&, | & conan

JFrog C/C++ package manager

Conan Documentation
Release 1.60.2

The Conan team

Feb 12, 2024






CONTENTS

Introduction 3
1.1 0penSource . . . . . . v i i e e e e e e e e e e e 3
1.2 Decentralized package manager . . . . . . . . . .. .. e 3
1.3 Binary management . . . . . . ... ..o e e e e e e e e e e e e e e e e e 4
1.4 All platforms, all build systems and compilers . . . . .. ... .. ... ... ... ... ..., 5
1.5 Stable . . . . . e e 5
1.6 Community . . . . . . . e e e e e e e e e e e e e e e 6
Conan migration guide to 2.0 7
2.1 Migrating the 1ecipes . . . . . . . o . o i e e e e e e e e e e e 7
22 Commands . . . . . ... e e e 29
23  Generalchanges . . . . . . . . . .. 32
24  Configuration files . . . . . . . . L L e 34
Training Courses 35
Install 37
4.1  Install with pip (recommended) . . . . . . . . . .. . L 37
4.2 Install from brew (OSX) . . . . . . . . L e e e e e e e e 38
4.3 Install from AUR (Arch Linux) . . . . . . . . . . . . . . e e 38
4.4 Install the binaries . . . . . . . o . i e e e e e e e e e e e e e e 38
4.5 Initial configuration . . . . . . . .. L e e e e e e e e e e 39
4.6  Install from source . . . . . . . . ... e e e e e e e 39
47 Update . . . . L e e e e e e e e e 39
4.8 Python2 Removal Notice . . . . ... ... .. ... .. 40
Getting Started 41
5.1  An MDS hash calculator using the Poco Libraries . . . . . . .. ... ... ... ... ... ... 41
5.2 Inmstalling Dependencies . . . . . . . . . . . e e e e 45
5.3 Inspecting Dependencies . . . . . . . . . .. e e e e 46
54 Searching Packages. . . . . . . . . . .. 49
5.5 Building with other configurations . . . . . . . . .. ... L e 50
Using packages 51
6.1 Installing dependencies . . . . . . . . . . . e e e e e e e e e 51
6.2  Usingprofiles. . . . . . . . o e e e e e e e 57
6.3  Workflows . . . . . o e e e e 59
6.4 Debugging packages . . . . . . . L. e e e e 61
Creating Packages 63
7.1 Getting started . . . ... L L e e e 63




7.2 Recipe and Sources in a Different Repo . . . . . . . . . ... .. L L 67
7.3 Recipe and Sourcesinthe Same Repo . . . . . . . . . . L e 68
7.4  Packaging Existing Binaries . . . . . . .. ... oo 71
7.5 Understanding Packaging . . . . . . . .. .. ... 73
7.6  Defining Package ABI Compatibility . . . . ... ... ... ... . . ... 75
7.7  Define the package information . . . . . ... ... o o 89
7.8 Toolchains . . . . . . . . e e 91
7.9 Inspecting Packages . . . . . . . .. e e e e e 93
7.10 Packaging Approaches . . . . . . . . . L 93
7.11 Package Creator Tools . . . . . . . . . . .. . e 98
8 Uploading Packages 101
8.1  Remotes . . . . . . . e e e e e e e e e 101
8.2 Uploading Packagesto Remotes . . . . . . . . . . . . . e 102
8.3 Using Artifactory . . . . . . . . . e e e e 103
8.4  RuUNNING CONAN_SEIVET . . . . v v v v v e e et e e e e e e e e e e e e e e e e e e e e 105
9 Developing packages 113
9.1 Packagedevelopment flow . . . . . . . . . . L 113
9.2 Packagelayout . . . . . . . .. e e e e e e 118
9.3 Packagesineditablemode . . . . . .. ... e e 129
9.4 Workspaces . . . . . .. e e e e e e 132
10 Package apps and devtools 139
10.1 Running and deploying packages . . . . . . . . . . ... e 139
10.2 Creating conan packages toinstalldevtools . . . . . . .. ... ... . L oL 146
10.3 Tool requiremMents . . . . . . . . o v v i e e e e e e e e e e e 150
11 Versioning 157
11.1 Introduction to Versioning . . . . . . . . . . . . . . i i e e e 157
11.2 Version ranges . . . . . v v v v v i v e e e e e e e e e e e e e e 162
11.3 Package Revisions . . . . . . . . . . o i e e e e e e e e e 163
11.4 Lockfiles . . . . o o o o e e e e 165
12 Mastering Conan 189
12.1 Use conanfile.py forconsumers . . . . . . . . . . . . e e e e e e 189
12.2 Conditional settings, options and requirements . . . . . . . . . . . . o it et e e e 191
123 Buildpolicies . . . . . . . o o e e e e 193
12.4 Environment variables . . . . . . . . oL e e e e e e e e e e e 194
12.5 Virtual Environments . . . . . . . ... e e e e e 196
12.6 Logg@ing . . . . . o o o e e e e 198
12.7 Sharing the settings and other configuration . . . . . . . . . . . .. ... L e 200
12.8 Conan local cache: concurrency, Continuous Integration, isolation . . . . . . . .. ... ... .... 200
13 Systems and cross building 203
13.1 Crossbuilding . . . . . . . . e e e e 203
13.2 Windows SUbSYStEMS . . . . . . o L e e e e e e e e e e e e e e e e 214
14 Extending Conan 219
14.1 Customizing SEtNGS . . . . . o v v v i e e e e e e e e e e e e e e e e e e e 219
142 Pythonrequires . . . . . . . . o o i e e e e e e e e e e e 222
14.3 Python requires (legacy) . . . . . . . o o . i o e e e e e e e e e 227
14.4 Creating a custom build helper for Conan . . . . . . . . .. ... ... L oo 231
145 HOOKS . . . o o o e e e e e 233
14.6 Template SyStEIM . . . . . . v v v i e e e e e e e e e e e e e e e e e e e e 237




15 Integrations

15.1
15.2
15.3
15.4
15.5
15.6
15.7
15.8
15.9

Compilers . . . ...
Build systems . . . . .
IDEs .........

Other Systems . . . .
Version Control System
Custom integrations .
Linting . . ... ...
Deployment . . . ..

16 Configuration

16.1

Download cache . . .

17 Howtos
How to package header-only libraries . . . . . . . . . . . . . . e
How to launch conan install fromcmake . . . . . .. ... ... ... L L o
How to create and reuse packages based on Visual Studio . . . .. ... ... ... ........
Creating and reusing packages based on Makefiles . . . . .. . ... ... ... .. ... . ...,
How to manage the GCC >=5ABI . . . . . . . . . . e e et
Using Visual Studio 2017 - CMake integration . . . . . . . . .. . ... ...
Working with Intel compilers . . . . . . . .. ..o
How to manage C++standard . . . . . . . . . . . .. L e
How to use Docker to create C and C++ Conan packages . . . . . . . . .. .. ... ... .. ....
17.10 How to reuse Python code inrecipes . . . . . . . . . . . . o 0 i i i i i
17.11 How to create and share a custom generator with generator packages . . . . . . .. ... ... ....
17.12 How to manage shared libraries . . . . . . . . . .. . . .. o
17.13 How to reuse cmake install for package() method . . . . . . . .. .. ... ... ... ... ..
17.14 How to collaborate with other users” packages . . . . . . . ... ... ... ... ... ... .
17.15 How to link with Apple Frameworks . . . . . . . . . . . . ... .
17.16 How to package Apple Frameworks . . . . . . . . . . . . . . i e
17.17 How to collect licenses of dependencies . . . . . . . . . . . . . . i i e
17.18 How to extract licenses from headers . . . . . . . . . . .. . . . ...
17.19 How to dynamically define the name and version of apackage . . . . ... ... ... .. ......
17.20 How to capture package version from SCM: git . . . . . . . ... ... . o
17.21 How to capture package version from SCM:svin . . . . . . . . . . . o i e
17.22 How to capture package version from text or build files . . . . . . . ... ... ... ... ...
17.23 How to use Conan as other language package manager . . . . . .. ... ... ... .. .......
17.24 How to manage SSL (TLS) certificates . . . . . . . . . . . .. . ittt
17.25 How to check the version of the Conan client inside a conanfile . . . ... ... ... ... .....
17.26 Use a generic CI with Conan and Artifactory . . . . . . . . . . . . . it i..
17.27 Using recipe revisions and lockfiles . . . . . . . . . . . . .. L e
17.28 Compiler sanitizers . .

17.1
17.2
17.3
17.4
17.5
17.6
17.7
17.8
17.9

18 Reference

18.1
18.2
18.3
18.4
18.5
18.6
18.7
18.8
18.9

Commands . . .. ..
conanfile.txt . . . ..
conanfile.py. . . . . .
Generators . . . . ..
Profiles . . . ... ..
Build helpers . . . . .
Tools . .. ......
Configuration files . .
Environment variables

247
247
248
279
294
310
333
335
339
340

345
345

347
347
349
350
354
356
357
360
364
366
368
371
376
382
382
383
383
384
384
385
385
385
386
386
392
393
394
396
397

403
403
484
487
668
710
718
744
778
801




19

20

21

22

23

18.10 HOOKS . . . . v o e e e e 813

Cheatsheet 819
19.1 Single-Page Graphical Format . . . . . . . . ... ... e 819
19.2 Community-Created Format . . . . . . . . . . . ... e 820
Videos and links 835
FAQ 837
211 General . . . . L L e e e e e e 837
21.2 UsingConan . . . . . . . . . L e e e 839
21.3 Troubleshooting . . . . . . . . e e e 844
Glossary 849
Changelog 853
23.1 1.60.2 (26-Jul-2023) . . . .. e e e e e e 853
232 1.60.1 (30-May-2023) . . . . . o i e e e e e e 853
233 1.60.0 (11-May-2023) . . . . . o o o e e e e e 853
234 1.59.0 (16-Feb-2023) . . . . . o o o o 854
23.5 1.58.0(30-Jan-2023) . . . . ..o 854
23.6 1.57.0 (12-Jan-2023) . . . . o o o e e e e e e e e e 855
23.7 1.56.0 (21-Dec-2022) . . . . oo e e e e e e 855
23.8 1.55.0 (B0-Nov-2022) . . . . oot e e e e e e 856
239 1.54.0 (07-Nov-2022) . . . o oottt e e e e e e 857
23.10 1.53.0 (04-Oct-2022) . . . . . o v it e 857
23.11 1.52.0 B1-Aug-2022) . . . o oo e e e e e e 858
23,12 1.51.3 (18-Aug-2022) . . . o o o o e e e e e e e e 859
2313 1.51.2 (11-Aug-2022) . . o o oo e e e e e e e e 860
23.14 1.51.1 (09-Aug-2022) . . . o oo e e 860
23.15 1.51.0 (28-Jul-2022) . . . . . Lo 860
23.16 1.50.2 (11-Aug-2022) . . . . . o o 862
23.17 1.50.1 (28-Jul-2022) . . . . . o e e e e e e 862
23.18 1.50.0 (29-Jun-2022) . . . . . .o e e e e 862
23.19 1.49.0 (02-Jun-2022) . . . . . o oo e 863
2320 1.48.2 (02-Jun-2022) . . . . o i e e e 864
2321 1.48.1 (18-May-2022) . . . o v oo o e e e e e e e e 864
23.22 1.48.0 (03-May-2022) . . . o o o o e e e e e e e e e 865
23.23 1.47.0 B1-Mar-2022) . . . . o o e e e e e e e e e e e 866
2324 1.46.2 (18-Mar-2022) . . . . . v vt i e e e e e e e 868
2325 1.46.1 (17-Mar-2022) . . . . o o ot e e e e e e e 868
23.26 1.46.0 (07-Mar-2022) . . . . . o v i it e 868
2327 1.45.0 (02-Feb-2022) . . . . . . . o o e 870
2328 1.44.1 (13-Jan-2022) . . . o v vt o e e e e e e e e e e e e e e 872
23.29 1.44.0 (29-Dec-2021) . . . o o i e 872
2330 1.43.4 (18-Feb-2022) . . . . . . o o o 873
2331 1.43.3 (13-Jan-2022) . . . . o o oo 873
2332 1.43.2 (21-Dec-2021) . . . . e 873
23.33 1.43.1 (17-Dec-2021) . . o o oo e e e e e e e e e e 873
23.34 1.43.0 (03-Dec-2021) . . . o oo e e e e 873
23.35 1.42.2 (22-Nov-2021) . . o oot e e 874
23.36 1.42.1 (08-Nov-2021) . . . . oot e e 875
2337 1.42.0 (29-Oct-2021) . . . . o oot 875
2338 1.41.0 (06-Oct-2021) . . . o v v o o e e e e e e e e e e e e e e e 876
23.39 1.40.4 (05-Oct-2021) . . . v v v i it e e e e e e e e e e e 877




23.40 1.40.3 (30-Sept-2021) . . . . . o L e 877

2341 1.40.2 (21-Sept-2021) . . . . Lo 877
23.42 1.40.1 (14-Sept-2021) . . . . o o oo 878
23.43 1.40.0 (06-Sept-2021) . . . . . o o e e e 878
23.44 1.39.0 27-Jul-2021) . . . . oL e 879
2345 1.38.0 (30-Jun-2021) . . . . . oo e 881
2346 1.37.2 (14-Jun-2021) . . . . . o o o 882
2347 1.37.1 (08-Jun-2021) . . . . . . o o e 882
2348 1.37.0 B1-May-2021) . . . . . . . o e 883
23.49 1.36.0 (28-Apr-2021) . . . . . oL 884
23.50 1.35.2 (19-Apr-2021) . . . . . o L 885
2351 1.35.1 (13-Apr-2021) . . . o o o 885
23.52 1.35.0 B0-Mar-2021) . . . . . o o e 885
23.53 1.34.1 (10-Mar-2021) . . . . o o oo o e 887
23.54 1.34.0 (26-Feb-2021) . . . . . . . . . e 887
23.55 1.33.1 (02-Feb-2021) . . . . . . . . o e 888
23.56 1.33.0 (20-Jan-2021) . . . . . oo e 888
23.57 1.32.1 (15-Dec-2020) . . . . o o o 890
23.58 1.32.0 (03-Dec-2020) . . . . . o oo 890
23.59 1.31.4 (25-Nov-2020) . . . . o oot e 892
23.60 1.31.3 (17-Nov-2020) . . . . . . . . e 892
23.61 1.31.2 (11-Nov-2020) . . . . o o o e e e e e e e e 892
23.62 1.31.1 (10-Nov-2020) . . . . . oot e e e 892
23.63 1.31.0 (30-Oct-2020) . . . . . . o oo i e 892
23.64 1.30.2 (15-Oct-2020) . . . . . o o v it e 893
23.65 1.30.1 (09-Oct-2020) . . . . . . . . o e e 894
23.66 1.30.0 (05-Oct-2020) . . . . o v v it e e e e e e e 894
23.67 1.29.2 (21-Sept-2020) . . . . .. 895
23.68 1.29.1 (17-Sept-2020) . . . . . . o o o 895
23.69 1.29.0 (02-Sept-2020) . . . . . ..o 895
2370 1.28.2 (B1-Aug-2020) . . . . . . . e 896
2371 1.28.1 (06-Aug-2020) . . . . . . . . e 896
2372 1.28.0 31-Jul-2020) . . . . . .. e 897
2373 1.27.1 (10-Jul-2020) . . . . . o oo e 898
23.74 1.27.0 (01-Jul-2020) . . . . . . oo 898
2375 1.26.1 (23-Jun-2020) . . . . . .o 899
23776 1.26.0 (10-Jun-2020) . . . . . . . ... e 899
2377 1.252 (19-May-2020) . . . . . o oo e 900
2378 1.25.1 (13-May-2020) . . . . . . oot e 900
23.79 1.25.0 (06-May-2020) . . . . . . o oo e e 901
23.80 1.24.1 21-Apr-2020) . . . . . o o o 902
23.81 1.24.0 BI-Mar-2020) . . . . . . ... e 902
23.82 1.23.0 (10-Mar-2020) . . . . . . . .. e 903
23.83 1.22.3 (05-Mar-2020) . . . . . o oo e 904
23.84 1.22.2 (13-Feb-2020) . . . . . . . o o 904
23.85 1.22.1 (11-Feb-2020) . . . . . . . o o o 904
23.86 1.22.0 (05-Feb-2020) . . . . . . . . . . e 904
23.87 1.21.3 (03-Mar-2020) . . . . . . ... e 906
23.88 1.21.2 (31-Jan-2020) . . . . . . . . e 906
23.89 1.21.1 (14-Jan-2020) . . . . . . o oo 906
2390 1.21.0 (10-Dec-2019) . . . . . . o o o 907
2391 1.20.5 (3-Dec-2019) . . . . . o o 908
23.92 1.20.4 (19-Nov-2019) . . . . . o . e 908
2393 1.20.3 (11-Nov-2019) . . . . . . o e 908




2394 1.20.2 (6-Nov-2019) . . . . . L o 908

23.95 1.20.1 (5-Nov-2019) . . . . . o o e e e e e e 909
23.96 1.20.0 (4-Nov-2019) . . . . . . o e e e e 909
23.97 1.19.3 (29-Oct-2019) . . . . . . o e e e e e e e 910
23.98 1.19.2 (16-Oct-2019) . . . . . . o o e e e e e e e e e 910
23.99 1.19.1 (B-Oct-2019) . . . . v v e e e e e e e e e 911
23.1001.19.0 (30-Sept-2019) . . . . . . o i e e e e e e e e e e 911
23.1011.18.5 (24-Sept-2019) . . . . . . o e e e e e e e 912
23.1021.18.4 (12-Sept-2019) . . . . . . o o e e e 912
23.1031.18.3 (10-Sept-2019) . . . . . . o o e e e 912
23.1041.18.2 (30-Aug-2019) . . . . . e 912
23.1051.18.1 (8-Aug-2019) . . . . . . e e 912
23.1061.18.0 (30-Jul-2019) . . . . . . . e e e e e 913
23.1071.17.2 (25-Jul-2019) . . . . . e e e 913
23.1081.17.1 (22-Jul-2019) . . . . o . e e e e e e e e 913
23.1001.17.0 (9-Jul-2019) . . . . . o o e e e e e e e e e e 914
23.1101.16.1 (14-Jun-2019) . . . . . . o e e e e 915
23.1111.16.0 (4-Jun-2019) . . . . . . o e e e e e e e e 915
23.1121.05.4 . o L o e 916
231131053 . o o e e 916
23.1141.15.2 31-May-2019) . . . . . o o e e e 916
23.1151.15.1 (16-May-2019) . . . . . o o e e e 916
23.1161.15.0 (6-May-2019) . . . . . . . e e e e e e 917
23.1171.14.5 (30-Apr-2019) . . . . . . o e e e e e e 918
23.1181.14.4 (25-Apr-2019) . . . . . o o e e e 918
23.1191.14.3 (11-Apr-2019) . . . . . o e e e 918
23.1201.14.2 (11-Apr-2019) . . . . o o e e 918
23.1211.14.1 (1-Apr-2019) . . . . e e e e e 918
23.1221.14.0 (28-Mar-2019) . . . . . . e e e e e e e e 919
23.1231.13.3 (27-Mar-2019) . . . . . . e e e e e e 920
23.1241.13.2 (21-Mar-2019) . . . . . e e e e e e e e e 920
23.1251.13.1 (15-Mar-2019) . . . . . e e e e e e e e e e e 920
23.1261.13.0 (07-Mar-2019) . . . . . . . e e e e e e e e 920
23.1271.12.3 (18-Feb-2019) . . . . . . . e e e e e 921
23.1281.12.2 (8-Feb-2019) . . . . . . . . e e e 921
23.1291.12.1 (5-Feb-2019) . . . . . . o e e e e e e e e 922
23.1301.12.0 (30-Jan-2019) . . . . . . e e e e e e e e e e 922
231311 11.2 (8-Jan-2019) . . . . o o e e e e e e e e e 924
23.1321.11.1 (20-Dec-2018) . . . . o o e e e e e e e e e e 924
23.1331.11.0 (19-Dec-2018) . . . . . o o e e e e e e e e e 924
23.1341.10.2 (17-Dec-2018) . . . . . o o e e e e e e e e e e e 925
23.1351.10.1 (11-Dec-2018) . . . . . o e e e e e e e e e e e 925
23.1361.10.0 (4-Dec-2018) . . . . v o i e e e e e e e e e e e 925
23.1371.9.2 (20-Nov-2018) . . . . . o o e e e e e e 926
23.1381.9.1 (08-Nov-2018) . . . . . . o e e e e e e e e e e e 926
23.1391.9.0 (30-October-2018) . . . . . . . . . e e e e e 926
23.1401.8.4 (19-October-2018) . . . . . . . . o e e e e e e e e e e e 928
23.1411.8.3 (17-October-2018) . . . . . . . i e e e e e e e e e e e 928
23.1421.8.2 (10-October-2018) . . . . . . . o o e e e e e 928
23.1431.8.1 (10-October-2018) . . . . . . . . o e e e e e e 928
23.1441.8.0 (9-October-2018) . . . . . . . o o e e e e e e e e e 928
23.1451.7.4 (18-September-2018) . . . . . . . . L. e e e e e e e e 930
23.1461.7.3 (6-September-2018) . . . . . .. L e 931
23.1471.7.2 (4-September-2018) . . . . . L L. 931

vi



23.1481.7.1 (31-August-2018) . . . . . . e 931

23.1491.7.0 (29-August-2018) . . . . . .. e e e e e e e e 931
23.1501.6.1 (27-July-2018) . . . . . e e e e e 932
23.1511.6.0 (19-July-2018) . . . . . . o e e 932
23.1521.5.2 (5-July-2018) . . . . . e e e e 933
23.1531.5.1 (29-June-2018) . . . . . . e e e e e e e e e e 934
23.1541.5.0 (27-June-2018) . . . . . . e e e e e e e e 934
23.1551.4.5 (22-June-2018) . . . . . . o e e e e e e e 935
23.1561.4.4 (11-June-2018) . . . . . . o o o i e e e e e 935
23.1571.4.3 (6-June-2018) . . . . . . e e e e e e e e e 935
23.1581.4.2 (4-June-2018) . . . . . . e e e e e e e e e e e 935
23.1591.4.1 B1-May-2018) . . . . . . o e e e e e e e 935
23.1601.4.0 (30-May-2018) . . . . . . . e e e e e e e e 936
23.1611.3.3 (10-May-2018) . . . . . . . o e e e 937
23.1621.3.2 (7-May-2018) . . . . . . o e e e e e 937
23.1631.3.1 (B-May-2018) . . . . . e e e 937
23.1641.3.0 (B30-April-2018) . . . . . . e e e e 937
23.1651.2.3 (10-Apr-2017) . . . . e e e e e e e e e 938
23.1661.2.1 (B-Apr-2018) . . . . . e e e e e e 938
23.1671.2.0 (28-Mar-2018) . . . . . . e e e e e e e e e e e e e e 939
23.1681.1.1 (5-Mar-2018) . . . . . o e e e e e e e e e e 940
23.1601.1.0 (27-Feb-2018) . . . . . . o e e e e e e e e e e 940
23.1701.0.4 (30-January-2018) . . . . . . . .. e e e e e e e 942
23.1711.0.3 (22-January-2018) . . . . . . . . e e e e e e e e 942
23.1721.0.2 (16-January-2018) . . . . . . . .. e 942
23.1731.0.1 (12-January-2018) . . . . . . . . L e e 943
23.1741.0.0 (10-January-2018) . . . . . . . L L e 943
23.1751.0.0-betas (8-January-2018) . . . . . . .. e e e e e e e e 943
23.1761.0.0-betad (4-January-2018) . . . . . . L. e e e e e e e 943
23.1771.0.0-beta3 (28-December-2017) . . . . . . . . . . e e e e e 944
23.1781.0.0-beta2 (23-December-2017) . . . . . . . o o e e e e e e e e e e 944
23.1790.30.3 (15-December-2017) . . . . . . . . o e e e e e e e e e e e 945
23.1800.30.2 (14-December-2017) . . . . . . . e e e e e e 945
23.1810.30.1 (12-December-2017) . . . . . . . v o e e e e e e e e e e e 945
23.1820.29.2 (2-December-2017) . . . . . . . . e e e e e e e e e e e 946
23.1830.29.1 (23-November-2017) . . . . . . . o o e e e e e e e e e e 946
23.1840.29.0 (21-November-2017) . . . . . . . o o e e e e e e e e e e e e e 946
23.1850.28.1 (31-October-2017) . . . . . . e e e e e e e e e e e e e e e e e 947
23.1860.28.0 (26-October-2017) . . . . . o o e e e e e e e e e e e e 948
23.1870.27.0 (20-September-2017) . . . . . . . . e e e e e e e 949
23.1880.26.1 (05-September-2017) . . . . . . . . e e e e 950
23.1890.26.0 (31-August-2017) . . . . . .. e 950
23.1900.25.1 (20-July-2017) . . . . o o e e e 951
23.1910.25.0 (19-July-2017) . . . . . o o e e e e e e e e e 952
23.1920.24.0 (15-June-2017) . . . . . o o e e e e e e 953
23.1930.23.1 (05-June-2017) . . . . . e e e e 954
23.1940.23.0 (01-June-2017) . . . . . 0 e e e e e e e e e e e 954
23.1950.22.3 (03-May-2017) . . . . . o o e e e e e 954
23.1960.22.2 (20-April-2017) . . . . . o e e e e e e 955
23.1970.22.1 (18-April-2017) . . . . . o o e e e e e e e 955
23.1980.22.0 (18-April-2017) . . . . . . o o e e e e e e 955
23.1990.21.2 (04-April-2017) . . . . o o e e 956
23.2000.21.1 (23-March-2017) . . . . . o e e e e e e e e e e e e e 956
23.2010.21.0 (21-March-2017) . . . . . o o e e e e e e e e e e e e e e e 956

