

16.2 Using conan

16.2.1 How to package header-only libraries?

Packaging header-only libraries is similar to other packages, make sure to first read and understand the packaging
getting started guide. The main difference is that the package recipe is typically much simpler. There are different
approaches depending if you want conan to run the library unit tests while creating the package or not. Full details in
this how-to.

16.2.2 When to use settings or options?

While creating a package you might want to add different configurations and variants of the package. There are 2 main
inputs that define packages: settings and options. Read about them in this section

16.2.3 How to obtain the dependents of a given package?

The search model for conan in commands such as conan install and conan info is done from the downstream or
“consumer” package as the starting node of the dependency graph and upstream.

$ conan info Poco/1.8.1@pocoproject/stable

16.2. Using conan 373

conan Documentation, Release 1.5.2

The inverse model (from upstream to downstream) is not simple to obtain for Conan packages, because the depen-
dency graph is not unique: It changes for every configuration. The graph can be different for different operating
systems or just by changing some package options. So you cannot query which packages are dependent on MyLib/
0.1@user/channel, but which packages are dependent on MyLib/0.1@user/channel:63da998e3642b50bee33
binary package, and the response can contain many different binary packages for the same recipe, like MyDependent/0.
1@user/channel:packageID1... ID2... MyDependent/0.1@user/channel:packageIDN. That is the reason
why conan info and conan install need a profile (default profile or one given with --profile`) or installation
files conanbuildinfo.txt to look for settings and options.

In order to show the inverse graph model, the bottom node is neeed to build the graph upstream and an additonal node
too to get the inverse list. This is usually done to get the build order in case a package is updated. For example, if we
want to know the build order of the Poco dependecy graph in case OpenSSL is changed we could type:

$ conan info Poco/1.8.1@pocoproject/stable -bo OpenSSL/1.0.2m@conan/stable
[OpenSSL/1.0.2m@conan/stable], [Poco/1.8.1@pocoproject/stable]

So, if OpenSSL is changed, we would need to rebuild it (of course) and rebuild Poco.

16.2.4 Packages got outdated when uploading an unchanged recipe from a different
machine

Usually this is caused due to different line endings in Windows and Linux/MacOS. Normally this happens when Win-
dows uploads it with CRLF while Linux/MacOS do it with only LF. Conan does not change the line endings to not
interfere with user. We suggest going with LF line endings always. If this is being caused by git, it could be solved
with git config --system core.autocrlf input.

16.3 Troubleshooting

16.3.1 ERROR: Missing prebuilt package

When you are installing packages (with conan install or conan create) it is possible that you get an error like
the following one:

WARN: Can't find a 'libzmq/4.2.0@memsharded/testing' package for the specified options␣
→˓and settings:
- Settings: arch=x86_64, build_type=Release, compiler=gcc, compiler.libcxx=libstdc++,␣
→˓compiler.version=4.9, os=Windows
- Options: shared=False
- Package ID: 7fe67dff831b24bc4a8b5db678a51f1be5e44e7c

ERROR: Missing prebuilt package for 'libzmq/4.2.0@memsharded/testing'
Try to build it from sources with "--build libzmq" or read "http://docs.conan.io/en/
→˓latest/faq.html"

This means that the package recipe libzmq/4.2.0@memsharded/testing exists, but for some reason there is no
precompiled package for your current settings. Maybe the package creator didn’t build and shared pre-built packages at
all and only uploaded the package recipe, or maybe they are only providing packages for some platforms or compilers.
E.g. the package creator built packages from the recipe for gcc 4.8 and 4.9, but you are using gcc 5.4.

By default, conan doesn’t build packages from sources. There are several possibilities:

374 Chapter 16. FAQ

conan Documentation, Release 1.5.2

• You can try to build the package for your settings from sources, indicating some build policy as argument, like
--build libzmq or --build missing. If the package recipe and the source code work for your settings you
will have your binaries built locally and ready for use.

• If building from sources fail, you might want to fork the original recipe, improve it until it supports your config-
uration, and then use it. Most likely contributing back to the original package creator is the way to go. But you
can also upload your modified recipe and pre-built binaries under your own username too.

16.3.2 ERROR: Invalid setting

It might happen sometimes, when you specify a setting not present in the defaults that you receive a message like this:

$ conan install -s compiler.version=4.19 ...

ERROR: Invalid setting '4.19' is not a valid 'settings.compiler.version' value.
Possible values are ['4.4', '4.5', '4.6', '4.7', '4.8', '4.9', '5.1', '5.2', '5.3', '5.4
→˓', '6.1', '6.2']
Read "http://docs.conan.io/en/latest/faq/troubleshooting.html#error-invalid-setting"

This doesn’t mean that such architecture is not supported by conan, it is just that it is not present in the actual defaults
settings. You can find in your user home folder ~/.conan/settings.yml a settings file that you can modify, edit,
add any setting or any value, with any nesting if necessary.

As long as your team or users have the same settings (you can share with them the file), everything will work. The
settings.yml file is just a mechanism so users agree on a common spelling for typically settings. Also, if you think
that some settings would be useful for many other conan users, please submit it as an issue or a pull request, so it is
included in future releases.

It is possible that some build helper, like CMake will not understand the new added settings, don’t use them or even fail.
Such helpers as CMake are simple utilities to translate from conan settings to the respective build system syntax and
command line arguments, so they can be extended or replaced with your own one that would handle your own private
settings.

16.3.3 ERROR: Setting value not defined

When you install or create a package, it is possible to see an error like this:

ERROR: Hello/0.1@user/testing: 'settings.arch' value not defined

This means that the recipe defined settings = "os", "arch", ... but a value for the arch setting was not pro-
vided either in a profile or in the command line. Make sure to specify a value for it in your profile, or in the command
line:

$ conan install . -s arch=x86 ...

If you are building a pure C library with gcc/clang, you might encounter an error like this:

ERROR: Hello/0.1@user/testing: 'settings.compiler.libcxx' value not defined

Indeed, for building a C library, it is not necessary to define a C++ standard library. And if you provide a value, you
might end with multiple packages for exactly the same binary. What has to be done is to remove such subsetting in
your recipe:

16.3. Troubleshooting 375

conan Documentation, Release 1.5.2

def configure(self):
del self.settings.compiler.libcxx

16.3.4 ERROR: Failed to create process

When conan is installed via pip/PyPI, and python is installed in a path with spaces (like many times in Windows
“C:/Program Files. . . ”), conan can fail to launch. This is a known python issue, and can’t be fixed from conan. The
current workarounds would be:

• Install python in a path without spaces

• Use virtualenvs. Short guide:

$ pip install virtualenvwrapper-win # virtualenvwrapper if not Windows
$ mkvirtualenv conan
(conan) $ pip install conan
(conan) $ conan --help

Then, when you will be using conan, for example in a new shell, you have to activate the virtualenv:

$ workon conan
(conan) $ conan --help

Virtualenvs are very convenient, not only for this workaround, but to keep your system clean and to avoid unwanted
interaction between different tools and python projects.

16.3.5 ERROR: Failed to remove folder (Windows)

It is possible that operating conan, some random exceptions (some with complete tracebacks) are produced, related to
the impossibility to remove one folder. Two things can happen:

• The user has some file or folder open (in a file editor, in the terminal), so it cannot be removed, and the process
fails. Make sure to close files, specially if you are opening or inspecting the local conan cache.

• In Windows, the Search Indexer might be opening and locking the files, producing random, difficult to reproduce
and annoying errors. Please disable the Windows Search Indexer for the conan local storage folder

376 Chapter 16. FAQ

CHAPTER

SEVENTEEN

CHANGELOG

Check https://github.com/conan-io/conan for issues and more details about development, contributors, etc.

Important: Conan 1.5 shouldn’t break any existing 1.0 recipe, or command line invocation. If it does, please report
in github. Please read more about Conan stability.

17.1 1.5.2 (5-July-2018)

• Bugfix: Fixed bug with pre-1.0 packages with sources.

• Bugfix: Fixed regression in private requirements.

17.2 1.5.1 (29-June-2018)

• Bugfix: Sources in the local cache weren’t removed when using scm pointing to the local source directory,
causing changes in local sources not applied to the conan create process.

• Bugfix: Fixed bug causing duplication of build requires in the dependency graph.

17.3 1.5.0 (27-June-2018)

• Feature: conan search <pkg-ref> -r=all now is able to search for binaries too in all remotes

• Feature: Dependency graph improvements: build_requires are represented in the graph (visible in conan
info`, also in the HTML graph). conan install and conan info commands shows extended information
of the binaries status (represented in colors in HTML graph). The dependencies declaration order in recipes is
respected (as long as it doesn’t break the dependency graph order).

• Feature: improved remote management, it is possible to get binaries from different remotes.

• Feature: conan user command is now able to show authenticated users.

• Feature: Added conan user --json json output to the command.

• Feature: New pattern argument to tools.unzip() and tools.untargz functions, that allow efficient ex-
traction of certain files only.

• Feature : Added Manjaro support for SystemPackageTools.

377

https://github.com/conan-io/conan

conan Documentation, Release 1.5.2

• Feature: Added Macos version subsetting in the default settings.yml file, to account for the “min OSX version”
configuration.

• Feature: SCM helper argument to recursively clone submodules

• Feature: SCM helper management of subfolder, allows using exports and exports_sources, manage sym-
links, and do not copy files that are .gitignored. Also, works better in the local development flow.

• Feature: Modifies user agent header to output the Conan client version and the Python version. Example: Conan/
1.5.0 (Python 2.7.1)

• Fix: The CMake() helper now doesn’t require a compiler input to deduce the default generator.

• Fix: conan search <pattern> now works consistently in local cache and remotes.

• Fix: Proxy related environment variables are removed if conan.conf declares proxy configuration.

• Fix: Fixed the parsing of invalid JSON when Microsoft vswhere tool outputs invalid non utf-8 text.

• Fix: Applying winsdk and vcvars_ver to MSBuild and vcvars_command for VS 14 too.

• Fix: Workspaces now support build_requires.

• Fix: CMake() helper now defines by default CMAKE_EXPORT_NO_PACKAGE_REGISTRY.

• Fix: Settings constraints declared in recipes now don’t error for single strings (instead of a list with a string
element).

• Fix: cmake_minimum_required() is now before project() in templates and examples.

• Fix: CONAN_SYSREQUIRES_MODE=Disabled now doesn’t try to update the system packages registry.

• Bugfix: Fixed SCM origin path of windows folder (with backslashes).

• Bugfix: Fixed SCM dictionary order when doing replacement.

• Bugfix: Fixed auto-detection of apple-clang 10.0.

• Bugfix: Fixed bug when doing a conan search without registry file (just before installation).

17.4 1.4.5 (22-June-2018)

• Bugfix: The package_id recipe method was being called twice causing issues with info objects being populated
with wrong information.

17.5 1.4.4 (11-June-2018)

• Bugfix: Fix link order with private requirements.

• Bugfix: Removed duplicate -std flag in CMake < 3 or when the standard is not yet supported by
CMAKE_CXX_STANDARD.

• Bugfix: Check scm attribute to avoid breaking recipes with already defined one.

• Feature: Conan workspaces.

378 Chapter 17. Changelog

conan Documentation, Release 1.5.2

17.6 1.4.3 (6-June-2018)

• Bugfix: Added system libraries to the cmake_find_package generator.

• Fix: Added SIGTERM signal handler to quit safely.

• Bugfix: Fixed miss-detection of gcc 1 when no gcc was on a Linux machine.

17.7 1.4.2 (4-June-2018)

• Bugfix: Fixed multi-config packages.

• Bugfix: Fixed cppstd management with CMake and 20 standard version.

17.8 1.4.1 (31-May-2018)

• Bugfix: Solved issue with symlinks making recipes to fail with self.copy.

• Bugfix: Fixed c++20 standard usage with modern compilers and the creation of the settings.yml containing the
settings values.

• Bugfix: Fixed error with cased directory names in Windows.

• BugFix: Modified confusing warning message in the SCM tool when the remote couldn’t be detected.

17.9 1.4.0 (30-May-2018)

• Feature: Added scm conanfile attribute, to easily clone/checkout from remote repositories and to capture the
remote and commit in the exported recipe when the recipe and the sources lives in the same repository. Read
more in “Recipe and sources in a different repo” and “Recipe and sources in the same repo”.

• Feature: Added cmake_paths generator to create a file setting CMAKE_MODULE_PATH and CMAKE_PREFIX_PATH
to the packages folders. It can be used as a CMake toolchain to perform a transparent CMake usage, without
include any line of cmake code related to Conan. Read more here.

• Feature: Added cmake_find_package generator that generates one FindXXX.cmake file per each dependency
both with classic CMake approach and modern using transitive CMake targets. Read more here.

• Feature: Added conan search --json json output to the command.

• Feature: CMake build helper now sets PKG_CONFIG_PATH automatically and receives new parameter
pkg_config_paths to override it.

• Feature: CMake build helper doesn’t require to specify “arch” nor “compiler” anymore when the generator is
“Unix Makefiles”.

• Feature: Introduced default settings for GCC 8, Clang 7.

• Feature: Introduced support for c++ language standard c++20.

• Feature: Auto-managed fPIC option in AutoTools build helper.

• Feature: tools.vcvars_command() and tools.vcvars_dict() now take vcvars_ver and
winsdk_version as parameters.

• Feature: tools.vcvars_dict() gets only the env vars set by vcvars with new parameter only_diff=True.

17.6. 1.4.3 (6-June-2018) 379

conan Documentation, Release 1.5.2

• Feature: Generator virtualbuildenv now sets Visual Studio env vars via tool.vcvars_dict().

• Feature: New tools for Apple development including XCRun wrapper.

• Fix: Message “Package ‘1’ created” in package commands with short_paths=True now shows package ID.

