&, | & conan

JFrog C/C++ package manager

Conan Documentation
Release 1.58.0

The Conan team

Jun 30, 2025

CONTENTS

Introduction 3
1.1 0penSource v i i e e e e e e e e e e e 3
1.2 Decentralized package manager e 3
1.3 Binary managemento e e e e e e e e e e e e e e e e e 4
1.4 All platforms, all build systems and compilers, 5
1.5 Stable e e 5
1.6 Community e e e e e e e e e e e e e e e 6
Conan migration guide to 2.0 7
2.1 Migrating the 1ecipes o . o i e e e e e e e e e e e 7
2.2 Commands e e e e e e e e e e e e e e 28
23 Generalchanges 30
Training Courses 33
Install 35
4.1 Install with pip (recommended) L e e e e 35
4.2 Install from brew (OSX) e e e e e e e 36
4.3 Install from AUR (Arch Linux) e e e e e e 36
4.4 Install the binaries i o e e e e e e e e e e e e e e 36
4.5 Initial configuration L. L e e e 37
4.6 Install from source e e e e e e e e e e e e 37
A7 Update o e e e e e e e e e e e e 37
4.8 Python2Removal Notice e 38
Getting Started 39
5.1 An MDS5 hash calculator using the Poco Libraries 39
5.2 Installing Dependencies e e e e e e e 43
5.3 Inspecting Dependencies e e e e e 44
54 Searching Packages. 47
5.5 Building with other configurations e e e 48
Using packages 49
6.1 Installing dependencies e 49
6.2 Using profiles. o o e e e e e e e e e e 55
6.3 Workflows e e e e e 57
6.4 Debugging packages e e 59
Creating Packages 61
7.1 Getting started L e e e e e e e e e e e e e e 61
7.2 Recipe and Sources in a DifferentRepo oL oo o 65

7.3 Recipe and Sourcesinthe Same Repo e
7.4 Packaging Existing Binaries L e e e
7.5 Understanding Packaging L.
7.6 Defining Package ABI Compatibility L o
7.7 Define the package information e
7.8 Toolchains e e e e
7.9 Inspecting Packages e e e e e e e e
7.10 Packaging Approaches L e e e e
7.11 Package Creator Tools e

Uploading Packages

8.1 Remotes e
8.2 Uploading Packagesto Remotes
8.3 Using Artifactory e e
84 Running Conan_SEIVEI v v v v vttt et e e e e e e e e e e e e e e e

Developing packages

9.1 Packagedevelopmentflow e
9.2 Packagelayout e e
9.3 Packagesineditablemode e e e
0.4 WOrksSpaces e e e e e e e e

10 Package apps and devtools

10.1 Running and deploying packages i e e e e e

11 Versioning

11.1 Introduction to Versioning ot v i it e e e e e e e
112 Version ranges o v o i i i e
11.3 Package Revisions e e e
11.4 Lockfiles e

12 Mastering Conan

12.1 Use conanfile.py for consumers it e e e e
12.2 Conditional settings, options and requirements ottt e e
123 Buildpolicies o o e e e e e e e e
12.4 Environment variables oL e e e e e e e e e e
12.5 Virtual Environments e e e e e e e e e e
12.6 Logg@ing o o o e e e e
12.7 Sharing the settings and other configuration oL oo
12.8 Conan local cache: concurrency, Continuous Integration, isolation

13 Systems and cross building

13.1 Crossbuilding e e e e e e e e e e
13.2 Windows SUbSYStEIMS o i e e e e e e e e e e e e e e e

14 Extending Conan

14.1 Customizing SEttings o ¢ o v v i e e e e e e e e e e e e e e e e e e
142 Pythontequires o v i i i e e e e e e e e e e e e e e e e e e
14.3 Pythonrequires (legacy) e e
14.4 Creating a custom build helper for Conan o
145 HOOKS . . . o o o e e e e e
14.6 Template SYSteIM v v v o e

99
99
100
101
106

115
115
120
131
134

141
141
148
152

159
159
163
164
166

189
189
191
193
194
196
198
200
200

203
203
214

15 Integrations

15.1
15.2
15.3
15.4
15.5
15.6
15.7
15.8
15.9

Compilers
Build systems
IDEs

Other Systems
Version Control System
Custom integrations .
Linting
Deployment

16 Configuration

16.1

Download cache . . .

17 Howtos
How to package header-only libraries e
How to launch conan install fromcmake L L o
How to create and reuse packages based on Visual Studio
Creating and reusing packages based on Makefiles,
How to manage the GCC >=5ABI e e et
Using Visual Studio 2017 - CMake integration
Working with Intel compilerso
How to manage C++standard L e
How to use Docker to create C and C++ Conan packages
17.10 How to reuse Python code inrecipes o 0 i i i i i
17.11 How to create and share a custom generator with generator packages
17.12 How to manage shared libraries o
17.13 How to reuse cmake install for package() method
17.14 How to collaborate with other users” packages
17.15 How to link with Apple Frameworks
17.16 How to package Apple Frameworks i e
17.17 How to collect licenses of dependencies i i e
17.18 How to extract licenses from headers
17.19 How to dynamically define the name and version of apackage
17.20 How to capture package version from SCM: git o
17.21 How to capture package version from SCM:svin o i e
17.22 How to capture package version from text or build files
17.23 How to use Conan as other language package manager
17.24 How to manage SSL (TLS) certificates ittt
17.25 How to check the version of the Conan client inside a conanfile
17.26 Use a generic CI with Conan and Artifactory it i..
17.27 Using recipe revisions and lockfiles L e
17.28 Compiler sanitizers . .

17.1
17.2
17.3
17.4
17.5
17.6
17.7
17.8
17.9

18 Reference

18.1
18.2
18.3
18.4
18.5
18.6
18.7
18.8
18.9

Commands
conanfile.txt
conanfile.py.
Generators
Profiles
Build helpers
Tools
Configuration files . .
Environment variables

247
247
248
279
294
310
333
335
339
340

345
345

347
347
349
350
354
356
357
360
364
366
368
371
376
382
382
383
383
384
384
385
385
385
386
386
392
393
394
396
397

403
403
484
487
665
707
715
741
775
798

19

20

21

22

23

18.10 HOOKS v o e e e e 810

Cheatsheet 817
19.1 Single-Page Graphical Format e 817
19.2 Community-Created Format e 818
Videos and links 833
FAQ 835
211 General L L e e e e e e 835
21.2 Using Conan ot e e e e e e e e e e e e e e e 837
21.3 Troubleshooting e e e 842
Glossary 847
Changelog 851
23.1 1.58.0(30-Jan-2023) 851
232 1.57.0 (12-Jan-2023) o o e e e e e e e 852
233 1.56.0 (21-Dec-2022) e e e 852
234 1.55.0(30-Nov-2022) . . . o it e e e 853
235 1.54.0 (07-Nov-2022) o 0t e e e e 854
23.6 1.53.0 (04-Oct-2022) o vt e e e e e e e e e e 854
237 1.52.0 B1-Aug-2022) . . . oo e e e e 855
23.8 1513 (18-Aug-2022) ot i e e 856
239 1512 (11-Aug-2022) . . . oot e e 857
23.10 1.51.1 (09-Aug-2022) o i e e 857
23.11 1.51.0 (28-Jul-2022) o e e e e e 857
23.12 1.50.2 (11-Aug-2022) . . . oo o e e e e e e e e 859
23.13 1.50.1 (28-Jul-2022) e e e 859
23.14 1.50.0 (29-Jun-2022) L e e e e 859
23.15 1.49.0 (02-Jun-2022) ot e e 860
23.16 1.48.2 (02-Jun-2022) L e e e 861
23.17 1.48.1 (18-May-2022) o o i o i e e e e e e e e e e e 861
23.18 1.48.0 (03-May-2022) o v it i e e e e e e e e e e e 862
23.19 1.47.0 BI-Mar-2022) o i e e e e 863
2320 1.46.2 (18-Mar-2022) o o it e e e e 865
2321 1.46.1 (17-Mar-2022) . . . o v o o o e e e e e e e e e e 865
23.22 1.46.0 (07-Mar-2022) o v it i e e e e e e e e e e e e 865
23.23 1.45.0 (02-Feb-2022) o o o e e e e 867
2324 1.44.1 (13-Jan-2022) o o vt e e e e 869
2325 1.44.0 (29-Dec-2021) . . . o i e 869
2326 1.43.4 (18-Feb-2022) o o o i e 870
2327 1.43.3 (13-Jan-2022) . . . o v vt i e e e e e e e e e e 870
2328 1.43.2 (21-Dec-2021) . . . o o o e e e 870
23.29 1.43.1 (17-Dec-2021) . . . o o o o e e e e e 870
2330 1.43.0 (03-Dec-2021) . . . o vt e e 870
2331 1.42.2 (22-Nov-2021) . . . o o e e e e e 871
2332 1.42.1 (08-Nov-2021) o o e 872
23.33 1.42.0 (29-Oct-2021) . . . o v v i i e e e e e e e e e e e e 872
2334 1.41.0 (06-Oct-2021) . . . o v vttt e e e e e e e e e e e e e e e 873
2335 1.40.4 (05-Oct-2021) . . . o o vt e e e e e e 874
2336 1.40.3 (30-Sept-2021) ot e e e 874
2337 1.40.2 (21-Sept-2021) o e e 874
23.38 1.40.1 (14-Sept-2021) . . . o o o i e e e e e 875
23.39 1.40.0 (06-Sept-2021) o o i e e e e e 875

2340 1.39.0 27-Jul-2021) oo 876

2341 1.38.0 (B0-Jun-2021) o oo 878
2342 1.37.2 (14-Jun-2021) o oo 879
23.43 1.37.1 (08-Jun-2021) o o e 879
23.44 1.37.0 B1-May-2021) e e 880
2345 1.36.0 (28-Apr-2021) o o 881
2346 1.352 (19-Apr-2021) . . . o o o o 882
2347 1.35.1 (13-Apr-2021) . . . o o o o 882
2348 1.35.0 (B0-Mar-2021) o oo e 882
23.49 1.34.1 (10-Mar-2021) e e 884
23.50 1.34.0 (26-Feb-2021) o e 884
23.51 1.33.1 (02-Feb-2021) o o o e 885
23.52 1.33.0 (20-Jan-2021) Lo 885
23.53 1.32.1 (15-Dec-2020) o o oo 887
23.54 1.32.0 (03-Dec-2020) e e 887
23.55 1.31.4 (25-Nov-2020) e 889
23.56 1.31.3 (17-Nov-2020) o v o e e e e e e e 889
2357 1.31.2 (11-Nov-2020) o oo e 889
23.58 1.31.1 (10-Nov-2020) o o oot e e 889
23.59 1.31.0 (30-Oct-2020) o v vt e 889
23.60 1.30.2 (15-Oct-2020) o . o e e 890
23.61 1.30.1 (09-Oct-2020) v v it e e e e e e e 891
23.62 1.30.0 (05-Oct-2020) o v vt e e 891
23.63 1.29.2 (21-Sept-2020) 892
23.64 1.29.1 (17-Sept-2020) o o i 892
23.65 1.29.0 (02-Sept-2020) 892
23.66 1.28.2 (B1-Aug-2020) e 893
23.67 1.28.1 (06-Aug-2020) o e 893
23.68 1.28.0 (31-Jul-2020) 894
23.69 1.27.1 (10-Jul-2020) o o 895
23.70 1.27.0 (01-Jul-2020) o . 895
2371 1.26.1 (23-Jun-2020) oo e e e 896
2372 1.26.0 (10-Jun-2020) o o e e e e 896
2373 1.25.2 (19-May-2020) o oo e 897
2374 1.25.1 (13-May-2020) o oo 897
23.75 1.25.0 (06-May-2020) o e e 898
23776 1.24.1 21-Apr-2020) o L e 899
23777 1.24.0 B1-Mar-2020) L e 899
23.78 1.23.0 (10-Mar-2020) o o o o e e 900
23.79 1.22.3 (05-Mar-2020) oo e 901
23.80 1.22.2 (13-Feb-2020) o o o 901
23.81 1.22.1 (11-Feb-2020) e 901
23.82 1.22.0 (05-Feb-2020) o o o e e 901
23.83 1.21.3 (03-Mar-2020) o oo e e 903
23.84 1.21.2 (31-Jan-2020)o 903
23.85 1.21.1 (14-Jan-2020) o oo o 903
23.86 1.21.0 (10-Dec-2019) o e 904
23.87 1.20.5 (3-Dec-2019) o 905
23.88 1.20.4 (19-Nov-2019) o e 905
23.89 1.20.3 (11-Nov-2019) o o 905
23.90 1.20.2 (6-Nov-2019) 905
2391 1.20.1 (5-Nov-2019) o o 906
23.92 1.20.0 (4-Nov-2019) o o e 906
23.93 1.19.3 (29-Oct-2019) L e 907

2394 1.19.2 (16-Oct-2019) L o o 907

23.95 1.19.1 (B-Oct-2019) e e e 908
23.96 1.19.0 (30-Sept-2019) e e e e 908
23.97 1.18.5 (24-Sept-2019) L e e 909
23.98 1.18.4 (12-Sept-2019) o o o e e 909
23.99 1.18.3 (10-Sept-2019) o o o e e 909
23.1001.18.2 (30-Aug-2019) o e e e e e e 909
23.1011.18.1 (8-Aug-2019) e e e e e 909
23.1021.18.0 (30-Jul-2019) e e e e e e e e 910
23.1031.17.2 (25-Jul-2019) o . e e e e e e e e 910
23.1041.17.1 (22-Jul-2019) . . . o o e e e e e e e e e e 910
23.1051.17.0 (9-Tul-2019) e e e e 911
23.1061.16.1 (14-Jun-2019) e e e e e e 912
23.1071.16.0 (4-Jun-2019) e e e e e e e 912
23,0081 15.4 . . o . e e e e e e e e e e 913
23,0001, 15.3 . . L e e e e e e e e 913
23.1101.15.2 B31-May-2019) o e e 913
23.1111.15.1 (16-May-2019) o o e e e e e e e e e e e e 913
23.1121.15.0 (6-May-2019) e e e e e 914
23.1131.14.5 (30-Apr-2019) o e 915
23.1141.14.4 (25-Apr-2019) o o e e 915
23.1151.14.3 (11-Apr-2019) o o e e 915
23.1161.14.2 (11-Apr-2019) o o e e e e e e e 915
23.1171.14.1 (1-Apr-2019) e e e e e 915
23.1181.14.0 (28-Mar-2019) e e e e e e e 916
23.1191.13.3 (27-Mar-2019) e e e e e e e e e 917
23.1201.13.2 (21-Mar-2019) e e e e e e e e 917
23.1211.13.1 (15-Mar-2019) e e e e 917
23.1221.13.0 (07-Mar-2019) e e e e e e 917
23.1231.12.3 (18-Feb-2019) o e e e e e e e e e 918
23.1241.12.2 (8-Feb-2019) e e e e e e e e 918
23.1251.12.1 (5-Feb-2019) e e e e e e e e 919
23.1261.12.0 (30-Jan-2019) e e e e 919
23.1271.11.2 (8-Jan-2019) e e e e 921
23.1281.11.1 (20-Dec-2018) o e e e e e e e 921
23.1291.11.0 (19-Dec-2018) o i e e e e e e e e e e e 921
23.1301.10.2 (17-Dec-2018) . . . o o o i e e e e e e e e e e e e e e e 922
23.1311.10.1 (11-Dec-2018) . . . v o e e e e e e e e e e e e e e e 922
23.1321.10.0 (4-Dec-2018) v o e e e e e e 922
23.1331.9.2 (20-Nov-2018) o o e e e e e e e e 923
23.1341.9.1 (08-Nov-2018) o . o e e e e e e e e e e e 923
23.1351.9.0 (30-October-2018) i e e e e e e e e e e e e 923
23.1361.8.4 (19-October-2018) i e e e e e e e e e e e e 925
23.1371.8.3 (17-October-2018) e e e e e e e 925
23.1381.8.2 (10-October-2018) e e e e e e e e e 925
23.1391.8.1 (10-October-2018) o e e e e e e e e e 925
23.1401.8.0 (9-October-2018) e e e e e e e e e e 925
23.1411.7.4 (18-September-2018) e e e 927
23.1421.7.3 (6-September-2018) L e e e e e e e e 928
23.1431.7.2 (4-September-2018) e e e e e e e 928
23.1441.7.1 B1-August-2018) e e e e e e e 928
23.1451.7.0 (29-August-2018) e e e e 928
23.1461.6.1 (27-July-2018) e e e 929
23.1471.6.0 (19-July-2018) o o e e e 929

vi

23.1481.5.2 (5-July-2018) o o 930

23.1491.5.1 (29-June-2018) e e e e e e e e 931
23.1501.5.0 (27-June-2018) o e e e e e e e 931
23.1511.4.5 22-June-2018) e e e e e e e e e 932
23.1521.4.4 (11-June-2018) o e e e e e e e e e e e e e 932
23.1531.4.3 (6-June-2018) e e e e e e e e e e 932
23.1541.4.2 (4-June-2018) e e e e e e 932
23.1551.4.1 B1-May-2018) e e e 932
23.1561.4.0 (30-May-2018) e e 933
23.1571.3.3 (10-May-2018) o e e 934
23.1581.3.2 (7-May-2018) o o e 934
23.1591.3.1 (B-May-2018) o e e e e e e e e 934
23.1601.3.0 (30-April-2018) e e e e 934
23.1611.2.3 (10-Apr-2017) o o e e e e e e 935
23.1621.2.1 (B-Apr-2018) e e 935
23.1631.2.0 (28-Mar-2018) e e e e e e e e e e e 936
23.1641.1.1 (5-Mar-2018) e e e e e e e e 937
23.1651.1.0 (27-Feb-2018) e e e e e e e 937
23.1661.0.4 (30-January-2018) e e e e 939
23.1671.0.3 (22-January-2018) L e e e e e e e 939
23.1681.0.2 (16-January-2018) e 939
23.1691.0.1 (12-January-2018) o L e e e 940
23.1701.0.0 (10-January-2018) o o e e e e e e e e e e 940
23.1711.0.0-beta5 (8-January-2018) e e e e 940
23.1721.0.0-beta4 (4-January-2018) L e 940
23.1731.0.0-beta3 (28-December-2017) o e e e e e e e e e e 941
23.1741.0.0-beta2 (23-December-2017) o 0 e e e e e e e e e e e 941
23.1750.30.3 (15-December-2017) o e e e 942
23.1760.30.2 (14-December-2017) e e e e e e e e e e 942
23.1770.30.1 (12-December-2017) o o e e e e e 942
23.1780.29.2 (2-December-2017) o e e e e e e e e e e e e 943
23.1790.29.1 (23-November-2017) o o o e e e e e e e e e e e 943
23.1800.29.0 (21-November-2017) e e e e e e 943
23.1810.28.1 (31-October-2017) o o e e e e e e e e e e 944
23.1820.28.0 (26-October-2017) o e e e e e e e e e e e 945
23.1830.27.0 (20-September-2017) e e e 946
23.1840.26.1 (05-September-2017) e 947
23.1850.26.0 (31-August-2017) e e e e 947
23.1860.25.1 (20-July-2017) o e e e e e e e 948
23.1870.25.0 (19-July-2017) o o e e e e e e e 949
23.1880.24.0 (15-June-2017) o o e e e 950
23.1890.23.1 (05-June-2017) 0 e e e e e e e e e e 951
23.1900.23.0 (01-June-2017) 0 e e e e e e e e e e e e e 951
23.1910.22.3 (03-May-2017) o o e e e e e e e e e e e e e 951
23.1920.22.2 (20-April-2017) o o e e e e e e e e 952
23.1930.22.1 (18-April-2017) o o e e e 952
23.1940.22.0 (18-April-2017) o o o e e e 952
23.1950.21.2 (04-April-2017) o o o e 953
23.1960.21.1 (23-March-2017) o e e e e e 953
23.1970.21.0 (21-March-2017) 0 e e e e e e e 953
23.1980.20.3 (06-March-2017) o e e e e e 954
23.1990.20.2 (02-March-2017) e e 954
23.2000.20.1 (01-March-2017) o e e e e e e e e e e e e e e 954
23.2010.20.0 (27-February-2017) e e 954

vii

23.2020.19.3 (27-February-2017) e e 955

23.2030.19.2 (15-February-2017) o e e e e e e e 956
23.2040.19.1 (02-February-2017) e e e e e e e e 956
23.2050.19.0 (31-January-2017) e e e e 956
23.2000.18.1 (11-January-2017) o o o e e e e 957
23.2070.18.0 (3-January-2017) e e e e 957
23.2080.17.2 (21-December-2016) e e e e e e 958
23.2090.17.1 (15-December-2016) o 0 e e e e e e e 958
23.2100.17.0 (13-December-2016) o . e e e e 958
23.2110.16.1 (05-December-2016) e e e 959
23.2120.16.0 (19-November-2016) o o e e e e e e e 959
23.2130.15.0 (08-November-2016) o i e e e e e e e 959
23.2140.14.1 (20-October-2016) o e e e e e e e e 960
23.2150.14.0 (20-October-2016) o e e e e e e e e e e 960
23.2160.13.3 (13-October-2016) o e e e e 961
23.2170.13.0 (03-October-2016) o e e e e e 961
23.2180.12.0 (13-September-2016) e e e e e e e 962
23.2190.11.1 (B1-August-20106) o e e e e e e e 963
23.2200.11.0 (3-August-2016) e e e e e e e 963
23.2210.10.0 (29-June-2016) e e e e e e e e e e 964
23.2220.9.2 (11-May-2016) o o o o ot e e e e e e 965
23.2230.9 (3-May-2016) e e 965
23.2240.8.4 (28-Mar-2016) e e e e e e e e 965
23.2290.8 (15-Mar-2016) e e e e e e e 966
23.2200.7 (5-Feb-2016) e e e e e e e e e 966
23.2270.6 (11-Jan-2016) e e e e e 967
23.2280.5 (18-Dec-2015) o e e e e 967
Index 969

viii

Conan Documentation, Release 1.58.0

Conan is a software package manager which is intended for C and C++ developers.

Conan is universal and portable. It works in all operating systems including Windows, Linux, OSX, FreeBSD, Solaris,
and others, and it can target any platform, including desktop, server, and cross-building for embedded and bare metal
devices. It integrates with other tools like Docker, MinGW, WSL, and with all build systems such as CMake, MSBuild,
Makefiles, Meson, SCons. It can even integrate with proprietary build systems.

Conan is completely free and open source and fully decentralized. It has native integration with JFrog Artifactory,
including the free Artifactory Community Edition for Conan, enabling developers to host their own private packages
on their own server. The ConanCenter central repository contains hundreds of popular open source libraries packages,
with many pre-compiled binaries for mainstream compiler versions.

Conan can manage any number of different binaries for different build configurations, including different architectures,
compilers, compiler versions, runtimes, C++ standard library, etc. When binaries are not available for one configu-
ration, they can be built from sources on-demand. Conan can create, upload and download binaries with the same
commands and flows on every platform, saving lots of time in development and continuous integration. The binary
compatibility can even be configured and customized on a per-package basis.

Conan has a very large and active community, especially in Github repositories and the Slack #conan channel. This
community also creates and maintains packages in ConanCenter. Conan is used in production by thousands of compa-
nies, and consequently, it has a commitment to stability, with no breaking changes across all Conan 1.X versions.

CONTENTS 1

https://conan.io
https://github.com/conan-io/conan
https://conan.io/center
https://github.com/conan-io/conan
https://cppalliance.org/slack/

Conan Documentation, Release 1.58.0

2 CONTENTS

CHAPTER
ONE

INTRODUCTION

Conan is a dependency and package manager for C and C++ languages. It is free and open-source, works on all plat-
forms (Windows, Linux, OSX, FreeBSD, Solaris, etc.), and can be used to develop for all targets including embedded,
mobile (i0S, Android), and bare metal. It also integrates with all build systems like CMake, Visual Studio (MSBuild),
Makefiles, SCons, etc., including proprietary ones.

It is specifically designed and optimized for accelerating the development and Continuous Integration of C and C++
projects. With full binary management, it can create and reuse any number of different binaries (for different config-
urations like architectures, compiler versions, etc.) for any number of different versions of a package, using exactly
the same process in all platforms. As it is decentralized, it is easy to run your own server to host your own packages
and binaries privately, without needing to share them. The free JFrog Artifactory Community Edition (CE) is the
recommended Conan server to host your own packages privately under your control.

Conan is mature and stable, with a strong commitment to forward compatibility (non-breaking policy), and has a
complete team dedicated full time to its improvement and support. It is backed and used by a great community, from
open source contributors and package creators in ConanCenter to thousands of teams and companies using it.

1.1 Open Source

Conan is Free and Open Source, with a permissive MIT license. Check out the source code and issue tracking (for ques-
tions and support, reporting bugs and suggesting feature requests and improvements) at https://github.com/conan-io/
conan

1.2 Decentralized package manager

Conan is a decentralized package manager with a client-server architecture. This means that clients can fetch packages
from, as well as upload packages to, different servers (“remotes”), similar to the “git” push-pull model to/from git
remotes.

At a high level, the servers are just storing packages. They do not build nor create the packages. The packages are
created by the client, and if binaries are built from sources, that compilation is also done by the client application.

https://github.com/conan-io/conan
https://conan.io/downloads.html
https://conan.io/center
https://github.com/conan-io/conan
https://github.com/conan-io/conan

Conan Documentation, Release 1.58.0

+ JFro
C \TrcroRy “

COMMUNITY EDITION FOR C/C++ _\\
o JFrog
< CONAN
N

Client

The different applications in the image above are:

* The Conan client: this is a console/terminal command-line application, containing the heavy logic for package
creation and consumption. Conan client has a local cache for package storage, and so it allows you to fully create
and test packages offline. You can also work offline as long as no new packages are needed from remote servers.

* JFrog Artifactory Community Edition (CE) is the recommended Conan server to host your own packages pri-
vately under your control. It is a free community edition of JFrog Artifactory for Conan packages, including a
WebUI, multiple auth protocols (LDAP), Virtual and Remote repositories to create advanced topologies, a Rest
API, and generic repositories to host any artifact.

» The conan_server is a small server distributed together with the Conan client. It is a simple open-source imple-
mentation and provides basic functionality, but no WebUI or other advanced features.

» ConanCenter is a central public repository where the community contributes packages for popular open-source
libraries like Boost, Zlib, OpenSSL, Poco, etc.

1.3 Binary management

One of the most powerful features of Conan is that it can create and manage pre-compiled binaries for any possible
platform and configuration. By using pre-compiled binaries and avoiding repeated builds from source, it saves signifi-
cant time for developers and Continuous Integration servers, while also improving the reproducibility and traceability
of artifacts.

A package is defined by a “conanfile.py”. This is a file that defines the package’s dependencies, sources, how to build
the binaries from sources, etc. One package “conanfile.py” recipe can generate any arbitrary number of binaries, one
for each different platform and configuration: operating system, architecture, compiler, build type, etc. These binaries
can be created and uploaded to a server with the same commands in all platforms, having a single source of truth for
all packages and not requiring a different solution for every different operating system.

4 Chapter 1. Introduction

https://conan.io/downloads.html
https://conan.io/center

Conan Documentation, Release 1.58.0

server

package Pkg/0O.1@user/channel

_ package
~ “binaries”

I S |
}

Pkg/O.1@user/channel »

recipe

client

Installation of packages from servers is also very efficient. Only the necessary binaries for the current platform and
configuration are downloaded, not all of them. If the compatible binary is not available, the package can be built from
sources in the client too.

1.4 All platforms, all build systems and compilers

Conan works on Windows, Linux (Ubuntu, Debian, RedHat, ArchLinux, Raspbian), OSX, FreeBSD, and SunOS, and,
as it is portable, it might work in any other platform that can run Python. It can target any existing platform: ranging
from bare metal to desktop, mobile, embedded, servers, and cross-building.

Conan works with any build system too. There are built-in integrations to support the most popular ones like CMake,
Visual Studio (MSBuild), Autotools and Makefiles, SCons, etc., but it is not a requirement to use any of them. It is
not even necessary that all packages use the same build system: each package can use their own build system, and
depend on other packages using different build systems. It is also possible to integrate with any build system, including
proprietary ones.

Likewise, Conan can manage any compiler and any version. There are default definitions for the most popular ones:
gcc, cl.exe, clang, apple-clang, intel, with different configurations of versions, runtimes, C++ standard library, etc. This
model is also extensible to any custom configuration.

1.5 Stable

From Conan 1.0 and onwards, there is a commitment to stability, with the goal of not breaking user space while evolving
the tool and the platform. This means:

Moving forward to following minor versions 1.1, 1.2, ..., 1.X should never break existing recipes, packages or
command line flows

If something is breaking, it will be considered a bug and reverted

Bug fixes will not be considered breaking, recipes and packages relying on the incorrect behavior of such bugs
will be considered already broken.

Only documented features are considered part of the public interface of Conan. Private implementation details,
and everything not included in the documentation is subject to change.

Configuration and automatic tools detection, like the detection of the default profile might be subject to change.
Users are encouraged to define their configurations in profiles for repeatability. New installations of Conan might
use different configurations.

1.4. All platforms, all build systems and compilers 5

Conan Documentation, Release 1.58.0

The compatibility is always considered forward. New APIs, tools, methods, helpers can be added in following 1.X
versions. Recipes and packages created with these features will be backwards incompatible with earlier Conan versions.

This means that public repositories, like ConanCenter, assume the use of the latest version of the Conan client, and
using an older version may result in failure of packages and recipes created with a newer version of the client.

Conan needs Python 3 to run. It has supported Python 2 until 1 January 2020, when it was officially deprecated by the
Python maintainers. From Conan 1.22.0 release, Python 2 support is not guaranteed. See the deprecation notice for
more details

If you have any question regarding Conan updates, stability, or any clarification about this definition of stability, please
report in the documentation issue tracker: https://github.com/conan-io/docs.

1.6 Community

Conan is being used in production by hundreds of companies like Audi, Continental, Plex, Electrolux and Mercedes-
Benz and many thousands of developers around the world.

But an essential part of Conan is that many of those users will contribute back, creating an amazing and helpful com-
munity:

¢ The https://github.com/conan-io/conan project has more than 3.5K stars in Github and counts with contributions
of nearly 200 different users (this is just the client tool).

* Many other users contribute recipes for ConanCenter via the https://github.com/conan-io/conan-center-index
repo, creating packages for popular Open Source libraries.

* More than one thousand of Conan users hang around the CppLang Slack #conan channel, and help responding
to questions, discussing problems and approaches..

Have any questions? Please check out our FAQ section or .

6 Chapter 1. Introduction

https://github.com/conan-io/docs
https://github.com/conan-io/conan
https://github.com/conan-io/conan-center-index
https://cppalliance.org/slack/

CHAPTER
TWO

CONAN MIGRATION GUIDE TO 2.0

Conan 2.0-beta is already released, you can install the latest Conan Alpha version from PyPI doing:

[$ pip install conan --pre }

If you want to migrate to 2.0, there are several things you will need to change:

* The recipes have to be updated to be compatible with Conan 2.0. There are 2.0 features ported to Conan 1.X so
you can get a compatible recipe with 2.0 using Conan 1.X.

* The conan commands have also changed, but there are no “compatible” commands introduced in Conan 1.X.
We will review the more relevant changes.

¢ General changes not related to the recipes nor the Conan commands, “build profiles”, lowercase references. ..
etc.

If you are looking for precompiled binaries, there is a very short list in a separate remote which can be added (please,
check the Conan 2.0 documentation for more information)

$ conan remote add conanv2 https://conanv2beta.jfrog.io/artifactory/api/conan/
—.conan --index 0

2.1 Migrating the recipes

We introduced changes to Conan 1.X versions so you can start migrating your recipes to do a smooth transition to
Conan 2.0.

2.1.1 Python import statements

* All the imports from the conans package have to be replaced. The Conan 2.0 ones are in the conan package.
Note the plural.

» The “tools” functions are now organized in different packages, you can check the complete reference here.

Listing 1: From:

[from conans import ConanFile, tools

https://pypi.org/project/conan/#history
https://docs.conan.io/en/2.0/index.html

Conan Documentation, Release 1.58.0

Listing 2: To:

from
from
from
from
from
from

conan

conan.

conan
conan

import ConanFile
tools.files import save, load

errors import ConanInvalidConfiguration
errors import ConanException

.tools.gnu import AutotoolsToolchain, AutotoolsDeps
.tools.microsoft import unix_path, VCVars, is_msvc
conan.
conan.

2.1.2 Requirements

* Use self.test_requires() to define test requirements instead of the legacy self.build_requiresc(.. .,
force_host_context).

* Use self.tool_requires() to define the legacy build_requires.

Listing 3: From:

from conans import ConanFile

class Pkg(Conanfile):

def build_requirements(self):

self.build_requires("nasm/2.15.05")
self.build_requires("gtest/0.1", force_host_context=True)

Chapter 2. Conan migration guide to 2.0

Conan Documentation, Release 1.58.0

Listing 4: To:

from conan import ConanFile

class Pkg(Conanfile):

def build_requirements(self):
self.tool_requires("nasm/2.15.05")
self.test_requires('gtest/0.1")

The self.requires() method allows in 1.X any **kwargs, so something like self.requires(...,
transitive_headers=True) is possible in Conan 1.X. These **kwargs don’t have any effect at all in Conan 1.X,
they are not even checked for correctness. But they are allowed to exist, so if new requirement traits are used in Conan
2.0, they will not error.

2.1.3 Settings

* Do not use dictionary expressions in your recipe settings definition (like settings = {"os":
["Windows", "Linux"]}. This way of limiting supported configurations by one recipe will be removed. Use
the validate() method instead to raise ConanInvalidConfiguration if strictly necessary to fail fast for
unsupported configurations.

.
from conan import ConanFile

class Pkg(Conanfile):

settings = "os", "arch", "compiler"

def validate(self):
if self.settings.os == "Macos":
raise ConanInvalidConfiguration('"Macos not supported")

L

* In Conan 2, removing a setting, for example, del self.settings.compiler.libcxx in the configure()
method, will raise an exception if the setting doesn’t exist. It has to be protected with try/except. The self.
settings.rm_safe() method already implements the try/except clause internally. Use it like:

def configure(self):
it's a C library
self.settings.rm_safe("compiler.libcxx")
self.settings.rm_safe("compiler.cppstd™)

2.1. Migrating the recipes 9

Conan Documentation, Release 1.58.0

2.1.4 Options

default_options

The definition of the default_options attribute has changed when referring to a dependency. It is related to the
unified patterns in the command line.

Listing 5: From:

from conans import ConanFile

class Pkg(Conanfile):
default_options = {"pkg:some_option": "value"}

Listing 6: To:

from conan import ConanFile

class Pkg(Conanfile):
"pkg/*:some_option" or "'pkg/1.0:some_option" or "pkg*:some_option" would be valid
default_options = {"pkg/*:some_option": "value"}

ANY special value
The special value ANY has to be declared in a list:

Listing 7: From:

from conans import ConanFile

class Pkg(Conanfile):
options = {"opt": "ANY"}

Listing 8: To:

from conan import ConanFile

class Pkg(Conanfile):
options = {"opt": ["ANY"]}

In case the default value is None, then it should be added as possible value to that option:

10 Chapter 2. Conan migration guide to 2.0

Conan Documentation, Release 1.58.0

Listing 9: To:

from conan import ConanFile

class Pkg(Conanfile):
options = {"opt": [None, "ANY"]}
default_options = {"opt": None}

2.1.5 The validate() method

Use always the self.settings instead of self.info.settings and self.options instead of self.info.
options. The compatibility mechanism are not needed to verify if the configurations of potential compatible pack-
ages are valid after the graph has been built.

Listing 10: From:

class Pkg(Conanfile):

def validate(self):
if self.info.settings.os == "Windows":
raise ConanInvalidConfiguration("This package is not compatible with Windows

")

Listing 11: To:

class Pkg(Conanfile):

def validate(self):
if self.settings.os == "Windows":
raise ConanInvalidConfiguration("This package is not compatible with Windows

-

Note: For recipes where settings are cleared, using self.settings is still valid. For example, this applies to header
only recipes that check for a specific self.settings.cppstd like:

def package_id(self):
self.info.clear()

def validate(self):
if self.settings.get_safe("compiler.cppstd"):
check_min_cppstd(self, 17)

If you are not checking if the resulting binary is valid for the current configuration but need to check if a package can
be built or not for a specific configuration you must use the validate_build() method using self.settings and
self.options to perform the checks:

from conan import ConanFile
from conan.errors import ConanInvalidConfiguration

class myConan(ConanFile):

(continues on next page)

2.1. Migrating the recipes 11

Conan Documentation, Release 1.58.0

(continued from previous page)

name = "foo"
version = "1.0"
settings = "os", "arch", "compiler"

def package_id(self):
For this package, it doesn't matter what compiler is used for the binary package
del self.info.settings.compiler

def validate_build(self):
But we know this cannot be built with "gcc"
if self.settings.compiler == "gcc":
raise ConanInvalidConfiguration('This doesn't build in GCC")

def validate(self):
We shouldn't check self.info.settings.compiler here because it has been removed.,
—1n the package_id()
so it doesn't make sense to check if the binary is compatible with gcc because.
—the compiler doesn't matter
pass

2.1.6 The layout() method

The layout method is not mandatory but very recommended to:
* Give better support for editable packages.
¢ Work with local commands, conan install + conan source + conan build.

If your recipe is using CMake, you might want to use the cmake_layout (self):

p
from conan import ConanFile
from conan.tools.cmake import cmake_layout

class Pkg(Conanfile):

def layout(self):
cmake_layout (self)

&

A typical anti-pattern in the recipes that can be solved with a 1ayout () declaration would be:

Listing 12: From:

(from conans import ConanFile, tools
class Pkg(Conanfile):

@property
def _source_subfolder(self):
return "source_subfolder"

def source(self):
tools.get(**self.conan_data["sources"][self.version],
destination=self._source_subfolder, strip_root=True)

12 Chapter 2. Conan migration guide to 2.0

Conan Documentation, Release 1.58.0

Listing 13: To:

from conan import ConanFile
from conan.tools.layout import basic_layout
from conan.tools.files import get

class Pkg(Conanfile):

def layout(self):
basic_layout(self, src_folder="source")

def source(self):
get(self, **self.conan_data["sources"][self.version], strip_root=True)

. J

When declaring the layout, the variables self.source_folder and self.build_folder will point to the correct
folder, both in the cache or locally when using local methods, it is always recommended to use these when performing
disk operations (read, write, copy, etc).

If you are using editables, the external template files are going to be removed. Use the 1ayout () method definition
instead.

Read more about the layout feature and the reference of the layout() method.
Adjusting the cpp_info objects
You can adjust the cpp_info in the 1ayout method too, not only for a package in the cache, that was typically done in

the package_info() method using the self.cpp_info, but for editable packages (to reuse a conan package that is
being developed in a local directory):

def layout(self):

This will be automatically copied to self.cpp_info
This information is relative to the self.package_folder
self.cpp.package.includedirs.append("other_includes")

This information is relative to the self.build_folder
self.cpp.build.libdirs = ["."]
self.cpp.build.bindirs = ["bin"]

This information is relative to the self.source_folder

self.cpp.source.includedirs = ["."]

cpp_info libdir, bindir, includedir accessors when using layout() in Conan 1.X

Since Conan 1.53.0 you can access cpp_info.libdirs[0], cpp_info.bindirs[®] and cpp_info.
includedirs[0] using cpp_info.libdir, cpp_info.bindir and cpp_info.includedir

2.1. Migrating the recipes 13

https://github.com/conan-io/conan/releases/tag/1.53.0

Conan Documentation, Release 1.58.0

2.1.7 The scm attribute

The scm attribute won’t exist in Conan 2.0. You have to start using the export() and source() methods to mimic
the same behavior:

* The export () method is responsible for capturing the “coordinates” of the current URL and commit. The new
conan.tools.scm.Git can be used for this (do not use the legacy Git helper but this one)

e The export() method, after capturing the coordinates, can store them in the conandata.yml using the
update_conandata() helper function

* The source() method can use the information in self.conan_data coming from the exported conandata.
yml file to do a clone and checkout of the matching code. The new conan. tools.scm.Git can be used for this
purpose.

Listing 14: From:

from conans import ConanFile, tools

class Pkg(Conanfile):

scm = {
"type": "git",
"url": "auto",
"revision": "auto",
}

Listing 15: To:

from conan import ConanFile
from conan.tools.scm import Git
from conan.tools.files import load, update_conandata

class Pkg(Conanfile):

def export(self):
git = Git(self, self.recipe_folder)
scm_url, scm_commit = git.get_url_and_commit()
update_conandata(self, {"sources": {"commit": scm_commit, "url": scm_url}})

def source(self):
git = Git(self)
sources = self.conan_data["sources"]
git.clone(url=sources["url"], target=".")
git.checkout (commit=sources["commit"])

Please check the full example on the conan.tools.scm.Git section.

14 Chapter 2. Conan migration guide to 2.0

Conan Documentation, Release 1.58.0

2.1.8 The export_sources() method

The self.copy method has been replaced by the explicit tool copy. Typically you would copy from the conanfile.
recipe_folder to the conafile.export_sources_folder:

Listing 16: From:

def export_sources(self):

self.copy("CMakeLists.txt")

Listing 17: To:

from conan.tools.files import copy
def export_sources(self):

copy(self, "CMakeLists.txt", self.recipe_folder, self.export_sources_folder)

2.1.9 The generate() method

This is a key method to understand how Conan 2.0 works. This method is called during the Conan “install” step, before
calling the build() method. All the information needed to build the current package has to be calculated and written
in disk (in the self.generators_folder) by the generate () method. The goal of the generate() method is to
prepare the build generating all the information that could be needed while running the build step. That means things
like:

* Write information about the dependencies for the build system. This is done by what we call “generators”, which
are tools like CMakeDeps, PkgConfigDeps, MSBuildDeps, XcodeDeps, etc.

» Write information about the configuration (settings, options...). This is done by what we call “toolchains”, which
are tools like CMakeToolchain, AutotoolsToolchain, MSBuildToolchain, XcodeToolchain, etc.

* Write other files to be used in the build step, like scripts that inject environment variables (check the part on how
to migrate the environment on this guide), files to pass to the build system, etc.

This improves a lot the local development, a simple conan install will generate everything we need to build our
project in the IDE or just call the build system. This example is using the CMake integration, but if you use other build
systems, even a custom one, remember you should generate everything needed in the generate () method:

from conan import ConanFile
from conan.tools.cmake import CMakeToolchain, CMakeDeps, CMake, cmake_layout

class Pkg(ConanFile):
requires = "foo/1.0", "bar/1.0"

def layout(self):
cmake_layout (self)

def generate(self):
This generates '"conan_toolchain.cmake" in self.generators_folder
tc = CMakeToolchain(self)

(continues on next page)

2.1. Migrating the recipes 15

Conan Documentation, Release 1.58.0

(continued from previous page)
tc.variables["MYVAR"] = "1"

tc.preprocessor_definitions["MYDEFINE"] = "2"
tc.generate()

This generates "foo-config.cmake" and "bar-config.cmake" in self.generators_
—folder

deps = CMakeDeps(self)

deps.generate()

If we are using that recipe for our project we can build it by typing:

This will generate the config files from the dependencies and the toolchain
$ conan install .

Windows

$ cd build

$ cmake .. -DCMAKE_TOOLCHAIN_FILE=generators/conan_toolchain.cmake
$ cmake --build . --config=Release

Linux

$ cd build/Release

$ cmake ../.. -DCMAKE_TOOLCHAIN_FILE=generators/conan_toolchain.cmake -DCMAKE_BUILD_
— TYPE=Release

$ cmake --build .

You can check all the generators and toolchains for different build systems in the fools reference page.

It is also very important to know that every access to the information from the dependencies must be done in the
generate () method using the self.dependencies access. Do not use self.deps_cpp_info, self.deps_env_info
or self.deps_user_info, these have been removed in 2.0.

Note: If you don’t need to customize anything in a generator you can specify it in the generators attribute and skip
using the generate () method for that:

from conan import ConanFile
from conan.tools.cmake import CMake, cmake_layout
class Pkg(ConanFile):

requires = "foo/1.0", "bar/1.0"
generators = "CMakeToolchain", "CMakeDeps"

16 Chapter 2. Conan migration guide to 2.0

https://docs.conan.io/en/latest/reference/conanfile/dependencies.html#dependencies-interface

Conan Documentation, Release 1.58.0

2.1.10 The build() method
There are no relevant changes in how the build () method works in Conan v2 compared to v1. Just be aware that the

generate () method should be used to prepare the build, generating information used in the build() step. Please,
learn how to do that in the section of this guide about the generate() method.

2.1.11 The package() method

The self. copy has been replaced by the explicit tool copy.

Listing 18: From:

def package(self):

self.copy("*.h", dst="include", src="src")
self.copy("*.1ib", dst="1ib", keep_path=False)
self.copy("*.d1l1l", dst="bin", keep_path=False)

Listing 19: To:

from conan.tools.files import copy
def package(self):

copy(self, "*.h", self.source_folder, join(self.package_folder, "include"), keep_
—path=False)

copy(self, "*.1ib", self.build_folder, join(self.package_folder, "1lib"), keep_
—path=False)

copy(self, "*.dll", self.build_folder, join(self.package_folder, "bin"), keep_
—path=False)

2.1.12 The package_info() method

Changed cpp_info default values

There are some defaults in self.cpp_info object that are not the same in Conan 2.X than in Conan 1.X (except for
Conan >= 1.50 if the layout () method is declared):

self.cpp_info.includedirs => ["include"]
self.cpp_info.libdirs => ["1ib"]
self.cpp_info.resdirs => []
self.cpp_info.bindirs => ["bin"]
self.cpp_info.builddirs => []
self.cpp_info. frameworkdirs => []

If you declare components, the defaults are the same, so you only need to change the defaults if they are not correct.

Note: Remember that it’s now possible to declare cpp_info in the layout() method using self.cpp.package instead
of using self.cpp_info in the package_info () method.

2.1. Migrating the recipes 17

Conan Documentation, Release 1.58.0

Removed self.user_info

Replaced by the self.conf_info object, much more versatile than the previous self.user_info. Check the com-
plete usage of self.conf_info.

Example:

Listing 20: From:

import os
from conans import ConanFile

class Pkg(ConanFile):
name = "pkg"
version = "1.0"

def package_info(self):
self.user_info.F00 = "bar"

Listing 21: To:

import os
from conans import ConanFile

class Pkg(ConanFile):
name = "pkg"
version = "1.0"

def package_info(self):
self.conf_info.define("user.myconf:foo", "bar")

In a consumer recipe:

import os
from conans import ConanFile

class Pkg(ConanFile):
requires = "pkg/1.0"

def generate(self):
my_value = self.dependencies[pkg].conf_info.get("user.myconf:foo")

Note: The consumer recipes will have a self.conf object available with the aggregated configuration from all the
recipes in the build context:

from conan import ConanFile

class Pkg(ConanFile):
settings = "os", "compiler", "build_type", "arch"
generators = "CMakeToolchain"
build_requires = "android_ndk/1.0"

(continues on next page)

18 Chapter 2. Conan migration guide to 2.0

Conan Documentation, Release 1.58.0

(continued from previous page)

def generate(self):
self.output.info("NDK: " % self.conf.get("tools.android:ndk_path"))

Removed self.env_info

The attribute self.env_info has been replaced by:

e self.buildenv_info: For the dependent recipes, the environment variables will be present during the build
process.

e self.runenv_info: For the dependent recipes, environment variables will be present during the runtime.
Read more about how to use them in the environment management of Conan 2.0.