vii



23.2020.20.3 (06-March-2017) . . . . . . . o o e e 957

23.2030.20.2 (02-March-2017) . . . . . . o e e e e e e e e 957
23.2040.20.1 (O1-March-2017) . . . . . . o o e e e e e e 957
23.2050.20.0 (27-February-2017) . . . . . . . o L e e e e e e e 957
23.2060.19.3 (27-February-2017) . . . . . . . . e 958
23.2070.19.2 (15-February-2017) . . . . . . o o e 959
23.2080.19.1 (02-February-2017) . . . . . . o o e e e e e e e e e 959
23.2090.19.0 (31-January-2017) . . . . . . . . e e e e e e e e e e 959
23.2100.18.1 (11-January-2017) . . . . . . . . e e e 960
23.2110.18.0 (3-January-2017) . . . . . . . . e e 960
23.2120.17.2 (21-December-2016) . . . . . . . . . o e e e e e e e e e e e 961
23.2130.17.1 (15-December-2016) . . . . . . . . . . e e e 961
23.2140.17.0 (13-December-2016) . . . . . . . . . i e e e e e e e e 961
23.2150.16.1 (05-December-2016) . . . . . . . . . e e e 962
23.2160.16.0 (19-November-2016) . . . . . . . . . o i e e e e e e e e e e 962
23.2170.15.0 (08-November-2016) . . . . . . . . . i e e e e e e e e e e e e e e 962
23.2180.14.1 (20-October-2016) . . . . . . v v e e e e e e e e e 963
23.2190.14.0 (20-October-2016) . . . . . . o v e e e e e e e e e e 963
23.2200.13.3 (13-October-2016) . . . . . . . o e e e e e e e e e 964
23.2210.13.0 (03-October-2016) . . . . . . . o e e e e e e 964
23.2220.12.0 (13-September-2016) . . . . . . . . . e e 965
23.2230.11.1 (31-August-20106) . . . . . . . L e e e 966
23.2240.11.0 (3-August-2016) . . . . . . . e e e e e e e e e 966
23.2250.10.0 (29-June-2016) . . . . . . .. e e e 967
23.2260.9.2 (11-May-2016) . . . . . . . . e e e 968
23.2270.9 (3-May-2016) . . . . . . . e e e e e e 968
23.2280.8.4 (28-Mar-2016) . . . . . . e e e e e e e e e e e e e e 968
23.2290.8 (15-Mar-2016) . . . . . . . o e e e e e 969
23.2300.7 (5-Feb-2016) . . . . . . . o e e e e e e e e e 969
23.2310.6 (11-Jan-2016) . . . . . . . o e e e 970
23.2320.5 (18-Dec-2015) . . . . o o e e e e e e e e e 970
Index 973

viii



Conan Documentation, Release 1.60.2

Conan is a software package manager which is intended for C and C++ developers.

Conan is universal and portable. It works in all operating systems including Windows, Linux, OSX, FreeBSD, Solaris,
and others, and it can target any platform, including desktop, server, and cross-building for embedded and bare metal
devices. It integrates with other tools like Docker, MinGW, WSL, and with all build systems such as CMake, MSBuild,
Makefiles, Meson, SCons. It can even integrate with proprietary build systems.

Conan is completely free and open source and fully decentralized. It has native integration with JFrog Artifactory,
including the free Artifactory Community Edition for Conan, enabling developers to host their own private packages
on their own server. The ConanCenter central repository contains hundreds of popular open source libraries packages,
with many pre-compiled binaries for mainstream compiler versions.

Conan can manage any number of different binaries for different build configurations, including different architectures,
compilers, compiler versions, runtimes, C++ standard library, etc. When binaries are not available for one configu-
ration, they can be built from sources on-demand. Conan can create, upload and download binaries with the same
commands and flows on every platform, saving lots of time in development and continuous integration. The binary
compatibility can even be configured and customized on a per-package basis.

Conan has a very large and active community, especially in Github repositories and the Slack #conan channel. This
community also creates and maintains packages in ConanCenter. Conan is used in production by thousands of compa-
nies, and consequently, it has a commitment to stability, with no breaking changes across all Conan 1.X versions.

CONTENTS 1


https://conan.io
https://github.com/conan-io/conan
https://conan.io/center
https://github.com/conan-io/conan
https://cppalliance.org/slack/

Conan Documentation, Release 1.60.2

2 CONTENTS



CHAPTER
ONE

INTRODUCTION

Conan is a dependency and package manager for C and C++ languages. It is free and open-source, works on all plat-
forms (Windows, Linux, OSX, FreeBSD, Solaris, etc.), and can be used to develop for all targets including embedded,
mobile (i0S, Android), and bare metal. It also integrates with all build systems like CMake, Visual Studio (MSBuild),
Makefiles, SCons, etc., including proprietary ones.

It is specifically designed and optimized for accelerating the development and Continuous Integration of C and C++
projects. With full binary management, it can create and reuse any number of different binaries (for different config-
urations like architectures, compiler versions, etc.) for any number of different versions of a package, using exactly
the same process in all platforms. As it is decentralized, it is easy to run your own server to host your own packages
and binaries privately, without needing to share them. The free JFrog Artifactory Community Edition (CE) is the
recommended Conan server to host your own packages privately under your control.

Conan is mature and stable, with a strong commitment to forward compatibility (non-breaking policy), and has a
complete team dedicated full time to its improvement and support. It is backed and used by a great community, from
open source contributors and package creators in ConanCenter to thousands of teams and companies using it.

1.1 Open Source

Conan is Free and Open Source, with a permissive MIT license. Check out the source code and issue tracking (for ques-
tions and support, reporting bugs and suggesting feature requests and improvements) at https://github.com/conan-io/
conan

1.2 Decentralized package manager

Conan is a decentralized package manager with a client-server architecture. This means that clients can fetch packages
from, as well as upload packages to, different servers (“remotes”), similar to the “git” push-pull model to/from git
remotes.

At a high level, the servers are just storing packages. They do not build nor create the packages. The packages are
created by the client, and if binaries are built from sources, that compilation is also done by the client application.



https://github.com/conan-io/conan
https://conan.io/downloads.html
https://conan.io/center
https://github.com/conan-io/conan
https://github.com/conan-io/conan

Conan Documentation, Release 1.60.2

+ JFro
C \TrcroRy “

COMMUNITY EDITION FOR C/C++ \_\\
o JFrog
< CONAN
N

Client

The different applications in the image above are:

* The Conan client: this is a console/terminal command-line application, containing the heavy logic for package
creation and consumption. Conan client has a local cache for package storage, and so it allows you to fully create
and test packages offline. You can also work offline as long as no new packages are needed from remote servers.

* JFrog Artifactory Community Edition (CE) is the recommended Conan server to host your own packages pri-
vately under your control. It is a free community edition of JFrog Artifactory for Conan packages, including a
WebUI, multiple auth protocols (LDAP), Virtual and Remote repositories to create advanced topologies, a Rest
API, and generic repositories to host any artifact.

» The conan_server is a small server distributed together with the Conan client. It is a simple open-source imple-
mentation and provides basic functionality, but no WebUI or other advanced features.

» ConanCenter is a central public repository where the community contributes packages for popular open-source
libraries like Boost, Zlib, OpenSSL, Poco, etc.

1.3 Binary management

One of the most powerful features of Conan is that it can create and manage pre-compiled binaries for any possible
platform and configuration. By using pre-compiled binaries and avoiding repeated builds from source, it saves signifi-
cant time for developers and Continuous Integration servers, while also improving the reproducibility and traceability
of artifacts.

A package is defined by a “conanfile.py”. This is a file that defines the package’s dependencies, sources, how to build
the binaries from sources, etc. One package “conanfile.py” recipe can generate any arbitrary number of binaries, one
for each different platform and configuration: operating system, architecture, compiler, build type, etc. These binaries
can be created and uploaded to a server with the same commands in all platforms, having a single source of truth for
all packages and not requiring a different solution for every different operating system.

4 Chapter 1. Introduction


https://conan.io/downloads.html
https://conan.io/center

Conan Documentation, Release 1.60.2

server

package Pkg/0O.1@user/channel

_ package
~ “binaries”

I S |
}

Pkg/O.1@user/channel »

recipe

client

Installation of packages from servers is also very efficient. Only the necessary binaries for the current platform and
configuration are downloaded, not all of them. If the compatible binary is not available, the package can be built from
sources in the client too.

1.4 All platforms, all build systems and compilers

Conan works on Windows, Linux (Ubuntu, Debian, RedHat, ArchLinux, Raspbian), OSX, FreeBSD, and SunOS, and,
as it is portable, it might work in any other platform that can run Python. It can target any existing platform: ranging
from bare metal to desktop, mobile, embedded, servers, and cross-building.

Conan works with any build system too. There are built-in integrations to support the most popular ones like CMake,
Visual Studio (MSBuild), Autotools and Makefiles, SCons, etc., but it is not a requirement to use any of them. It is
not even necessary that all packages use the same build system: each package can use their own build system, and
depend on other packages using different build systems. It is also possible to integrate with any build system, including
proprietary ones.

Likewise, Conan can manage any compiler and any version. There are default definitions for the most popular ones:
gcc, cl.exe, clang, apple-clang, intel, with different configurations of versions, runtimes, C++ standard library, etc. This
model is also extensible to any custom configuration.

1.5 Stable

From Conan 1.0 and onwards, there is a commitment to stability, with the goal of not breaking user space while evolving
the tool and the platform. This means:

Moving forward to following minor versions 1.1, 1.2, ..., 1.X should never break existing recipes, packages or
command line flows

If something is breaking, it will be considered a bug and reverted

Bug fixes will not be considered breaking, recipes and packages relying on the incorrect behavior of such bugs
will be considered already broken.

Only documented features are considered part of the public interface of Conan. Private implementation details,
and everything not included in the documentation is subject to change.

Configuration and automatic tools detection, like the detection of the default profile might be subject to change.
Users are encouraged to define their configurations in profiles for repeatability. New installations of Conan might
use different configurations.

1.4. All platforms, all build systems and compilers 5



Conan Documentation, Release 1.60.2

The compatibility is always considered forward. New APIs, tools, methods, helpers can be added in following 1.X
versions. Recipes and packages created with these features will be backwards incompatible with earlier Conan versions.

This means that public repositories, like ConanCenter, assume the use of the latest version of the Conan client, and
using an older version may result in failure of packages and recipes created with a newer version of the client.

Conan needs Python 3 to run. It has supported Python 2 until 1 January 2020, when it was officially deprecated by the
Python maintainers. From Conan 1.22.0 release, Python 2 support is not guaranteed. See the deprecation notice for
more details

If you have any question regarding Conan updates, stability, or any clarification about this definition of stability, please
report in the documentation issue tracker: https://github.com/conan-io/docs.

1.6 Community

Conan is being used in production by hundreds of companies like Audi, Continental, Plex, Electrolux and Mercedes-
Benz and many thousands of developers around the world.

But an essential part of Conan is that many of those users will contribute back, creating an amazing and helpful com-
munity:

¢ The https://github.com/conan-io/conan project has more than 3.5K stars in Github and counts with contributions
of nearly 200 different users (this is just the client tool).

* Many other users contribute recipes for ConanCenter via the https://github.com/conan-io/conan-center-index
repo, creating packages for popular Open Source libraries.

* More than one thousand of Conan users hang around the CppLang Slack #conan channel, and help responding
to questions, discussing problems and approaches..

Have any questions? Please check out our FAQ section or .

6 Chapter 1. Introduction


https://github.com/conan-io/docs
https://github.com/conan-io/conan
https://github.com/conan-io/conan-center-index
https://cppalliance.org/slack/

CHAPTER
TWO

CONAN MIGRATION GUIDE TO 2.0

Tip: Conan 2.0 is already released, you can install the latest Conan version from PyPI doing:

{$ pip install conan }

If you want to migrate to 2.0, there are several things you will need to change:

* The recipes have to be updated to be compatible with Conan 2.0. There are 2.0 features ported to Conan 1.X
s0 you can get a compatible recipe with 2.0 using Conan 1.X. Please be aware that although the recipes can
be compatible between Conan 1.X and 2.0, the generated Conan binary packages won’t be compatible between
versions.

* The conan commands have also changed, but there are no “compatible” commands introduced in Conan 1.X.
We will review the more relevant changes.

¢ General changes not related to the recipes nor the Conan commands, “build profiles”, lowercase references. ..
etc.

Note: There are already lots of recipes prepared for v2, some of them with generated binaries, in ConanCenter, follow
the Conan 2.0 and ConanCenter Support thread for more information.

2.1 Migrating the recipes

We introduced changes to Conan 1.X versions so you can start migrating your recipes to do a smooth transition to
Conan 2.0.

2.1.1 Python import statements

 All the imports from the conans package have to be replaced. The Conan 2.0 ones are in the conan package.
Note the plural.

* The “tools” functions are now organized in different packages, you can check the complete reference here.

Listing 1: From:

[ from conans import ConanFile, tools



https://pypi.org/project/conan/#history
https://conan.io/center
https://conan.io/cci-v2.html

Conan Documentation, Release 1.60.2

Listing 2: To:

from
from
from
from
from
from

conan
conan

conan.
conan.
conarmn.

import ConanFile

.tools.files import save, load
conan.

tools.gnu import AutotoolsToolchain, AutotoolsDeps
tools.microsoft import unix_path, VCVars, is_msvc

errors import ConanInvalidConfiguration
errors import ConanException

2.1.2 Requirements

e Use self.test_requires() to define test requirements instead of the legacy self.build_requires(.. .,
force_host_context).

e Use self.tool_requires() to define the legacy build_requires.

Listing 3: From:

from conans import ConanFile

class Pkg(Conanfile):

def build_requirements(self):
self.build_requires('nasm/2.15.05")
self.build_requires("gtest/0.1", force_host_context=True)

Chapter 2. Conan migration guide to 2.0




Conan Documentation, Release 1.60.2

Listing 4: To:

from conan import ConanFile

class Pkg(Conanfile):

def build_requirements(self):
self.tool_requires('"nasm/2.15.05")
self.test_requires('"gtest/0.1")

The self.requires() method allows in 1.X any **kwargs, so something like self.requires(...,
transitive_headers=True) is possible in Conan 1.X. These **kwargs don’t have any effect at all in Conan 1.X,
they are not even checked for correctness. But they are allowed to exist, so if new requirement traits are used in Conan
2.0, they will not error.

2.1.3 Settings

* Do not use dictionary expressions in your recipe settings definition (like settings = {"os":
["Windows", "Linux"]}. This way of limiting supported configurations by one recipe will be removed. Use
the validate() method instead to raise ConanInvalidConfiguration if strictly necessary to fail fast for
unsupported configurations.

.
from conan import ConanFile

class Pkg(Conanfile):

settings = "os", "arch", "compiler"

def validate(self):
if self.settings.os == "Macos":
raise ConanInvalidConfiguration('"Macos not supported™)

L

* In Conan 2, removing a setting, for example, del self.settings.compiler.libcxx in the configure()
method, will raise an exception if the setting doesn’t exist. It has to be protected with try/except. The self.
settings.rm_safe() method already implements the try/except clause internally. Use it like:

def configure(self):
# it's a C library
self.settings.rm_safe("compiler.libcxx")
self.settings.rm_safe("compiler.cppstd™)

2.1. Migrating the recipes 9




Conan Documentation, Release 1.60.2

2.1.4 Options

default_options

The definition of the default_options attribute has changed when referring to a dependency. It is related to the
unified patterns in the command line.

Listing 5: From:

from conans import ConanFile

class Pkg(Conanfile):
default_options = {"pkg:some_option": "value"}

Listing 6: To:

from conan import ConanFile

class Pkg(Conanfile):
# "pkg/*:some_option" or ""pkg/1.0:some_option" would be valid
default_options = {"pkg/*:some_option": "value"}

ANY special value
The special value ANY has to be declared in a list:

Listing 7: From:

from conans import ConanFile

class Pkg(Conanfile):
options = {"opt": "ANY"}

Listing 8: To:

from conan import ConanFile

class Pkg(Conanfile):
options = {"opt": ["ANY"]}

In case the default value is None, then it should be added as possible value to that option:

10 Chapter 2. Conan migration guide to 2.0




Conan Documentation, Release 1.60.2

Listing 9: To:

from conan import ConanFile

class Pkg(Conanfile):
options = {"opt": [None, "ANY"]}
default_options = {"opt": None}

2.1.5 The validate() method

Use always the self.settings instead of self.info.settings and self.options instead of self.info.
options. The compatibility mechanism are not needed to verify if the configurations of potential compatible pack-
ages are valid after the graph has been built.

Listing 10: From:

class Pkg(Conanfile):

def validate(self):
if self.info.settings.os == "Windows":
raise ConanInvalidConfiguration("This package is not compatible with Windows

")

Listing 11: To:

class Pkg(Conanfile):

def validate(self):
if self.settings.os == "Windows":
raise ConanInvalidConfiguration("This package is not compatible with Windows

-

Note: For recipes where settings are cleared, using self.settings is still valid. For example, this applies to header
only recipes that check for a specific self.settings.cppstd like:

def package_id(self):
self.info.clear()

def validate(self):
if self.settings.get_safe("compiler.cppstd"):
check_min_cppstd(self, 17)

If you are not checking if the resulting binary is valid for the current configuration but need to check if a package can
be built or not for a specific configuration you must use the validate_build() method using self.settings and
self.options to perform the checks:

from conan import ConanFile
from conan.errors import ConanInvalidConfiguration

class myConan(ConanFile):

(continues on next page)

2.1. Migrating the recipes 11




Conan Documentation, Release 1.60.2

(continued from previous page)

name = "foo"
version = "1.0"
settings = "os", "arch", "compiler"

def package_id(self):
# For this package, it doesn't matter what compiler is used for the binary package
del self.info.settings.compiler

def validate_build(self):
# But we know this cannot be built with "gcc"
if self.settings.compiler == "gcc":
raise ConanInvalidConfiguration('This doesn't build in GCC")

def validate(self):
# We shouldn't check self.info.settings.compiler here because it has been removed.,
—1n the package_id()
# so it doesn't make sense to check if the binary is compatible with gcc because.
—the compiler doesn't matter
pass

2.1.6 The layout() method

The layout method is not mandatory but very recommended to:
* Give better support for editable packages.
¢ Work with local commands, conan install + conan source + conan build.

If your recipe is using CMake, you might want to use the cmake_layout (self):

p
from conan import ConanFile
from conan.tools.cmake import cmake_layout

class Pkg(Conanfile):

def layout(self):
cmake_layout (self)

&

A typical anti-pattern in the recipes that can be solved with a 1ayout () declaration would be:

Listing 12: From:

from conans import ConanFile, tools
class Pkg(Conanfile):

@property
def _source_subfolder(self):
return "source_subfolder"

def source(self):
tools.get(**self.conan_data["sources"][self.version],
destination=self._source_subfolder, strip_root=True)

12 Chapter 2. Conan migration guide to 2.0




Conan Documentation, Release 1.60.2

Listing 13: To:

from conan import ConanFile
from conan.tools.layout import basic_layout
from conan.tools.files import get

class Pkg(Conanfile):

def layout(self):
basic_layout(self, src_folder="source")

def source(self):
get(self, **self.conan_data["sources"][self.version], strip_root=True)

When declaring the layout, the variables self.source_folder and self.build_folder will point to the correct
folder, both in the cache or locally when using local methods, it is always recommended to use these when performing
disk operations (read, write, copy, etc).

If you are using editables, the external template files are going to be removed. Use the 1ayout () method definition
instead.

Read more about the layout feature and the reference of the layout() method.
Adjusting the cpp_info objects
You can adjust the cpp_info in the 1ayout method too, not only for a package in the cache, that was typically done in

the package_info() method using the self.cpp_info, but for editable packages (to reuse a conan package that is
being developed in a local directory):

def layout(self):

# This will be automatically copied to self.cpp_info
# This information is relative to the self.package_folder
self.cpp.package.includedirs.append("other_includes")

# This information is relative to the self.build_folder
self.cpp.build.libdirs = ["."]
self.cpp.build.bindirs = ["bin"]

# This information is relative to the self.source_folder

self.cpp.source.includedirs = ["."]

cpp_info libdir, bindir, includedir accessors when using layout() in Conan 1.X

Since Conan 1.53.0 you can access cpp_info.libdirs[0], cpp_info.bindirs[®] and cpp_info.
includedirs[0] using cpp_info.libdir, cpp_info.bindir and cpp_info.includedir

2.1. Migrating the recipes 13



https://github.com/conan-io/conan/releases/tag/1.53.0

Conan Documentation, Release 1.60.2

2.1.7 The scm attribute

The scm attribute won’t exist in Conan 2.0. You have to start using the export() and source() methods to mimic
the same behavior:

* The export () method is responsible for capturing the “coordinates” of the current URL and commit. The new
conan.tools.scm.Git can be used for this (do not use the legacy Git helper but this one)

e The export() method, after capturing the coordinates, can store them in the conandata.yml using the
update_conandata() helper function

* The source() method can use the information in self.conan_data coming from the exported conandata.
yml file to do a clone and checkout of the matching code. The new conan. tools.scm.Git can be used for this
purpose.

Listing 14: From:

from conans import ConanFile, tools

class Pkg(Conanfile):

scm = {
"type": "git",
"url": "auto",
"revision": "auto",
}

Listing 15: To:

from conan import ConanFile
from conan.tools.scm import Git
from conan.tools.files import load, update_conandata

class Pkg(Conanfile):

def export(self):
git = Git(self, self.recipe_folder)
scm_url, scm_commit = git.get_url_and_commit()
update_conandata(self, {"sources": {"commit": scm_commit, "url": scm_url}})

def source(self):
git = Git(self)
sources = self.conan_data["sources"]
git.clone(url=sources["url"], target=".")
git.checkout (commit=sources["commit"])

Please check the full example on the conan.tools.scm.Git section.

14 Chapter 2. Conan migration guide to 2.0




Conan Documentation, Release 1.60.2

2.1.8 The export_sources() method

The self.copy method has been replaced by the explicit tool copy. Typically you would copy from the conanfile.
recipe_folder to the conafile.export_sources_folder:

Listing 16: From:

def export_sources(self):

self.copy("CMakeLists.txt")

Listing 17: To:

from conan.tools.files import copy
def export_sources(self):

copy(self, "CMakeLists.txt", self.recipe_folder, self.export_sources_folder)

2.1.9 The generate() method

This is a key method to understand how Conan 2.0 works. This method is called during the Conan “install” step, before
calling the build() method. All the information needed to build the current package has to be calculated and written
in disk (in the self.generators_folder) by the generate () method. The goal of the generate() method is to
prepare the build generating all the information that could be needed while running the build step. That means things
like:

* Write information about the dependencies for the build system. This is done by what we call “generators”, which
are tools like CMakeDeps, PkgConfigDeps, MSBuildDeps, XcodeDeps, etc.

» Write information about the configuration (settings, options...). This is done by what we call “toolchains”, which
are tools like CMakeToolchain, AutotoolsToolchain, MSBuildToolchain, XcodeToolchain, etc.

* Write other files to be used in the build step, like scripts that inject environment variables (check the part on how
to migrate the environment on this guide), files to pass to the build system, etc.