• Fix: tools.vcvars_dict() failing to create dictionary due to newlines in vcvars command output.

• Bugfix: tools.which() returning directories instead of only files.

• Bugfix: Inconsistent local cache when developing a recipe with short_paths=True.

• Bugfix: Fixed reusing MSBuild() helper object for multi-configuration packages.

• Bugfix: Fixed authentication using env vars such as CONAN_PASSWORD when CONAN_NON_INTERACTIVE=True.

• Bugfix: Fixed Android api_level was not used to adjust CMAKE_SYSTEM_VERSION.

• Bugfix: Fixed MSBuild() build helper creating empty XML node for runtime when the setting was not declared.

• Bugfix: Fixed default_options not supporting = in value when specified as tuple.

• Bugfix: AutoToolsBuildEnvironment build helper’s pkg_config_paths parameter now sets paths relative to
the install folder or absolute ones if provided.

17.10 1.3.3 (10-May-2018)

• Bugfix: Fixed encoding issues writing to files and calculating md5 sums.

17.11 1.3.2 (7-May-2018)

• Bugfix: Fixed broken run_in_windows_bash due to wrong argument.

• Bugfix: Fixed VisualStudioBuildEnvironment when toolset was not defined.

• Bugfix: Fixed md5 computation of conan .tgz files for recipe, exported sources and packages due to file ordering
and flags.

• Bugfix: Fixed conan download -p=wrong_id command

• Fix: Added apple-clang 9.1

17.12 1.3.1 (3-May-2018)

• Bugfix: Fixed regression with AutoToolsBuildEnvironment build helper that raised exception with not sup-
ported architectures during the calculation of the GNU triplet.

• Bugfix: Fixed pkg_config generator, previously crashing when there was no library directories in the require-
ments.

• Bugfix: Fixed conanfile.run() with win_bash=True quoting the paths correctly.

• Bugfix: Recovered parameter “append” to the tools.save function.

• Bugfix: Added support (documented but missing) to delete options in package_id() method using del self.
info.options.<option>

380 Chapter 17. Changelog

conan Documentation, Release 1.5.2

17.13 1.3.0 (30-April-2018)

• Feature: Added new build types to default settings.yml: RelWithDebInfo and MinSizeRel. Com-
piler flags will be automatically defined in build helpers that do not understand them (MSBuild,
AutotoolsBuildEnvironment)

• Feature: Improved package integrity. Interrupted downloads or builds shouldn’t leave corrupted packages.

• Feature: Added conan upload --json json output to the command.

• Feature: new conan remove --locks to clear cache locks. Useful when killing conan.

• Feature: New CircleCI template scripts can be generated with the conan new command.

• Feature: The CMake() build helper manages the fPIC flag automatically based on the options fPIC and shared
when present.

• Feature: Allowing requiring color output with CONAN_COLOR_DISPLAY=1 environment variable. If
CONAN_COLOR_DISPLAY is not set rely on tty detection for colored output.

• Feature: New conan remote rename and conan add --force commands to handle remotes.

• Feature: Added parameter use_env to the MSBuild().build() build helper method to control the /p:UseEnv
msbuild argument.

• Feature: Timeout for downloading files from remotes is now configurable (defaulted to 60 seconds)

• Feature: Improved Autotools build helper with new parameters and automatic set of --prefix to self.
package_folder.

• Feature: Added new tool to compose GNU like triplets for cross-building: tools.get_gnu_triplet()

• Fix: Use International Units for download/upload transfer sizes (Mb, Kb, etc).

• Fix: Removed duplicated paths in cmake_multi generated files.

• Fix: Removed false positive linter warning for local imports.

• Fix: Improved command line help for positional arguments

• Fix -ks alias for --keep-source argument in conan create and conan export.

• Fix: removed confusing warnings when self.copy() doesn’t copy files in the package() method.

• Fix: None is now a possible value for settings with nested subsettings in settings.yml.

• Fix: if vcvars_command is called and Visual is not found, raise an error instead of warning.

• Bugfix: self.env_info.paths and self.env_info.PATHS both map now to PATHS env-var.

• Bugfix: Local flow was not correctly recovering state for option values.

• Bugfix: Windows NTFS permissions failed in case USERDOMAIN env-var was not defined.

• Bugfix: Fixed generator pkg_config when there are absolute paths (not use prefix)

• Bugfix: Fixed parsing of settings values with "=" character in conaninfo.txt files.

• Bugfix: Fixed misdetection of MSYS environments (generation of default profile)

• Bugfix: Fixed string scaping in CMake files for preprocessor definitions.

• Bugfix: upload --no-overwrite failed when the remote package didn’t exist.

• Bugfix: Don’t raise an error if detect_windows_subsystem doesn’t detect a subsystem.

17.13. 1.3.0 (30-April-2018) 381

conan Documentation, Release 1.5.2

17.14 1.2.3 (10-Apr-2017)

• Bugfix: Removed invalid version field from scons generator.

17.15 1.2.1 (3-Apr-2018)

• Feature: Support for apple-clang 9.1

• Bugfix: compiler_args generator manage correctly the flag for the cppstd setting.

• Bugfix: Replaced exception with a warning message (recommending the six module) when using StringIO class
from the io module.

17.16 1.2.0 (28-Mar-2018)

• Feature: The command conan build has new --configure, --build, --install arguments to control
the different stages of the build() method.

• Feature: The command conan export-pkg now has a --package-folder that can be used to export an exact
copy of the provided folder, irrespective of the package() method. It assumes the package has been locally
created with a previous conan package or with a conan build using a cmake.install() or equivalent
feature.

• Feature: New json generator, generates a json file with machine readable information from dependencies.

• Feature: Improved proxies configuration with no_proxy_match configuration variable.

• Feature: New conan upload parameter --no-overwrite to forbid the overwriting of recipe/packages if they
have changed.

• Feature: Exports are now copied to source_folder when doing conan source.

• Feature: tools.vcvars() context manager has no effect if platform is different from Windows.

• Feature: conan download has new optional argument --recipe to download only the recipe of a package.

• Feature: Added CONAN_NON_INTERACTIVE environment variable to disable interactive prompts.

• Feature: Improved MSbuild() build helper using vcvars() and generating property file to adjust the run-
time automatically. New method get_command() with the call to msbuild tool. Deprecates tools.
build_sln_command() and tools.msvc_build_command().

• Feature: Support for clang 6.0 correctly managing cppstd flags.

• Feature: Added configuration to specify a client certificate to connect to SSL server.

• Feature: Improved ycm generator to show json dependencies.

• Feature: Experimental --json parameter for conan install and conan create to generate a JSON file with
install information.

• Fix: conan install --build does not absorb more than one parameter.

• Fix: Made conanfile templates generated with conan new PEP8 compliant.

• Fix: conan search output improved when there are no packages for the given reference.

• Fix: Made conan download also retrieve sources.

• Fix: Pylint now runs as an external process.

382 Chapter 17. Changelog

conan Documentation, Release 1.5.2

• Fix: Made self.user and self.channel available in test_package.

• Fix: Made files writable after a deploy() or imports() when CONAN_READ_ONLY_CACHE`/general.
read_only_cache environment/config variable is True.

• Fix: Linter showing warnings with cpp_info object in deploy() method.

• Fix: Disabled linter for Conan pyinstaller as it was not able to find the python modules.

• Fix: conan user -r=remote_name showed all users for all remotes, not the one given.

• BugFix: Python reuse code failing to import module in package_info().

• BugFix: Added escapes for backslashes in cmake generator.

• BugFix: conan config install now raises error if git clone fails.

• BugFix: Alias resolution not working in diamond shaped dependency trees.

• BugFix: Fixed builds with Cygwin/MSYS2 failing in Windows with self.short_paths=True and NTFS file sys-
tems due to ACL permissions.

• BugFix: Failed to adjust architecture when running Conan platform detection in ARM devices.

• BugFix: Output to StringIO failing in Python 2.

• BugFix: conan profile update not working to update [env] section.

• BugFix: conan search not creating default remotes when running it as the very first command after Conan
installation.

• BugFix: Package folder was not cleaned after the installation and download of a package had failed.

17.17 1.1.1 (5-Mar-2018)

• Feature: build_sln_command() and msvc_build_command() receive a new optional parameter platforms
to match the definition of the .sln Visual Studio project architecture. (Typically Win32 vs x86 problem).

• Bufix: Flags for Visual Studio command (cl.exe) using “-” instead of “/” to avoid problems in builds using
AutoTools scripts with Visual Studio compiler.

• Bugfix: Visual Studio runtime flags adjusted correctly in AutoToolsBuildEnvironment() build helper

• Bugfix: AutoToolsBuildEnvironment() build helper now adjust the correct build flag, not using eabi suffix,
for architecture x86.

17.18 1.1.0 (27-Feb-2018)

• Feature: New conan create --keep-build option that allows re-packaging from conan local cache, without
re-building.

• Feature: conan search <pattern> -r=all now searches in all defined remotes.

• Feature: Added setting cppstd to manage the C++ standard. Also improved build helpers to adjust the standard
automatically when the user activates the setting. AutoToolsBuildEnvironment(), CMake(), MSBuild()
and VisualStudioBuildEnvironment().

• Feature: New compiler_args generator, for directly calling the compiler from command line, for multiple
compilers: VS, gcc, clang.

17.17. 1.1.1 (5-Mar-2018) 383

conan Documentation, Release 1.5.2

• Feature: Defined sysrequires_mode variable (CONAN_SYSREQUIRES_MODE env-var) with values enabled,
verify, disabled to control the installation of system dependencies via SystemPackageTool typically used
in system_requirements().

• Feature: automatically apply pythonpath environment variable for dependencies containing python code to be
reused to recipe source(), build(), package() methods.

• Feature: CMake new patch_config_paths() methods that will replace absolute paths to conan package path
variables, so cmake find scripts are relocatable.

• Feature: new --test-build-folder command line argument to define the location of the test_package build
folder, and new conan.conf temp_test_folder and environment variable CONAN_TEMP_TEST_FOLDER, that if
set to True will automatically clean the test_package build folder after running.

• Feature: Conan manages relative urls for upload/download to allow access the server from different configured
networks or in domain subdirectories.

• Feature: Added CONAN_SKIP_VS_PROJECTS_UPGRADE environment variable to skip the upgrade of Visual Stu-
dio project when using build_sln_commmand, the msvc_build_command and the MSBuild() build helper.

• Feature: Improved detection of Visual Studio installations, possible to prioritize between multiple installed Vi-
sual tools with the CONAN_VS_INSTALLATION_PREFERENCE env-var and vs_installation_preference co-
nan.conf variable.

• Feature: Added keep_path parameter to self.copy() within the imports() method.

• Feature: Added [build_requires] section to conanfile.txt.

• Feature: Added new conan help <command> command, as an alternative to --help.

• Feature: Added target parameter to AutoToolsBuildEnvironment.make method, allowing to select build
target on running make

• Feature: The CONAN_MAKE_PROGRAM environment variable now it is used by the CMake() build helper to set a
custom make program.

• Feature: Added --verify-ssl optional parameter to conan config install to allow self-signed SSL cer-
tificates in download.

• Feature: tools.get_env() helper method to automatically convert environment variables to python types.

• Fix: Added a visible warning about libcxx compatibility and the detected one for the default profile.

• Fix: Wrong detection of compiler in OSX for gcc frontend to clang.

• Fix: Disabled conanbuildinfo.cmake compiler checks for unknown compilers.

• Fix: visual_studio generator added missing ResourceCompile information.

• Fix: Don’t output password from URL for conan config install command.

• Fix: Signals exit with error code instead of 0.

• Fix: Added package versions to generated SCons file.

• Fix: Error message when package was not found in remotes has been improved.

• Fix: conan profile help message.

• Fix: Use gcc architecture flags -m32, -m64 for MinGW as well.

• Fix: CMake() helper do not require settins if CONAN_CMAKE_GENERATOR is defined.

• Fix: improved output of package remote origins.

• Fix: Profiles files use same structure as conan profile show command.

384 Chapter 17. Changelog

conan Documentation, Release 1.5.2

• Fix: conanpath.bat file is removed after conan Windows installer uninstall.

• Fix: Do not add GCC-style flags -m32, -m64, -g, -s to MSVC when using AutoToolsBuildEnvironment

• Fix: “Can’t find a binary package” message now includes the Package ID.

• Fix: added clang 5.0 and gcc 7.3 to default settings.yml.

• Bugfix: build_id() logic does not apply unless the build_id is effectively changed.

• Bugfix: self.install_folder was not correctly set in all necessary cases.

• Bugfix: --update option does not ignore local packages for version-ranges.

• Bugfix: Set self.develop=True for export-pkg command.

• Bugfix: Server HTTP responses were incorrectly captured, not showing errors for some server errors.

• Bugfix: Fixed config section update for sequential calls over the python API.

• Bugfix: Fixed wrong self.develop set to False for conan create with test_package.

• Deprecation: Removed conan-transit from default remotes registry.

17.19 1.0.4 (30-January-2018)

• Bugfix: Fixed default profile defined in conan.conf that includes another profile

• Bugfix: added missing management of sysroot in conanbuildinfo.txt affecting conan build and test_package.

• Bugfix: Fixed warning in conan source because of incorrect management of settings.

• Bugfix: Fixed priority order of environment variables defined in included profiles

• Bugfix: NMake error for parallel builds from the CMake build helper have been fixed

• Bugfix: Fixed options pattern not applied to root node (-o *:shared=True not working for consuming package)

• Bugfix: Fixed shadowed options by package name (-o *:shared=True -o Pkg:other=False was not ap-
plying shared value to Pkg)

• Fix: Using filter_known_paths=False as default to vcvars_dict() helper.