Remember that if you want to pass general information to the dependent recipes, you should use the self.conf_info
and not environment variables if they are not supposed to be reused as environment variables in the dependent recipes.

Removed self.cpp_info.builddirs

The default value (pointing to the package root folder) from self.cpp_info.builddirs has been removed. Also
assigning it will be discouraged because it affects how CMakeToolchain and CMakeDeps locate executables, libraries,
headers... from the right context (host vs build).

To be prepared for Conan 2.0:

* If you have cmake modules or cmake config files at the root of the package, it is strongly recommended to move
them to a subfolder cmake and assign it: self.cpp_info.builddirs = ["cmake"]

* If you are not assigning any self.cpp_info.builddirs assign an empty list: self.cpp_info.builddirs

= [1.

¢ Instead of appending new values to the default list, assign it: self.cpp_info.builddirs = ["cmake"]

2.1.13 The package_id() method
The self.info.header_only() method has been replaced with self.info.clear()

Listing 22: From:

def package_id(self):
self.info.header_only()

2.1. Migrating the recipes 19

Conan Documentation, Release 1.58.0

Listing 23: To:

def package_id(self):
self.info.clear()

New properties model

Migrating legacy cpp_info attributes to set_property()

Migrating from .names, .filenames and .build_modules to set_property () is easy, but there are some details to take
into account for properties like cmake_target_name and cmake_file_name. Let’s see some examples.

Important: The 2 mechanisms are completely independent:
¢ Old way using .names, . filenames will work exclusively for legacy generators like cmake_find_package

* New properties, like set_property("cmake_target_name") will work exclusively for new generators like
CMakeDeps. They have changed to be absolute, and that would break legacy generators.

* Recipes that want to provide support for both generators need to provide the 2 definitions in their
package_info()

Migrating from .names to cmake_target_name

It is important to note that cmake_target_name is not going to take the same value as the .names attribute did. With
the .names attribute, if you set a name for the target in CMake, Conan would automatically create a “namespaced”
target name with that name. This code, for example:

def package_info(self):

self.cpp_info. filenames["cmake_find_package"] = "myname"

Will create a CMake target named myname : :myname.

The property cmake_target_name accepts complete target names. That means that the name you set with this prop-
erty will be the one added to the CMake generated files without appending any more information to it. To translate the
last example to the set_property model you should add the following declaration:

def package_info(self):

self.cpp_info.set_property("cmake_target_name", "myname::myname")

Note that you can use whatever name you want, it can have a different namespace, like mynamespace: :myname or use
a name with no namespace at all.

Also, please note that you may want to have different target names for both config and module CMake generated
files. For example, you have a package named myssl and you want to generate a Findmyssl.cmake module that
declares the target MySSL: : SSL, but for config mode you want to declare the target MySSL without namespaces. You
can do that using the cmake_module_target_name property. Also, when setting this property, remember to set
cmake_find_mode so that CMakeDeps generates those module files. Let’s see an example:

20 Chapter 2. Conan migration guide to 2.0

https://cmake.org/cmake/help/v3.15/command/find_package.html#full-signature-and-config-mode
https://cmake.org/cmake/help/v3.15/command/find_package.html#basic-signature-and-module-mode

Conan Documentation, Release 1.58.0

class MySSL(ConanFile):
name = "myssl"”
version = "1.0"

def package_info(self):
self.cpp_info.set_property("cmake_target_name", "MySSL")
self.cpp_info.set_property("cmake_module_target_name", "MySSL::SSL")
self.cpp_info.set_property("cmake_find_mode", "both")

Migrating from .filenames to cmake_file_name

To migrate from . filenames to names just use the same . filenames value for the property cmake_file_name. For
example:

def package_info(self):

self.cpp_info.filenames["cmake_find_package"] = "MyFileName"
self.cpp_info.filenames["cmake_find_package_multi"] = "MyFileName"

Could be declared like this with set_property():

def package_info(self):

self.cpp_info.set_property("cmake_file_name", "MyFileName")

Please note that for the legacy .names and .filenames model, if . filenames is not declared but .names is, then
Conan will automatically set the value of . filenames to the value of .names. So for example:

def package_info(self):

self.cpp_info.names["cmake_find_package"] = "SomeName"
self.cpp_info.names["cmake_find_package_multi"] = "SomeName"

This will use “SomeName” to compose the generated filenames. In this case you should set cmake_file_name to
“SomeName”:

def package_info(self):

self.cpp_info.set_property('cmake_file_ name", "SomeName")

Also, please note that you may want to use different file names for both config and module CMake generated files.
If we take the previous example of the myssl and you want to generate a FindMySSL. cmake for module mode and
myssl-config.cmake for config mode, you can set the cmake_module_file_name to set the value for the module
file:

class MySSL(ConanFile):
name = "myssl"”

(continues on next page)

2.1. Migrating the recipes 21

https://cmake.org/cmake/help/v3.15/command/find_package.html#full-signature-and-config-mode
https://cmake.org/cmake/help/v3.15/command/find_package.html#basic-signature-and-module-mode

Conan Documentation, Release 1.58.0

(continued from previous page)

version = "1.0"

def package_info(self):
self.cpp_info.set_property("cmake_file_name", "myssl')
self.cpp_info.set_property("cmake_module_file_name", "MySSL")
self.cpp_info.set_property("cmake_find_mode", "both™)

You can read more about this properties in the CMakeDeps properties reference.

Migrating components information

As we said, all these properties but cmake_file_name and cmake_module_£file_name have components support,
so for example:

def package_info(self):

self.cpp_info.components["mycomponent"] .names["cmake_find_package"] = "mycomponent-
—name"
self.cpp_info.components["mycomponent"] .names["cmake_find_package multi"] =
- "'mycomponent-name"
self.cpp_info.components["mycomponent"] .names["pkg_config"] = "mypkg-config-name"
self.cpp_info.components["mycomponent"].build_modules.append(os.path.join("1lib",
< "mypkg_bm.cmake"))

Could be declared like this with the properties model:

def package_info(self):

self.cpp_info.components["mycomponent"].set_property('cmake_target_name", "component_
—namespace: :mycomponent-name")

The property "cmake_build modules" can't be declared in a component, do it in self.
< cpp_info

self.cpp_info.set_property('cmake_build modules", [os.path.join("lib", "mypkg_bm.
—cmake")])

self.cpp_info.components["mycomponent"].set_property('pkg_config_name", "mypkg-
—config-name")

self.cpp_info.components["mycomponent"].set_property('custom_name", "mycomponent-name
", "custom_generator")

Please note that most of the legacy generators like cmake, cmake_multi, cmake_find_package,
cmake_find_package_multi and cmake_paths do not listen to these properties at all, so if you want to maintain
compatibility with consumers that use those generators and also that information for new generators like CMakeDeps
you need both models living together in the same recipe.

See also:
Read Using Components and package_info() to learn more.

Using .names, .filenames and .build_modules will not work anymore for new generators, like CMakeDeps and
PkgConfigDeps. They have a new way of setting this information using set_property and get_property methods
of the cpp_info object (available since Conan 1.36).

22 Chapter 2. Conan migration guide to 2.0

Conan Documentation, Release 1.58.0

def set_property(self, property_name, value)
def get_property(self, property_name):

New properties cmake_target_name, cmake_file_name, cmake_module_target_name,
cmake_module_file_name, pkg_config_name and cmake_build_modules are defined to allow migrating
names, filenames and build_modules properties to this model. In Conan 2.0 this will be the default way of setting
these properties for all generators and also passing custom properties to generators.

Important: The 2 mechanisms are completely independent:
¢ Old way using .names, . filenames will work exclusively for legacy generators like cmake_find_package

* New properties, like set_property("cmake_target_name") will work exclusively for new generators like
CMakeDeps. They have changed to be absolute, and that would break legacy generators.

* Recipes that want to provide support for both generators need to provide the 2 definitions in their
package_info()

New properties defined for CMake generators family, used by CMakeDeps generator:

¢ cmake_file_name property will define in CMakeDeps the name of the generated config file (xxx-config.
cmake)

* cmake_target_name property will define the absolute target name in CMakeDeps
* cmake_module_file_name property defines the generated filename for modules (Findxxxx.cmake)
* cmake_module_target_name defines the absolute target name for find modules.

* cmake_build_modules property replaces the build_modules property. It can’t be declared in a component,
do it in self.cpp_info.

* cmake_find_mode will tell CMakeDeps to generate config files, modules files, both or none of them, depending
on the value set (config, module, both or none)

Properties related to pkg_config, supported by both legacy pkg_config and new PkgConfigDeps:
* pkg_config_name property equivalent to the names attribute.

* pkg_config_custom_content property supported by both generators that will add user-defined content to the .pc
files created by the generator

* component_version property supported by both generators that set a custom version to be used in the Version
field belonging to the created *.pc file for that component.

Properties related to pkg_config, only supported by new PkgConfigDeps:

» pkg_config_aliases property sets some aliases of any package/component name for the PkgConfigDeps gener-
ator only, it doesn’t work in pkg_config. This property only accepts list-like Python objects.

All of these properties, except for cmake_file_name and cmake_module_file_name can be defined at the global
cpp_info level or at the component level.

The set/get_property model is very useful if you are creating a custom generator. Using set_property() you can
pass the parameters of your choice and read them using the get_property () method inside the generator.

def package_info(self):

you have created a custom generator that reads the 'custom_property' property and.
—you set here
(continues on next page)

2.1. Migrating the recipes 23

Conan Documentation, Release 1.58.0

(continued from previous page)

the value to 'prop_value'
self.cpp_info.components["mycomponent"] .set_property('custom_property", "prop_value")

Please check a detailed migration guide in the dedicated section.

2.1.14 Removed imports() method

The def imports(self) method from the conanfile has been removed. If you need to import files from your depen-
dencies you can do it in the generate(self) method with the new copy tool:

from conan.tools.files import copy

def generate(self):
for dep in self.dependencies.values():
copy(self, "*.dylib", dep.cpp_info.libdirs[0], self.build_folder)
copy(self, "*.dll", dep.cpp_info.libdirs[0], self.build_folder)

2.1.15 Migrate conanfile.compatible_packages to the new compatibility() method

To declare compatible packages in a valid way for both Conan 1.X and 2.0, you should migrate from using the Com-
patible packages method to the compatibility() method.

Listing 24: From:

def package_id(self):
if self.settings.compiler == "gcc" and self.settings.compiler.version == "4.9":
for version in ("4.8", "4.7", "4.6"):
compatible_pkg = self.info.clone()
compatible_pkg.settings.compiler.version = version
self.compatible_packages.append(compatible_pkg)

Listing 25: To:

def compatibility(self):
if self.settings.compiler == "gcc" and self.settings.compiler.version == "4.9":
return [{"settings": [("compiler.version", v)]}
for v in ("4.8", "4.7", "4.6")]

2.1.16 Changes in the test_package recipe

In Conan 2.0, the test_package/conanfile.py needs to declare the requirement being tested explicitly. To be
prepared you have to set the attribute test_type="explicit" (this will be ignored in 2.0) to make Conan activate
the explicit mode, then declaring the requirement using the self.tested_reference_str that contains the reference
being tested.

from conan import ConanFile

class MyTestPkg(ConanFile):

(continues on next page)

24 Chapter 2. Conan migration guide to 2.0

Conan Documentation, Release 1.58.0

(continued from previous page)

test_type = "explicit"

def requirements(self):
A regular requirement
self.requires(self.tested_reference_str)

def build_requirements(self):
—requires'")

Keep both "requires()" and "tool_requires()" if you want to test the same.
—,package both as a regular

self.tool_requires(self.tested_reference_str)

If we want to test the package as a tool_require (formerly ‘test_type = "build_

require and a tool_require (formerly “test_type = "build_requires", "requires')

2.1.17 Other recipe changes

The environment management

The environment management has changed quite a bit. In Conan 1.X the environment was managed by modifying the
environment of Python (of the running process), often using the environment_append tool, which is not available in
2.0 anymore. In Conan 2.0, all the applied environment variables are managed by script files (sh, bat) that will be run

just before calling the command specified in every self.run("mycommand™).

These “environment launchers” can be organized by scopes. Conan will aggregate all the launchers of the same scope

in a single launcher called conan<scope_name>.bat/sh.

For example, if you need to call your build system, passing some environment variables:

from conan import ConanFile
from conan.tools.env import Environment

class MyTestPkg(ConanFile):

def generate(self):
env = Environment()
env.define("foo", "var")
scope="build" is the default
envvars = env.vars(self, scope="build")
This will generate a my_launcher.sh but also will create a "conan_build.sh".
—scalling "my_launcher.sh"
envvars.save_script('my_launcher™)

def build(self):
by default env="conanbuild"
self.run("my_build_system.exe", env="conanbuild")

The resulting command executed in the build() method would be something like:

[$ conan_build.sh & & my_build_system.exe

]

So the environment variable foo declared in the generate() method will be automatically passed to the

my_build_system.exe.

2.1. Migrating the recipes

25

Conan Documentation, Release 1.58.0

There are two generators managing the environment, the VirtualBuildEnv and the VirtualRunEnv. By default,
these generators are automatically declared in Conan 2.0 but you have to explicitly declare them in Conan 1.X otherwise
you can set tools.env.virtualenv:auto_use=True in the global. conf.

¢ VirtualBuildEnv: It will generate a conanbuildenv .bat or .sh script containing environment variables of the
build time environment. That information is collected from the direct tool_requires in “build” context recipes
from the self.buildenv_info definition plus the self.runenv_info of the transitive dependencies of those
tool_requires.

The scope used by the VirtualBuildEnv is build so, as explained before, it will be applied by default before
calling any command.

Check more details here.

 VirtualRunEnv: It will generate a conanrunenv .bat or .sh script containing environment variables of the run
time environment. The launcher contains the runtime environment information, anything that is necessary for
the environment to actually run the compiled executables and applications. The information is obtained from the
self.runenv_info and also automatically deducted from the self.cpp_info definition of the package, to
define PATH, LD_LIBRARY_PATH, DYLD_LIBRARY_PATH, and DYLD_FRAMEWORK_PATH environment variables.

The scope used by the VirtualRunEnv is run so if you need that environment applied you need to specify it in
the self.run command.

An example of usage of the conanrun is the test_package of a recipe that builds a shared library:

import os
from conan import ConanFile
from conan.tools.env import Environment

class MyTestPkg(ConanFile):
generators = "VirtualRunEnv"

def test(self):
my_app_path = os.path.join(self.cpp.build.bindirs[0], "my_app")
The default env is "conanbuild" but we want the runtime here to locate.
<—sthe shared library
self.run(my_app_path, env="conanrun'")

Check more details here.

Windows Subsystems
If you want to run commands inside a Windows subsystem (e.g bash from msys2) you have to set the self.
win_bash=True in your recipe, instead of using the deprecated self.run(..., win_bash=True) from 1.X.
You need to configure how to run the commands with two config variables:
* tools.microsoft.bash:subsystem: Possible values: ‘msys2’, ‘msys’, ‘cygwin’, ‘wsl’ and ‘sfu’
¢ tools.microsoft.bash:path (Default “bash”): Path to the shell executable.

* tools.microsoft.bash:active (Default “None”): Used to define if Conan is already running inside a subsystem
(Msys2) terminal.

Any command run with self.run, if self.win_bash == True will run the command inside the specified shell.
Any command run with self.run(..., scope="run") if self.win_bash_run == True will run that command

26 Chapter 2. Conan migration guide to 2.0

Conan Documentation, Release 1.58.0

inside the shell. In both cases running explicitly in the bash shell only happens if tools.microsoft.bash:active
is not True, because when it is True, it means that Conan is already running inside the shell.

Symlinks

Conan won'’t alter any symlink while exporting or packaging files. If any manipulation to the symlinks is required, the
package conan.tools.files.symlinks contains some tools to help with that.

New tools for managing system package managers
There are some changes you should be aware of if you are migrating from SystemPackageTool to the new co-
nan.tools.system.package_manager to prepare the recipe for Conan 2.0:

¢ Unlike in SystemPackageTool that uses CONAN_SYSREQUIRES_SUDO and is set to True as default, the tools.
system.package_manager: sudo configuration is False by default.

o SystemPackageTool is initialized with default_mode="enabled' but for these new tools tools.system.
package_manager :mode="check" is set by default.

New package type attribute

The new optional attribute package_type, to help Conan package ID to choose a better default package_id_mode.

from conan import ConanFile

class FoobarAppConanfile(ConanFile):
package_type = "application"

The valid values are:
« application: The package is an application.

« library: The package is a generic library. It will try to determine the type of library (from shared-library, static-
library, header-library) reading the self.options.shared (if declared) and the self.options.header_only

* shared-library: The package is a shared library only.
* static-library: The package is a static library only.

* header-library: The package is a header only library.
* build-scripts: The package only contains build scripts.
* python-require: The package is a python require.

* unknown: The type of the package is unknown.

2.1. Migrating the recipes 27

Conan Documentation, Release 1.58.0

2.2 Commands

There is no “compatible with 2.X”” commands introduced in Conan 1.X. You will need to adapt to the new commands
once you migrate to Conan 2.0

2.2.1 Changes to expect
conan install
Almost the same command, the major change is the way to specify (or complete if not defined) the fields

of the reference. Remember that in Conan 1.X you have to specify the build profile or activate the conf
core:default_build_profile=default.

$ conan install . [--name=mylib] [--version=1.0] [-pr:b=build_profile] [-pr:h=host_
—profile]

In addition the --install-folder has been replaced with --output-folder. You might need to provide both
arguments in Conan 1.X as some legacy generated files (conaninfo. txt, conanbuildinfo. txt, etc) are not affected
by --output-folder.

conan install

In addition the --build-folder has been replaced with --output-folder. Still in most cases you shouldn’t be
using it, but relying on the defined layout() in the recipe.

conan create

Same changes as conan install:

$ conan create . [--name=mylib] [--version=1.0] [-pr:b=build_profile] [-pr:h=host_
—profile]

conan graph info

This is the substitute of the old “conan info”. The syntax is very similar to conan install and conan create

$ conan graph info . [--name=mylib] [--version=1.0] [-pr:b=build_profile] [-pr:h=host_
—profile]

conan search

The conan search will search, by default, in all the remotes (not in the local cache):

$ conan search "zlib*"

myremote:
zlib
zlib/1.2.11

(continues on next page)

28 Chapter 2. Conan migration guide to 2.0

Conan Documentation, Release 1.58.0

(continued from previous page)

conancenter:

zlib-ng
zlib-ng/2.0.2
zlib-ng/2.0.5
zlib-ng/2.0.6

z1ib
zlib/1.2.11
z1ib/1.2.8

If you want to explore the local cache there is a command conan list recipes <pattern>.

conan remote login

This is the substitute of the old “conan user”.

[$ conan remote login [-h] [-f FORMAT] [-v [V]] [--logger] [-p [PASSWORD]] remote usernameJ

conan upload

The default behavior has changed from requiring —all to include the binary packages to —recipe-only for just the recipe

$ conan upload [-h] [-v [V]] [--logger] [-p PACKAGE_QUERY] -r REMOTE
[--only-recipe] [--force] [--check] [-c]
reference

2.2.2 Unified patterns in command arguments

The arguments in Conan 1.X where we specified recipe names require now a valid reference pattern. A valid reference
pattern contains the * character or at least the name/version part of a reference (name/version@user/channel).
There are some examples:

e The --build argument when referring to a package:

Listing 26: From:
[conan install . --build zlib]

Listing 27: To:

conan install . --build zlib*
conan install . --build zlib/1.2.11
conan install . --build zlib/1.*

* The --options and --settings arguments when used scoped:

Listing 28: From:

[conan install . -s zlib:arch=x86 -o zlib:shared=True]

2.2. Commands 29

Conan Documentation, Release 1.58.0

Listing 29: To:

conan install . -s zlib*:arch=x86 -o zlib*:shared=True
conan install . -s zlib/1.2.11@user/channel:arch=x86 -o zlib/1.2.11:shared=True

2.2.3 Commands with have been removed

Removed “conan package”
The conan package command has been removed. If you are developing a recipe and want to test that the package

method is correct, we recommend using the conan export-pkg . instead and exploring the package folder in the
cache to check if everything is ok.

Removed “conan copy”
Do not use the conan copy command to change user/channel. Packages will be immutable, and this command will dis-

appear in 2.0. Package promotions are generally done on the server-side, copying packages from one server repository
to another repository.

Removed “conan user”

This has been replaced with :ref:<conan_v2_remote_login>

Removed “conan config set”

we are no longer implementing file-editing commands in 2.0. A bit overkill conan config set to edit one file. Which
should very rarely happen, the file is updated with conan config install. Alternatively, you can use the command line
and profiles to pass these values.

2.2.4 Custom commands

You can build custom commands on top of the Conan Python API. WIP documentation.

2.3 General changes

2.3.1 Host and Build profiles

Use always build and host profiles.
Conan 1.x uses one profile by default, to start using two profiles, please do the following:
¢ Pass -pr:b=default in the command line to most commands.

¢ Or set the variable core:default_build_profile=default at the global.conf file to apply it always, auto-
matically.

Do not use os_build, arch_build anywhere in your recipes or code.

¢ Revisions

30 Chapter 2. Conan migration guide to 2.0

Conan Documentation, Release 1.58.0

Conan 2.0 uses revisions by default and the local cache 2.0 will store multiple recipe and package revisions for your
Conan packages (Conan 1.X supports only one revision). To start working with revisions enabled in Conan 1.X, please
enable them in your Conan configuration:

[$ conan config set general.revisions_enabled=True

2.3.2 Lowercase references

Move all your packages to lowercase. Uppercase package names (or versions/user/channel) will not be allowed in 2.0.

2.3.3 Default Package ID mode

Work in progress

2.3.4 Compatible packages

Work in progress

2.3.5 Extensions

Work in progress

Hooks

* Hooks folder has been updated to ~/ . conan2/extensions/hook;

* Any hook file must be named with hook_ as prefix and . py as suffix;
* Only ConanFile is passed as parameter;

* Pre and Post Download are no longer supported in Conan 2.x

¢ Added Pre and Post Generator

2.3.6 Environment Variables

Work in progress

2.3. General changes 31

Conan Documentation, Release 1.58.0

32 Chapter 2. Conan migration guide to 2.0

CHAPTER
THREE

TRAINING COURSES

JFrog has created the JFrog Academy to host a broad range of free online courses surrounding Devops. The Conan
team has created the “Conan series” on JFrog Academy, which includes several levels of courses covering both beginner
concepts and advanced scenarios.

The courses are completely free and self-paced. They feature interactive exercises which walk users through the running
of commands, exploring and editing of important Conan-related files and directories, and quizzes to invoke critical
thinking after each section.

For additional information about the Conan training series, see the original blog post announcement here:
* https://blog.conan.io/2020/09/24/New-conan-training-series.html

For the complete list of dedicated Conan courses, see the Conan series page here:
* https://academy.jfrog.com/path/conan

Finally, here is a brief video introducing the series:

33

https://blog.conan.io/2020/09/24/New-conan-training-series.html
https://academy.jfrog.com/path/conan

Conan Documentation, Release 1.58.0

34 Chapter 3. Training Courses

CHAPTER
FOUR

INSTALL

Conan can be installed in many Operating Systems. It has been extensively used and tested in Windows, Linux (different
distros), OSX, and is also actively used in FreeBSD and Solaris SunOS. There are also several additional operating
systems on which it has been reported to work.

There are three ways to install Conan:

1. The preferred and strongly recommended way to install Conan is from PyPI, the Python Package Index, using
the pip command.

2. There are other available installers for different systems, which might come with a bundled python interpreter,
so that you don’t have to install python first. Note that some of these installers might have some limitations,
especially those created with pyinstaller (such as Windows exe & Linux deb).

3. Running Conan from sources.

4.1 Install with pip (recommended)

To install Conan using pip, you need Python>=3.6 distribution installed on your machine.

Warning: Python 2 has been deprecated on January 1st, 2020 by the Python maintainers and from Conan
1.49 it will not be possible to run Conan with Python 2.7, and at least Python>=3.6 will be required. See Python 2
Removal Notice for details.

Install Conan:

[$ pip install conan

Important: Please READ carefully
* Make sure that your pip installation matches your Python>=3.6 version. Lower Python versions will not work.
* In Linux, you may need sudo permissions to install Conan globally.

* We strongly recommend using virtualenvs (virtualenvwrapper works great) for everything related to Python.
(check https://virtualenvwrapper.readthedocs.io/en/stable/, or https://pypi.org/project/virtualenvwrapper-win/
in Windows) With Python 3, the built-in module venv can also be used instead (check https://docs.python.org/3/
library/venv.html). If not using a virtualenv it is possible that conan dependencies will conflict with previously
existing dependencies, especially if you are using Python for other purposes.

* In OSX, especially the latest versions that may have System Integrity Protection, pip may fail. Try using
virtualenvs, or install with another user $ pip install --user conan.

35

https://virtualenvwrapper.readthedocs.io/en/stable/
https://pypi.org/project/virtualenvwrapper-win/
https://docs.python.org/3/library/venv.html
https://docs.python.org/3/library/venv.html

Conan Documentation, Release 1.58.0

e Some Linux distros, such as Linux Mint, require a restart (shell restart, or logout/system if not enough) after
installation, so Conan is found in the path.

4.1.1 Known installation issues with pip

e When Conan is installed with pip install --user <username>, usually a new directory is created for it.
However, the directory is not appended automatically to the PATH and the conan commands do not work. This
can usually be solved restarting the session of the terminal or running the following command:

[$ source ~/.profile]

4.2 Install from brew (OSX)

There is a brew recipe, so in OSX, you can install Conan as follows:

$ brew update
$ brew install conan

4.3 Install from AUR (Arch Linux)

The easiest way to install Conan on Arch Linux is by using one of the Arch User Repository (AUR) helpers, e.g., yay,
aurman, or pakku. For example, the following command installs Conan using yay:

[$ yay -S conan }

Alternatively, build and install Conan manually using makepkg and pacman as described in the Arch Wiki. Conan
build files can be downloaded from AUR: https://aur.archlinux.org/packages/conan/. Make sure to first install the three
Conan dependencies which are also found in AUR:

* python-patch-ng
* python-node-semver

* python-pluginbase

4.4 Install the binaries

Go to the conan website and download the installer for your platform!

Execute the installer. You don’t need to install python.

36 Chapter 4. Install

https://wiki.archlinux.org/index.php/AUR_helpers
https://wiki.archlinux.org/index.php/Arch_User_Repository#Installing_and_upgrading_packages
https://aur.archlinux.org/packages/conan/
https://conan.io/downloads.html

Conan Documentation, Release 1.58.0

4.5 Initial configuration

Check if Conan is installed correctly. Run the following command in your console:

[$ conan

The response should be similar to:

Consumer commands

install Installs the requirements specified in a recipe (conanfile.py or conanfile.
—txt).

config Manages Conan configuration.

get Gets a file or list a directory of a given reference or package.

info Gets information about the dependency graph of a recipe.

Tip: If you are using Bash, there is a bash autocompletion project created by the community for Conan commands:
https://gitlab.com/akim.saidani/conan-bashcompletion

4.6 Install from source

You can run Conan directly from source code. First, you need to install Python and pip.

Clone (or download and unzip) the git repository and install it with:

clone folder name matters, to avoid imports issues

$ git clone https://github.com/conan-io/conan.git conan_src
$ cd conan_src

$ python -m pip install -e .

Test your conan installation.

[$ conan]

You should see the Conan commands help.

4.7 Update

If installed via pip, Conan can be easily updated:

[$ pip install conan --upgrade # Might need sudo or --user }

If installed via the installers (.exe, .deb), download the new installer and execute it.

The default <userhome>/.conan/settings.yml file, containing the definition of compiler versions, etc., will be upgraded
if Conan does not detect local changes, otherwise it will create a settings.yml.new with the new settings. If you want to
regenerate the settings, you can remove the settings.yml file manually and it will be created with the new information
the first time it is required.

The upgrade shouldn’t affect the installed packages or cache information. If the cache becomes inconsistent somehow,
you may want to remove its content by deleting it (<userhome>/.conan).

4.5. Initial configuration 37

https://gitlab.com/akim.saidani/conan-bashcompletion

Conan Documentation, Release 1.58.0

4.8 Python 2 Removal Notice

From version 1.49, Conan will not work with Python 2. This is because security vulnerabilities of Conan dependencies
that haven’t been addressed in Python 2, so the only alternative moving forward is to finally remove Python 2 support.

Python 2 was officially declared End Of Life in January 2020, and Conan 1.22 already declared Python 2 as not sup-
ported. Extra blockers have been added in previous Conan releases to make everyone aware. Now the security vul-
nerabilities that are out of our scope, makes impossible to move forward support for Python 2. Please upgrade to
Python>=3.6 to continue using Conan>=1.49.

If you have any issue installing Conan, please report in the Conan issue tracker or write us to info@conan.io.

38 Chapter 4. Install

https://github.com/conan-io/conan/issues/3334
mailto:info@conan.io

CHAPTER
FIVE

GETTING STARTED

Caution: We are actively working to finalize the Conan 2.0 Release. Some of the information on this page
references deprecated features which will not be carried forward with the new release. It’s important to check the
Migration Guidelines to ensure you are using the most up to date features.

Let’s get started with an example: We are going to create an MD5 hash calculator app that uses one of the most popular
C++ libraries: Poco.

We’ll use CMake as build system in this case but keep in mind that Conan works with any build system and is not
limited to using CMake.

Make sure you are running the latest Conan version. Read the Conan update section to get more information.

5.1 An MD5 hash calculator using the Poco Libraries

Note: The source files to recreate this project are available in the example repository in GitHub. You can skip the
manual creation of the folder and sources with this command:

[$ git clone https://github.com/conan-io/examples.git &% cd examples/libraries/poco/md5]

1. Create the following source file inside a folder. This will be the source file of our application:

Listing 1: mdS.cpp

#include "Poco/MD5Engine.h"
#include "Poco/DigestStream.h"

#include <iostream>

int main(int argc, char** argv){

Poco: :MD5Engine md5;

Poco: :DigestOutputStream ds(md5);

ds << "abcdefghijklmnopgrstuvwxyz";

ds.close();

std::cout << Poco::DigestEngine::digestToHex(md5.digest()) <<.
—std::endl;

return 0;

¥

39

https://pocoproject.org/
https://github.com/conan-io/examples

Conan Documentation, Release 1.58.0

2. We know that our application relies on the Poco libraries. Let’s look for it in the ConanCenter remote, going to
https://conan.io/center, and typing “poco” in the search box. We will see that there are some different versions
available:

poco/1.8.1
poco/1.9.3
poco/1.9.4

Note: The Conan client contains a command to search in remote repositories, and we could try $ conan
search poco --remote=conancenter. You can perfectly use this command to search in your own reposi-
tories, but note that at the moment this might timeout in ConanCenter. The infrastructure is being improved to
support this command too, but meanwhile using the ConanCenter Ul is recommended.

3. We got some interesting references for Poco. Let’s inspect the metadata of the 1.9.4 version:

$ conan inspect poco/1.9.4
name: poco
version: 1.9.4
url: https://github.com/conan-io/conan-center-index
homepage: https://pocoproject.org
license: BSL-1.0
author: None
description: Modern, powerful open source C++ class libraries for building.
—network- and internet-based applications that run on desktop, server,..
—.mobile and embedded systems.
topics: ('conan', 'poco', 'building', 'networking', 'server', 'mobile',
— "embedded")
generators: cmake
exports: None
exports_sources: CMakeLists.txt
short_paths: False
apply_env: True
build_policy: None
revision_mode: hash
settings: ('os', 'arch', 'compiler', 'build_type')
options:
cxx_14: [True, False]
enable_apacheconnector: [True, False]
enable_cppparser: [True, False]
enable_crypto: [True, False]
[...]
default_options:
cxx_14: False
enable_apacheconnector: False
enable_cppparser: False
enable_crypto: True

Looold

4. Let’s use this poco/1.9.4 version for our MDS5 calculator app, creating a conanfile.txt inside our project’s folder
with the following content:

40

Chapter 5. Getting Started

https://conan.io/center
https://conan.io/center/

Conan Documentation, Release 1.58.0

Listing 2: conanfile.txt

[requires]
poco/1.9.4

[generators]
cmake

In this example we are using CMake to build the project, which is why the cmake generator is specified.
This generator creates a conanbuildinfo.cmake file that defines CMake variables including paths and
library names that can be used in our build. Read more about Generators.

5. Next step: We are going to install the required dependencies and generate the information for the build system:

Important: If you are using GCC compiler >= 5.1, Conan will set the compiler.libcxx to the old
ABI for backwards compatibility. In the context of this getting started example, this is a bad choice
though: Recent gcc versions will compile the example by default with the new ABI and linking will
fail without further customization of your cmake configuration. You can avoid this with the following
commands:

$ conan profile new default --detect # Generates default profile detecting.
—GCC and sets old ABI
$ conan profile update settings.compiler.libcxx=libstdc++11 default # Sets.
—1libcxx to C++11 ABI

You will find more information in How fo manage the GCC >= 5 ABI.

$ mkdir build && cd build
$ conan install ..

Requirements

bzip2/1.0.8 from 'conancenter' - Downloaded
expat/2.2.9 from 'conancenter' - Downloaded
openssl/1.1.1g from 'conancenter' - Downloaded
pcre/8.41 from 'conancenter' - Downloaded
poco/1.9.4 from 'conancenter' - Cache
sqlite3/3.31.1 from 'conancenter' - Downloaded
z1ib/1.2.11 from 'conancenter' - Downloaded
Packages

bzip2/1.0.8:5be2b7a2110ec8acdbf9alcea9de5d60747edb34 - Download
expat/2.2.9:6cc50b139b9c3d27b3e9042d5£5372d327b3a9f7 - Download
openssl/1.1.1g:6cc50b139b9c3d27b3e9042d5£5372d327b3a9f7 - Download
pcre/8.41:20fc3dfce989c458ac2372442673140ea8028c06 - Download
poco/1.9.4:73e83a21eab817£fa9%ef0f7d1a86€a923190b0205 - Download
sqlite3/3.31.1:4559c5d4£09161eled£374b033b1d6464826db16 - Download
z1ib/1.2.11:6cc50b139b9c3d27b3e9042d5£5372d327b3a9f7 - Download

zlib/1.2.11: Retrieving package f74366f76f700cc6e991285892ad7a23c30e6d47..
—from remote 'conancenter'

Downloading conanmanifest.txt completed [0.25k]

Downloading conaninfo.txt completed [0.44k]

Downloading conan_package.tgz completed [83.15k]

(continues on next page)

5.1. An MD5 hash calculator using the Poco Libraries 41

Conan Documentation, Release 1.58.0

(continued from previous page)

Decompressing conan_package.tgz completed [0.00k]
z1lib/1.2.11: Package installed £74366£f76£f700cc6e991285892ad7a23c30e6d47
z1lib/1.2.11: Downloaded package revision 0

poco/1.9.4: Retrieving package 645aaff0a79e6036c77803601e44677556109dd9..
—.from remote 'conancenter'

Downloading conanmanifest.txt completed [48.75k]

Downloading conaninfo.txt completed [2.44k]

Downloading conan_package.tgz completed [5128.39k]

Decompressing conan_package.tgz completed [0.00k]

poco/1.9.4: Package installed 645aaff0a79e6036c77803601e44677556109dd9
poco/1.9.4: Downloaded package revision 0

conanfile.txt: Generator cmake created conanbuildinfo.cmake
conanfile.txt: Generator txt created conanbuildinfo.txt

conanfile.txt: Generated conaninfo.txt

conanfile.txt: Generated graphinfo

Conan installed our Poco dependency but also the transitive dependencies for it: OpenSSL, zlib, sqlite and
others. It has also generated a conanbuildinfo.cmake file for our build system.

Warning: There are prebuilt binaries for several mainstream compilers and versions available in Conan-
Center repository, a list is keep in the repository’s documentation If your current configuration is not pre-built
in ConanCenter, Conan will raise a “Binary Missing” error. Please read carefully the error messages. You
can build the binary package from sources using conan install .. --build=missing, it will succeed
if your configuration is supported by the recipe (it is possible that some ConanCenter recipes fail to build for
some platforms). You will find more info in the Building with other configurations section.

6. Now let’s create our build file. To inject the Conan information, include the generated conanbuildinfo.cmake file
like this:

Caution: The Creating Packages’s Getting Started is a more up-to-date version of this section.

Listing 3: CMakeLists.txt

cmake_minimum_required(VERSION 2.8.12)
project (MD5SEncrypter)

add_definitions("-std=c++11")

include (${CMAKE_BINARY_DIR}/conanbuildinfo.cmake)
conan_basic_setup()

add_executable(md5 md5.cpp)
target_link libraries(md5 ${CONAN_LIBS})

Note: There are other integrations with CMake, like the cmake_find_package generators, that will
use the find_package () CMake syntax (see CMake section).

42

Chapter 5. Getting Started

https://github.com/conan-io/conan-center-index/blob/master/docs/supported_platforms_and_configurations.md

Conan Documentation, Release 1.58.0

7. Now we are ready to build and run our MD5 app:

(win)
$ cmake .. -G "Visual Studio 16"
$ cmake --build . --config Release

(1linux, mac)
$ cmake .. -G "Unix Makefiles" -DCMAKE_BUILD_TYPE=Release
$ cmake --build .

[100%] Built target md5
$./bin/md5
c3£cd3d76192e4007dfb496cca67el3b

5.2 Installing Dependencies

The conan install command downloads the binary package required for your configuration (detected the first time
you ran the command), together with other (transitively required by Poco) libraries, like OpenSSL and Zlib. It
will also create the conanbuildinfo.cmake file in the current directory, in which you can see the CMake variables, and
a conaninfo.txt in which the settings, requirements and optional information is saved.

Note: Conan generates a default profile with your detected settings (OS, compiler, architecture. ..) and that configu-
ration is printed at the top of every conan install command. However, it is strongly recommended to review it and
adjust the settings to accurately describe your system as shown in the Building with other configurations section.

It is very important to understand the installation process. When the conan install command runs, settings specified
on the command line or taken from the defaults in <userhome>/.conan/profiles/default file are applied.

5.2. Installing Dependencies 43

Conan Documentation, Release 1.58.0

server

\J Pkg/0.1 ’

\v/

—[~ Win/VS14
/

N_ —

———————

~ Linux/gcc

1. Fetch recipe 2. Fetch package binary

e —— ———

4
Pkgf0.1
N Pkey

\J/

]
$ conan install .. -s os=Linux —s compiler=gcc

"

D

client

For example, the command conan install .. --settings os="Linux" --settings compiler="gcc", per-
forms these steps:

5.3

Checks if the package recipe (for poco/1.9.4 package) exists in the local cache. If we are just starting, the
cache is empty.

Looks for the package recipe in the defined remotes. Conan comes with conancenter remote as the default,
but can be changed.

If the recipe exists, the Conan client fetches and stores it in your local Conan cache.

With the package recipe and the input settings (Linux, GCC), Conan looks for the corresponding binary in the
local cache.

As the binary is not found in the cache, Conan looks for it in the remote and fetches it.

Finally, it generates an appropriate file for the build system specified in the [generators] section.

Inspecting Dependencies

The retrieved packages are installed to your local user cache (typically .conan/data), and can be reused from this location
for other projects. This allows to clean your current project and continue working even without network connection.
To search for packages in the local cache run:

$ conan search "*"
Existing package recipes:

openssl/1.0.2t
poco/1.9.4

(continues on next page)

44

Chapter 5. Getting Started

Conan Documentation, Release 1.58.0

(continued from previous page)

z1lib/1.2.11

To inspect the different binary packages of a reference run:

$ conan search poco/1.9.4@
Existing packages for recipe poco/1.9.4:

Package_ID: 645aaff0a79e6036c77803601e44677556109dd9
[options]
cxx_14: False
enable_apacheconnector: False
enable_cppparser: False
enable_crypto: True
enable_data: True

The @ symbol at the end of the package name is important to search for a specific package. If you don’t add the @,
Conan will interpret the argument as a pattern search and return all the packages that match the poco/1.9.4 pattern
and may have different user and channel.

To inspect all your current project’s dependencies use the conan info command by pointing it to the location of the
conanfile.txt folder:

$ conan info ..
conanfile.txt
ID: db91af4811b080e®2ebe5a626£1d256bb90d5223
BuildID: None
Requires:
poco/1.9.4
openssl/1.0.2t
ID: eb50d18a5a5d59bd0c332464a4c348ab65e353bf
BuildID: None
Context: host
Remote: conancenter=https://center.conan.io
URL: https://github.com/conan-io/conan-center-index
Homepage: https://github.com/openssl/openssl
License: OpenSSL
Description: A toolkit for the Transport Layer Security (TLS) and Secure Sockets.
—Layer (SSL) protocols
Topics: conan, openssl, ssl, tls, encryption, security
Recipe: Cache
Binary: Cache
Binary remote: conancenter
Creation date: 2019-11-13 23:14:37
Required by:
poco/1.9.4
Requires:
zlib/1.2.11
poco/1.9.4
ID: 645aaff0a79e6036c77803601e44677556109dd9
BuildID: None
Context: host
(continues on next page)

5.3. Inspecting Dependencies 45

Conan Documentation, Release 1.58.0

(continued from previous page)

Remote: conancenter=https://center.conan.io

URL: https://github.com/conan-io/conan-center-index

Homepage: https://pocoproject.org

License: BSL-1.0

Description: Modern, powerful open source C++ class libraries for building network-.

—and internet-based applications that run on desktop, server, mobile and embedded.
-, systems.

Topics: conan, poco, building, networking, server, mobile, embedded
Recipe: Cache
Binary: Cache
Binary remote: conancenter
Creation date: 2020-01-07 17:29:24
Required by:
conanfile.txt
Requires:
openssl/1.0.2t

z1lib/1.2.11

ID: £f74366f76f700cc6e991285892ad7a23c30e6d47

BuildID: None

Context: host

Remote: conancenter=https://center.conan.io

URL: https://github.com/conan-io/conan-center-index

Homepage: https://zlib.net

License: Zlib

Description: A Massively Spiffy Yet Delicately Unobtrusive Compression Library (Also..

—Free, Not to Mention Unencumbered by Patents)

Recipe: Cache
Binary: Cache
Binary remote: conancenter
Creation date: 2020-01-07 17:01:29
Required by:

openssl/1.0.2t

Or generate a graph of your dependencies using Dot or HTML formats:

$ conan info .. --graph=file.html
$ file.html # or open the file, double-click

46

Chapter 5. Getting Started

Conan Documentation, Release 1.58.0

conanfile.txt

poco/1.9.4

pcre/8.41

expat/2.2.9

(sqlite3/3.31.1] (openss1/1.1.1g]

/L

5.4 Searching Packages

The remote repository where packages are installed from is configured by default in Conan. It is called Conan Center
(configured as conancenter remote).

If we search for something like open in ConanCenter we could find different packages like:

openal/1.18.2@bincrafters/stable
openal/1.19.1
opencv/2.4.13.5@conan/stable
opencv/3.4.3@conan/stable
opencv/4.1.1@conan/stable
openexr/2.3.0
openexr/2.3.0@conan/stable
openexr/2.4.0
openjpeg/2.3.0@bincrafters/stable
openjpeg/2.3.1
openjpeg/2.3.1@bincrafters/stable
openssl/1.0.2s

As you can see, some of the libraries end with a @ symbol followed by two strings separated by a slash. These fields are
the user and channel for the Conan package, and they are useful if you want to make specific changes and disambiguate
your modified recipe from the one in the Conan Center or any other remote. These are legacy packages, and the ones
without user and channel are the ones strongly recommended to use from ConanCenter.

ConanCenter is the central public repository for Conan packages. You can contribute packages to it in the conan-
center-index Github repository. If you want to store your own private packages, you can download the free Artifactory
Community Edition (CE) directly from the Conan downloads page.

5.4. Searching Packages 47

https://conan.io/center/
https://github.com/conan-io/conan-center-index
https://github.com/conan-io/conan-center-index
https://conan.io/downloads.html

Conan Documentation, Release 1.58.0

5.5 Building with other configurations

In this example, we have built our project using the default configuration detected by Conan. This configuration is
known as the default profile.

A profile needs to be available prior to running commands such as conan install. When running the command,
your settings are automatically detected (compiler, architecture...) and stored as the default profile. You can edit these
settings ~/.conan/profiles/default or create new profiles with your desired configuration.

For example, if we have a profile with a 32-bit GCC configuration in a file called gcc_x86, we can run the following:

[$ conan install .. --profile=gcc_x86]

Tip: We strongly recommend using Profiles and managing them with conan config install.

However, the user can always override the profile settings in the conan install command using the --settings
parameter. As an exercise, try building the 32-bit version of the hash calculator project like this:

[$ conan install .. --settings arch=x86]

The above command installs a different package, using the --settings arch=x86 instead of the one of the default
profile used previously. Note you might need to install extra compilers or toolchains in some platforms, as for example,
Linux distributions no longer install 32bits toolchains by default.

To use the 32-bit binaries, you will also have to change your project build:
* In Windows, change the CMake invocation to Visual Studio 14.

e In Linux, you have to add the -m32 flag to your CMakeLists.txt by running SET(CMAKE_CXX_FLAGS
"${CMAKE_CXX_FLAGS} -m32"), and the same applies to CMAKE_C_FLAGS, CMAKE_SHARED_LINK_FLAGS
and CMAKE_EXE_LINKER_FLAGS. This can also be done more easily, by automatically using Conan, as we’ll
show later.

* In macOS, you need to add the definition -DCMAKE_OSX_ARCHITECTURES=1386.

Got any doubts? Check our FAQ, or join the community in Cpplang Slack #conan channel!

48 Chapter 5. Getting Started

https://cppalliance.org/slack/

CHAPTER
SIX

USING PACKAGES

This section shows how to setup your project and manage dependencies (i.e., install existing packages) with Conan.

6.1 Installing dependencies

Caution: We are actively working to finalize the Conan 2.0 Release. Some of the information on this page
references deprecated features which will not be carried forward with the new release. It’s important to check the
Migration Guidelines to ensure you are using the most up to date features.

In Getting started we used the conan install command to download the Poco library and build an example.

If you inspect the conanbuildinfo.cmake file that was created when running conan install, you can see there
that there are many CMake variables declared. For example CONAN_INCLUDE_DIRS_ZLIB, that defines the include
path to the zlib headers, and CONAN_INCLUDE_DIRS that defines include paths for all dependencies headers.