This improves a lot the local development, a simple conan install will generate everything we need to build our
project in the IDE or just call the build system. This example is using the CMake integration, but if you use other build
systems, even a custom one, remember you should generate everything needed in the generate () method:

from conan import ConanFile
from conan.tools.cmake import CMakeToolchain, CMakeDeps, CMake, cmake_layout

class Pkg(ConanFile):
requires = "foo/1.0", "bar/1.0"

def layout(self):
cmake_layout (self)

def generate(self):
# This generates '"conan_toolchain.cmake" in self.generators_folder
tc = CMakeToolchain(self)

(continues on next page)

2.1. Migrating the recipes 15




Conan Documentation, Release 1.60.2

(continued from previous page)
tc.variables["MYVAR"] = "1"

tc.preprocessor_definitions["MYDEFINE"] = "2"
tc.generate()

# This generates "foo-config.cmake" and "bar-config.cmake" in self.generators_
—folder

deps = CMakeDeps(self)

deps.generate()

If we are using that recipe for our project we can build it by typing:

# This will generate the config files from the dependencies and the toolchain
$ conan install .

# Windows

$ cd build

$ cmake .. -DCMAKE_TOOLCHAIN_FILE=generators/conan_toolchain.cmake
$ cmake --build . --config=Release

# Linux

$ cd build/Release

$ cmake ../.. -DCMAKE_TOOLCHAIN_FILE=generators/conan_toolchain.cmake -DCMAKE_BUILD_
— TYPE=Release

$ cmake --build .

You can check all the generators and toolchains for different build systems in the fools reference page.

It is also very important to know that every access to the information from the dependencies must be done in the
generate () method using the self.dependencies access. Do not use self.deps_cpp_info, self.deps_env_info
or self.deps_user_info, these have been removed in 2.0.

Note: If you don’t need to customize anything in a generator you can specify it in the generators attribute and skip
using the generate () method for that:

from conan import ConanFile
from conan.tools.cmake import CMake, cmake_layout
class Pkg(ConanFile):

requires = "foo/1.0", "bar/1.0"
generators = "CMakeToolchain", "CMakeDeps"

16 Chapter 2. Conan migration guide to 2.0



https://docs.conan.io/en/latest/reference/conanfile/dependencies.html#dependencies-interface

Conan Documentation, Release 1.60.2

2.1.10 The build() method
There are no relevant changes in how the build () method works in Conan v2 compared to v1. Just be aware that the

generate () method should be used to prepare the build, generating information used in the build() step. Please,
learn how to do that in the section of this guide about the generate() method.

2.1.11 The package() method

The self. copy has been replaced by the explicit tool copy.

Listing 18: From:

def package(self):

self.copy("*.h", dst="include", src="src")
self.copy("*.1ib", dst="1ib", keep_path=False)
self.copy("*.d1l1l", dst="bin", keep_path=False)

Listing 19: To:

from conan.tools.files import copy
def package(self):

copy(self, "*.h", self.source_folder, join(self.package_folder, "include"), keep_
—path=False)

copy(self, "*.1ib", self.build_folder, join(self.package_folder, "1lib"), keep_
—path=False)

copy(self, "*.dll", self.build_folder, join(self.package_folder, "bin"), keep_
—path=False)

2.1.12 The package_info() method

Changed cpp_info default values

There are some defaults in self.cpp_info object that are not the same in Conan 2.X than in Conan 1.X (except for
Conan >= 1.50 if the layout () method is declared):

self.cpp_info.includedirs => ["include"]
self.cpp_info.libdirs => ["1ib"]
self.cpp_info.resdirs => []
self.cpp_info.bindirs => ["bin"]
self.cpp_info.builddirs => []
self.cpp_info. frameworkdirs => []

If you declare components, the defaults are the same, so you only need to change the defaults if they are not correct.

Note: Remember that it’s now possible to declare cpp_info in the layout() method using self.cpp.package instead
of using self.cpp_info in the package_info () method.

2.1. Migrating the recipes 17




Conan Documentation, Release 1.60.2

Removed self.user_info

Replaced by the self.conf_info object, much more versatile than the previous self.user_info. Check the com-
plete usage of self.conf_info.

Example:

Listing 20: From:

import os
from conans import ConanFile

class Pkg(ConanFile):
name = "pkg"
version = "1.0"

def package_info(self):
self.user_info.F00 = "bar"

Listing 21: To:

import os
from conan import ConanFile

class Pkg(ConanFile):
name = "pkg"
version = "1.0"

def package_info(self):
self.conf_info.define("user.myconf:foo", "bar")

In a consumer recipe:

import os
from conan import ConanFile

class Pkg(ConanFile):
requires = "pkg/1.0"

def generate(self):
my_value = self.dependencies[pkg].conf_info.get("user.myconf:foo")

Note: The consumer recipes will have a self.conf object available with the aggregated configuration from all the
recipes in the build context:

from conan import ConanFile

class Pkg(ConanFile):
settings = "os", "compiler", "build_type", "arch"
generators = "CMakeToolchain"
build_requires = "android_ndk/1.0"

(continues on next page)

18 Chapter 2. Conan migration guide to 2.0




Conan Documentation, Release 1.60.2

(continued from previous page)

def generate(self):
self.output.info("NDK: " % self.conf.get("tools.android:ndk_path"))

Removed self.env_info

The attribute self.env_info has been replaced by:

e self.buildenv_info: For the dependent recipes, the environment variables will be present during the build
process.

e self.runenv_info: For the dependent recipes, environment variables will be present during the runtime.
Read more about how to use them in the environment management of Conan 2.0.

Remember that if you want to pass general information to the dependent recipes, you should use the self.conf_info
and not environment variables if they are not supposed to be reused as environment variables in the dependent recipes.

Removed self.cpp_info.builddirs

The default value (pointing to the package root folder) from self.cpp_info.builddirs has been removed. Also
assigning it will be discouraged because it affects how CMakeToolchain and CMakeDeps locate executables, libraries,
headers... from the right context (host vs build).

To be prepared for Conan 2.0:

* If you have cmake modules or cmake config files at the root of the package, it is strongly recommended to move
them to a subfolder cmake and assign it: self.cpp_info.builddirs = ["cmake"]

* If you are not assigning any self.cpp_info.builddirs assign an empty list: self.cpp_info.builddirs

= [1.

¢ Instead of appending new values to the default list, assign it: self.cpp_info.builddirs = ["cmake"]

2.1.13 The package_id() method
The self.info.header_only() method has been replaced with self.info.clear()

Listing 22: From:

def package_id(self):
self.info.header_only()

2.1. Migrating the recipes 19



Conan Documentation, Release 1.60.2

Listing 23: To:

def package_id(self):
self.info.clear()

New properties model

Migrating legacy cpp_info attributes to set_property()

Migrating from .names, .filenames and .build_modules to set_property () is easy, but there are some details to take
into account for properties like cmake_target_name and cmake_file_name. Let’s see some examples.

Important: The 2 mechanisms are completely independent:
¢ Old way using .names, . filenames will work exclusively for legacy generators like cmake_find_package

* New properties, like set_property("cmake_target_name") will work exclusively for new generators like
CMakeDeps. They have changed to be absolute, and that would break legacy generators.

* Recipes that want to provide support for both generators need to provide the 2 definitions in their
package_info()

Migrating from .names to cmake_target_name

It is important to note that cmake_target_name is not going to take the same value as the .names attribute did. With
the .names attribute, if you set a name for the target in CMake, Conan would automatically create a “namespaced”
target name with that name. This code, for example:

def package_info(self):

self.cpp_info. filenames["cmake_find_package"] = "myname"

Will create a CMake target named myname : :myname.

The property cmake_target_name accepts complete target names. That means that the name you set with this prop-
erty will be the one added to the CMake generated files without appending any more information to it. To translate the
last example to the set_property model you should add the following declaration:

def package_info(self):

self.cpp_info.set_property("cmake_target_name", "myname::myname")

Note that you can use whatever name you want, it can have a different namespace, like mynamespace: :myname or use
a name with no namespace at all.

Also, please note that you may want to have different target names for both config and module CMake generated
files. For example, you have a package named myssl and you want to generate a Findmyssl.cmake module that
declares the target MySSL: : SSL, but for config mode you want to declare the target MySSL without namespaces. You
can do that using the cmake_module_target_name property. Also, when setting this property, remember to set
cmake_find_mode so that CMakeDeps generates those module files. Let’s see an example:

20 Chapter 2. Conan migration guide to 2.0


https://cmake.org/cmake/help/v3.15/command/find_package.html#full-signature-and-config-mode
https://cmake.org/cmake/help/v3.15/command/find_package.html#basic-signature-and-module-mode

Conan Documentation, Release 1.60.2

class MySSL(ConanFile):
name = "myssl"”
version = "1.0"

def package_info(self):
self.cpp_info.set_property("cmake_target_name", "MySSL")
self.cpp_info.set_property("cmake_module_target_name", "MySSL::SSL")
self.cpp_info.set_property("cmake_find_mode", "both")

Migrating from .filenames to cmake_file_name

To migrate from . filenames to names just use the same . filenames value for the property cmake_file_name. For
example:

def package_info(self):

self.cpp_info.filenames["cmake_find_package"] = "MyFileName"
self.cpp_info.filenames["cmake_find_package_multi"] = "MyFileName"

Could be declared like this with set_property():

def package_info(self):

self.cpp_info.set_property("cmake_file_name", "MyFileName")

Please note that for the legacy .names and .filenames model, if . filenames is not declared but .names is, then
Conan will automatically set the value of . filenames to the value of .names. So for example:

def package_info(self):

self.cpp_info.names["cmake_find_package"] = "SomeName"
self.cpp_info.names["cmake_find_package_multi"] = "SomeName"

This will use “SomeName” to compose the generated filenames. In this case you should set cmake_file_name to
“SomeName”:

def package_info(self):

self.cpp_info.set_property('cmake_file_ name", "SomeName")

Also, please note that you may want to use different file names for both config and module CMake generated files.
If we take the previous example of the myssl and you want to generate a FindMySSL. cmake for module mode and
myssl-config.cmake for config mode, you can set the cmake_module_file_name to set the value for the module
file:

class MySSL(ConanFile):
name = "myssl"”

(continues on next page)

2.1. Migrating the recipes 21



https://cmake.org/cmake/help/v3.15/command/find_package.html#full-signature-and-config-mode
https://cmake.org/cmake/help/v3.15/command/find_package.html#basic-signature-and-module-mode

Conan Documentation, Release 1.60.2

(continued from previous page)

version = "1.0

def package_info(self):
self.cpp_info.set_property("cmake_file_name", "myssl')
self.cpp_info.set_property("cmake_module_file_name", "MySSL")
self.cpp_info.set_property("cmake_find_mode", "both™)

You can read more about this properties in the CMakeDeps properties reference.

Translating .build_modules to cmake_build_modules

The declared .build_modules come from the original package that declares useful CMake functions, variables etc. We
need to use the property cmake_build_modules to declare a list of cmake files instead of using cpp_info.build_modules:

class PyBindllConan(ConanFile):
name = "pybindll1"

def package_info(self):
for generator in ["cmake_find_package", "cmake_find_package_multi"]:

self.cpp_info.components["main"].build_modules[generator] .append(os.path.
—~join("1lib", "cmake", "pybindl1l", "pybindllCommon.cmake™))

To translate this information to the new model we declare the cmake_build_modules property in the root cpp_info
object:

class PyBindl1lConan(ConanFile):
name = "pybindl1"
def package_info(self):

self.cpp_info.set_property("cmake_build_modules"”, [os.path.join("lib", "cmake",
—'"pybind11", "pybindllCommon.cmake")])

Migrating components information

As we said, all these properties but cmake_file_name and cmake_module_file_name have components support,
so for example:

def package_info(self):

self.cpp_info.components["mycomponent"] .names["cmake_find_package"] = "mycomponent-
—name"

self.cpp_info.components["mycomponent"] .names["cmake_find_package multi"] =
< "'mycomponent-name"

(continues on next page)

22 Chapter 2. Conan migration guide to 2.0




Conan Documentation, Release 1.60.2

(continued from previous page)
self.cpp_info.components["mycomponent"] .names["pkg_config"] = "mypkg-config-name"
self.cpp_info.components["mycomponent"] .build_modules.append(os.path.join("1ib",

< "mypkg_bm.cmake"))

Could be declared like this with the properties model:

def package_info(self):

self.cpp_info.components["mycomponent"].set_property('cmake_target_name", "component_
—,namespace: :mycomponent-name")

# The property "cmake_build modules" can't be declared in a component, do it in self.
—cpp_info

self.cpp_info.set_property("cmake_build_modules", [os.path.join("lib", "mypkg_bm.
—cmake")])

self.cpp_info.components["mycomponent"].set_property('pkg_config_name", "mypkg-
—config-name")

self.cpp_info.components["mycomponent"].set_property('custom_name", "mycomponent-name
—", "custom_generator")

Please note that most of the legacy generators like cmake, cmake_multi, cmake_find_package,
cmake_find_package_multi and cmake_paths do not listen to these properties at all, so if you want to maintain
compatibility with consumers that use those generators and also that information for new generators like CMakeDeps
you need both models living together in the same recipe.

Migration from .names to pkg_config_name

The current [pkg_config](https://docs.conan.io/ 1/reference/generators/pkg_config.html) generator suports the new
set_property model for most of the properties. Then, the current model can be translated to the new one without
having to leave the old attributes in the recipes. Let’s see an example:

class AprConan(ConanFile):

name = "apr

def package_info(self):
self.cpp_info.names["pkg_config"] = "apr-1"

In this case, you can remove the .names attribute and just leave:

class AprConan(ConanFile):

nhame = apr

def package_info(self):
self.cpp_info.set_property("pkg_config_name", "apr-1")

For more information about properties supported by PkgConfigDeps generator, please check the [Conan documenta-
tion](https://docs.conan.io/ 1/reference/conanfile/tools/gnu/pkgconfigdeps.html#properties).

See also:

Read Using Components and package_info() to learn more.

2.1. Migrating the recipes 23



https://docs.conan.io/1/reference/generators/pkg_config.html
https://docs.conan.io/1/reference/conanfile/tools/gnu/pkgconfigdeps.html#properties

Conan Documentation, Release 1.60.2

Using .names, .filenames and .build_modules will not work anymore for new generators, like CMakeDeps and
PkgConfigDeps. They have a new way of setting this information using set_property and get_property methods
of the cpp_info object (available since Conan 1.36).

def set_property(self, property_name, value)
def get_property(self, property_name):

New properties cmake_target_name, cmake_file_name, cmake_module_target_name,
cmake_module_file_name, pkg_config_name and cmake_build_modules are defined to allow migrating
names, filenames and build_modules properties to this model. In Conan 2.0 this will be the default way of setting
these properties for all generators and also passing custom properties to generators.

Important: The 2 mechanisms are completely independent:
¢ Old way using .names, . filenames will work exclusively for legacy generators like cmake_find_package

* New properties, like set_property("cmake_target_name") will work exclusively for new generators like
CMakeDeps. They have changed to be absolute, and that would break legacy generators.

* Recipes that want to provide support for both generators need to provide the 2 definitions in their
package_info()

New properties defined for CMake generators family, used by CMakeDeps generator:

¢ cmake_file_name property will define in CMakeDeps the name of the generated config file (xxx-config.
cmake)

* cmake_target_name property will define the absolute target name in CMakeDeps
* cmake_module_file_name property defines the generated filename for modules (Findxxxx . cmake)
* cmake_module_target_name defines the absolute target name for find modules.

* cmake_build_modules property replaces the build_modules property. It can’t be declared in a component,
do it in self.cpp_info.

* cmake_find_mode will tell CMakeDeps to generate config files, modules files, both or none of them, depending
on the value set (config, module, both or none)

Properties related to pkg_config, supported by both legacy pkg_config and new PkgConfigDeps:
* pkg_config_name property equivalent to the names attribute.

* pkg_config_custom_content property supported by both generators that will add user-defined content to the .pc
files created by the generator

¢ component_version property supported by both generators that set a custom version to be used in the Version
field belonging to the created *.pc file for that component.

Properties related to pkg_config, only supported by new PkgConfigDeps:

« pkg_config_aliases property sets some aliases of any package/component name for the PkgConfigDeps gener-
ator only, it doesn’t work in pkg_config. This property only accepts list-like Python objects.

All of these properties, except for cmake_file_name and cmake_module_file_name can be defined at the global
cpp_info level or at the component level.

The set/get_property model is very useful if you are creating a custom generator. Using set_property() you can
pass the parameters of your choice and read them using the get_property () method inside the generator.

24 Chapter 2. Conan migration guide to 2.0



Conan Documentation, Release 1.60.2

def package_info(self):

# you have created a custom generator that reads the 'custom_property' property and.
—you set here

# the value to 'prop_value'

self.cpp_info.components["mycomponent"] .set_property("'custom_property", "prop_value")

Please check a detailed migration guide in the dedicated section.

2.1.14 Removed imports() method

The def imports(self) method from the conanfile has been removed. If you need to import files from your depen-
dencies you can do it in the generate(self) method with the new copy tool:

from conan.tools.files import copy

def generate(self):
for dep in self.dependencies.values():
copy(self, "*.dylib", dep.cpp_info.libdirs[0], self.build_folder)
copy(self, "*.dl1l", dep.cpp_info.libdirs[0], self.build_folder)

2.1.15 Migrate conanfile.compatible_packages to the new compatibility() method

To declare compatible packages in a valid way for both Conan 1.X and 2.0, you should migrate from using the Com-
patible packages method to the compatibility() method.

Listing 24: From:

def package_id(self):
if self.settings.compiler == "gcc" and self.settings.compiler.version == "4.9":
for version in ("4.8", "4.7", "4.6"):
compatible_pkg = self.info.clone()
compatible_pkg.settings.compiler.version = version
self.compatible_packages.append(compatible_pkg)

2.1. Migrating the recipes 25



Conan Documentation, Release 1.60.2

Listing 25: To:

def compatibility(self):
if self.settings.compiler == "gcc" and self.settings.compiler.version == "4.9":
return [{"settings": [("compiler.version", v)]}
for v in ("4.8", "4.7", "4.6")]

2.1.16 Changes in the test_package recipe

In Conan 2.0, the test_package/conanfile.py needs to declare the requirement being tested explicitly. To be
prepared you have to set the attribute test_type="explicit" (this will be ignored in 2.0) to make Conan activate
the explicit mode, then declaring the requirement using the self.tested_reference_str that contains the reference
being tested.

from conan import ConanFile

class MyTestPkg(ConanFile):
test_type = "explicit"

def requirements(self):
# A regular requirement
self.requires(self.tested_reference_str)

def build_requirements(self):
# If we want to test the package as a tool_require (formerly “test_type = "build_
—requires'")
# Keep both "requires()" and "tool_requires()" if you want to test the same,
—package both as a regular
# require and a tool_require (formerly ‘test_type = "build requires'", "requires')
self.tool_requires(self.tested_reference_str)

2.1.17 Other recipe changes

The environment management

The environment management has changed quite a bit. In Conan 1.X the environment was managed by modifying the
environment of Python (of the running process), often using the environment_append tool, which is not available in
2.0 anymore. In Conan 2.0, all the applied environment variables are managed by script files (sh, bat) that will be run
just before calling the command specified in every self.run("mycommand").

These “environment launchers” can be organized by scopes. Conan will aggregate all the launchers of the same scope
in a single launcher called conan<scope_name>.bat/sh.

For example, if you need to call your build system, passing some environment variables:

from conan import ConanFile
from conan.tools.env import Environment

class MyTestPkg(ConanFile):

def generate(self):
(continues on next page)

26 Chapter 2. Conan migration guide to 2.0




Conan Documentation, Release 1.60.2

(continued from previous page)

env = Environment()

env.define("foo", "var")

# scope="build" is the default

envvars = env.vars(self, scope="build")

# This will generate a my_launcher.sh but also will create a "conan_build.sh".
—calling "my_launcher.sh"

envvars.save_script('my_launcher™)

def build(self):
# by default env="conanbuild"
self.run("my_build_system.exe", env="conanbuild")

The resulting command executed in the build() method would be something like:

[$ conan_build.sh & & my_build_system.exe

So the environment variable foo declared in the generate() method will be automatically passed to the
my_build_system.exe.

There are two generators managing the environment, the VirtualBuildEnv and the VirtualRunEnv. By default,
these generators are automatically declared in Conan 2.0 but you have to explicitly declare them in Conan 1.X otherwise
you can set tools.env.virtualenv:auto_use=True in the global. conf.

¢ VirtualBuildEnv: It will generate a conanbuildenv .bat or .sh script containing environment variables of the
build time environment. That information is collected from the direct tool_requires in “build” context recipes
from the self.buildenv_info definition plus the self.runenv_info of the transitive dependencies of those
tool_requires.

The scope used by the VirtualBuildEnv is build so, as explained before, it will be applied by default before
calling any command.

Check more details /ere.

¢ VirtualRunEnv: It will generate a conanruneny .bat or .sh script containing environment variables of the run
time environment. The launcher contains the runtime environment information, anything that is necessary for
the environment to actually run the compiled executables and applications. The information is obtained from the
self.runenv_info and also automatically deducted from the self.cpp_info definition of the package, to
define PATH, LD_LIBRARY_PATH, DYLD_LIBRARY_PATH, and DYLD_FRAMEWORK_PATH environment variables.

The scope used by the VirtualRunEnv is run so if you need that environment applied you need to specify it in
the self.run command.

An example of usage of the conanrun is the test_package of a recipe that builds a shared library:

import os
from conan import ConanFile
from conan.tools.env import Environment

class MyTestPkg(ConanFile):
generators = "VirtualRunEnv"

def test(self):
my_app_path = os.path.join(self.cpp.build.bindirs[0], "my_app")

(continues on next page)

2.1. Migrating the recipes 27




Conan Documentation, Release 1.60.2

(continued from previous page)
# The default env is '"conanbuild" but we want the runtime here to locate.
—the shared library
self.run(my_app_path, env="conanrun")

Check more details /ere.

Windows Subsystems
If you want to run commands inside a Windows subsystem (e.g bash from msys2) you have to set the self.
win_bash=True in your recipe, instead of using the deprecated self.run(..., win_bash=True) from 1.X.
You need to configure how to run the commands with two config variables:
¢ tools.microsoft.bash:subsystem: Possible values: ‘msys2’, ‘msys’, ‘cygwin’, ‘wsl’ and ‘sfu’
¢ tools.microsoft.bash:path (Default “bash”): Path to the shell executable.

* tools.microsoft.bash:active (Default “None”): Used to define if Conan is already running inside a subsystem

(Msys2) terminal.
Any command run with self.run, if self.win_bash == True will run the command inside the specified shell.
Any command run with self.run(..., scope="run") if self.win_bash_run == True will run that command

inside the shell. In both cases running explicitly in the bash shell only happens if tools.microsoft.bash:active
is not True, because when it is True, it means that Conan is already running inside the shell.

Symlinks

Conan won'’t alter any symlink while exporting or packaging files. If any manipulation to the symlinks is required, the
package conan.tools.files.symlinks contains some tools to help with that.

New tools for managing system package managers
There are some changes you should be aware of if you are migrating from SystemPackageTool to the new co-
nan.tools.system.package_manager to prepare the recipe for Conan 2.0:

¢ Unlike in SystemPackageTool that uses CONAN_SYSREQUIRES_SUDO and is set to True as default, the tools.
system.package_manager: sudo configuration is False by default.

o SystemPackageTool is initialized with default_mode="enabled' but for these new tools tools.system.
package_manager :mode="check" is set by default.

New package type attribute

The new optional attribute package_type, to help Conan package ID to choose a better default package_id_mode.

from conan import ConanFile

class FoobarAppConanfile(ConanFile):
package_type = "application"

The valid values are:

« application: The package is an application.

28 Chapter 2. Conan migration guide to 2.0



Conan Documentation, Release 1.60.2

e library: The package is a generic library. It will try to determine the type of library (from shared-library, static-
library, header-library) reading the self.options.shared (if declared) and the self.options.header_only

* shared-library: The package is a shared library only.
« static-library: The package is a static library only.

* header-library: The package is a header only library.
* build-scripts: The package only contains build scripts.
* python-require: The package is a python require.

* unknown: The type of the package is unknown.

2.2 Commands

There is no “compatible with 2.X”” commands introduced in Conan 1.X. You will need to adapt to the new commands
once you migrate to Conan 2.0.

For a comparison of some 1.x versus 2.0 commands, see the Conan 2.0 Cheat Sheet Blog Post.
2.2.1 Changes to expect

JSON output in 2.X commands

In Conan version 1.X, you can use the --json flag followed by the path to the output file when executing commands.
For example:

[conan create ... --json=path/to/file.json ]

Starting with Conan version 2.0, you are expected to use the --format flag followed by the output format type, and
redirect standard output to a file. The same command in version 2.0 would be:

[conan create ... --format=json > path/to/file.json J

For more information, please check the Conan 2 commands reference

conan install

Almost the same command, the major change is the way to specify (or complete if not defined) the fields
of the reference. Remember that in Conan 1.X you have to specify the build profile or activate the conf
core:default_build_profile=default.