• Fix: Fixed wrong package name for output messages regarding build-requires

• Fix: Added correct metadata to conan.exe when generated via pyinstaller

17.20 1.0.3 (22-January-2018)

• Bugfix: Correct load of stored settings in conaninfo.txt (for conan build) when configure() remove some
setting.

• Bugfix: Correct use of unix paths in Windows subsystems (msys, cygwing) when needed.

• Fix: fixed wrong message for conan alias --help.

• Fix: Normalized all arguments to --xxx-folder in command line help.

17.19. 1.0.4 (30-January-2018) 385

conan Documentation, Release 1.5.2

17.21 1.0.2 (16-January-2018)

• Fix: Adding a warning message for simultaneous use of os and os_build settings.

• Fix: Do not raise error from conanbuildinfo.cmake for Intel MSVC toolsets.

• Fix: Added more architectures to default settings.yml arch_build setting.

• Fix: using --xxx-folder in command line help messages.

• Bugfix: using quotes for Windows bash path with spaces.

• Bugfix: vcvars/vcvars_dict not including windows and windows/system32 directories in the path.

17.22 1.0.1 (12-January-2018)

• Fix: conan new does not generate cross-building (like os_build) settings by default. They make only sense
for dev-tools used as build_requires

• Fix: conaninfo.txt file does not dump settings with None values

17.23 1.0.0 (10-January-2018)

• Bugfix: Fixed bug from remove_from_path due to Windows path backslash

• Bugfix: Compiler detection in conanbuildinfo.cmake for Visual Studio using toolchains like LLVM (Clang)

• Bugfix: Added quotes to bash path.

17.24 1.0.0-beta5 (8-January-2018)

• Fix: Errors from remotes different to a 404 will raise an error. Disconnected remotes have to be removed from
remotes or use explicit remote with -r myremote

• Fix: cross-building message when building different architecture in same OS

• Fix: conan profile show now shows profile with same syntax as profile files

• Fix: generated test code in conan new templates will not run example app if cross building.

• Fix: conan export-pkg uses the conanfile.py folder as the default --source-folder.

• Bugfix: conan download didn’t download recipe if there are no binaries. Force recipe download.

• Bugfix: Fixed blocked self.run() when stderr outputs large tests, due to full pipe.

386 Chapter 17. Changelog

conan Documentation, Release 1.5.2

17.25 1.0.0-beta4 (4-January-2018)

• Feature: run_in_windows_bash accepts a dict of environment variables to be prioritised inside the bash
shell, mainly intended to control the priority of the tools in the path. Use with vcvars context manager and
vcvars_dict, that returns the PATH environment variable only with the Visual Studio related directories

• Fix: Adding all values to arch_target

• Fix: conan new templates now use new os_build and arch_build settings

• Fix: Updated CMake helper to account for os_build and arch_build new settings

• Fix: Automatic creation of default profile when it is needed by another one (like include(default))

• BugFix: Failed installation (non existing package) was leaving lock files in the cache, reporting a package for
conan search.

• BugFix: Environment variables are now applied to build_requirements() for conan install ..

• BugFix: Dependency graph was raising conflicts for diamonds with alias packages.

• BugFix: Fixed conan export-pkg after a conan install when recipe has options.

17.26 1.0.0-beta3 (28-December-2017)

• Fix: Upgraded pylint and astroid to latest

• Fix: Fixed build_requires with transitive dependencies to other build_requires

• Fix: Improved pyinstaller creation of executable, to allow for py3-64 bits (windows)

• Deprecation: removed all --some_argument, use instead --some-argument in command line.

17.27 1.0.0-beta2 (23-December-2017)

• Feature: New command line UI. Most commands use now the path to the package recipe, like conan export
. user/testing or conan create folder/myconanfile.py user/channel.

• Feature: Better cross-compiling. New settings model for os_build, arch_build, os_target, arch_target.

• Feature: Better Windows OSS ecosystem, with utilities and settings model for MSYS, Cygwin, Mingw, WSL

• Feature: package() will not warn of not copied files for known use cases.

• Feature: reduce the scope of definition of cpp_info, env_info, user_info attributes to package_info()
method, to avoid unexpected errors.

• Feature: extended the use of addressing folder and conanfiles with different names for source, package and
export-pkg commands

• Feature: added support for Zypper system package tool

• Fix: Fixed application of build requires from profiles that didn’t apply to requires in recipes

• Fix: Improved “test package” message in output log

• Fix: updated CI templates generated with conan new

• Deprecation: Removed self.copy_headers and family for the package() method

• Deprecation: Removed self.conanfile_directory attribute.

17.25. 1.0.0-beta4 (4-January-2018) 387

conan Documentation, Release 1.5.2

Note: This is a beta release, shouldn’t be installed unless you do it explicitly

$ pip install conan==1.0.0b2 –upgrade

Breaking changes

• The new command line UI breaks command line tools and integration. Most cases, just add a . to the command.

• Removed self.copy_headers, self.copy_libs, methods for package(). Use self.copy() instead.

• Removed self.conanfile_directory attribute. Use self.source_folder, self.build_folder, etc. in-
stead

17.28 0.30.3 (15-December-2017)

• Reverted CMake() and Meson() build helpers to keep old behavior.

• Forced Astroid dependency to < 1.6 because of py3 issues.

17.29 0.30.2 (14-December-2017)

• Fix: CMake() and Meson() build helpers and relative directories regression.

• Fix: ycm generator, removed the access of cpp_info to generators, keeping the access to deps_cpp_info.

17.30 0.30.1 (12-December-2017)

• Feature: Introduced major versions for gcc (5, 6, 7) as defaults settings for OSS packages, as minors are compat-
ible by default

• Feature: VisualStudioBuildEnvironment has added more compilation and link flags.

• Feature: new MSBuild() build helper that wraps the call to msvc_build_command() with the correct applica-
tion of environment variables with the improved VisualStudioBuildEnvironment

• Feature: CMake and Meson build helpers got a new cache_build_dir argument for
configure(cache_build_dir=None) that will be used to define a build directory while the package is
being built in local cache, but not when built locally

• Feature: conanfiles got a new apply_env attribute, defaulted to True. If false, the environment variables
from dependencies will not be automatically applied. Useful if you don’t want some dependency adding itself to
the PATH by default, for example

• Feature: allow recipes to use and run python code installed with conan config install.

• Feature: conanbuildinfo.cmake now has KEEP_RPATHS as argument to keep the RPATHS, as opposed to
old SKIP_RPATH which was confusing. Also, it uses set(CMAKE_INSTALL_NAME_DIR “”) to keep the old
behavior even for CMake >= 3.9

• Feature: conan info is able to get profile information from the previous install, instead of requiring it as input
again

• Feature: tools.unix_path support MSYS, Cygwin, WSL path flavors

• Feature: added destination folder argument to tools.get() function

388 Chapter 17. Changelog

conan Documentation, Release 1.5.2

• Feature: SystemPackageTool for apt-get now uses --no-install-recommends automatically.

• Feature: visual_studio_multi generator now uses toolsets instead of IDE version to identify files.

• Fix: generators failures print traces to help debugging

• Fix: typos in generator names, or non-existing generator now raise an Error instead of a warning

• Fix: short_paths feature is active by default in Windows. If you want to opt-out, you can use
CONAN_USER_HOME_SHORT=None

• Fix: SystemPackageTool doesn’t use sudo in Windows

• BugFix: Not using parallel builds for Visual<10 in CMake build helper.

• Deprecation: conanfile_directory` shouldn't be used anymore in recipes. Use
``source_folder, build_folder, etc.

Note: Breaking changes

• scopes have been completely removed. You can use environment variables, or the conanfile.develop or
conanfile.in_local_cache attributes instead.

• Command test_package has been removed. Use conan create` instead, and conan test` for just running
package tests.

• werror behavior is now by default. Dependencies conflicts will now error, and have to be fixed.

• short_paths feature is again active by default in Windows, even with Py3.6 and system LongPathsEnabled.

• ConfigureEnvironment and GCC build helpers have been completely removed

17.31 0.29.2 (2-December-2017)

• Updated python cryptography requirement for OSX due the pyOpenSSL upgrade. See more: https://pypi.org/
project/pyOpenSSL/

17.32 0.29.1 (23-November-2017)

• Support for OSX High Sierra

• Reverted concurrency locks to counters, removed psutil dependency

• Implemented migration for settings.yml (for new VS toolsets)

• Fixed encoding issues in conan_server

17.31. 0.29.2 (2-December-2017) 389

https://pypi.org/project/pyOpenSSL/
https://pypi.org/project/pyOpenSSL/

conan Documentation, Release 1.5.2

17.33 0.29.0 (21-November-2017)

• Feature: Support for WindowsStore (WinRT, UWP)

• Feature: Support for Visual Studio Toolsets.

• Feature: New boost-build generator for generic bjam (not only Boost)

• Feature: new tools.PkgConfig helper to parse pkg-config (.pc) files.

• Feature: Added self.develop conanfile variable. It is true for conan create packages and for local devel-
opment.

• Feature: Added self.keep_imports to avoid removal of imported files in the build() method. Convenient
for re-packaging.

• Feature: Autodected MSYS2 for SystemPackageTool

• Feature: AutoToolsBuildEnvironment now auto-loads pkg_config_path (to use with pkg_config gener-
ator)

• Feature: Changed search for profiles. Profiles not found in the default profiles folder, will be searched for
locally. Use ./myprofile to force local search only.

• Feature: Parallel builds for Visual Studio (previously it was only parallel compilation within builds)

• Feature: implemented syntax to check options with if "something" in self.options.myoption

• Fix: Fixed CMake dependency graph when using TARGETS, that produced wrong link order for transitive
dependencies.

• Fix: Trying to download the exports_sources is not longer done if such attribute is not defined

• Fix: Added output directories in cmake generator for RelWithDebInfo and MinSizeRel configs

• Fix: Locks for concurrent access to local cache now use process IDs (PIDs) to handle interruptions and incon-
sistent states. Also, adding messages when locking.

• Fix: Not remove the .zip file after a conan config install if such file is local

• Fix: Fixed CMake.test() for the Ninja generator

• Fix: Do not crete local conaninfo.txt file for conan install <pkg-ref> commands.

• Fix: Solved issue with multiple repetitions of the same command line argument

• BugFix: Don’t rebuild conan created (with conan-create) packages when build_policy="always"

• BugFix: conan copy was always copying binaries, now can copy only recipes

• BugFix: A bug in download was causing appends insteads of overwriting for repeated downloads.

• Development: Large restructuring of files (new cmd and build folders)

• Deprecation: Removed old CMake helper methods (only valid constructor is CMake(self))

• Deprecation: Removed old conan_info() method, that was superseded by package_id()

Note: Breaking changes

• CMAKE_LIBRARY_OUTPUT_DIRECTORY definition has been introduced in conan_basic_setup(), it
will send shared libraries .so to the lib folder in Linux systems. Right now it was undefined.

• Profile search logic has slightly changed. For -pr=myprofile, such profile will be searched both in the default
folder and in the local one if not existing. Use -pr=./myprofile to force local search only.

390 Chapter 17. Changelog

conan Documentation, Release 1.5.2

• The conan copy command has been fixed. To copy all binaries, it is necessary to explicit --all, as other
commands do.

• The only valid use of CMake helper is CMake(self) syntax.

• If using conan_info(), replace it with package_id().

• Removed environment variable CONAN_CMAKE_TOOLSET, now the toolset can be specified as a subsetting of
Visual Studio compiler or specified in the build helpers.

17.34 0.28.1 (31-October-2017)

• BugFix: Downloading (tools.download) of files with content-encoding=gzip were raising an exception
because the downloaded content length didn’t match the http header content-length

17.35 0.28.0 (26-October-2017)

This is a big release, with many important and core changes. Also with a huge number of community contributions,
thanks very much!

• Feature: Major revamp of most conan commands, making command line arguments homogeneous. Much
better development flow adapting to user layouts, with install-folder, source-folder, build-folder,
package-folder.

• Feature: new deploy() method, useful for installing binaries from conan packages

• Feature: Implemented some concurrency support for the conan local cache. Parallel conan install and
conan create for different configurations should be possible.

• Feature: options now allow patterns in command line: -o *:myoption=myvalue applies to all packages

• Feature: new pc generator that generates files from dependencies for pkg-config

• Feature: new Meson helper, similar to CMake for Meson build system. Works well with pc generator.

• Feature: Support for read-only cache with CONAN_READ_ONLY_CACHE environment variable

• Feature: new visual_studio_multi generator to load Debug/Release, 32/64 configs at once

• Feature: new tools.which helper to locate executables

• Feature: new conan --help layout

• Feature: allow to override compiler version in vcvars_command

• Feature: conan user interactive (and not exposed) password input for empty -p argument

• Feature: Support for PacManTool for system_requirements() for ArchLinux

• Feature: Define VS toolset in CMake constructor and from environment variable CONAN_CMAKE_TOOLSET

• Feature: conan create now accepts werror argument

• Feature: AutoToolsBuildEnvironment can use CONAN_MAKE_PROGRAM env-var to define make program

• Feature: added xcode9 for apple-clang 9.0, clang 5 to default settings.yml

• Feature: deactivation of short_paths in Windows 10 with Py3.6 and long path support is automatic

• Feature: show unzip progress by percentage, not by file (do not clutters output)

17.34. 0.28.1 (31-October-2017) 391

conan Documentation, Release 1.5.2

• Feature: do not use sudo for system requirements if already running as root

• Feature: tools.download able to use headers/auth

• Feature: conan does not longer generate bytecode from recipes (no more .pyc, and more efficient)

• Feature: add parallel argument to build_sln_command for VS

• Feature: Show warning if vs150comntools is an invalid path

• Feature: tools.get() now has arguments for hash checking

• Fix: upload pattern now accepts Pkg/*

• Fix: improved downloader, make more robust, better streaming

• Fix: tools.patch now support adding/removal of files

• Fix: The default profile is no longer taken as a base and merged with user profile. Use explicit
include(default) instead.