49

Conan Documentation, Release 1.58.0

conanbuildinfo.cmake

<package_root >will be:
<userhome>/.conan/data/Pkg/0.1/user/channel/
package/e0...56/

yd

Pkg/0.1@user/channel /
v

include/hdrh set(CONAN_INCLUDE_DIRS "<package_root>/include")
li/mylib.lib set(CONAN_LIB_DIRS "<package_root>/lib")
set(CONAN_LIBS mylib)

w set(CONAN_DEFINES -DSOME_LIBDEFINE)

conan local cache
i H
<userhome>/.conan/data User folder for “S conan instal

|I}

If you check the full path that each of these variables defines, you will see that it points to a folder under your
<userhome> folder. Together, these folders are the local cache. This is where package recipes and binary packages
are stored and cached, so they don’t have to be retrieved again. You can inspect the local cache with conan search,
and remove packages from it with conan remove command.

If you navigate to the folders referenced in conanbuildinfo.cmake you will find the headers and libraries for each
package.

If you execute a conan install poco/1.9.4@ command in your shell, Conan will download the Poco package and
its dependencies (openssl/1.0.2¢t and zlib/1.2.11) to your local cache and print information about the folder where they
are installed. While you can install each of your dependencies individually like that, the recommended approach for
handling dependencies is to use a conanfile.txt file. The structure of conanfile. txt is described below.

6.1.1 Requires

The required dependencies should be specified in the [requires] section. Here is an example:

[requires]
mypackage/1.0.0@company/stable

Where:
* mypackage is the name of the package which is usually the same as the project/library.

* 1.0.0 is the version which usually matches that of the packaged project/library. This can be any string; it does
not have to be a number, so, for example, it could indicate if this is a “develop” or “master” version. Packages can
be overwritten, so it is also OK to have packages like “nightly” or “weekly”, that are regenerated periodically.

» company is the owner of this package. It is basically a namespace that allows different users to have their own
packages for the same library with the same name.

50 Chapter 6. Using packages

Conan Documentation, Release 1.58.0

* stable is the channel. Channels provide another way to have different variants of packages for the same library
and use them interchangeably. They usually denote the maturity of the package as an arbitrary string such as
“stable” or “testing”, but they can be used for any purpose such as package revisions (e.g., the library version has
not changed, but the package recipe has evolved).

Optional user/channel

If the package was created and uploaded without specifying the user and channel you can omit the user/channel
when specifying a reference:

[requires]
packagename/1.2.0

Overriding requirements
You can specify multiple requirements and override transitive “require’s requirements”. In our example, Conan in-
stalled the Poco package and all its requirements transitively:

¢ openssl/1.0.2t

e zlib/1.2.11

Tip: This is a good example of overriding requirements given the importance of keeping the OpenSSL library updated.

Consider that a new release of the OpenSSL library has been released, and a new corresponding Conan package is
available. In our example, we do not need to wait until pocoproject (the author) generates a new package of POCO that
includes the new OpenSSL library.

We can simply enter the new version in the [requires] section:

[requires]
poco/1.9.4
openssl/1.0.2u

The second line will override the openssl/1.0.2t required by POCO with the currently non-existent openssl/1.0.2u.

Another example in which we may want to try some new zlib alpha features: we could replace the zlib requirement
with one from another user or channel.

[requires]

poco/1.9.4

openssl/1.0.2u
z1lib/1.2.11@otheruser/alpha

Note: You can use environment variable CONAN_ERROR_ON_OVERRIDE to raise an error for every overridden
requirement not marked explicitly with the override keyword.

6.1. Installing dependencies 51

https://conan.io/center/poco

Conan Documentation, Release 1.58.0

6.1.2 Generators

Conan reads the [generators] section from conanfile. txt and creates files for each generator with all the informa-
tion needed to link your program with the specified requirements. The generated files are usually temporary, created
in build folders and not committed to version control, as they have paths to local folders that will not exist in another
machine. Moreover, it is very important to highlight that generated files match the given configuration (Debug/Release,
x86/x86_64, etc) specified when running conan install. If the configuration changes, the files will change accord-
ingly.

For a full list of generators, please refer to the complete generators reference.

6.1.3 Options

We have already seen that there are some settings that can be specified during installation. For example, conan
install .. -s build_type=Debug. These settings are typically a project-wide configuration defined by the client
machine, so they cannot have a default value in the recipe. For example, it doesn’t make sense for a package recipe to
declare “Visual Studio” as a default compiler because that is something defined by the end consumer, and unlikely to
make sense if they are working in Linux.

On the other hand, options are intended for package specific configuration that can be set to a default value in the
recipe. For example, one package can define that its default linkage is static, and this is the linkage that should be used
if consumers don’t specify otherwise.

Note: You can see the available options for a package by inspecting the recipe with conan get <reference>
command:

[$ conan get poco/1.9.4@ }

To see only specific fields of the recipe you can use the conan inspect command instead:

$ conan inspect poco/1.9.4@ -a=options
$ conan inspect poco/1.9.4@ -a=default_options

For example, we can modify the previous example to use dynamic linkage instead of the default one, which was static,
by editing the [options] section in conanfile. txt:

[requires]
poco/1.9.4

[generators]
cmake

[options]
poco:shared=True # PACKAGE:OPTION=VALUE
openssl:shared=True

Install the requirements and compile from the build folder (change the CMake generator if not in Windows):

$ conan install ..
$ cmake .. -G "Visual Studio 14 Win64"
$ cmake --build . --config Release

As an alternative to defining options in the conanfile. txt file, you can specify them directly in the command line:

52 Chapter 6. Using packages

Conan Documentation, Release 1.58.0

$ conan install ..
or even with wildcards,
$ conan install ..

to apply to many packages

-0 *:shared=True

-0 poco:shared=True -o openssl:shared=True

Conan will install the binaries of the shared library packages, and the example will link with them. You can again
inspect the different binaries installed. For example, conan search zlib/1.2.11@.

Finally, launch the executable:

[s ./bin/mds

)

What happened? It fails because it can’t find the shared libraries in the path. Remember that shared libraries are used

at runtime, so the operating system, which is running the application, must be able to locate them.

We could inspect the generated executable, and see that it is using the shared libraries. For example, in Linux, we could
use the objdump tool and see the Dynamic section:

$ cd bin
$ objdump -p md5

Dynamic Section:

NEEDED libPocoUtil.so.31
NEEDED libPocoXML.so.31

NEEDED 1ibPoco]SON.so0.31
NEEDED libPocoMongoDB.so.31
NEEDED libPocoNet.so0.31

NEEDED libPocoCrypto.so.31
NEEDED libPocoData.so.31
NEEDED libPocoDataSQLite.so.31
NEEDED libPocoZip.so0.31

NEEDED libPocoFoundation.so.31
NEEDED libpthread.so.0

NEEDED libdl.so.2

NEEDED librt.so.1

NEEDED libssl.so0.1.0.0

NEEDED libcrypto.so.1.0.0
NEEDED libstdc++.s0.6

NEEDED libm.so.6

NEEDED libgcc_s.so.1

NEEDED libc.so.6

6.1.4 Imports

this one.

Warning: This is a deprecated feature. Please refer to the Migration Guidelines to find the feature that replaces

There are some differences between shared libraries on Linux (*.s0), Windows (*.dll) and MacOS (*.dylib). The shared
libraries must be located in a folder where they can be found, either by the linker, or by the OS runtime.

You can add the libraries’

folders to the path (LD_LIBRARY_PATH environment variable in Linux,

DYLD_LIBRARY_PATH in OSX, or system PATH in Windows), or copy those shared libraries to some system folder
where they can be found by the OS. But these operations are only related to the deployment or installation of apps;

6.1. Installing dependencies

53

Conan Documentation, Release 1.58.0

they are not relevant during development. Conan is intended for developers, so it avoids such manipulation of the OS
environment.

In Windows and OSX, the simplest approach is to copy the shared libraries to the executable folder, so they are found
by the executable, without having to modify the path.

This is done using the [imports] section in conanfile. txt.

To demonstrate this, edit the conanfile. txt file and paste the following [imports] section:

[requires]
poco/1.9.4

[generators]
cmake

[options]
poco:shared=True
openssl:shared=True

[imports]
bin, *.dll -> ./bin # Copies all dll1 files from packages bin folder to my "bin" folder
lib, *.dylib* -> ./bin # Copies all dylib files from packages 1lib folder to my "bin".
—folder

Note: You can explore the package folder in your local cache (~/.conan/data) and see where the shared libraries are.
It is common that *.dll are copied to /bin. The rest of the libraries should be found in the /lib folder, however, this is
just a convention, and different layouts are possible.

Install the requirements (from the build folder), and run the binary again:

$ conan install ..
$./bin/md5

Now look at the build/bin folder and verify that the required shared libraries are there.
As you can see, the [imports] section is a very generic way to import files from your requirements to your project.

This method can be used for packaging applications and copying the resulting executables to your bin folder, or for
copying assets, images, sounds, test static files, etc. Conan is a generic solution for package management, not only for
(but focused on) C/C++ libraries.

See also:

To learn more about working with shared libraries, please refer to Howtos/Manage shared libraries.

54 Chapter 6. Using packages

Conan Documentation, Release 1.58.0

6.2 Using profiles

Caution: We are actively working to finalize the Conan 2.0 Release. Some of the information on this page
references deprecated features which will not be carried forward with the new release. It’s important to check the
Migration Guidelines to ensure you are using the most up to date features.

So far, we have used the default settings stored in ~/ . conan/profiles/default and defined custom values for some
of them as command line arguments.

However, in large projects, configurations can get complex, settings can be very different, and we need an easy way to
switch between different configurations with different settings, options etc. An easy way to switch between configura-
tions is by using profiles.

A profile file contains a predefined set of settings, options, environment variables, and tool_requires
specified in the following structure:

[settings]
setting=value

[options]
MyLib:shared=True

[env]
env_var=value

[tool_requires]

t00l1/0. 1@user/channel

to0l2/0.1@user/channel, tool3/0.1@user/channel
*: to0l4/0.1l@user/channel

Options allow the use of wildcards letting you apply the same option value to many packages. For example:

[options]
*:shared=True

Here is an example of a configuration that a profile file may contain:

Listing 1: clang_3.5

[settings]

os=Macos

arch=x86_64

compiler=clang
compiler.version=3.5
compiler.libcxx=1libstdc++11
build_type=Release

[env]
CC=/usr/bin/clang-3.5
CXX=/usr/bin/clang++-3.5

A profile file can be stored in the default profile folder, or anywhere else in your project file structure. To use the
configuration specified in a profile file, pass in the file as a command line argument as shown in the example below:

6.2. Using profiles 55

Conan Documentation, Release 1.58.0

[$ conan create . demo/testing -pr=clang_3.5 J

Continuing with the example of Poco, instead of passing in a long list of command line arguments, we can define a
handy profile that defines them all and pass that to the command line when installing the project dependencies.

A profile to install dependencies as shared and in debug mode would look like this:

Listing 2: debug_shared

include(default)

[settings]
build_type=Debug

[options]

poco:shared=True
poco:enable_apacheconnector=False
openssl:shared=True

To install dependencies using the profile file, we would use:

[$ conan install .. -pr=debug_shared }

We could also create a new profile to use a different compiler version and store that in our project directory. For
example:

Listing 3: poco_clang_3.5

include(clang_3.5)

[options]

poco:shared=True
poco:enable_apacheconnector=False
openssl:shared=True

To install dependencies using this new profile, we would use:

[$ conan install .. -pr=../poco_clang_3.5 J

You can specify multiple profiles in the command line. The applied configuration will be the composition of all the
profiles applied in the order they are specified:

[$ conan install .. -pr=../poco_clang_3.5 -pr=my_build_tooll -pr=my_build_tool2 J

See also:

Read more about Profiles for full reference. There is a Conan command, conan profile, that can help inspecting and
managing profiles. Profiles can be also shared and installed with the conan config install command.

56 Chapter 6. Using packages

Conan Documentation, Release 1.58.0

6.3 Workflows

Caution: We are actively working to finalize the Conan 2.0 Release. Some of the information on this page
references deprecated features which will not be carried forward with the new release. It’s important to check the
Migration Guidelines to ensure you are using the most up to date features.

This section summarizes some possible layouts and workflows when using Conan together with other tools as an end-
user for installing and consuming existing packages. To create your own packages, please refer to Creating Packages.

Whether you are working on a single configuration or a multi configuration project, in both cases, the recommended
approach is to have a conanfile (either .py or .txt) at the root of your project.

6.3.1 Single configuration

When working with a single configuration, your conanfile will be quite simple as shown in the examples and tutorials
we have used so far in this user guide. For example, in Getting started, we showed how you can run the conan install
. . command inside the build folder resulting in the conaninfo.txt and conanbuildinfo.cmake files being generated there

too. Note that the build folder is temporary, so you should exclude it from version control to exclude these temporary
files.

Out-of-source builds are also supported. Let’s look at a simple example:

$ git clone https://github.com/conan-io/examples.git
$ cd libraries/poco
$ conan install ./md5 --install-folder=md5_build

This will result in the following layout:

md5_build
conaninfo.txt
conanbuildinfo.txt
conanbuildinfo.cmake

md5
(CMakeLists.txt # If using cmake, but can be Makefile, sln...
README . md
conanfile.txt
md5 . cpp

Now you are ready to build:

$ cd md5_build

$ cmake ../md5 -G "Visual Studio 15 Win64" # or other generator
$ cmake --build . --config Release

$./bin/md5

> ¢3fcd3d76192e4007dfb496ccab7el3b

We have created a separate build configuration of the project without affecting the original source directory in any way.
The benefit is that we can freely experiment with the configuration: We can clear the build folder and build another.
For example, changing the build type to Debug:

$ rm -rf *
$ conan install ../md5 -s build_type=Debug

(continues on next page)

6.3. Workflows 57

Conan Documentation, Release 1.58.0

(continued from previous page)
$ cmake ../md5 -G "Visual Studio 15 Win64"
$ cmake --build . --config Debug
$./bin/md5
> ¢3fcd3d76192e4007dfb496ccab7el3b

6.3.2 Multi configuration

You can also manage different configurations, whether in-source or out of source, and switch between them without
having to re-issue the conan install command (Note however, that even if you did have to run conan install
again, since subsequent runs use the same parameters, they would be very fast since packages would already have been
installed in the local cache rather than in the project)

git clone git@github.com:conan-io/examples

cd libraries/poco

conan install md5 -s build_type=Debug -if md5_build_debug
conan install md5 -s build_type=Release -if md5_build_release

A A o

$ cd md5_build_debug && cmake ../md5 -G "Visual Studio 15 Win64" && cd ../..
$ cd md5_build_release &% cmake ../md5 -G "Visual Studio 15 Win64" && cd ../..

Note: You can either use the --install-folder or -if flags to specify where to generate the output files, or
manually create the output directory and navigate to it before executing the conan install command.

So the layout will be:

md5_build_debug

conaninfo.txt

conanbuildinfo.txt

conanbuildinfo.cmake

CMakeCache.txt # and other cmake files
md5_build_release

conaninfo.txt

conanbuildinfo.txt

conanbuildinfo.cmake

CMakeCache.txt # and other cmake files
example-poco-timer

CMakeLists.txt # If using cmake, but can be Makefile, sln...

README . md

conanfile.txt

md5 . cpp

Now you can switch between your build configurations in exactly the same way you do for CMake or other build
systems, by moving to the folder in which the build configuration is located, because the Conan configuration files for
that build configuration will also be there.

$ cd md5_build_debug && cmake --build . --config Debug && cd ../..
$ cd md5_build_release &% cmake --build . --config Release && cd ../..

Note that the CMake include () of your project must be prefixed with the current cmake binary directory, otherwise
it will not find the necessary file:

58 Chapter 6. Using packages

Conan Documentation, Release 1.58.0

include(${CMAKE_BINARY_DIR}/conanbuildinfo.cmake)
conan_basic_setup()

See also:

There are two generators, cmake_multi and visual_studio_multi that could help to avoid the context switch
and using Debug and Release configurations simultaneously. Read more about them in cmake_multi and vi-
sual_studio_multi

6.4 Debugging packages

In order to run a debug session and step into the source code, the debugger needs to find the source files (or pdb files
ones for Visual Studio), for Mac and Unix system the location of these files is stored inside the library itself.

Usually Conan packages don’t include these files and if they do, the path to the local cache might be different: in a
typical scenario the packages are generated in a CI machine and the debug session will take place in the developers
one, so the path to the sources won’t be the same.

The only rule of thumb is to compile the library we want to debug in the developer machine, and thanks to Conan
this is straightforward:

[conan install <reference> --build <name> --profile <debug_profile>]

This command will trigger the build of the library locally in the developer’s machine, so the binaries will point to the
sources where they are actually located and the debugger will find them.

Note: Keep updated as we are investigating more integrated solutions using hooks and for the major IDEs, Visual
Studio and CLion.

6.4. Debugging packages 59

https://en.wikipedia.org/wiki/Program_database
https://github.com/conan-io/conan/issues/4736

Conan Documentation, Release 1.58.0

60 Chapter 6. Using packages

CHAPTER
SEVEN

CREATING PACKAGES

This section shows how to create, build and test your packages.

7.1 Getting started

This section introduces how to create your own Conan packages, explain conanfile.py recipes and the commands to
build packages from sources in your computer.

Important: This is a tutorial section. You are encouraged to execute these commands. For this concrete example,
you will need CMake installed in your path. It is not strictly required by Conan to create packages, you can use other
build systems (as VS, Meson, Autotools and even your own) to do that, without any dependency to CMake.

Some of the features used in this section are still under development, like CMakeToolchain or cmake_layout(),
while they are recommended and usable and we will try not to break them in future releases, some breaking changes
might still happen if necessary to prepare for the Conan 2.0 release.

Using the conan new command will create a “Hello World” C++ library example project for us:

$ mkdir hellopkg && cd hellopkg

$ conan new hello/0.1 --template=cmake_lib
File saved: conanfile.py

File saved: CMakeLists.txt

File saved: src/hello.cpp

File saved: src/hello.h

File saved: test_package/conanfile.py

File saved: test_package/CMakeLists.txt
File saved: test_package/src/example.cpp

The generated files are:

« conanfile.py: On the root folder, there is a conanfile.py which is the main recipe file, responsible for defining
how the package is built and consumed.

* CMakeLists.txt: A simple generic CMakeLists.txt, with nothing specific about Conan in it.
* src folder: the src folder that contains the simple C++ “hello” library.

* (optional) test_package folder: contains an example application that will require and link with the created pack-
age. It is not mandatory, but it is useful to check that our package is correctly created.

Let’s have a look at the package recipe conanfile.py:

61

Conan Documentation, Release 1.58.0

from conans import ConanFile
from conan.tools.cmake import CMakeToolchain, CMake, cmake_layout

class HelloConan(ConanFile):

name = "hello"
version = "0.1"

Binary configuration

settings = "os", "compiler", "build_type", "arch"

options = {"shared": [True, False], "fPIC": [True, False]}
default_options = {"shared": False, "fPIC": True}

Sources are located in the same place as this recipe, copy them to the recipe
exports_sources = "CMakeLists.txt", "src/*"

def config_options(self):
if self.settings.os == "Windows":
del self.options.fPIC

def layout(self):
cmake_layout(self)

def generate(self):
tc = CMakeToolchain(self)
tc.generate()

def build(self):
cmake = CMake(self)
cmake.configure()
cmake.build(Q)

def package(self):
cmake = CMake(self)
cmake.install ()

def package_info(self):
self.cpp_info.libs = ["hello"]

Let’s explain a little bit about this recipe:

The binary configuration is composed by settings and options. See more in his section. When something
changes in the configuration, the resulting binary built and packaged will be different:

— settings are project wide configuration, that cannot be defaulted in recipes, like the OS or the architecture.

— options are package specific configuration and can be defaulted in recipes, in this case we have the option
of creating the package as a shared or static library, being static the default.

The exports_sources attribute defines which sources are exported together with the recipe, these sources
become part of the package recipe (there are other mechanisms that don’t do this, will be explained later.

The config_options () method (together with configure () one) allows to fine tune the binary configuration
model, for example, in Windows there is no £PIC option, so it can be removed.

The generate() method prepares the build of the package from source. In this case, it could be simplified
to an attribute generators = "CMakeToolchain", but it is left to show this important method. In this case,

62

Chapter 7. Creating Packages

Conan Documentation, Release 1.58.0

the execution of CMakeToolchain generate() method will create a conan_toolchain.cmake file that maps the
Conan settings and options to CMake syntax.

e The build() method uses the CMake wrapper to call CMake commands, it is a thin layer that will manage
to pass in this case the -DCMAKE_TOOLCHAIN_FILE=<path>/conan_toolchain.cmake argument, plus other
possible arguments, like -DCMAKE_BUILD_TYPE=<config> if necessary. It will configure the project and build
it from source. The actual arguments that will be used are obtained from a generated CMakePresets. json file.

* The package() method copies artifacts (headers, libs) from the build folder to the final package folder. It
can be done with bare “copy” commands, but in this case it is leveraging the already existing CMake install
functionality (if the CMakeLists.txt didn’t implement it, it is easy to write self.copy() commands in this
package () method.

¢ Finally, the package_info() method defines that consumers must link with a “hello” library when using this
package. Other information as include or lib paths can be defined as well. This information is used for files
created by generators (as CMakeDeps) to be used by consumers. Although this method implies some potential
duplication with the build system output (CMake could generate xxx-config.cmake files), it is important to define
this, as Conan packages can be consumed by any other build system, not only CMake.

The contents of the test_package folder is not critical now for understanding how packages are created, the important
bits are:

* test_package folder is different from unit or integration tests. These tests are “package” tests, and validate that
the package is properly created, and that the package consumers will be able to link against it and reuse it.

* Itis a small Conan project itself, it contains its own conanfile.py, and its source code including build scripts,
that depends on the package being created, and builds and execute a small application that requires the library in
the package.

* It doesn’t belong to the package. It only exist in the source repository, not in the package.

Let’s build the package from sources with the current default configuration (default profile), and then let the
test_package folder test the package:

$ conan create . demo/testing

hello/0.1: Hello World Release!
hello/®.1: _M_X64 defined

If “Hello world Release!” is displayed, it worked. This is what has happened:

* The conanfile.py together with the contents of the src folder have been copied (exported in Conan terms) to the
local Conan cache.

* A new build from source for the hello/0. 1@demo/testing package starts, calling the generate(), build()
and package () methods. This creates the binary package in the Conan cache.

* Moves to the test_package folder and executes a conan install + conan build + test() method, to check
if the package was correctly created. This happens automatically whenever a test_package folder is supplied
next to the conanfile.py being processed.

We can now validate that the recipe and the package binary are in the cache:

$ conan search
Existing package recipes:

hello/0.1@demo/testing

$ conan search hello/0.1@demo/testing
(continues on next page)

7.1. Getting started 63

Conan Documentation, Release 1.58.0

(continued from previous page)

Existing packages for recipe hello/0.1@demo/testing:

Package_ID: 3fb49604f9c2£729b85ba3115852006824e72cab

[options]

shared: False
[settings]

arch: x86_64

build_type: Release

The conan create command receives the same command line parameters as conan install so you can pass to
it the same settings and options. If we execute the following lines, we will create new package binaries for those
configurations:

$ conan create . demo/testing -s build_type=Debug
hello/0.1: Hello World Debug!
$ conan create . demo/testing -o hello:shared=True

hello/0.1: Hello World Release!

These new package binaries will be also stored in the Conan cache, ready to be used by any project in this computer,
we can see them with:

$ conan search hello/0.1@demo/testing
Existing packages for recipe hello/0.1@demo/testing:

Package_ID: 127af20la4cdf8111e2e08540525c245c9b3b99%e

[options]
shared: True
[settings]
arch: x86_64

build_type: Release

Package_ID: 3fb49604f9c2f729b85ba3115852006824e72cab

[options]

shared: False
[settings]

arch: x86_64

build_type: Release

Package_ID: d057732059ea44a47760900cb5e4855d2bea8714

[options]

shared: False
[settings]

arch: x86_64

build_type: Debug

Any doubts? Please check out our FAQ section or open a Github issue

64 Chapter 7. Creating Packages

https://github.com/conan-io/conan/issues

Conan Documentation, Release 1.58.0

7.2 Recipe and Sources in a Different Repo

In the previous section, we fetched the sources of our library from an external repository. It is a typical workflow for
packaging third party libraries.

There are two different ways to fetch the sources from an external repository:

1. Using the source () method as we displayed in the previous section:

from conans import ConanFile, CMake, tools

class HelloConan(ConanFile):

def source(self):
self.run("git clone https://github.com/conan-io/hello.git")

You can also use the tools.Git class:

from conans import ConanFile, CMake, tools
class HelloConan(ConanFile):
def source(self):

git = tools.Git(folder="hello")
git.clone("https://github.com/conan-io/hello.git", "master")

2. Using the scm attribute of the ConanFile:

Warning: This is a deprecated feature. Please refer to the Migration Guidelines to find the feature that replaces
this one.

from conans import ConanFile, CMake, tools

class HelloConan(ConanFile):
scm = {
"type": "git",
"subfolder": "hello",
"url": "https://github.com/conan-io/hello.git",
"revision": "master"

Conan will clone the scm url and will checkout the scm revision. Head to creating package documentation to
know more details about SCM feature.

The source () method will be called after the checkout process, so you can still use it to patch something or retrieve
more sources, but it is not necessary in most cases.

7.2. Recipe and Sources in a Different Repo 65

Conan Documentation, Release 1.58.0

7.3 Recipe and Sources in the Same Repo

Caution: We are actively working to finalize the Conan 2.0 Release. Some of the information on this page
references deprecated features which will not be carried forward with the new release. It’s important to check the
Migration Guidelines to ensure you are using the most up to date features.

Sometimes it is more convenient to have the recipe and source code together in the same repository. This is true
especially if you are developing and packaging your own library, and not one from a third-party.

There are two different approaches:

 Using the exports sources attribute of the conanfile to
export the source code together with the recipe. This way the recipe is self-contained and will not need to
fetch the code from external origins when building from sources. It can be considered a “snapshot” of the
source code.

* Using the scm attribute of the conanfile to capture the remote and commit of your repository automatically.

7.3.1 Exporting the Sources with the Recipe: exports_sources

This could be an appropriate approach if we want the package recipe to live in the same repository as the source code
it is packaging.

First, let’s get the initial source code and create the basic package recipe:

[$ conan new hello/®.1 -t -s

A src folder will be created with the same “hello” source code as in the previous example. You can have a look at it
and see that the code is straightforward.

Now let’s have a look at conanfile.py:

from conans import ConanFile, CMake

class HelloConan(ConanFile):

name = "hello"

version = "0.1"

license = "<Put the package license here>"

url = "<Package recipe repository url here, for issues about the package>"
description = "<Description of hello here>"

settings = "os", "compiler", "build_type", "arch"

options = {"shared": [True, False]}
default_options = {"shared": False}
generators = "cmake"
exports_sources = ''src/*"

def build(self):
cmake = CMake(self)
cmake.configure(source_folder="src")
cmake.build()

Explicit way:
self.run('cmake "%s/src" %s' % (self.source_folder, cmake.command_line))

(continues on next page)

66 Chapter 7. Creating Packages

Conan Documentation, Release 1.58.0

(continued from previous page)

self.run("cmake --build . %s" % cmake.build _config)

def package(self):
self.copy("*.h", dst="include", src="src")
self.copy("*.1ib", dst="1ib", keep_path=False)
self.copy("*.dl1l", dst="bin", keep_path=False)
self.copy("*.dylib*", dst="1ib", keep_path=False)
self.copy("*.s0", dst="1ib", keep_path=False)
self.copy("*.a", dst="1ib", keep_path=False)

def package_info(self):
self.cpp_info.libs = ["hello"]

There are two important changes:

* Added the exports_sources field, indicating to Conan to copy all the files from the local src folder into the
package recipe.

* Removed the source () method, since it is no longer necessary to retrieve external sources.

Also, you can notice the two CMake lines:

include (${CMAKE_BINARY_DIR}/conanbuildinfo.cmake)
conan_basic_setup()

They are not added in the package recipe, as they can be directly added to the src/CMakeLists.txt file.

And simply create the package for user and channel demo/testing as described previously:

$ conan create . demo/testing

hello/0.1@demo/testing test package: Running test()
Hello world Release!

7.3.2 Capturing the Remote and Commit: scm

Warning: This is a deprecated feature. Please refer to the Migration Guidelines to find the feature that replaces
this one.

You can use the scm attribute with the url and revision field set to auto. When you export the recipe (or when
conan create is called) the exported recipe will capture the remote and commit of the local repository:

import os
from conans import ConanFile, CMake, tools

class HelloConan(ConanFile):
scm = {
"type": "git", # Use "type":
"subfolder": "hello",
"url": "auto",
"revision": "auto",
"password": os.environ.get("SECRET", None)

" "

svn", if local repo is managed using SVN

(continues on next page)

7.3. Recipe and Sources in the Same Repo 67

Conan Documentation, Release 1.58.0

(continued from previous page)

You can commit and push the conanfile.py to your origin repository, which will always preserve the auto values. When
the file is exported to the Conan local cache (except you have uncommitted changes, read below), these data will be
stored in the conanfile.py itself (Conan will modify the file) or in a special file conandata.yml that will be stored together
with the recipe, depending on the value of the configuration parameter scm_to_conandata.

* If the scm_to_conandata is not activated (default behavior in Conan v1.x) Conan will store a modified version
of the conanfile.py with the values of the fields in plain text:

r

import os
from conans import ConanFile, CMake, tools

class HelloConan(ConanFile):
scm = {
"type": "git",
"subfolder": "hello",
"url": "https://github.com/conan-io/hello.git",
"revision": "437676e15da7090a1368255097f51b1a470905a0",
"password": "MY_SECRET"

L

So when you upload the recipe to a Conan remote, the recipe will contain the “resolved” URL and commit.

» If scm_to_conandata is activated, the value of these fields (except username and password) will be stored in
the conandata.yml file that will be automatically exported with the recipe.

Whichever option you choose, the data resolved will be assigned by Conan to the corresponding field when the recipe
file is loaded, and they will be available for all the methods defined in the recipe. Also, if building the package from
sources, Conan will fetch the code in the captured url/commit before running the method source() in the recipe (if
defined).

As SCM attributes are evaluated in the local directory context (see scm attribute), you can write more complex functions
to retrieve the proper values, this source conanfile.py will be valid too:

import os
from conans import ConanFile, CMake, tools

def get_remote_url(Q):
""" Get remote url regardless of the cloned directory
here = os.path.dirname(__file)
svn = tools.SVN(here)
return svn.get_remote_url()

mirn

class HelloConan(ConanFile):
scm = {
"type": "svn",
"subfolder": "hello",
"url": get_remote_url(),
"revision": "auto"

68 Chapter 7. Creating Packages

Conan Documentation, Release 1.58.0

Tip: When doing a conan create or conan export, Conan will capture the sources of the local scm project folder
in the local cache.

This allows building packages making changes to the source code without the need of committing them and pushing
them to the remote repository. This convenient to speed up the development of your packages when cloning from a
local repository.

So, if you are using the scm feature, with some auto field for url and/or revision and you have uncommitted changes
in your repository a warning message will be printed:

$ conan export . hello/0.1l@demo/testing

hello/0.1@demo/testing: WARN: There are uncommitted changes, skipping the replacement..
—of 'scm.url'

and 'scm.revision' auto fields. Use --ignore-dirty to force it.

The 'conan upload' command will prevent uploading recipes with 'auto' values in these.
—fields.

As the warning message explains, the auto fields won’t be replaced unless you specify --ignore-dirty, and by
default, the conan upload will block the upload of the recipe. This prevents recipes to be uploaded with incorrect
scm values exported. You can use conan upload --force to force uploading the recipe with the auto values un-
replaced.

7.4 Packaging Existing Binaries

There are specific scenarios in which it is necessary to create packages from existing binaries, for example from 3rd
parties or binaries previously built by another process or team that are not using Conan. Under these circumstances
building from sources is not what you want. You should package the local files in the following situations:

* When you cannot build the packages from sources (when only pre-built binaries are available).

* When you are developing your package locally and you want to export the built artifacts to the local cache. As
you don’t want to rebuild again (clean copy) your artifacts, you don’t want to call conan create. This method
will keep your build cache if you are using an IDE or calling locally to the conan build command.

7.4.1 Packaging Pre-built Binaries
Running the build () method, when the files you want to package are local, results in no added value as the files copied
from the user folder cannot be reproduced. For this scenario, run conan export-pkg command directly.

A Conan recipe is still required, but is very simple and will only include the package meta information. A basic recipe
can be created with the conan new command:

[$ conan new hello/0®.1 --bare

This will create and store the following package recipe in the local cache:

class HelloConan(ConanFile):

name = "hello"
version = "0.1"
settings = "os", "compiler", "build_type", "arch"

(continues on next page)

7.4. Packaging Existing Binaries 69

Conan Documentation, Release 1.58.0

(continued from previous page)
def package(self):
self.copy("*")

def package_info(self):
self.cpp_info.libs = self.collect_libs()

The provided package_info () method scans the package files to provide end-users with the name of the libraries to
link to. This method can be further customized to provide additional build flags (typically dependent on the settings).
The default package_info () applies as follows: it defines headers in the “include” folder, libraries in the “lib” folder,
and binaries in the “bin” folder. A different package layout can be defined in the package_info() method.

This package recipe can be also extended to provide support for more configurations (for example, adding options:
shared/static, or using different settings), adding dependencies (requires), and more.

Based on the above, we can assume that our current directory contains a /ib folder with a number binaries for this
“hello” library libhello.a, compatible for example with Windows MinGW (gcc) version 4.9:

$ conan export-pkg . hello/®.l@myuser/testing -s os=Windows -s compiler=gcc -s compiler.
—version=4.9 ...

Having a fest_package folder is still highly recommended for testing the package locally before upload. As we don’t
want to build the package from the sources, the flow would be:

conan new hello/0.1 --bare --test

customize test_package project

customize package recipe if necessary

cd my/path/to/binaries

conan export-pkg PATH/TO/conanfile.py hello/0.1@myuser/testing -s os=Windows -s.

< compiler=gcc -s compiler.version=4.9 ...

$ conan test PATH/TO/test_package/conanfile.py hello/0.1l@myuser/testing -s os=Windows -s..
—compiler=gcc -s ...

A W H o

The last two steps can be repeated for any number of configurations.

7.4.2 Downloading and Packaging Pre-built Binaries

In this scenario, creating a complete Conan recipe, with the detailed retrieval of the binaries could be the preferred
method, because it is reproducible, and the original binaries might be traced. Follow our sample recipe for this purpose:

class HelloConan(ConanFile):

name = "hello"
version = "0.1"
settings = "os", "compiler", "build_type", "arch"

def build(self):

if self.settings.os == "Windows" and self.settings.compiler == "Visual Studio":
url = ("https://<someurl>/downloads/hello_binary%s_%s.zip"
% (str(self.settings.compiler.version), str(self.settings.build_
—type)))
elif ...:
url =
else:

raise Exception("Binary does not exist for these settings")

(continues on next page)

70 Chapter 7. Creating Packages

Conan Documentation, Release 1.58.0

(continued from previous page)

tools.get(url)

def package(self):
self.copy("*") # assume package as-is, but you can also copy specific files or.
—rearrange

def package_info(self): # still very useful for package consumers
self.cpp_info.libs = ["hello"]

Typically, pre-compiled binaries come for different configurations, so the only task that the build () method has to
implement is to map the settings to the different URLs.

Note:

* This is a standard Conan package even if the binaries are being retrieved from elsewhere. The recommended
approach is to use conan create, and include a small consuming project in addition to the above recipe, to
test locally and then proceed to upload the Conan package with the binaries to the Conan remote with conan
upload.

e The same building policies apply. Having a recipe fails if no Conan packages are created, and the
--build argument is not defined. A typical approach for this kind of packages could be to define a
build_policy="missing", especially if the URLs are also under the team control. If they are external (on
the internet), it could be better to create the packages and store them on your own Conan server, so that the builds
do not rely on third party URL being available.

7.5 Understanding Packaging

7.5.1 Creating and Testing Packages Manually

The previous create approach using fest_package subfolder, is not strictly necessary, though very strongly recom-
mended. If we didn’t want to use the test_package functionality, we could just write our recipe ourselves or use the
conan new command without the -t. command line argument.

$ mkdir mypkg &% cd mypkg
$ conan new hello/0.1

This will create just the conanfile.py recipe file. Now we can create our package:

[$ conan create . demo/testing

This is equivalent to:

$ conan export . demo/testing
$ conan install hello/0.1@demo/testing --build=hello

Once the package is created, it can be consumed like any other package, by adding hello/0. 1@demo/testing to a
project conanfile.txt or conanfile.py requirements and running:

$ conan install .
build and run your project to ensure the package works

7.5. Understanding Packaging 71

Conan Documentation, Release 1.58.0

7.5.2 Package Creation Process
It is very useful for package creators and Conan users in general to understand the flow for creating a package inside
the conan local cache, and all about its layout.
Each package recipe contains five important folders in the local cache:
 export: The folder in which the package recipe is stored.
 export_source: The folder in which code copied with the recipe exports_sources attribute is stored.

* source: The folder in which the source code for building from sources is stored.

build: The folder in which the actual compilation of sources is done. There will typically be one subfolder for
each different binary configuration

» package: The folder in which the final package artifacts are stored. There will be one subfolder for each different
binary configuration

The source and build folders only exist when the packages have been built from sources.

Conan local cache
Pkg/0.1@user/channel build()

{\ package()

export_source copy build/shal # package/shal

copy‘
export source -
p - U » build/sha2 - package/sha2

source()‘

build/shaN - package/shaN

$ conan export
[/or imports cmake
conanfile.py S conan create generator

mylib2.dll conanbuildinfo.cmake

mylib.dll

User folders

The process starts when a package is “exported”, via the conan export command or more typically, with the conan
create command. The conanfile.py and files specified by the exports_sources field are copied from the user space
to the local cache.

The export and export_source files are copied to the source folder, and then the source() method is executed (if it

72 Chapter 7. Creating Packages

Conan Documentation, Release 1.58.0

exists). Note that there is only one source folder for all the binary packages. If when generating the code, there is source
code that varies for the different configurations, it cannot be generated using the source () method, but rather needs
to be generated using the build() method.

Then, for each different configuration of settings and options, a package ID will be computed in the form of a SHA-1
hash for this configuration. Sources will be copied to the build/hashXXX folder, and the build() method will be
triggered.

After that, the package() method will be called to copy artifacts from the build/hashXXX folder to the pack-
age/hashXXX folder.

Finally, the package_info() methods of all dependencies will be called and gathered so you can generate files for
the consumer build system, as the conanbuildinfo.cmake for the cmake generator. Also the imports feature will copy
artifacts from the local cache into user space if specified.

Any doubts? Please check out our FAQ section or .

7.6 Defining Package ABI Compatibility

Each package recipe can generate N binary packages from it, depending on these three items: settings, options
and requires.

When any of the sertings of a package recipe changes, it will reference a different binary:

class MyLibConanPackage(ConanFile):

name = "mylib"
version = "1.0"
settings = "os", "arch", "compiler", "build_type"

When this package is installed by a conanfile.txt, another package conanfile.py, or directly:

[$ conan install mylib/1.0@user/channel -s arch=x86_64 -s ...

The process is:

1. Conan gets the user input settings and options. Those settings and options can come from the command line,
profiles or from the values cached in the latest conan install execution.

2. Conan retrieves the mylib/1.0@user/channel recipe, reads the settings attribute, and assigns the necessary
values.

3. With the current package values for settings (also options and requires), it will compute a SHA hash that
will serve as the binary package ID, e.g., c6d75a933080cal7eb7£f076813e7fb21aaa7401f2.

4. Conan will try to find the c6d75. . . binary package. If it exists, it will be retrieved. If it cannot be found, it will
fail and indicate that it can be built from sources using conan install --build.

If the package is installed again using different settings, for example, on a 32-bit architecture:

[$ conan install mylib/1.0@user/channel -s arch=x86 -s ...]

The process will be repeated with a different generated package ID, because the arch setting will have a different value.
The same applies to different compilers, compiler versions, build types. When generating multiple binaries - a separate
ID is generated for each configuration.

When developers using the package use the same settings as one of those uploaded binaries, the computed package ID
will be identical causing the binary to be retrieved and reused without the need of rebuilding it from the sources.

7.6. Defining Package ABI Compatibility 73

Conan Documentation, Release 1.58.0

The options behavior is very similar. The main difference is that options can be more easily defined at the package
level and they can be defaulted. Check the options reference.

Note this simple scenario of a header-only library. The package does not need to be built, and it will not have any ABI
issues at all. The recipe for such a package will be to generate a single binary package, no more. This is easily achieved
by not declaring settings nor options in the recipe as follows:

class MyLibConanPackage(ConanFile):
name = "mylib"
version = "1.0"
no settings defined!

No matter the settings are defined by the users, including the compiler or version, the package settings and options will
always be the same (left empty) and they will hash to the same binary package ID. That package will typically contain
just the header files.

What happens if we have a library that can be built with GCC 4.8 and will preserve the ABI compatibility with GCC
4.9? (This kind of compatibility is easier to achieve for example for pure C libraries).

Although it could be argued that it is worth rebuilding with 4.9 too -to get fixes and performance improvements-. Let’s
suppose that we don’t want to create 2 different binaries, but just a single built with GCC 4.8 which also needs to be
compatible for GCC 4.9 installations.

7.6.1 Defining a Custom package_id()
The default package_id () uses the settings and options directly as defined, and assumes the semantic versioning
for dependencies is defined in requires.

This package_id () method can be overridden to control the package ID generation. Within the package_id(), we
have access to the self.info object, which is hashed to compute the binary ID and contains:

« self.info.settings: Contains all the declared settings, always as string values. We can access/modify the settings,
e.g., self.info.settings.compiler.version.

« self.info.options: Contains all the declared options, always as string values too, e.g., self.info.options.
shared.

Initially this info object contains the original settings and options, but they can be changed without constraints to any
other string value.

For example, if you are sure your package ABI compatibility is fine for GCC versions > 4.5 and < 5.0, you could do
the following:

from conans import ConanFile, CMake, tools
from conans.model.version import Version

class PkgConan(ConanFile):
name = "pkg"
version = "1.0"
settings = "compiler", "build_type"

def package_id(self):
v = Version(str(self.settings.compiler.version))
if self.settings.compiler == "gcc" and (v >= "4.5" and v < "5.0"):
self.info.settings.compiler.version = "GCC version between 4.5 and 5.0"

74 Chapter 7. Creating Packages

https://semver.org

Conan Documentation, Release 1.58.0

We have set the self.info.settings.compiler.version with an arbitrary string, the value of which is not im-
portant (could be any string). The only important thing is that it is the same for any GCC version between 4.5 and 5.0.
For all those versions, the compiler version will always be hashed to the same ID.

Let’s try and check that it works properly when installing the package for GCC 4.5:

$ conan create . pkg/l.0@myuser/mychannel -s compiler=gcc -s compiler.version=4.5 ...

Requirements
pkg/1.0@myuser/mychannel from local
Packages
pkg/1.0@myuser/mychannel :af044£9619574eceb8elcca737a64bdad88246ad

We can see that the computed package ID is af®4. . .46ad (not real). What happens if we specify GCC 4.6?

$ conan install pkg/l.0@myuser/mychannel -s compiler=gcc -s compiler.version=4.6 ...

Requirements
pkg/1.0@myuser/mychannel from local
Packages
pkg/1.0@myuser/mychannel :af044£9619574eceb8elcca737a64bdad88246ad

The required package has the same result again af04. . .46ad. Now we can try using GCC 4.4 (< 4.5):

$ conan install pkg/l.0@myuser/mychannel -s compiler=gcc -s compiler.version=4.4 ...

Requirements
pkg/1.0@myuser/mychannel from local

Packages
pkg/1.0@myuser/mychannel : 7d02dc0®1581029782h59dcc8c9783a73ab3c22dd

The computed package ID is different which means that we need a different binary package for GCC 4.4.

The same way we have adjusted the self.info.settings, we could set the self.info.options values if needed.
If you want to make packages independent on build_type removing the build_type from the package settings in the
package_id() will work for OSX and Linux. However when building with Visual studio the compiler.runtime
field will change based on the build_type value so in that case you will also want to delete the compiler runtime field
like so:

def package_id(self):
if self.settings.os in ["Windows","WindowsStore"] and self.settings.compiler ==
—"Visual Studio":
del self.info.settings.build_type
del self.info.settings.compiler.runtime

See also:
Check package_id() to see the available helper methods and change its behavior for things like:
* Recipes packaging header only libraries.

* Adjusting Visual Studio toolsets compatibility.

7.6. Defining Package ABI Compatibility 75

Conan Documentation, Release 1.58.0

7.6.2 Compatible packages

Warning: Some parts of this feature are deprecated. Please refer to the Migration Guidelines to find the feature
that will carry over. The compatibility() documented below is the current recommendation.

The above approach defined 1 package ID for different input configurations. For example, all gcc versions in the range
(v >= "4.5" and v < "5.0™) will have exactly the same package ID, no matter what was the gcc version used to
build it. It worked like an information erasure, once the binary is built, it is not possible to know which gcc was used
to build it.

But it is possible to define compatible binaries that have different package IDs. For instance, it is possible to have a
different binary for each gcc version, so the gcc 4.8 package will be a different one with a different package ID than
the gcc 4.9 one, and still define that you can use the gcc 4.8 package when building with gcc 4.9.

We can define an ordered list of compatible packages, that will be checked in order if the package ID that our profile
defines is not available. Let’s see it with an example:

Lets say that we are building with a profile of gcc 4.9. But for a given package we want to fallback to binaries built
with gcc 4.8 or gcc 4.7 if we cannot find a binary built with gcc 4.9. That can be defined as:

from conans import ConanFile

class Pkg(ConanFile):

settings = "os", "compiler", "arch", "build_type"

def package_id(self):
if self.settings.compiler == "gcc" and self.settings.compiler.version == "4.9":
for version in ("4.8", "4.7"):
compatible_pkg = self.info.clone()
compatible_pkg.settings.compiler.version = version
self.compatible_packages.append(compatible_pkg)

Note that if the input configuration is gcc 4.8, it will not try to fallback to binaries of gcc 4.7 as the condition is not
met.

The self.info.clone() method copies the values of settings, options and requires from the current instance
of the recipe so they can be modified to model the compatibility.

It is the responsibility of the developer to guarantee that such binaries are indeed compatible. For example in:

from conans import ConanFile
class Pkg(ConanFile):
options = {"optimized": [1, 2, 3]}
default_options = {"optimized": 1}
def package_id(self):
for optimized in range(int(self.options.optimized), 0, -1):
compatible_pkg = self.info.clone()
compatible_pkg.options.optimized = optimized
self.compatible_packages.append(compatible_pkg)

This recipe defines that the binaries are compatible with binaries of itself built with a lower optimization value. It
can have up to 3 different binaries, one for each different value of optimized option. The package_id() defines
that a binary built with optimized=1 can be perfectly linked and will run even if someone defines optimized=2, or
optimized=3 in their configuration. But a binary built with optimized=2 will not be considered if the requested one
is optimized=1.

76 Chapter 7. Creating Packages

Conan Documentation, Release 1.58.0

The binary should be interchangeable at all effects. This also applies to other usages of that configuration. If this
example used the optimized option to conditionally require different dependencies, that will not be taken into account.
The package_id() step is processed after the whole dependency graph has been built, so it is not possible to define
how dependencies are resolved based on this compatibility model, it only applies to use-cases where the binaries can
be interchanged.