$ conan install . [--name=mylib] [--version=1.0] [-pr:b=build_profile] [-pr:h=host_
—profile]

In addition the --install-folder has been replaced with --output-folder. You might need to provide both
arguments in Conan 1.X as some legacy generated files (conaninfo.txt, conanbuildinfo. txt, etc) are not affected
by --output-folder.

2.2. Commands 29


https://blog.conan.io/2023/06/07/New-Cheat-Sheet-For-Conan-2.html
https://docs.conan.io/2/reference/commands.html

Conan Documentation, Release 1.60.2

conan install

In addition the --build-folder has been replaced with --output-folder. Still in most cases you shouldn’t be
using it, but relying on the defined layout() in the recipe.

conan create

Same changes as conan install:

$ conan create . [--name=mylib] [--version=1.0] [-pr:b=build_profile] [-pr:h=host_
—profile]

conan graph info

This is the substitute of the old “‘conan info”. The syntax is very similar to conan install and conan create

$ conan graph info . [--name=mylib] [--version=1.0] [-pr:b=build_profile] [-pr:h=host_
—profile]

conan search

The conan search in 2.X is meant to provide the basic functionality of searching for recipes in Conan remotes. Please
be aware that it will search in all the remotes by default but not in the Conan local cache.

$ conan search "zlib*"

myremote:
zlib
zlib/1.2.11
conancenter:
zlib-ng
zlib-ng/2.0.2
zlib-ng/2.0.5
zlib-ng/2.0.6
zlib
zlib/1.2.11
z1lib/1.2.8

If you want more advanced functionality, to inspect available packages in the local cache or in remotes, please use the
conan list command.

Listing available packages

The equivalent of doing a conan search zlib/1.2.13@ to see details about the Conan packages can be done in 2.X
using conan list <pattern>.

$ conan list "zlib/1.2.13:*" -r conancenter
conancenter
z1lib

z1lib/1.2.13

revisions

(continues on next page)

30 Chapter 2. Conan migration guide to 2.0


https://docs.conan.io/2/reference/commands/list.html

Conan Documentation, Release 1.60.2

(continued from previous page)

e377bee636333ae348d51ca90874e353 (2023-04-27 12:11:24 UTC)
packages
17b26a16efb893750e4481£f98a154db2934ead88
info
settings
arch: x86_64
build_type: Debug
compiler: msvc
compiler.runtime: dynamic
compiler.runtime_type: Debug
compiler.version: 193
os: Windows
options
shared: True
d62df£20d86436b9c58ddc0162499d197be9dele

conan remote login

This is the substitute of the old “conan user”.

[$ conan remote login [-h] [-f FORMAT] [-v [V]] [--logger] [-p [PASSWORD]] remote username]

conan upload

The default behavior has changed from requiring —all to include the binary packages to —recipe-only for just the recipe

$ conan upload [-h] [-v [V]] [--logger] [-p PACKAGE_QUERY] -r REMOTE
[--only-recipe] [--force] [--check] [-c]
reference

2.2.2 Unified patterns in command arguments

The arguments in Conan 1.X where we specified recipe names require now a valid reference pattern. A valid reference
pattern contains the * character or at least the name/version part of a reference (name/version@user/channel).
There are some examples:

e The --build argument when referring to a package:

Listing 26: From:
[ conan install . --build zlib ]

Listing 27: To:

conan install . --build zlib/*
conan install . --build zlib/1.2.11
conan install . --build zlib/1.*

* The --options and --settings arguments when used scoped:

2.2. Commands 31



Conan Documentation, Release 1.60.2

Listing 28: From:

[ conan install . -s zlib:arch=x86 -o zlib:shared=True

Listing 29: To:

conan install . -s zlib/*:arch=x86 -o zlib/*:shared=True
conan install . -s zlib/1.2.11@user/channel:arch=x86 -o zlib/1.2.11:shared=True

2.2.3 Commands which have been removed

Removed “conan package”
The conan package command has been removed. If you are developing a recipe and want to test that the package

method is correct, we recommend using the conan export-pkg . instead and exploring the package folder in the
cache to check if everything is ok.

Removed “conan copy”
Do not use the conan copy command to change user/channel. Packages will be immutable, and this command will dis-

appear in 2.0. Package promotions are generally done on the server-side, copying packages from one server repository
to another repository.

Removed “conan user”

This has been replaced with the remote login command in 2.0.

Removed “conan config set”
we are no longer implementing file-editing commands in 2.0. A bit overkill conan config set to edit one file. Which

should very rarely happen, the file is updated with conan config install. Alternatively, you can use the command line
and profiles to pass these values.

2.2.4 Custom commands

You can build custom commands on top of the Conan Python API. Refer to the Conan 2.0 documentation for custom
commands.

2.3 General changes

2.3.1 Host and Build profiles

Use always build and host profiles.
Conan 1.x uses one profile by default, to start using two profiles, please do the following:

¢ Pass -pr:b=default in the command line to most commands.

32 Chapter 2. Conan migration guide to 2.0


https://docs.conan.io/2/reference/commands/remote.html#conan-remote-login
https://docs.conan.io/2/reference/extensions/custom_commands.html
https://docs.conan.io/2/reference/extensions/custom_commands.html

Conan Documentation, Release 1.60.2

¢ Or set the variable core:default_build_profile=default at the global.conf file to apply it always, auto-
matically.

Do not use os_build, arch_build anywhere in your recipes or code.
* Revisions

Conan 2.0 uses revisions by default and the local cache 2.0 will store multiple recipe and package revisions for your
Conan packages (Conan 1.X supports only one revision). To start working with revisions enabled in Conan 1.X, please
enable them in your Conan configuration:

[$ conan config set general.revisions_enabled=True

2.3.2 Lowercase references

Move all your packages to lowercase. Uppercase package names (or versions/user/channel) will not be allowed in 2.0.

2.3.3 Default Package ID mode

Work in progress

2.3.4 Compatible packages

Do not use compatible_packages definition inside package_id(). Instead, use the new compatibility()
method.

2.3.5 Extensions

Work in progress

Hooks

* Hooks folder has been updated to ~/ . conan2/extensions/hook;

¢ Any hook file must be named with hook_ as prefix and . py as suffix;
* Only ConanFile is passed as parameter;

* Pre and Post Download are no longer supported in Conan 2.x

¢ Added Pre and Post Generator

2.3.6 Environment Variables

Work in progress

2.3. General changes 33



Conan Documentation, Release 1.60.2

2.4 Configuration files

2.4.1 Profiles

Profiles in Conan 2.0 drop the textual replacement of variables.

This profile will not work in 2.0:

Listing 30: profile

MYVAR = FreeBSD
[settings]
os = $MYVAR

The profile below is the 2.0 equivalent, now supporting Jinja syntax. This enables more dynamic content and cus-
tomization possibilities.

Listing 31: profile.jinja

{% set a = "FreeBSD" %}
[settings]
os = {{ a }}

The . jinja extension in the profile name is necessary in 1.X but will not be necessary in 2.0

2.4.2 conan.conf

The conan.conf file is superseded by the global.conf file. Use only new conan config list items in the
global. conf file.

2.4.3 remotes.txt

This file has been removed in Conan 2.0 as a definition of remotes. The remotes. json file is the one to be used in
2.0 (remotes.txt will be completely ignored).

34 Chapter 2. Conan migration guide to 2.0



CHAPTER
THREE

TRAINING COURSES

JFrog has created the JFrog Academy to host a broad range of free online courses surrounding Devops. The Conan
team has created the “Conan series” on JFrog Academy, which includes several levels of courses covering both beginner
concepts and advanced scenarios.

The courses are completely free and self-paced. They feature interactive exercises which walk users through the running
of commands, exploring and editing of important Conan-related files and directories, and quizzes to invoke critical
thinking after each section.

For additional information about the Conan training series, see the original blog post announcement here:
* https://blog.conan.io/2020/09/24/New-conan-training-series.html

For the complete list of dedicated Conan courses, see the Conan series page here:
* https://academy.jfrog.com/path/conan

Finally, here is a brief video introducing the series:

35


https://blog.conan.io/2020/09/24/New-conan-training-series.html
https://academy.jfrog.com/path/conan

Conan Documentation, Release 1.60.2

36 Chapter 3. Training Courses



CHAPTER
FOUR

INSTALL

Conan can be installed in many Operating Systems. It has been extensively used and tested in Windows, Linux (different
distros), OSX, and is also actively used in FreeBSD and Solaris SunOS. There are also several additional operating
systems on which it has been reported to work.

There are three ways to install Conan:

1. The preferred and strongly recommended way to install Conan is from PyPI, the Python Package Index, using
the pip command.

2. There are other available installers for different systems, which might come with a bundled python interpreter,
so that you don’t have to install python first. Note that some of these installers might have some limitations,
especially those created with pyinstaller (such as Windows exe & Linux deb).

3. Running Conan from sources.

4.1 Install with pip (recommended)

To install Conan using pip, you need Python>=3.6 distribution installed on your machine.

Warning: Python 2 has been deprecated on January 1st, 2020 by the Python maintainers and from Conan
1.49 it will not be possible to run Conan with Python 2.7, and at least Python>=3.6 will be required. See Python 2
Removal Notice for details.

Install Conan:

[$ pip install conan

Important: Please READ carefully
* Make sure that your pip installation matches your Python>=3.6 version. Lower Python versions will not work.
* In Linux, you may need sudo permissions to install Conan globally.

* We strongly recommend using virtualenvs (virtualenvwrapper works great) for everything related to Python.
(check https://virtualenvwrapper.readthedocs.io/en/stable/, or https://pypi.org/project/virtualenvwrapper-win/
in Windows) With Python 3, the built-in module venv can also be used instead (check https://docs.python.org/3/
library/venv.html). If not using a virtualenv it is possible that conan dependencies will conflict with previously
existing dependencies, especially if you are using Python for other purposes.

* In OSX, especially the latest versions that may have System Integrity Protection, pip may fail. Try using
virtualenvs, or install with another user $ pip install --user conan.

37


https://virtualenvwrapper.readthedocs.io/en/stable/
https://pypi.org/project/virtualenvwrapper-win/
https://docs.python.org/3/library/venv.html
https://docs.python.org/3/library/venv.html

Conan Documentation, Release 1.60.2

e Some Linux distros, such as Linux Mint, require a restart (shell restart, or logout/system if not enough) after
installation, so Conan is found in the path.

4.1.1 Known installation issues with pip

e When Conan is installed with pip install --user <username>, usually a new directory is created for it.
However, the directory is not appended automatically to the PATH and the conan commands do not work. This
can usually be solved restarting the session of the terminal or running the following command:

[$ source ~/.profile ]

4.2 Install from brew (OSX)

There is a brew recipe, so in OSX, you can install Conan as follows:

$ brew update
$ brew install conan

4.3 Install from AUR (Arch Linux)

The easiest way to install Conan on Arch Linux is by using one of the Arch User Repository (AUR) helpers, e.g., yay,
aurman, or pakku. For example, the following command installs Conan using yay:

[$ yay -S conan }

Alternatively, build and install Conan manually using makepkg and pacman as described in the Arch Wiki. Conan
build files can be downloaded from AUR: https://aur.archlinux.org/packages/conan/. Make sure to first install the three
Conan dependencies which are also found in AUR:

* python-patch-ng
* python-node-semver

* python-pluginbase

4.4 Install the binaries

Go to the conan website and download the installer for your platform!

Execute the installer. You don’t need to install python.

38 Chapter 4. Install


https://wiki.archlinux.org/index.php/AUR_helpers
https://wiki.archlinux.org/index.php/Arch_User_Repository#Installing_and_upgrading_packages
https://aur.archlinux.org/packages/conan/
https://conan.io/downloads.html

Conan Documentation, Release 1.60.2

4.5 Initial configuration

Check if Conan is installed correctly. Run the following command in your console:

[$ conan

The response should be similar to:

Consumer commands

install Installs the requirements specified in a recipe (conanfile.py or conanfile.
—txt).

config Manages Conan configuration.

get Gets a file or list a directory of a given reference or package.

info Gets information about the dependency graph of a recipe.

Tip: If you are using Bash, there is a bash autocompletion project created by the community for Conan commands:
https://gitlab.com/akim.saidani/conan-bashcompletion

4.6 Install from source

You can run Conan directly from source code. First, you need to install Python and pip.

Clone (or download and unzip) the git repository and install it with:

# clone folder name matters, to avoid imports issues

$ git clone https://github.com/conan-io/conan.git conan_src
$ cd conan_src

$ python -m pip install -e .

Test your conan installation.

[$ conan

You should see the Conan commands help.

4.7 Update

If installed via pip, Conan can be easily updated:

[$ pip install conan --upgrade # Might need sudo or --user }

If installed via the installers (.exe, .deb), download the new installer and execute it.

The default <userhome>/.conan/settings.yml file, containing the definition of compiler versions, etc., will be upgraded
if Conan does not detect local changes, otherwise it will create a settings.yml.new with the new settings. If you want to
regenerate the settings, you can remove the settings.yml file manually and it will be created with the new information
the first time it is required.

The upgrade shouldn’t affect the installed packages or cache information. If the cache becomes inconsistent somehow,
you may want to remove its content by deleting it (<userhome>/.conan).

4.5. Initial configuration 39


https://gitlab.com/akim.saidani/conan-bashcompletion

Conan Documentation, Release 1.60.2

4.8 Python 2 Removal Notice

From version 1.49, Conan will not work with Python 2. This is because security vulnerabilities of Conan dependencies
that haven’t been addressed in Python 2, so the only alternative moving forward is to finally remove Python 2 support.

Python 2 was officially declared End Of Life in January 2020, and Conan 1.22 already declared Python 2 as not sup-
ported. Extra blockers have been added in previous Conan releases to make everyone aware. Now the security vul-
nerabilities that are out of our scope, makes impossible to move forward support for Python 2. Please upgrade to
Python>=3.6 to continue using Conan>=1.49.

If you have any issue installing Conan, please report in the Conan issue tracker or write us to info@conan.io.

40 Chapter 4. Install


https://github.com/conan-io/conan/issues/3334
mailto:info@conan.io

CHAPTER
FIVE

GETTING STARTED

Caution: We are actively working to finalize the Conan 2.0 Release. Some of the information on this page
references deprecated features which will not be carried forward with the new release. It’s important to check the
Migration Guidelines to ensure you are using the most up to date features.

Let’s get started with an example: We are going to create an MD5 hash calculator app that uses one of the most popular
C++ libraries: Poco.

We’ll use CMake as build system in this case but keep in mind that Conan works with any build system and is not
limited to using CMake.

Make sure you are running the latest Conan version. Read the Conan update section to get more information.

5.1 An MD5 hash calculator using the Poco Libraries

Note: The source files to recreate this project are available in the example repository in GitHub. You can skip the
manual creation of the folder and sources with this command:

[$ git clone https://github.com/conan-io/examples.git &% cd examples/libraries/poco/md5 ]

1. Create the following source file inside a folder. This will be the source file of our application:

Listing 1: mdS.cpp

#include "Poco/MD5Engine.h"
#include "Poco/DigestStream.h"

#include <iostream>

int main(int argc, char** argv){

Poco: :MD5Engine md5;

Poco: :DigestOutputStream ds(md5);

ds << "abcdefghijklmnopgrstuvwxyz";

ds.close();

std::cout << Poco::DigestEngine::digestToHex(md5.digest()) <<.
—std::endl;

return 0;

¥

41


https://pocoproject.org/
https://github.com/conan-io/examples

Conan Documentation, Release 1.60.2

2. We know that our application relies on the Poco libraries. Let’s look for it in the ConanCenter remote, going to
https://conan.io/center, and typing “poco” in the search box. We will see that there are some different versions
available:

poco/1.8.1
poco/1.9.3
poco/1.9.4

Note: The Conan client contains a command to search in remote repositories, and we could try $ conan
search poco --remote=conancenter. You can perfectly use this command to search in your own reposi-
tories, but note that at the moment this might timeout in ConanCenter. The infrastructure is being improved to
support this command too, but meanwhile using the ConanCenter Ul is recommended.

3. We got some interesting references for Poco. Let’s inspect the metadata of the 1.9.4 version:

$ conan inspect poco/1.9.4
name: poco
version: 1.9.4
url: https://github.com/conan-io/conan-center-index
homepage: https://pocoproject.org
license: BSL-1.0
author: None
description: Modern, powerful open source C++ class libraries for building.
—network- and internet-based applications that run on desktop, server,..
—.mobile and embedded systems.
topics: ('conan', 'poco', 'building', 'networking', 'server', 'mobile',
— "embedded")
generators: cmake
exports: None
exports_sources: CMakeLists.txt
short_paths: False
apply_env: True
build_policy: None
revision_mode: hash
settings: ('os', 'arch', 'compiler', 'build_type')
options:
cxx_14: [True, False]
enable_apacheconnector: [True, False]
enable_cppparser: [True, False]
enable_crypto: [True, False]
[...]
default_options:
cxx_14: False
enable_apacheconnector: False
enable_cppparser: False
enable_crypto: True

Looold

4. Let’s use this poco/1.9.4 version for our MDS5 calculator app, creating a conanfile.txt inside our project’s folder
with the following content:

42

Chapter 5. Getting Started


https://conan.io/center
https://conan.io/center/

Conan Documentation, Release 1.60.2

Listing 2: conanfile.txt

[requires]
poco/1.9.4

[generators]
cmake

In this example we are using CMake to build the project, which is why the cmake generator is specified.
This generator creates a conanbuildinfo.cmake file that defines CMake variables including paths and
library names that can be used in our build. Read more about Generators.

5. Next step: We are going to install the required dependencies and generate the information for the build system:

Important: If you are using GCC compiler >= 5.1, Conan will set the compiler.libcxx to the old
ABI for backwards compatibility. In the context of this getting started example, this is a bad choice
though: Recent gcc versions will compile the example by default with the new ABI and linking will
fail without further customization of your cmake configuration. You can avoid this with the following
commands:

$ conan profile new default --detect # Generates default profile detecting.
—GCC and sets old ABI
$ conan profile update settings.compiler.libcxx=libstdc++11 default # Sets.
—1libcxx to C++11 ABI

You will find more information in How fo manage the GCC >= 5 ABI.

$ mkdir build && cd build
$ conan install ..

Requirements

bzip2/1.0.8 from 'conancenter' - Downloaded
expat/2.2.9 from 'conancenter' - Downloaded
openssl/1.1.1g from 'conancenter' - Downloaded
pcre/8.41 from 'conancenter' - Downloaded
poco/1.9.4 from 'conancenter' - Cache
sqlite3/3.31.1 from 'conancenter' - Downloaded
z1ib/1.2.11 from 'conancenter' - Downloaded
Packages

bzip2/1.0.8:5be2b7a2110ec8acdbf9alcea9de5d60747edb34 - Download
expat/2.2.9:6cc50b139b9c3d27b3e9042d5£5372d327b3a9f7 - Download
openssl/1.1.1g:6cc50b139b9c3d27b3e9042d5£5372d327b3a9f7 - Download
pcre/8.41:20fc3dfce989c458ac2372442673140ea8028c06 - Download
poco/1.9.4:73e83a21eab817£fa9%ef0f7d1a86€a923190b0205 - Download
sqlite3/3.31.1:4559c5d4£09161eled£374b033b1d6464826db16 - Download
z1ib/1.2.11:6cc50b139b9c3d27b3e9042d5£5372d327b3a9f7 - Download

zlib/1.2.11: Retrieving package f74366f76f700cc6e991285892ad7a23c30e6d47..
—from remote 'conancenter'

Downloading conanmanifest.txt completed [0.25k]

Downloading conaninfo.txt completed [0.44k]

Downloading conan_package.tgz completed [83.15k]

(continues on next page)

5.1. An MD5 hash calculator using the Poco Libraries 43



Conan Documentation, Release 1.60.2

(continued from previous page)

Decompressing conan_package.tgz completed [0.00k]
z1lib/1.2.11: Package installed £74366£f76£f700cc6e991285892ad7a23c30e6d47
z1lib/1.2.11: Downloaded package revision 0

poco/1.9.4: Retrieving package 645aaff0a79e6036c77803601e44677556109dd9..
—.from remote 'conancenter'

Downloading conanmanifest.txt completed [48.75k]

Downloading conaninfo.txt completed [2.44k]

Downloading conan_package.tgz completed [5128.39k]

Decompressing conan_package.tgz completed [0.00k]

poco/1.9.4: Package installed 645aaff0a79e6036c77803601e44677556109dd9
poco/1.9.4: Downloaded package revision 0

conanfile.txt: Generator cmake created conanbuildinfo.cmake
conanfile.txt: Generator txt created conanbuildinfo.txt

conanfile.txt: Generated conaninfo.txt

conanfile.txt: Generated graphinfo

Conan installed our Poco dependency but also the transitive dependencies for it: OpenSSL, zlib, sqlite and
others. It has also generated a conanbuildinfo.cmake file for our build system.

Warning: There are prebuilt binaries for several mainstream compilers and versions available in Conan-
Center repository, a list is keep in the repository’s documentation If your current configuration is not pre-built
in ConanCenter, Conan will raise a “Binary Missing” error. Please read carefully the error messages. You
can build the binary package from sources using conan install .. --build=missing, it will succeed
if your configuration is supported by the recipe (it is possible that some ConanCenter recipes fail to build for
some platforms). You will find more info in the Building with other configurations section.

6. Now let’s create our build file. To inject the Conan information, include the generated conanbuildinfo.cmake file
like this:

Caution: The Creating Packages’s Getting Started is a more up-to-date version of this section.

Listing 3: CMakeLists.txt

cmake_minimum_required(VERSION 2.8.12)
project (MD5SEncrypter)

add_definitions("-std=c++11")

include (${CMAKE_BINARY_DIR}/conanbuildinfo.cmake)
conan_basic_setup()

add_executable(md5 md5.cpp)
target_link libraries(md5 ${CONAN_LIBS})

Note: There are other integrations with CMake, like the cmake_find_package generators, that will
use the find_package () CMake syntax (see CMake section).

44

Chapter 5. Getting Started


https://github.com/conan-io/conan-center-index/blob/master/docs/supported_platforms_and_configurations.md

Conan Documentation, Release 1.60.2

7. Now we are ready to build and run our MD5 app:

(win)
$ cmake .. -G "Visual Studio 16"
$ cmake --build . --config Release

(1linux, mac)
$ cmake .. -G "Unix Makefiles" -DCMAKE_BUILD_TYPE=Release
$ cmake --build .

[100%] Built target md5
$ ./bin/md5
c3£cd3d76192e4007dfb496cca67el3b

5.2 Installing Dependencies

The conan install command downloads the binary package required for your configuration (detected the first time
you ran the command), together with other (transitively required by Poco) libraries, like OpenSSL and Zlib. It
will also create the conanbuildinfo.cmake file in the current directory, in which you can see the CMake variables, and
a conaninfo.txt in which the settings, requirements and optional information is saved.

Note: Conan generates a default profile with your detected settings (OS, compiler, architecture. ..) and that configu-
ration is printed at the top of every conan install command. However, it is strongly recommended to review it and
adjust the settings to accurately describe your system as shown in the Building with other configurations section.

It is very important to understand the installation process. When the conan install command runs, settings specified
on the command line or taken from the defaults in <userhome>/.conan/profiles/default file are applied.

5.2. Installing Dependencies 45



Conan Documentation, Release 1.60.2

server

\J Pkg/0.1 ’

\v/

—[~ Win/VS14
/

N_ —

———————

~ Linux/gcc

1. Fetch recipe 2. Fetch package binary

e —— ———

4
Pkgf0.1
N Pkey

\J/

]
$ conan install .. -s os=Linux —s compiler=gcc

"

D

client

For example, the command conan install .. --settings os="Linux" --settings compiler="gcc", per-
forms these steps:

5.3

Checks if the package recipe (for poco/1.9.4 package) exists in the local cache. If we are just starting, the
cache is empty.

Looks for the package recipe in the defined remotes. Conan comes with conancenter remote as the default,
but can be changed.

If the recipe exists, the Conan client fetches and stores it in your local Conan cache.

With the package recipe and the input settings (Linux, GCC), Conan looks for the corresponding binary in the
local cache.

As the binary is not found in the cache, Conan looks for it in the remote and fetches it.

Finally, it generates an appropriate file for the build system specified in the [generators] section.