• Fix: properly manage x86 as cross building with autotools

• Fix: tools.unzip removed unnecessary long-paths check in Windows

• Fix: package_info() is no longer executed at install for the consumer conanfile.py

• BugFix: source folder was not being correctly removed when recipe was updated

• BugFix: fixed CMAKE_C_FLAGS_DEBUG definition in cmake generator

• BugFix: CMAKE_SYSTEM_NAME is now Darwin for iOS, watchOS and tvOS

• BugFix: xcode generator fixed handling of compiler flags

• BugFix: pyinstaller hidden import that broke .deb installer

• BugFix: conan profile list when local files matched profile names

Note: Breaking changes

This is an important release towards stabilizing conan and moving out of beta. Some breaking changes have been
done, but mostly to command line arguments, so they should be easy to fix. Package recipes or existing packages
shouldn’t break. Please update, it is very important to ease the transition of future stable releases. Do not hesitate to
ask questions, or for help if you need it. This is a possibly not complete list of things to take into account:

• The command conan install doesn’t accept cwd anymore, to change the directory where the generator files
are written, use the --install-folder parameter.

• The command conan install doesn’t accept --all anymore. Use conan download <ref> instead.

• The command conan build now requires the path to the conanfile.py (optional before)

• The command conan package not longer re-package a package in the local cache, now it only operates in
a user local folder. The recommended way to re-package a package is using conan build and then conan
export-pkg.

• Removed conan package_files in favor of a new command conan export-pkg. It requires a local recipe
with a package() method.

• The command conan source no longer operates in the local cache. now it only operates in a user local folder.
If you used conan source with a reference to workaround the concurrency, now it natively supported, you can
remove the command call and trust concurrent install processes.

• The command conan imports doesn’t accept -d, --dest anymore, use --imports-folder parameter in-
stead.

392 Chapter 17. Changelog

conan Documentation, Release 1.5.2

• If you specify a profile in a conan command, like conan create or conan install the base profile ~/.co-
nan/profiles/default won’t be applied. Use explicit include to keep the old behavior.

17.36 0.27.0 (20-September-2017)

• Feature: conan config install <url> new command. Will install remotes, profiles, settings, conan.conf
and other files into the local conan installation. Perfect to synchronize configuration among teams

• Feature: improved traceback printing when errors are raised for more context. Configurable via env

• Feature: filtering out non existing directories in cpp_info (include, lib, etc), so some build systems don’t com-
plain about them.

• Feature: Added include directories to ResourceCompiler and to MIDL compiler in visual_studio generator

• Feature: new visual_studio_legacy generator for Visual Studio 2008

• Feature: show path where manifests are locally stored

• Feature: replace_in_file now raises error if replacement is not done (opt-out parameter)

• Feature: enabled in conan.conf [proxies] section no_proxy=url1,url2 configuration (to skip proxying for
those URLs), as well as http=None and https=None to explicitly disable them.

• Feature: new conanfile self.in_local_cache attribute for conditional logic to apply in user folders local
commands

• Feature: CONAN_USER_HOME_SHORT=None can disable the usage of short_paths in Windows, for modern
Windows that enable long paths at the system level

• Feature: if "arm" in self.settings.arch is now a valid check (without casting to str(self.settings.arch))

• Feature: added cwd`` argument to conan source local method.

• Fix: unzip crashed for 0 Bytes zip files

• Fix: collect_libs moved to the tools module

• Bugfix: fixed wrong regex in deps_cpp_info causing issues with dots and dashes in package names

• Development: Several internal refactors (tools module, installer), testing (using VS2015 as default, removing VS
12 in testing). Conditional CI in travis for faster builds in developers, downgrading to CMake 3.7 in appveyor

• Deprecation: dev_requires have been removed (it was not documented, but accessible via the
requires(dev=True) parameter. Superseded by build_requires.

• Deprecation: sources tgz files for exported sources no longer contain “.c_src” subfolder. Packages created with
0.27 will be incompatible with conan < 0.25

17.37 0.26.1 (05-September-2017)

• Feature: added apple-clang 9.0 to default settings.

• Fix: conan copy command now supports symlinks.

• Fix: fixed removal of “export_source” folder when files have no permissions

• Bugfix: fixed parsing of conanbuildinfo.txt with package names containing dots.

17.36. 0.27.0 (20-September-2017) 393

conan Documentation, Release 1.5.2

17.38 0.26.0 (31-August-2017)

• Feature: conan profile command has implemented update, new, remove subcommands, with detect``, to
allow creation, edition and management of profiles.

• Feature: conan package_files command now can call recipe package() method if build_folder`` or
source_folder`` arguments are defined

• Feature: graph loading algorithm improved to avoid repeating nodes. Results in much faster times for dense
graphs, and avoids duplications of private requirements.

• Feature: authentication based on environment variables. Allows very long processes without tokens being ex-
pired.

• Feature: Definition of Visual Studio runtime setting MD or MDd is now automatic based on build type, not neces-
sary to default in profile.

• Feature: Capturing SystemExit to return user error codes to the system with sys.exit(code)

• Feature: Added SKIP_RPATH argument to cmake conan_basic_setup() function

• Feature: Optimized uploads, now uploads will be skipped if there are no changes, irrespective of timestamp

• Feature: Automatic detection of VS 15-2017, via both a vs150comntools variable, and using vswhere.exe

• Feature: Added NO_OUTPUT_DIRS argument to cmake conan_basic_setup() function

• Feature: Add support for Chocolatey system package manager for Windows.

• Feature: Improved in conan user home and path storage configuration, better error checks.

• Feature: export command is now able to export recipes without name or version, specifying the full reference.

• Feature: Added new default settings, Arduino, gcc-7.2

• Feature: Add conan settings to cmake generated file

• Feature: new tools.replace_prefix_in_pc_file() function to help with .pc files.

• Feature: Adding support for system package tool pkgutil on Solaris

• Feature: conan remote update now allows --insert argument to change remote order

• Feature: Add verbose definition to CMake helper.

• Fix: conan package working locally failed if not specified build_folder

• Fix: Search when using wildcards for version like Pkg/*@user/channel

• Fix: Change current working directory to the conanfile.py one before loading it, so relative python imports or
code work.

• Fix: package_files command now works with short_paths too.

• Fix: adding missing require of tested package in test_package/conanfile build() method

• Fix: path joining in vcvars_command for custom VS paths defined via env-vars

• Fix: better managing string escaping in CMake variables

• Fix: ExecutablePath assignment has been removed from the visual_studio generator.

• Fix: removing export_source folder containing exported code, fix issues with read-only files and keeps cache
consistency better.

• Fix: Accept 100 return code from yum check-update

• Fix: importing *.so files from the conan new generated test templates

394 Chapter 17. Changelog

conan Documentation, Release 1.5.2

• Fix: progress bars display when download/uploads are not multipart (reported size 0)

• Bugfix: fixed wrong OSX DYLD_LIBRARY_PATH variable for virtual environments

• Bugfix: FileCopier had a bug that affected self.copy() commands, changing base reference directory.

17.39 0.25.1 (20-July-2017)

• Bugfix: Build requires are now applied correctly to test_package projects.

• Fix: Fixed search command to print an error when –table parameter is used without a reference.

• Fix: install() method of the CMake() helper, allows parallel building, change build folder and custom parameters.

• Fix: Controlled errors in migration, print warning if conan is not able to remove a package directory.

17.40 0.25.0 (19-July-2017)

Note: This release introduces a new layout for the local cache, with dedicated export_source folder to store the
source code exported with exports_sources feature, which is much cleaner than the old .c_src subfolder. A mi-
gration is included to remove from the local cache packages with the old layout.

• Feature: new conan create command that supersedes test_package for creating and testing package. It works
even without the test_package folder, and have improved management for user, channel. The test_package recipe
no longer defines requires

• Feature: new conan get command that display (with syntax highlight) package recipes, and any other file from
conan: recipes, conaninfo.txt, manifests, etc.

• Feature: new conan alias command that creates a special package recipe, that works like an alias or a proxy
to other package, allowing easy definition and transparent management of “using the latest minor” and similar
policies. Those special alias packages do not appear in the dependency graph.

• Feature: new conan search --table=file.html command that will output an html file with a graphical
representation of available binaries

• Feature: created default profile, that replace the [settings_default] in conan.conf and augments it, allow-
ing to define more things like env-vars, options, build_requires, etc.

• Feature: new self.user_info member that can be used in package_info() to define custom user variables,
that will be translated to general purpose variables by generators.

• Feature: conan remove learned the --outdated argument, to remove those binary packages that are outdated
from the recipe, both from local cache and remotes

• Feature: conan search learned the --outdated argument, to show only those binary packages that are out-
dated from the recipe, both from local cache and remotes

• Feature: Automatic management CMAKE_TOOLCHAIN_FILE in CMake helper for cross-building.

• Feature: created conan_api, a python API interface to conan functionality.

• Feature: new cmake.install() method of CMake helper.

• Feature: short_paths feature now applies also to exports_sources

• Feature: SystemPackageTool now supports FreeBSD system packages

17.39. 0.25.1 (20-July-2017) 395

conan Documentation, Release 1.5.2

• Feature: build_requires now manage options too, also default options in package recipes

• Feature: conan build learned new --package_folder argument, useful if the build system perform the pack-
aging

• Feature: CMake helper now defines by default CMAKE_INSTALL_PREFIX pointing to the current package_folder,
so cmake.install() can transparently execute the packaging.

• Feature: improved command UX with cwd`` arguments to allow define the current directory for the command

• Feature: improved VisualStudioBuildEnvironment

• Feature: transfers now show size (MB, KB) of download/uploaded files, and current status of transfer.

• Feature: conan new now has arguments to generate CI scripts for Gitlab CI.

• Feature: Added MinRelSize and RelWithDebInfo management in CMake helper.

• Fix: make mkdir, rmdir, relative_dirs available for import from conans module.

• Fix: improved detection of Visual Studio default under cygwin environment.

• Fix: package_files now allows symlinks

• Fix: Windows installer now includes conan_build_info tool.

• Fix: appending environment variables instead of overwriting them when they come from different origins: up-
stream dependencies and profiles.

• Fix: made opt-in the check of package integrity before uploads, it was taking too much time, and provide little
value for most users.

• Fix: Package recipe linter removed some false positives

• Fix: default settings from conan.conf do not fail for constrained settings in recipes.

• Fix: Allowing to define package remote with conan remote add_ref before download/upload.

• Fix: removed duplicated BUILD_SHARED_LIBS in test_package

• Fix: add “rhel” to list of distros using yum.

• Bugfix: allowing relative paths in exports and exports_sources fields

• Bugfix: allow custom user generators with underscore

17.41 0.24.0 (15-June-2017)

• Feature: conan new new arguments to generate Travis-CI and Appveyor files for Continuous Integration

• Feature: Profile files with include() and variable declaration

• Feature: Added RelWithDebInfo/MinRelSize to cmake generators

• Feature: Improved linter, removing false positives due to dynamic conanfile attributes

• Feature: Added tools.ftp_download() function for FTP retrieval

• Feature: Managing symlinks between folders.

• Feature: conan remote add command learned new insert`` option to add remotes in specific order.

• Feature: support multi-config in the SCons generator

• Feature: support for gcc 7.1+ detection

396 Chapter 17. Changelog

conan Documentation, Release 1.5.2

• Feature: tools now are using global requests and output instances. Proxies will work for tools.
download()

• Feature: json`` parameter added to conan info` command to create a JSON with the build_order.

• Fix: update default repos, now pointing to Bintray.

• Fix: printing outdated from recipe also for remotes

• Fix: Fix required slash in configure_dir of AutoToolsBuildEnvironment

• Fix: command new with very short names, now errors earlier.

• Fix: better error detection for incorrect Conanfile.py letter case.

• Fix: Improved some cmake robustness using quotes to avoid cmake errors

• BugFix: Fixed incorrect firing of building due to build`` patterns error

• BugFix: Fixed bug with options incorrectly applied to build_requires and crashing

• Refactor: internal refactors toward having a python api to conan functionality

17.42 0.23.1 (05-June-2017)

• BugFix: Fixed bug while packaging symlinked folders in build folder, and target not being packaged.

• Relaxed OSX requirement of pyopenssl to <18

17.43 0.23.0 (01-June-2017)

• Feature: new build_requires field and build_requirements() in package recipes

• Feature: improved commands (source, build, package, package_files) and workflows for local development of
packages in user folders.

• Feature: implemented no_copy_source attribute in recipes to avoid the copy of source code from “source”
to “build folder”. Created new self.source_folder, self.build_folder, self.package_folder for
recipes to use.

• Feature: improved qmake generator with multi-config support, resource directories

• Feature: improved exception capture and formatting for all recipe user methods exceptions

• Feature: new tools.sha256() method

• Feature: folder symlinks working now for packages and upload/download

• Feature: added set_find_paths() to cmake-multi, to set CMake FindXXX.cmake paths. This will work
only for single-config build-systems.

• Feature: using environment variables for configure(), requirements() and test() methods

• Feature: added a pylintrc environment variable in conan.conf to define a PYLINTRC file with custom style
definitions (like indents).

• Feature: fixed vcvars architecture setting

• Fix: Make cacert.pem folder use CONAN_USER_HOME if existing

• Fix: fixed options=a=b option definition

• Fix: package_files command allows force`` argument to overwrite existing instead of failing

17.42. 0.23.1 (05-June-2017) 397

conan Documentation, Release 1.5.2

• BugFix: Package names with underscore when parsing conanbuildinfo.txt

17.44 0.22.3 (03-May-2017)

• Fix: Fixed CMake generator (in targets mode) with linker/exe flags like –framework XXX containing spaces.