Note: Compatible packages are a match for a binary in the dependency graph. When a compatible package is found,
the --build=missing build policy will not build from sources that package.

Check the Compatible Compilers section to see another example of how to take benefit of compatible packages.
New conanfile.compatibility() method

The conanfile.compatible_packages will be substituted by the new compatibility() method in Conan 2.0. This method
allows you to declare compatibility in a similar way:

def compatibility(self):
if self.settings.compiler == "gcc" and self.settings.compiler.version == "4.9":
return [{"settings": [("compiler.version", v)]}
for v in ("4.8", "4.7", "4.6")]

Please, check the compatibility() reference for more information.

7.6.3 Compatible Compilers

Some compilers make use of a base compiler to operate, for example, the intel compiler uses the Visual Studio
compiler in Windows environments and gcc in Linux environments.

The intel compiler is declared this way in the settings.yml:

intel:
version: ["11", "12", "13", "14", "15", "16", "17", "18", "19"]
base:
gcc:
<<: *gcc
threads: [None]
exception: [None]
Visual Studio:
<<: *visual_studio

Remember, you can extend Conan to support other compilers.

You can use the package_id () method to define the compatibility between the packages generated by the base com-
piler and the parent one. You can use the following helpers together with the compatible packages feature to:

* Consume native Visual Studio packages when the input compiler in the profile is intel (if no intel package
is available).

* The opposite, consume an intel compiler package when a consumer profile specifies Visual Studio as the
input compiler (if no Visual Studio package is available).

* base_compatible(): This function will transform the settings used to calculate the package ID into the “base”
compiler.

7.6. Defining Package ABI Compatibility 77

Conan Documentation, Release 1.58.0

rdef package_id(self):

if self.settings.compiler == "intel":
p = self.info.clone()
p.base_compatible()
self.compatible_packages.append(p)

Using the above package_id() method, if a consumer specifies a profile with a intel profile (-s com-
piler=="intel”’) and there is no binary available, it will resolve to a Visual Studio package ID corresponding
to the base compiler.

e parent_compatible(compiler="compiler", version="version"): This function transforms the set-
tings of a compiler into the settings of a parent one using the specified one as the base compiler. As the details
of the “parent” compatible cannot be guessed, you have to provide them as keyword args to the function. The
“compiler” argument is mandatory, the rest of keyword arguments will be used to initialize the info.settings.
compiler.XXX objects to calculate the correct package ID.

(def package_id(self):

if self.settings.compiler == "Visual Studio":
compatible_pkg = self.info.clone()
compatible_pkg.parent_compatible(compiler="intel", version=16)
self.compatible_packages.append(compatible_pkg)

L

In this case, for a consumer specifying Visual Studio compiler, if no package is found, it will search for an “intel”
package for the version 16.

Take into account that you can use also these helpers without the “compatible packages” feature:

def package_id(self):

if self.settings.compiler == "Visual Studio":
self.info.parent_compatible(compiler="intel", version=16)

In the above example, we will transform the package ID of the Visual Studio package to be the same as the intel
16, but you won’t be able to differentiate the packages built with intel with the ones built by Visual Studio because
both will have the same package ID, and that is not always desirable.

7.6.4 Dependency Issues

Let’s define a simple scenario whereby there are two packages: my_other_lib/2.0 and my_1ib/1.0 which depends
on my_other_1ib/2.0. Let’s assume that their recipes and binaries have already been created and uploaded to a
Conan remote.

Now, a new release for my_other_1ib/2.1 is released with an improved recipe and new binaries. The my_1ib/1.0
is modified and is required to be upgraded to my_other_lib/2.1.

Note: This scenario will be the same in the case that a consuming project of my_1ib/1.0 defines a dependency to
my_other_lib/2.1, which takes precedence over the existing project in my_1ib/1.0.

The question is: Is it necessary to build new my_1ib/1.0 binary packages? or are the existing packages still valid?

The answer: It depends.

78 Chapter 7. Creating Packages

Conan Documentation, Release 1.58.0

Let’s assume that both packages are compiled as static libraries and that the API exposed by my_other_libtomy_lib/
1.0 through the public headers, has not changed at all. In this case, it is not required to build new binaries for my_1lib/
1.0 because the final consumer will link against bothmy_1ib/1.0 and my_other_lib/2.1.

On the other hand, it could happen that the API exposed by my_other_lib in the public headers has changed, but without
affecting the my_1ib/1.0 binary for any reason (like changes consisting on new functions not used by my_lib). The
same reasoning would apply if MyOtherLib was only the header.

But what if a header file of my_other_lib -named myadd.h- has changed from 2.0 to 2.1:

Listing 1: myadd.h header file in version 2.0

[int addition (int a, int b) { return a - b; }

Listing 2: myadd.h header file in version 2.1

[int addition (int a, int b) { return a + b; }

And the addition() function is called from the compiled .cpp files of my_lib/1.0?

Then, a new binary for my_lib/1.0 is required to be built for the new dependency version. Otherwise it will
maintain the old, buggy addition() version. Even in the case that my_lib/1.0 doesn’t have any change in its code
lines neither in the recipe, the resulting binary rebuilding my_1ib requires my_other_1ib/2.1 and the package to be
different.

7.6.5 Using package_id() for Package Dependencies

The self.info object has also a requires object. It is a dictionary containing the necessary information for each
requirement, all direct and transitive dependencies. For example, self.info.requires["my_other_lib"] is a
RequirementInfo object.

* Each RequirementInfo has the following read only reference fields:
— full_name: Full require’s name, e.g., my_other_lib

— full_version: Full require’s version, e.g., 1.2

full_user: Full require’s user, e.g., my_user

full_channel: Full require’s channel, e.g., stable
— full_package_id: Full require’s package ID, e.g., c6d75a...

 The following fields are used in the package_id() evaluation:

name: By default same value as full_name, e.g., my_other_lib.

version: By default the major version representation of the full_version. E.g., 1.Y for a 1.2
full_version field and 1.Y.Z for a 1.2.3 full_version field.

user: By default None (doesn’t affect the package ID).

channel: By default None (doesn’t affect the package ID).

package_id: By default None (doesn’t affect the package ID).
When defining a package ID for model dependencies, it is necessary to take into account two factors:
* The versioning schema followed by our requirements (semver?, custom?).

* The type of library being built or reused (shared (.so, .dll, .dylib), static).

7.6. Defining Package ABI Compatibility 79

Conan Documentation, Release 1.58.0

Versioning Schema

By default Conan assumes semver compatibility. For example, if a version changes from minor 2.0 to 2.1, Conan will
assume that the API is compatible (headers not changing), and that it is not necessary to build a new binary for it. This
also applies to patches, whereby changing from 2.1.10 to 2.1.11 doesn’t require a re-build.

If it is necessary to change the default behavior, the applied versioning schema can be customized within the
package_id () method:

from conans import ConanFile, CMake, tools
from conans.model.version import Version

class PkgConan(ConanFile):

name = "my_lib"

version = "1.0"

settings = "os", "compiler", "build_type", "arch"
requires = "my_other_lib/2.0@lasote/stable"

def package_id(self):
myotherlib = self.info.requires["my_other_lib"]

Any change in the MyOtherLib version will change current Package ID
myotherlib.version = myotherlib.full_version

Changes in major and minor versions will change the Package ID but
only a MyOtherLib patch won't. E.g., from 1.2.3 to 1.2.89 won't change.
myotherlib.version = myotherlib.full_version.minor()

Besides version, there are additional helpers that can be used to determine whether the channel and user of one
dependency also affects the binary package, or even the required package ID can change your own package ID.

You can determine if the following variables within any requirement change the ID of your binary package using the
following modes:

Modes / Variables name version user channel package_ic RREV PREV
semver_direct_mode() Yes Yes, only > 1.0.0 (e.g., No No No No No
1.2.Z+b102)
semver_mode () Yes Yes, only > 1.0.0 (e.g., No No No No No
1.2.Z+b102)
major_mode() Yes Yes (e.g., 1.2.Z+b102) No No No No No
minor_mode () Yes Yes (e.g., 1.2.Z+b102) No No No No No
patch_mode () Yes Yes (e.g., 1.2.3+b102) No No No No No
base_mode() Yes Yes (e.g., 1.7+b102) No No No No No
full_version_mode() Yes Yes (e.g., 1.2.3+b102) No No No No No
full_recipe_mode() Yes Yes (e.g., 1.2.3+b102) Yes Yes No No No
full_package_mode() Yes Yes (e.g., 1.2.3+b102) Yes Yes Yes No No
unrelated_mode () No No No No No No No
recipe_revision_mode Yes Yes Yes Yes Yes Yes No
package_revision_mod Yes Yes Yes Yes Yes Yes Yes

All the modes can be applied to all dependencies, or to individual ones:

80 Chapter 7. Creating Packages

https://semver.org

Conan Documentation, Release 1.58.0

def package_id(self):
apply semver_mode for all the dependencies of the package
self.info.requires.semver_mode ()
use semver_mode just for MyOtherLib
self.info.requires["MyOtherLib"] .semver_mode()

e semver_direct_mode(): This is the default mode. It uses semver_mode () for direct dependencies (first level
dependencies, directly declared by the package) and unrelated_mode () for indirect, transitive dependencies
of the package. It assumes that the binary will be affected by the direct dependencies, which they will already
encode how their transitive dependencies affect them. This might not always be true, as explained above, and
that is the reason it is possible to customize it.

In this mode, if the package depends on “MyLib”, which transitively depends on “MyOtherLib”, the mode means:

my_lib/1.2.3@user/testing => my_lib/1.Y.Z
my_other_lib/2.3.4@user/testing =>

So the direct dependencies are mapped to the major version only. Changing its channel, or using versionmy_lib/
1.4.5 will still produce my_lib/1.Y.Z and thus the same package-id. The indirect, transitive dependency
doesn’t affect the package-id at all.

Important: Known-bug: Package ID mode semver_direct_mode takes into account the options of transitive re-
quirements. It means that modifying the options of any transitive requirement will modify the computed package ID,
and also adding/removing a transitive requirement will modify the computed package ID (this happens even if the
added/removed requirement doesn’t have any option).

* semver_mode(): In this mode, only a major release version (starting from 1.0.0) changes the package ID. Every
version change prior to 1.0.0 changes the package ID, but only major changes after 1.0.0 will be applied.

def package_id(self):
self.info.requires["my_other_lib"].semver_mode()

This results in:

my_lib/1.2.3@user/testing => my_lib/1.Y.Z
my_other_lib/2.3.4@user/testing => my_other_lib/2.Y.Z

In this mode, versions starting with 0 are considered unstable and mapped to the full version:

my_lib/0.2.3@user/testing => my_lib/0.2.3
my_other_lib/0.3.4@user/testing => my_other_lib/0.3.4

major_mode(): Any change in the major release version (starting from 0.0.0) changes the package ID.

rdef package_id(self):
self.info.requires["MyOtherLib"].major_mode ()

L

This mode is basically the same as semver_mode, but the only difference is that major versions 0.Y.Z, which
are considered unstable by semver, are still mapped to only the major, dropping the minor and patch parts.

* minor_mode(): Any change in major or minor (not patch nor build) version of the required dependency changes
the package ID.

7.6. Defining Package ABI Compatibility 81

Conan Documentation, Release 1.58.0

def package_id(self):
self.info.requires["my_other_lib"].minor_mode()

* patch_mode(): Any changes to major, minor or patch (not build) versions of the required dependency change
the package ID.

def package_id(self):
self.info.requires["my_other_lib"].patch_mode()

* base_mode (): Any changes to the base of the version (not build) of the required dependency changes the package
ID. Note that in the case of semver notation this may produce the same result as patch_mode (), but it is actually
intended to dismiss the build part of the version even without strict semver.

def package_id(self):
self.info.requires["my_other_1ib"].base_mode()

full_version_mode(): Any changes to the version of the required dependency changes the package ID.

def package_id(self):
self.info.requires["my_other_1lib"].full_version_mode()

L

[my_other_lib/l .3.4-a4+b3@user/testing => my_other_lib/1.3.4-a4+b3]

e full_recipe_mode(): Any change in the reference of the requirement (user & channel too) changes the pack-
age ID.

def package_id(self):
self.info.requires["my_other_1ib"].full_recipe_mode()

This keeps the whole dependency reference, except the package-id of the dependency.

[my_other_lib/l .3.4-a4+b3@user/testing => my_other_lib/1.3.4-a4+b3@user/testing]

e full_package_mode(): Any change in the required version, user, channel or package ID changes the package
ID.

self.info.requires["my_other_1ib"].full_package_mode()

def package_id(self): ’

Any change to the dependency, including its binary package-id, will in turn produce a new package-id for the
consumer package.

MyOtherLib/1.3.4-a4+b3@user/testing:73b..fa56 => MyOtherLib/1.3.4-a4+b3@user/
—testing:73b..fa56

* unrelated_mode(): Requirements do not change the package ID.

def package_id(self):
self.info.requires["MyOtherLib"] .unrelated_mode()

e recipe_revision_mode(): The full reference and the package ID of the dependencies,
pkg/version@user/channel#RREV:pkg_id (including the recipe revision), will be taken into account to
compute the consumer package ID

82 Chapter 7. Creating Packages

Conan Documentation, Release 1.58.0

{mypkg/l.3.4@user/testing#RREV1 :73b..fa56#PREV1 => mypkg/1.3.4-a4+b3@user/testing
—#RREV1

def package_id(self):
self.info.requires["mypkg"].recipe_revision_mode()

» package_revision_mode(): The full package reference pkg/version @user/channel#RREV:ID#PREV of the
dependencies, including the recipe revision, the binary package ID and the package revision will be taken into
account to compute the consumer package ID

This is the most strict mode. Any change in the upstream will produce new consumers package IDs, becoming
a fully deterministic binary model.

The full reference of the dependency package binary will be used as-is
mypkg/1.3.4@user/testing#RREV1:73b..fa56#PREV1 => mypkg/1l.3.4@user/testing
—#RREV1:73b. .fa56#PREV1

L

def package_id(self):
self.info.requires["mypkg"] .package_revision_mode()

Note: Version ranges are not used to calculate the package_id only the resolved version in the graph is used

You can also adjust the individual properties manually:

def package_id(self):
myotherlib = self.info.requires["MyOtherLib"]

Same as myotherlib.semver_mode ()

myotherlib.name = myotherlib.full_name

myotherlib.version = myotherlib.full_version.stable() # major(), minor(), patch(),.
—base, build

myotherlib.user = myotherlib.channel = myotherlib.package_id = None

Only the channel (and the name) matters

myotherlib.name = myotherlib.full_name

myotherlib.user = myotherlib.package_id = myotherlib.version = None
myotherlib.channel = myotherlib.full_channel

The result of the package_id () is the package ID hash, but the details can be checked in the generated conaninfo.txt
file. The [requires], [options] and [settings] are taken into account when generating the SHA1 hash for the
package ID, while the [full_xxxx] fields show the complete reference information.

The default behavior produces a conaninfo.txt that looks like:

[requires]
MyOtherLib/2.Y.Z

[full_requires]
MyOtherLib/2.2@demo/testing:73bce3fd7eb82b2eabc19fel1317d37da81afa56

7.6. Defining Package ABI Compatibility 83

Conan Documentation, Release 1.58.0

Changing the default package-id mode
It is possible to change the default semver_direct_mode package-id mode, in the conan.conf file:

Listing 3: conan.conf configuration file

[general]
default_package_id_mode=full_package_mode

Possible values are the names of the above methods: full_recipe_mode, semver_mode, etc.

Note: The default_package_id_mode is a global configuration. It will change how all the package-ids are
computed, for all packages. It is impossible to mix different default_package_id_mode values. The same
default_package_id_mode must be used in all clients, servers, CI, etc., and it cannot be changed without rebuilding
all packages.

Note that the default package-id mode is the mode that is used when the package is initialized and before
package_id() method is called. You can still define full_package_mode as default in conan.conf, but if a recipe
declare that it is header-only, with:

def package_id(self):
self.info.clear() # clears requires, but also settings if existing
or if there are no settings/options, this would be equivalent
self.info.requires.clear() # or self.info.requires.unrelated_mode ()

That would still be executed, changing the “default” behavior, and leading to a package that only generates 1 package-id
for all possible configurations and versions of dependencies.

Remember that conan.conf can be shared and installed with conan config install.
Take into account that you can combine the compatible packages with the package-id modes.

For example, if you are generating binary packages with the default recipe_revision_mode, but you want these
packages to be consumed from a client with a different mode activated, you can create a compatible package trans-
forming the mode to recipe_revision_mode so the package generated with the recipe_revision_mode can be
resolved if no package for the default mode is found:

from conans import ConanFile

class Pkg(ConanFile):

def package_id(self):
p = self.info.clone()
p.requires.recipe_revision_mode()
self.compatible_packages.append(p)

84 Chapter 7. Creating Packages

Conan Documentation, Release 1.58.0

Enabling full transitivity in package_id modes

Attention: This will become the default behavior in the future (Conan 2.0). It is recommended to activate it when
possible (it might require rebuilding some packages, as their package IDs will change)

When a package declares in its package_id() method that it is not affected by its dependencies, that will prop-
agate down to the indirect consumers of that package. There are several ways this can be done, self.info.
clear(), self.info.requires.clear(), self.info.requires.remove["dep"] and self.info.requires.
unrelated_mode (), for example.

Let’s assume for the discussion that it is a header only library, using the self.info.clear () helper. This header only
package has a single dependency, which is a static library. Then, downstream consumers of the header only library that
uses a package mode different from the default, should be also affected by the upstream transitivity dependency. Lets
say that we have the following scenario:

* app/1.0 depends on pkgc/1.0 and pkga/1.0

* pkgc/1.0 depends only on pkgb/1.0

* pkgb/1.0 depends on pkga/1.0, and defines self.info.clear() in its package_id()
e We are using full_version_mode

* Now we create a new pkga/2.0 that has some changes in its header, that would require to rebuild pkgc/1.0
against it.

* app/1.0 now depends on “pkgc/1.0 and pkga/2.0

package id mode=full_version mode full_transitive_package id=0 full_transitive_package id=1
(default)
PkgA/1.0 PkgA/2.0 PkgA/2.0
A A /’J\

PkgB/1.0:PIDB1 PkgB/1.0:PIDB1 PkgB/1.0:PIDB1
self.info.header_only() E self.info.header_only() self.info.header_only()
PkgC/1.0:PIDC1 PkgC/1.0:PIDC1 PkgC/1.0:PIDC2

App/1.0 App/1.0 App/1.0

With the default behavior, the header only pkgb is isolating pkgc from the upstream changes effects. The package-id
PIDC1 we get for pkgc/1.0 is exactly the same when depending on pkga/1.0 and pkga/2.0.

If we want to have the full_version_mode to be fully transitive, irrespective of the local package-
id modes of the packages, we can configure it in the conan.conf section. To summarize, you can ac-
tivate the general.full_transitive_package_id configuration ($ conan config set general.
full_transitive_package_id=1).

If we do this, then pkgc/1.0 will compute 2 different package-ids, one for pkga/1.0 (PIDC1) and the other to link
with pkga/2.0 (PIDC2).

7.6. Defining Package ABI Compatibility 85

Conan Documentation, Release 1.58.0

Library Types: Shared, Static, Header-only

Let’s see some examples, corresponding to common scenarios:

e my_lib/1.0 is a shared library that links with a static library my_other_lib/2.0 package. When a new
my_other_lib/2.1 version is released: Do I need to create a new binary for my_1ib/1.0 to link with it?

Yes, always, as the implementation is embedded in the my_1ib/1.0 shared library. If we always want to rebuild
our library, even if the channel changes (we assume a channel change could mean a source code change):

def package_id(self):
Any change in the my_other_lib version, user or
channel or Package ID will affect our package ID
self.info.requires["my_other_1lib"].full_package_mode()

e my_lib/1.0 is a shared library, requiring another shared library my_other_1ib/2.0 package. When a new

my_other_lib/2.1 version is released: Do I need to create a new binary for my_1ib/1.0 to link with it?

It depends. If the public headers have not changed at all, it is not necessary. Actually it might be necessary to
consider transitive dependencies that are shared among the public headers, how they are linked and if they cross
the frontiers of the API, it might also lead to incompatibilities. If the public headers have changed, it would
depend on what changes and how are they used inmy_1ib/1.0. Adding new methods to the public headers will
have no impact, but changing the implementation of some functions that will be inlined when compiled from
my_lib/1.0 will definitely require re-building. For this case, it could make sense to have this configuration:

rdef package_id(self):
Any change in the my_other_lib version, user or channel
or Package ID will affect our package ID
self.info.requires["my_other_lib"].full_package_mode()

Or any change in the my_other_lib version, user or
channel will affect our package ID
self.info.requires["my_other_lib"].full_recipe_mode()

L

e my_lib/1.0 is a header-only library, linking with any kind (header, static, shared) of library in my_other_lib/

2.0 package. Whenanewmy_other_1ib/2.1 versionisreleased: Do Ineed to create a new binary formy_1lib/
1.0 to link with it?

Never. The package should always be the same as there are no settings, no options, and in any way a dependency
can affect a binary, because there is no such binary. The default behavior should be changed to:

def package_id(self):
self.info.requires.clear()

e my_lib/1.0 is a static library linking to a header only library in my_other_lib/2.0 package. When a new

my_other_lib/2.1 version is released: Do I need to create a new binary for my_1lib/1.0 to link with it? It
could happen that the my_other_1ib headers are strictly used in some my_1ib headers, which are not com-
piled, but transitively included. But in general, it is more likely that my_other_1ib headers are used in MyLib
implementation files, so every change in them should imply a new binary to be built. If we know that changes in
the channel never imply a source code change, as set in our workflow/lifecycle, we could write:

def package_id(self):
self.info.requires["my_other_lib"].full_package()
self.info.requires["my_other_lib"].channel = None # Channel doesn't change out..
—spackage ID

86

Chapter 7. Creating Packages

Conan Documentation, Release 1.58.0

7.7 Define the package information

Caution: We are actively working to finalize the Conan 2.0 Release. Some of the information on this page
references deprecated features which will not be carried forward with the new release. It’s important to check the
Migration Guidelines to ensure you are using the most up to date features.

When creating a recipe to package a library, it is important to define the information about the package so consumers
can get the information correctly. Conan achieves this by decoupling the information of the package from the format
needed using Generators, that translate the generic information into the appropriate format file.

This generic information is defined inside the recipe, using the package_info() method. There you can declare package
information like the location of the header files, library names, defines, flags. ..

from conans import ConanFile

class MyConan(ConanFile):
name = "cool_library"

def package_info(self):
self.cpp_info.includedirs = ["include/cool"]
self.cpp_info.libs = ["libcool"]
self.cpp_info.defines = ["DEFINE_COOL=1"]

The package information is done using the attributes of the cpp_info object. This information will be aggregated by
Conan and exposed via self.deps_cpp_info to consumers and generators.

Important: This information is important as it describes the package contents in a generic way with a pretty straight-
forward syntax that can later be translated to a suitable format. The advantage of having this information here, is that
the package could be consumed from a different build system that the one used to compile the library. For example,
a library that builds using Autotools can be consumed later in CMake with this information using any of the CMake
generators.

See also:

Read package_info() to learn more about this method.

7.7.1 Using Components
If your package contains more than one library or you want to define separated components so consumers can have
more granular information, you can use components in your package_info() method.

When you are creating a Conan package, it is recommended to have only one library (.lib, .a, .so, .dll...) per package.
However, especially with third-party projects like Boost, Poco or OpenSSL, they would contain several libraries inside.

Usually those libraries inside the same package depend on each other and modelling the relationship among them is
required.

With components, you can model libraries and executables inside the same package and how one depends on the other.
Each library or executable will be one component inside cpp_info like this:

7.7. Define the package information 87

Conan Documentation, Release 1.58.0

def package_info(self):
self.cpp_info.names["cmake_find_package"] = "OpenSSL"
self.cpp_info.names["cmake_find_package_multi"] = "OpenSSL"
self.cpp_info.components["crypto"].names["cmake_find_package"] = "Crypto"
self.cpp_info.components["crypto"].libs = ["libcrypto"]
self.cpp_info.components["crypto"].defines = ["DEFINE_CRYPTO=1"]
self.cpp_info.components["ssl"].names["cmake"] = "SSL"
self.cpp_info.components["ssl"].includedirs = ["include/headers_ssl"]
self.cpp_info.components['ssl"].libs = ["libssl"]
self.cpp_info.components["ssl"].requires = ["crypto"]

You can define dependencies among different components using the requires attribute and the name of the component.
The dependency graph for components will be calculated and values will be aggregated in the correct order for each
field.

def package_info(self):
self.cpp_info.components["LibA"].1libs = ["1liba"] # Name of the library for the
< 'LibA' component
self.cpp_info.components["LibA"].requires = ["LibB"] # Requires point to the name.
—o0f the component
self.cpp_info.components["LibB"].libs = ["1ibb"]
self.cpp_info.components["LibC"].1libs = ["libc"]
self.cpp_info.components["LibC"].requires = ["LibA"]
self.cpp_info.components["LibD"].libs = ["1ibd"]
self.cpp_info.components["LibD"].requires = ["LibA"]
self.cpp_info.components["LibE"].1libs = ["libe"]
self.cpp_info.components["LibE"].requires = ["LibB"]
self.cpp_info.components["LibF"].1libs = ["1ibf"]
self.cpp_info.components["LibF"].requires = ["LibD", "LibE"]

For consumers and generators, the order of the libraries from this components graph will be:

[self.deps_cpp_info.libs == ["1lib£f", "libe", "libd", "libc", "liba", "libb"]

Declaration of requires from other packages is also allowed:

class MyConan(ConanFile):

requires = "zlib/1.2.11", "openssl/1.1.1g"
def package_info(self):
self.cpp_info.components["compl"].requires =
—components in zlib package
self.cpp_info.components["comp2"].requires =
—Depends on ssl component in openssl package

["zlib::z1ib"] # Depends on all.,

["compl"”, "openssl::ssl"] #.

By default, components won’t link against any other package required by the recipe. The requires list has to be pop-
ulated explicitly with the list of components from other packages to use: it can be the full requirement (z1ib::z1ib)
or a single component (openssl::ssl).

88 Chapter 7. Creating Packages

Conan Documentation, Release 1.58.0

Important: The information of components is aggregated to the global cpp_info scope and the usage of components
should be transparent.

Consumers can get this information via self.deps_cpp_info as usual and use it in the build() method of any
dependent recipe:

class PocoTimerConan(ConanFile):
requires = "zlib/1.2.11", "openssl/1.0.2u"
def build(self):

Get the include directories of the SSL component of openssl package
self.deps_cpp_info["openssl"].components["ssl"].include_paths

Recipes that require packages that declare components can also take advantage of this granularity, they can declare in
the cpp_info.requires attribute the list of components from the requirements they want to link with:

class Library(ConanFile):
name = 'library'
requires = "openssl/1.0.2u"

def package_info(self):
self.cpp_info.requires = ['openssl::ssl']

In the previous example, the ‘library’ package and transitively all its consumers will link only with the component ss1
from the openss1 package.

See also:

Read components reference for more information.

7.8 Toolchains

Toolchains are the new way to integrate with build systems in Conan. Recipes can define a generate () method that
will return an object which can generate files from the current configuration that can be used by the build systems.
Conan generators provide information about dependencies, while toolchains provide a “translation” from the Conan
settings and options, and the recipe defined configuration to something that the build system can understand. A recipe
that does not have dependencies does not need a generator, but can still use a toolchain.

A toolchain can be defined, among the built-ins toolchains, with an attribute with the name of the toolchain class to
use.

[generators = "<ToolChainClassName>"

For example, for using the CMake toolchain this should be declared in the recipe:

[generators = "CMakeToolchain"

Tip: You can explore available toolchains in the new tools section

But in the more general case, and if it needs any specific configuration beyond the default one:

7.8. Toolchains 89

Conan Documentation, Release 1.58.0

from conan.tools.cmake import CMakeToolchain

def generate(self):
tc = CMakeToolchain(self)
customize toolchain "tc
tc.generate()

"

It is possible to use the generate () method to create your own files, which will typically be deduced from the current
configuration of self.settings and self.options.

from conan.tools.files import save

def generate(self):

Based on the self.settings, self.options, the user

can generate their own files:

save("mytoolchain.tool", "my own toolchain contents, deduced from the settings and.
—options")

The "mytoolchain.tool" file can be used by the build system to

define the build

And as usual, you can create your own toolchain helpers, put them in a python_requires package and reuse them in
all your recipes.

Toolchains have some important advantages:

* They execute at conan install time. They generate files, not command line arguments, providing better re-
producibility and debugging of builds.

* They provide a better developer experience. The command line used by developers locally, like cmake ... will
achieve the same build, with the same flags, as the conan build or the build that is done in the cache with a
conan create.

* They are more extensible and configurable.

The toolchains implement most of the build system logic, leaving the build helpers, like CMake (), doing less work,
and acting basically as a high level wrapper of the build system. Many of the existing arguments, attributes or methods
of those build helpers will not be available. Check the documentation of each toolchain to check the associated build
helper available functionality.

from conan.tools.cmake import CMakeToolchain, CMake

def generate(self):
tc = CMakeToolchain(self)
customize toolchain "tc
tc.generate()

"

def build(self):
NOTE: This is a simplified helper
Not all arguments attributes and methods might be available
cmake = CMake(self)

90 Chapter 7. Creating Packages

Conan Documentation, Release 1.58.0

7.9 Inspecting Packages

You can inspect the uploaded packages and also the packages in the local cache by running the conan get command.

* List the files of a local recipe folder:

$ conan get zlib/1.2.11@ .
Listing directory '.':
conandata.yml
conanfile.py
conanmanifest.txt

e Print the conaninfo.txt file of a binary package:

£$ conan get zlib/1.2.11@:2144£833c251030c3c£d61c4354ae0e38607a909]
* Print the conanfile.py from a remote package:

[$ conan get zlib/1.2.11@ -r conancenter]
(import os

import stat
from conans import ConanFile, tools, CMake, AutoToolsBuildEnvironment
from conans.errors import ConanException

class ZlibConan(ConanFile):

name = "zlib"
version = "1.2.11"
url = "https://github.com/conan-io/conan-center-index"

homepage = "https://zlib.net"

.

Check the conan get command command reference and more examples.

7.10 Packaging Approaches

Caution: We are actively working to finalize the Conan 2.0 Release. Some of the information on this page
references deprecated features which will not be carried forward with the new release. It’s important to check the
Migration Guidelines to ensure you are using the most up to date features.

Package recipes have three methods for controlling the package’s binary compatibility and for implementing different
packaging approaches: package_id(), build_id() and package_info().

These methods let package creators select the method most suitable for each library.

7.9. Inspecting Packages 91

Conan Documentation, Release 1.58.0

7.10.1 1 config (1 build) -> 1 package

A typical approach is to have one configuration for each package containing the artifacts. Using this approach, for
example, the debug pre-compiled libraries will be in a different package than the release pre-compiled libraries.

So if there is a package recipe that builds a “hello” library, there will be one package containing the release version
of the “hello.lib” library and a different package containing a debug version of that library (in the figure denoted as
“hello_d.lib”, to make it clear, it is not necessary to use different names).

build/shal package/shal

=

headers
hello.lib

headers
hello.lib

build/sha2 package/sha2

=

headers
hello_d.lib

headers
hello_d.lib

Using this approach, the package_info() method, allows you to set the appropriate values for consumers, letting
them know about the package library names, necessary definitions and compile flags.

class HelloConan(ConanFile):

n "

settings = "os", "compiler", "build_type", "arch"

def package_info(self):
self.cpp_info.libs = ["mylib"]

It is very important to note that it is declaring the build_type as a setting. This means that a different package will
be generated for each different value of such setting.

The values declared by the packages (the include, lib and bin subfolders are already defined by default, so they define the
include and library path to the package) are translated to variables of the respective build system by the used generators.
That is, running the cmake generator will translate the above definition in the conanbuildinfo.cmake to something like:

set (CONAN_LIBS_MYPKG mylib)
set (CONAN_LIBS mylib ${CONAN_LIBS})

Those variables, will be used in the conan_basic_setup() macro to actually set the relevant cmake variables.

If the developer wants to switch configuration of the dependencies, they will usually switch with:

$ conan install -s build_type=Release ...
when need to debug

(continues on next page)

92 Chapter 7. Creating Packages

Conan Documentation, Release 1.58.0

(continued from previous page)

{$ conan install -s build_type=Debug ...

These switches will be fast, since all the dependencies are already cached locally.
This process offers a number of advantages:
* It is quite easy to implement and maintain.

* The packages are of minimal size, so disk space and transfers are faster, and builds from sources are also kept to
the necessary minimum.

* The decoupling of configurations might help with isolating issues related to mixing different types of artifacts,
and also protecting valuable information from deploy and distribution mistakes. For example, debug artifacts
might contain symbols or source code, which could help or directly provide means for reverse engineering. So
distributing debug artifacts by mistake could be a very risky issue.

Read more about this in package_info().

7.10.2 N configs -> 1 package

Warning: This approach is discouraged. The support for defining multi-configuration packages (self.
cpp_info.release, self.cpp_info.debug), will be removed in Conan 2.0, as discussed and approved by
the Tribe in https://github.com/conan-io/tribe/pull/21. New generators and helpers in conan.tools.xxxx, like
CMakeDeps or MSBuildDeps already ignore cpp_info multi-configuration definitions.

You may want to package both debug and release artifacts in the same package, so it can be consumed from IDEs
like Visual Studio. This will change the debug/release configuration from the IDE, without having to specify it in
the command line. This type of package can contain different artifacts for different configurations and can be used to
include both the release and debug version of a library in the same package.

build/shal package/shal

headers

hello.lib

hello.lib
hello_d.lib

Note: A complete working example of the following code can be found in the examples repo: https://github.com/
conan-io/examples

7.10. Packaging Approaches 93

https://github.com/conan-io/tribe/pull/21
https://github.com/conan-io/examples
https://github.com/conan-io/examples

Conan Documentation, Release 1.58.0

$ git clone https://github.com/conan-io/examples.git
$ cd features/multi_config
$ conan create . user/channel

Creating a multi-configuration debug/release package is simple

The first step will be to remove build_type from the settings. It will not be an input setting and the generated package
will always contain both debug and release artifacts.

The Visual Studio runtime is different for debug and release (MDd or MD) and is set using the default runtime (MD/MDd).
If this meets your needs, we recommend removing the compiler.runtime subsetting in the configure () method:

class HelloConan(ConanFile):
build_type has been omitted. It is not an input setting.
settings = "os", "compiler", "arch"
generators = "cmake"

Remove runtime and use always default (MD/MDd)
def configure(self):
if self.settings.compiler == "Visual Studio":
del self.settings.compiler.runtime

def build(self):
cmake_release = CMake(self, build_type="Release")
cmake_release.configure()
cmake_release.build()

cmake_debug = CMake(self, build_type="Debug")
cmake_debug.configure()
cmake_debug.build()

In this example, the binaries will be differentiated with a suffix in the CMake syntax, so we have to add this information
to the data provided to the consumers in the package_info function:

[set_target_properties(mylibrary PROPERTIES DEBUG_POSTFIX _d)

Such a package can define its information for consumers as:

def package_info(self):
self.cpp_info.release.libs = ["mylibrary"]
self.cpp_info.debug.libs = ["mylibrary_d"]

This will translate to the CMake variables:

set (CONAN_LIBS_MYPKG_DEBUG mylibrary_d)

set (CONAN_LIBS_MYPKG_RELEASE mylibrary)

set (CONAN_LIBS_DEBUG mylibrary_d ${CONAN_LIBS_DEBUG})
set (CONAN_LIBS_RELEASE mylibrary ${CONAN_LIBS_RELEASE})

And these variables will be correctly applied to each configuration by conan_basic_setup() helper.

In this case you can still use the general and not config-specific variables. For example, the include directory when
set by default to include remains the same for both debug and release. Those general variables will be applied to all
configurations.

94 Chapter 7. Creating Packages

Conan Documentation, Release 1.58.0

Important: The above code assumes that the package will always use the default Visual Studio runtime (MD/MDd). To
keep the package configurable for supporting static(MT)/dynamic(MD) linking with the VS runtime library, you can
do the following:

* Keep the compiler.runtime setting, e.g. do not implement the configure () method removing it.

* Don’t let the CMake helper define the CONAN_LINK_RUNTIME variable to define the runtime and define
CONAN_LINK_RUNTIME_MULTI instead.

* In CMakeLists.txt, use the CONAN_LINK_RUNTIME_MULTI variable to correctly setup up the runtime for debug
and release flags.

* Write a separate package_id () methods for MD/MDd and for MT/MTd defining the packages to be built.

All these steps are already coded in the repo https://github.com/conan-io/examples/tree/master/features/multi_config
and commented out as “Alternative 2”.

Note: The automatic conversion of multi-config variables to generators is currently implemented in the cmake,
visual_studio, txt, and cmake_find_package generators (and also for their corresponding _multi implementa-
tions). If you want to have support for them in another build system, please open a GitHub issue.

7.10.3 N configs (1 build) -> N packages

It’s possible that an existing build script is simultaneously building binaries for different configurations, like de-
bug/release, or different architectures (32/64bits), or library types (shared/static). If such a build script is used in
the previous “Single configuration packages” approach, it will definitely work without problems. However, we’ll be
wasting precious build time, as we’ll be rebuilding the project for each package, then extracting the relevant artifacts
for the relevant configuration, while ignoring the others.

It is more efficient to build the logic, whereby the same build can be reused to create different packages:

package/shal

build/sha3

' gl

mylib.lib
mylib_d.lib N package/sha2

U
build_id()

This can be done by defining a build_id () method in the package recipe that will specify the logic.

7.10. Packaging Approaches 95

https://github.com/conan-io/examples/tree/master/features/multi_config

Conan Documentation, Release 1.58.0

settings = "os", "compiler", "arch", "build_type"
def build_id(self):
self.info_build.settings.build_type = "Any"

def package(self):
if self.settings.build_type == "Debug":
#package debug artifacts
else:
package release

Note that the build_id() method uses the self.info_build object to alter the build hash. If the method doesn’t
change it, the hash will match the package folder one. By setting build_type="Any", we are forcing that for both
the Debug and Release values of build_type, the hash will be the same (the particular string is mostly irrelevant, as
long as it is the same for both configurations). Note that the build hash sha3 will be different of both shal and sha2
package identifiers.

This does not imply that there will be strictly one build folder. There will be a build folder for every configuration
(architecture, compiler version, etc). So if we just have Debug/Release build types, and we’re producing N packages
for N different configurations, we’ll have N/2 build folders, saving half of the build time.

Read more about this in build_id().

7.11 Package Creator Tools

Using Python (or just pure shell or bash) scripting, allows you to easily automate the whole package creation and testing
process, for many different configurations. For example you could put the following script in the package root folder.
Name it build.py:

import os, sys
import platform

def system(command) :
retcode = os.system(command)
if retcode != 0:
raise Exception("Error while executing:\n\t

% command)

if __name__ == "__main__":
params = " ".join(sys.argv[1l:])
if platform.system() == "Windows":
system('conan create . demo/testing -s compiler="Visual Studio" -s compiler.
—version=14 ' % params)

system('conan create . demo/testing -s compiler="Visual Studio" -s compiler.
—version=12 ' % params)
system('conan create . demo/testing -s compiler="gcc" -s compiler.version=4.8
" % params)
else:
pass

This is a pure Python script, not related to Conan, and should be run as such:

96 Chapter 7. Creating Packages

Conan Documentation, Release 1.58.0

[$ python build.py

7.11.1 Conan Package Tools

Caution: According to the project’'s README, there is no planned support for the upcoming Conan 2.0 release.

We have developed another FOSS tool for package creators, the Conan Package Tools to help you generate multiple
binary packages from a package recipe. It offers a simple way to define the different configurations and to call conan
test. In addition to offering CI integration like Travis CI, Appveyor and Bamboo, for cloud-based automated binary
package creation, testing, and uploading.

This tool enables the creation of hundreds of binary packages in the cloud with a simple $ git push and supports:
 Easy generation of multiple Conan packages with different configurations.

* Automated/remote package generation in Travis/Appveyor server with distributed builds in CI jobs for big/slow
builds.

* Docker: Automatic generation of packages for several versions of gcc and clang in Linux, and in Travis CL
* Automatic creation of OSX packages with apple-clang, and in Travis-CI.
* Visual Studio: Automatic configuration of the command line environment with detected settings.

It’s available in pypi:

[$ pip install conan_package_tools }

For more information, read the README.md in the Conan Package Tools repository.

7.11. Package Creator Tools 97

https://github.com/conan-io/conan-package-tools

Conan Documentation, Release 1.58.0

98 Chapter 7. Creating Packages

CHAPTER
EIGHT

UPLOADING PACKAGES

This section shows how to upload packages using remotes and specifies the different binary repositories you can use.

8.1 Remotes

In the previous sections, we built several packages on our computer that were stored in the local cache, typically under
~/.conan/data. Now, you might want to upload them to a Conan server for later use on another machine, project, or for
sharing purposes.

Conan packages can be uploaded to different remotes previously configured with a name and a URL. The remotes are
just servers used as binary repositories that store packages by reference.

There are several possibilities when uploading packages to a server:
For private development:

* Artifactory Community Edition for C/C++: Artifactory Community Edition (CE) for C/C++ is a completely
free Artifactory server that implements both Conan and generic repositories. It is the recommended server for
companies and teams wanting to host their own private repository. It has a web UI, advanced authentication and
permissions, very good performance and scalability, a REST API, and can host generic artifacts (tarballs, zips,
etc). Check Artifactory Community Edition for C/C++ for more information.

* Artifactory Pro: Artifactory is the binary repository manager for all major packaging formats. It is the recom-
mended remote type for enterprise and professional package management. Check the Artifactory documentation
for more information. For a comparison between Artifactory editions, check the Artifactory Comparison Matrix.

* Conan server: Simple, free and open source, MIT licensed server that comes bundled with the Conan client.
Check Running conan_server for more information.

For distribution:

« Artifactory Cloud-hosted instance: Artifactory Cloud, where JFrog manages, maintains and scales the infras-
tructure and provides automated server backups with free updates and guaranteed uptime. It’s offered with a
free tier designed for individual with reduced usage. Check Uploading to Artifactory Cloud Instance for more
information.

99

https://www.jfrog.com/confluence/display/JFROG/JFrog+Artifactory
https://www.jfrog.com/confluence/display/JFROG/Artifactory+Comparison+Matrix

Conan Documentation, Release 1.58.0

8.1.1 conancenter

ConanCenter (https://conan.io/center) is the main official repository for open source Conan packages. It is configured
as the default remote in the Conan client, but if you want to add it manually:

[$ conan remote add conancenter https://center.conan.io]

It contains packages without ““user/channel” that can be used directly as pkg/version (zlib/1.2.11): These packages
are created automatically from the central GitHub repository conan-center-index, with an automated build service: C31
(ConanCenter Continuous Integration).

To contribute packages to ConanCenter, read the ConanCenter guide for more information.

8.2 Uploading Packages to Remotes

First, check if the remote you want to upload to is already in your current remote list:

[$ conan remote list]

You can easily add any remote. To run a remote on your machine:

[$ conan remote add my_local_server http://localhost:9300 J

You can search any remote in the same way you search your computer. Actually, many Conan commands can specify
a specific remote.

[$ conan search -r=my_local_server]

Now, upload the package recipe and all the packages to your remote. In this example, we are using our
my_local_server remote, but you could use any other.

[$ conan upload hello/0.1l@demo/testing --all -r=my_local_server]

You might be prompted for a username and password. The default Conan server remote has a demo/demo account we
can use for testing.

The --all option will upload the package recipe plus all the binary packages. Omitting the --all option will upload
the package recipe only. For fine-grained control over which binary packages are upload to the server, consider using
the --packages/-p or --query/-q flags. --packages allows you to explicitly declare which package gets uploaded
to the server by specifying the package ID. --query accepts a query parameter, e.g. arch=armv8 and os=Linux,
and only uploads binary packages which match this query. When using the --query flag, ensure that your query
string is enclosed in quotes to make the parameter explicit to your shell. For example, conan upload <package>
-q 'arch=x86_64 and os=Linux' ... is appropriate use of the --query flag.

Now try again to read the information from the remote. We refer to it as remote, even if it is running on your local
machine, as it could be running on another server in your LAN:

[$ conan search hello/0.l@demo/testing -r=my_local_server]

Note: If package upload fails, you can try to upload it again. Conan keeps track of the upload integrity and will only
upload missing files.

100 Chapter 8. Uploading Packages

https://conan.io/center
https://github.com/conan-io/conan-center-index

Conan Documentation, Release 1.58.0

Now we can check if we can download and use them in a project. For that purpose, we first have to remove the local
copies, otherwise the remote packages will not be downloaded. Since we have just uploaded them, they are identical
to the local ones.

$ conan search

$ conan remove "hello*" ’

Since we have our test setup from the previous section, we can just use it for our test. Go to your package folder and
run the tests again, now saying that we don’t want to build the sources again. We just want to check if we can download
the binaries and use them:

[$ conan create . demo/testing --not-export --build=never]

You will see that the test is built, but the packages are not. The binaries are simply downloaded from your local server.
You can check their existence on your local computer again with:

[$ conan search]

8.3 Using Artifactory

In Artifactory, you can create and manage as many free, personal Conan repositories as you like. On an Free-Tier
account, all packages you upload are public, and anyone can use them by simply adding your repository to their Conan
remotes. You still can create private repositories using Artifatory CE or Artifactory Cloud Premium account.

8.3.1 Uploading to Artifactory Cloud Instance
Conan packages can be uploaded to Artifactory under your own users or organizations. To create a repository follow
these steps:

1. Create an Artifactory Free-Tier account

Browse to https://jfrog.com/community/start-free/ and submit the form to create your account. Note that you
don’t have to use the same username that you use for your Conan account.

8.3. Using Artifactory 101

https://jfrog.com/community/start-free/
https://jfrog.com/community/start-free/

Conan Documentation, Release 1.58.0

GET STARTED

Enjoy a free cloud subscription, or download a free ftrial.

SELF-HOSTED > CLOUD

Download 30-day trial No Credit Card Required

YOUR FREE SUBSCRIPTION INCLUDES

O JFrog Artifactory <@ |Frog Xray (&} JFrog Pipelines

®
Select your cloud provider aws Google M Microsoft
~—- Cloud W Azure

Server Details

Select Server Region* b

5 Have a Cloud Provider Account?

Server Name* Jfrog.io Purchase |Frog In the & AWS Marketplace
Create your Credentials

Company Email* B
This will be your username

Platform Password#* ONEO)] Confirm Password* ®

User Details
First Name* Last Name*

D I have read and agree to the General Terms of Service and the Privacy Policy

PROCEED >

102 Chapter 8. Uploading Packages

Conan Documentation, Release 1.58.0

2. Add your Artifactory repository

To get the correct address, click on Application -> Artifactory -> Artifacts -> Set Me Up:

> [& Enter your password to display your user credentials in the code snippets

Tool Repository
@ Conan conan
General

For your Conan command line client to work with this Conan repository, you first need to add the repository to your
client configuration using the following command:

Add a Conan remote in your Conan client pointing to your Artifactory repository.