Inspecting Dependencies

The retrieved packages are installed to your local user cache (typically .conan/data), and can be reused from this location
for other projects. This allows to clean your current project and continue working even without network connection.
To search for packages in the local cache run:

$ conan search "*"
Existing package recipes:

openssl/1.0.2t
poco/1.9.4

(continues on next page)

46

Chapter 5. Getting Started



Conan Documentation, Release 1.60.2

(continued from previous page)

z1lib/1.2.11

To inspect the different binary packages of a reference run:

$ conan search poco/1.9.4@
Existing packages for recipe poco/1.9.4:

Package_ID: 645aaff0a79e6036c77803601e44677556109dd9
[options]
cxx_14: False
enable_apacheconnector: False
enable_cppparser: False
enable_crypto: True
enable_data: True

The @ symbol at the end of the package name is important to search for a specific package. If you don’t add the @,
Conan will interpret the argument as a pattern search and return all the packages that match the poco/1.9.4 pattern
and may have different user and channel.

To inspect all your current project’s dependencies use the conan info command by pointing it to the location of the
conanfile.txt folder:

$ conan info ..
conanfile.txt
ID: db91af4811b080e®2ebe5a626£1d256bb90d5223
BuildID: None
Requires:
poco/1.9.4
openssl/1.0.2t
ID: eb50d18a5a5d59bd0c332464a4c348ab65e353bf
BuildID: None
Context: host
Remote: conancenter=https://center.conan.io
URL: https://github.com/conan-io/conan-center-index
Homepage: https://github.com/openssl/openssl
License: OpenSSL
Description: A toolkit for the Transport Layer Security (TLS) and Secure Sockets.
—Layer (SSL) protocols
Topics: conan, openssl, ssl, tls, encryption, security
Recipe: Cache
Binary: Cache
Binary remote: conancenter
Creation date: 2019-11-13 23:14:37
Required by:
poco/1.9.4
Requires:
zlib/1.2.11
poco/1.9.4
ID: 645aaff0a79e6036c77803601e44677556109dd9
BuildID: None
Context: host
(continues on next page)

5.3. Inspecting Dependencies 47




Conan Documentation, Release 1.60.2

(continued from previous page)

Remote: conancenter=https://center.conan.io

URL: https://github.com/conan-io/conan-center-index

Homepage: https://pocoproject.org

License: BSL-1.0

Description: Modern, powerful open source C++ class libraries for building network-.

—and internet-based applications that run on desktop, server, mobile and embedded.
-, systems.

Topics: conan, poco, building, networking, server, mobile, embedded
Recipe: Cache
Binary: Cache
Binary remote: conancenter
Creation date: 2020-01-07 17:29:24
Required by:
conanfile.txt
Requires:
openssl/1.0.2t

z1lib/1.2.11

ID: £f74366f76f700cc6e991285892ad7a23c30e6d47

BuildID: None

Context: host

Remote: conancenter=https://center.conan.io

URL: https://github.com/conan-io/conan-center-index

Homepage: https://zlib.net

License: Zlib

Description: A Massively Spiffy Yet Delicately Unobtrusive Compression Library (Also..

—Free, Not to Mention Unencumbered by Patents)

Recipe: Cache
Binary: Cache
Binary remote: conancenter
Creation date: 2020-01-07 17:01:29
Required by:

openssl/1.0.2t

Or generate a graph of your dependencies using Dot or HTML formats:

$ conan info .. --graph=file.html
$ file.html # or open the file, double-click

48

Chapter 5. Getting Started




Conan Documentation, Release 1.60.2

conanfile.txt

poco/1.9.4

pcre/8.41

expat/2.2.9

(sqlite3/3.31.1] (openss1/1.1.1g]

/L

5.4 Searching Packages

The remote repository where packages are installed from is configured by default in Conan. It is called Conan Center
(configured as conancenter remote).

If we search for something like open in ConanCenter we could find different packages like:

openal/1.18.2@bincrafters/stable
openal/1.19.1
opencv/2.4.13.5@conan/stable
opencv/3.4.3@conan/stable
opencv/4.1.1@conan/stable
openexr/2.3.0
openexr/2.3.0@conan/stable
openexr/2.4.0
openjpeg/2.3.0@bincrafters/stable
openjpeg/2.3.1
openjpeg/2.3.1@bincrafters/stable
openssl/1.0.2s

As you can see, some of the libraries end with a @ symbol followed by two strings separated by a slash. These fields are
the user and channel for the Conan package, and they are useful if you want to make specific changes and disambiguate
your modified recipe from the one in the Conan Center or any other remote. These are legacy packages, and the ones
without user and channel are the ones strongly recommended to use from ConanCenter.

ConanCenter is the central public repository for Conan packages. You can contribute packages to it in the conan-
center-index Github repository. If you want to store your own private packages, you can download the free Artifactory
Community Edition (CE) directly from the Conan downloads page.

5.4. Searching Packages 49



https://conan.io/center/
https://github.com/conan-io/conan-center-index
https://github.com/conan-io/conan-center-index
https://conan.io/downloads.html

Conan Documentation, Release 1.60.2

5.5 Building with other configurations

In this example, we have built our project using the default configuration detected by Conan. This configuration is
known as the default profile.

A profile needs to be available prior to running commands such as conan install. When running the command,
your settings are automatically detected (compiler, architecture...) and stored as the default profile. You can edit these
settings ~/.conan/profiles/default or create new profiles with your desired configuration.

For example, if we have a profile with a 32-bit GCC configuration in a file called gcc_x86, we can run the following:

[$ conan install .. --profile=gcc_x86 ]

Tip: We strongly recommend using Profiles and managing them with conan config install.

However, the user can always override the profile settings in the conan install command using the --settings
parameter. As an exercise, try building the 32-bit version of the hash calculator project like this:

[$ conan install .. --settings arch=x86 ]

The above command installs a different package, using the --settings arch=x86 instead of the one of the default
profile used previously. Note you might need to install extra compilers or toolchains in some platforms, as for example,
Linux distributions no longer install 32bits toolchains by default.

To use the 32-bit binaries, you will also have to change your project build:
* In Windows, change the CMake invocation to Visual Studio 14.

e In Linux, you have to add the -m32 flag to your CMakeLists.txt by running SET(CMAKE_CXX_FLAGS
"${CMAKE_CXX_FLAGS} -m32"), and the same applies to CMAKE_C_FLAGS, CMAKE_SHARED_LINK_FLAGS
and CMAKE_EXE_LINKER_FLAGS. This can also be done more easily, by automatically using Conan, as we’ll
show later.

* In macOS, you need to add the definition -DCMAKE_OSX_ARCHITECTURES=1386.

Got any doubts? Check our FAQ, or join the community in Cpplang Slack #conan channel!

50 Chapter 5. Getting Started


https://cppalliance.org/slack/

CHAPTER
SIX

USING PACKAGES

This section shows how to setup your project and manage dependencies (i.e., install existing packages) with Conan.

6.1 Installing dependencies

Caution: We are actively working to finalize the Conan 2.0 Release. Some of the information on this page
references deprecated features which will not be carried forward with the new release. It’s important to check the
Migration Guidelines to ensure you are using the most up to date features.

In Getting started we used the conan install command to download the Poco library and build an example.

If you inspect the conanbuildinfo.cmake file that was created when running conan install, you can see there
that there are many CMake variables declared. For example CONAN_INCLUDE_DIRS_ZLIB, that defines the include
path to the zlib headers, and CONAN_INCLUDE_DIRS that defines include paths for all dependencies headers.

51



Conan Documentation, Release 1.60.2

conanbuildinfo.cmake

# <package_root >will be:
<userhome>/.conan/data/Pkg/0.1/user/channel/
package/e0...56/

yd

Pkg/0.1@user/channel /
v

include/hdrh set(CONAN_INCLUDE_DIRS "<package_root>/include")
li/mylib.lib set(CONAN_LIB_DIRS "<package_root>/lib" )
set(CONAN_LIBS mylib)

w set(CONAN_DEFINES -DSOME_LIBDEFINE)

conan local cache
i H
<userhome>/.conan/data User folder for “S conan instal

|I}

If you check the full path that each of these variables defines, you will see that it points to a folder under your
<userhome> folder. Together, these folders are the local cache. This is where package recipes and binary packages
are stored and cached, so they don’t have to be retrieved again. You can inspect the local cache with conan search,
and remove packages from it with conan remove command.

If you navigate to the folders referenced in conanbuildinfo.cmake you will find the headers and libraries for each
package.

If you execute a conan install poco/1.9.4@ command in your shell, Conan will download the Poco package and
its dependencies (openssl/1.0.2¢t and zlib/1.2.11) to your local cache and print information about the folder where they
are installed. While you can install each of your dependencies individually like that, the recommended approach for
handling dependencies is to use a conanfile.txt file. The structure of conanfile. txt is described below.

6.1.1 Requires

The required dependencies should be specified in the [requires] section. Here is an example:

[requires]
mypackage/1.0.0@company/stable

Where:
* mypackage is the name of the package which is usually the same as the project/library.

* 1.0.0 is the version which usually matches that of the packaged project/library. This can be any string; it does
not have to be a number, so, for example, it could indicate if this is a “develop” or “master” version. Packages can
be overwritten, so it is also OK to have packages like “nightly” or “weekly”, that are regenerated periodically.

» company is the owner of this package. It is basically a namespace that allows different users to have their own
packages for the same library with the same name.

52 Chapter 6. Using packages



Conan Documentation, Release 1.60.2

* stable is the channel. Channels provide another way to have different variants of packages for the same library
and use them interchangeably. They usually denote the maturity of the package as an arbitrary string such as
“stable” or “testing”, but they can be used for any purpose such as package revisions (e.g., the library version has
not changed, but the package recipe has evolved).

Optional user/channel

If the package was created and uploaded without specifying the user and channel you can omit the user/channel
when specifying a reference:

[requires]
packagename/1.2.0

Overriding requirements
You can specify multiple requirements and override transitive “require’s requirements”. In our example, Conan in-
stalled the Poco package and all its requirements transitively:

¢ openssl/1.0.2t

e zlib/1.2.11

Tip: This is a good example of overriding requirements given the importance of keeping the OpenSSL library updated.

Consider that a new release of the OpenSSL library has been released, and a new corresponding Conan package is
available. In our example, we do not need to wait until pocoproject (the author) generates a new package of POCO that
includes the new OpenSSL library.

We can simply enter the new version in the [requires] section:

[requires]
poco/1.9.4
openssl/1.0.2u

The second line will override the openssl/1.0.2t required by POCO with the currently non-existent openssl/1.0.2u.

Another example in which we may want to try some new zlib alpha features: we could replace the zlib requirement
with one from another user or channel.

[requires]

poco/1.9.4

openssl/1.0.2u
z1lib/1.2.11@otheruser/alpha

Note: You can use environment variable CONAN_ERROR_ON_OVERRIDE to raise an error for every overridden
requirement not marked explicitly with the override keyword.

6.1. Installing dependencies 53


https://conan.io/center/poco

Conan Documentation, Release 1.60.2

6.1.2 Generators

Conan reads the [generators] section from conanfile. txt and creates files for each generator with all the informa-
tion needed to link your program with the specified requirements. The generated files are usually temporary, created
in build folders and not committed to version control, as they have paths to local folders that will not exist in another
machine. Moreover, it is very important to highlight that generated files match the given configuration (Debug/Release,
x86/x86_64, etc) specified when running conan install. If the configuration changes, the files will change accord-
ingly.

For a full list of generators, please refer to the complete generators reference.

6.1.3 Options

We have already seen that there are some settings that can be specified during installation. For example, conan
install .. -s build_type=Debug. These settings are typically a project-wide configuration defined by the client
machine, so they cannot have a default value in the recipe. For example, it doesn’t make sense for a package recipe to
declare “Visual Studio” as a default compiler because that is something defined by the end consumer, and unlikely to
make sense if they are working in Linux.

On the other hand, options are intended for package specific configuration that can be set to a default value in the
recipe. For example, one package can define that its default linkage is static, and this is the linkage that should be used
if consumers don’t specify otherwise.

Note: You can see the available options for a package by inspecting the recipe with conan get <reference>
command:

[$ conan get poco/1.9.4@ }

To see only specific fields of the recipe you can use the conan inspect command instead:

$ conan inspect poco/1.9.4@ -a=options
$ conan inspect poco/1.9.4@ -a=default_options

For example, we can modify the previous example to use dynamic linkage instead of the default one, which was static,
by editing the [options] section in conanfile. txt:

[requires]
poco/1.9.4

[generators]
cmake

[options]
poco:shared=True # PACKAGE:OPTION=VALUE
openssl:shared=True

Install the requirements and compile from the build folder (change the CMake generator if not in Windows):

$ conan install ..
$ cmake .. -G "Visual Studio 14 Win64"
$ cmake --build . --config Release

As an alternative to defining options in the conanfile. txt file, you can specify them directly in the command line:

54 Chapter 6. Using packages



Conan Documentation, Release 1.60.2

$ conan install ..
# or even with wildcards,
$ conan install ..

to apply to many packages

-0 *:shared=True

-0 poco:shared=True -o openssl:shared=True

Conan will install the binaries of the shared library packages, and the example will link with them. You can again
inspect the different binaries installed. For example, conan search zlib/1.2.11@.

Finally, launch the executable:

[s ./bin/mds

)

What happened? It fails because it can’t find the shared libraries in the path. Remember that shared libraries are used

at runtime, so the operating system, which is running the application, must be able to locate them.

We could inspect the generated executable, and see that it is using the shared libraries. For example, in Linux, we could
use the objdump tool and see the Dynamic section:

$ cd bin
$ objdump -p md5

Dynamic Section:

NEEDED libPocoUtil.so.31
NEEDED libPocoXML.so.31

NEEDED 1ibPoco]SON.so0.31
NEEDED libPocoMongoDB.so.31
NEEDED libPocoNet.so0.31

NEEDED libPocoCrypto.so.31
NEEDED libPocoData.so.31
NEEDED libPocoDataSQLite.so.31
NEEDED libPocoZip.so0.31

NEEDED libPocoFoundation.so.31
NEEDED libpthread.so.0

NEEDED libdl.so.2

NEEDED librt.so.1

NEEDED libssl.so0.1.0.0

NEEDED libcrypto.so.1.0.0
NEEDED libstdc++.s0.6

NEEDED libm.so.6

NEEDED libgcc_s.so.1

NEEDED libc.so.6

6.1.4 Imports

this one.

Warning: This is a deprecated feature. Please refer to the Migration Guidelines to find the feature that replaces

There are some differences between shared libraries on Linux (*.s0), Windows (*.dll) and MacOS (*.dylib). The shared
libraries must be located in a folder where they can be found, either by the linker, or by the OS runtime.

You can add the libraries’

folders to the path (LD_LIBRARY_PATH environment variable in Linux,

DYLD_LIBRARY_PATH in OSX, or system PATH in Windows), or copy those shared libraries to some system folder
where they can be found by the OS. But these operations are only related to the deployment or installation of apps;

6.1. Installing dependencies

55



Conan Documentation, Release 1.60.2

they are not relevant during development. Conan is intended for developers, so it avoids such manipulation of the OS
environment.

In Windows and OSX, the simplest approach is to copy the shared libraries to the executable folder, so they are found
by the executable, without having to modify the path.

This is done using the [imports] section in conanfile. txt.

To demonstrate this, edit the conanfile. txt file and paste the following [imports] section:

[requires]
poco/1.9.4

[generators]
cmake

[options]
poco:shared=True
openssl:shared=True

[imports]
bin, *.dll -> ./bin # Copies all dll1 files from packages bin folder to my "bin" folder
lib, *.dylib* -> ./bin # Copies all dylib files from packages 1lib folder to my "bin".
—folder

Note: You can explore the package folder in your local cache (~/.conan/data) and see where the shared libraries are.
It is common that *.dll are copied to /bin. The rest of the libraries should be found in the /lib folder, however, this is
just a convention, and different layouts are possible.

Install the requirements (from the build folder), and run the binary again:

$ conan install ..
$ ./bin/md5

Now look at the build/bin folder and verify that the required shared libraries are there.
As you can see, the [imports] section is a very generic way to import files from your requirements to your project.

This method can be used for packaging applications and copying the resulting executables to your bin folder, or for
copying assets, images, sounds, test static files, etc. Conan is a generic solution for package management, not only for
(but focused on) C/C++ libraries.

See also:

To learn more about working with shared libraries, please refer to Howtos/Manage shared libraries.

56 Chapter 6. Using packages




Conan Documentation, Release 1.60.2

6.2 Using profiles

Caution: We are actively working to finalize the Conan 2.0 Release. Some of the information on this page
references deprecated features which will not be carried forward with the new release. It’s important to check the
Migration Guidelines to ensure you are using the most up to date features.

So far, we have used the default settings stored in ~/ . conan/profiles/default and defined custom values for some
of them as command line arguments.

However, in large projects, configurations can get complex, settings can be very different, and we need an easy way to
switch between different configurations with different settings, options etc. An easy way to switch between configura-
tions is by using profiles.

A profile file contains a predefined set of settings, options, environment variables, and tool_requires
specified in the following structure:

[settings]
setting=value

[options]
MyLib:shared=True

[env]
env_var=value

[tool_requires]

t00l1/0. 1@user/channel

to0l2/0.1@user/channel, tool3/0.1@user/channel
*: to0l4/0.1l@user/channel

Options allow the use of wildcards letting you apply the same option value to many packages. For example:

[options]
*:shared=True

Here is an example of a configuration that a profile file may contain:

Listing 1: clang_3.5

[settings]

os=Macos

arch=x86_64

compiler=clang
compiler.version=3.5
compiler.libcxx=1libstdc++11
build_type=Release

[env]
CC=/usr/bin/clang-3.5
CXX=/usr/bin/clang++-3.5

A profile file can be stored in the default profile folder, or anywhere else in your project file structure. To use the
configuration specified in a profile file, pass in the file as a command line argument as shown in the example below:

6.2. Using profiles 57




Conan Documentation, Release 1.60.2

[$ conan create . demo/testing -pr=clang_3.5 J

Continuing with the example of Poco, instead of passing in a long list of command line arguments, we can define a
handy profile that defines them all and pass that to the command line when installing the project dependencies.

A profile to install dependencies as shared and in debug mode would look like this:

Listing 2: debug_shared

include(default)

[settings]
build_type=Debug

[options]

poco:shared=True
poco:enable_apacheconnector=False
openssl:shared=True

To install dependencies using the profile file, we would use:

[$ conan install .. -pr=debug_shared }

We could also create a new profile to use a different compiler version and store that in our project directory. For
example:

Listing 3: poco_clang_3.5

include(clang_3.5)

[options]

poco:shared=True
poco:enable_apacheconnector=False
openssl:shared=True

To install dependencies using this new profile, we would use:

[$ conan install .. -pr=../poco_clang_3.5 J

You can specify multiple profiles in the command line. The applied configuration will be the composition of all the
profiles applied in the order they are specified:

[$ conan install .. -pr=../poco_clang_3.5 -pr=my_build_tooll -pr=my_build_tool2 J

See also:

Read more about Profiles for full reference. There is a Conan command, conan profile, that can help inspecting and
managing profiles. Profiles can be also shared and installed with the conan config install command.

58 Chapter 6. Using packages



Conan Documentation, Release 1.60.2

6.3 Workflows

Caution: We are actively working to finalize the Conan 2.0 Release. Some of the information on this page
references deprecated features which will not be carried forward with the new release. It’s important to check the
Migration Guidelines to ensure you are using the most up to date features.

This section summarizes some possible layouts and workflows when using Conan together with other tools as an end-
user for installing and consuming existing packages. To create your own packages, please refer to Creating Packages.

Whether you are working on a single configuration or a multi configuration project, in both cases, the recommended
approach is to have a conanfile (either .py or .txt) at the root of your project.

6.3.1 Single configuration

When working with a single configuration, your conanfile will be quite simple as shown in the examples and tutorials
we have used so far in this user guide. For example, in Getting started, we showed how you can run the conan install
. . command inside the build folder resulting in the conaninfo.txt and conanbuildinfo.cmake files being generated there

too. Note that the build folder is temporary, so you should exclude it from version control to exclude these temporary
files.

Out-of-source builds are also supported. Let’s look at a simple example:

$ git clone https://github.com/conan-io/examples.git
$ cd libraries/poco
$ conan install ./md5 --install-folder=md5_build

This will result in the following layout:

md5_build
conaninfo.txt
conanbuildinfo.txt
conanbuildinfo.cmake

md5
(CMakeLists.txt # If using cmake, but can be Makefile, sln...
README . md
conanfile.txt
md5 . cpp

Now you are ready to build:

$ cd md5_build

$ cmake ../md5 -G "Visual Studio 15 Win64" # or other generator
$ cmake --build . --config Release

$ ./bin/md5

> ¢3fcd3d76192e4007dfb496ccab7el3b

We have created a separate build configuration of the project without affecting the original source directory in any way.
The benefit is that we can freely experiment with the configuration: We can clear the build folder and build another.
For example, changing the build type to Debug:

$ rm -rf *
$ conan install ../md5 -s build_type=Debug

(continues on next page)

6.3. Workflows 59




Conan Documentation, Release 1.60.2

(continued from previous page)
$ cmake ../md5 -G "Visual Studio 15 Win64"
$ cmake --build . --config Debug
$ ./bin/md5
> ¢3fcd3d76192e4007dfb496ccab7el3b

6.3.2 Multi configuration

You can also manage different configurations, whether in-source or out of source, and switch between them without
having to re-issue the conan install command (Note however, that even if you did have to run conan install
again, since subsequent runs use the same parameters, they would be very fast since packages would already have been
installed in the local cache rather than in the project)

git clone git@github.com:conan-io/examples

cd libraries/poco

conan install md5 -s build_type=Debug -if md5_build_debug
conan install md5 -s build_type=Release -if md5_build_release

A A o

$ cd md5_build_debug && cmake ../md5 -G "Visual Studio 15 Win64" && cd ../..
$ cd md5_build_release &% cmake ../md5 -G "Visual Studio 15 Win64" && cd ../..

Note: You can either use the --install-folder or -if flags to specify where to generate the output files, or
manually create the output directory and navigate to it before executing the conan install command.

So the layout will be:

md5_build_debug

conaninfo.txt

conanbuildinfo.txt

conanbuildinfo.cmake

CMakeCache.txt # and other cmake files
md5_build_release

conaninfo.txt

conanbuildinfo.txt

conanbuildinfo.cmake

CMakeCache.txt # and other cmake files
example-poco-timer

CMakeLists.txt # If using cmake, but can be Makefile, sln...

README . md

conanfile.txt

md5 . cpp

Now you can switch between your build configurations in exactly the same way you do for CMake or other build
systems, by moving to the folder in which the build configuration is located, because the Conan configuration files for
that build configuration will also be there.

$ cd md5_build_debug && cmake --build . --config Debug && cd ../..
$ cd md5_build_release &% cmake --build . --config Release && cd ../..

Note that the CMake include () of your project must be prefixed with the current cmake binary directory, otherwise
it will not find the necessary file:

60 Chapter 6. Using packages




Conan Documentation, Release 1.60.2

include(${CMAKE_BINARY_DIR}/conanbuildinfo.cmake)
conan_basic_setup()

See also:

There are two generators, cmake_multi and visual_studio_multi that could help to avoid the context switch
and using Debug and Release configurations simultaneously. Read more about them in cmake_multi and vi-
sual_studio_multi

6.4 Debugging packages

In order to run a debug session and step into the source code, the debugger needs to find the source files (or pdb files
ones for Visual Studio), for Mac and Unix system the location of these files is stored inside the library itself.

Usually Conan packages don’t include these files and if they do, the path to the local cache might be different: in a
typical scenario the packages are generated in a CI machine and the debug session will take place in the developers
one, so the path to the sources won’t be the same.

The only rule of thumb is to compile the library we want to debug in the developer machine, and thanks to Conan
this is straightforward:

[conan install <reference> --build <name> --profile <debug_profile> ]

This command will trigger the build of the library locally in the developer’s machine, so the binaries will point to the
sources where they are actually located and the debugger will find them.

Note: Keep updated as we are investigating more integrated solutions using hooks and for the major IDEs, Visual
Studio and CLion.

6.4. Debugging packages 61


https://en.wikipedia.org/wiki/Program_database
https://github.com/conan-io/conan/issues/4736

Conan Documentation, Release 1.60.2

62 Chapter 6. Using packages



CHAPTER
SEVEN

CREATING PACKAGES

This section shows how to create, build and test your packages.

7.1 Getting started

This section introduces how to create your own Conan packages, explain conanfile.py recipes and the commands to
build packages from sources in your computer.