17.45 0.22.2 (20-April-2017)

• Fix: Fixed regression with usernames starting with non-alphabetical characters, introduced by 0.22.0

17.46 0.22.1 (18-April-2017)

• Fix: “-” symbol available again in usernames.

• Fix: Added future requirement to solve an error with pyinstaller generating the Windows installer.

17.47 0.22.0 (18-April-2017)

• Feature: [build_requires] can now be declared in profiles and apply them to build packages. Those
requirements are only installed if the package is required to build from sources, and do not affect its package
ID hash, and it is not necessary to define them in the package recipe. Ideal for testing libraries, cross compiling
toolchains (like Android), development tools, etc.

• Feature: Much improved support for cross-building. Support for cross-building to Android provided, with
toolchains installable via build_requires.

• Feature: New package_files command, that is able to create binary packages directly from user files, without
needing to define build() or package() methods in the the recipes.

• Feature: command conan new with a new bare`` option that will create a minimal package recipe, usable with
the package_files command.

• Feature: Improved CMake helper, with test() method, automatic setting of BUILD_SHARED_LIBS, better
management of variables, support for parallel compilation in MSVC (via /MP)

• Feature: new tools.msvc_build_command() helper that both sets the Visual vcvars and calls Visual to build
the solution. Also vcvars_command is improved to return non-empty string even if vcvars is set, for easier
concatenation.

• Feature: Added package recipe linter, warning for potential errors and also about Python 3 incompatibilities
when running from Python 2. Enabled by default can be opt-out.

• Feature: Improvements in HTML output of conan info --graph.

• Feature: allow custom path to bash, as configuration and environment variable.

• Fix: Not issuing an unused variable warning in CMake for the CONAN_EXPORTED variable

• Fix: added new mips architectures and latest compiler versions to default settings.yml

• Fix: Unified username allowed patterns to those used in package references.

• Fix: hardcoded vs15 version in tools.vcvars

398 Chapter 17. Changelog

conan Documentation, Release 1.5.2

• BugFix: Clean crash and improved error messages when manifests mistmatch exists in conan upload.

17.48 0.21.2 (04-April-2017)

• Bugfix: virtualenv generator quoting environment variables in Windows.

17.49 0.21.1 (23-March-2017)

• BugFix: Fixed missing dependencies in AutoToolsBuildEnvironment

• BugFix: Escaping single quotes in html graph of conan info --graph=file.html.

• BugFix: Fixed loading of auth plugins in conan_server

• BugFix: Fixed visual_studio generator creating XML with dots.

17.50 0.21.0 (21-March-2017)

• Feature: conan info --graph or graph=file.html`` will generate a dependency graph representation in dot or
html formats.

• Feature: Added better support and tests for Solaris Sparc.

• Feature: custom authenticators are now possible in conan_server` with plugins.

• Feature: extended conan info command with path information and filter by packages.

• Feature: enabled conditional binary packages removal with conan remove with query syntax

• Feature: enabled generation and validation of manifests from test_package.

• Feature: allowing options definitions in profiles

• Feature: new RunEnvironment helper, that makes easier to run binaries from dependent packages

• Feature: new virtualrunenv generator that activates environment variable for execution of binaries from in-
stalled packages, without requiring imports of shared libraries.

• Feature: adding new version modes for ABI compatibility definition in package_id().

• Feature: Extended conan new command with new option for exports_sources example recipe.

• Feature: CMake helper defining parallel builds for gcc-like compilers via jN``, allowing user definition with
environment variable and in conan.conf.

• Feature: conan profile` command now show profiles in alphabetical order.

• Feature: extended visual_studio generator with more information and binary paths for execution with DLLs
paths.

• Feature: Allowing relative paths with $PROFILE_DIR place holder in profiles

• Fix: using only file checksums to decide for modified recipe in remote, for possible concurrent builds & uploads.

• Fix: Improved build`` modes management, with better checks and allowing multiple definitions and mixtures of
conditions

• Fix: Replaced warning for non-matching OS to one message stating the cross-build

17.48. 0.21.2 (04-April-2017) 399

conan Documentation, Release 1.5.2

• Fix: local conan source` command (working in user folder) now properly executes the equivalent of exports
functionality

• Fix: Setting command line arguments to cmake command as CMake flags, while using the TARGETS approach.
Otherwise, arch flags like -m32 -m64 for gcc were not applied.

• BugFix: fixed conan imports destination folder issue.

• BugFix: Allowing environment variables with spaces

• BugFix: fix for CMake with targets usage of multiple flags.

• BugFix: Fixed crash of cmake_multi generator for “multi-config” packages.

17.51 0.20.3 (06-March-2017)

• Fix: Added opt-out for CMAKE_SYSTEM_NAME automatically added when cross-building, causing users providing
their own cross-build to fail

• BugFix: Corrected usage of CONAN_CFLAGS instead of CONAN_C_FLAGS in cmake targets

17.52 0.20.2 (02-March-2017)

• Fix: Regression of visual_studio``generator using ``%(ExecutablePath) instead of
$(ExecutablePath)

• Fix: Regression for build=outdated –build=Pkg`` install pattern

17.53 0.20.1 (01-March-2017)

• Fix: Disabled the use of cached settings and options from installed conaninfo.txt

• Fix: Revert the use of quotes in cmake generator for flags.

• Fix: Allow comments in artifacts.properties

• Fix: Added missing commit for CMake new helpers

17.54 0.20.0 (27-February-2017)

NOTE: It is important that if you upgrade to this version, all the clients connected to the same remote, should upgrade
too. Packages created with conan>=0.20.0 might not be usable with conan older conan clients.

• Feature: Largely improved management of environment variables, declaration in package_info(), definition
in profiles, in command line, per package, propagation to consumers.

• Feature: New build helpers AutotoolsBuildEnvironment, VisualStudioBuildEnvironment, which dep-
recate ConfigureEnvironment, with much better usage of environment variables

• Feature: New virtualbuildenv generator that will generate a composable environment with build information
from installed dependencies.

• Feature: New build_id() recipe method that allows to define logic to build once, and package multiple times
without building. E.g.: build once both debug and release artifacts, then package separately.

400 Chapter 17. Changelog

conan Documentation, Release 1.5.2

• Feature: Multi-config packages. Now packages can provide multi-configuration packages, like both de-
bug/release artifacts in the same package, with self.cpp_info.debug.libs = [...] syntax. Not restricted
to debug/release, can be used for other purposes.

• Feature: new conan config command to manage, edit, display conan.conf entries

• Feature: Improvements to CMake build helper, now it has configure() and build() methods for common
operations.

• Feature: Improvements to SystemPackageToolwith detection of installed packages, improved implementation,
installation of multi-name packages.

• Feature: Unzip with tools.unzip maintaining permissions (Linux, OSX)

• Feature: conan info command now allows profiles too

• Feature: new tools unix_path(), escape_windows_cmd(), run_in_windows_bash(), useful for autotools
projects in Win/MinGW/Msys

• Feature: new context manager tools.chdir, to temporarily change directory.

• Feature: CMake using CMAKE_SYSTEM_NAME for cross-compiling.

• Feature: Artifactory build-info extraction from traces

• Feature: Attach custom headers to artifacts uploads with an artifacts.properties file.

• Feature: allow and copy symlinks while conan export

• Fix: removing quotes in some cmake variables that were generating incorrect builds

• Fix: providing better error messages for non existing binaries, with links to the docs

• Fix: improved error messages if tools.patch failed

• Fix: adding resdirs to cpp_info propagated information, and cmake variables, for directories containing
resources and other data.

• Fix: printing error messages if a build`` policy doesn’t match any package

• Fix: managing VS2017 by tools. Still the manual definition of vs150comntools required.

• Bug fix: crashes when not supported characters were dumped to terminal by logger

• Bug fix: wrong executable path in Visual Studio generator

17.55 0.19.3 (27-February-2017)

• Fix: backward compatibility for new environment variables. New features to be introduced in 0.20 will produce
that conaninfo.txt will not be correctly parsed, and then package would be “missing”. This will happen for
packages created with 0.20, and consumed with older than 0.19.3

NOTE: It is important that you upgrade at least to this version if you are using remotes with packages that might be
created with latest conan releases (like conan.io).

17.55. 0.19.3 (27-February-2017) 401

conan Documentation, Release 1.5.2

17.56 0.19.2 (15-February-2017)

• Bug fix: Fixed bug with remotes behind proxies

• Bug fix: Fixed bug with exports_sources feature and nested folders

17.57 0.19.1 (02-February-2017)

• Bug fix: Fixed issue with conan copy` followed by conan upload` due to the new exports_sources feature.

17.58 0.19.0 (31-January-2017)

• Feature: exports_sources allows to snapshot sources (like exports) but retrieve them strictly when necessary,
to build from sources. This can largely improve install times for package recipes containing sources

• Feature: new configurable tracer able to create structured logs of conan actions: commands, API calls, etc

• Feature: new logger for self.run actions, able to log information from builds and other commands to files, that
can afterwards be packaged together with the binaries.

• Feature: support for Solaris SunOS

• Feature: Version helper improved with patch, pre, build capabilities to handle 1.3.4-alpha2+build1
versions

• Feature: compress level of tgz is now configurable via CONAN_COMPRESSION_LEVEL environment variable,
default 9. Reducing it can lead to faster compression times, at the expense of slightly bigger archives

• Feature: Add powershell support for virtualenv generator in Windows

• Feature: Improved system_requirements() raising errors when failing, retrying if not successful, being able
to execute in user space for local recipes

• Feature: new cmake helper macro conan_target_link_libraries().

• Feature: new cmake CONAN_EXPORTED variable, can be used in CMakeLists.txt to differentiate building in the
local conan cache as package and building in user space

• Fix: improving the caching of options from conan install in conaninfo.txt and precedence.

• Fix: conan definition of cmake output dirs has been disabled for cmake_multi generator

• Fix: imports() now uses environment variables at “conan install” (but not at “conan imports” yet)

• Fix: conan_info() method has been renamed to package_id(). Backward compatibility is maintained, but
it is strongly encouraged to use the new name.

• Fix: conan_find_libraries now use the NO_CMAKE_FIND_ROOT_PATH parameter for avoiding issue
while cross-compiling

• Fix: disallowing duplicate URLs in remotes, better error management

• Fix: improved error message for wildcard uploads not matching any package

• Fix: remove deprecated platform.linux_distribution(), using new “distro” package

• Bugfix: fixed management of VerifySSL parameter for remotes

• Bugfix: fixed misdetection of compiler version in conanbuildinfo.cmake for apple-clang

402 Chapter 17. Changelog

conan Documentation, Release 1.5.2

• Bugfix: fixed trailing slash in remotes URLs producing crashes

• Refactor: A big refactor has been do to options. Nested options are no longer supported, and option.
suboption will be managed as a single string option.

This has been a huge release with contributors of 11 developers. Thanks very much to all of them!

17.59 0.18.1 (11-January-2017)

• Bug Fix: Handling of transitive private dependencies in modern cmake targets

• Bug Fix: Missing quotes in CMake macro for modern cmake targets

• Bug Fix: Handling LINK_FLAGS in cmake modern targets

• Bug Fix: Environment variables no propagating to test project with test_package command

17.60 0.18.0 (3-January-2017)

• Feature: uploads and downloads with retries on failures. This helps to avoid having to fully rebuild on CI when
a network transfer fails

• Feature: added SCons generator

• Feature: support for Python 3.6, with several fixes. Added Python 3.6 to CI.

• Feature: show package dates in conan info command

• Feature: new cmake_multi generator for multi-configuration IDEs like Visual Studio and XCode

• Feature: support for Visual Studio 2017, VS-15

• Feature: FreeBSD now passes test suite

• Feature: conan upload showing error messages or URL of remote

• Feature: wildcard or pattern upload. Useful to upload multiple packages to a remote.

• Feature: allow defining settings as environment variables. Useful for use cases like dockerized builds.

• Feature: improved help`` messages

• Feature: cmake helper tools to launch conan directly from cmake

• Added code coverage for code repository

• Fix: conan.io badges when containing dash

• Fix: manifests errors due to generated .pyc files

• Bug Fix: unicode error messages crashes

• Bug Fix: duplicated build of same binary package for private dependencies

• Bug Fix: duplicated requirement if using version-ranges and requirements() method.

17.59. 0.18.1 (11-January-2017) 403

conan Documentation, Release 1.5.2

17.61 0.17.2 (21-December-2016)

• Bug Fix: ConfigureEnvironment helper ignoring libcxx setting. #791

17.62 0.17.1 (15-December-2016)

• Bug Fix: conan install –all generating corrupted packages. Thanks to @yogeva

• Improved case sensitive folder management.

• Fix: appveyor links in README.

17.63 0.17.0 (13-December-2016)

• Feature: support for modern cmake with cmake INTERFACE IMPORTED targets defined per package

• Feature: support for more advanced queries in search.

• Feature: new profile list|show command, able to list or show details of profiles

• Feature: adding preliminary support for FreeBSD

• Feature: added new description field, to document package contents.

• Feature: generation of imports manifest and conan imports --undo functionality to remove imported files

• Feature: optional SSL certificate verification for remotes, to allow self signed certificates

• Feature: allowing custom paths in profiles, so profiles can be easily shared in teams, just inside the source
repository or elsewhere.

• Feature: fields user and channel now available in conan recipes. That allows to declare requirements for the
same user/channel as the current package.

• Feature: improved conan.io package web, adding description.

• Fix: allow to modify cmake generator in CMake helper class.