[$ conan remote add <REMOTE> <YOUR_ARTIFACTORY_REPO_URL>]

4. Get your API key

Your API key is the “password” used to authenticate the Conan client to Artifactory, NOT your Artifatory pass-
word. To get your API key, go to “Set Me Up” and enter your account password. Your API key will appear on
conan user command line listed on Set Me Up box:

8.3. Using Artifactory 103

Conan Documentation, Release 1.58.0

SET ME UP X

+ [& Remove Credentials

Password £ Remove Credentials
Tool Repository
@ Conan conan
General

For your Conan command line client to work with this Conan repository, you first need to add the repository to your
client configuration using the following command:

D

conan remote add <REMOTE= https://example.jfrog.io/artifactory/api/conan/conan

And replace <REMOTE=> with & name that identifies the repository (for example: "my-conan-repo”)

To login use the conan user command:

O
1 conan user -p AXP6xdg93KmjeaZdakKLgzhl¥8 -r <REMOTE> user@mail.com

And provide your Artifactory username and password or AP key.
If anonymous access is enabled you do not need to login.

For complete Conan cli reference see documentation at docs.conan.io.

5. Set your user credentials

Add your Conan user with the API Key, your remote and your Artifatory user name:

[$ conan user -p <APIKEY> -r <REMOTE> <USEREMAIL> }

Setting the remotes in this way will cause your Conan client to resolve packages and install them from repositories in
the following order of priority:

1. conancenter
2. Your own repository

If you want to have your own repository first, please use the --insert command line option when adding it:

$ conan remote add <your_remote> <your_url> --insert 0

$ conan remote list
<your remote>: <your_url> [Verify SSL: True]
conancenter: https://center.conan.io [Verify SSL: True]

Tip: Check the full reference of $ conan remote command.

104 Chapter 8. Uploading Packages

https://conan.io/center

Conan Documentation, Release 1.58.0

8.3.2 Artifactory Community Edition for C/C++

Artifactory Community Edition (CE) for C/C++ is the recommended server for development and hosting private pack-
ages for a team or company. It is completely free, and it features a WebUI, advanced authentication and permissions,
great performance and scalability, a REST API, a generic CLI tool and generic repositories to host any kind of source
or binary artifact.

This is a very brief introduction to Artifactory CE. For the complete Artifactory CE documentation, visit Artifactory
docs.

Running Artifactory CE

There are several ways to download and run Artifactory CE. The simplest one might be to download and unzip the
designated zip file, though other installers, including also installing from a Docker image. The Download Page has a
link for you to follow. When the file is unzipped, launch Artifactory by double clicking the artifactory.bat(Windows) or
artifactory.sh script in the app/bin subfolder, depending on the OS. Artifactory comes with JDK bundled, please read
Artifactory requirements.

O JFrog Artifactory CE for C\C++ Q Welcome, admin ~ Help
D Artifact Repository Browser & SetMeUp 1 Deploy
lfu‘ Tree Simple Q = FY conan v Actions
@ conan-local . e
General Effective Permissions Properties ¥ Watchers #
& conan
0 7 boost
i Info
& OpenssL
@
& 100 Name: conan @)
. loca @
‘ ® stable Repository Path: conan-local/conan/ ()
i £7 export Deployed By: admin
Artifact Count / Size: Show
£7 conanfile.py
Created 26-03-18 22:04:50 -07:00 (0d Oh 10m 505 ago)
(] conanmanifest.txt
& package
7 227fb0ea22f4797212e72bad4ea89c
[@ conan_package.tgz
& include
& lib

(] LICENSE
conaninfo.txt
(-] conanmanifest.txt
& pocoproject
& Poco
£ 1.7.8p3

Once Artifactory has started, navigate to the default URL http.://localhost:8081, where the Web Ul should be running.
The default user and password are admin:password.

Creating and Using a Conan Repo

Navigate to Admin -> Repositories -> Local, then click on the “New” button. A dialog for selecting the package type
will appear, select Conan, then type a “Repository Key” (the name of the repository you are about to create), for example
“conan-local”. You can create multiple repositories to serve different flows, teams, or projects.

Now, it is necessary to configure the client. Go to Artifacts, and click on the created repository. The “Set Me Up”
button in the top right corner provides instructions on how to configure the remote in the Conan client:

[$ conan remote add artifactory http://localhost:8081/artifactory/api/conan/conan-local]

From now, you can upload, download, search, etc. the remote repos similarly to the other repo types.

8.3. Using Artifactory 105

https://www.jfrog.com/confluence/
https://www.jfrog.com/confluence/
https://conan.io/downloads.html
https://www.jfrog.com/confluence/display/JFROG/System+Requirements
https://www.jfrog.com/confluence/display/JFROG/System+Requirements

Conan Documentation, Release 1.58.0

$ conan upload "*" --all -r=artifactory
$ conan search "*" -r=artifactory

Migrating from Other Servers

If you are already running another server, for example, the open source conan_server, it is easy to migrate your packages,
using the Conan client to download the packages and re-upload them to the new server.

This Python script might be helpful, given that it already defines the respective local and artifactory remotes:

import os
import subprocess

def run(cmd):
ret = os.system(cmd)
if ret != 0:
raise Exception("Command failed: " % cmd)

Assuming local = conan_server and artifactory remotes
output = subprocess.check_output('conan search -r=local --raw")

packages = output.splitlines()

for package in packages:

print ("Downloading " % package)
run("conan download -r=local" % package)
run("conan upload \"*\" --all --confirm -r=artifactory")

8.3.3 Contributing Packages to ConanCenter

Contribution of packages to ConanCenter is done via pull requests to the Github repository in https://github.com/
conan-io/conan-center-index. The C3I (ConanCenter Continuous Integration) service will build binaries automatically
from those pull requests, and once merged, will upload them to ConanCenter package repository.

Read more about how to submit a pull request to conan-center-index source repository.

8.4 Running conan_server

The conan_server is a free and open source server that implements Conan remote repositories. It is a very simple appli-
cation, bundled with the regular Conan client installation. In most cases, it is recommended to use the free Artifactory
Community Edition for C/C++ server, check Artifactory Community Edition for C/C++ for more information.

conan_server needs Python>=3.6 for running.

Running the simple open source conan_server that comes with the Conan installers (or pip packages) is simple. Just
open a terminal and type:

[$ conan_server

106 Chapter 8. Uploading Packages

https://github.com/conan-io/conan-center-index
https://github.com/conan-io/conan-center-index
https://github.com/conan-io/conan-center-index/

Conan Documentation, Release 1.58.0

Note: On Windows, you may experience problems with the server if you run it under bash/msys. It is better to launch
it in a regular cmd window.

This server is mainly used for testing (though it might work fine for small teams). If you need a more stable, responsive
and robust server, you should run it from source:

8.4.1 Running from Source (linux)

The Conan installer includes a simple executable conan_server for a server quick start. But you can use the conan
server through the WSGI application, which means that you can use gunicorn to run the app, for example.

First, clone the Conan repository from source and install the requirements:

$ git clone https://github.com/conan-io/conan.git
$ cd conan

$ pip install -r conans/requirements.txt

$ pip install -r conans/requirements_server.txt

$ pip install gunicorn

Run the server application with gunicorn. In the following example, we run the server on port 9300 with four workers
and a timeout of 5 minutes (300 seconds, for large uploads/downloads, you can also decrease it if you don’t have very
large binaries):

[$ gunicorn -b 0.0.0.0:9300 -w 4 -t 300 conans.server.server_launcher:app

Note: Please note the timeout of -t 300 seconds, resulting in a 5 minute parameter. If your transfers are very large
or on a slow network, you might need to increase that value.

You can also bind to an IPv6 address or specify both IPv4 and IPv6 addresses:

[$ gunicorn -b 0.0.0.0:9300 -b [::1]:9300 -w 4 -t 300 conans.server.server_launcher:app

8.4.2 Server Configuration

By default your server configuration is saved under ~/.conan_server/server.conf, however you can modify
this behaviour by either setting the CONAN_SERVER_HOME environment variable or launching the server with -d or
--server_dir command line argument followed by desired path. In case you use one of the options your configuration
file will be stored under server_directory/server.conf Please note that command line argument will override
the environment variable. You can change configuration values in server.conf, prior to launching the server. Note
that the server does not support hot-reload, and thus in order to see configuration changes you will have to manually
relaunch the server.

The server configuration file is by default:

[server]
jwt_secret: MnpuzsExftskYGOMgaTYDKfw
jwt_expire_minutes: 120

ssl_enabled: False
port: 9300

(continues on next page)

8.4. Running conan_server 107

Conan Documentation, Release 1.58.0

(continued from previous page)

public_port:
host_name: localhost

store_adapter: disk
authorize_timeout: 1800

Just for disk storage adapter
disk_storage_path: ~/.conan_server/data
disk_authorize_timeout: 1800

updown_secret: NyiSWNWnwumTVpGpoANuyyhR

[write_permissions]
"opencv/2.3.4@lasote/testing": default_user,default_user2

[read_permissions]

opencv/1.2.3@lasote/testing: default_user default_user2
By default all users can read all blocks

7':/:":@-.':/7':: %

[users]
demo: demo

Server Parameters

e port: Port where conan_server will run.

 The client server authorization is done with JWT. jwt_secret is arandom string used to generate authentication
tokens. You can change it safely anytime (in fact it is a good practice). The change will just force users to log in
again. jwt_expire_minutes is the amount of time that users remain logged-in within the client without having
to introduce their credentials again.

Other parameters (not recommended from Conan 1.1, but necessary for previous versions):

* host_name: If you set host_name, you must use the machine’s IP where you are running your server (or domain
name), something like host_name: 192.168.1.100. This IP (or domain name) has to be visible (and resolved)
by the Conan client, so take it into account if your server has multiple network interfaces.

* public_port: Might be needed when running virtualized, Docker or any other kind of port redirection. File
uploads/downloads are served with their own URLSs, generated by the system, so the file storage backend is
independent. Those URLs need the public port they have to communicate from the outside. If you leave it blank,
the port value is used.

Example: Use conan_server in a Docker container that internally runs in the 9300 port but exposes the 9999
port (where the clients will connect to):

[docker run ... -p9300:9999 ... # Check Docker docs for that]

server.conf

[server]

ssl_enabled: False
(continues on next page)

108 Chapter 8. Uploading Packages

Conan Documentation, Release 1.58.0

(continued from previous page)
port: 9300
public_port: 9999
host_name: localhost

* ssl_enabled Conan doesn’t handle the SSL traffic by itself, but you can use a proxy like Nginx to redirect the
SSL traffic to your Conan server. If your Conan clients are connecting with “https”, set ssl_enabled to True. This
way the conan_server will generate the upload/download urls with “https” instead of “http”.

Note: Important: The Conan client, by default, will validate the server SSL certificates and won’t connect if it’s
invalid. If you have self signed certificates you have two options:

1. Usethe conan remote command to disable the SSL certificate checks. E.g., conan remote add/update myremote
https://somedir False

2. Append the server .crt file contents to ~/.conan/cacert.pem file.

To learn more, see How to manage SSL (TLS) certificates.

Conan has implemented an extensible storage backend based on the abstract class StorageAdapter. Currently, the
server only supports storage on disk. The folder in which the uploaded packages are stored (i.e., the folder you would
want to backup) is defined in the disk_storage_path.

The storage backend might use a different channel, and uploads/downloads are authorized up to a maximum of
authorize_timeout seconds. The value should sufficient so that large downloads/uploads are not rejected, but not
too big to prevent hanging up the file transfers. The value disk_authorize_timeout is not currently used. File trans-
fers are authorized with their own tokens, generated with the secret updown_secret. This value should be different
from the above jwt_secret.

Running the Conan Server with SSL using Nginx

server.conf

[server]
port: 9300

nginx conf file

server {
listen 443;
server_name myservername.mydomain.com;

location / {
proxy_pass http://0.0.0.0:9300;
}
ssl on;
ssl_certificate /etc/nginx/ssl/server.crt;
ssl_certificate_key /etc/nginx/ssl/server.key;

remote configuration in Conan client

[$ conan remote add myremote https://myservername.mydomain.com }

8.4. Running conan_server 109

Conan Documentation, Release 1.58.0

Running the Conan Server with SSL using Nginx in a Subdirectory

server.conf

[server]
port: 9300

nginx conf file

server {

listen 443;

ssl on;

ssl_certificate /usr/local/etc/nginx/ssl/server.crt;
ssl_certificate_key /usr/local/etc/nginx/ssl/server.key;
server_name myservername.mydomain.com;

location /subdir/ {
proxy_pass http://0.0.0.0:9300/;
}

remote configuration in Conan client

[$ conan remote add myremote https://myservername.mydomain.com/subdir/ J

Running Conan Server using Apache

You need to install mod_wsgi. If you want to use Conan installed from pip, the conf file should be similar
to the following example:

Apache conf file (e.g., /etc/apache2/sites-available/0_conan.conf)

<VirtualHost *:80>

WSGIScriptAlias / /usr/local/lib/python3.6/dist-packages/conans/server/
—.server_launcher.py

WSGICallableObject app

WSGIPassAuthorization On

<Directory /usr/local/lib/python3.6/dist-packages/conans>
Require all granted
</Directory>
</VirtualHost>

L J

If you want to use Conan checked out from source in, for example in /srv/conan, the conf file should be as
follows:

Apache conf file (e.g., /etc/apache2/sites-available/0_conan.conf)

<VirtualHost *:80>
WSGIScriptAlias / /srv/conan/conans/server/server_launcher.py
WSGICallableObject app
WSGIPassAuthorization On

(continues on next page)

110 Chapter 8. Uploading Packages

Conan Documentation, Release 1.58.0

(continued from previous page)

<Directory /srv/conan/conans>
Require all granted
</Directory>
</VirtualHost>

The directive WSGIPassAuthorization On is needed to pass the HTTP basic authentication to Conan.

Also take into account that the server config files are located in the home of the configured Apache user,
e.g., var/www/.conan_server, so remember to use that directory to configure your Conan server.

Permissions Parameters

By default, the server configuration when set to Read can be done anonymous, but uploading requires you to be regis-
tered users. Users can easily be registered in the [users] section, by defining a pair of login: password for each
one. Plain text passwords are used at the moment, but as the server is on-premises (behind firewall), you just need to
trust your sysadmin :)

If you want to restrict read/write access to specific packages, configure the [read_permissions] and
[write_permissions] sections. These sections specify the sequence of patterns and authorized users, in the form:

use a comma-separated, no-spaces list of users
package/version@user/channel: allowed_userl,allowed_user2

E.g.:

/@*/*: * # allow all users to all packages
PackageA/*@*/*: john,peter # allow john and peter access to any PackageA
/@project/*: john # Allow john to access any package from the "project" user

The rules are evaluated in order. If the left side of the pattern matches, the rule is applied and it will not continue
searching for matches.

Authentication

By default, Conan provides a simple user: password users list in the server. conf file.

There is also a plugin mechanism for setting other authentication methods. The process to install any of them is a
simple two-step process:

1. Copy the authenticator source file into the .conan_server/plugins/authenticator folder.
2. Add custom_authenticator: authenticator_name tothe server.conf [server] section.
This is a list of available authenticators, visit their URLs to retrieve them, but also to report issues and collaborate:

* htpasswd: Use your server Apache htpasswd file to authenticate users. Get it: https://github.com/d-schiffner/
conan-htpasswd

* LDAP: Use your LDAP server to authenticate users. Get it: https://github.com/uilianries/
conan-ldap-authentication

8.4. Running conan_server 111

https://github.com/d-schiffner/conan-htpasswd
https://github.com/d-schiffner/conan-htpasswd
https://github.com/uilianries/conan-ldap-authentication
https://github.com/uilianries/conan-ldap-authentication

Conan Documentation, Release 1.58.0

Create Your Own Custom Authenticator

If you want to create your own Authenticator, create a Python module in ~/.conan_server/plugins/
authenticator/my_authenticator.py

Example:

def get_class(Q):
return MyAuthenticator()

class MyAuthenticator(object):
def valid_user(self, username, plain_password):
return username == "foo" and plain_password == "bar"

The module has to implement:
* A factory function get_class() that returns a class with a valid_user () method instance.

e The class containing the valid_user() that has to return True if the user and password are valid or False
otherwise.

Authorizations
By default, Conan uses the contents of the [read_permissions] and [write_permissions] sections to authorize
or reject a request.

A plugin system is also available to customize the authorization mechanism. The installation of such a plugin is a
simple two-step process:

1. Copy the authorizer’s source file into the .conan_server/plugins/authorizer folder.

2. Add custom_authorizer: authorizer_name to the server.conf [server] section.

Create Your Own Custom Authorizer

If you want to create your own Authorizer, create a Python module in ~/.conan_server/plugins/authorizer/
my_authorizer.py

Example:

from conans.errors import AuthenticationException, ForbiddenException

def get_class(Q):
return MyAuthorizer()

class MyAuthorizer(object):
def _check_conan(self, username, ref):
if ref.user == username:
return

if username:

raise ForbiddenException("Permission denied")
else:

raise AuthenticationException()

(continues on next page)

112 Chapter 8. Uploading Packages

Conan Documentation, Release 1.58.0

(continued from previous page)

def _check_package(self, username, pref):
self._check(username, pref.ref)

check_read_conan = _check_conan
check_write_conan = _check_conan
check_delete_conan = _check_conan
check_read_package = _check_package
check_write_package = _check_package

check_delete_package = _check_package

The module has to implement:
* A factory function get_class () that returns an instance of a class conforming to the Authorizer’s interface.
* A class that implements all the methods defined in the Authorizer interface:

— check_read_conan() is used to decide whether to allow read access to a recipe.

check_write_conan() is used to decide whether to allow write access to a recipe.

check_delete_conan() is used to decide whether to allow a recipe’s deletion.

check_read_package() is used to decide whether to allow read access to a package.

check_write_package() is used to decide whether to allow write access to a package.

check_delete_package() is used to decide whether to allow a package’s deletion.

The check_*_conan() methods are called with a username and conans.model.ref.ConanFileReference in-
stance as their arguments. Meanwhile the check_*_package () methods are passed a username and conans .model.
ref.PackageReference instance as their arguments. These methods should raise an exception, unless the user is
allowed to perform the requested action.

Got any doubts? Please check out our FAQ section or .

8.4. Running conan_server 113

Conan Documentation, Release 1.58.0

114 Chapter 8. Uploading Packages

CHAPTER
NINE

DEVELOPING PACKAGES

This section shows how to work on packages with source code continuously being modified.

9.1 Package development flow

In the previous examples, we used the conan create command to create a package of our library. Every time it is
run, Conan performs the following costly operations:

1. Copy the sources to a new and clean build folder.

2. Build the entire library from scratch.

3. Package the library once it is built.

4. Build the test_package example and test if it works.

But sometimes, especially with big libraries, while we are developing the recipe, we cannot afford to perform these
operations every time.

The following section describes the local development flow, based on the Bincrafters community blog.

The local workflow encourages users to perform trial-and-error in a local sub-directory relative to their recipe, much
like how developers typically test building their projects with other build tools. The strategy is to test the conanfile.py
methods individually during this phase.

We will use this conan flow example to follow the steps in the order below.

9.1.1 conan source

You will generally want to start off with the conan source command. The strategy here is that you’re testing your
source method in isolation, and downloading the files to a temporary sub-folder relative to the conanfile.py. This just
makes it easier to get to the sources and validate them.

This method outputs the source files into the source-folder.

Input folders Output folders

- source-folder

115

https://bincrafters.github.io
https://github.com/memsharded/example_conan_flow

Conan Documentation, Release 1.58.0

$ cd example_conan_flow
$ conan source . --source-folder=tmp/source

PROJECT: Configuring sources in C:\Users\conan\example_conan_flow\tmp\source
Cloning into 'hello'...

Once you’ve got your source method right and it contains the files you expect, you can move on to testing the various
attributes and methods related to downloading dependencies.

9.1.2 conan install

Conan has multiple methods and attributes which relate to dependencies (all the ones with the word “require” in the
name). The command conan install activates all them.

Input folders Output folders

- install-folder

$ conan install . --install-folder=tmp/build [--profile XXXX]

PROJECT: Installing C:\Users\conan\example_conan_flow\conanfile.py
Requirements
Packages

This also generates the conaninfo.txt and conanbuildinfo.xyz files (extensions depends on the generator you’ve used) in
the temp folder (install-folder), which will be needed for the next step. Once you’ve got this command working
with no errors, you can move on to testing the build() method.

9.1.3 conan build

The build method takes a path to a folder that has sources and also to the install folder to get the information of the
settings and dependencies. It uses a path to a folder where it will perform the build. In this case, as we are including
the conanbuildinfo.cmake file, we will use the folder from the install step.

Input folders Output folders

source-folder build-folder
install-folder

$ conan build . --source-folder=tmp/source --build-folder=tmp/build
Project: Running build()
Build succeeded.

0 Warning(s)

0 Error(s)

Time Elapsed 00:00:03.34

116 Chapter 9. Developing packages

Conan Documentation, Release 1.58.0

Here we can avoid the repetition of --install-folder=tmp/build and it will be defaulted to the --build-folder
value.

This is pretty straightforward, but it does add a very helpful new shortcut for people who are packaging their own library.
Now, developers can make changes in their normal source directory and just pass that path as the --source-folder.

9.1.4 conan package

Just as it sounds, this command now simply runs the package () method of a recipe. It needs all the information of the
other folders in order to collect the needed information for the package: header files from source folder, settings and
dependency information from the install folder and built artifacts from the build folder.

Input folders Output folders

source-folder package-folder
install-folder
build-folder

$ conan package . --source-folder=tmp/source --build-folder=tmp/build --package-
—folder=tmp/package

PROJECT: Generating the package

PROJECT: Package folder C:\Users\conan\example_conan_flow\tmp\package
PROJECT: Calling package()

PROJECT package(): Copied 1 '.h' files: hello.h

PROJECT package(): Copied 2 '.lib' files: greet.lib, hello.lib
PROJECT: Package 'package' created

9.1.5 conan export-pkg

When you have checked that the package is done correctly, you can generate the package in the local cache. Note that
the package is generated again to make sure this step is always reproducible.

This parameters takes the same parameters as package().

Input folders Output folders

source-folder -
install-folder

build-folder

package-folder

There are 2 modes of operation:

» Using source-folder and build-folder will use the package () method to extract the artifacts from those
folders and create the package, directly in the Conan local cache. Strictly speaking, it doesn’t require executing
a conan package before, as it packages directly from these source and build folders, though conan package
is still recommended in the dev-flow to debug the package () method.

* Using the package-folder argument (incompatible with the above 2), will not use the package () method,
it will create an exact copy of the provided folder. It assumes the package has already been created by a previ-
ous conan package command or with a conan build command with a build() method running a cmake.
install().

9.1. Package development flow 117

Conan Documentation, Release 1.58.0

$ conan export-pkg . user/channel --source-folder=tmp/source --build-folder=tmp/build --
—profile=myprofile

Packaging to 6cc50b139b9c3d27b3e9042d5£5372d327b3a9£f7

hello/1.1@user/channel: Generating the package

hello/1.1@user/channel: Package folder C:\Users\conan\.conan\data\hello\1l.1\user\channel\
—.package\6cc50b139b9c3d27b3e9042d5£5372d327b3a9£7

hello/1.1@user/channel: Calling package()

hello/1.1@user/channel package(): Copied 2 '.lib' files: greet.lib, hello.lib
hello/1.1@user/channel package(): Copied 2 '.lib' files: greet.lib, hello.lib
hello/1.1@user/channel: Package '6cc50b139b9c3d27b3e9042d5£5372d327b3a9f7" created

9.1.6 conan test

The final step to test the package for consumers is the test command. This step is quite straight-forward:

$ conan test test_package hello/1.1@user/channel

hello/1.1@user/channel (test package): Installing C:\Users\conan\repos\example_conan_
—flow\test_package\conanfile.py
Requirements
hello/1.1@user/channel from local
Packages
hello/1.1@user/channel:6cc50b139b9c3d27b3e9042d5£5372d327b3a9£7

hello/1.1@user/channel: Already installed!

hello/1.1@user/channel (test package): Generator cmake created conanbuildinfo.cmake
hello/1.1@user/channel (test package): Generator txt created conanbuildinfo.txt
hello/1.1@user/channel (test package): Generated conaninfo.txt
hello/1.1@user/channel (test package): Running build()

There is often a need to repeatedly re-run the test to check the package is well generated for consumers.

As a summary, you could use the default folders and the flow would be as simple as:

git clone https://github.com/conan-io/examples.git

cd features/package_development_flow

conan source .

conan install . -pr=default

conan build .

conan package .

So far, this is local. Now put the local binaries in cache
conan export-pkg . hello/1.1@user/testing -pr=default

And test it, to check it is working in the local cache
conan test test_package hello/1.1@user/testing

A 3 A T A A A A A a

hello/1.1@user/testing (test package): Running test()
Hello World Release!

118 Chapter 9. Developing packages

Conan Documentation, Release 1.58.0

9.1.7 conan create
Now we know we have all the steps of a recipe working. Thus, now is an appropriate time to try to run the recipe all
the way through, and put it completely in the local cache.

The usual command for this is conan create and it basically performs the previous commands with conan test for
the test_package folder:

[$ conan create . user/channel }

Even with this command, the package creator can iterate over the local cache if something does not work. This could
be done with --keep-source and --keep-build flags.

If you see in the traces that the source () method has been properly executed but the package creation finally failed,
you can skip the source () method the next time issue conan create using --keep-source:

$ conan create . user/channel --keep-source

hello/1.1@user/channel: A new conanfile.py version was exported
hello/1.1@user/channel: Folder: C:\Users\conan\.conan\data\hello\1.1\user\channel\export
hello/1.1@user/channel (test package): Installing C:\Users\conan\repos\features\package_
—.development_flow\test_package\conanfile.py
Requirements

hello/1.1@user/channel from local
Packages

hello/1.1@user/channel:6cc50b139b9c3d27b3e9042d5£5372d327b3a9£7

hello/1.1@user/channel: WARN: Forced build from source

hello/1.1@user/channel: Building your package in C:\Users\conan\.conan\data\hello\1.1\
—user\channel\build\6cc50b139b9c3d27b3e9042d5f5372d327b3a9f7

hello/1.1@user/channel: Configuring sources in C:\Users\conan\.conan\data\hello\1l.1\user\
—.channel\source

Cloning into 'hello'...

remote: Counting objects: 17, done.

remote: Total 17 (delta 0), reused 0 (delta 0), pack-reused 17

Unpacking objects: 100% (17/17), done.

Switched to a new branch 'static_shared'’

Branch 'static_shared' set up to track remote branch 'static_shared' from 'origin'.
hello/1.1@user/channel: Copying sources to build folder

hello/1.1@user/channel: Generator cmake created conanbuildinfo.cmake
hello/1.1@user/channel: Calling build()

If you see that the library is also built correctly, you can also skip the build() step with the --keep-build flag:

[$ conan create . user/channel --keep-build J

9.1. Package development flow 119

Conan Documentation, Release 1.58.0

9.2 Package layout

Important: Some of the features used in this section are still under development, while they are recommended and
usable and we will try not to break them in future releases, some breaking changes might still happen if necessary to
prepare for the Conan 2.0 release.

Tip: The layout() feature will be fully functional only in the new build system integrations (in the conan.tools
space). If you are using other integrations, they might not fully support this feature.

Available since: 1.37.0

9.2.1 Before starting

To understand correctly how the 1ayout () method can help us we need to recall first how Conan works.

Let’s say we are working in a project, using, for example, CMake:

<my_project_folder>
|: conanfile.py
src

CMakeLists.txt
hello.cpp
my_tool.cpp
include
L— hello.h

When we call conan create, this is a simplified description of what happens:

1. Conan exports the recipe (conanfile.py) and the declared sources (exports_sources) to the cache. The folders in
the cache would be something like:

Listing 1: .conan/data/<some_cache_folder>

export

L conanfile.py

export_source

L src
CMakeLists.txt
hello.cpp
my_tool.cpp
include
L— hello.h

L

2. If the method source () exists, it might retrieve sources from the internet. Also, the export_source folder is
copied to the source folder.

Listing 2: .conan/data/<some_cache_folder>

export
L— conanfile.py
export_source
(continues on next page)

120 Chapter 9. Developing packages

https://github.com/conan-io/conan/releases/tag/1.37.0

Conan Documentation, Release 1.58.0

CMakeLists.txt
hello.cpp
my_tool.cpp
include

L— hello.h

CMakeLists.txt
hello.cpp
my_tool.cpp
include

L— hello.h

L

(continued from previous page)

3. Before calling the build () method, a build folder is created and the sources are copied there. Later, we call the

build () method so the libraries and executables are built:

Listing 3: .conan/data/<some_cache_folder>

— export
L— conanfile.py
— export_source
L— src
CMakeLists.txt
hello.cpp
my_tool.cpp
include
L— hello.h
— source
L src
CMakeLists.txt
hello.cpp
my_tool.cpp
include
L— hello.h
L— build
L— <build_id>
t:: say.a
bin
L— my_app

L

4. At last, Conan calls the package () method to copy the built artifacts from the source (typically includes) and
build folders (libraries and executables) to a package folder.

Listing 4: .conan/data/<some_cache_folder>

| — export
L— conanfile.py

L export_source
L— src

hello.cpp
my_tool.cpp

CMakeLists.txt

(continues on next page)

9.2. Package layout

121

Conan Documentation, Release 1.58.0

(continued from previous page)

L— include
L— hello.h

CMakeLists.txt
hello.cpp
my_tool.cpp
include

L— hello.h

— build
L— <build_id>

|: say.a
bin

L— my_app

L— package
L <package_id>

1ib

L say.a
bin

L— my_app
include

L— hello.h

5. The package_info(self) method will describe with the self.cpp_info object the contents of the package

-

folder, that is the one the consumers use to link against it. If we call conan create with different configurations
the base folder in the cache is different and nothing gets messed.

Listing 5: conanfile.py

L

import os
from conan import ConanFile
from conan.tools.cmake import CMake

class SayConan(ConanFile):
name
version = "0.1"
exports_sources = "src/*"

def package_info(self):

- "say"

These are default values and doesn't need to be adjusted
self.cpp_info.includedirs = ["include"]
self.cpp_info.libdirs = ["1ib"]

self.cpp_info.bindirs = ["bin"]

The library name
self.cpp_info.libs = ["say"]

So, this workflow in the cache works flawlessly but:

¢ What if I’'m developing the recipe in my local project and want to use the local methods (conan source, conan
build) and later call export-pkg to create the package?

If you call conan build in your working directory, without specifying a --build-folder argument, you will

122

Chapter 9. Developing packages

Conan Documentation, Release 1.58.0

end up with a bunch of files polluting your project. Moreover, if you want to build more configurations you will
need to create several build folders by hand, this is inconvenient, error-prone, and wouldn’t be easy for Conan to
locate the correct artifacts if you want to call export-pkg later.

e What if I don’t even want to call conan build but use my CLion IDE to build the project?

By default, the CLion IDE will create the folders cmake-build-release and cmake-build-debug to put the build
files there, so maybe your package () method is not able to locate the files in there and the export-pkg might
fail.

* What if I want to use my project as an editable package?

If you want to keep developing your package but let the consumers link with the artifacts in your project instead
of the files in the Conan cache, this will not work, because it only declares the location of headers and libraries
in the final packaged layout, but during development the files are typically in other locations.

So, just as we describe the package folder in the package_info() method, we can use layout() to describe the
source and build folders (both in a local project and in the cache):

* We can run the conan local commands (conan source, conan build, conan export-pkg) without taking care of
specifying directories, always with the same syntax.

* If you are using an IDE, you can describe the build folder naming in the layout, so the libraries and executables
are always in a known place.

¢ In the cache, the layout (like a build subfolder) is kept, so we can always know where the artifacts are before
packaging them.

* It enables tools like the AutoPackager to automate the package() method.

* It out-of-the-box enables to use editable packages, because the recipe describes where the contents will be, even
for different configurations, so the consumers can link with the correct built artifacts.

9.2.2 Declaring the layout

In the layout () method, you can set:

« self.folders

self.folders.source: To specify a folder where your sources are.
— self.folders.build: To specify a subfolder where the files from the build are (or will be).

— self.folders.generators: To specify a subfolder where to write the files from the generators and
the toolchains (e.g. the xx-config.cmake files from the CMakeDeps generator).

— self.folders.imports: To specify a subfolder where to write the files copied when using the
imports(self) method in a conanfile.py.

— self.folders.root: To specify the relative path from the conanfile.py to the root of the project,
in case the conanfile.py is in a subfolder and not in the project root. If defined, all the other
paths will be relative to the project root, not to the location of the conanfile.py.

Check the complete reference of the self.folders attribute.

* self.cpp.source and self.cpp.build: The same you set the self.cpp.package to describe the package folder
after calling the package () method, you can also describe the source and build folders.

« self.cpp.package: You can use it as you use the self.cpp_info at the package_info(self) method. The
self.cpp_info object will be populated with the information declared in the self.cpp.package object, so you
can complete it or modify it later in the package_info(self) method.

9.2. Package layout 123

Conan Documentation, Release 1.58.0

* self.layouts.source, self.layouts.build and self.layouts.package, each one containing one instance of
buildenv_info, runenv_info and conf_info. If the environment or configuration needs to define values
that depend on the current folders, it is necessary to define them in the layout () method.

9.2.3 Example: Everything together

Let’s say we are working in the project introduced in the section above:

<my_project_folder>
I: conanfile.py
src

CMakeLists.txt
hello.cpp
my_tool.cpp
include
L— hello.h

We are using the following CMakeLists.txt:

cmake_minimum_required(VERSION 3.15)
project(say CXX)

add_library(say hello.cpp)
target_include_directories(say PUBLIC "include")

add_executable(my_tool my_tool.cpp)
target_link libraries(my_tool say)

The executables are generated at the "bin" folder
set_target_properties(my_tool PROPERTIES RUNTIME_OUTPUT_DIRECTORY "${CMAKE_BINARY_DIR}/
—bin™)

Let’s see how we describe our project in the 1ayout () method:

Listing 6: conanfile.py

import os
from conan import ConanFile
from conan.tools.cmake import CMake

class SayConan(ConanFile):
name = "say"
version = "0.1"
exports_sources = ''src/*"

def layout(self):

self.folders.source = "src"
build_type = str(self.settings.build_type).lower()
self.folders.build = "cmake-build-{}".format(build_type)

self.folders.generators = os.path.join(self.folders.build, "conan")

self.cpp.package.libs = ["say"]

(continues on next page)

124 Chapter 9. Developing packages

Conan Documentation, Release 1.58.0

(continued from previous page)

self.cpp.package.includedirs = ["include"] # includedirs is already set to this.

—value by

default, but declared for completion

this information is relative to the source folder
self.cpp.source.includedirs = ["include"] # maps to ./src/include

this information is relative to the build folder

self.cpp.build.libdirs = ["."] # maps to ./cmake-build-<build_type>
self.cpp.build.bindirs = ["bin"] # maps to ./cmake-build-<build_type>/

—bin

def build(self):
cmake = CMake(self)
cmake.configure()
cmake.build()
we can also know where the executable we are building is

self.run(os.path. join(self.build_folder, self.cpp.build.bindirs[0], "my_tool"))

Let’s review the layout () method changes:
« self.folders
— As we have our sources in the src folder, self. folders. source is set to “src”.

— We set self.folders.build to be cmake-build-release or cmake-build-debug depending
on the build_type.

— The self. folders.generators folder is where all files generated by Conan will be stored so
they don’t pollute the other folders.

Please, note that the values above are for a single-configuration CMake generator. To support multi-
configuration generators, such as Visual Studio, you should make some changes to this layout. For a
complete layout that supports both single-config and multi-config, please check the cmake_layout()
in the Conan documentation.

* self.cpp

We can set the information about the package that the consumers need to use by setting the conanfile’s
cpp . package attributes values:

— Declaring self.cpp.package.libs inside the layout () method is equivalent to the “classic”
self.cpp_info.libs declaration in the package_info() method.

— Also, as you may know, self.cpp.package.includedirs is set to ["include"] by default,
so there’s no need in declaring it but we are leaving it here for completeness.

We can also describe the source and build folders with the cpp. source and cpp.build objects:

— We are setting self.cpp.source.includedirs = ["include"]. The self.folders.
source information will be automatically prepended to that path for consumers so, for exam-
ple, when working with an editable package, Conan will try to get the include files from the
J/my_project_folder/src/include folder.

— Wesetthe self.cpp.build.libdirs to[*“.”’], so we are declaring that, if we make the package
editable, the libraries will be at the ./cmake-build-<build_type> folder.

— We set the self.cpp.build.bindirs to [“bin”’], because the CMakeLists. txt file is chang-
ing the RUNTIME_OUTPUT_DIRECTORY to that directory.

9.2. Package layout

125

Conan Documentation, Release 1.58.0

There is also an interesting line in the build(self) method:

Listing 7: conanfile.py

def build(self):

we can also know where is the executable we are building
self.run(os.path. join(self.build_folder, self.cpp.build.bindirs[0], "my_tool™))

We are using the self.cpp.build.bindirs[0] folder to locate the my_tool. This is a very recommended practice,
especially when our layout depends on the build system. For example, when using CMake with Visual Studio, the
binaries are typically built at Release/ or Debug/ (multiconfiguration) but on Linux or macOS, the output folder will
typically be ¢.”, so it is better to declare the layout self.cpp.build.bindirs following that logic and then just
access the correct path if we need to know where the resulting files of our build are. If you check the cmake_layout(),
you can see that the predefined cmake_layout is doing exactly that when using a multiconfiguration build system.

So, now we can run the conan local methods without taking much care of the directories where the files are or the build
files should be, because everything is declared in the layout:

This will write the toolchains and generator files from the dependencies to cmake-
—build-debug/generators
$ conan install . -if=my_install -s build_type=Debug

In case we needed it (not the case as we don't have a source() method), this would.
—fetch the sources to the ./src folder
$ conan source . -if=my_install

This will build the project using the declared source folder and cmake-build-debug as.
< the build folder
$ conan build . -if=my_install

Note: Maybe you are wondering why the install folder is not parametrized and has to be specified with the -if
argument. Currently, Conan generates several files like the graph_info. json and the conanbuildinfo.txt that are
read to restore the configuration saved (settings, options, etc) to be applied in the local commands. That configuration
is needed before running the layout () method because the folders might depend on the settings like in the previous
example. It is a kind of a chicken-egg issue. In Conan 2.0, likely, the configuration won’t be stored, and the local
methods like conan build . will compute the graph from arguments (—profile, -s, -0...) and won’t need the --if
argument anymore, being always trivial to run.

Our current folder now looks like this:

<my_project_folder>
—— conanfile.py
— src
CMakeLists.txt
hello.cpp
my_tool.cpp
include
L— hello.h
L— cmake-build-debug
libsay.a
bin
L— my_tool

126 Chapter 9. Developing packages

Conan Documentation, Release 1.58.0

We could put the package in editable mode and other packages that require it would consume it in a completely trans-
parent way, even locating the correct Release/Debug artifacts.

[$ conan editable add . say/0.1

Note: When working with editable packages, the information set in self.cpp.source and self.cpp.build will
be merged with the information set in self. cpp.package so that we don’t have to declare again something like self.
cpp.build.libs = ["say"] thatis the same for the consumers, independently of whether the package is in editable
mode or not.

And of course, we can run also a conan create command. When the build(self) method is run in the conan
cache, it is also able to locate the my_tool correctly, because it is using the same folders.build:

Listing 8: .conan/data/<some_cache_folder>

— source
L— src

CMakeLists.txt
hello.cpp
my_tool.cpp
include
L— hello.h

— build

L— cmake-build-debug
|: say.a
bin

L— my_app

L package

lib

L say.a
bin

L— my_app
include

L— hello.h

Warning: The conan package local command has been disabled (will raise an exception) when the layout ()
method is declared. If the package can be consumed “locally” in a handy way, the use case for the conan package
method is only testing that the method is correctly coded, but that can also be done with the conan export-pkg
method. Thus, as part of the migration to Conan 2.0, the conan package method will disappear.

9.2.4 Example: export_sources_folder

If we have this project, intended to create a package for a third-party library which code is located externally:

conanfile.py
patches

L— mypatch
CMakeLists.txt

The conanfile.py would look like this:

9.2. Package layout 127

Conan Documentation, Release 1.58.0

import os
from conan import ConanFile

class Pkg(ConanFile):

name = "pkg"
version = "0.1"
exports_sources = "CMakeLists.txt", "patches*"
def layout(self):

self.folders.source = "src"
def source(self):

def

" "

we are inside a "src" subfolder, as defined by layout

download something, that will be inside the "src" subfolder

access to patches and CMakelLists, to apply them, replace files is done with:
mypatch_path = os.path.join(self.export_sources_folder, "patches/mypatch™)
cmake_path = os.path.join(self.export_sources_folder, "CMakeLists.txt")

patching, replacing, happens here

build(self):

If necessary, the build() method also has access to the export_sources_folder
for example if patching happens in build() instead of source()

cmake_path = os.path.join(self.export_sources_folder, "CMakeLists.txt")

We can see that the ConanFile. export_sources_folder can provide access to the root folder of the sources:

* Locally it will be the folder where the conanfile.py lives

¢ In the cache it will be the “source” folder, that will contain a copy of CMakeLists.txt and patches, while the
“source/src” folder will contain the actual downloaded sources.

9.2.5 Example: conanfile in subfolder

If we have this project, intended to package the code that is in the same repo as the conanfile.py, but the conanfile.
py is not in the root of the project:

CMakeLists.txt
conan

L

conanfile.py

The conanfile.py would look like this:

import os
from conan import ConanFile
from conan.tools.files import load, copy

class Pkg(ConanFile):
name = "pkg"
version = "0.1"

def

layout(self):

(continues on next page)

128

Chapter 9. Developing packages

Conan Documentation, Release 1.58.0

(continued from previous page)

The root of the project is one level above

self.folders.root = ".."

The source of the project (the root CMakelists.txt) is the source folder
self.folders.source = "."

self.folders.build = "build"

def export_sources(self):
The path of the CMakelLists.txt we want to export is one level above
folder = os.path.join(self.recipe_folder, "..")
copy(self, "*.txt", folder, self.export_sources_folder)

def source(self):
we can see that the CMakeLists.txt is inside the source folder
cmake = load(self, "CMakeLists.txt")

def build(self):
The build() method can also access the CMakelLists.txt in the source folder
path = os.path.join(self.source_folder, "CMakeLists.txt")
cmake = load(self, path)

9.2.6 Example: Multiple subprojects

Lets say that we have a project that contains multiple subprojects, and some of these subprojects need to access some
information that is at their same level (sibling folders). Each subproject would be a Conan package.

So we have the following folders and files:

— pkg

conanfile.py
E app.cpp # contains an #include "../common/myheader.h"
CMakeLists.txt # contains include(../common/myutils.cmake)
—— common
|: myutils.cmake
myheader.h
L— othersubproject

The pkg subproject needs to use some of the files located inside the common folder (that might be used and shared by
other subprojects too), and it references them by their relative location. Note that common is not intended to be a Conan
package. It is just some common code that will be copied into the different subproject packages.

We can use the self.folders.root = ".." layout specifier to locate the root of the project, then use the self.
folders.subproject = "subprojectfolder" to relocate back most of the layout to the current subproject folder,
as it would be the one containing the build scripts, sources code, etc., so other helpers like cmake_layout () keep
working.

import os

from conan import ConanFile

from conan.tools.cmake import cmake_layout, CMake
from conan.tools.files import load, copy, save

class Pkg(ConanFile):
name = "pkg"
(continues on next page)

9.2. Package layout 129

Conan Documentation, Release 1.58.0

(continued from previous page)

version = "0.1"
settings = "os", "compiler", "build_type", "arch"
generators = "CMakeToolchain"

def layout(self):
self.folders.root =
self.folders.subproject = "pkg"
cmake_layout (self)

def export_sources(self):
source_folder = os.path.join(self.recipe_folder, "..")
copy(self, "*", source_folder, self.export_sources_folder)

def build(self):
cmake = CMake(self)
cmake.configure()
cmake.build()
self.run(os.path. join(self.cpp.build.bindirs[0], "myapp"))

Note it is very important the export_sources () method, that is able to maintain the same relative layout of the pkg
and common folders, both in the local developer flow in the current folder, but also when those sources are copied to
the Conan cache, to be built there with conan create or conan install --build=pkg. This is one of the design
principles of the layout (), the relative location of things must be consistent in the user folder and in the cache.

9.2.7 Environment variables and configuration

There are some packages that might define some environment variables in their package_info() method via self.
buildenv_info, self.runenv_info. Other packages can also use self.conf_info to pass configuration to their
consumers.

This is not an issue as long as the value of those environment variables or configuration do not require using the self.
package_folder. If they do, then their values will not be correct for the “source” and “build” layouts. Something
like this will be broken when used in editable mode:

import os
from conan import ConanFile

class SayConan(ConanFile):

def package_info(self):
This is BROKEN if we put this package in editable mode
self.runenv_info.define_path("MYDATA_PATH",
os.path.join(self.package_folder, "my/data/path™))

When the package is in editable mode, for example, self.package_folder is None, as obviously there is no package
yet. The solution is to define it in the layout () method, in the same way the cpp_info can be defined there:

from conan import ConanFile
class SayConan(ConanFile):

def layout(self):

(continues on next page)

130 Chapter 9. Developing packages

Conan Documentation, Release 1.58.0

(continued from previous page)

The final path will be relative to the self.source_folder

self.layouts.source.buildenv_info.define_path("MYDATA_PATH", "my/source/data/path
-

The final path will be relative to the self.build_folder

self.layouts.build.buildenv_info.define_path("MYDATA_PATH2", "my/build/data/path
-

The final path will be relative to the self.build_folder

self.layouts.build.conf_info.define_path("MYCONF", "my_conf_ folder")

The layouts object contains source, build and package scopes, and each one contains one instance of
buildenv_info, runenv_info and conf_info.

9.3 Packages in editable mode

Important: This is a tutorial section. You are encouraged to execute these commands.

Some of the features used in this section are still under development, like 1ayout () or CMakeToolchain, while they
are recommended and usable and we will try not to break them in future releases, some breaking changes might still
happen if necessary to prepare for the Conan 2.0 release.

When working in big projects with several functionalities interconnected it is recommended to avoid the one-and-only
huge project approach in favor of several libraries, each one specialized in a set of common tasks, even maintained by
dedicated teams. This approach helps to isolate and reusing code helps with compiling times and reduces the likelihood
of including files that not correspond to the API of the required library.

Nevertheless, in some case, it is useful to work in several libraries at the same time and see how the changes in one of
them are propagated to the others. With the normal flow, for every source change, it is necessary to do conan create
or conan export-pkg to put the package in the cache and make it available to consumers.

With the editable packages, you can tell Conan where to find the headers and the artifacts ready for consumption in
your local working directory. There is no need to package.

Let’s see this feature over a practical example, the code can be found in the examples repository:

$ git clone https://github.com/conan-io/examples.git
$ cd examples/features/editable/cmake

There are 2 folders inside this project:
» A “say” folder containing a fully fledge package, with its conanfile.py, its source code.