Important: This is a tutorial section. You are encouraged to execute these commands. For this concrete example,
you will need CMake installed in your path. It is not strictly required by Conan to create packages, you can use other
build systems (as VS, Meson, Autotools and even your own) to do that, without any dependency to CMake.

Some of the features used in this section are still under development, like CMakeToolchain or cmake_layout(),
while they are recommended and usable and we will try not to break them in future releases, some breaking changes
might still happen if necessary to prepare for the Conan 2.0 release.

Using the conan new command will create a “Hello World” C++ library example project for us:

$ mkdir hellopkg && cd hellopkg

$ conan new hello/0.1 --template=cmake_lib
File saved: conanfile.py

File saved: CMakeLists.txt

File saved: src/hello.cpp

File saved: src/hello.h

File saved: test_package/conanfile.py

File saved: test_package/CMakeLists.txt
File saved: test_package/src/example.cpp

The generated files are:

« conanfile.py: On the root folder, there is a conanfile.py which is the main recipe file, responsible for defining
how the package is built and consumed.

* CMakeLists.txt: A simple generic CMakeLists.txt, with nothing specific about Conan in it.
* src folder: the src folder that contains the simple C++ “hello” library.

* (optional) test_package folder: contains an example application that will require and link with the created pack-
age. It is not mandatory, but it is useful to check that our package is correctly created.

Let’s have a look at the package recipe conanfile.py:

63




Conan Documentation, Release 1.60.2

from conans import ConanFile
from conan.tools.cmake import CMakeToolchain, CMake, cmake_layout

class HelloConan(ConanFile):

name = "hello"
version = "0.1"

# Binary configuration

settings = "os", "compiler", "build_type", "arch"

options = {"shared": [True, False], "fPIC": [True, False]}
default_options = {"shared": False, "fPIC": True}

# Sources are located in the same place as this recipe, copy them to the recipe
exports_sources = "CMakeLists.txt", "src/*"

def config_options(self):
if self.settings.os == "Windows":
del self.options.fPIC

def layout(self):
cmake_layout(self)

def generate(self):
tc = CMakeToolchain(self)
tc.generate()

def build(self):
cmake = CMake(self)
cmake.configure()
cmake.build(Q)

def package(self):
cmake = CMake(self)
cmake.install ()

def package_info(self):
self.cpp_info.libs = ["hello"]

Let’s explain a little bit about this recipe:

The binary configuration is composed by settings and options. See more in his section. When something
changes in the configuration, the resulting binary built and packaged will be different:

— settings are project wide configuration, that cannot be defaulted in recipes, like the OS or the architecture.

— options are package specific configuration and can be defaulted in recipes, in this case we have the option
of creating the package as a shared or static library, being static the default.

The exports_sources attribute defines which sources are exported together with the recipe, these sources
become part of the package recipe (there are other mechanisms that don’t do this, will be explained later.

The config_options () method (together with configure () one) allows to fine tune the binary configuration
model, for example, in Windows there is no £PIC option, so it can be removed.

The generate() method prepares the build of the package from source. In this case, it could be simplified
to an attribute generators = "CMakeToolchain", but it is left to show this important method. In this case,

64

Chapter 7. Creating Packages




Conan Documentation, Release 1.60.2

the execution of CMakeToolchain generate() method will create a conan_toolchain.cmake file that maps the
Conan settings and options to CMake syntax.

e The build() method uses the CMake wrapper to call CMake commands, it is a thin layer that will manage
to pass in this case the -DCMAKE_TOOLCHAIN_FILE=<path>/conan_toolchain.cmake argument, plus other
possible arguments, like -DCMAKE_BUILD_TYPE=<config> if necessary. It will configure the project and build
it from source. The actual arguments that will be used are obtained from a generated CMakePresets. json file.

* The package() method copies artifacts (headers, libs) from the build folder to the final package folder. It
can be done with bare “copy” commands, but in this case it is leveraging the already existing CMake install
functionality (if the CMakeLists.txt didn’t implement it, it is easy to write self.copy() commands in this
package () method.

¢ Finally, the package_info() method defines that consumers must link with a “hello” library when using this
package. Other information as include or lib paths can be defined as well. This information is used for files
created by generators (as CMakeDeps) to be used by consumers. Although this method implies some potential
duplication with the build system output (CMake could generate xxx-config.cmake files), it is important to define
this, as Conan packages can be consumed by any other build system, not only CMake.

The contents of the test_package folder is not critical now for understanding how packages are created, the important
bits are:

* test_package folder is different from unit or integration tests. These tests are “package” tests, and validate that
the package is properly created, and that the package consumers will be able to link against it and reuse it.

* Itis a small Conan project itself, it contains its own conanfile.py, and its source code including build scripts,
that depends on the package being created, and builds and execute a small application that requires the library in
the package.

* It doesn’t belong to the package. It only exist in the source repository, not in the package.

Let’s build the package from sources with the current default configuration (default profile), and then let the
test_package folder test the package:

$ conan create . demo/testing

hello/0.1: Hello World Release!
hello/®.1: _M_X64 defined

If “Hello world Release!” is displayed, it worked. This is what has happened:

* The conanfile.py together with the contents of the src folder have been copied (exported in Conan terms) to the
local Conan cache.

* A new build from source for the hello/0. 1@demo/testing package starts, calling the generate(), build()
and package () methods. This creates the binary package in the Conan cache.

* Moves to the test_package folder and executes a conan install + conan build + test() method, to check
if the package was correctly created. This happens automatically whenever a test_package folder is supplied
next to the conanfile.py being processed.

We can now validate that the recipe and the package binary are in the cache:

$ conan search
Existing package recipes:

hello/0.1@demo/testing

$ conan search hello/0.1@demo/testing
(continues on next page)

7.1. Getting started 65




Conan Documentation, Release 1.60.2

(continued from previous page)

Existing packages for recipe hello/0.1@demo/testing:

Package_ID: 3fb49604f9c2£729b85ba3115852006824e72cab

[options]

shared: False
[settings]

arch: x86_64

build_type: Release

The conan create command receives the same command line parameters as conan install so you can pass to
it the same settings and options. If we execute the following lines, we will create new package binaries for those
configurations:

$ conan create . demo/testing -s build_type=Debug
hello/0.1: Hello World Debug!
$ conan create . demo/testing -o hello:shared=True

hello/0.1: Hello World Release!

These new package binaries will be also stored in the Conan cache, ready to be used by any project in this computer,
we can see them with:

$ conan search hello/0.1@demo/testing
Existing packages for recipe hello/0.1@demo/testing:

Package_ID: 127af20la4cdf8111e2e08540525c245c9b3b99%e

[options]
shared: True
[settings]
arch: x86_64

build_type: Release

Package_ID: 3fb49604f9c2f729b85ba3115852006824e72cab

[options]

shared: False
[settings]

arch: x86_64

build_type: Release

Package_ID: d057732059ea44a47760900cb5e4855d2bea8714

[options]

shared: False
[settings]

arch: x86_64

build_type: Debug

Any doubts? Please check out our FAQ section or open a Github issue

66 Chapter 7. Creating Packages



https://github.com/conan-io/conan/issues

Conan Documentation, Release 1.60.2

7.2 Recipe and Sources in a Different Repo

In the previous section, we fetched the sources of our library from an external repository. It is a typical workflow for
packaging third party libraries.

There are two different ways to fetch the sources from an external repository:

1. Using the source () method as we displayed in the previous section:

from conans import ConanFile, CMake, tools

class HelloConan(ConanFile):

def source(self):
self.run("git clone https://github.com/conan-io/hello.git")

You can also use the tools.Git class:

from conans import ConanFile, CMake, tools
class HelloConan(ConanFile):
def source(self):

git = tools.Git(folder="hello")
git.clone("https://github.com/conan-io/hello.git", "master")

2. Using the scm attribute of the ConanFile:

Warning: This is a deprecated feature. Please refer to the Migration Guidelines to find the feature that replaces
this one.

from conans import ConanFile, CMake, tools

class HelloConan(ConanFile):
scm = {
"type": "git",
"subfolder": "hello",
"url": "https://github.com/conan-io/hello.git",
"revision": "master"

Conan will clone the scm url and will checkout the scm revision. Head to creating package documentation to
know more details about SCM feature.

The source () method will be called after the checkout process, so you can still use it to patch something or retrieve
more sources, but it is not necessary in most cases.

7.2. Recipe and Sources in a Different Repo 67




Conan Documentation, Release 1.60.2

7.3 Recipe and Sources in the Same Repo

Caution: We are actively working to finalize the Conan 2.0 Release. Some of the information on this page
references deprecated features which will not be carried forward with the new release. It’s important to check the
Migration Guidelines to ensure you are using the most up to date features.

Sometimes it is more convenient to have the recipe and source code together in the same repository. This is true
especially if you are developing and packaging your own library, and not one from a third-party.

There are two different approaches:

 Using the exports sources attribute of the conanfile to
export the source code together with the recipe. This way the recipe is self-contained and will not need to
fetch the code from external origins when building from sources. It can be considered a “snapshot” of the
source code.

* Using the scm attribute of the conanfile to capture the remote and commit of your repository automatically.

7.3.1 Exporting the Sources with the Recipe: exports_sources

This could be an appropriate approach if we want the package recipe to live in the same repository as the source code
it is packaging.

First, let’s get the initial source code and create the basic package recipe:

[$ conan new hello/®.1 -t -s

A src folder will be created with the same “hello” source code as in the previous example. You can have a look at it
and see that the code is straightforward.

Now let’s have a look at conanfile.py:

from conans import ConanFile, CMake

class HelloConan(ConanFile):

name = "hello"

version = "0.1"

license = "<Put the package license here>"

url = "<Package recipe repository url here, for issues about the package>"
description = "<Description of hello here>"

settings = "os", "compiler", "build_type", "arch"

options = {"shared": [True, False]}
default_options = {"shared": False}
generators = "cmake"
exports_sources = ''src/*"

def build(self):
cmake = CMake(self)
cmake.configure(source_folder="src")
cmake.build()

# Explicit way:
# self.run('cmake "%s/src" %s' % (self.source_folder, cmake.command_line))

(continues on next page)

68 Chapter 7. Creating Packages




Conan Documentation, Release 1.60.2

(continued from previous page)

# self.run("cmake --build . %s" % cmake.build _config)

def package(self):
self.copy("*.h", dst="include", src="src")
self.copy("*.1ib", dst="1ib", keep_path=False)
self.copy("*.dl1l", dst="bin", keep_path=False)
self.copy("*.dylib*", dst="1ib", keep_path=False)
self.copy("*.s0", dst="1ib", keep_path=False)
self.copy("*.a", dst="1ib", keep_path=False)

def package_info(self):
self.cpp_info.libs = ["hello"]

There are two important changes:

* Added the exports_sources field, indicating to Conan to copy all the files from the local src folder into the
package recipe.

* Removed the source () method, since it is no longer necessary to retrieve external sources.

Also, you can notice the two CMake lines:

include (${CMAKE_BINARY_DIR}/conanbuildinfo.cmake)
conan_basic_setup()

They are not added in the package recipe, as they can be directly added to the src/CMakeLists.txt file.

And simply create the package for user and channel demo/testing as described previously:

$ conan create . demo/testing

hello/0.1@demo/testing test package: Running test()
Hello world Release!

7.3.2 Capturing the Remote and Commit: scm

Warning: This is a deprecated feature. Please refer to the Migration Guidelines to find the feature that replaces
this one.

You can use the scm attribute with the url and revision field set to auto. When you export the recipe (or when
conan create is called) the exported recipe will capture the remote and commit of the local repository:

import os
from conans import ConanFile, CMake, tools

class HelloConan(ConanFile):
scm = {
"type": "git", # Use "type":
"subfolder": "hello",
"url": "auto",
"revision": "auto",
"password": os.environ.get("SECRET", None)

" "

svn", if local repo is managed using SVN

(continues on next page)

7.3. Recipe and Sources in the Same Repo 69




Conan Documentation, Release 1.60.2

(continued from previous page)

You can commit and push the conanfile.py to your origin repository, which will always preserve the auto values. When
the file is exported to the Conan local cache (except you have uncommitted changes, read below), these data will be
stored in the conanfile.py itself (Conan will modify the file) or in a special file conandata.yml that will be stored together
with the recipe, depending on the value of the configuration parameter scm_to_conandata.

* If the scm_to_conandata is not activated (default behavior in Conan v1.x) Conan will store a modified version
of the conanfile.py with the values of the fields in plain text:

r

import os
from conans import ConanFile, CMake, tools

class HelloConan(ConanFile):
scm = {
"type": "git",
"subfolder": "hello",
"url": "https://github.com/conan-io/hello.git",
"revision": "437676e15da7090a1368255097f51b1a470905a0",
"password": "MY_SECRET"

L

So when you upload the recipe to a Conan remote, the recipe will contain the “resolved” URL and commit.

» If scm_to_conandata is activated, the value of these fields (except username and password) will be stored in
the conandata.yml file that will be automatically exported with the recipe.

Whichever option you choose, the data resolved will be assigned by Conan to the corresponding field when the recipe
file is loaded, and they will be available for all the methods defined in the recipe. Also, if building the package from
sources, Conan will fetch the code in the captured url/commit before running the method source() in the recipe (if
defined).

As SCM attributes are evaluated in the local directory context (see scm attribute), you can write more complex functions
to retrieve the proper values, this source conanfile.py will be valid too:

import os
from conans import ConanFile, CMake, tools

def get_remote_url(Q):
""" Get remote url regardless of the cloned directory
here = os.path.dirname(__file )
svn = tools.SVN(here)
return svn.get_remote_url()

mirn

class HelloConan(ConanFile):
scm = {
"type": "svn",
"subfolder": "hello",
"url": get_remote_url(),
"revision": "auto"

70 Chapter 7. Creating Packages




Conan Documentation, Release 1.60.2

Tip: When doing a conan create or conan export, Conan will capture the sources of the local scm project folder
in the local cache.

This allows building packages making changes to the source code without the need of committing them and pushing
them to the remote repository. This convenient to speed up the development of your packages when cloning from a
local repository.

So, if you are using the scm feature, with some auto field for url and/or revision and you have uncommitted changes
in your repository a warning message will be printed:

$ conan export . hello/0.1l@demo/testing

hello/0.1@demo/testing: WARN: There are uncommitted changes, skipping the replacement..
—of 'scm.url'

and 'scm.revision' auto fields. Use --ignore-dirty to force it.

The 'conan upload' command will prevent uploading recipes with 'auto' values in these.
—fields.

As the warning message explains, the auto fields won’t be replaced unless you specify --ignore-dirty, and by
default, the conan upload will block the upload of the recipe. This prevents recipes to be uploaded with incorrect
scm values exported. You can use conan upload --force to force uploading the recipe with the auto values un-
replaced.

7.4 Packaging Existing Binaries

There are specific scenarios in which it is necessary to create packages from existing binaries, for example from 3rd
parties or binaries previously built by another process or team that are not using Conan. Under these circumstances
building from sources is not what you want. You should package the local files in the following situations:

* When you cannot build the packages from sources (when only pre-built binaries are available).

* When you are developing your package locally and you want to export the built artifacts to the local cache. As
you don’t want to rebuild again (clean copy) your artifacts, you don’t want to call conan create. This method
will keep your build cache if you are using an IDE or calling locally to the conan build command.

7.4.1 Packaging Pre-built Binaries
Running the build () method, when the files you want to package are local, results in no added value as the files copied
from the user folder cannot be reproduced. For this scenario, run conan export-pkg command directly.

A Conan recipe is still required, but is very simple and will only include the package meta information. A basic recipe
can be created with the conan new command:

[$ conan new hello/0®.1 --bare

This will create and store the following package recipe in the local cache:

class HelloConan(ConanFile):

name = "hello"
version = "0.1"
settings = "os", "compiler", "build_type", "arch"

(continues on next page)

7.4. Packaging Existing Binaries 71



Conan Documentation, Release 1.60.2

(continued from previous page)
def package(self):
self.copy("*")

def package_info(self):
self.cpp_info.libs = self.collect_libs()

The provided package_info () method scans the package files to provide end-users with the name of the libraries to
link to. This method can be further customized to provide additional build flags (typically dependent on the settings).
The default package_info () applies as follows: it defines headers in the “include” folder, libraries in the “lib” folder,
and binaries in the “bin” folder. A different package layout can be defined in the package_info() method.

This package recipe can be also extended to provide support for more configurations (for example, adding options:
shared/static, or using different settings), adding dependencies (requires), and more.

Based on the above, we can assume that our current directory contains a /ib folder with a number binaries for this
“hello” library libhello.a, compatible for example with Windows MinGW (gcc) version 4.9:

$ conan export-pkg . hello/®.l@myuser/testing -s os=Windows -s compiler=gcc -s compiler.
—version=4.9 ...

Having a fest_package folder is still highly recommended for testing the package locally before upload. As we don’t
want to build the package from the sources, the flow would be:

conan new hello/0.1 --bare --test

customize test_package project

customize package recipe if necessary

cd my/path/to/binaries

conan export-pkg PATH/TO/conanfile.py hello/0.1@myuser/testing -s os=Windows -s.

< compiler=gcc -s compiler.version=4.9 ...

$ conan test PATH/TO/test_package/conanfile.py hello/0.1l@myuser/testing -s os=Windows -s..
—compiler=gcc -s ...

A W H o

The last two steps can be repeated for any number of configurations.

7.4.2 Downloading and Packaging Pre-built Binaries

In this scenario, creating a complete Conan recipe, with the detailed retrieval of the binaries could be the preferred
method, because it is reproducible, and the original binaries might be traced. Follow our sample recipe for this purpose:

class HelloConan(ConanFile):

name = "hello"
version = "0.1"
settings = "os", "compiler", "build_type", "arch"

def build(self):

if self.settings.os == "Windows" and self.settings.compiler == "Visual Studio":
url = ("https://<someurl>/downloads/hello_binary%s_%s.zip"
% (str(self.settings.compiler.version), str(self.settings.build_
—type)))
elif ...:
url =
else:

raise Exception("Binary does not exist for these settings")

(continues on next page)

72 Chapter 7. Creating Packages




Conan Documentation, Release 1.60.2

(continued from previous page)

tools.get(url)

def package(self):
self.copy("*") # assume package as-is, but you can also copy specific files or.
—rearrange

def package_info(self): # still very useful for package consumers
self.cpp_info.libs = ["hello"]

Typically, pre-compiled binaries come for different configurations, so the only task that the build () method has to
implement is to map the settings to the different URLs.

Note:

* This is a standard Conan package even if the binaries are being retrieved from elsewhere. The recommended
approach is to use conan create, and include a small consuming project in addition to the above recipe, to
test locally and then proceed to upload the Conan package with the binaries to the Conan remote with conan
upload.

e The same building policies apply. Having a recipe fails if no Conan packages are created, and the
--build argument is not defined. A typical approach for this kind of packages could be to define a
build_policy="missing", especially if the URLs are also under the team control. If they are external (on
the internet), it could be better to create the packages and store them on your own Conan server, so that the builds
do not rely on third party URL being available.

7.5 Understanding Packaging

7.5.1 Creating and Testing Packages Manually

The previous create approach using fest_package subfolder, is not strictly necessary, though very strongly recom-
mended. If we didn’t want to use the test_package functionality, we could just write our recipe ourselves or use the
conan new command without the -t. command line argument.

$ mkdir mypkg &% cd mypkg
$ conan new hello/0.1

This will create just the conanfile.py recipe file. Now we can create our package:

[$ conan create . demo/testing

This is equivalent to:

$ conan export . demo/testing
$ conan install hello/0.1@demo/testing --build=hello

Once the package is created, it can be consumed like any other package, by adding hello/0. 1@demo/testing to a
project conanfile.txt or conanfile.py requirements and running:

$ conan install .
# build and run your project to ensure the package works

7.5. Understanding Packaging 73



Conan Documentation, Release 1.60.2

7.5.2 Package Creation Process
It is very useful for package creators and Conan users in general to understand the flow for creating a package inside
the conan local cache, and all about its layout.
Each package recipe contains five important folders in the local cache:
 export: The folder in which the package recipe is stored.
 export_source: The folder in which code copied with the recipe exports_sources attribute is stored.

* source: The folder in which the source code for building from sources is stored.

build: The folder in which the actual compilation of sources is done. There will typically be one subfolder for
each different binary configuration

» package: The folder in which the final package artifacts are stored. There will be one subfolder for each different
binary configuration

The source and build folders only exist when the packages have been built from sources.

Conan local cache
Pkg/0.1@user/channel build()

{\ package()

export_source copy build/shal # package/shal

copy‘
export source -
p - U » build/sha2 - package/sha2

source()‘

build/shaN - package/shaN

$ conan export
[/or imports cmake
conanfile.py S conan create generator

mylib2.dll conanbuildinfo.cmake

mylib.dll

User folders

The process starts when a package is “exported”, via the conan export command or more typically, with the conan
create command. The conanfile.py and files specified by the exports_sources field are copied from the user space
to the local cache.

The export and export_source files are copied to the source folder, and then the source() method is executed (if it

74 Chapter 7. Creating Packages



Conan Documentation, Release 1.60.2

exists). Note that there is only one source folder for all the binary packages. If when generating the code, there is source
code that varies for the different configurations, it cannot be generated using the source () method, but rather needs
to be generated using the build() method.

Then, for each different configuration of settings and options, a package ID will be computed in the form of a SHA-1
hash for this configuration. Sources will be copied to the build/hashXXX folder, and the build() method will be
triggered.

After that, the package() method will be called to copy artifacts from the build/hashXXX folder to the pack-
age/hashXXX folder.

Finally, the package_info() methods of all dependencies will be called and gathered so you can generate files for
the consumer build system, as the conanbuildinfo.cmake for the cmake generator. Also the imports feature will copy
artifacts from the local cache into user space if specified.

Any doubts? Please check out our FAQ section or .

7.6 Defining Package ABI Compatibility

Each package recipe can generate N binary packages from it, depending on these three items: settings, options
and requires.

When any of the sertings of a package recipe changes, it will reference a different binary:

class MyLibConanPackage(ConanFile):

name = "mylib"
version = "1.0"
settings = "os", "arch", "compiler", "build_type"

When this package is installed by a conanfile.txt, another package conanfile.py, or directly:

[$ conan install mylib/1.0@user/channel -s arch=x86_64 -s ...

The process is:

1. Conan gets the user input settings and options. Those settings and options can come from the command line,
profiles or from the values cached in the latest conan install execution.

2. Conan retrieves the mylib/1.0@user/channel recipe, reads the settings attribute, and assigns the necessary
values.

3. With the current package values for settings (also options and requires), it will compute a SHA hash that
will serve as the binary package ID, e.g., c6d75a933080cal7eb7£f076813e7fb21aaa7401f2.

4. Conan will try to find the c6d75. . . binary package. If it exists, it will be retrieved. If it cannot be found, it will
fail and indicate that it can be built from sources using conan install --build.

If the package is installed again using different settings, for example, on a 32-bit architecture:

[$ conan install mylib/1.0@user/channel -s arch=x86 -s ... ]

The process will be repeated with a different generated package ID, because the arch setting will have a different value.
The same applies to different compilers, compiler versions, build types. When generating multiple binaries - a separate
ID is generated for each configuration.

When developers using the package use the same settings as one of those uploaded binaries, the computed package ID
will be identical causing the binary to be retrieved and reused without the need of rebuilding it from the sources.

7.6. Defining Package ABI Compatibility 75



Conan Documentation, Release 1.60.2

The options behavior is very similar. The main difference is that options can be more easily defined at the package
level and they can be defaulted. Check the options reference.

Note this simple scenario of a header-only library. The package does not need to be built, and it will not have any ABI
issues at all. The recipe for such a package will be to generate a single binary package, no more. This is easily achieved
by not declaring settings nor options in the recipe as follows:

class MyLibConanPackage(ConanFile):
name = "mylib"
version = "1.0"
# no settings defined!

No matter the settings are defined by the users, including the compiler or version, the package settings and options will
always be the same (left empty) and they will hash to the same binary package ID. That package will typically contain
just the header files.

What happens if we have a library that can be built with GCC 4.8 and will preserve the ABI compatibility with GCC
4.9? (This kind of compatibility is easier to achieve for example for pure C libraries).

Although it could be argued that it is worth rebuilding with 4.9 too -to get fixes and performance improvements-. Let’s
suppose that we don’t want to create 2 different binaries, but just a single built with GCC 4.8 which also needs to be
compatible for GCC 4.9 installations.

7.6.1 Defining a Custom package_id()
The default package_id () uses the settings and options directly as defined, and assumes the semantic versioning
for dependencies is defined in requires.