• Fix: added strip parameter to tools.patch() utility

• Fix: removed unused dependency to Boto

• Fix: wrong line endings in Windows for conan.conf

• Fix: proper automatic use of txt and env generators in test_package

• Bug fix: solved problem when uploading python packages that generated .pyc at execution

• Bug fix: crash when duplicate requires were declared in conanfile

• Bug fix: crash with existing imported files with symlinks

• Bug fix: options missing in “copy install command to clipboard” in web

404 Chapter 17. Changelog

conan Documentation, Release 1.5.2

17.64 0.16.1 (05-December-2016)

• Solved bug with test_package with arguments, like scopes.

17.65 0.16.0 (19-November-2016)

Upgrade: The build=outdated`` feature had a change in the hash computation, it might report outdated binaries from
recipes. You can re-build the binaries or ignore it (if you haven’t changed your recipes without re-generating binaries)

• Feature: version ranges. Conan now supports defining requirements with version range expressions like Pkg/
[>1.2,<1.9||1.0.1]@user/channel. Check the version ranges reference for details

• Feature: decoupled imports from normal install. Now conan install --no-imports skips the imports
section.

• Feature: new conan imports command that will execute the imports section without running install

• Feature: overriding settings per package. Now it is possible to specify individual settings for each package.
This can be specified both in the command line and in profiles

• Feature: environment variables definition in the command line, global and per package. This allows to define
specific environment variables as the compiler (CC, CXX) for a specific package. These environment variables
can also be defined in profiles. Check profiles reference

• Feature: Now conan files copies handle symlinks, so files are not duplicated. This will save some space and
improve download speed in some large packages. To enable it, use self.copy(..., links=True)

• Fix: Enabling correct use of MSYS in Windows, by using the Windows C:/... path instead of the MSYS ones

• Fix: Several fixes in conan search, both local and in remotes

• Fix: Manifests line endings and order fix, and hash computation fixed (it had wrong ordering)

• Fix: Removed http->https redirection in conan_server that produced some issues for SSL reversed proxies

• Fix: Taking into account “ANY” definition of settings and options

• Fix: Improved some error messages and failures to encode OS errors with unicode characters

• Update: added new arch ppc64 to default settings

• Update: updated python-requests library version

• Fix: Using generator() instead of compiler to decide on cmake multi-configuration for Ninja+cl builds

• Improved and completed documentation

17.66 0.15.0 (08-November-2016)

Upgrade: If you were using the short_paths feature in Windows for packages with long paths, please reset your
local cache. You could manually remove packages or just run conan remove "*"

• Feature: New build=outdated`` functionality, that allows to build the binary packages for those dependencies
whose recipe has been changed, or if the binary is not existing. Each binary package stores a hash of the recipe
to know if they have to be regenerated (are outdated). This information is also provided in the conan search
<ref>` command. Useful for package creators and CI.

• Feature: Extended the short_paths feature for Windows path limit to the package folder, so package with
very long paths, typically in headers in nested folder hierarchies are supported.

17.64. 0.16.1 (05-December-2016) 405

conan Documentation, Release 1.5.2

• Feature: New tool.build_sln_command() helper to build()Microsoft Visual Studio solution (.sln) projects

• Feature: Extended the source and package command, so together with build they can be fully executed in a
user folder, as a convenience for package creation and testing.

• Feature: Extending the scope of tools.pythonpath to work in local commands too

• Improved the parsing of profiles and better error messages

• Not adding -s compiler flag for clang, as it doesn’t use it.

• Automatic generation of conanenv.txt in local cache, warnings if using local commands and no
conanbuildinfo.txt and no conanenv.txt are present to cache the information form install

• Fix: Fixed bug when using empty initial requirements (requires = "")

• Fix: Added glob hidden import to pyinstaller

• Fix: Fixed minor bugs with short_paths as local search not listing packages

• Fix: Fixed problem with virtual envs in Windows with paths separator (using / instead of)

• Fix: Fixed parsing of conanbuildinfo.txt, so the root folder for each dependency is available in local commands
too

• Fix: Fixed bug in test_package with the test project using the requirements() method.

17.67 0.14.1 (20-October-2016)

• Fixed bug with short_paths feature in windows.

• Improved error messages for non-valid profile test files.

• Remove downloaded tgz package files from remotes after decompress them.

• Fixes bug with install –all and short_paths

17.68 0.14.0 (20-October-2016)

• Feature: Added profiles, as user predefined settings and environment variables (as CC and CXX for compiler
paths). They are stored in files in the conan cache, so they can be easily edited, added, and shared. Use them
with conan install --profile=name

• Feature: short_paths feature for Windows now also handle long paths for the final package, in case that a user
library has a very long final name, with nested subfolders.

• Feature: Added tools.cpu_count() as a helper to retrieve the number of cores, so it can be used in concurrent
builds

• Feature: Detects cycles in the dependency graph, and raise error instead of exhausting recursion limits

• Feature: Conan learned the werror`` option that will raise error and stop installation under some cases treated as
warnings otherwise: Duplicated dependencies, or dependencies conflicts

• Feature: New env generator that generates a text file with the environment variables defined by dependencies,
so it can be stored. Such file is parsed by conan build to be able to use such environment variables for self.
deps_env_info too, in the same way it uses the txt generator to load variables for self.deps_cpp_info.

• Fix: Do not print progress bars when output is a file

• Fix: Improved the local conan search, using options too in the query conan search -q option=value

406 Chapter 17. Changelog

conan Documentation, Release 1.5.2

• Fix: Boto dependency updated to 2.43.0 (necessary for ArchLinux)

• Fix: Simplified the conan package command, removing unused and confusing options, and more informative
messages about errors and utility of this command.

• Fix: More fixes and improvements on ConfigureEnvironment, mainly for Windows

• Fix: Conan now does not generate a conanbuildinfo.txt file when doing conan install <PkgRef>.

• Bug fix: Files of a package recipe are “touched” to update their timestamps to current time when retrieved,
otherwise some build systems as Ninja can have problems with them.

• Bug fix: qmake generator now uses quotes to handle paths with spaces

• Bug fix: Fixed OSInfo to return the short distro name instead of the long one.

• Bug fix: fixed transitivy of private dependencies

17.69 0.13.3 (13-October-2016)

This minor solves some problems with ConfigureEnvironment, mainly for Windows, but also fixes other things:

• Fixed concatenation problems in Windows for several environment variables. Fixed problems with path with
spaces

• A batch file is created in Windows to be called, as if defined structures doesn’t seem to work in the command
line.

• The vcvars_command from tools now checks the Visual Studio environment variable, if it is already set, it
will check it with the current project settings, throwing an error if not matching, returning an empty command
if matches.

• Added a compile_flags property to ConfigureEnvironment, to be passed in the command line to the com-
piler, but not as environment variables

• Added defines to environment for nix systems, it was not being handled before

• Added new tests, compiling simple projects and diamond dependencies with cmake, cl (msvc), gcc (gcc in linux,
mingw in win) and clang (OSX), for a better coverage of the ConfigureEnvironment functionality.

• Fixed wrong CPP_INCLUDE_PATH, it is now CPLUS_INCLUDE_PATH

17.70 0.13.0 (03-October-2016)

IMPORTANT UPGRADE ISSUE: There was a small error in the computation of binary packages IDs, that has been
addressed by conan 0.13. It affects to third level (and higher) binary packages, i.e. A and B in A->B->C->D, which
binaries must be regenerated for the new hashes. If you don’t plan to provide support for older conan releases (<=0.12),
which would be reasonable, you should remove all binaries first (conan remove -p, works both locally and remotely),
then re-build your binaries.

Features:

• Streaming from/to disk for all uploads/downloads. Previously, this was done for memory, but conan started to
have issues for huge packages (>many hundreds Mbs), that sometimes could be alleviated using Python 64 bits
distros. This issues should be alleviated now

• New security system that allows capturing and checking the package recipes and binaries manifests into user
folders (project or any other folder). That ensures that packages cannot be replaced, hacked, forged, changed or
wrongly edited, either locally or in any remote server, without notice.

17.69. 0.13.3 (13-October-2016) 407

conan Documentation, Release 1.5.2

• Possible to handle and reuse python code in recipes. Actually, conan can be used as a package manager for
python, by adding the package path to env_info.PYTHONPATH. Useful if you want to reuse common python
code between different package recipes.

• Avoiding re-compress the tgz for packages after uploads if it didn’t change.

• New command conan source that executes the source() method of a given conanfile. Very useful for CI, if
desired to run in parallel the construction of different binaries.

• New propagation of cpp_info, so it now allows for capturing binary packages libraries with new
collect_libs() helper, and access to created binaries to compute the package_info() in general.

• Command test_package now allows the update`` option, to automatically update dependencies.

• Added new architectures for ppc64le and detection for AArch64

• New methods for defining requires effect over binary packages ID (hash) in conan_info()

• Many bugs fixes: error in tools.downloadwith python 3, restore correct prompt in virtualenvs, bug if removing
an option in config_options(), setup.py bug. . .

This release has contributions from @tru, @raulbocanegra, @tivek, @mathieu, and the feedback of many other conan
users, thanks very much to all of them!

17.71 0.12.0 (13-September-2016)

• Major changes to search api and commands. Decoupled the search of package recipes, from the search of binary
packages.

• Fixed bug that didn’t allow to export or upload packages with settings restrictions if the restrictions didn’t
match the host settings

• Allowing disabling color output with CONAN_COLOR_DISPLAY=0 environment variable, or to configure color
schema for light console backgrounds with CONAN_COLOR_DARK=1 environment variable

• Imports can use absolute paths, and files copied from local conan cache to those paths will not be removed when
conan install. Can be used as a way to install machine-wise things (outside conan local cache)

• More robust handling of failing transfers (network disconnect), and inconsistent status after such

• Large internal refactor for storage managers. Improved implementations and decoupling between server and
client

• Fixed slow conan remove for caches with many packages due to slow deletion of empty folders

• Always allowing explicit options scopes, - o Package:option=value as well as the implicit -o
option=value for current Package, for consistency

• Fixed some bugs in client-server auth process.

• Allow to extract .tar files in tools.unzip()

• Some helpers for conan_info(), as self.info.requires.clear() and removal of settings and options

408 Chapter 17. Changelog

conan Documentation, Release 1.5.2

17.72 0.11.1 (31-August-2016)

• New error reporting for failures in conanfiles, including line number and offending line, much easier for package
creators

• Removed message requesting to create an account in conan.io for other remotes

• Removed localhost:9300 remote that was added by default mostly for demo purposes. Clarified in docs.

• Fixed usernames case-sensitivity in conan_server, due to ConfigParser it was forcing lowercase

• Handling unicode characters in remote responses, fixed crash

• Added new compilers gcc 6.2, clang 8.0 to the default settings.yml

• Bumped cryptography, boto and other conan dependencies, mostly for ArchLinux compatibility and new OSX
security changes

17.73 0.11.0 (3-August-2016)

• New solution for the path length limit in Windows, more robust and complete. Package conanfile.py just have to
declare an attribute short_paths=True and everything will be managed. The old approach is deprecated and
totally removed, so no shorts_paths.conf file is necessary. It should fix also the issues with uploads/retrievals.

• New virtualenv generator that generates activate and deactivate scripts that set environment variables
in the current shell. It is very useful, for example to install tools (like CMake, MinGW) with conan packages, so
multiple versions can be installed in the same machine, and switch between them just by activating such virtual
environments. Packages for MinGW and CMake are already available as a demo

• ConfigureEnvironment takes into account environment variables, defined in packages in new env_info, which
is similar to cpp_info but for environment information (like paths).

• New per-package build_policy, which can be set to always or missing, so it is not necessary to create
packages or specify the build`` parameter in command line. Useful for example in header only libraries or to
create packages that always get the latest code from a branch in a github repository.

• Command conan test_package` now executes by default a conan export with smarter package reference
deduction. It is introduced as opt-out behavior.

• Conan :command`export` command avoids copying test_package/build temporary files in case of export=*

• Now, package_info() allows absolute paths in includedir, libdirs and bindirs, so wrapper packages
can be defined that use system or manually installed libraries.

• LDFLAGS in ConfigureEnvironment management of OSX frameworks.

• Options allow the ANY value, so such option would accept any value. For example a commit of a git repository,
useful to create packages that can build any specific commit of a git repo.

• Added gcc 5.4 to the default settings, as well as MinGW options (Exceptions, threads. . .)

• Command conan info learned a new option to output the packages from a project dependency tree that should
be rebuilt in case of a modification of a certain package. It outputs a machine readable ordered list of packages
to be built in that order. Useful for CI systems.

• Better management of incomplete, dirty or failed source directories (e.g. in case of a user interrupting with
Ctrl+C a git clone inside the source() method.

• Added tools for easier detection of different OS versions and distributions, as well as command wrappers to install
system packages (apt, yum). They use sudo via a new environment variable CONAN_SYSREQUIRES_SUDO,
so using sudo is opt-in/out, for users with different sudo needs. Useful for system_requirements()

17.72. 0.11.1 (31-August-2016) 409

conan Documentation, Release 1.5.2

• Deprecated the config() method (still works, for backwards compatibility), but has been replaced by a
config_options() to modify options based on settings, and a configure() method for most use cases. This
removes a nasty behaviour of having the config() method called twice with side effects.

• Now, running a conan install MyLib/0.1@user/channel to directly install packages without any consum-
ing project, is also able to generate files with the -g option. Useful for installing tool packages (MinGW, CMake)
and generate virtualenvs.

• Many small fixes and improvements: detect compiler bug in Py3, search was crashing for remotes, conan new
failed if the package name had a dash, etc.

• Improved some internal duplications of code, refactored many tests.

This has been a big release. Practically 100% of the released features are thanks to active users feedback and contribu-
tions. Thanks very much again to all of them!

17.74 0.10.0 (29-June-2016)

• conan new command, that creates conan package conanfile.py templates, with a test_package package test (-t
option), also for header only packages (-i option)

• Definition of scopes. There is a default dev scope for the user project, but any other scope (test, profile. . .) can
be defined and used in packages. They can be used to fire extra processes (as running tests), but they do not affect
the package binares, and are not included in the package IDs (hash).