* A “hello” folder containing a simple consumer project with a conanfile. txt and its source code, which de-
pends on the say/0. 1@user/testing requirement.

The goal is to be able to build the “hello” project, without actually having the say/0.1@user/testing package in
the cache, but directly in this project folder.

9.3. Packages in editable mode 131

Conan Documentation, Release 1.58.0

9.3.1 Put a package in editable mode

To avoid creating the package say/0. 1l@user/channel in the cache for every change, we are going to put that package
in editable mode, creating a link from the reference in the cache to the local working directory:

$ conan editable add say say/®.1l@user/channel
$ conan editable list
say/0. l@user/channel

Path:

That is it. Now, every usage of say/0.1l@user/channel, by any other Conan package or project, will be redirected
to the examples/features/editable/cmake/say user folder instead of using the package from the conan cache.

Note that the key of editable packages is a correct definition of the 1ayout () of the package. Read the package layout()
section to learn more about this method.

In this example, the say conanfile.py recipe is using the predefined cmake_layout () which defines the typical
CMake project layout, which can be different in the different platforms. Take also into account that only using the new
build system integrations like CMakeDeps and CMakeToolchain will correctly follow the layout definition.

Now the say/0. 1@user/channel package is in editable mode, lets build it locally:

$ cd say

windows, we will build 2 configurations to show multi-config

$ conan install . -s build_type=Release

$ conan install . -s build_type=Debug

$ cd build

$ cmake .. -DCMAKE_TOOLCHAIN_FILE=generators/conan_toolchain.cmake
$ cmake --build . --config Release

$ cmake --build . --config Debug

Linux, we will only build 1 configuration

$ conan install .

$ cd build/Release

$ cmake ../.. -DCMAKE_BUILD_TYPE=Release -DCMAKE_TOOLCHAIN_FILE=generators/conan_

—toolchain.cmake
$ cmake --build .

9.3.2 Using a package in editable mode

Consuming a package in editable mode is transparent from the consumer perspective. In this case we can build the
hello application as usual:

$ cd ../../hello

windows, we will build 2 configurations to show multi-config

$ conan install . -s build_type=Release

$ conan install . -s build_type=Debug

$ cd build

$ cmake .. -DCMAKE_TOOLCHAIN_FILE=generators/conan_toolchain.cmake
$ cmake --build . --config Release

$ cmake --build . --config Debug

$ Release\hello.exe

(continues on next page)

132 Chapter 9. Developing packages

Conan Documentation, Release 1.58.0

(continued from previous page)

say/0.1: Hello World Release!
$ Debug\hello.exe
say/0.1: Hello World Debug!

Linux, we will only build 1 configuration

$ conan install .

$ cd build/Release

$ cmake ../.. -DCMAKE_BUILD_TYPE=Release -DCMAKE_TOOLCHAIN_FILE=generators/conan_
—»toolchain.cmake

$ cmake --build .

$./hello

say/0.1: Hello World Release!

9.3.3 Working with editable packages

Once the above steps have been done, we can basically work with our build system or IDE, no Conan involved, and do
changes in the editable packages and have those changes used by the consumers directly. Lets see it, lets start by doing
a change in the say source code:

R2]

cd ../../say
Edit src/say.cpp and change the error message from "Hello" to "Bye"

windows, we will build 2 configurations to show multi-config
$ cd build

$ cmake --build . --config Release

$ cmake --build . --config Debug

Linux, we will only build 1 configuration
$ cd build/Release
$ cmake --build .

And build and run the “hello” project:

$ cd ../../hello

windows,

$ cd build

$ cmake --build . --config Release
$ cmake --build . --config Debug

$ Release\hello.exe

say/0.1: Bye World Release!
$ Debug\hello.exe
say/0.1: Bye World Debug!

Linux

$ cd build/Release

$ cmake --build .

$./hello

say/0.1: Bye World Release!

In that way, it is possible to be developing both the say library and the hello application, at the same time, without
any Conan command. If you had both open in the IDE, it would be just building one after the other.

9.3. Packages in editable mode 133

Conan Documentation, Release 1.58.0

Note: When a package is in editable mode, most of the commands will not work. It is not possible to conan upload,
conan export or conan create when a package is in editable mode.

9.3.4 Revert the editable mode

In order to revert the editable mode just remove the link using:

[$ conan editable remove say/0.l@user/channel]

It will remove the link (the local directory won’t be affected) and all the packages consuming this requirement will get
it from the cache again.

Warning: Packages that are built consuming an editable package in its graph upstreams can generate binaries and
packages incompatible with the released version of the editable package. Avoid uploading these packages without
re-creating them with the in-cache version of all the libraries.

9.4 Workspaces

Warning: This is an experimental feature. This is actually a preview of the feature, with the main goal of receiving
feedbacks and improving it. Consider the file formats, commands and flows to be unstable and subject to changes
in the next releases.

Sometimes, it is necessary to work simultaneously on more than one package. In theory, each package should be
a “work unit”, and developers should be able to work on them in isolation. But sometimes, some changes require
modifications in more than one package at the same time. The local development flow can help, but it still requires
using export-pkg to put the artifacts in the local cache, where other packages under development will consume them.

The Conan workspaces allow to have more than one package in user folders, and have them directly use other packages
from user folders without needing to put them in the local cache. Furthermore, they enable incremental builds on large
projects containing multiple packages.

Lets introduce them with a practical example; the code can be found in the conan examples repository:

$ git clone https://github.com/conan-io/examples.git
$ cd features/workspace/cmake

Note that this folder contains two files conanws_gcc.yml and conanws_vs.yml, for gcc (Makefiles, single-configuration
build environments) and for Visual Studio (MSBuild, multi-configuration build environment), respectively.

134 Chapter 9. Developing packages

Conan Documentation, Release 1.58.0

9.4.1 Conan workspace definition

Workspaces are defined in a yaml file, with any user defined name. Its structure is:

editables:
say/0.1l@user/testing:
path: say
hello/0.1@user/testing:
path: hello
chat/0.1l@user/testing:
path: chat

layout: layout_gcc
workspace_generator: cmake
root: chat/0.l@user/testing

The first section editables defines the mapping between package references and relative paths. Each one is equivalent
to a conan editable add command (Do NOT do this — it is not necessary. It will be automatically done later. Just to
understand the behavior):

$ conan editable add say say/®.l@user/testing --layout=layout_gcc
$ conan editable add hello hello/0.l@user/testing --layout=layout_gcc
$ conan editable add chat chat/®.l@user/testing --layout=layout_gcc

The main difference is that this Editable state is only temporary for this workspace. It doesn’t affect other projects or
packages, which can still consume these say, hello, chat packages from the local cache.

Note that the layout: layout_gcc declaration in the workspace affects all the packages. It is also possible to define
a different layout per package, as:

editables:
say/0.l@user/testing:
path: say

layout: custom_say_layout

Layout files are explained in Editable layout files and in the Packages in editable mode sections.

The workspace_generator defines the file that will be generated for the top project. The only supported value so far
is cmake and it will generate a conanworkspace.cmake file that looks like:

set (PACKAGE_say_SRC "<path>/examples/workspace/cmake/say/src')

set (PACKAGE_say_BUILD '"<path>/examples/workspace/cmake/say/build/Debug")

set (PACKAGE_hello_SRC "<path>/examples/workspace/cmake/hello/src")

set (PACKAGE_hello_BUILD "<path>/examples/workspace/cmake/hello/build/Debug")
set (PACKAGE_chat_SRC "<path>/examples/workspace/cmake/chat/src")

set (PACKAGE_chat_BUILD '<path>/examples/workspace/cmake/chat/build/Debug")

macro (conan_workspace_subdirectories)
add_subdirectory(${PACKAGE_say_SRC} ${PACKAGE_say_BUILD})
add_subdirectory (${PACKAGE_hello_SRC} ${PACKAGE_hello_BUILD})
add_subdirectory(${PACKAGE_chat_SRC} ${PACKAGE_chat_BUILD})
endmacro()

This file can be included in your user-defined CMakeLists.txt (this file is not generated). Here you can see the CMake-
Lists.txt used in this project:

9.4. Workspaces 135

Conan Documentation, Release 1.58.0

cmake_minimum_required(VERSION 3.0)
project(WorkspaceProject)

include (${CMAKE_BINARY_DIR}/conanworkspace.cmake)
conan_workspace_subdirectories()

The root: chat/0.1@user/testing defines which is the consumer node of the graph, typically some kind of
executable. You can provide a comma separated list of references, as a string, or a yaml list (abbreviated or full as
yaml items). All the root nodes will be in the same dependency graph, leading to conflicts if they depend on different
versions of the same library, as in any other Conan command.

editables:
say/0.l@user/testing:
path: say
hello/0.1@user/testing:
path: hello
chat/0.1l@user/testing:
path: chat

root: chat/0.l@user/testing, say/0.lGuser/testing
or
root: ["helloa/0.1@lasote/stable", "hellob/0.1l@lasote/stable"]
or
root:
- helloa/0.1@lasote/stable
- hellob/0.1@lasote/stable

9.4.2 Single configuration build environments

There are some build systems, like Make, that require the developer to manage different configurations in different
build folders, and switch between folders to change configuration. The file described above is conan_gcc.yml file,
which defines a Conan workspace that works for a CMake based project for MinGW/Unix Makefiles gcc environments
(working for apple-clang or clang would be very similar, if not identical).

Lets use it to install this workspace:

$ mkdir build_release && cd build_release
$ conan workspace install ../conanws_gcc.yml --profile-=my_profile

Here we assume that you have amy_profile profile defined which would use a single-configuration build system (like
Makefiles). The example is tested with gcc in Linux, but working with apple-clang with Makefiles would be the same).
You should see something like:

Configuration:
[settings]

build_type=Release
compiler=gcc
compiler.libcxx=1libstdc++
compiler.version=4.9

(continues on next page)

136 Chapter 9. Developing packages

Conan Documentation, Release 1.58.0

(continued from previous page)

Requirements
chat/0.1l@user/testing from user folder - Editable
hello/0.1l@user/testing from user folder - Editable
say/0.1l@user/testing from user folder - Editable

Packages
chat/0.1l@user/testing:df2c4£4725219597d44b7eab2ea5c8680abd57f9 - Editable
hello/0.1@user/testing:b0e473ad8697d6069797Hb921517d628bba8b5901 - Editable
say/0.1l@user/testing:80faec7955dcba29246085ff8d64a765db3b414f - Editable

say/0.1l@user/testing: Generator cmake created conanbuildinfo.cmake
hello/0.1@user/testing: Generator cmake created conanbuildinfo.cmake

chat/0.1l@user/testing: Generator cmake created conanbuildinfo.cmake

These conanbuildinfo.cmake files have been created in each package build/Release folder, as defined by the layout _gcc
file:

This helps to define the location of CMakeLists.txt within package
[source_folder]
src

This defines where the conanbuildinfo.cmake will be written to
[build_folder]
build/{{settings.build_type}}

Now we can configure and build our project as usual:

$ cmake .. -G "Unix Makefiles" -DCMAKE_BUILD_TYPE=Release
$ cmake --build . # or just $ make

$../chat/build/Release/app

Release: Hello World!

Release: Hello World!

Release: Hello World!

Now, go do a change in some of the packages, for example the “say” one, and rebuild. See how it does an incremental
build (fast).

Note that nothing will really be installed in the local cache, all the dependencies are resolved locally:

There are no packages matching the 'say' pattern

$ conan search say ’

Note: The package conanfile.py recipes do not contain anything special, they are standard recipes. But the packages
CMakeLists.txt have defined the following:

[conan_basic_setup(NO_OUTPUT_DIRS)]

This is because the default conan_basic_setup() does define output directories for artifacts such as bin, lib, etc,
which is not what the local project layout expects. You need to check and make sure that your build scripts and recipe

9.4. Workspaces 137

Conan Documentation, Release 1.58.0

matches both the expected local layout (as defined in layout files), and the recipe package () method logic.

Building for debug mode is done in its own folder:

cd .. &% mkdir build_debug && cd build_debug

conan workspace install ../conanws_gcc.yml --profile=my_gcc_profile -s build_type=Debug
cmake .. -G "Unix Makefiles" -DCMAKE_BUILD_TYPE=Debug

cmake --build . # or just $ make

$../chat/build/Debug/app

Debug: Bye World!

Debug: Bye World!

Debug: Bye World!

© A A o

9.4.3 Multi configuration build environments

Some build systems, like Visual Studio (MSBuild), use “multi-configuration” environments. That is, even if the project
is configured just once you can switch between different configurations (like Debug/Release) directly in the IDE and
build there.

The above example uses the Conan cmake generator, that creates a single conanbuildinfo.cmake file. This is not a prob-
lem if we have our configurations built in different folders. Each one will contain its own conanbuildinfo.cmake. For
Visual Studio that means that if we wanted to switch from Debug<->Release, we should issue a new conan workspace
install command with the right -s build_type and do a clean build, in order to get the right dependencies.

Conan has the cmake_multi generator generator, that allows this direct switch of Debug/Release configuration in the
IDE. The conanfile.py recipes they have defined the cmake generator, so the first step is to override that in our co-
nanws_vs.yml file:

editables:
say/0.l@user/testing:
path: say
hello/0.1@user/testing:
path: hello
chat/0.1l@user/testing:
path: chat
layout: layout_vs
generators: cmake_multi
workspace_generator: cmake
root: chat/0.l@user/testing

Note the generators: cmake_multi line, that will define the generators to be used by our workspace packages.
Also, our CMakelLists.txt should take into account that now we won’t have a conanbuildinfo.cmake file, but a conan-
buildinfo_multi.cmake file. See for example the hello/src/CMakeLists.txt file:

project(Hello)

if(EXISTS ${CMAKE_CURRENT_BINARY_DIR}/conanbuildinfo_multi.cmake)
include (${CMAKE_CURRENT_BINARY_DIR}/conanbuildinfo_multi.cmake)
else()
include (${CMAKE_CURRENT_BINARY_DIR}/conanbuildinfo.cmake)
endif()

conan_basic_setup(NO_OUTPUT_DIRS)

(continues on next page)

138 Chapter 9. Developing packages

Conan Documentation, Release 1.58.0

(continued from previous page)

add_library(hello hello.cpp)
conan_target_link_libraries(hello)

The last conan_target_link_libraries(hello) is a helper that does the right linking with Debug/Release li-
braries (also works when using cmake targets).

Make sure to install both Debug and Release configurations straight ahead, if we want to later switch between them in
the IDE:

$ mkdir build && cd build

$ conan workspace install ../conanws_vs.yml

$ conan workspace install ../conanws_vs.yml -s build_type=Debug
$ cmake .. -G "Visual Studio 15 Win64"

With those commands you will get a Visual Studio solution, that you can open, select the app executable as StartUp
project, and start building, executing, debugging, switching from Debug and Release configurations freely from the
IDE, without needing to issue further Conan commands.

You can check in the project folders, how the following files have been generated:

hello
|- build
| - conanbuildinfo_multi.cmake
| - conanbuildinfo_release.cmake
| - conanbuildinfo_debug.cmake

Note that they are not located in build/Release and build/Debug subfolders; that is because of the multi-config envi-
ronment. To account for that the layout_vs define the [build_folder] not as build/{settings.build_type} but
just as:

[build_folder]
build

9.4.4 Out of source builds

The above examples are using a build folder in-source of the packages in editable mode. It is possible to define out-
of-source builds layouts, using relative paths and the reference argument. The following layout definition could be
used to locate the build artifacts of an editable package in a sibling build/<package-name> folder:

[build_folder]
../build/{{reference.name}}/{{settings.build_type}}

[includedirs]
src

[libdirs]
../build/{{reference.name}}/{{settings.build_type}}/lib

9.4. Workspaces 139

Conan Documentation, Release 1.58.0

9.4.5 Notes
Note that this way of developing packages shouldn’t be used to create the final packages (you could try to use conan
export-pkg), but instead, a full package creation with conan create (best in CI) is recommended.

So far, only the CMake super-project generator is implemented. A Visual Studio one is being considered, and seems
feasible, but not yet available.

Important: We really want your feedback. Please submit any issues to https://github.com/conan-io/conan/issues with
any suggestion, problem, idea, and using [workspaces] prefix in the issue title.

140 Chapter 9. Developing packages

https://github.com/conan-io/conan/issues

CHAPTER
TEN

PACKAGE APPS AND DEVTOOLS

With conan it is possible to package and deploy applications. It is also possible that these applications are also dev-tools,
like compilers (e.g. MinGW), or build systems (e.g. CMake).

This section describes how to package and run executables, and also how to package dev-tools. Also, how to apply
applications like dev-tools or even libraries (like testing frameworks) to other packages to build them from sources:
Tool requirements

10.1 Running and deploying packages

Caution: We are actively working to finalize the Conan 2.0 Release. Some of the information on this page
references deprecated features which will not be carried forward with the new release. It’s important to check the
Migration Guidelines to ensure you are using the most up to date features.

Executables and applications including shared libraries can also be distributed, deployed and run with Conan. This
might have some advantages compared to deploying with other systems:

* A unified development and distribution tool, for all systems and platforms.
¢ Manage any number of different deployment configurations in the same way you manage them for development.

* Use a Conan server remote to store all your applications and runtimes for all Operating Systems, platforms and
targets.

There are different approaches:

10.1.1 Using virtual environments

We can create a package that contains an executable, for example from the default package template created by conan
new:

[$ conan new hello/®.1 J

The source code used contains an executable called greet, but it is not packaged by default. Let’s modify the recipe
package () method to also package the executable:

def package(self):
self.copy("*greet*", src="bin", dst="bin", keep_path=False)

Now we create the package as usual, but if we try to run the executable it won’t be found:

141

Conan Documentation, Release 1.58.0

$ conan create . user/testing

hello/0.1@user/testing package(): Copied 1 '.h' files: hello.h
hello/0.1@user/testing package(): Copied 1 '.exe' files: greet.exe
hello/0.1l@user/testing package(): Copied 1 '.lib' files: hello.lib

$ greet
> ... not found...

By default, Conan does not modify the environment, it will just create the package in the local cache, and that is not in
the system PATH, so the greet executable is not found.

The virtualrunenv generator generates files that add the package’s default binary locations to the necessary paths:

* It adds the dependencies 1ib subfolder to the DYLD_LIBRARY_PATH environment variable (for OSX shared
libraries)

e It adds the dependencies 1ib subfolder to the LD_LIBRARY_PATH environment variable (for Linux shared li-
braries)

* It adds the dependencies bin subfolder to the PATH environment variable (for executables)

So if we install the package, specifying such virtualrunenv like:

[$ conan install hello/®.l@user/testing -g virtualrunenv]

This will generate a few files that can be called to activate and deactivate the required environment variables

$ activate_run.sh # § source activate_run.sh in Unix/Linux

$ greet

> Hello World Release!

$ deactivate_run.sh # $ source deactivate_run.sh in Unix/Linux

10.1.2 Imports

It is possible to define a custom conanfile (either .£xt or .py), with an imports() section, that can retrieve from local
cache the desired files. This approach requires a user conanfile.

For more details see the example below runtime packages.

10.1.3 Deployable packages

With the deploy () method, a package can specify which files and artifacts to copy to user space or to other locations
in the system. Let’s modify the example recipe adding the deploy () method:

, dst="bin", src="bin")

def deploy(self):
self.copy("*"

And run conan create

[$ conan create . user/testing

With that method in our package recipe, it will copy the executable when installed directly:

142 Chapter 10. Package apps and devtools

Conan Documentation, Release 1.58.0

$ conan install hello/0.1@user/testing

> hello/0.1l@user/testing deploy(): Copied 1 '.exe' files: greet.exe
$ bin\greet.exe
> Hello World Release!

The deploy will create a deploy_manifest.txt file with the files that have been deployed.

Sometimes it is useful to adjust the package ID of the deployable package in order to deploy it regardless of the compiler
it was compiled with:

def package_id(self):
del self.info.settings.compiler

See also:

Read more about the deploy() method.

10.1.4 Using the deploy generator
The deploy generator is used to have all the dependencies of an application copied into a single place. Then all the
files can be repackaged into the distribution format of choice.

For instance, if the application depends on boost, we may not know that it also requires many other 3rt-party libraries,
such as zlib, bzip2, lzma, zstd, iconv, etc.

[$ conan install . -g deploy]

This helps to collect all the dependencies into a single place, moving them out of the Conan cache.

10.1.5 Using the json generator

A more advanced approach is to use the json generator. This generator works in a similar fashion as the deploy one,
although it doesn’t copy the files to a directory. Instead, it generates a JSON file with all the information about the
dependencies including the location of the files in the Conan cache.

[$ conan install . -g json]

The conanbuildinfo.json file produced, is fully machine-readable and could be used by scripts to prepare the files and
recreate the appropriate format for distribution. The following code shows how to read the library and binary directories
from the conanbuildinfo.json:

import os
import json

data = json.load(open("'conanbuildinfo.json"))

dictQ
dictQ

dep_lib_dirs
dep_bin_dirs

for dep in data["dependencies"]:
root = dep["rootpath"]
lib_paths = dep["lib_paths"]

(continues on next page)

10.1. Running and deploying packages 143

https://zlib.net/
https://sourceware.org/bzip2/
https://tukaani.org/xz/
https://facebook.github.io/zstd/
https://www.gnu.org/software/libiconv/

Conan Documentation, Release 1.58.0

(continued from previous page)

bin_paths = dep["bin_paths"]

for lib_path in lib_paths:
if os.listdir(lib_path):
lib_dir = os.path.relpath(lib_path, root)
dep_lib_dirs[lib_path] = lib_dir
for bin_path in bin_paths:
if os.listdir(bin_path):
bin_dir = os.path.relpath(bin_path, root)
dep_bin_dirs[bin_path] = bin_dir

While with the deploy generator, all the files were copied into a folder. The advantage with the json one is that you
have fine-grained control over the files and those can be directly copied to the desired layout.

In that sense, the script above could be easily modified to apply some sort of filtering (e.g. to copy only shared libraries,
and omit any static libraries or auxiliary files such as pkg-config .pc files).

Additionally, you could also write a simple startup script for your application with the extracted information like this:

executable = "MyApp" # just an example
varname = "$APPDIR"

def _format_dirs(dirs):
return ":".join(["%s/%s" % (varname, d) for d in dirs])

path = _format_dirs(set(dep_bin_dirs.values()))
1d_library_path = _format_dirs(set(dep_lib_dirs.values()))
exe = varname + "/" + executable

content = """#!/usr/bin/env bash

set -ex

export PATH=$PATH:

export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:

pushd $(dirname)

$ (basename)

popd

""" format(path=path,
1d_library_path=1d_library_path,
exe=exe)

10.1.6 Running from packages

If a dependency has an executable that we want to run in the conanfile, it can be done directly in code using the
run_environment=True argument. It internally uses a RunEnvironment () helper. For example, if we want to
execute the greet app while building the consumer package:

from conans import ConanFile, tools, RunEnvironment

class ConsumerConan(ConanFile):

name = "consumer"
version = "0.1"
settings = "os", "compiler", "build_type", "arch"

(continues on next page)

144 Chapter 10. Package apps and devtools

Conan Documentation, Release 1.58.0

(continued from previous page)

requires = "hello/0.1G@user/testing"

def build(self):
self.run("greet", run_environment=True)

Now run conan install and conan build for this consumer recipe:

$ conan install . && conan build .

Project: Running build()
Hello World Release!

Instead of using the environment, it is also possible to explicitly access the path of the dependencies:

def build(self):
path = os.path.join(self.deps_cpp_info["hello"].rootpath, "bin")
self.run(["%s/greet" % path])

Note that this might not be enough if shared libraries exist. Using the run_environment=True helper above is a more
complete solution.

This example also demonstrates using a list to specify the command to run. This bypasses the system shell and works
correctly even when path contains special characters like whitespace or quotes that would otherwise be interpreted by
the shell. However, it also means that substituting environment variables or the output from other commands which are
normally done by the shell won’t work when using this method. Specify your command using a plain string as shown
above when you require this functionality.

Finally, there is another approach: the package containing the executable can add its bin folder directly to the PATH. In
this case the Hello package conanfile would contain:

def package_info(self):
self.cpp_info.libs = ["hello"]
self.env_info.PATH = os.path.join(self.package_folder, "bin")

We may also define DYLD_LIBRARY_PATH and LD_LIBRARY_PATH if they are required for the executable.

The consumer package is simple, as the PATH environment variable contains the greet executable:

def build(self):
self.run("greet")

Read the next section for a more comprenhensive explanation about using packaged executables in your recipe methods.

10.1.7 Runtime packages and re-packaging

It is possible to create packages that contain only runtime binaries, getting rid of all build-time dependencies. If we
want to create a package from the above “hello” one, but only containing the executable (remember that the above
package also contains a library, and the headers), we could do:

from conans import ConanFile

class HellorunConan(ConanFile):
name = "hello_run"
version = "0.1"

(continues on next page)

10.1. Running and deploying packages 145

Conan Documentation, Release 1.58.0

(continued from previous page)

tool_requires = "hello/0.1@user/testing"
keep_imports = True

def imports(self):
self.copy('greet*", src="bin", dst="bin")

def package(self):
self.copy("*")

This recipe has the following characteristics:

e Itincludes thehello/0. l@user/testing package as tool_requires. That means that it will be used to build
this hello_run package, but once the hello_run package is built, it will not be necessary to retrieve it.

e Itis using imports() to copy from the dependencies, in this case, the executable

* It is using the keep_imports attribute to define that imported artifacts during the build () step (which is not
define, then using the default empty one), are kept and not removed after build

* The package () method packages the imported artifacts that will be created in the build folder.

To create and upload this package to a remote:

$ conan create . user/testing
$ conan upload hello_run* --all -r=my-remote

Installing and running this package can be done using any of the methods presented above. For example:

$ conan install hello_run/0.1l@user/testing -g virtualrunenv

You can specify the remote with -r=my-remote

It will not install hello/0.1a@...

$ activate_run.sh # $§ source activate_run.sh in Unix/Linux

$ greet

> Hello World Release!

$ deactivate_run.sh # $ source deactivate_run.sh in Unix/Linux

Deployment challenges

When deploying a C/C++ application there are some specific challenges that have to be solved when distributing your
application. Here you will find the most usual ones and some recommendations to overcome them.

The C standard library

A common challenge for all the applications no matter if they are written in pure C or in C++ is the dependency on C
standard library. The most wide-spread variant of this library is GNU C library or just glibc.

Glibc is not a just C standard library, as it provides:
* C functions (like malloc(), sin(), etc.) for various language standards, including C99.
* POSIX functions (like posix threads in the pthread library).
¢ BSD functions (like BSD sockets).
* Wrappers for OS-specific APIs (like Linux system calls)

146 Chapter 10. Package apps and devtools

https://www.gnu.org/software/libc/

Conan Documentation, Release 1.58.0

Even if your application doesn’t use directly any of these functions, they are often used by other libraries, so, in practice,
it’s almost always in actual use.

There are other implementations of the C standard library that present the same challenge, such as newlib or musl, used
for embedded development.

To illustrate the problem, a simple hello-world application compiled in a modern Ubuntu distribution will give the
following error when it is run in a Centos 6 one:

$ /hello
/hello: /1ib64/1libc.so.6: version 'GLIBC_2.14' not found (required by /hello)

This is because the versions of the glibc are different between those Linux distributions.
There are several solutions to this problem:

* LibcWrapGenerator

* glibc_version_header

* bingcc

Some people also advice to use static of glibc, but it’s strongly discouraged. One of the reasons is that newer glibc
might be using syscalls that are not available in the previous versions, so it will randomly fail in runtime, which is much
harder to debug (the situation about system calls is described below).

It’s possible to model either glibc version or Linux distribution name in Conan by defining custom Conan sub-setting
in the sertings.yml file (check out sections Adding new settings and Adding new sub-settings). The process will be
similar to:

* Define new sub-setting, for instance os.distro, as explained in the section Adding new sub-settings.

* Define compatibility mode, as explained by sections package_id() and build_id() (e.g. you may consider some
Ubuntu and Debian packages to be compatible with each other)

» Generate different packages for each distribution.

* Generate deployable artifacts for each distribution.

C++ standard library

Usually, the default C++ standard library is libstdc++, but libc++ and stlport are other well-known implementations.

Similarly to the standard C library glibc, running the application linked with libstdc++ in the older system may result
in an error:

$ /hello
/hello: /usr/1lib64/libstdc++.s0.6: version 'GLIBCXX_3.4.21' not found (required by /
—hello)
/hello: /usr/1lib64/libstdc++.s0.6: version 'GLIBCXX_3.4.26' not found (required by /
—hello)

Fortunately, this is much easier to address by just adding -static-libstdc++ compiler flag. Unlike C runtime, C++
runtime can be linked statically safely, because it doesn’t use system calls directly, but instead relies on 1ibc to provide
required wrappers.

10.1. Running and deploying packages 147

https://sourceware.org/newlib/
https://www.musl-libc.org
https://github.com/AppImage/AppImageKit/tree/stable/v1.0/LibcWrapGenerator
https://github.com/wheybags/glibc_version_header
https://github.com/sulix/bingcc
https://gcc.gnu.org/onlinedocs/libstdc++/
https://libcxx.llvm.org
http://www.stlport.org

Conan Documentation, Release 1.58.0

Compiler runtime

Besides C and C++ runtime libraries, the compiler runtime libraries are also used by applications. Those libraries
usually provide lower-level functions, such as compiler intrinsics or support for exception handling. Functions from
these runtime libraries are rarely referenced directly in code and are mostly implicitly inserted by the compiler itself.

$ 1dd ./a.out
libgcc_s.so.1 => /1lib/x86_64-1linux-gnu/libgcc_s.so.1 (0x00007f6626aee000)

you can avoid this kind of dependency by the using of the -static-1libgcc compiler flag. However, it’s not always
sane thing to do, as there are certain situations when applications should use shared runtime. The most common is
when the application wishes to throw and catch exceptions across different shared libraries. Check out the GCC manual
for the detailed information.

System API (system calls)

New system calls are often introduced with new releases of Linux kernel. If the application, or 3rd-party libraries, want
to take advantage of these new features, they sometimes directly refer to such system calls (instead of using wrappers
provided by glibc).

As a result, if the application was compiled on a machine with a newer kernel and build system used to auto-detect
available system calls, it may fail to execute properly on machines with older kernels.

The solution is to either use a build machine with lowest supported kernel, or model supported operation system (just
like in case of glibc). Check out sections Adding new settings and Adding new sub-settings to get a piece of information
on how to model distribution in conan settings.

10.2 Creating conan packages to install dev tools

Caution: We are actively working to finalize the Conan 2.0 Release. Some of the information on this page
references deprecated features which will not be carried forward with the new release. It’s important to check the
Migration Guidelines to ensure you are using the most up to date features.

One of the most useful features of Conan is to package executables like compilers or build tools and distribute them
in a controlled way to the team of developers. This way Conan helps not only with the graph of dependencies of
the application itself, but also with all the ecosystem needed to generate the project, making it really easy to control
everything involved in the deployed application.

Those tools need to run in the working machine (the build machine) regardless of the host platform where the
generated binaries will run. If those platforms are different, we are cross building software.

In this section we cope with the general scenario where a library requires other tools to compile that are also packaged
with Conan. Read this section first, and get more information specific to cross compiling in the dedicated section of
the docs: Cross building.

Note: Conan v1.24 introduced a new feature to declare a full profile for the build and the host machine, it is
the preferred way to deal with this scenario. Older versions should rely on the deprecated settings os_build and
arch_build. There is a small section below about those settings, for a full explanation read the docs matching your
Conan client.

148 Chapter 10. Package apps and devtools

https://gcc.gnu.org/onlinedocs/gcc/Link-Options.html
https://www.kernel.org

Conan Documentation, Release 1.58.0

A Conan package for a tool is like any other package with an executable. Here it is a recipe for packaging the nasm
tool for building assembler:

import os
from conans import ConanFile, tools
from conans.errors import ConanInvalidConfiguration

class NasmConan(ConanFile):
name = "nasm"
version = "2.13.02"
license = "BSD-2-Clause"
url = "https://github.com/conan-io/conan-center-index"
settings = "os", "arch"
description="Nasm for windows. Useful as a build_require."

def validate(self):
if self.settings.os != "Windows":
raise ConanInvalidConfiguration('Only windows supported for nasm")

@property
def nasm_folder_name(self):
return "nasm-%s" % self.version

def build(self):

suffix = "win32" if self.settings.arch == "x86" else "win64"
nasm_zip_name = "%s-%s.zip" % (self.nasm_folder_name, suffix)
tools.download("http://www.nasm.us/pub/nasm/releasebuilds/"

"%s/%s/%s" % (self.version, suffix, nasm_zip_name), nasm_zip_name)

self.output.info("Downloading nasm:
"http://www.nasm.us/pub/nasm/releasebuilds"”
“/%s/%s/%s" % (self.version, suffix, nasm_zip_name))

tools.unzip(nasm_zip_name)

os.unlink(nasm_zip_name)

def package(self):
self.copy("*", src=self.nasm_folder_name, dst="bin", keep_path=True)
self.copy("'license*", dst="", src=self.nasm_folder_name, keep_path=False, ignore_
—.case=True)

def package_info(self):
self.env_info.PATH. append(os.path. join(self.package_folder, "bin"))

This recipe has nothing special: it doesn’t declare the compiler and build_type settings because it is downloading
already available binaries, and it is declaring the information for their consumers as usual in the package_info() method:

e The cpp_info is not declared, so it will take its default values: the bindirs will point to the bin folder where
the nasm. exe executable is packaged.

* In the env_info attribute, it is adding the bin folder to the PATH environment variable.

This two simple declarations are enough to reuse this tool in the scenarios we are detailing below.

10.2. Creating conan packages to install dev tools 149

Conan Documentation, Release 1.58.0

10.2.1 Using the tool packages in other recipes

Note: This section refers to the feature that is activated when using --profile:build and --profile:host in the
command-line.

These kind of tools are not usually part of the application graph itself, they are needed only to build the library, so you
should usually declare them as tool requirements, in the recipe itself or in a profile.

For example, there are many recipes that can take advantage of the nasm package we’ve seen above, like flac or libx264
that are already available in ConanCenter. Those recipes will take advantage of nasm being in the PATH to run some
assembly optimizations.

class LibX264Conan(ConanFile):
name = "libx264"

tool_requires = "nasm/2.13.02"

def build(self):
. # “nasm.exe” will be in the PATH here

def package_info(self):
self.cpp_info.libs = [...]

Build context nasm

build_requires

Host context libx264

The consumer recipe needs only to declare the corresponding build_require and Conan will take care of adding the
required paths to the corresponding environment variables:

[conan create path/to/1libx264 --profile:build=windows --profile:host=profile_host

Here we are telling Conan to create the package for the 1ibx264 for the host platform defined in the profile
profile_host file and to use the profile windows for all the tool requirements that are in the build context. In
other words: in this example we are running a Windows machine and we need a version of nasm compatible with this
machine, so we are providing a windows profile for the build context, and we are generating the library for the host
platform which is declared in the profile_host profile (read more about rool requires context).

Using two profiles forces Conan to make this distinction between recipes in the build context and those in the host
context. It has several advantages:

150 Chapter 10. Package apps and devtools

https://conan.io/center/flac?tab=recipe
https://conan.io/center/libx264?tab=recipe
https://conan.io/center/

Conan Documentation, Release 1.58.0

* Recipes for these tools are regular recipes, no need to adapt them (before 1.24 they require special settings and
some package ID customization).

* We provide a full profile for the build machine, so Conan is able to compile those tool requirements from sources
if they are not already available.

e Conan will add to the environment not only the path to the bin folder, but also it will populate the
DYLD_LIBRARY_PATH and LD_LIBRARY_PATH variables that are needed to find the shared libraries that tool
could need during runtime.

10.2.2 Using the tool packages in your system

A different scenario is when you want to use in your system the binaries generated by Conan, to achieve this objective
you can use the virtualrunenv generator to get your environment populated with the required variables.

For example: Working in Windows with the nasm package we’ve already defined:

1. Create a separate folder from your project, this folder will handle our global development environment.

$ mkdir my_cpp_environ
$ cd my_cpp_environ

2. Create a conanfile.txt file:

[requires]
nasm/2.13.02
You can add more tools here

[generators]
virtualrunenv

L

3. Install them. Here it doesn’t matter if you use only the host profile or the build one too because the environ-
ment that is going to be populated includes only the root of the graph and its dependencies, without any tool
requirement. In any case, the profile:host needed is the one corresponding to the Windows machine where
we are running these tests.

$ conan install . --profile:host=windows [--profile:build=windows]

4. Activate the virtual environment in your shell:

$ activate_run
(my_cpp_environ)$

5. Check that the tools are in the path:

(my_cpp_environ)$ nasm --version

> NASM version 2.13.02 compiled on Dec 18 2019

6. You can deactivate the virtual environment with the deactivate.bat script

[(my_cpp_environ)$ deactivate_run

10.2. Creating conan packages to install dev tools 151

Conan Documentation, Release 1.58.0

10.3 Tool requirements

Important: The tool requirement was formerly named “build requirement” and has been renamed to highlight that
the usage of this kind of requirement must be for “tools” exclusively, not being valid for libraries to express a “private”
require or other meanings.

There are some requirements that don’t feel natural to add to a package recipe. For example, imagine that you had a
cmake/3.4 package in Conan. Would you add it as a requirement to the z1ib package, so it will install cmake first in
order to build z1ib?

In short:

* There are requirements that are only needed when you need to build a package from sources, but if the binary
package already exists, you don’t want to install or retrieve them.

* These could be dev tools, compilers, build systems, code analyzers, testing libraries, etc.

* They can be very orthogonal to the creation of the package. It doesn’t matter whether you build zlib with CMake
3.4,3.5or 3.6. As long as the CMakeLists.txt is compatible, it will produce the same final package.

* You don’t want to add a lot of different versions (like those of CMake) to be able to use them to build the package.
You want to easily change the requirements, without needing to edit the zlib package recipe.

* Some of them might not even be taken into account when a package like zlib is created, such as cross-compiling
it to Android (in which the Android toolchain would be a tool requirement too).

Important: tool_requires are designed for packaging tools, utilities that only run at build-time, but are not part
of the final binary code. Anything that is linked into consumer packages like all type of libraries (header only, static,
shared) most likely are not tool_requires but regular requires. The only exception would be testing libraries and
frameworks, as long as the tests are not included in the final package.

To address these needs Conan implements tool_requires.

10.3.1 Declaring tool requirements
Tool requirements can be declared in profiles, like:

Listing 1: my_profile

[tool_requires]

t00l11/0. 1@user/channel

t00l12/0. 1@user/channel, tool3/0.1@user/channel
*: too0l4/0.1@user/channel

my_pkg*: tool5/0.1@user/channel

&: tool6/0.1@user/channel

&!: too0l7/0.1l@user/channel

Tool requirements are specified by a pattern:. If such pattern is not specified, it will be assumed to be *, i.e. to
apply to all packages. Packages can be declared in different lines or by a comma separated list. In this example, tooll,
to0l2, tool3 and tool4 will be used for all packages in the dependency graph (while running conan install or
conan create).

If a pattern like my_pkg* is specified, the declared tool requirements will only be applied to packages matching that
pattern: tool5 will not be applied to Zlib for example, but it will be applied to my_pkg_z1ib.

152 Chapter 10. Package apps and devtools

Conan Documentation, Release 1.58.0

The special case of a consumer conanfile (without name or version) it is impossible to match with a pattern, so it is
handled with the special character &:

* & means apply these tool requirements to the consumer conanfile
* &! means apply the tool requirements to all packages except the consumer one.

Remember that the consumer conanfile is the one inside the fest_package folder or the one referenced in the conan
install command.

Tool requirements can also be specified in a package recipe, with the tool_requires attribute and the
build_requirements () method:

class MyPkg(ConanFile):
tool_requires = "tool_a/0.2@user/testing", "tool_b/0.2@user/testing"

def build_requirements(self):
useful for example for conditional tool_requires
This means, if we are running on a Windows machine, require Toollin
if platform.system() == "Windows":
self.tool_requires("tool_win/0.1l@user/stable")

The above tool_a and tool_b will always be retrieved and used for building this recipe, while the tool_win one will
only be used only in Windows.

If any tool requirement defined inside build_requirements() has the same package name as the one defined in the
tool_requires attribute, the one inside the build_requirements () method will prevail.

As arule of thumb, downstream defined values always override upstream dependency values. If some tool requirement
is defined in the profile, it will overwrite the tool requirements defined in package recipes that have the same package
name.

10.3.2 Build and Host contexts

Note: This section refers to the feature that is activated when using --profile:build and --profile:host in the
command-line.

Conan v1.24 differentiates between the build context and the host context in the dependency graph (read more about
the meaning of host and build platforms in the cross building section) when the user supplies two profiles to the
command line using the --profile:build and --profile:host arguments:

* The host context is populated with the root package (the one specified in the conan install or conan create
command), all its requirements and the tool requirements forced to be in the host context.

* The build context contains the rest of tool requirements and all of them in the profiles. This category typically
includes all the dev rools like CMake, compilers, linkers,. ..

Tool requirements declared in the recipes can be forced to stay in the host context, this is needed for testing libraries
that will be linked to the generated library or other executable we want to deploy to the host platform, for example:

class MyPkg(ConanFile):
tool_requires = "nasm/2.14" # 'build' context (nasm.exe will be available)

def build_requirements(self):
self.tool_requires("protobuf/3.6.1") # 'build' context (protoc.exe will be_

(continues on next page)

10.3. Tool requirements 153

Conan Documentation, Release 1.58.0

(continued from previous page)
—available)
self.test_requires('gtest/0.1")

Note: The test_requires(), available from Conan 1.43, is equivalent to the previous self.build_requires(,

force_host_context=True) syntax. As the later is going to disappear in Conan 2.0, the former test_requires()
form is recommended.

Build context Host context
settings profile_build settings profile_host
settings_build profile_build settings_build profile_build
settings_target profile_host settings_target null
zlib
A
nasm protobuf gtest zlib
A A 4 A
build_requires requires
build_requires build_requires
my_pkg

Take into account that the same package (executable or library) can appear two times in the graph, in the host and in
the build context, with different package IDs. Conan will propagate the proper information to the consumers:

¢ Tool requirements in the host context will propagate like any other requirement:
— cpp_info: all information will be available in the deps_cpp_info["xxx"] object.
— env_info: won’t be propagated.
— user_info: will be available using the deps_user_info["xxx"] object.

* Tool requirements in the build context will propagate all the env_info and Conan will also populate the en-
vironment variables DYLD_LIBRARY_PATH, LD_LIBRARY_PATH and PATH with the corresponding information
from the cpp_info object. All this information will be available in the deps_env_info object.

Custom information declared in the user_info attribute will be available in the user_info_build["xxx"]
object in the consumer conanfile.

Important: If no --profile:build is provided, all tool requirements will belong to the one and only context and
they will share their dependencies with the libraries we are building. In this scenario all the tool requirements propagate
user_info, cpp_info and env_info to the consumer’s deps_user_info, deps_cpp_info and deps_env_info.

154 Chapter 10. Package apps and devtools

Conan Documentation, Release 1.58.0

10.3.3 Properties of tool requirements

The behavior of tool_requires is the same irrespective of whether they are defined in the profile or in the package
recipe.

They will only be retrieved and installed if there is some package that has to be built from sources and matches
the declared pattern. Otherwise, they will not even be checked for existence.

Options and environment variables declared in the profile as well as in the command line will affect the tool
requirements for packages. In that way, you can define, for example, for the cmake/3.16.3 package which
CMake version will be installed.

Tool requirements will be activated for matching packages, see the section above about ool requires context to
know the information that this package will propagate to its consumers.

Tool requirements can also be transitive. They can declare their own requirements, both normal requirements and
their own build requirements. Normal logic for dependency graph resolution applies, such as conflict resolution
and dependency overriding.

Each matching pattern will produce a different dependency graph of tool requirements. These graphs are cached
so that they are only computed once. If a tool requirement applies to different packages with the same configu-
ration it will only be installed once (same behavior as normal dependencies - once they are cached locally, there
is no need to retrieve or build them again).

Tool requirements do not affect the binary package ID. If using a different tool requirement produces a different
binary, you should consider adding an option or a setting to model that (if not already modeled).

Can also use version-ranges, like Tool/[>0.3]@user/channel.

Tool requirements are not listed in conan info nor are represented in the graph (with conan info --graph).

10.3.4 Example: testing framework and build tool

One example of a tool requirement is a testing framework implemented as a library, another good example is a build
tool used in the compile process. Let’s call them mytest_framework and cmake_turbo, and imagine we already
have a package available for both of them.

Tool requirements can be checked for existence (whether they’ve been applied) in the recipes, which can be useful for
conditional logic in the recipes. In this example, we could have one recipe with the following build () method:

def build_requirements(self):

def

if self.options.enable_testing:
self.tool_requires("mytest_framework/0.l@user/channel"”, force_host_context=True)

build(self):

Use our own 'cmake_turbo' if it is available

use_cmake_turbo = "cmake_turbo" in self.deps_env_info.deps
cmake_executable = "cmake_turbo" if use_cmake_turbo else None

cmake = CMake(self, cmake_program=cmake_executable)
cmake.configure(defs={"ENABLE_TESTING": self.options.enable_testing})
cmake.build ()
if enable_testing:

cmake.test()

And the package CMakeLists.txt:

10.3. Tool requirements 155

Conan Documentation, Release 1.58.0

project(PackageTest CXX)
cmake_minimum_required(VERSION 2.8.12)

include (${CMAKE_BINARY_DIR}/conanbuildinfo.cmake)
conan_basic_setup()
if(ENABLE_TESTING)
add_executable(example test.cpp)
target_link_libraries(example ${CONAN_LIBS})

enable_testing()
add_test (NAME example
WORKING_DIRECTORY ${CMAKE_BINARY_DIR}/bin
COMMAND example)
endif()

This package recipe won’t retrieve the cmake_turbo package for normal installation:

[$ conan install .

But if the following profile is defined:

Listing 2: use_cmake_turbo_profile

[tool_requires]
cmake_turbo/0. 1l@user/channel

then the install command will retrieve the cmake_turbo and use it:

[$ conan install . --profile=use_cmake_turbo_profile

]

Although the previous line would work it is preferred to use the feature from Conan v1.24 and provide two profiles

to the command line, that way the tool requirements in the build context won’t interfere with the host graph if they
share common requirements (see section about dev tools). It can also be needed if cross compiling (see section about

cross compiling).

[$ conan install . --profile:host=use_cmake_turbo_profile --profile:build=build_machine

10.3.5 Making tool_requires affect the consumers package-ID

that will not be fixed as this is not recommended production code.

Warning: This subsection should be considered a workaround, not a feature, and it might have other side effects,

As discussed above, the tool_requires do not affect at all the package ID. As they will not be present at all when the
package_id is computed, it cannot be part of it. It is possible that this might change in the future in Conan 2.0, but at
the moment it is not. In the meantime, there is a possible workaround that might be used if this is very needed: using

python_requires to point to the same tool_requires package. Something like:

from conan import ConanFile

class Pkg(ConanFile):

(continues on next page)

156 Chapter 10. Package apps and devtools

Conan Documentation, Release 1.58.0

(continued from previous page)

python_requires ="tool/[>=0.0]"
tool_requires ="tool/[>=0.0]"

By using this mechanism, tool dependency will always be used (the recipe will be fetched from servers), and the
version of tool will be used to compute the package_id following the default_python_requires_id_mode in
conan.conf, or the specific self.info.python_requires.xxxx_mode() in recipes.