This package_id () method can be overridden to control the package ID generation. Within the package_id(), we
have access to the self.info object, which is hashed to compute the binary ID and contains:

« self.info.settings: Contains all the declared settings, always as string values. We can access/modify the settings,
e.g., self.info.settings.compiler.version.

« self.info.options: Contains all the declared options, always as string values too, e.g., self.info.options.
shared.

Initially this info object contains the original settings and options, but they can be changed without constraints to any
other string value.

For example, if you are sure your package ABI compatibility is fine for GCC versions > 4.5 and < 5.0, you could do
the following:

from conans import ConanFile, CMake, tools
from conans.model.version import Version

class PkgConan(ConanFile):
name = "pkg"
version = "1.0"
settings = "compiler", "build_type"

def package_id(self):
v = Version(str(self.settings.compiler.version))
if self.settings.compiler == "gcc" and (v >= "4.5" and v < "5.0"):
self.info.settings.compiler.version = "GCC version between 4.5 and 5.0"

76 Chapter 7. Creating Packages



https://semver.org

Conan Documentation, Release 1.60.2

We have set the self.info.settings.compiler.version with an arbitrary string, the value of which is not im-
portant (could be any string). The only important thing is that it is the same for any GCC version between 4.5 and 5.0.
For all those versions, the compiler version will always be hashed to the same ID.

Let’s try and check that it works properly when installing the package for GCC 4.5:

$ conan create . pkg/l.0@myuser/mychannel -s compiler=gcc -s compiler.version=4.5 ...

Requirements
pkg/1.0@myuser/mychannel from local
Packages
pkg/1.0@myuser/mychannel :af044£9619574eceb8elcca737a64bdad88246ad

We can see that the computed package ID is af®4. . .46ad (not real). What happens if we specify GCC 4.6?

$ conan install pkg/l.0@myuser/mychannel -s compiler=gcc -s compiler.version=4.6 ...

Requirements
pkg/1.0@myuser/mychannel from local
Packages
pkg/1.0@myuser/mychannel :af044£9619574eceb8elcca737a64bdad88246ad

The required package has the same result again af04. . .46ad. Now we can try using GCC 4.4 (< 4.5):

$ conan install pkg/l.0@myuser/mychannel -s compiler=gcc -s compiler.version=4.4 ...

Requirements
pkg/1.0@myuser/mychannel from local

Packages
pkg/1.0@myuser/mychannel : 7d02dc0®1581029782h59dcc8c9783a73ab3c22dd

The computed package ID is different which means that we need a different binary package for GCC 4.4.

The same way we have adjusted the self.info.settings, we could set the self.info.options values if needed.
If you want to make packages independent on build_type removing the build_type from the package settings in the
package_id() will work for OSX and Linux. However when building with Visual studio the compiler.runtime
field will change based on the build_type value so in that case you will also want to delete the compiler runtime field
like so:

def package_id(self):
if self.settings.os in ["Windows","WindowsStore"] and self.settings.compiler ==
—"Visual Studio":
del self.info.settings.build_type
del self.info.settings.compiler.runtime

See also:
Check package_id() to see the available helper methods and change its behavior for things like:
* Recipes packaging header only libraries.

* Adjusting Visual Studio toolsets compatibility.

7.6. Defining Package ABI Compatibility 77




Conan Documentation, Release 1.60.2

7.6.2 Compatible packages

Warning: Some parts of this feature are deprecated. Please refer to the Migration Guidelines to find the feature
that will carry over. The compatibility() documented below is the current recommendation.

The above approach defined 1 package ID for different input configurations. For example, all gcc versions in the range
(v >= "4.5" and v < "5.0™) will have exactly the same package ID, no matter what was the gcc version used to
build it. It worked like an information erasure, once the binary is built, it is not possible to know which gcc was used
to build it.

But it is possible to define compatible binaries that have different package IDs. For instance, it is possible to have a
different binary for each gcc version, so the gcc 4.8 package will be a different one with a different package ID than
the gcc 4.9 one, and still define that you can use the gcc 4.8 package when building with gcc 4.9.

We can define an ordered list of compatible packages, that will be checked in order if the package ID that our profile
defines is not available. Let’s see it with an example:

Lets say that we are building with a profile of gcc 4.9. But for a given package we want to fallback to binaries built
with gcc 4.8 or gcc 4.7 if we cannot find a binary built with gcc 4.9. That can be defined as:

from conans import ConanFile

class Pkg(ConanFile):

settings = "os", "compiler", "arch", "build_type"

def package_id(self):
if self.settings.compiler == "gcc" and self.settings.compiler.version == "4.9":
for version in ("4.8", "4.7"):
compatible_pkg = self.info.clone()
compatible_pkg.settings.compiler.version = version
self.compatible_packages.append(compatible_pkg)

Note that if the input configuration is gcc 4.8, it will not try to fallback to binaries of gcc 4.7 as the condition is not
met.

The self.info.clone() method copies the values of settings, options and requires from the current instance
of the recipe so they can be modified to model the compatibility.

It is the responsibility of the developer to guarantee that such binaries are indeed compatible. For example in:

from conans import ConanFile
class Pkg(ConanFile):
options = {"optimized": [1, 2, 3]}
default_options = {"optimized": 1}
def package_id(self):
for optimized in range(int(self.options.optimized), 0, -1):
compatible_pkg = self.info.clone()
compatible_pkg.options.optimized = optimized
self.compatible_packages.append(compatible_pkg)

This recipe defines that the binaries are compatible with binaries of itself built with a lower optimization value. It
can have up to 3 different binaries, one for each different value of optimized option. The package_id() defines
that a binary built with optimized=1 can be perfectly linked and will run even if someone defines optimized=2, or
optimized=3 in their configuration. But a binary built with optimized=2 will not be considered if the requested one
is optimized=1.

78 Chapter 7. Creating Packages




Conan Documentation, Release 1.60.2

The binary should be interchangeable at all effects. This also applies to other usages of that configuration. If this
example used the optimized option to conditionally require different dependencies, that will not be taken into account.
The package_id() step is processed after the whole dependency graph has been built, so it is not possible to define
how dependencies are resolved based on this compatibility model, it only applies to use-cases where the binaries can
be interchanged.

Note: Compatible packages are a match for a binary in the dependency graph. When a compatible package is found,
the --build=missing build policy will not build from sources that package.

Check the Compatible Compilers section to see another example of how to take benefit of compatible packages.
New conanfile.compatibility() method

The conanfile.compatible_packages will be substituted by the new compatibility() method in Conan 2.0. This method
allows you to declare compatibility in a similar way:

def compatibility(self):
if self.settings.compiler == "gcc" and self.settings.compiler.version == "4.9":
return [{"settings": [("compiler.version", v)]}
for v in ("4.8", "4.7", "4.6")]

Please, check the compatibility() reference for more information.

7.6.3 Compatible Compilers

Some compilers make use of a base compiler to operate, for example, the intel compiler uses the Visual Studio
compiler in Windows environments and gcc in Linux environments.

The intel compiler is declared this way in the settings.yml:

intel:
version: ["11", "12", "13", "14", "15", "16", "17", "18", "19"]
base:
gcc:
<<: *gcc
threads: [None]
exception: [None]
Visual Studio:
<<: *visual_studio

Remember, you can extend Conan to support other compilers.

You can use the package_id () method to define the compatibility between the packages generated by the base com-
piler and the parent one. You can use the following helpers together with the compatible packages feature to:

* Consume native Visual Studio packages when the input compiler in the profile is intel (if no intel package
is available).

* The opposite, consume an intel compiler package when a consumer profile specifies Visual Studio as the
input compiler (if no Visual Studio package is available).

* base_compatible(): This function will transform the settings used to calculate the package ID into the “base”
compiler.

7.6. Defining Package ABI Compatibility 79



Conan Documentation, Release 1.60.2

rdef package_id(self):

if self.settings.compiler == "intel":
p = self.info.clone()
p.base_compatible()
self.compatible_packages.append(p)

Using the above package_id() method, if a consumer specifies a profile with a intel profile (-s com-
piler=="intel”’) and there is no binary available, it will resolve to a Visual Studio package ID corresponding
to the base compiler.

e parent_compatible(compiler="compiler", version="version"): This function transforms the set-
tings of a compiler into the settings of a parent one using the specified one as the base compiler. As the details
of the “parent” compatible cannot be guessed, you have to provide them as keyword args to the function. The
“compiler” argument is mandatory, the rest of keyword arguments will be used to initialize the info.settings.
compiler.XXX objects to calculate the correct package ID.

(def package_id(self):

if self.settings.compiler == "Visual Studio":
compatible_pkg = self.info.clone()
compatible_pkg.parent_compatible(compiler="intel", version=16)
self.compatible_packages.append(compatible_pkg)

L

In this case, for a consumer specifying Visual Studio compiler, if no package is found, it will search for an “intel”
package for the version 16.

Take into account that you can use also these helpers without the “compatible packages” feature:

def package_id(self):

if self.settings.compiler == "Visual Studio":
self.info.parent_compatible(compiler="intel", version=16)

In the above example, we will transform the package ID of the Visual Studio package to be the same as the intel
16, but you won’t be able to differentiate the packages built with intel with the ones built by Visual Studio because
both will have the same package ID, and that is not always desirable.

7.6.4 Dependency Issues

Let’s define a simple scenario whereby there are two packages: my_other_lib/2.0 and my_1ib/1.0 which depends
on my_other_1ib/2.0. Let’s assume that their recipes and binaries have already been created and uploaded to a
Conan remote.

Now, a new release for my_other_1ib/2.1 is released with an improved recipe and new binaries. The my_1ib/1.0
is modified and is required to be upgraded to my_other_lib/2.1.

Note: This scenario will be the same in the case that a consuming project of my_1ib/1.0 defines a dependency to
my_other_lib/2.1, which takes precedence over the existing project in my_1ib/1.0.

The question is: Is it necessary to build new my_1ib/1.0 binary packages? or are the existing packages still valid?

The answer: It depends.

80 Chapter 7. Creating Packages



Conan Documentation, Release 1.60.2

Let’s assume that both packages are compiled as static libraries and that the API exposed by my_other_libtomy_lib/
1.0 through the public headers, has not changed at all. In this case, it is not required to build new binaries for my_1lib/
1.0 because the final consumer will link against bothmy_1ib/1.0 and my_other_lib/2.1.

On the other hand, it could happen that the API exposed by my_other_lib in the public headers has changed, but without
affecting the my_1ib/1.0 binary for any reason (like changes consisting on new functions not used by my_lib). The
same reasoning would apply if MyOtherLib was only the header.

But what if a header file of my_other_lib -named myadd.h- has changed from 2.0 to 2.1:

Listing 1: myadd.h header file in version 2.0

[ int addition (int a, int b) { return a - b; }

Listing 2: myadd.h header file in version 2.1

[ int addition (int a, int b) { return a + b; }

And the addition() function is called from the compiled .cpp files of my_lib/1.0?

Then, a new binary for my_lib/1.0 is required to be built for the new dependency version. Otherwise it will
maintain the old, buggy addition() version. Even in the case that my_lib/1.0 doesn’t have any change in its code
lines neither in the recipe, the resulting binary rebuilding my_1ib requires my_other_1ib/2.1 and the package to be
different.

7.6.5 Using package_id() for Package Dependencies

The self.info object has also a requires object. It is a dictionary containing the necessary information for each
requirement, all direct and transitive dependencies. For example, self.info.requires["my_other_lib"] is a
RequirementInfo object.

* Each RequirementInfo has the following read only reference fields:
— full_name: Full require’s name, e.g., my_other_lib

— full_version: Full require’s version, e.g., 1.2

full_user: Full require’s user, e.g., my_user

full_channel: Full require’s channel, e.g., stable
— full_package_id: Full require’s package ID, e.g., c6d75a...

 The following fields are used in the package_id() evaluation:

name: By default same value as full_name, e.g., my_other_lib.

version: By default the major version representation of the full_version. E.g., 1.Y for a 1.2
full_version field and 1.Y.Z for a 1.2.3 full_version field.

user: By default None (doesn’t affect the package ID).

channel: By default None (doesn’t affect the package ID).

package_id: By default None (doesn’t affect the package ID).
When defining a package ID for model dependencies, it is necessary to take into account two factors:
* The versioning schema followed by our requirements (semver?, custom?).

* The type of library being built or reused (shared (.so, .dll, .dylib), static).

7.6. Defining Package ABI Compatibility 81



Conan Documentation, Release 1.60.2

Versioning Schema

By default Conan assumes semver compatibility. For example, if a version changes from minor 2.0 to 2.1, Conan will
assume that the API is compatible (headers not changing), and that it is not necessary to build a new binary for it. This
also applies to patches, whereby changing from 2.1.10 to 2.1.11 doesn’t require a re-build.

If it is necessary to change the default behavior, the applied versioning schema can be customized within the
package_id () method:

from conans import ConanFile, CMake, tools
from conans.model.version import Version

class PkgConan(ConanFile):

name = "my_lib"

version = "1.0"

settings = "os", "compiler", "build_type", "arch"
requires = "my_other_lib/2.0@lasote/stable"

def package_id(self):
myotherlib = self.info.requires["my_other_lib"]

# Any change in the MyOtherLib version will change current Package ID
myotherlib.version = myotherlib.full_version

# Changes in major and minor versions will change the Package ID but
# only a MyOtherLib patch won't. E.g., from 1.2.3 to 1.2.89 won't change.
myotherlib.version = myotherlib.full_version.minor()

Besides version, there are additional helpers that can be used to determine whether the channel and user of one
dependency also affects the binary package, or even the required package ID can change your own package ID.

You can determine if the following variables within any requirement change the ID of your binary package using the
following modes:

Modes / Variables name version user channel package_ic RREV PREV
semver_direct_mode() Yes Yes, only > 1.0.0 (e.g., No No No No No
1.2.Z+b102)
semver_mode () Yes Yes, only > 1.0.0 (e.g., No No No No No
1.2.Z+b102)
major_mode() Yes  Yes (e.g., 1.2.Z+b102) No No No No No
minor_mode () Yes  Yes (e.g., 1.2.Z+b102) No No No No No
patch_mode () Yes  Yes (e.g., 1.2.3+b102) No No No No No
base_mode() Yes  Yes (e.g., 1.7+b102) No No No No No
full_version_mode() Yes Yes (e.g., 1.2.3+b102) No No No No No
full_recipe_mode() Yes  Yes (e.g., 1.2.3+b102) Yes  Yes No No No
full_package_mode() Yes Yes (e.g., 1.2.3+b102) Yes  Yes Yes No No
unrelated_mode () No No No No No No No
recipe_revision_mode Yes Yes Yes Yes Yes Yes No
package_revision_mod Yes Yes Yes  Yes Yes Yes Yes

All the modes can be applied to all dependencies, or to individual ones:

82 Chapter 7. Creating Packages


https://semver.org

Conan Documentation, Release 1.60.2

def package_id(self):
# apply semver_mode for all the dependencies of the package
self.info.requires.semver_mode ()
# use semver_mode just for MyOtherLib
self.info.requires["MyOtherLib"] .semver_mode()

e semver_direct_mode(): This is the default mode. It uses semver_mode () for direct dependencies (first level
dependencies, directly declared by the package) and unrelated_mode () for indirect, transitive dependencies
of the package. It assumes that the binary will be affected by the direct dependencies, which they will already
encode how their transitive dependencies affect them. This might not always be true, as explained above, and
that is the reason it is possible to customize it.

In this mode, if the package depends on “MyLib”, which transitively depends on “MyOtherLib”, the mode means:

my_lib/1.2.3@user/testing => my_lib/1.Y.Z
my_other_lib/2.3.4@user/testing =>

So the direct dependencies are mapped to the major version only. Changing its channel, or using versionmy_lib/
1.4.5 will still produce my_lib/1.Y.Z and thus the same package-id. The indirect, transitive dependency
doesn’t affect the package-id at all.

Important: Known-bug: Package ID mode semver_direct_mode takes into account the options of transitive re-
quirements. It means that modifying the options of any transitive requirement will modify the computed package ID,
and also adding/removing a transitive requirement will modify the computed package ID (this happens even if the
added/removed requirement doesn’t have any option).

* semver_mode(): In this mode, only a major release version (starting from 1.0.0) changes the package ID. Every
version change prior to 1.0.0 changes the package ID, but only major changes after 1.0.0 will be applied.

def package_id(self):
self.info.requires["my_other_lib"].semver_mode()

This results in:

my_lib/1.2.3@user/testing => my_lib/1.Y.Z
my_other_lib/2.3.4@user/testing => my_other_lib/2.Y.Z

In this mode, versions starting with 0 are considered unstable and mapped to the full version:

my_lib/0.2.3@user/testing => my_lib/0.2.3
my_other_lib/0.3.4@user/testing => my_other_lib/0.3.4

major_mode(): Any change in the major release version (starting from 0.0.0) changes the package ID.

rdef package_id(self):
self.info.requires["MyOtherLib"].major_mode ()

L

This mode is basically the same as semver_mode, but the only difference is that major versions 0.Y.Z, which
are considered unstable by semver, are still mapped to only the major, dropping the minor and patch parts.

* minor_mode(): Any change in major or minor (not patch nor build) version of the required dependency changes
the package ID.

7.6. Defining Package ABI Compatibility 83



Conan Documentation, Release 1.60.2

def package_id(self):
self.info.requires["my_other_lib"].minor_mode()

* patch_mode(): Any changes to major, minor or patch (not build) versions of the required dependency change
the package ID.

def package_id(self):
self.info.requires["my_other_lib"].patch_mode()

* base_mode (): Any changes to the base of the version (not build) of the required dependency changes the package
ID. Note that in the case of semver notation this may produce the same result as patch_mode (), but it is actually
intended to dismiss the build part of the version even without strict semver.

def package_id(self):
self.info.requires["my_other_1ib"].base_mode()

full_version_mode(): Any changes to the version of the required dependency changes the package ID.

def package_id(self):
self.info.requires["my_other_1lib"].full_version_mode()

L

[my_other_lib/l .3.4-a4+b3@user/testing => my_other_lib/1.3.4-a4+b3 ]

e full_recipe_mode(): Any change in the reference of the requirement (user & channel too) changes the pack-
age ID.

def package_id(self):
self.info.requires["my_other_1ib"].full_recipe_mode()

This keeps the whole dependency reference, except the package-id of the dependency.

[my_other_lib/l .3.4-a4+b3@user/testing => my_other_lib/1.3.4-a4+b3@user/testing ]

e full_package_mode(): Any change in the required version, user, channel or package ID changes the package
ID.

self.info.requires["my_other_1ib"].full_package_mode()

def package_id(self): ’

Any change to the dependency, including its binary package-id, will in turn produce a new package-id for the
consumer package.

MyOtherLib/1.3.4-a4+b3@user/testing:73b..fa56 => MyOtherLib/1.3.4-a4+b3@user/
—testing:73b..fa56

* unrelated_mode(): Requirements do not change the package ID.

def package_id(self):
self.info.requires["MyOtherLib"] .unrelated_mode()

e recipe_revision_mode(): The full reference and the package ID of the dependencies,
pkg/version@user/channel#RREV:pkg_id (including the recipe revision), will be taken into account to
compute the consumer package ID

84 Chapter 7. Creating Packages



Conan Documentation, Release 1.60.2

{mypkg/l.3.4@user/testing#RREV1 :73b..fa56#PREV1 => mypkg/1.3.4-a4+b3@user/testing
—#RREV1

def package_id(self):
self.info.requires["mypkg"].recipe_revision_mode()

» package_revision_mode(): The full package reference pkg/version @user/channel#RREV:ID#PREV of the
dependencies, including the recipe revision, the binary package ID and the package revision will be taken into
account to compute the consumer package ID

This is the most strict mode. Any change in the upstream will produce new consumers package IDs, becoming
a fully deterministic binary model.

# The full reference of the dependency package binary will be used as-is
mypkg/1.3.4@user/testing#RREV1:73b..fa56#PREV1 => mypkg/1l.3.4@user/testing
—#RREV1:73b. .fa56#PREV1

L

def package_id(self):
self.info.requires["mypkg"] .package_revision_mode()

Note: Version ranges are not used to calculate the package_id only the resolved version in the graph is used

You can also adjust the individual properties manually:

def package_id(self):
myotherlib = self.info.requires["MyOtherLib"]

# Same as myotherlib.semver_mode ()

myotherlib.name = myotherlib.full_name

myotherlib.version = myotherlib.full_version.stable() # major(), minor(), patch(),.
—base, build

myotherlib.user = myotherlib.channel = myotherlib.package_id = None

# Only the channel (and the name) matters

myotherlib.name = myotherlib.full_name

myotherlib.user = myotherlib.package_id = myotherlib.version = None
myotherlib.channel = myotherlib.full_channel

The result of the package_id () is the package ID hash, but the details can be checked in the generated conaninfo.txt
file. The [requires], [options] and [settings] are taken into account when generating the SHA1 hash for the
package ID, while the [full_xxxx] fields show the complete reference information.

The default behavior produces a conaninfo.txt that looks like:

[requires]
MyOtherLib/2.Y.Z

[full_requires]
MyOtherLib/2.2@demo/testing:73bce3fd7eb82b2eabc19fel1317d37da81afa56

7.6. Defining Package ABI Compatibility 85




Conan Documentation, Release 1.60.2

Changing the default package-id mode
It is possible to change the default semver_direct_mode package-id mode, in the conan.conf file:

Listing 3: conan.conf configuration file

[general]
default_package_id_mode=full_package_mode

Possible values are the names of the above methods: full_recipe_mode, semver_mode, etc.

Note: The default_package_id_mode is a global configuration. It will change how all the package-ids are
computed, for all packages. It is impossible to mix different default_package_id_mode values. The same
default_package_id_mode must be used in all clients, servers, CI, etc., and it cannot be changed without rebuilding
all packages.

Note that the default package-id mode is the mode that is used when the package is initialized and before
package_id() method is called. You can still define full_package_mode as default in conan.conf, but if a recipe
declare that it is header-only, with:

def package_id(self):
self.info.clear() # clears requires, but also settings if existing
# or if there are no settings/options, this would be equivalent
self.info.requires.clear() # or self.info.requires.unrelated_mode ()

That would still be executed, changing the “default” behavior, and leading to a package that only generates 1 package-id
for all possible configurations and versions of dependencies.

Remember that conan.conf can be shared and installed with conan config install.
Take into account that you can combine the compatible packages with the package-id modes.

For example, if you are generating binary packages with the default recipe_revision_mode, but you want these
packages to be consumed from a client with a different mode activated, you can create a compatible package trans-
forming the mode to recipe_revision_mode so the package generated with the recipe_revision_mode can be
resolved if no package for the default mode is found:

from conans import ConanFile

class Pkg(ConanFile):

def package_id(self):
p = self.info.clone()
p.requires.recipe_revision_mode()
self.compatible_packages.append(p)

86 Chapter 7. Creating Packages




Conan Documentation, Release 1.60.2

Enabling full transitivity in package_id modes

Attention: This will become the default behavior in the future (Conan 2.0). It is recommended to activate it when
possible (it might require rebuilding some packages, as their package IDs will change)

When a package declares in its package_id() method that it is not affected by its dependencies, that will prop-
agate down to the indirect consumers of that package. There are several ways this can be done, self.info.
clear(), self.info.requires.clear(), self.info.requires.remove["dep"] and self.info.requires.
unrelated_mode (), for example.

Let’s assume for the discussion that it is a header only library, using the self.info.clear () helper. This header only
package has a single dependency, which is a static library. Then, downstream consumers of the header only library that
uses a package mode different from the default, should be also affected by the upstream transitivity dependency. Lets
say that we have the following scenario:

* app/1.0 depends on pkgc/1.0 and pkga/1.0

* pkgc/1.0 depends only on pkgb/1.0

* pkgb/1.0 depends on pkga/1.0, and defines self.info.clear() in its package_id()
e We are using full_version_mode

* Now we create a new pkga/2.0 that has some changes in its header, that would require to rebuild pkgc/1.0
against it.

* app/1.0 now depends on “pkgc/1.0 and pkga/2.0

package id mode=full_version mode full_transitive_package id=0 full_transitive_package id=1
(default)
PkgA/1.0 PkgA/2.0 PkgA/2.0
A A /’J\

PkgB/1.0:PIDB1 PkgB/1.0:PIDB1 PkgB/1.0:PIDB1
self.info.header_only() E self.info.header_only() self.info.header_only()
PkgC/1.0:PIDC1 PkgC/1.0:PIDC1 PkgC/1.0:PIDC2

App/1.0 App/1.0 App/1.0

With the default behavior, the header only pkgb is isolating pkgc from the upstream changes effects. The package-id
PIDC1 we get for pkgc/1.0 is exactly the same when depending on pkga/1.0 and pkga/2.0.