• Definition of dev_requires. Those are requirements that are only retrieved when the package is in dev scope,
otherwise they are not. They do not affect the binary packages. Typical use cases would be test libraries or build
scripts.

• Allow shorter paths for specific packages, which can be necessary to build packages with very long path names
(e.g. Qt) in Windows.

• Support for bzip2 and gzip decompression in tools

• Added package_folder attribute to conanfile, so the package()method can for example call cmake install
to create the package.

• Added CONAN_CMAKE_GENERATOR environment variable that allows to override the CMake default generator.
That can be useful to build with Ninja instead of the default Unix Makefiles

• Improved ConfigureEnvironment with include paths in CFLAGS and CPPFLAGS, and fixed bug.

• New conan user --clean option, to completely remove all user data for all remotes.

• Allowed to raise Exceptions in config() method, so it is easier for package creators to raise under non-
supported configurations

• Fixed many small bugs and other small improvements

As always, thanks very much to all contributors and users providing feedback.

410 Chapter 17. Changelog

conan Documentation, Release 1.5.2

17.75 0.9.2 (11-May-2016)

• Fixed download bug that made it specially slow to download, even crash. Thanks to github @melmdk for fixing
it.

• Fixed cmake check of CLang, it was being skipped

• Improved performance. Check for updates has been removed from install, made it opt-in in conan info
command, as it was very slow, seriously affecting performance of large projects.

• Improved internal representation of graph, also improves performance for large projects.

• Fixed bug in conan install --update.

17.76 0.9 (3-May-2016)

• Python 3 “experimental” support. Now the main conan codebase is Python 2 and 3 compatible. Python 2 still
the reference platform, Python 3 stable support in next releases.

• Create and share your own custom generators for any build system or tool. With “generator packages”, you
can write a generator just as any other package, upload it, modify and version it, etc. Require them by reference,
as any other package, and pull it into your projects dynamically.

• Premake4 initial experimental support via a generator package.

• Very large re-write of the documentation. New “creating packages” sections with in-source and out-source
explicit examples. Please read it! :)

• Improved conan test. Renamed test to test_package both for the command and the folder, but backwards
compatibility remains. Custom folder name also possible. Adapted test layout might require minor changes to
your package test, automatic warnings added for your convenience.

• Upgraded pyinstaller to generate binary OS installers from 2.X to 3.1

• conan search now has command line options:, less verbose, verbose, extra verbose

• Added variable with full list of dependencies in conanbuildinfo.cmake

• Several minor bugfixes (check github issues)

• Improved conan user to manage user login to multiple remotes

17.77 0.8.4 (28-Mar-2016)

• Fixed linker problems with the new apple-clang 7.3 due to libraries with no setted timestamp.

• Added apple-clang 7.3 to default settings

• Fixed default libcxx for apple-clang in auto detection of base conan.conf

17.75. 0.9.2 (11-May-2016) 411

conan Documentation, Release 1.5.2

17.78 0.8 (15-Mar-2016)

• New conan remote command to manage remotes. Redesigned remotes architecture, now allows to work with
several remotes in a more consistent, powerful and “git-like” way. New remotes registry keeps track of the remote
of every installed package, and this information is shown in conan info command too. Also, it keeps different
user logins for different remotes, to improve support in corporate environments running in-house servers.

• New update functionality. Now it is possible to conan install --update to update packages that became
obsolete because new ones were uploaded to the corresponding remote. Conan commands as install and info
show information about the status of the local packages compared with the remote ones. In this way, using latest
versions during development is much more natural.

• Added new compiler.libcxx setting in order to support the different c++ standard libraries. It can take libstdc++,
libstdc++11 or libc++ values to take into account different standard libraries for modern gcc and clang compilers.
It is also possible to remove not needed settings, like this one in pure C projects, with the new syntax: del self.
settings.compiler.libcxx

• Conan virtual environment: Define a custom conan directory with CONAN_USER_HOME env variable, and
have a per project or per workspace storage for your dependencies. So you can isolate your dependencies and even
bundle them within your project, by just setting the CONAN_USER_HOME variable to your <project>/deps
folder, for example. This also improves support for continuous integration CI systems, in which many builds
from different users could be run in parallel.

• Better conanfile download method. More stable and now checks (opt-out) the ssl certificates.

• Lots of improvements: Increased library name length limit, Improved and cleaner output messages.

• Fixed several minor bugs: removing empty folders, case sensitive exports, arm settings detection.

• Introduced the concept of “package recipe” that refers to conanfile.py and exported files.

• Improved settings display in web, with new “copy install command to clipboard” to assist in installing packages
discovered in web.

• The OSX installer, problematic with latest OSX releases, has been deprecated in favour of homebrew and pip
install procedures.

17.79 0.7 (5-Feb-2016)

• Custom conanfile names are allowed for developing. With file`` option you can define the file you want to
use, allowing for .conaninfo.txt or having multiple conanfile_dev.py, conanfile_test.py besides the
standard conanfile.pywhich is used for sharing the package. Inheritance is allowed, e.g. conanfile_dev.py
might extend/inherit from conanfile.py.

• New conan copy command that can be used to copy/rename packages, promote them between channels, forking
other users packages.

• New all`` and package`` options for conan install that allows to download one, several, or all package con-
figurations for a given reference.

• Added patch() tool to easily patch sources if necessary.

• New qmake and qbs generators

• Upload of conanfile exported files is also tgz’d, allowing fast upload/downloads of full sources if desired, avoid-
ing retrieval of sources from externals sources.

• conan info command improved showing info of current project too

• Output of run() can be redirected to buffer string for processing, or even removed.

412 Chapter 17. Changelog

conan Documentation, Release 1.5.2

• Added proxy configuration to conan.conf for users behinds proxies.

• Large improvements in commands output, prefixed with package reference, and much clear.

• Updated settings for more versions of gcc and new arm architectures

• Treat dependencies includes as SYSTEM in cmake, so no warnings are raised

• Deleting source folder after conan export so no manual removal is needed

• Normalizing to CRLF generated user files in Win

• Better detection and checks for compilers as VS, apple-clang

• Fixed CMAKE_SHARED_LINKER_FLAGS typo in cmake files

• Large internal refactor in generators

17.80 0.6 (11-Jan-2016)

• New cmake variables in cmake generator to make FindPackage work better thanks to the underlaying FindLibrary.
Now many FindXXX.cmake work “as-is” and the package creator does not have to create a custom override, and
consumers can use packages transparently with the originals FindXXX.cmakes

• New “conan info” command that shows the full dependency graph and details (license, author, url, dependants,
dependencies) for each dependency.

• New environment helper with a ConfigureEnvironment class, that is able to translate conan information to auto-
tools configure environment definition

• Relative importing from conanfiles now is possible. So if you have common functionality between different
packages, you can reuse those python files by importing them from the conanfile.py. Note that export=”. . . ”
might be necessary, as packages as to be self-contained.

• Added YouCompleteMe generator for vim auto-completion of dependencies.

• New “conanfile_directory” property that points to the file in which the conanfile.py is located. This helps if
using the conanfile.py “build” method to build your own project as a project, not a package, to be able to use any
workflow, out-of-source builds, etc.

• Many edits and improvements in help, docs, output messages for many commands.

• All cmake syntax in modern lowercase

• Fixed several minor bugs: gcc detection failure when gcc not installed, missing import, copying source->build
failing when symlinks

17.81 0.5 (18-Dec-2015)

• New cmake functionality allows package creators to provide cmake finders, so that package consumers can
use their CMakeLists.txt with typical FindXXX.cmake files, without any change to them. CMake CO-
NAN_CMAKE_MODULES_PATH added, so that package creators can provide any additional cmake scripts
for consumers.

• Now it is possible to generate out-of-source and multiple configuration installations for the same project, so you
can switch between them without having to conan install again. Check the new workflows

• New qmake generator (thanks @dragly)

17.80. 0.6 (11-Jan-2016) 413

conan Documentation, Release 1.5.2

• Improved removal/deletion of folders with shutil.rmtree, so conan remove commands and other processes re-
quiring deletion of folders do not fail due to permissions and require manual deletion. This is an improvement,
especially in Win.

• Created pip package, so conan can be installed via: pip install conan

• Released pyinstaller code for the creation of binaries from conan python source code. Distros package cre-
ators can create packages for the conan apps easily from those binaries.

• Added md5, sha1, sha256 helpers in tools, so external downloads from conanfile.py files source() can be
checked.

• Added latest gcc versions to default settings.yml

• Added CI support for conan development: travis-ci, appveyor

• Improved human-readability for download progress, help messages.

• Minor bug fixes

414 Chapter 17. Changelog

	Upgrading to conan 1.0
	Command line changes
	Deprecations/removals
	Settings and profiles. GCC/CLang versioning
	New features

	Introduction
	Open Source
	Decentralized package manager
	Binary management
	Cross platform, build system agnostic
	Stable

	Install
	Install with pip (recommended)
	Install from brew (OSX)
	Install from AUR (Arch Linux)
	Install the binaries
	Initial configuration
	Install from source

	Getting started
	A Timer using POCO libraries
	Installing dependencies
	Building the timer example
	Inspecting dependencies
	Searching packages
	Building with other configurations

	Using packages
	Installing dependencies
	Requires
	Overriding requirements

	Generators
	Options
	Imports

	Using profiles
	Workflows
	Single configuration
	Multi configuration

	Creating packages
	Getting started
	Creating the package recipe
	The test_package folder
	Creating and testing packages
	Settings vs. options

	Recipe and sources in a different repo
	Recipe and sources in the same repo
	Exporting the sources with the recipe: exports_sources
	Capturing the remote and commit from git: scm [EXPERIMENTAL]

	Packaging existing binaries
	Packaging pre-built binaries
	Downloading and Packaging pre-built binaries

	Understanding packaging
	Manual package creation and testing
	The package creation process

	Define package ABI compatibility
	Defining a custom package_id()
	The problem of dependencies
	Using package_id() for package dependencies
	Versioning schema
	Library types: Shared, static, header only

	Inspecting packages
	Packaging approaches
	1 config (1 build) -> 1 package
	N configs -> 1 package
	N configs (1 build) -> N packages

	Tools for package creators

	Uploading packages
	Remotes
	Bintray official repositories
	Bintray community repositories

	Uploading packages to remotes
	Using Bintray
	Uploading to Bintray
	Contributing packages to conan-center
	Inclusion guidelines for third party libraries
	One conan package per OSS library
	Recipe quality
	CI Integration
	Bintray package information

	Artifactory Community Edition for C/C++
	Running Artifactory CE
	Creating and using a conan repo
	Migrating from other servers

	Running conan_server
	Running from source (linux)
	Server configuration
	Server parameters
	Running conan server with SSL using nginx
	Running conan server with SSL using nginx in a subdirectory
	Running conan server using Apache
	Permissions parameters
	Authentication
	Create your own custom Authenticator

	Developing packages
	Package development flow
	conan source
	conan install
	conan build
	conan package
	conan export-pkg
	conan test
	conan create

	Workspaces [experimental]
	In-source builds
	conanws.yml syntax
	Known limitations

	Package apps and devtools
	Running and deploying packages
	Using virtual environments
	Imports
	Deployable packages
	Running from packages
	Runtime packages and re-packaging

	Creating conan packages to install dev tools
	Using the tool packages in other recipes
	Using the tool packages in your system

	Build requirements
	Declaring build requirements
	Properties of build requirements
	Testing libraries
	Common python code

	Mastering conan
	Use conanfile.py for consumers
	conan build
	Other local commands

	Conditional settings, options and requirements
	Constrain settings and options

	Version ranges
	Build policies
	Environment variables
	Defining environment variables
	Automatic environment variables inheritance

	Virtual Environments
	Virtualenv generator
	Virtualbuildenv environment
	Virtualrunenv generator

	Logging
	How to log and debug a conan execution
	How to log the build process
	Package the log files

	Sharing the settings and other configuration
	Conan local cache: concurrency, Continuous Integration, isolation
	Concurrency

	Systems and cross building
	Cross building
	GNU triplet convention
	Conan settings
	Cross building with Conan
	Using profiles
	Linux to Windows
	Windows to Raspberry PI (Linux/ARM)
	Linux/Windows/Macos to Android

	Using build requires
	Example: Darwin Toolchain

	Using Docker images
	Preparing recipes to be cross-compiled

	ARM architecture reference

	Windows Subsystems
	Operation Modes
	Running commands inside the subsystem
	self.run()
	AutoToolsBuildEnvironment

	Controlling the build environment

	Integrations
	CMake
	cmake generator
	Global variables approach
	Targets approach

	cmake_multi generator
	Global variables approach
	Targets approach
	Creating packages

	cmake_paths generator
	Included as a toolchain
	Included using the CMAKE_PROJECT_<PROJECT-NAME>_INCLUDE
	Included in your CMakeLists.txt

	cmake_find_package generator
	In a conanfile.py
	In a conanfile.txt

	Build automation
	Find Packages
	Creating a custom FindXXX.cmake file

	Autotools: configure/make
	Visual Studio
	With CMake
	With visual_studio generator
	Calling Visual Studio compiler
	Build an existing Visual Studio project
	Toolsets

	Apple/Xcode
	With CMake
	With the xcode generator

	Compilers on command line
	Android Studio
	CLion
	Using packages in a CLion project
	Creating conan packages in a CLion project

	Ninja, NMake, Borland
	pkg-config and pc files
	Intro
	Approach 1: Import and patch the prefix in the pc files
	Approach 2: Prepare and package pc files before package them
	Approach 3: Use –define-prefix
	Approach 4: Use PKG_CONFIG_$PACKAGE_$VARIABLE
	Approach 5: Use the pkg_config generator