10.3.6 Testing tool_requires

Important: This feature is still under development, while it is recommended and usable and we will try not to break
them in future releases, some breaking changes might still happen if necessary to prepare for the Conan 2.0 release.

Available since: 1.44.0

From Conan 1.44, it is possible to test tool_requires with the test_package functionality. In the test_package/
conanfile.py, specify the test_type = "explicit" and use the variable self.tested_reference_str in
build_requirements() method to explicitly require the reference as a tool_requires or test_requires:

from conan import ConanFile

class Pkg(ConanFile):
test_type = "explicit"

def build_requirements(self):
self.test_requires(self.tested_reference_str)

If for some reason, it is necessary to test the same package both as a regular require and a tool_require, then it is
possible to specify:

from conan import ConanFile

class Pkg(ConanFile):
test_type = "explicit"

def requirements(self):
self.requires(self.tested_reference_str)

def build_requirements(self):
self.test_requires(self.tested_reference_str)

10.3. Tool requirements 157

https://github.com/conan-io/conan/releases/tag/1.44.0

Conan Documentation, Release 1.58.0

158 Chapter 10. Package apps and devtools

CHAPTER
ELEVEN

VERSIONING

11.1 Introduction to versioning

11.1.1 Versioning approaches

Fixed versions

This is the standard, direct way to specify dependencies versions, with their exact version, for example in a conanfile.py
recipe:

[requires = "zlib/1.2.11"]

When doing a conan install, it will try to fetch from the remotes exactly that /.2.11 version.

This method is nicely explicit and deterministic, and is probably the most used one. As a possible disadvantage, it
requires the consumers to explicitly modify the recipes to use updated versions, which could be tedious or difficult to
scale for large projects with many dependencies, in which those dependencies are frequently modified, and it is desired
to move the whole project forward to those updated dependencies.

To mitigate that issue, especially while developing the packages, you can use fixed versions with package revisions (see
below) to resolve automatically the latest revision for a given fixed version.

Version ranges

A conanfile can specify a range of valid versions that could be consumed, using brackets:

[requires = "pkg/[>1.0 <1.8]@user/stable"]

When a conan install is executed, it will check in the local cache first and if not in the remotes what pkg versions
are available and will select the latest one that satisfies the defined range.

By default, it is less deterministic, one conan install can resolve to pkg/1.1 and then pkg/1.2 is published, and
anew conan install (by users, or CI), will automatically pick the newer 1.2 version, with different results. On the
other hand it doesn’t require changes to consumer recipes to upgrade to use new versions of dependencies.

It is also true that the semver definition that comes from other programming languages doesn’t fit that well to C and
C++ packages, because of different reasons, because of open source libraries that don’t closely follow the semver
specification, but also because of the ABI compatibility issues and compilation model that is so characteristic of C and
C++ binaries.

Read more about it in Version ranges section.

159

Conan Documentation, Release 1.58.0

Package alias

It is possible to define a “proxy” package that references another one, using the syntax:

from conans import ConanFile

class AliasConanfile(ConanFile):
alias = "pkg/0.l@user/testing"

This package creation can be automatically created with the conan alias command, that can for example create a pkg/
latest@user/testing alias that will be pointing to that pkg/0 . 1@user/testing. Consumers can define requires
= "pkg/latest@user/testing" and when the graph is evaluated, it will be directly replaced by the pkg/0.1 one.
That is, the pkg/latest package will not appear in the dependency graph at all.

This is also less deterministic, and puts the control on the package creator side, instead of the consumer (version ranges
are controlled by the consumer). Package creators can control which real versions will their consumers be using. This
is probably not the recommended way for normal dependencies versions management.

Note: From Conan 1.39, a new syntax for requiring alias packages has been introduced, to make explicit its usage and
solve several issues with alias:

from conan import ConanFile

class Pkg(ConanFile):
Previous syntax, implicit, nothing in the reference tells it is an alias
requires = '"pkg/latest@user/testing"
New experimental syntax, explicit:
requires = "pkg/(latest)@user/testing"

The new requires = "pkg/(latest)@user/testing" comes from https://github.com/conan-io/tribe/pull/25, and
is introduced in Conan 1.39 to allow getting feedback, stabilizing it, previously to make it the default in Conan 2.0 while
removing the previous one.

Package revisions

Revisions are automatic internal versions to both recipes and binary packages. When revisions are enabled, when a
recipe changes and it is used to create a package, a new recipe revision is generated, with the hash of the contents of
the recipe. The revisioned reference of the recipe is:

pkg/version@user/channel#recipe_revisionl
after the change of the recipe
pkg/version@user/channel#recipe_revision?2

A conanfile can reference a specific revision of its dependencies, but in the general case that they are not specified, it
will fetch the latest revision available in the remote server:

[requires]

Use the latest revision of pkgl
pkgl/version@user/channel

use the specific revision RREV1 of pkg2
pkg2/version@user/channel#RREV1

160 Chapter 11. Versioning

https://github.com/conan-io/tribe/pull/25

Conan Documentation, Release 1.58.0

Each binary package will also be revisioned. The good practice is to build each binary just once. But if for some reason,
like a change in the environment, a new build of exactly the same recipe with the same code (and the same recipe
revision) is fired again, a new package revision can be created. The package revision is the hash of the contents of the
package (headers, libraries. ..), so unless deterministic builds are achieved, new package revisions will be generated.

In general revisions are not intended to be defined explicitly in conanfiles, although they can for specific purposes like
debugging.

Read more about Package Revisions

11.1.2 Version and configuration conflicts

When two different branches of the same dependency graph require the same package, this is known as “diamonds” in
the graph. If the two branches of a diamond require the same package but different versions, this is known as a conflict
(a version conflict).

Lets say that we are building an executable in pkgd/1.0, that depends on pkgb/1.0 and pkgc/1.0, which contain static
libraries. In turn, pkgb/1.0 depends on pkga/1.0 and finally pkgc/1.0 depends on pkga/2.0, which is also another static
library.

The executable in pkgd/1.0, cannot link with 2 different versions of the same static library in pkge, and the dependency
resolution algorithm raises an error to let the user decide which one.

PkgA/1.0 PkgA/1.0
PkgA/1.0 g FEpy (static lib) | | (shared lib)
/7\) } } T
PkgB/1.0 PkgC/1.0 PkgB/1.0 PkgC/1.0 PkgB/1.0 PkgC/1.0
PkgD/1.0 PkgD/1.0 PkgD/1.0
“Diamond” in the dependency graph. Error: Version conflict. Error: Configuration conflict

The same situation happens if the different packages require different configurations of the same upstream package,
even if the same version is used. In the example above, both PkgB and PkgC can be requiring the same version
pkga/1.0, but one of them will try to use it as a static library and the other one will try to use it as shared library. The
dependency resolution algorithm will also raise an error.

11.1.3 Dependencies overriding

The downstream consumer packages always have higher priority, so the versions they request, will be overridden up-
stream as the dependency graph is built, re-defining the possible requires that the packages could have. For example,
pkgb/1.0 could define in its recipe a dependency to pkga/1.0. But if a downstream consumer defines a requirement to
pkga/2.0, then that version will be used in the upstream graph:

11.1. Introduction to versioning 161

Conan Documentation, Release 1.58.0

PkgA/1.0 PkgA/2.0

PkgB/1.0
requires = PkgA/1.0

PkgD/1.0
requires = PkgA/2.0

PkgD/1.0 defines a requirement to PkgA/2.0,
overriding PkB definition pointing to PkgA/1.0

This is what enables the users to have control. Even when a package recipe upstream defines an older version, the
downstream consumers can force to use an updated version. Note that this is not a diamond structure in the graph,
so it is not a conflict by default. This behavior can be also restricted defining the CONAN_ERROR_ON_OVERRIDE
environment variable to raise an error when these overrides happen, and then the user can go and explicitly modify the
upstream pkgb/1.0 recipe to match the version of PkgA and avoid the override.

In some scenarios, the downstream consumer pkgd/1.0 might not want to force a dependency on pkga. There are
several possibilities, for example that PkgA is a conditional requirement that only happens in some operating systems.
If pkgd defines a normal requirement to pkga, then, it will be introducing that edge in the graph, forcing pkga to be
used always, in all operating systems. For this purpose the override qualifier can be defined in requirement, see
requirements().

162 Chapter 11. Versioning

Conan Documentation, Release 1.58.0

11.1.4 Versioning and binary compatibility
It is important to note and this point that versioning approaches and strategies should also be consistent with the binary
management.

By default, Conan assumes semver compatibility, so it will not require to build a new binary for a package when its
dependencies change their minor or patch versions. This might not be enough for C or C++ libraries which version-
ing scheme doesn’t strictly follow semver. It is strongly suggested to read more about this in Defining Package ABI
Compatibility

11.2 Version ranges

Version range expressions are supported, both in conanfile.txt and in conanfile.py requirements.

The syntax uses brackets. The square brackets are the way to inform Conan that is a version range. Otherwise, versions
are plain strings. They can be whatever you want them to be (up to limitations of length and allowed characters).

class HelloConan(ConanFile):
requires = "pkg/[>1.0 <1.8]@user/stable"

So when specifying pkg/[expression]@user/stable, it means that expression will be evaluated as a version
range. Otherwise, it will be understood as plain text, so requires = "pkg/version@user/stable" always means
to use the version version literally.

There are some packages that do not follow semver. A popular one would be the OpenSSL package with versions as
1.0.2n. They cannot be used with version-ranges. To require such packages you always have to use explicit versions
(without brackets).

The process to manage plain versions vs version-ranges is also different. The second one requires a “search” in the
remote, which is orders of magnitude slower than direct retrieval of the reference (plain versions). Take it into account
if you plan to use it for very large projects.

Expressions are those defined and implemented by https://pypi.org/project/node-semver/. Accepted expressions would
be:

[>1.1 <2.1] # In such range

[2.8] # equivalent to =2.8

[~3.1.5] # compatible (patch version), according to semver (see https:/
—/jubianchi.github.io/semver-check/#/~3.1.5/3.2)

[~3.1.5] # compatible (minor version), according to semver (see https:/
—/jubianchi.github.io/semver-check/#/43.1.5/3.2)

[>1.1 || 0.8] # conditions can be OR'ed

[1.2.7 || >=1.2.9 <2.0.0] # This range would match the versions 1.2.7, 1.2.9, and 1.4.6,
< but not the versions 1.2.8 or 2.0.0.

There are two options for the version range:

* loose=True|False (default True): When using loose=False only valid Semantic Versioning strings are
accepted.

e include_prerelease=True|False (default False): If set to include_prerelease=True, Conan will in-
clude prerelease versions in the search range. Take into account that prerelease versions have lower precedence
than the associated normal one (e.g.: 1.0.0 > 1.0.0-beta).

11.2. Version ranges 163

https://pypi.org/project/node-semver/

Conan Documentation, Release 1.58.0

[>1.1 <2.1, include_prerelease=True] # Would e.g. accept "2.0.0-pre.1" as.
—match
[~1.2.3, loose=False] # Would only accept correct Semantic.

—Versioning strings.

E.g. version "1.2.3.4" would not be.
—,accepted.
[~1.2.3, loose=False, include_prerelease=True] # Both options can be used for the same.
—,version range.

Version range expressions are evaluated at the time of building the dependency graph, from downstream to upstream
dependencies. No joint-compatibility of the full graph is computed. Instead, version ranges are evaluated when depen-
dencies are first retrieved.

This means, that if a package A depends on another package B (A->B), and A has a requirement for C/[>1.2 <1.8],
this requirement is evaluated first and it can lead to get the version C/1.7. If package B has the requirement to C/[>1.
3 <1.6], this one will be overwritten by the downstream one, it will output a version incompatibility error. But the
“joint” compatibility of the graph will not be obtained. Downstream packages or consumer projects can impose their
own requirements to comply with upstream constraints. In this case a override dependency to C/[>1.3 <1.6] canbe
easily defined in the downstream package or project.

The order of search for matching versions is as follows:

* First, the local conan storage is searched for matching versions, unless the --update flag is provided to conan
install.

* If a matching version is found, it is used in the dependency graph as a solution.

* If no matching version is locally found, it starts to search in the remotes, in order. If some remote is specified
with -r=remote, then only that remote will be used.

« If the -—update parameter is used, then the existing packages in the local conan cache will not be used, and the
same search of the previous steps is carried out in the remotes. If new matching versions are found, they will be
retrieved, so subsequent calls to install will find them locally and use them.

Note: Version ranges are not used in generating package_id those are always determined by the resolved graph.

11.3 Package Revisions

The goal of the revisions feature is to achieve package immutability, the packages in a server are never overwritten.

Note: Revisions achieve immutability. For achieving reproducible builds and reproducible dependencies, lockfiles
are used. Lockfiles can capture an exact state of a dependency graph, down to exact versions and revisions, and use it
later to force their usage, even if new versions or revisions were uploaded to the servers.

Learn more about lockfiles here.

164 Chapter 11. Versioning

Conan Documentation, Release 1.58.0

11.3.1 How it works

In the client

* When a recipe is exported, Conan calculates a unique ID (revision). For every change, a new recipe revision
(RREV) will be calculated. By default it will use the checksum hash of the recipe manifest.

Nevertheless, the recipe creator can explicitly declare the revision mode, it can be either scm (uses version control
system or raises) or hash (use manifest hash).

* When a package is created (by running conan create or conan export-pkg) a new package revision (PREV) will
be calculated always using the hash of the package contents. The packages and their revisions (PREVs) belongs
to a concrete recipe revision (RREV). The same package ID (for example for Linux/GCC5/Debug), can have
multiple revisions (PREVs) that belong to a concrete RREV.

If a client requests a reference like 1ib/1.0@conan/stable, Conan will automatically retrieve the latest revision in
case the local cache doesn’t contain any revisions already. If a client needs to update an existing revision, they have
to ask for updates explicitly with -u, --update argument to conan install command. In the client cache there is
only one revision installed simultaneously.

The revisions can be pinned when you write a reference (in the recipe requires, a reference in a conan install
command,...) but if you don’t specify a revision, the server will retrieve the latest revision.

If you specify a pinned revision in your references, and that revision is not the one present in the Co-
nan cache, and --update is not provided, it will fail with an error. This behavior can be change with
core:allow_explicit_revision_update=True [conf] configuration. It can result in later errors (that won’t be
possible to fix, use it at your own risk), for example as the cache can only host 1 revision, it might happen that multiple
pinned references are competing for it, and kicking each others revisions out of the cache while the dependency graph
is computed.

You can specify the references in the following formats:

Reference Meaning

lib/1.0@conan/stable Latest RREV for 1ib/1.0@conan/stable
lib/1.0@conan/stable#RREV Specific RREV for 1ib/1.0@conan/stable
lib/1.0@conan/stable#RREV:PACKAGE_ID A binary package belonging to the specific RREV
lib/1.0@conan/ A binary package revision PREV belonging to the specific
stable#RREV:PACKAGE_ID#PREV RREV

In the server

By using a new folder layout and protocol it is able to store multiple revisions, both for recipes and binary packages.

11.3.2 How to activate the revisions

You have to explicitly activate the feature by either:
* Adding revisions_enabled=1 in the [general] section of your conan.conf file (preferred)
¢ Setting the CONAN_REVISIONS_ENABLED=1 environment variable.

Take into account that it changes the default Conan behavior. e.g:

* A client with revisions enabled will only find binary packages that belong to the installed recipe revision. For
example, If you create a recipe and run conan create . user/channel and then you modify the recipe and
export it (conan export . user/channel), the binary package generated in the conan create command
doesn’t belong to the new exported recipe. So it won’t be located unless the previous recipe is recovered.

11.3. Package Revisions 165

Conan Documentation, Release 1.58.0

* If you generate and upload N binary packages for a recipe with a given revision, then if you modify the recipe,
and thus the recipe revision, you need to build and upload N new binaries matching that new recipe revision.

11.3.3 GIT and Line Endings on Windows

Warning: Problem

Git will (by default) checkout files in Windows systems using CRLF line endings, effectively producing different
files. As files are different, the Conan revisions will be different from the revisions computed in other platforms
such as Linux, resulting in missing the respective binaries in the other revision.

Solution

It is necessary to instruct Git to do the checkout with the same line endings. This can be done several ways, for example,
by adding a .gitattributes file:

[auto]
crlf = false

11.3.4 Server support

e conan_server >=1.13.
e Artifactory >=6.9.

¢ ConanCenter.

11.4 Lockfiles

Warning: This is an experimental feature subject to breaking changes in future releases.

Lockfiles are files that store the information of a dependency graph, including the exact versions, revisions, options,
and configuration of that dependency graph. These files allow for later achieving reproducible results, and installing
or using the exact same dependencies even when the requirements are not fully reproducible, for example when using
version ranges or using package revisions.

11.4.1 Introduction

Warning: This is an experimental feature subject to breaking changes in future releases.

Let’s introduce lockfiles by example, with 2 packages, package pkgb that depends on package pkga.

Note: The code used in this section, including a build.py script to reproduce it, is in the examples repository:
https://github.com/conan-io/examples. You can go step by step reproducing this example while reading the below
documentation.

166 Chapter 11. Versioning

https://github.com/conan-io/examples

Conan Documentation, Release 1.58.0

$ git clone https://github.com/conan-io/examples.git
$ cd features/lockfiles/intro
$ python build.py only to run the full example, but better go step by step

Locking dependencies

This example uses full_version_mode, that is, if a package changes any part of its version, its consumers will need
to build a new binary because a new package_id will be computed. This example will use version ranges, and it is
not necessary to have revisions enabled. It also does not require a server, everything can be reproduced locally.

[$ conan config set general.default_package_id_mode=full_version_mode]

Let’s start by creating from the recipe and source in the pkga folder, a first pkg/0. 1@user/testing package in our
local cache:

[$ conan create pkga pkga/0.l@user/testing }

Now we want to start developing and testing the code for pkgb, but we want to create a “snapshot” of the dependency
graph, to isolate our development from possible changes (note that the recipe in pkgb/conanfile.py contains a require
like requires = "pkga/[>0.0]@user/testing").

$ cd pkgb
$ conan lock create conanfile.py --user=user --channel=testing --lockfile-out=locks/pkgb_
—deps.lock

This will create a pkgb_deps.lock file in the locks folder. Note that we have passed the user and channel of the future
package that we will create as --user=user --channel=testing.

Let’s have a look at the lockfile:

{
"graph_lock": {
"nodes": {
"o {
"ref": "pkgb/0.l@Quser/testing",
"options": "shared=False",
"requires": ["1"],
"path": "..\\conanfile.py",
"context": "host"
B
"
"ref": "pkga/0.l@user/testing",
"options": "",
"package_id": "4024617540c4f240a6a5e8911b0de9ef38allaz2",
"prev": "0",
"context": "host"
}
Fo
"revisions_enabled": false
1,
"version": "0.4",

"profile_host": "[settings]\narch=x86_64\narch_build=x86_64\nbuild_type=Release\

(continues on next page)

11.4. Lockfiles 167

Conan Documentation, Release 1.58.0

(continued from previous page)
—ncompiler=Visual Studio\ncompiler.runtime=MD\ncompiler.version=15\nos=Windows\nos_
—build=Windows\n[options]\n[tool_requires]\n[env]\n"

}

We can see the pkga/0. l@user/testing dependency in the lockfile, together with its package_id. This depen-
dency is fully locked. The pkgb/®. 1@user/testing doesn’t have a package_id yet, because so far it is just a local
conanfile.py as a consumer, not a package. But the user/testing user and channel are already defined.

It is important to note that the pkgb_deps.lock lockfile contains the current profile for the current configuration.

At this moment we have captured the dependency graph for pkgb. Now, it would be possible that a new version of
pkga is created:

$ cd ..
The recipe generates different package code depending on the version, automatically
$ conan create pkga pkga/0.2@user/testing

If now we install and build our code in pkgb we would get:

$ mkdir pkgb/build

$ cd pkgb/build

$ conan install ..

> . pkga/0.2@user/testing from local cache - Cache
Example for VS, use your compiler here

$ cmake ../src -G "Visual Studio 15 Win64"
$ cmake --build . --config Release

$./bin/greet

HelloA 0.2 Release

HelloB Release!

Greetings Release!

But as explained above, the purpose of the lockfile is to capture the dependencies and use them later. Let’s pass the
lockfile as an argument to guarantee the usage of the locked pkga/0.1l@user/testing dependency:

$ conan install .. --lockfile=../locks/pkgb_deps.lock
> ... pkga/0.l@user/testing from local cache - Cache
$ cmake ../src -G "Visual Studio 15 Win64"

$ cmake --build . --config Release

$./bin/greet
HelloA 0.1 Release
HelloB Release!
Greetings Release!

That’s it. We managed to depend on pkga/0.1l@user/testing instead of the pkga/®.2@user/testing although
the later satisfies the version range and is available in the cache. Using the same dependency was possible because we
used the information stored in the lockfile.

168 Chapter 11. Versioning

Conan Documentation, Release 1.58.0

Immutability

A core concept of lockfiles is their immutability and the integrity of its data:

Important: The information stored in a lockfile cannot be changed. Any attempt to modify locked data will result in
an error.

For example, if now we try to do a conan install that also builds pkga from source:

$ conan install .. --lockfile=../locks/pkgb_deps.lock --build=pkga
ERROR: Cannot build 'pkga/0.l@user/testing' because it is already locked in the input.
—lockfile

It is an error, because the pkga/0. 1@user/testing dependency was fully locked. When the lockfile was created, the
pkga/0. 1l@user/testing was found, including a binary, and that information was stored. Every time this lockfile is
used, it assumes this package and binary exist and it will try to get them, but it will never allow to re-build, because
that can violate the integrity of the lockfile. For example, if we were using package_revision_mode, a new binary
of pkga would produce new package-ids of all its consumers, that will not match the package-ids stored in the lockfile.

It is possible though to control what is being locked with the --build argument provided to the conan lock create
command.

The same principle applies if we try to create a package for pkgb and it tries to alter the user and channel user/testing
that were provided at the time of the conan lock create command used above.

$ cd ..
$ conan create . user/stable --lockfile=locks/pkgb_deps.locked
ERROR: Attempt to modify locked pkgb/0®.l@user/testing to pkgb/0.1l@user/stable

Again, it is important to keep the integrity. Package recipes can have conditional or parameterized dependencies, based
on user and channel for example. If we try to create the pkgb package with different user and channel, it could result in
a different dependency graph, totally incompatible with the one captured in the lockfile. If pkgb/0. 1l@user/testing
was stored in the lockfile, any command using this lockfile must respect and keep it without changes.

Note: A package in alockfile is fully locked if it contains a prev (package revision) field defined. Fully locked packages
cannot be built from sources. Partially locked packages do not contain a prev defined. They lock the reference and the
package-id, and they can be built from sources.

Reproducibility

That doesn’t mean that a lockfile cannot evolve at all. Using the --lockfile argument, we are able to create pkgb/0.
l@user/testing guaranteeing it is being created depending on pkga/0.1@user/testing. Additionally, if we use
the --lockfile-out argument, we can obtain an updated version of the lockfile:

$ conan create . user/testing --lockfile=locks/pkgb_deps.lock --lockfile-out=locks/pkgb.
—lock

And if we inspect the new locks/pkgb.lock file:

{

o

(continues on next page)

11.4. Lockfiles 169

Conan Documentation, Release 1.58.0

(continued from previous page)

"ref": "pkgb/0.l@user/testing",

"options": "shared=False",
"package_id": "2418b211603cafa3858d9dd1fc1108d54a4cab99",
llprevll: Il@ll’

"modified": true,
"requires": ["1"],
"context": "host"

}

Note that some fields of the lockfile are now completed, as the modified flag, that indicates that pkgb was built in the
conan create command. That information can be useful in the CI environment to know which packages were built by
different jobs. Those modified flags can be reset using the conan lock clean-modified. Also, it can be appreciated
in locks/pkgb.lock that now pkgb/0.1l@user/testing is fully locked, as a package (not a local conanfile.py), and
contains a package_id. So if we try to use this new file for creating the package again, it will error, as a package that
is fully locked cannot be rebuilt:

$ conan create . user/testing --lockfile=locks/pkgb.lock
ERROR: Attempt to modify locked pkgb/0.l@user/testing to pkgb/0.l@user/testing

But we can reproduce the same set of dependencies and the creation of pkgb, using the pkgb_deps.lock lockfile:

[$ conan create . user/testing --lockfile=locks/pkgb_deps.lock # OK J

The pkgb.lock can be used later in time to install the pkgb application (the pkgb conanfile.py contains a deploy ()
method for convenience for this example), and get the same package and dependencies:

$ cd ..

$ mkdir consume

$ cd consume

$ conan install pkgb/0.l@user/testing --lockfile=../pkgb/locks/pkgb.lock
$./bin/greet

HelloA 0.1 Release

HelloB Release!

Greetings Release!

As long as we have the pkgb.lock lockfile, we will be able to robustly reproduce this install, even if the packages were
uploaded to a server, if there are new versions that satisfy the version ranges, etc.

Important: All the examples and documentation of this section is done with version ranges and revisions disabled.
Lockfiles also work and can lock both recipe and package revisions, with the same behavior as version-ranges. All is
necessary is to enable revisions. The only current limitation is that the local cache cannot store more than one revision
at a time, but that is a limitation of the cache and unrelated to lockfiles.

170 Chapter 11. Versioning

Conan Documentation, Release 1.58.0

11.4.2 Multiple configurations

Warning: This is an experimental feature subject to breaking changes in future releases.

In the previous section we managed just 1 configuration, for the default profile. In many applications, packages need
to be built with several different configurations, typically managed by different profile files.

Note: This section continues with the previous example with the Introduction. The code used in this section, including
a build.py script to reproduce it, is in the examples repository: https://github.com/conan-io/examples. You can go step
by step reproducing this example while reading the below documentation.

$ git clone https://github.com/conan-io/examples.git
$ cd features/lockfiles/intro
$ python build.py only to run the full example, but better go step by step

Lets start in the features/lockfiles/intro of the examples repository, remove the previous packages, and create both
release and debug pkga packages:

$ conan remove "pkg*" -f
$ conan create pkga pkga/0.l@user/testing
$ conan create pkga pkga/0.l@user/testing -s build_type=Debug

Now, we could (don’t do it) create 2 different lockfiles, one for each configuration:

DO NOT type these commands, we'll do it better below

$ cd pkgb

$ conan lock create conanfile.py --user=user --channel=testing --lockfile-out=locks/pkgb_
—release.lock

$ conan lock create conanfile.py --user=user --channel=testing --lockfile-out=locks/pkgb_
—debug.lock -s build_type=Debug

Important: The dependency graph is different for each different configuration/profile. Not only the package-ids, but
also because of conditional requirements, the dependencies can be different. Then, it is necessary to create a lockfile
for every different configuration/profile.

But, what if a new pkga/0.2@user/testing version was created in the time between both commands? Although this
is unlikely to happen in this example, because everything is local. However, it could happen that pkga was in a server
and the CI uploads a new pkga/0.2@user/testing version while we are running the above commands.

Base lockfiles

Conan proposes a “base” lockfile, with the --base argument, that will capture only the versions and topology of the
graph, but not the package-ids:

$ cd pkgb
$ conan lock create conanfile.py --user=user --channel=testing --lockfile-out=1locks/pkgb_
—base.lock --base

Let’s inspect the locks/pkgb_base.lock lockfile:

11.4. Lockfiles 171

https://github.com/conan-io/examples

Conan Documentation, Release 1.58.0

{
"graph_lock": {
"nodes": {
"o": {
"ref": "pkgb/0.l@Quser/testing",
"requires": ["1"],
"path": "..\\conanfile.py",
"context": "host"
Fg
" g
"ref": "pkga/0.l@Quser/testing",
"context": "host"
}
Bo
"revisions_enabled": false
Fo
"version": "0.4"
}

This lockfile is different to the ones in the previous section. It does not store the profile, and it does not capture the
package-ids or the options of the nodes. It captures the topology of the graph, and the package references and versions.

At this point, the new pkga/0.2@user/testing version packages could be created:

$ cd ..

The recipe generates different package code depending on the version, automatically
$ conan create pkga pkga/®.2@user/testing

$ conan create pkga pkga/0.2@user/testing -s build_type=Debug

Using the “base” locks/pkgb_base.lock lockfile, now we can obtain a new lockfile for both debug and release configu-
rations, and it is guaranteed that both will use the pkga/0. 1@Quser/testing dependency, and not the new one:

$ cd pkgb

$ conan lock create conanfile.py --user=user --channel=testing --lockfile=locks/pkgb_
—base.lock --lockfile-out=1ocks/pkgb_deps_debug.lock -s build_type=Debug

$ conan lock create conanfile.py --user=user --channel=testing --lockfile=locks/pkgb_
—.base.lock --lockfile-out=locks/pkgb_deps_release.lock

Now, we will have 2 lockfiles, locks/pkgb_deps_debug.lock and locks/pkgb_deps_release.lock. Each one will lock
different profiles and different package-id of pkga/0.1l@user/testing.

Note: In Conan 1.X, if you are generating lockfiles with separate build and host profiles, your base lockfiles must also
use separate build and host profiles. For example, here we are generating a base lockfile that will be used to generate
lockfiles for a Linux and Windows build:

The build and host profiles you choose for the base lockfile should

include all dependencies needed by all lockfiles you will generate

from the base lockfile.

$ conan lock create conanfile.py -pr:b release -pr:h debug --lockfile-out=base.lock --
—base

Use the base lockfile to generate lockfiles for a Linux and Windows
build.

(continues on next page)

172 Chapter 11. Versioning

Conan Documentation, Release 1.58.0

(continued from previous page)

$ conan lock create conanfile.py -pr:b linux-rel -pr:h linux-dbg --lockfile=base.lock --
—.lockfile-out=1inux.lock

$ conan lock create conanfile.py -pr:b windows-rel -pr:h windows-dbg --lockfile=base.
—lock --lockfile-out=windows.lock

For more information, please see GitHub issue #9446.

Locked configuration

The lockfiles store the effective configuration, settings, options, resulting from the used profiles and command line
arguments. That configuration arguments can be passed to the conan lock create command, but not when using
lockfiles. For example:

$ mkdir build && cd build
$ conan install .. --lockfile=../locks/pkgb_deps_debug.lock -s build_type=Debug
ERROR: Cannot use profile, settings, options or env 'host' when using lockfile

results in an error, because the locks/pkgb_deps_debug.lock already stores the settings.build_type and passing it
in the command line could only result in inconsistencies and errors.

Important: Lockfiles store the full effective profile configuration. It is not possible to pass configuration, settings,
options or profile arguments when using lockfiles (only when creating the lockfiles)

With the two captured lockfiles, now we can locally build and run our pkgb application for both configurations, guar-
anteeing the dependency to pkga/0.1l@user/testing:

$ conan install .. --lockfile=../locks/pkgb_deps_release.lock
$ cmake ../src -G "Visual Studio 15 Win64"
$ cmake --build . --config Release

$./bin/greet

HelloA 0.1 Release

HelloB Release!

Greetings Release!

$ conan install .. --lockfile=../locks/pkgb_deps_debug.lock
$ cmake --build . --config Debug

$./bin/greet

HelloA 0.1 Debug

HelloB Debug!

Greetings Debug!

We can create pkgb package again for both configurations:

$ cd ..

$ conan create . user/testing --lockfile=locks/pkgb_deps_release.lock --lockfile-
—out=locks/pkgb_release.lock

$ conan create . user/testing --lockfile=locks/pkgb_deps_debug.lock --lockfile-out=locks/
—pkgb_debug. lock

And we could still use the lockfiles later in time to install the pkgb package with the same dependencies and configu-
ration that were used to create that package:

11.4. Lockfiles 173

https://github.com/conan-io/conan/issues/9446#issuecomment-904846681

Conan Documentation, Release 1.58.0

cd ..

mkdir consume

cd consume

$ conan install pkgb/0.1l@user/testing --lockfile=../pkgb/locks/pkgb_release.lock
$./bin/greet

HelloA 0.1 Release

HelloB Release!

Greetings Release!

$ conan install pkgb/0.1l@user/testing --lockfile=../pkgb/locks/pkgb_debug.lock
$./bin/greet

HelloA 0.1 Debug

HelloB Debug!

Greetings Debug!

©a o A

As you can see, the immutability principle remains. If we try to use pkgb_release.lock to create the pkgb package again
instead of the pkgb_deps_release.lock lockfile, it will error, as pkgb would be already fully locked in the former.

11.4.3 Evolving lockfiles

Warning: This is an experimental feature subject to breaking changes in future releases.

As described before, lockfiles are immutable, they cannot change the information they contain. If some install or create
command tries to change some data in a lockfile, it will error. This doesn’t mean that operations on lockfiles cannot be
done, as it is possible to create a new lockfile from an existing one. We have already done this, obtaining a full lockfile
for a specific configuration from an initial “base” lockfile.

There are several scenarios you might want to create a new lockfile from an existing one.
Deriving a partial lockfile

Lets say that we have an application app/1. 0 that depends on 1ibc/1. 0 that depends on 1ibb/1. 0 that finally depends
on liba/1.0. We could capture a “base” lockfile from it, and then several full lockfiles, one per configuration:

$ conan lock create --reference=app/1.0@ --base --lockfile-out=app_base.lock

$ conan lock create --reference=app/1.0@ --lockfile=app_base.lock -s build_type=Release -
—.-lockfile-out=app_release.lock

$ conan lock create --reference=app/1.0@ --lockfile=app_base.lock -s build_type=Debug --
—lockfile-out=app_debug.lock

Now a developer wants to start testing some changes in 1ibb, using the same dependencies versions defined in the
lockfile. As 1ibb is locked, it will not be possible to create a new version 1ibb/1.1 or build a new binary for it with
the existing lockfiles. But we can create a new lockfile for it in different ways. For example, we could derive directly
from the app_release.lock and app_debug.lock lockfiles:

$ git clone <libb-repo> && cd libb

$ conan lock create conanfile.py --lockfile=app_release.lock --lockfile-out=1ibb_deps_
—release.lock

$ conan lock create conanfile.py --lockfile=app_debug.lock --lockfile-out=1libb_deps_
—.debug.lock

174 Chapter 11. Versioning

Conan Documentation, Release 1.58.0

This will create partial lockfiles, only for 1ibb dependencies, i.e. locking 1iba/1.®, that can be used while installing,
building and testing 1ibb.

But it is also possible to derive a new “base” profile from app_base.lock only for libb dependencies, and then compute
from it the configuration specific profiles.

These partial lockfiles will be smaller than the original app lockfiles, not containing information at all about app and
libc.

Unlocking packages with —build

It is also possible to derive a partial lockfile for 1ibb/1.0 without cloning the 1ibb repository, directly with:

$ conan lock create --reference=1ibb/1.0 --lockfile=app_release.lock --lockfile-out=1ibb_
—release.lock

$ conan lock create --reference=1ibb/1.0 --lockfile=app_debug.lock --lockfile-out=1ibb_
—debug.lock

These new lockfiles could be used to install the 1ibb/1.0 package, without building it, but if we tried to build it from
sources, it will fail:

$ conan install 1ibb/1.0@ --lockfile=1ibb_release.lock # lWorks
$ conan install 1ibb/1.0@ --build=1ibb --lockfile=1ibb_release.lock # Fails, libb is.
—locked

The second scenario fails. This is because when the app_release.lock lockfile was captured, it completely locked all
the information (including 1ibb/1.0’s package revision). If we try to build a new binary, the lock protection will raise.
If we want to “unlock” the binary package revision, we need to tell the lockfile when we are capturing such lockfile,
that we plan to build it, with the --build argument:

Note the --build=1ibb argument

$ conan lock create --reference=1ibb/1.0 --build=1ibb --lockfile=app_release.lock --
—lockfile-out=1ibb_release.lock

This will work, building a new binary

$ conan install 1libb/1.0@ --build=libb --lockfile=1ibb_release.lock --lockfile-out=1ibb_
—.release2.lock

As usual, if you are building a new binary, it is desired to provide a --lockfile-out=1ibb_release2.lock to
capture such a new binary package revision in the new lockfile.

Integrating a partial lockfile

This would be the opposite flow. Lets take the previous libb_deps_release.lock and libb_deps_debug.lock lockfiles and
create new 1ibb/1.1 packages with it, and obtaining new lockfiles:

in the 1ibb source folder
$ conan create . --lockfile=libb_deps_release.lock --lockfile-out=1libb_release.lock
$ conan create . --lockfile=libb_deps_debug.lock --lockfile-out=1ibb_debug.lock

These lockfiles will be containing locked information to 1iba/1.0 and a new 1ibb/1.1 version. Now we would like
to check if app/1.0 will pick this new version, and in case it is used, we would like to rebuild whatever is necessary
(that is part of the next CI section).

11.4. Lockfiles 175

Conan Documentation, Release 1.58.0

Important: Itisnot possible to pick the old app_base.lock, app_release.lock or app_debug.lock lockfiles and inject the
new libb/1.1 version, as this would be violating the integrity of the lockfile. Nothing guarantees that the downstream
packages will effectively use the new version, as it might fall outside the valid range defined in 1ibc/1.0, for example.
Also, downstream consumers app/1.0 and 1ibc/1.0 could result in different package-ids as a result of having a new
dependency, and this goes against the immutability of the lockfile data, as the package-ids for them would be already
locked.

Let’s create new lockfiles that will use the existing 1ibb_debug.lock and 1ibb_release.lock information if pos-
sible:

$ conan lock create --reference=app/1.0@ --lockfile=1libb_release.lock --lockfile-out=app_
—release.lock

$ conan lock create --reference=app/1.0@ --lockfile=1ibb_debug.lock --lockfile-out=app_
—.debug.lock

This will create new app_release.lock and app_debug.lock that will have both 1ibb/1.1 and 1iba/1.0 locked. If
for some reason, 1libc/1.0 had fixed a requires = "libb/1.0", then the resulting lockfile would resolve and lock
libb/1.0 instead. The build-order command (see next section) will tell us that there is nothing to build, as it is
effectively computing the same lockfile that existed before. It is also possible, and a CI pipeline could do it, to directly
check that 1ibb/1.1 is defined inside the new lockfiles. If it is not there, it means that it didn’t integrate, and nothing
needs to be done downstream.

11.4.4 Build order in lockfiles

Warning: This is an experimental feature subject to breaking changes in future releases.

In this section we are going to use the following packages, defining this dependency graph.

liba/0O.1
libb/O.1 libc/O.1
libd/O.1 app2/0.1

:

appl/0.1

Note: The code used in this section, including a build.py script to reproduce it, is in the examples repository:
https://github.com/conan-io/examples. You can go step by step reproducing this example while reading the below
documentation.

$ git clone https://github.com/conan-io/examples.git
$ cd features/lockfiles/build_order
$ python build.py only to run the full example, but better go step by step

176 Chapter 11. Versioning

https://github.com/conan-io/examples

Conan Documentation, Release 1.58.0

The example in this section uses full_version_mode, that is, if a package changes any part of its version, its con-
sumers will need to build a new binary because a new package_id will be computed. This example will use version
ranges, and it is not necessary to have revisions enabled. It also does not require a server, everything can be reproduced
locally.

[$ conan config set general.default_package_id_mode=full_version_mode J

Let’s start by creating the initial dependency graph, without binaries (just the exported recipes), in our local cache:

conan export liba liba/®.1@user/testing
conan export libb 1libb/®.l@user/testing
conan export libc libc/0.1@user/testing
conan export libd 1libd/®.1@user/testing
conan export appl appl/®.l@user/testing
conan export app2 app2/0.lGuser/testing

A A A B A

Now we will create a lockfile that captures the dependency graph for app1/0. 1@user/testing. In the same way we
created lockfiles for a local conanfile.py in a user folder, we can also create a lockfile for a recipe in the Conan cache,
with the --reference argument:

[$ conan lock create --reference=appl/0.l@user/testing --lockfile-out=appl.lock J

The resulting app!.lock lockfile will not be able to completely lock the binaries because such binaries do not exist at
all. This can be checked in the app1.lock file, the packages do not contain a package revision (prev) field at all:

{
ll4ll: {
"ref": "liba/®.l@user/testing",
lloptionsll : mn ,
"package_id": "5ab84d6acfelf23c4fae®ab88f26e3a396351ac9",
"context": "host"
}
}

We can now compute the “build-order” of the dependency graph. The “build-order” lists in order all the packages that
needs to be built from sources. The logic is the following:

* If a package is fully locked (it contains a package revision field prev in the lockfile), it will not be built from
sources and will never appear in the build-order list.

« If a package is not fully locked (it does not contain a package revision prev in the lockfile), it will appear in the
build-order list. This situation happens both when the package binary doesn’t exist yet, or when the --build
argument was used while creating the lockfile.

[$ conan lock build-order appl.lock --json=build_order.json]

The resulting build_order.json file is a list of lists, structured by levels of possible parallel builds:

[
First level liba
[["liba/0.1l@user/testing", "5ab8...1lac9", "host", "4"]],
Second level libb and libc

(continues on next page)

11.4. Lockfiles 177

Conan Documentation, Release 1.58.0

(continued from previous page)

[["1ibb/0.1@user/testing", "cfdl...ec23", "host", "3"],
["1libc/0.1@user/testing"”, "cfdl...ec23", "host", "5"]],
Third level libd
[["1ibd/0®.1@user/testing", "d®75...5b9d", "host", "2"]],
Fourth level libd
[["appl/0.l@user/testing", "3bf2...5188", "host"™, "1"]]
]

Every item in the outer list is a “level” in the graph, a set of packages that needs to be built, and are independent of
every other package in the level, so they can be built in parallel. Levels in the build order must be respected, as the
second level cannot be built until all the packages in the first level are built and so on. In this example, once the build
of 1iba/0. 1@user/testing finishes, as it is the only item in the first level, the second level can start, and it can build
both 1ibb/0. l@user/testing and libc/0.1@user/testing in parallel. It is necessary that both of them finish
their build to be able to continue to the third level, that contains 1ibd/0.1@user/testing, because this package
depends on them.

Every item in each level has 4 elements: [ref, package_id, context, node-id]. Atthe moment the only nec-
essary one is the first one. The ref value is the one that can be used for example in a conan install command
like:

[$ conan install <ref> --build=<ref> --lockfile=mylock.lock]

The last value, the node-id could be used in cases where the ref is not enough to address a given package in the
graph, for example when the same package can be found in the graph multiple times. In this case, explicitly adding
the --lockfile-node-id argument can resolve the ambiguity (this is an experimental feature, subject to breaking
changes):

[$ conan install <ref> --build=<ref> --lockfile=mylock.lock --lockfile-node-id=<node-id> J

Defining builds

The definition of what needs to be built comes from the existing binaries plus the --build argument in the conan
lock create.

Let’s build all the binaries for the exported packages first:

Build appl and dependencies
$ conan install appl/0.l@user/testing --build=missing

Now that there are binaries for all packages in the cache, let’s capture them in a new lockfile and compute the build
order:

Create a new lockfile now with all the package binaries

$ conan lock create --reference=appl/0.l@user/testing --lockfile-out=appl.lock
And check which one needs to be built

$ conan lock build-order appl.lock --json=build_order.json

The build order is empty, nothing to build

[]

The result of this build order is empty. As the conan lock create found existing binaries, everything is fully locked,
nothing needs to be built.

If we specify the --build flag, then the behavior is different:

178 Chapter 11. Versioning

Conan Documentation, Release 1.58.0

$ conan lock create --reference=appl/0.l@user/testing --lockfile-out=appl.lock --build
the lockfile will not lock the binaries

And check which one needs to be built

$ conan lock build-order appl.lock --json=build_order.json

[[["liba/0.l@user/testing", "5ab8...lac9", "host", "4"]],

This feature is powerful when combined with package_id_modes, because it can automatically define the minimum
set of packages that needs to be built for any change in the dependency graph.

Let’s say that a new version 1ibb/1. 1@user/testing is created. But if we check the 1ibd conanfile.py requirement
libb/[>0.0 <1.0]@user/testing, we can see that this 1.1 version falls outside of the valid version range. Then,
it does not affect 1ibd or appl and nothing needs to be built:

$ conan create libb libb/1.1@user/testing

$ conan lock create --reference=appl/0.1l@user/testing --lockfile-out=appl.lock
$ conan lock build-order appl.lock --json=build_order.json

[1 # Empty, nothing to build, 1libb/1.1 does not become part of appl

If on the contrary, a new 1ibb/0.2@user/testing is created, and we capture a new lockfile, it will contain such
new version. Other packages, like 1iba and 1ibc are not affected by this new version, and will be fully locked in the
lockfile, but the dependents of 1ibb now won’t be locked and it will be necessary to build them:

$ conan create libb 1ibb/0.2@user/testing

$ conan lock create --reference=appl/0.1l@user/testing --lockfile-out=appl.lock
$ conan lock build-order appl.lock --json=build_order.json
[[['libd/0.1l@user/testing', '97e9...b7£f4"', 'host', '2']],
[['appl/0.1l@user/testing', '2bfl...e405', 'host', '1']]]

So in this case the appl.lock is doing these things:
* Fully locking the non-affected packages (1iba/0.1, 1ibc/0.1)

* Fully locking the 1ibb/0. 2, as the binary that was just created is valid for our appl (Note that this might not
always be true, and app1 build could require a different 1ibb/0. 2 binary).

* Partial locking (the version and package-id) of the affected packages that need to be built (1ibd/0.1 and appl/
0.1).

¢ Retrieving via build-order the right order in which the affected packages need to be built.

Recall that a package in a lockfile is fully locked if it contains a prev (package revision) field defined. Fully locked
packages cannot be built from sources. Partially locked packages do not contain a prev defined. They lock the reference
and the package-id, and they can be built from sources.

If we want to check if the new 1ibb/0.2 version affects to the app2 and something needs to be rebuilt, the process is
identical:

$ conan lock create --reference=app2/0.1@user/testing --lockfile-out=app2.lock
$ conan lock build-order app2.lock --json=build_order2.json

(]

As expected, nothing to build, as app2 does not depend on 1ibb at all.

11.4. Lockfiles 179

Conan Documentation, Release 1.58.0

11.4.5 Lockfile bundles

Warning: This is an experimental feature subject to breaking changes in future releases.

Every package build using lockfiles requires a given configuration-specific lockfile, and after the build, that lockfile
is updated to include the built package revision. If we have different configurations for different variants as different
architectures, compiler versions or Debug/Release, a build will be typically necessary for each one.

In real life, it is also likely that we might want to build together different applications or products, that could be even
disconnected, and we want to do it as efficiently and fast (in parallel) as possible. We could have the following situation:

pkga/0.1

app2/2.3

app1_windows.lock app2_windows.lock
app1_linux.lock I app2_linux.lock

lock.bundle

In this diagram we see that we are building and releasing 2 different products in our team: appl/1.1 and app2/2.3.
app1 depends on pkgb/0. 1 (omitting user/channel for brevity, but please use it) and app2 depends on pkgb/0. 2.
In turn, both versions of pkgb depend on the same pkga/0.1 version.