	Boost Build
	QMake
	Example

	Premake
	qbs
	Meson Build
	Docker
	Git
	Temporary files
	Package creators

	Jenkins
	Artifactory and Jenkins integration
	Example: Test your project getting requirements from Artifactory
	Example: Build a conan package and upload it to Artifactory

	Travis Ci
	Building and testing your project
	Creating, testing and uploading conan binary packages

	Appveyor
	Building and testing your project
	Creating, testing and uploading conan binary packages

	Gitlab
	Building and testing your project
	Creating, testing and uploading conan binary packages

	Circle CI
	Building and testing your project
	Creating, testing and uploading conan package binaries

	YouCompleteMe (vim)
	SCons
	Custom integrations
	Use the JSON generator
	Use the text generator
	Use conan data model (conanfile.py)
	Create your own generator

	Howtos
	How to package header-only libraries
	Without unit tests
	With unit tests

	How to launch conan install from cmake
	How to create and reuse packages based on Visual Studio
	Creating packages
	Uploading binaries
	Reusing packages
	Other configurations

	Creating and reusing packages based on Makefiles
	Creating packages
	Using packages

	How to manage the GCC >= 5 ABI
	Using Visual Studio 2017 - CMake integration
	Using cmake-conan
	Using tasks with tasks.vs.json

	How to manage C++ standard
	Build helpers
	Package compatibility

	How to use docker to create and cross build C and C++ conan packages
	Using conan inside a container
	Sharing a local folder with a docker container
	Using the images to cross-build packages
	Available docker images

	How to reuse Python code in recipes
	A basic Python package
	Reusing python code in your recipes
	Requiring a python conan package
	Sharing a python module

	How to create and share a custom generator with generator packages
	Creating a custom generator
	Premake generator example
	Using the generator

	How to manage shared libraries
	Manage Shared Libraries with Environment Variables
	Example
	Using the tool from a different package
	Building an application using the shared library from toolA
	Using shared libraries from dependencies
	Using virtualrunenv generator

	Manage RPATHs
	Default Conan approach
	Different approaches

	How to reuse cmake install for package() method
	How to collaborate on other users’ packages
	Collaborate from source repository
	Copy a package

	How to link with Apple Frameworks
	How to collect licenses of dependencies
	How to capture package version from text or build files
	How to use Conan as other language package manager
	Conan: A Go package manager
	The source code
	Declaring and installing dependencies
	Running our server
	Generating Go packages

	Conan: A Python package manager
	A full Python and C/C++ package manager

	How to manage SSL (TLS) certificates
	Server certificate validation
	Client certificates

	How to check the version of the Conan client inside a conanfile
	Use a generic CI with Conan and Artifactory
	Uploading the BuildInfo

	Reference
	Commands
	Consumer commands
	conan install
	build options
	env variables
	settings
	options

	conan config
	conan config install

	conan get
	conan info
	conan search

	Creator commands
	conan create
	conan export
	conan export-pkg
	conan new
	conan upload
	conan test

	Package development commands
	conan source
	conan build
	conan package

	Misc commands
	conan profile
	conan remote
	conan user
	conan imports
	conan copy
	conan download
	conan remove
	conan alias
	conan help

	Output
	Install and Create output [EXPERIMENTAL]
	Search output [EXPERIMENTAL]
	Upload output [EXPERIMENTAL]
	User output [EXPERIMENTAL]

	conanfile.txt
	Sections
	[requires]
	[build_requires]
	[generators]
	[options]
	[imports]

	conanfile.py
	Attributes
	name
	version
	description
	homepage
	url
	license
	author
	user, channel
	settings
	options, default_options
	requires
	version ranges

	build_requires
	exports
	exports_sources
	generators
	build_policy
	short_paths
	no_copy_source
	folders
	cpp_info
	deps_cpp_info
	env_info
	deps_env_info
	info
	apply_env
	in_local_cache
	develop
	keep_imports
	scm

	Methods
	source()
	build()
	Build helpers
	(Unit) Testing your library

	package()
	package_info()
	cpp_info
	env_info
	user_info

	configure(), config_options()
	requirements()
	build_requirements()
	system_requirements()
	SystemPackageTool

	imports()
	package_id()
	self.info
	self.info.header_only()
	self.info.vs_toolset_compatible() / self.info.vs_toolset_incompatible()
	self.info.discard_build_settings() / self.info.include_build_settings()
	self.info.default_std_matching() / self.info.default_std_non_matching()

	build_id()
	deploy()

	Output and Running
	Output contents
	Running commands

	Generators
	cmake
	Variables in conanbuildinfo.cmake
	Methods available in conanbuildinfo.cmake
	conan_basic_setup
	conan_target_link_libraries
	Other optional methods

	Targets generated by conanbuildinfo.cmake

	cmake_multi
	Usage
	Variables in conanbuildinfo_release.cmake
	Variables in conanbuildinfo_debug.cmake
	Available Methods

	cmake_paths
	Variables in conan_paths.cmake

	cmake_find_package
	Variables in Find{name}.cmake
	Target in Find<package_name>.cmake

	visual_studio
	visual_studio_multi
	Usage

	visual_studio_legacy
	xcode
	compiler_args
	gcc
	Boost Build
	qbs
	qmake
	Methods available in conanbuildinfo.pri

	scons
	pkg_config
	virtualenv
	Created files
	Usage
	Variables declared

	virtualbuildenv
	Created files
	Usage
	Variables declared

	virtualrunenv
	Created files
	Usage
	Variables declared

	youcompleteme
	txt
	File format
	Package declared vars

	json
	dependencies
	deps_env_info
	deps_user_info

	Profiles
	Package settings and env vars
	Profile includes
	Variable declaration
	Examples

	Build helpers
	CMake
	Constructor
	Attributes
	verbose
	command_line (read only)
	build_config (read only)
	definitions

	Methods
	configure()
	build()
	test()
	install()
	patch_config_paths() [EXPERIMENTAL]

	Environment variables

	AutoToolsBuildEnvironment (configure/make)
	Constructor
	Attributes
	fpic
	libs
	include_paths
	library_paths
	defines
	flags
	cxx_flags
	link_flags

	Properties
	vars
	vars_dict

	Methods
	configure()
	make()
	install()

	Environment variables

	MSBuild
	Constructor
	Methods
	build()
	get_command()

	VisualStudioBuildEnvironment
	Meson
	Constructor
	Methods
	configure()
	build()

	Example

	RunEnvironment

	Tools
	tools.cpu_count()
	tools.vcvars_command()
	tools.vcvars_dict()
	tools.vcvars()
	tools.build_sln_command() (DEPRECATED)
	tools.msvc_build_command() (DEPRECATED)
	tools.unzip()
	tools.untargz()
	tools.get()
	tools.get_env()
	tools.download()
	tools.ftp_download()
	tools.replace_in_file()
	tools.check_with_algorithm_sum()
	tools.patch()
	tools.environment_append()
	tools.chdir()
	tools.pythonpath()
	tools.no_op()
	tools.human_size()
	tools.OSInfo and tools.SystemPackageTool
	tools.cross_building()
	tools.get_gnu_triplet()
	tools.run_in_windows_bash()
	tools.get_cased_path()
	tools.remove_from_path()
	tools.unix_path()
	tools.escape_windows_cmd()
	tools.sha1sum(), sha256sum(), md5sum()
	tools.md5()
	tools.save()
	tools.load()
	tools.mkdir(), tools.rmdir()
	tools.which()
	tools.touch()
	tools.relative_dirs()
	tools.vswhere()
	tools.vs_comntools()
	tools.vs_installation_path()
	tools.replace_prefix_in_pc_file()
	tools.collect_libs()
	tools.PkgConfig()
	tools.Git()
	tools.is_apple_os()
	tools.to_apple_arch()
	tools.apple_sdk_name()
	tools.apple_deployment_target_env()
	tools.apple_deployment_target_flag()
	tools.XCRun()

	Configuration files
	conan.conf
	Log
	General
	Storage
	Proxies

	profiles/default
	settings.yml
	registry.txt
	client.crt / client.key
	artifacts.properties

	Environment variables
	CMAKE RELATED VARIABLES
	CONAN_BASH_PATH
	CONAN_CMAKE_GENERATOR
	CONAN_COLOR_DARK
	CONAN_COLOR_DISPLAY
	CONAN_COMPRESSION_LEVEL
	CONAN_CPU_COUNT
	CONAN_NON_INTERACTIVE
	CONAN_ENV_XXXX_YYYY
	CONAN_LOG_RUN_TO_FILE
	CONAN_LOG_RUN_TO_OUTPUT
	CONAN_LOGGING_LEVEL
	CONAN_LOGIN_USERNAME, CONAN_LOGIN_USERNAME_{REMOTE_NAME}
	CONAN_MAKE_PROGRAM
	CONAN_PASSWORD, CONAN_PASSWORD_{REMOTE_NAME}
	CONAN_PRINT_RUN_COMMANDS
	CONAN_READ_ONLY_CACHE
	CONAN_RUN_TESTS
	CONAN_SKIP_VS_PROJECTS_UPGRADE
	CONAN_SYSREQUIRES_MODE
	CONAN_SYSREQUIRES_SUDO
	CONAN_TEMP_TEST_FOLDER
	CONAN_TRACE_FILE
	CONAN_USER, CONAN_CHANNEL
	CONAN_USER_HOME
	CONAN_USER_HOME_SHORT
	CONAN_VERBOSE_TRACEBACK
	CONAN_VS_INSTALLATION_PREFERENCE

	Videos and links
	FAQ
	General
	Is Conan CMake based, or is CMake a requirement?
	Is build-system XXXXX supported?
	Is my compiler, version, architecture, or setting supported?
	Does it run offline?
	Is it possible to install 2 different versions of the same library?
	Can I run multiple conan isolated instances (virtual environments) on the same machine?
	Can I run the conan_server behind a firewall (on-premises)?
	Can I connect to conan remote servers through a corporate proxy?
	Can I create packages for third-party libraries?
	Can I upload closed source libraries?
	Do I always need to specify how to build the package from source?
	Does conan use semantic versioning (semver) for dependencies?

	Using conan
	How to package header-only libraries?
	When to use settings or options?
	How to obtain the dependents of a given package?
	Packages got outdated when uploading an unchanged recipe from a different machine

	Troubleshooting
	ERROR: Missing prebuilt package
	ERROR: Invalid setting
	ERROR: Setting value not defined
	ERROR: Failed to create process
	ERROR: Failed to remove folder (Windows)

	Changelog
	1.5.2 (5-July-2018)
	1.5.1 (29-June-2018)
	1.5.0 (27-June-2018)
	1.4.5 (22-June-2018)
	1.4.4 (11-June-2018)
	1.4.3 (6-June-2018)
	1.4.2 (4-June-2018)
	1.4.1 (31-May-2018)
	1.4.0 (30-May-2018)
	1.3.3 (10-May-2018)
	1.3.2 (7-May-2018)
	1.3.1 (3-May-2018)
	1.3.0 (30-April-2018)
	1.2.3 (10-Apr-2017)
	1.2.1 (3-Apr-2018)
	1.2.0 (28-Mar-2018)
	1.1.1 (5-Mar-2018)
	1.1.0 (27-Feb-2018)
	1.0.4 (30-January-2018)
	1.0.3 (22-January-2018)
	1.0.2 (16-January-2018)
	1.0.1 (12-January-2018)
	1.0.0 (10-January-2018)
	1.0.0-beta5 (8-January-2018)
	1.0.0-beta4 (4-January-2018)
	1.0.0-beta3 (28-December-2017)
	1.0.0-beta2 (23-December-2017)
	0.30.3 (15-December-2017)
	0.30.2 (14-December-2017)
	0.30.1 (12-December-2017)
	0.29.2 (2-December-2017)
	0.29.1 (23-November-2017)
	0.29.0 (21-November-2017)
	0.28.1 (31-October-2017)
	0.28.0 (26-October-2017)
	0.27.0 (20-September-2017)
	0.26.1 (05-September-2017)
	0.26.0 (31-August-2017)
	0.25.1 (20-July-2017)
	0.25.0 (19-July-2017)
	0.24.0 (15-June-2017)
	0.23.1 (05-June-2017)
	0.23.0 (01-June-2017)
	0.22.3 (03-May-2017)
	0.22.2 (20-April-2017)
	0.22.1 (18-April-2017)
	0.22.0 (18-April-2017)
	0.21.2 (04-April-2017)
	0.21.1 (23-March-2017)
	0.21.0 (21-March-2017)
	0.20.3 (06-March-2017)
	0.20.2 (02-March-2017)
	0.20.1 (01-March-2017)
	0.20.0 (27-February-2017)
	0.19.3 (27-February-2017)
	0.19.2 (15-February-2017)
	0.19.1 (02-February-2017)
	0.19.0 (31-January-2017)
	0.18.1 (11-January-2017)
	0.18.0 (3-January-2017)
	0.17.2 (21-December-2016)
	0.17.1 (15-December-2016)
	0.17.0 (13-December-2016)
	0.16.1 (05-December-2016)
	0.16.0 (19-November-2016)
	0.15.0 (08-November-2016)
	0.14.1 (20-October-2016)
	0.14.0 (20-October-2016)
	0.13.3 (13-October-2016)
	0.13.0 (03-October-2016)
	0.12.0 (13-September-2016)
	0.11.1 (31-August-2016)
	0.11.0 (3-August-2016)
	0.10.0 (29-June-2016)
	0.9.2 (11-May-2016)
	0.9 (3-May-2016)
	0.8.4 (28-Mar-2016)
	0.8 (15-Mar-2016)
	0.7 (5-Feb-2016)
	0.6 (11-Jan-2016)
	0.5 (18-Dec-2015)