If we are building both products for 2 different configurations each (lets say Windows and Linux), we could capture 4
different lockfiles:

$ conan lock create --ref=appl/1.1 --base --lockfile-out=appl_base.lock
$ conan lock create --ref=app2/2.3 --base --lockfile-out=app2_base.lock

$ conan lock create --ref=appl/1.1 -s os=Windows --lockfile=appl_base.lock --lockfile-
—out=appl_windows.lock

$ conan lock create --ref=appl/1.1 -s os=Linux --lockfile=appl_base.lock --lockfile-
—out=appl_linux.lock

$ conan lock create --ref=app2/2.3 -s os=Windows --lockfile=app2_base.lock --lockfile-
—out=app2_windows.lock

$ conan lock create --ref=app2/2.3 -s os=Linux --lockfile=app2_base.lock --lockfile-
—.out=app2_linux.lock

If we launched these 4 lockfiles builds in parallel, we can see that pkga/0. 1 will be built 4 times, 2 times in Windows
and 2 times in Linux. The extra build in each OS is redundant and can be avoided. But we need a way to orchestrate it,
that is what a lockfile bundle is for.

180 Chapter 11. Versioning

Conan Documentation, Release 1.58.0

Creating a lockfile bundle

Creating a lockfile bundle can be done with the conan lock bundle create command, passing the list of all lock-
files for all configurations and products, and obtaining one single output bundle:

$ conan lock bundle create appl_windows.lock appl_linux.lock app2_windows.lock app2_
—linux.lock --bundle-out=lock.bundle

Inspecting the resulting lockfile bundle file, we can see it is a json file with the following structure:

"lock_bundle": {
"appl/1.1@#584778£f98bald0®eb7c80a5aelfel2fe2": {
"packages": [{
"package_id": "3bcd6800847f779e0883ee91b411laad9ddd8e83c" ,
"lockfiles": {
"appl_windows.lock": [
wyn
]
Ko
"prev": null,
"modified": null
Fo 4
"package_id": "60fbb0a22359b4888f7ecad69bcdfcd6e70e2784",
"lockfiles": {
"appl_linux.lock": [
wyn
]
B
"prev": null,
"modified": null
}
i
"requires": [
"pkgb/0.10#cd8£22d6£264£65398d8c534046e8e20"
]

The bundle groups items per ‘“recipe reference”, included the recipe revision, like appl/1.
1@#584778198bald0eb7c80a5aelfel2fe2. For each one, it will list all different binaries, identified by their
package_id that are involved in the different lockfiles, listing all lockfiles for each package_id. In this case, as app1
only belongs to appl lockfiles, only one lockfile appl_windows.lock, appl_linux.lock is in each package_id.
Also, the package revision prev is listed, in this case being null, because there is no locked binary in the lockfiles,
but is going to be built.

Note: The relative path between the bundle file and the lockfile files need to be maintained. In the example
appl_linux.lock means that the lockfile is located in the same folder as the bundle file itself. If moving the bundle
to a different machine, the lockfiles should be moved too, maintaining the same relative layout.

The interesting part is in the pkga/0. 1 information in the bundle:

"pkga/0.1@#£096d7d54098b7ad7012£9435d9c33£3": {
"packages": [{

(continues on next page)

11.4. Lockfiles 181

Conan Documentation, Release 1.58.0

(continued from previous page)

"package_id": "3475bd55b91ae904ac96fde®f106a136ab951a5e",
"lockfiles": {
"appl_windows.lock": [
g
1
"app2_windows.lock": [
g
1
e
"prev": null,
"modified": null

}

Now we can see that for one package_id there are actually 2 different lockfiles that require it. Both appl and app2
depend in this case on pkga/0. 1. This is the information that can be used to avoid duplicated builds.

Using a lockfile bundle to build

The lockfile bundles also can compute a “build order” over the bundle, that will give an ordered list of lists of the
package references that need to be built. In our case we could do:

$ conan lock bundle build-order lock.bundle --json=build_order.json
[
["pkga/0.1@#£096d7d54098b7ad7012£9435d9c33£3"],
["pkgb/0.10@#cd8£22d6£264£65398d8c534046e8e20", "pkgh/0.2@
< #cd8£22d6f264£65398d8c534046e8e20"],
["appl/0.10@#584778f98bald0eb7c80a5aelfel2fe2", "app2/0.1@
—#3850895cleac8223c43¢c71d525348019"]
]

The result is a list of lists. Every inner list is a “level”, it is formed by mutually independent references that can be built
in parallel, because they don’t depend on each other. But every level will have dependencies to the previous levels, so
it is necessary to build those levels in order.

The build order list can be iterated, building the packages in order. The necessary information is in the bundle file
itself, so we can read it and use it, something like:

Get the build order
build_order = json.loads(open("build_order.json").read())

Read the bundle
bundle = json.loads(open("lock.bundle™).read())
bundle = bundle["lock_bundle"]
for level in build_order: # iterate the build_order
for ref in level: # All refs in this level could be built in parallel
Now get the package_ids and lockfile information
package_ids = bundle[ref]["package_id"]
for pkg_id, info in package_ids.items():
lockfiles = info["lockfiles"]
lockfile = next(iter(sorted(lockfiles))) # Get the first one, all should be.

(continues on next page)

182 Chapter 11. Versioning

Conan Documentation, Release 1.58.0

(continued from previous page)

—valid to build same package_id

os.system(''conan install --build= --lockfile= "
"--lockfile-out= " format(ref=ref, lockfile=lockfile))

os.system("conan lock bundle update lock.bundle")

This works under the hypothesis that the same binary, identified by the same package_id will be obtained irrespective
of which lockfile or final product is used to build it. If this doesn’t hold true, then the package_id policies should be
revised until this condition is met.

Important: Recall that this is an orchestration mechanism, that can be used to distribute the actual conan install
tasks to different agents, based on the lockfile itself, we might need some logic to send that build to one or another
build server. If we didn’t want to orchestrate and everything can be built in this machine a conan install appl/1.
1@ --lockfile={lockfile} --build=missing would build all the necessary dependencies in the graph, in the
current agent.

Note that the builds themselves are using regular lockfiles. The bundle does not contain the necessary information to
reproduce the dependency graph that is needed to create packages.

The command conan lock bundle update lock.bundle manages to update all the connected lockfiles after a
reference has been built. When the build is fired, it is done using 1 of the lockfiles, for a given configuration. That
lockfile will get the updated package revision and status. The conan lock bundle update does this process in 2
steps:

* Scan all connected lockfiles for every ref recipe reference and package_id, and collect those that have been
modified.

* Propagate the modified information to all the other connected lockfiles.

After conan lock bundle update, all packages sharing the same reference and package_id should have the same
status (marked “modified” and same package revision). The “modified” state for the lockfile bundles can be cleaned
using the command conan lock bundle clean-modified that will clean that flag from both the .bundle file and
the individual .lock files.

11.4.6 Lockfiles in Continuous Integration

Warning: This is an experimental feature subject to breaking changes in future releases.

This section provides an example of application of the lockfiles in a Continuous Integration case. It doesn’t aim to
present a complete solution or the only possible one, depending on the project, the team, the requirements, the con-
straints, etc., other approaches might be recommended.

In this section we are going to use the same packages than in the previous one, defining this dependency graph.

11.4. Lockfiles 183

Conan Documentation, Release 1.58.0

liba/0.1
libb/O.1 libc/O.1
libd/0.1 app2/0.1

:

appl/0.1

The example scenario is a developer doing some changes in 1ibb, that include bumping the version to 1ibb/0.2. We
will structure the CI in two parts:

* Building 1ibb/0.2@user/testing to check that it is working fine.

* Building the downstream applications appl/0.1l@user/testing and app2/0.2@user/testing to check if
they build correctly, or if they are broken by those changes.

Note: The code used in this section, including a build.py script to reproduce it, is in the examples repository:
https://github.com/conan-io/examples. You can go step by step reproducing this example while reading the below
documentation.

$ git clone https://github.com/conan-io/examples.git
$ cd features/lockfiles/ci
$ python build.py only to run the full example, but better go step by step

The example in this section uses full_version_mode, that is, if a package changes any part of its version, its con-
sumers will need to build a new binary because a new package_id will be computed.

[$ conan config set general.default_package_id_mode=full_version_mode J

This sets the default package ID mode. Be aware, however, that if any of your packages provide their own package_id()
implementation, for example explicitly setting a different mode for a dependency, full_version_mode might not be used
for that package.

This example will use version ranges, and it is not necessary to have revisions enabled. It also does not require a server,
everything can be reproduced locally, although the usage of different repositories will be introduced.

Repositories

When a developer does some changes, the CI wants to build those changes, create packages, and check if everything is
ok. But while checking it, it is better to not pollute the main Conan remote repository with temporary packages until
we are fully sure that it is not breaking anything. So we could use 2 repositories:

» conan-develop: this would be the team/project reference repository. Developers and CI will use this by default
to retrieve Conan packages with precompiled binaries. Similarly to a git “develop” branch, it could be assumed
that the packages in this repository work correctly, have been tested before being put there. It could also be
expected that the repository contains pre-compiled binaries, so building from sources shouldn’t be necessary.

e conan-build: a repository mainly for CI purposes. When CI is creating packages in a pipeline, it can put
those packages in this repository, so they can still be used in the CI pipelines, be fetched by some build agents to

184 Chapter 11. Versioning

https://github.com/conan-io/examples

Conan Documentation, Release 1.58.0

build other packages. These temporary packages will not disrupt the operations and usage of conan-develop
repository used by other CI jobs and developers.

Let’s create the first version of the packages, for both Debug and Release configurations:

conan create liba liba/®.l@user/testing -s build_type=Release
conan create libb 1libb/®.l@user/testing -s build_type=Release
conan create libc libc/0.1G@user/testing -s build_type=Release
conan create libd 1libd/®.1Guser/testing -s build_type=Release
conan create appl appl/®.lGuser/testing -s build_type=Release
conan create app2 app2/0.l@Guser/testing -s build_type=Release
conan create liba liba/®.l@user/testing -s build_type=Debug

L - A A AR A

Now let’s say that one developer does some change to 1ibb:

$ vim libb/conanfile.py
do some changes and save

These changes are local in this example, in reality they will be typically in the form of a Pull Request, wanting to merge
those changes in the main “develop” branch.

Package pipeline

The first thing the CI will do is to build 1ibb/0.2@user/testing package, containing the developer changes, for
different configurations. As we want to make sure that all different configurations are built with the same versions of
the dependencies, the first thing is to capture a “base” lockfile of the dependencies of 1ibb:

$ cd 1ibb
$ conan lock create conanfile.py --name=1ibb --version=0.2 --user=user --channel=testing
--lockfile-out=../locks/1libb_deps_base.lock --base

This will capture the libb_deps_base.lock file with the versions of 1ibb dependencies, in this case 1iba/®. l@user/
testing. Now that we have this file, new versions of 1iba could be created, but they will not be used:

$ cd ..
$ conan create liba liba/0.2@user/testing

We want to test the changes for several different configurations, so the first step would be to derive a new lockfile for
each configuration/profile from the libb_deps_base.lock:

$ cd 1libb

Derive one lockfile per profile/configuration

$ conan lock create conanfile.py --name=1ibb --version=0.2
--user=user --channel=testing --lockfile=../locks/libb_deps_base.lock
--lockfile-out=../locks/libb_deps_debug.lock -s build_type=Debug

$ conan lock create conanfile.py --name=libb --version=0.2
--user=user --channel=testing --lockfile=../locks/libb_deps_base.lock
--lockfile-out=../locks/libb_deps_release.lock

Create the package binaries, one with each lockfile
conan create . libb/0®.2@user/testing --lockfile=../locks/libb_deps_release.lock
$ conan create . libb/0.2@user/testing --lockfile=../locks/libb_deps_debug.lock

©

11.4. Lockfiles 185

Conan Documentation, Release 1.58.0

Note: Itisimportant to note that it is not necessary to build all configurations in this build agent. One of the advantages
of using lockfiles is that the build can be delegated to other agents, as long as they get the right commit of 1ibb repo
and the lockfile, they can build the desired package with the right dependencies.

Once everything is building ok, and 1ibb/0.2@user/testing package is created correctly for all profiles, we want
to check if this new version can be integrated safely in its consumers. When using revisions (not this example), it is
important to capture the recipe revision, and lock it too. We can capture the recipe revision doing an export, creating
anew libb_base.lock lockfile:

$ conan export . libb/0.2@user/testing --lockfile=../locks/libb_deps_base.lock
--lockfile-out=../locks/1libb_base.lock

Products pipeline

There is an important question to be addressed: when a package changes, what other packages consuming it should
be rebuilt to account for this change?. The problem might be harder than it seems at first sight, or from the observation
of the graph above. It shows that 1ibd/®. 1 has a dependency to 1ibb/0. 1, does it mean that a new 1ibb/0.2 should
produce a re-build of 1ibd/®. 1 to link with the new version? Not always, if 1ibd had a pinned dependency and not a
version range, it will never resolve to the new version, and then it doesn’t and it cannot be rebuilt unless some developer
makes some changes to 1ibd and bumps the requirement.

In this example, 1ibd contains a version range, and if we evaluate it, we will see that the new 1ibb/0.2 version lies
within the range, and then yes, it needs a new binary to be built, otherwise our repository of packages will have missing
binaries.

One important problem is the combinatoric explosion that happens downstream. Projects evolve and packages will
eventually have many versions and even many revisions. In our example, we could have in our repository many 1ibd/
0.0.1,1ibd/0.0.2,...,1ibd/0.0. 34 versions, all of them with a requirement to 1ibb. Each one could be in turn
consumed by multiple app1l versions.

We could think to consider as consumer only the latest version of 1ibd. But it is also totally possible that some
developer has already uploaded a 1ibd/2.0 version, with a breaking new API, aimed for the next major version of
appl.

So the only alternative to be both efficient and have a robust Continuous Integration of changes in our core “products”
is to explicitly define those “products”. In our case we will define that our products are appl/0.1l@user/testing
and app2/0. 1l@user/testing. This product definition could change as we keep doing releases of our products to our
customers.

The first step in the products pipeline would be to capture the lockfiles for the different configurations we want to build
for our products. As explained above, we can first capture a “base” lockfile of app1/0.1l@user/testing, using the
previous libb_base.lock, to make sure that we are using the locked versions for both 1ibb/0.2@user/testing and
liba/0.1@user/testing, as this was the snapshot of existing versions when the CI pipeline started, even if later a
liba/0.2@user/testing was created.

$ conan lock create --reference=appl/0.l@user/testing --lockfile=locks/libb_base.lock
--lockfile-out=1ocks/appl_base.lock --base

The app1_base.lock lockfile will capture and lock 1ibd/®. 1@user/testing and 1ibc/0. 1@user/testing. Now,
even if those packages also got new versions, they will not be used, even if they fit in the version range. The
appl_base.lock lockfile can be in turn used to capture complete lockfiles, one per profile/configuration:

$ conan lock create --reference=appl/0.l@user/testing --lockfile=locks/appl_base.lock
--lockfile-out=1ocks/appl_release.lock
(continues on next page)

186 Chapter 11. Versioning

Conan Documentation, Release 1.58.0

(continued from previous page)

$ conan lock create --reference=appl/0.l@user/testing --lockfile=locks/appl_base.lock
--lockfile-out=1locks/appl_debug.lock -s build_type=Debug

The build-order can now be computed, also for each configuration:

$ conan lock build-order locks/appl_release.lock --json=bo_release.json
[[['1libd/0®.1l@user/testing', 'bO3c813b34cfab7a®095£fd903f7e8df2114e2b858"', 'host', '4']],
[['appl/0.1l@user/testing', '15d2c695ed8d421c0®d8932501fc654c8083e6582"', 'host', '3']]]

$ conan lock build-order locks/appl_debug.lock --json=bo_debug.json
[[['libd/0.1l@user/testing', '67a26cfbef78ad4905bec085664768c209d14fda’', 'host', '4']],
[['appl/0.1l@user/testing', '680239a70c97f93d4d3dbaddeclb148d45ed®87a', 'host', '3']]1]

The build order tells that we need to build 1ibd/0. 1@user/testing and appl/0.1@user/testing in that order,
for both Release and Debug configurations (again this can also be delegated to other build agents)

That build can be done with command:

$ conan install 1ibd/0.1l@user/testing --build=1ibd/®.1l@user/testing --lockfile=locks/
—appl_release.lock
--lockfile-out=1ocks/appl_release_updated.lock

Note that we are creating a new temporary appl_release_updated.lock lockfile, that will contain and lock the binary
produced by the build of 1ibd. If this was implemented in CI, the app_release.lock would be sent to the build agent,
and it would return a modified appl_release_updated.lock. The way to integrate this information into the existing
lockfile, necessary to keep building other downstream packages is:

[$ conan lock update locks/appl_release.lock locks/appl_release_updated.lock

Now that locks/app1_release.lock is updated we could launch in exactly the same way the build of app1:

$ conan install appl/0.l@user/testing --build=appl/®.l@user/testing --lockfile=locks/
—appl_release.lock
--lockfile-out=1ocks/appl_release_updated.lock

The process will be repeated (or it could also run in parallel) for the Debug configuration.

After the appl/0. 1@user/testing product pipeline finishes, then the app2/0 . 2@Quser/testing one will be started.
With this setup and example, it is very important that the products pipelines are ran sequentially, otherwise it is possible
that the same binaries are unnecessarily built more than once.

When the products pipeline finishes it means that the changes proposed by the developer in their Pull Request that
would result in a new 1ibb/0.2@user/testing package are safe to be merged and will be integrated in our product
packages without problems. When the Pull Request is merged there might be two alternatives:

* The merge is a merge commit, with a different revision and possible different source as the result of a real merge,
than the source used in this CI job. Then it is necessary to fire again a new job that will build these packages.

« If the merge is a clean fast-forward, then the packages that were built in this job would be valid, and could be
copied from the repository conan-build to the conan-develop.

After the appl lockfile is created it could be possible to install all the binaries referenced in that lockfile using the
conan lock install:

[$ conan lock install appl_release_updated.lock -g deploy

11.4. Lockfiles 187

Conan Documentation, Release 1.58.0

It is also possible to use this command for just installing the recipes but not the binaries adding the --recipes argu-
ment:

[$ conan lock install appl_release_updated.lock --recipes

188 Chapter 11. Versioning

CHAPTER
TWELVE

MASTERING CONAN

This section provides an introduction to important productivity and useful features of Conan:

12.1 Use conanfile.py for consumers

Caution: We are actively working to finalize the Conan 2.0 Release. Some of the information on this page
references deprecated features which will not be carried forward with the new release. It’s important to check the
Migration Guidelines to ensure you are using the most up to date features.

You can use a conanfile.py for installing/consuming packages, even if you are not creating a package with it. You
can also use the existing conanfile.py in a given package while developing it to install dependencies. There’s no
need to have a separate conanfile.txt.

Let’s take a look at the complete conanfile. txt from the previous timer example with POCO library, in which we
have added a couple of extra generators

[requires]
poco/1.9.4

[generators]
gcc

cmake

txt

[options]
poco:shared=True
openssl:shared=True

[imports]

bin, *.dll -> ./bin # Copies all dll1 files from the package "bin" folder to my project
—"bin" folder

lib, *.dylib* -> ./bin # Copies all dylib files from the package "lib" folder to my..
—project "bin" folder

The equivalent conanfile.py file is:

from conans import ConanFile, CMake

class PocoTimerConan(ConanFile):

(continues on next page)

189

Conan Documentation, Release 1.58.0

(continued from previous page)

settings = "os", "compiler", "build_type", "arch"
requires = "poco/1.9.4" # comma-separated list of requirements
generators = "cmake", "gcc", "txt"

default_options = {"poco:shared": True, "openssl:shared": True}

def imports(self):
self.copy("*.dl1l", dst="bin", src="bin") # From bin to bin
self.copy("*.dylib*", dst="bin", src="1lib") # From lib to bin

Note that this conanfile.py doesn’t have a name, version, or build() or package () method, as it is not creating a
package. They are not required.

With this conanfile.py you can just work as usual. Nothing changes from the user’s perspective. You can install the
requirements with (from mytimer/build folder):

[$ conan install .. J

12.1.1 conan build

One advantage of using conanfile.py is that the project build can be further simplified, using the conanfile.py
build () method.

If you are building your project with CMake, edit your conanfile.py and add the following build() method:

from conans import ConanFile, CMake

class PocoTimerConan(ConanFile):

settings = "os", "compiler", "build_type", "arch"
requires = "poco/1.9.4"
generators = '"cmake", "gcc", "txt"

default_options = {"poco:shared": True, "openssl:shared": True}

def imports(self):
self.copy("*.dll", dst="bin", src="bin") # From bin to bin
self.copy("*.dylib*", dst="bin", src="1ib") # From 1ib to bin

def build(self):
cmake = CMake(self)
cmake.configure()
cmake.build ()

Then execute, from your project root:

$ conan install . --install-folder build
$ conan build . --build-folder build

The conan install command downloads and prepares the requirements of your project (for the specified settings)
and the conan build command uses all that information to invoke your build() method to build your project, which
in turn calls cmake.

This conan build will use the settings used in the conan install which have been cached in the local conaninfo.txt
and file in your build folder. This simplifies the process and reduces the errors of mismatches between the installed
packages and the current project configuration. Also, the conanbuildinfo.txt file contains all the needed information
obtained from the requirements: deps_cpp_info, deps_env_info, deps_user_info objects.

190 Chapter 12. Mastering Conan

Conan Documentation, Release 1.58.0

If you want to build your project for x86 or another setting just change the parameters passed to conan install:

$ conan install . --install-folder build_x86 -s arch=x86
$ conan build . --build-folder build_x86

Implementing and using the conanfile.py build () method ensures that we always use the same settings both in the
installation of requirements and the build of the project, and simplifies calling the build system.

12.1.2 Other local commands
Conan implements other commands that can be executed locally over a consumer conanfile.py which is in user
space, not in the local cache:

e conan source <path>: Execute locally the conanfile.py source () method.

e conan package <path>: Execute locally the conanfile.py package () method.

These commands are mostly used for testing and debugging while developing a new package, before exporting such
package recipe into the local cache.

See also:

Check the section Reference/Commands to find out more.

12.2 Conditional settings, options and requirements

Remember, in your conanfile.py you can use the value of your options to:
* Add requirements dynamically
» Change values of other options
» Assign values to options of your requirements

The configure () method might be used to hardcoded values for options of the requirements. It is strongly discouraged
to use it to change the settings values. Please remember that settings are a configuration input, so it doesn’t make
sense to modify it in the recipes.

Also, for options, a more flexible solution is to define dependencies options values in the default_options, notin the
configure() method. Setting the values in configure() won’t allow to override them and it will make really hard
(even impossible) to resolve some conflicts. Use it only when it is absolutely necessary that the package dependencies
use those options.

Here is an example of what we could do in our configure method:

class Recipe(ConanFile):

requires = "poco/1.9.4" # We will add OpenSSL dynamically "openssl/1.0.2t"

def configure(self):
We can control the options of our dependencies based on current options
self.options["openssl"].shared = self.options.shared

Maybe in windows we know that OpenSSL works better as shared (false)
if self.settings.os == "Windows":

(continues on next page)

12.2. Conditional settings, options and requirements 191

Conan Documentation, Release 1.58.0

(continued from previous page)

self.options["openssl"].shared = True

Or adjust any other available option
self.options["poco"].other_option = "foo"
We could check the presence of an option
if "shared" in self.options:

pass

def requirements(self):

Or add a new requirement!
if self.options.testing:

self.requires("OpenSSL/2. 1@memsharded/testing")
else:

self.requires("openssl/1.0.2u")

def build(self):

We can check the final values of options of our requirements
if self.options['poco'].that_option != "bar":
raise ConanInvalidConfiguration("Who modified this option?!")

12.2.1 Constrain settings and options

Sometimes there are libraries that are not compatible with specific settings like libraries that are not compatible with
an architecture, or options that only make sense for an operating system. It can also be useful when there are settings
under development.

There are two approaches for this situation:

* Use validate() to raise an error for non-supported configurations:

This approach is the first one evaluated when Conan loads the recipe so it is quite handy to perform checks of the
input settings. It relies on the set of possible settings inside your settings.yml file, so it can be used to constrain
any recipe.

from conans.errors import ConanInvalidConfiguration

def validate(self):
if self.settings.os == "Windows":
raise ConanInvalidConfiguration('This library is not compatible with Windows")

Tip: Use the Invalid configuration exception to make Conan return with a special error code. This will indicate
that the configuration used for settings or options is not supported.

This same method is also valid for options and config_options () method and it is commonly used to remove
options for one setting:

def config_options(self):
if self.settings.os == "Windows":
del self.options.fPIC

192

Chapter 12. Mastering Conan

Conan Documentation, Release 1.58.0

Note: For managing invalid configurations, please check the new validate () method (validate()).

* Constrain settings inside a recipe:

This approach constrains the settings inside a recipe to a subset of them, and it is normally used in recipes that
are never supposed to work out of the restricted settings.

p
from conans import ConanFile

class MyConan(ConanFile):

name = "myconanlibrary"

version = "1.0.0"

settings = {"os": None, "build_type": None, "compiler": None, "arch": ["x86_64
<"1}

L

The disadvantage of this is that possible settings are hardcoded in the recipe, and in case new values are used in
the future, it will require the recipe to be modified explicitly.

Important: Note: the use of the None value in the os, compiler and build_type settings described above
will allow them to take the values from settings.yml file

We strongly recommend the use of the first approach whenever it is possible, and use the second one only for those
cases where a stronger constrain is needed for a particular recipe.

See also:

Check the reference section configure(), config_options() to find out more.

12.3 Build policies

By default, conan install command will search for a binary package (corresponding to our settings and defined
options) in a remote. If it’s not present the install command will fail.

As previously demonstrated, we can use the —-build option to change the default conan install behavior:
¢ —-build some_package will build only “some_package”.
e --build missing will build only the missing requires.
¢ —-build will build all requirements from sources.

e —-build outdated will try to build from code if the binary is not built with the current recipe or when missing
binary package.

¢ —-build cascade will build from code all the nodes with some dependency being built (for any reason). Can be
used together with any other build policy. Useful to make sure that any new change introduced in a dependency
is incorporated by building again the package.

e —-build pattern* will build only the packages with the reference starting with “pattern”.

¢ —--build=* --build=!some_packagel --build=!some_package2 will build all requirements from
sources, except for some_packagel and some_package?2.

With the build_policy attribute in the conanfile.py the package creator can change the default Conan’s build behavior.
The allowed build_policy values are:

12.3. Build policies 193

Conan Documentation, Release 1.58.0

e missing: If no binary package is found, Conan will build it without the need to invoke Conan install with
--build missing option.

* always: The package will be built always, retrieving each time the source code executing the “source” method.

* never: (experimental, available from Conan 1.37) Never builds this package from source, this package can only
be created with a conan export-pkg command.

class PocoTimerConan(ConanFile):

settings = "os", "compiler", "build_type", "arch"
requires = "poco/1.9.4" # comma-separated list of requirements
generators = "cmake", "gcc", "txt"

default_options = {"poco:shared": True, "poco:shared": True}
build_policy = "always" # "missing"

These build policies are especially useful if the package creator doesn’t want to provide binary package; for example,
with header only libraries.

The always policy will retrieve the sources each time the package is installed, so it can be useful for providing a “latest”
mechanism or ignoring the uploaded binary packages.

The package pattern can be referred as a case-sensitive fnmatch pattern of the package name or the full package ref-
erence. e.g --build poco, --build poc*, --build zlib/*, --build *@conan/stable or --build zlib/1.
2.11.

12.4 Environment variables

Caution: We are actively working to finalize the Conan 2.0 Release. Some of the information on this page
references deprecated features which will not be carried forward with the new release. It’s important to check the
Migration Guidelines to ensure you are using the most up to date features.

There are several use cases for environment variables:

* Conan global configuration environment variables (e.g. CONAN_COMPRESSION_LEVEL). They can be configured
in conan.conf or as system environment variables, and control Conan behavior.

» Package recipes can access environment variables to determine their behavior. A typical example would be when
launching CMake. It will check for CC and CXX environment variables to define the compiler to use. These
variables are mostly transparent for Conan, and just used by the package recipes.

¢ Environment variables can be set in different ways:

global, at the OS level, with export VAR=Value or in Windows SET VAR=Value.

In the Conan command line: conan install -e VAR=Value.

In profile files.

In package recipes in the self.env_info field, so they are activated for dependent recipes.

194 Chapter 12. Mastering Conan

Conan Documentation, Release 1.58.0

12.4.1 Defining environment variables

You can use profiles to define environment variables that will apply to your recipes. You can also use -e parameter in
conan install, conan info and conan create commands.

[env]
CC=/usr/bin/clang
CXX=/usr/bin/clang++

If you want to override an environment variable that a package has inherited from its requirements, you can use either
profiles or -e to do it:

[conan install . -e mypkg:PATH=/other/path }

If you want to define an environment variable, but you want to append the variables declared in your requirements, you
can use the [] syntax:

[$ conan install . -e PATH=[/other/path] J

This way the first entry in the PATH variable will be /other/path, but the PATH values declared in the requirements of
the project will be appended at the end using the system path separator.

12.4.2 Automatic environment variables inheritance

If your dependencies define some env_info variables in the package_info() method, they will be automatically
applied before calling the consumer conanfile.py methods source (), build(), package () and imports(). You can
read more about env_info object here.

For example, if you are creating a package for a tool, you can define the variable PATH:

class ToolExampleConan(ConanFile):
name = "my_tool_installer"

def package_info(self):
self.env_info.path.append(os.path. join(self.package_folder, "bin"))

If another Conan recipe requires the my_tool_installer in the source(), build(), package() and imports(),
the bin folder of the my_tool_installer package will be automatically appended to the system PATH. If
my_tool_installer packages an executable called my_tool_executable in the bin of the package folder, we can
directly call the tool because it will be available in the path:

class MyLibExample(ConanFile):
name = "my_lib_example"

def build(self):
self.run(["my_tool_executable", "some_arguments"])

You could also set CC, CXX variables if we are packing a compiler to define what compiler to use or any other environ-
ment variable. Read more about tool packages /ere.

12.4. Environment variables 195

Conan Documentation, Release 1.58.0

12.5 Virtual Environments

Caution: We are actively working to finalize the Conan 2.0 Release. Some of the information on this page
references deprecated features which will not be carried forward with the new release. It’s important to check the
Migration Guidelines to ensure you are using the most up to date features.

Conan offers three special Conan generators to create virtual environments:
e virtualenv: Declares the self.env_info variables of the requirements.
» virtualbuildenv: Special build environment variables for autotools/visual studio.
e virtualrunenv: Special environment variables to locate executables and shared libraries in the requirements.

These virtual environment generators create two executable script files (.sh or .bat depending on the current operating
system), one to activate the virtual environment (set the environment variables) and one to deactivate it.

You can aggregate two or more virtual environments, that means that you can activate a virtualenv and then acti-
vate a virtualrunenv so you will have available the environment variables declared in the env_info object of the
requirements plus the special environment variables to locate executables and shared libraries.

12.5.1 Virtualenv generator

Conan provides a virtualenv generator, able to read from each dependency the self.env_info variables declared in the
package_info() method and generate two scripts “activate” and “deactivate”. These scripts set/unset all env variables
in the current shell.

Example:
The recipe of cmake/3.16.3 appends to the PATH variable the package folder/bin.

You can check existing CMake Conan package versions in conancenter with:

[$ conan search cmake* -r=conancenter

In the bin folder there is a cmake executable:

def package_info(self):
self.env_info.path.append(os.path.join(self.package_folder, "bin"))

Let’s prepare a virtual environment to have cmake available in the path. Open conanfile. txt and change (or add)
virtualenv generator:

[requires]
cmake/3.16.3

[generators]
virtualenv

Run conan install:

[$ conan install

You can also avoid the creation of the conanfile.txt completely and directly do:

196 Chapter 12. Mastering Conan

Conan Documentation, Release 1.58.0

[$ conan install cmake/3.16.3 -g=virtualenv J

Activate the virtual environment, and now you can run cmake --version to check that you have the installed CMake
in path.

$ cmake --version

$ source activate.sh # Windows: activate.bat without the source ’

Two sets of scripts are available on all platforms - activate.sh/deactivate.shand activate.psl/deactivate.
psl if you are using powershell. In addition Windows has activate.bat/deactivate.bat Deactivate the virtual
environment (or close the console) to restore the environment variables:

[$ source deactivate.sh # Windows: deactivate.bat or deactivate.psl without the source]

See also:

Read the Howto Create installer packages to learn more about the virtual environment feature. Check the section
Reference/virtualenv to see the generator reference.

12.5.2 Virtualbuildenv environment

Use the generator virtualbuildenv to activate an environment that will set the environment variables for Autotools
and Visual Studio.

The generator will create activate_build and deactivate_build files.

See also:

Read More about the building environment variables defined in the sections Building with autotools and Build with
Visual Studio.

Check the section Reference/virtualbuildenv to see the generator reference.

12.5.3 Virtualrunenv generator

Use the generator virtualrunenv to activate an environment that will:
¢ Append to PATH environment variable every bin folder of your requirements.

e Append to LD_LIBRARY_PATH and DYLD_LIBRARY_PATH environment variables each 1ib folder of your re-
quirements.

The generator will create activate_run and deactivate_run files. This generator is especially useful:
* If you are requiring packages with shared libraries and you are running some executable that needs those libraries.
* If you have a requirement with some tool (executable) and you need it in the path.

In the previous example of the cmake recipe, even if the cmake package doesn’t declare the self.env_info.path
variable, using the virtualrunenv generator, the bin folder of the package will be available in the PATH. So after
activating the virtual environment we could just run cmake in order to execute the package’s cmake.

See also:

* Reference/Tools/environment_append

12.5. Virtual Environments 197

Conan Documentation, Release 1.58.0

12.6 Logging

12.6.1 How to log and debug a conan execution

You can use the CONAN_TRACE_FILE environment variable to log and debug several Conan command execution.
Set the CONAN_TRACE_FILE environment variable pointing to a log file.

Example:

export CONAN_TRACE_FILE=/tmp/conan_trace.log # Or SET in windows
conan install zlib/1.2.8@lasote/stable

The /tmp/conan_trace.log file:

{"_action": "COMMAND", "name": "install", "parameters": {"all": false, "build": null,
~"env": null, "file": null, "generator": null, "manifests": null, "manifests_interactive
~": null, "no_imports": false, "options": null, "package": null, "profile": null,
—"reference": "zlib/1.2.8@lasote/stable", "remote": null, "scope": null, "settings":.
—null, "update": false, "verify": null, "werror": false}, "time": 1485345289.250117}
{"_action": "REST_API_CALL", "duration": 1.8255090713500977, "headers": {"Authorization
SNy ekt Y Client-Anonymous-Id": st oMY Client-Id": "lasote2", "X-
—,Conan-Client-Version": "0.19.0-dev"}, "method": "GET", "time": 1485345291.092218, "url
~": "https://server.conan.io/vl/conans/zlib/1.2.8/lasote/stable/download_urls"}
{"_action": "DOWNLOAD", "duration": 0.4136989116668701, "time": 1485345291.506399, "url
~": "https://conanio-production.s3.amazonaws.com/storage/zlib/1.2.8/lasote/stable/
—,export/conanmanifest.txt"}

{"_action": "DOWNLOAD", "duration": 0.10367798805236816, "time": 1485345291.610335, "url
<": "https://conanio-production.s3.amazonaws.com/storage/zlib/1.2.8/lasote/stable/
—export/conanfile.py"}

{"_action": "DOWNLOAD", "duration": 0.059114933013916016, "time": 1485345291.669744, "url

—": "https://conanio-production.s3.amazonaws.com/storage/zlib/1.2.8/lasote/stable/
—,export/conan_export.tgz"}
{"_action": "DOWNLOADED_RECIPE", "_id": "zlib/1.2.8@lasote/stable", "duration": 2.

—40762996673584, "files": {"conan_export.tgz": "/home/laso/.conan/data/zlib/1.2.8/
—lasote/stable/export/conan_export.tgz", "conanfile.py": "/home/laso/.conan/data/zlib/1.

—2.8/lasote/stable/export/conanfile.py", "conanmanifest.txt": "/home/laso/.conan/data/
—»z1lib/1.2.8/lasote/stable/export/conanmanifest.txt"}, "remote": "conan.io", "time":.
<»1485345291.670017}

{"_action": "REST_API_CALL", "duration": 0.4844989776611328, "headers": {"Authorization

T
W, Mededededddk

wxtt - "Y-Client-Anonymous-Id": "##ssssskext - ¥ _Client-Id": "lasote2", "X-
—.Conan-Client-Version": "0.19.0-dev"}, "method": "GET", "time": 1485345292.160912, "url
—": "https://server.conan.io/vl/conans/zlib/1.2.8/lasote/stable/packages/
—c6d75a933080cal7eb7f076813e7fb21aaa740f2/download_urls"}
{"_action": "DOWNLOAD", "duration": 0.06388187408447266, "time": 1485345292.225308, "url
—": "https://conanio-production.s3.amazonaws.com/storage/zlib/1.2.8/lasote/stable/
—package/c6d75a933080cal7eb7f076813e7fb21aaa740f2/conaninfo.txt?
—Signature=c1KAOqvxtCUnnQOeYizZ9bgcwwY%3D&Expires=1485352492&
—+AWSAccessKeyId=AKIAJXMWDMVCDMAZQK5Q"}
{"_action": "REST_API_CALL", "duration": 0.8182470798492432, "headers": {"Authorization
Wy Mot - UYL Client-Anonymous-Id": Ewmsssst MY _Client-Id": "lasote2", "X-
—.Conan-Client-Version": "0.19.0-dev"}, "method": "GET", "time": 1485345293.044904, "url

—": "https://server.conan.io/vl/conans/zlib/1.2.8/lasote/stable/packages/
—c6d75a933080cal7eb7f076813e7fb21aaa740f2/download_urls"}

(continues on next page)

198 Chapter 12. Mastering Conan

Conan Documentation, Release 1.58.0

(continued from previous page)

{"_action": "DOWNLOAD", "duration": 0.07849907875061035, "time": 1485345293.123831, "url
<": "https://conanio-production.s3.amazonaws.com/storage/zlib/1.2.8/lasote/stable/
—package/c6d75a933080cal7eb7f076813e7fb21aaa740f2/conanmanifest.txt"}
{"_action": "DOWNLOAD", "duration": 0.06638002395629883, "time": 1485345293.190465, "url

": "https://conanio-production.s3.amazonaws.com/storage/zlib/1.2.8/lasote/stable/
—package/c6d75a933080cal7eb7£f076813e7fb21aaa740f2/conaninfo.txt"}
{"_action": "DOWNLOAD", "duration": 0.3634459972381592, "time": 1485345293.554206, "url
<": "https://conanio-production.s3.amazonaws.com/storage/zlib/1.2.8/lasote/stable/
—package/c6d75a933080cal7eb7f076813e7fb21aaa740f2/conan_package.tgz"}
{"_action": "DOWNLOADED_PACKAGE", "_id": "zlib/1.2.8@lasote/
—stable:c6d75a933080cal7eb7f076813e7fb21aaa740f2", "duration": 1.3279249668121338,
—"files": {"conan_package.tgz": "/home/laso/.conan/data/zlib/1.2.8/lasote/stable/
—package/c6d75a933080cal7eb7f076813e7fb21aaa740f2/conan_package.tgz", "conaninfo.txt":
—"/home/laso/.conan/data/zlib/1.2.8/lasote/stable/package/
—c6d75a933080cal7eb7f076813e7fb21aaa740f2/conaninfo.txt", "conanmanifest.txt": "/home/
—laso/.conan/data/zlib/1.2.8/lasote/stable/package/
—c6d75a933080cal7eb7f076813e7fb21aaa740f2/conanmanifest.txt"}, "remote": "conan.io",
~"time": 1485345293.554466}

In the traces we can see:
1. A command install execution.
2. A REST API call to get some download_urls.
3. Three files downloaded (corresponding to the previously retrieved urls).
4

. DOWNLOADED_RECTIPE tells us that the recipe retrieving is finished. We can see that the whole retrieve process
took 2.4 seconds.

5. Conan client has computed the SHA for the needed binary package and will now retrieve it. So it will request
and download the package package_id file to perform some checks like outdated binaries.

6. Another REST API call to get some more download_urls, for the package files and download them.

7. Finally we get a DOWNLOADED_PACKAGE telling us that the package has been downloaded. The download took
1.3 seconds.

If we execute conan install again:

export CONAN_TRACE_FILE=/tmp/conan_trace.log # Or SET in windows
conan install zlib/1.2.8@lasote/stable

The /tmp/conan_trace.log file only three lines will be appended:

{"_action": "COMMAND", "name": "install", "parameters": {"all": false, "build": null,
~"env": null, "file": null, "generator": null, "manifests": null, "manifests_interactive
~": null, "no_imports": false, "options": null, "package": null, "profile": null,
—"reference": "zlib/1.2.8@lasote/stable", "remote": null, "scope": null, "settings":.

—null, "update": false, "verify": null, "werror": false}, "time": 1485346039.817543}

{"_action": "GOT_RECIPE_FROM_LOCAL_CACHE", "_id": "zlib/1.2.8@lasote/stable", "time":.
—.1485346039.824949}
{"_action": "GOT_PACKAGE_FROM_LOCAL_CACHE", "_id": "zlib/1.2.8@lasote/

—stable:c6d75a933080cal7eb7f076813e7fb21aaa740£f2", "time": 1485346039.827915}

1. A command install execution.

2. A GOT_RECIPE_FROM_LOCAL_CACHE because it’s already stored in local cache.

12.6. Logging 199

Conan Documentation, Release 1.58.0

3. A GOT_PACKAGE_FROM_LOCAL_CACHE because the package is cached too.

12.6.2 How to log the build process

You can log your command executions self.run in a file named conan_run.log using the environment variable CO-
NAN_LOG_RUN_TO_FILE.

You can also use the variable CONAN_PRINT_RUN_COMMANDS to log extra information about the commands being
executed.

Package the log files

The conan_run.log file will be created in your build folder so you can package it the same way you package a library
file:

def package(self):
self.copy(pattern="conan_run.log", dst="", keep_path=False)

12.7 Sharing the settings and other configuration

If you are using Conan in a company or in an organization, sometimes you need to share the settings.yml file, the
profiles, or even the remotes or any other Conan local configuration with the team.

You can use the conan config install.

If you want to try this feature without affecting your current configuration, you can declare the CONAN_USER_HOME
environment variable and point to a different directory.

Read more in the section conan config install.

12.8 Conan local cache: concurrency, Continuous Integration, isola-
tion

Conan needs access to some per user configuration files, such as the conan.conf file that defines the basic client app
configuration. By convention, this file will be located in the user home folder ~/.conan/. This folder will also typically
store the package cache in ~/.conan/data. Even though the latter is configurable in conan.conf, Conan needs some
place to look for this initial configuration file.

There are some scenarios in which you might want to use different initial locations for the Conan client application:

* Continuous Integration (CI) environments, in which multiple jobs can also work concurrently. Moreover, these
environments would typically want to run with different user credentials, different remote configurations, etc.
Note that using Continuous Integration with the same user, with isolated machine instances (virtual machines),
or with sequential jobs is perfectly possible. For example, we use a lot CI cloud services of travis-ci and appveyor.

 Independent per project management and storage. If as a single developer you want to manage different projects
with different user credentials and/or different remotes, you might find that having multiple independent caches
makes it easier.

Using different caches is very simple. You can just define the environment variable CONAN_USER_HOME. By
setting this variable to different paths, you have multiple conan caches, something like python “virtualenvs”. Just

200 Chapter 12. Mastering Conan

Conan Documentation, Release 1.58.0

changing the value of CONAN_USER_HOME, you can switch among isolated Conan instances that will have inde-
pendent package storage caches, and also different user credentials, different user default settings, and different remotes
configuration.

Note: Use an absolute path or a path starting with ~/ (relative to user home). In Windows do not use quotes.

Windows users:

$ SET CONAN_USER_HOME=c:\data
$ conan install . # call conan normally, config & data will be in c:\data\.conan

Linux/macOS users:

$ export CONAN_USER_HOME=/tmp/conan
$ conan install . # call conan normally, config & data will be in /tmp/conan/.conan

You can now:

* Build concurrent jobs, parallel builds in Continuous Integration or locally, by just setting the variable before
launching Conan commands.

* You can test locally different user credentials, default configurations, or different remotes, just by switching from
one cache to another.

$ export CONAN_USER_HOME=/tmp/conan
$ conan search # using that /tmp/conan cache
$ conan user # using that /tmp/conan cache

$ export CONAN_USER_HOME=/tmp/conan2
$ conan search # different packages

$ conan user # can be different users

$ export CONAN_USER_HOME=/tmp/conan # just go back to use the other cache

12.8.1 Concurrency

Conan local cache support some degree of concurrency, allowing simultaneous creation or installation of different
packages, or building different binaries for the same package. However, concurrent operations like removal of packages
while creating them will fail. If you need different environments that operate totally independently, you probably want
to use different Conan caches for that.

The concurrency is implemented with a Readers-Writers lock mechanism, which in turn uses fasteners library file
locks to achieve multi-platform portability. As this “mutex” resource is by definition not enough to implement a
Readers-Writers solution, some active-wait with time sleeps in a loop is necessary. However, this time sleeps will
be rare, only sleeping when there is actually a collision and waiting on a lock.

The lock files will be stored inside each Pkg/version/user/channel folder in the local cache, in a rw file for locking
the entire package, or in a set of locks (one per each different binary package, under a subfolder called locks, with
each lock named with the binary ID of the package).

It is possible to disable the locking mechanism in conan.conf:

[general]
cache_no_locks = True

12.8. Conan local cache: concurrency, Continuous Integration, isolation 201

Conan Documentation, Release 1.58.0

12.8.2 System Requirements

When system_requirements () runs, Conan creates the system_reqs folder. This folder could be created individ-
ually by package id or globally when global_system_requirements is True.

However, sometimes you want to run system_requirements() again for a specific package, so you could either
remove the system_reqs. txt file for the specific package id, or you could remove system_reqs globally for the package
name referred.

202 Chapter 12. Mastering Conan

CHAPTER
THIRTEEN

SYSTEMS AND CROSS BUILDING

This section explains how to approach a cross building scenario with Conan and how to use the Windows subsystems
(Cygwin, MSYS2).

Todo: Maybe we should divide this section, create one for the general cross building problem and a different one to
talk about Windows subsystems.

13.1 Cross building

Cross building (or cross compilation) is the process of generating binaries for a platform that is not the one where the
compiling process is running.

Cross compilation is mostly used to build software for an alien device, such as an embedded device where you don’t
have an operating system nor a compiler available. It’s also used to build software for slower devices, like an Android
machine or a Raspberry Pi where running the native compilation will take too much time.

In order to cross build a codebase the right toolchain is needed, with a proper compiler (cross compiler), a linker and
the set of libraries matching the host platform.

13.1.1 GNU triplet convention

According to the GNU convention, there are three platforms involved in the software building:

¢ Build platform: The platform on which the compilation tools are being executed.

* Host platform: The platform on which the generated binaries will run.

* Target platform: Only when building a cross compiler, it is the platform it will generate