If we want to have the full_version_mode to be fully transitive, irrespective of the local package-
id modes of the packages, we can configure it in the conan.conf section. To summarize, you can ac-
tivate the general.full_transitive_package_id configuration ($ conan config set general.
full_transitive_package_id=1).

If we do this, then pkgc/1.0 will compute 2 different package-ids, one for pkga/1.0 (PIDC1) and the other to link
with pkga/2.0 (PIDC2).

7.6. Defining Package ABI Compatibility 87



Conan Documentation, Release 1.60.2

Library Types: Shared, Static, Header-only

Let’s see some examples, corresponding to common scenarios:

e my_lib/1.0 is a shared library that links with a static library my_other_lib/2.0 package. When a new
my_other_lib/2.1 version is released: Do I need to create a new binary for my_1ib/1.0 to link with it?

Yes, always, as the implementation is embedded in the my_1ib/1.0 shared library. If we always want to rebuild
our library, even if the channel changes (we assume a channel change could mean a source code change):

def package_id(self):
# Any change in the my_other_lib version, user or
# channel or Package ID will affect our package ID
self.info.requires["my_other_1lib"].full_package_mode()

e my_lib/1.0 is a shared library, requiring another shared library my_other_1ib/2.0 package. When a new

my_other_lib/2.1 version is released: Do I need to create a new binary for my_1ib/1.0 to link with it?

It depends. If the public headers have not changed at all, it is not necessary. Actually it might be necessary to
consider transitive dependencies that are shared among the public headers, how they are linked and if they cross
the frontiers of the API, it might also lead to incompatibilities. If the public headers have changed, it would
depend on what changes and how are they used inmy_1ib/1.0. Adding new methods to the public headers will
have no impact, but changing the implementation of some functions that will be inlined when compiled from
my_lib/1.0 will definitely require re-building. For this case, it could make sense to have this configuration:

rdef package_id(self):
# Any change in the my_other_lib version, user or channel
# or Package ID will affect our package ID
self.info.requires["my_other_lib"].full_package_mode()

# Or any change in the my_other_lib version, user or
# channel will affect our package ID
self.info.requires["my_other_lib"].full_recipe_mode()

L

e my_lib/1.0 is a header-only library, linking with any kind (header, static, shared) of library in my_other_lib/

2.0 package. Whenanewmy_other_1ib/2.1 versionisreleased: Do Ineed to create a new binary formy_1lib/
1.0 to link with it?

Never. The package should always be the same as there are no settings, no options, and in any way a dependency
can affect a binary, because there is no such binary. The default behavior should be changed to:

def package_id(self):
self.info.requires.clear()

e my_lib/1.0 is a static library linking to a header only library in my_other_lib/2.0 package. When a new

my_other_lib/2.1 version is released: Do I need to create a new binary for my_1lib/1.0 to link with it? It
could happen that the my_other_1ib headers are strictly used in some my_1ib headers, which are not com-
piled, but transitively included. But in general, it is more likely that my_other_1ib headers are used in MyLib
implementation files, so every change in them should imply a new binary to be built. If we know that changes in
the channel never imply a source code change, as set in our workflow/lifecycle, we could write:

def package_id(self):
self.info.requires["my_other_lib"].full_package()
self.info.requires["my_other_lib"].channel = None # Channel doesn't change out..
—spackage ID

88

Chapter 7. Creating Packages




Conan Documentation, Release 1.60.2

7.7 Define the package information

Caution: We are actively working to finalize the Conan 2.0 Release. Some of the information on this page
references deprecated features which will not be carried forward with the new release. It’s important to check the
Migration Guidelines to ensure you are using the most up to date features.

When creating a recipe to package a library, it is important to define the information about the package so consumers
can get the information correctly. Conan achieves this by decoupling the information of the package from the format
needed using Generators, that translate the generic information into the appropriate format file.

This generic information is defined inside the recipe, using the package_info() method. There you can declare package
information like the location of the header files, library names, defines, flags. ..

from conans import ConanFile

class MyConan(ConanFile):
name = "cool_library"

def package_info(self):
self.cpp_info.includedirs = ["include/cool"]
self.cpp_info.libs = ["libcool"]
self.cpp_info.defines = ["DEFINE_COOL=1"]

The package information is done using the attributes of the cpp_info object. This information will be aggregated by
Conan and exposed via self.deps_cpp_info to consumers and generators.

Important: This information is important as it describes the package contents in a generic way with a pretty straight-
forward syntax that can later be translated to a suitable format. The advantage of having this information here, is that
the package could be consumed from a different build system that the one used to compile the library. For example,
a library that builds using Autotools can be consumed later in CMake with this information using any of the CMake
generators.

See also:

Read package_info() to learn more about this method.

7.7.1 Using Components
If your package contains more than one library or you want to define separated components so consumers can have
more granular information, you can use components in your package_info() method.

When you are creating a Conan package, it is recommended to have only one library (.lib, .a, .so, .dll...) per package.
However, especially with third-party projects like Boost, Poco or OpenSSL, they would contain several libraries inside.

Usually those libraries inside the same package depend on each other and modelling the relationship among them is
required.

With components, you can model libraries and executables inside the same package and how one depends on the other.
Each library or executable will be one component inside cpp_info like this:

7.7. Define the package information 89




Conan Documentation, Release 1.60.2

def package_info(self):
self.cpp_info.names["cmake_find_package"] = "OpenSSL"
self.cpp_info.names["cmake_find_package_multi"] = "OpenSSL"
self.cpp_info.components["crypto"].names["cmake_find_package"] = "Crypto"
self.cpp_info.components["crypto"].libs = ["libcrypto"]
self.cpp_info.components["crypto"].defines = ["DEFINE_CRYPTO=1"]
self.cpp_info.components["ssl"].names["cmake"] = "SSL"
self.cpp_info.components["ssl"].includedirs = ["include/headers_ssl"]
self.cpp_info.components['ssl"].libs = ["libssl"]
self.cpp_info.components["ssl"].requires = ["crypto"]

You can define dependencies among different components using the requires attribute and the name of the component.
The dependency graph for components will be calculated and values will be aggregated in the correct order for each
field.

def package_info(self):
self.cpp_info.components["LibA"].1libs = ["1liba"] # Name of the library for the
< 'LibA' component
self.cpp_info.components["LibA"].requires = ["LibB"] # Requires point to the name.
—o0f the component
self.cpp_info.components["LibB"].libs = ["1ibb"]
self.cpp_info.components["LibC"].1libs = ["libc"]
self.cpp_info.components["LibC"].requires = ["LibA"]
self.cpp_info.components["LibD"].libs = ["1ibd"]
self.cpp_info.components["LibD"].requires = ["LibA"]
self.cpp_info.components["LibE"].1libs = ["libe"]
self.cpp_info.components["LibE"].requires = ["LibB"]
self.cpp_info.components["LibF"].1libs = ["1ibf"]
self.cpp_info.components["LibF"].requires = ["LibD", "LibE"]

For consumers and generators, the order of the libraries from this components graph will be:

[self.deps_cpp_info.libs == ["1lib£f", "libe", "libd", "libc", "liba", "libb"]

Declaration of requires from other packages is also allowed:

class MyConan(ConanFile):

requires = "zlib/1.2.11", "openssl/1.1.1g"
def package_info(self):
self.cpp_info.components["compl"].requires =
—components in zlib package
self.cpp_info.components["comp2"].requires =
—Depends on ssl component in openssl package

["zlib::z1ib"] # Depends on all.,

["compl"”, "openssl::ssl"] #.

By default, components won’t link against any other package required by the recipe. The requires list has to be pop-
ulated explicitly with the list of components from other packages to use: it can be the full requirement (z1ib::z1ib)
or a single component (openssl::ssl).

90 Chapter 7. Creating Packages



Conan Documentation, Release 1.60.2

Important: The information of components is aggregated to the global cpp_info scope and the usage of components
should be transparent.

Consumers can get this information via self.deps_cpp_info as usual and use it in the build() method of any
dependent recipe:

class PocoTimerConan(ConanFile):
requires = "zlib/1.2.11", "openssl/1.0.2u"
def build(self):

# Get the include directories of the SSL component of openssl package
self.deps_cpp_info["openssl"].components["ssl"].include_paths

Recipes that require packages that declare components can also take advantage of this granularity, they can declare in
the cpp_info.requires attribute the list of components from the requirements they want to link with:

class Library(ConanFile):
name = 'library'
requires = "openssl/1.0.2u"

def package_info(self):
self.cpp_info.requires = ['openssl::ssl']

In the previous example, the ‘library’ package and transitively all its consumers will link only with the component ss1
from the openss1 package.

See also:

Read components reference for more information.

7.8 Toolchains

Toolchains are the new way to integrate with build systems in Conan. Recipes can define a generate () method that
will return an object which can generate files from the current configuration that can be used by the build systems.
Conan generators provide information about dependencies, while toolchains provide a “translation” from the Conan
settings and options, and the recipe defined configuration to something that the build system can understand. A recipe
that does not have dependencies does not need a generator, but can still use a toolchain.

A toolchain can be defined, among the built-ins toolchains, with an attribute with the name of the toolchain class to
use.

[generators = "<ToolChainClassName>"

For example, for using the CMake toolchain this should be declared in the recipe:

[generators = "CMakeToolchain"

Tip: You can explore available toolchains in the new tools section

But in the more general case, and if it needs any specific configuration beyond the default one:

7.8. Toolchains 91



Conan Documentation, Release 1.60.2

from conan.tools.cmake import CMakeToolchain

def generate(self):
tc = CMakeToolchain(self)
# customize toolchain "tc
tc.generate()

"

It is possible to use the generate () method to create your own files, which will typically be deduced from the current
configuration of self.settings and self.options.

from conan.tools.files import save

def generate(self):

# Based on the self.settings, self.options, the user

# can generate their own files:

save("mytoolchain.tool", "my own toolchain contents, deduced from the settings and.
—options")

# The "mytoolchain.tool" file can be used by the build system to

# define the build

And as usual, you can create your own toolchain helpers, put them in a python_requires package and reuse them in
all your recipes.

Toolchains have some important advantages:

* They execute at conan install time. They generate files, not command line arguments, providing better re-
producibility and debugging of builds.

* They provide a better developer experience. The command line used by developers locally, like cmake ... will
achieve the same build, with the same flags, as the conan build or the build that is done in the cache with a
conan create.

* They are more extensible and configurable.

The toolchains implement most of the build system logic, leaving the build helpers, like CMake (), doing less work,
and acting basically as a high level wrapper of the build system. Many of the existing arguments, attributes or methods
of those build helpers will not be available. Check the documentation of each toolchain to check the associated build
helper available functionality.

from conan.tools.cmake import CMakeToolchain, CMake

def generate(self):
tc = CMakeToolchain(self)
# customize toolchain "tc
tc.generate()

"

def build(self):
# NOTE: This is a simplified helper
# Not all arguments attributes and methods might be available
cmake = CMake(self)

92 Chapter 7. Creating Packages




Conan Documentation, Release 1.60.2

7.9 Inspecting Packages

You can inspect the uploaded packages and also the packages in the local cache by running the conan get command.

* List the files of a local recipe folder:

$ conan get zlib/1.2.11@ .
Listing directory '.':
conandata.yml
conanfile.py
conanmanifest.txt

e Print the conaninfo.txt file of a binary package:

£$ conan get zlib/1.2.11@:2144£833c251030c3c£d61c4354ae0e38607a909 ]
* Print the conanfile.py from a remote package:

[$ conan get zlib/1.2.11@ -r conancenter ]
(import os

import stat
from conans import ConanFile, tools, CMake, AutoToolsBuildEnvironment
from conans.errors import ConanException

class ZlibConan(ConanFile):

name = "zlib"
version = "1.2.11"
url = "https://github.com/conan-io/conan-center-index"

homepage = "https://zlib.net"

.

Check the conan get command command reference and more examples.

7.10 Packaging Approaches

Caution: We are actively working to finalize the Conan 2.0 Release. Some of the information on this page
references deprecated features which will not be carried forward with the new release. It’s important to check the
Migration Guidelines to ensure you are using the most up to date features.

Package recipes have three methods for controlling the package’s binary compatibility and for implementing different
packaging approaches: package_id(), build_id() and package_info().

These methods let package creators select the method most suitable for each library.

7.9. Inspecting Packages 93




Conan Documentation, Release 1.60.2

7.10.1 1 config (1 build) -> 1 package

A typical approach is to have one configuration for each package containing the artifacts. Using this approach, for
example, the debug pre-compiled libraries will be in a different package than the release pre-compiled libraries.

So if there is a package recipe that builds a “hello” library, there will be one package containing the release version
of the “hello.lib” library and a different package containing a debug version of that library (in the figure denoted as
“hello_d.lib”, to make it clear, it is not necessary to use different names).

build/shal package/shal

=

headers
hello.lib

headers
hello.lib

build/sha2 package/sha2

=

headers
hello_d.lib

headers
hello_d.lib

Using this approach, the package_info() method, allows you to set the appropriate values for consumers, letting
them know about the package library names, necessary definitions and compile flags.

class HelloConan(ConanFile):

n "

settings = "os", "compiler", "build_type", "arch"

def package_info(self):
self.cpp_info.libs = ["mylib"]

It is very important to note that it is declaring the build_type as a setting. This means that a different package will
be generated for each different value of such setting.

The values declared by the packages (the include, lib and bin subfolders are already defined by default, so they define the
include and library path to the package) are translated to variables of the respective build system by the used generators.
That is, running the cmake generator will translate the above definition in the conanbuildinfo.cmake to something like:

set (CONAN_LIBS_MYPKG mylib)
set (CONAN_LIBS mylib ${CONAN_LIBS})

Those variables, will be used in the conan_basic_setup() macro to actually set the relevant cmake variables.

If the developer wants to switch configuration of the dependencies, they will usually switch with:

$ conan install -s build_type=Release ...
# when need to debug

(continues on next page)

94 Chapter 7. Creating Packages




Conan Documentation, Release 1.60.2

(continued from previous page)
{$ conan install -s build_type=Debug ...

These switches will be fast, since all the dependencies are already cached locally.
This process offers a number of advantages:
* It is quite easy to implement and maintain.

* The packages are of minimal size, so disk space and transfers are faster, and builds from sources are also kept to
the necessary minimum.

* The decoupling of configurations might help with isolating issues related to mixing different types of artifacts,
and also protecting valuable information from deploy and distribution mistakes. For example, debug artifacts
might contain symbols or source code, which could help or directly provide means for reverse engineering. So
distributing debug artifacts by mistake could be a very risky issue.

Read more about this in package_info().

7.10.2 N configs -> 1 package

Warning:  This approach is discouraged. The support for defining multi-configuration packages (self.
cpp_info.release, self.cpp_info.debug), will be removed in Conan 2.0, as discussed and approved by
the Tribe in https://github.com/conan-io/tribe/pull/21. New generators and helpers in conan.tools.xxxx, like
CMakeDeps or MSBuildDeps already ignore cpp_info multi-configuration definitions.

You may want to package both debug and release artifacts in the same package, so it can be consumed from IDEs
like Visual Studio. This will change the debug/release configuration from the IDE, without having to specify it in
the command line. This type of package can contain different artifacts for different configurations and can be used to
include both the release and debug version of a library in the same package.

build/shal package/shal

headers

hello.lib

hello.lib
hello_d.lib

Note: A complete working example of the following code can be found in the examples repo: https://github.com/
conan-io/examples

7.10. Packaging Approaches 95


https://github.com/conan-io/tribe/pull/21
https://github.com/conan-io/examples
https://github.com/conan-io/examples

Conan Documentation, Release 1.60.2

$ git clone https://github.com/conan-io/examples.git
$ cd features/multi_config
$ conan create . user/channel

Creating a multi-configuration debug/release package is simple

The first step will be to remove build_type from the settings. It will not be an input setting and the generated package
will always contain both debug and release artifacts.

The Visual Studio runtime is different for debug and release (MDd or MD) and is set using the default runtime (MD/MDd).
If this meets your needs, we recommend removing the compiler.runtime subsetting in the configure () method:

class HelloConan(ConanFile):
# build_type has been omitted. It is not an input setting.
settings = "os", "compiler", "arch"
generators = "cmake"

# Remove runtime and use always default (MD/MDd)
def configure(self):
if self.settings.compiler == "Visual Studio":
del self.settings.compiler.runtime

def build(self):
cmake_release = CMake(self, build_type="Release")
cmake_release.configure()
cmake_release.build()

cmake_debug = CMake(self, build_type="Debug")
cmake_debug.configure()
cmake_debug.build()

In this example, the binaries will be differentiated with a suffix in the CMake syntax, so we have to add this information
to the data provided to the consumers in the package_info function:

[set_target_properties(mylibrary PROPERTIES DEBUG_POSTFIX _d)

Such a package can define its information for consumers as:

def package_info(self):
self.cpp_info.release.libs = ["mylibrary"]
self.cpp_info.debug.libs = ["mylibrary_d"]

This will translate to the CMake variables:

set (CONAN_LIBS_MYPKG_DEBUG mylibrary_d)

set (CONAN_LIBS_MYPKG_RELEASE mylibrary)

set (CONAN_LIBS_DEBUG mylibrary_d ${CONAN_LIBS_DEBUG})
set (CONAN_LIBS_RELEASE mylibrary ${CONAN_LIBS_RELEASE})

And these variables will be correctly applied to each configuration by conan_basic_setup() helper.

In this case you can still use the general and not config-specific variables. For example, the include directory when
set by default to include remains the same for both debug and release. Those general variables will be applied to all
configurations.

96 Chapter 7. Creating Packages



Conan Documentation, Release 1.60.2

Important: The above code assumes that the package will always use the default Visual Studio runtime (MD/MDd). To
keep the package configurable for supporting static(MT)/dynamic(MD) linking with the VS runtime library, you can
do the following:

* Keep the compiler.runtime setting, e.g. do not implement the configure () method removing it.

* Don’t let the CMake helper define the CONAN_LINK_RUNTIME variable to define the runtime and define
CONAN_LINK_RUNTIME_MULTI instead.

* In CMakeLists.txt, use the CONAN_LINK_RUNTIME_MULTI variable to correctly setup up the runtime for debug
and release flags.

* Write a separate package_id () methods for MD/MDd and for MT/MTd defining the packages to be built.

All these steps are already coded in the repo https://github.com/conan-io/examples/tree/master/features/multi_config
and commented out as “Alternative 2”.

Note: The automatic conversion of multi-config variables to generators is currently implemented in the cmake,
visual_studio, txt, and cmake_find_package generators (and also for their corresponding _multi implementa-
tions). If you want to have support for them in another build system, please open a GitHub issue.

7.10.3 N configs (1 build) -> N packages

It’s possible that an existing build script is simultaneously building binaries for different configurations, like de-
bug/release, or different architectures (32/64bits), or library types (shared/static). If such a build script is used in
the previous “Single configuration packages” approach, it will definitely work without problems. However, we’ll be
wasting precious build time, as we’ll be rebuilding the project for each package, then extracting the relevant artifacts
for the relevant configuration, while ignoring the others.

It is more efficient to build the logic, whereby the same build can be reused to create different packages:

package/shal

build/sha3

' gl

mylib.lib
mylib_d.lib N package/sha2

U
build_id()

This can be done by defining a build_id () method in the package recipe that will specify the logic.

7.10. Packaging Approaches 97


https://github.com/conan-io/examples/tree/master/features/multi_config

Conan Documentation, Release 1.60.2

settings = "os", "compiler", "arch", "build_type"
def build_id(self):
self.info_build.settings.build_type = "Any"

def package(self):
if self.settings.build_type == "Debug":
#package debug artifacts
else:
# package release

Note that the build_id() method uses the self.info_build object to alter the build hash. If the method doesn’t
change it, the hash will match the package folder one. By setting build_type="Any", we are forcing that for both
the Debug and Release values of build_type, the hash will be the same (the particular string is mostly irrelevant, as
long as it is the same for both configurations). Note that the build hash sha3 will be different of both shal and sha2
package identifiers.

This does not imply that there will be strictly one build folder. There will be a build folder for every configuration
(architecture, compiler version, etc). So if we just have Debug/Release build types, and we’re producing N packages
for N different configurations, we’ll have N/2 build folders, saving half of the build time.

Read more about this in build_id().

7.11 Package Creator Tools

Using Python (or just pure shell or bash) scripting, allows you to easily automate the whole package creation and testing
process, for many different configurations. For example you could put the following script in the package root folder.
Name it build.py:

import os, sys
import platform

def system(command) :
retcode = os.system(command)
if retcode != 0:
raise Exception("Error while executing:\n\t

% command)

if __name__ == "__main__":
params = " ".join(sys.argv[1l:])
if platform.system() == "Windows":
system('conan create . demo/testing -s compiler="Visual Studio" -s compiler.
—version=14 ' % params)

system('conan create . demo/testing -s compiler="Visual Studio" -s compiler.
—version=12 ' % params)
system('conan create . demo/testing -s compiler="gcc" -s compiler.version=4.8
" % params)
else:
pass

This is a pure Python script, not related to Conan, and should be run as such:

98 Chapter 7. Creating Packages




Conan Documentation, Release 1.60.2

[$ python build.py

7.11.1 Conan Package Tools

Caution: According to the project’'s README, there is no planned support for the upcoming Conan 2.0 release.

We have developed another FOSS tool for package creators, the Conan Package Tools to help you generate multiple
binary packages from a package recipe. It offers a simple way to define the different configurations and to call conan
test. In addition to offering CI integration like Travis CI, Appveyor and Bamboo, for cloud-based automated binary
package creation, testing, and uploading.

This tool enables the creation of hundreds of binary packages in the cloud with a simple $ git push and supports:
 Easy generation of multiple Conan packages with different configurations.

* Automated/remote package generation in Travis/Appveyor server with distributed builds in CI jobs for big/slow
builds.

* Docker: Automatic generation of packages for several versions of gcc and clang in Linux, and in Travis CL
* Automatic creation of OSX packages with apple-clang, and in Travis-CI.
* Visual Studio: Automatic configuration of the command line environment with detected settings.

It’s available in pypi:

[$ pip install conan_package_tools }

For more information, read the README.md in the Conan Package Tools repository.

7.11. Package Creator Tools 99


https://github.com/conan-io/conan-package-tools

Conan Documentation, Release 1.60.2

100 Chapter 7. Creating Packages



CHAPTER
EIGHT

UPLOADING PACKAGES

This section shows how to upload packages using remotes and specifies the different binary repositories you can use.

8.1 Remotes

In the previous sections, we built several packages on our computer that were stored in the local cache, typically under
~/.conan/data. Now, you might want to upload them to a Conan server for later use on another machine, project, or for
sharing purposes.

Conan packages can be uploaded to different remotes previously configured with a name and a URL. The remotes are
just servers used as binary repositories that store packages by reference.

There are several possibilities when uploading packages to a server:

 Artifactory Community Edition for C/C++: Artifactory Community Edition (CE) for C/C++ is a completely
free Artifactory server that implements both Conan and generic repositories. It is the recommended server for
companies and teams wanting to host their own private repository. It has a web UI, advanced authentication and
permissions, very good performance and scalability, a REST API, and can host generic artifacts (tarballs, zips,
etc). Check Artifactory Community Edition for C/C++ for more information.

* Artifactory Pro: Artifactory is the binary repository manager for all major packaging formats. It is the recom-
mended remote type for enterprise and professional package management. Check the Artifactory documentation
for more information. For a comparison between Artifactory editions, check the Artifactory Comparison Matrix.

* Conan server: Simple, free and open source, MIT licensed server that comes bundled with the Conan client.
Check Running conan_server for more information.

8.1.1 conancenter

ConanCenter (https://conan.io/center) is the main official repository for open source Conan packages. It is configured
as the default remote in the Conan client, but if you want to add it manually:

[$ conan remote add conancenter https://center.conan.io J

It contains packages without “‘user/channel” that can be used directly as pkg/version (zlib/1.2.11): These packages
are created automatically from the central GitHub repository conan-center-index, with an automated build service: C31
(ConanCenter Continuous Integration).

To contribute packages to ConanCenter, read the ConanCenter guide for more information.

101


https://www.jfrog.com/confluence/display/JFROG/JFrog+Artifactory
https://www.jfrog.com/confluence/display/JFROG/Artifactory+Comparison+Matrix
https://conan.io/center
https://github.com/conan-io/conan-center-index

Conan Documentation, Release 1.60.2

8.2 Uploading Packages to Remotes

First, check if the remote you want to upload to is already in your current remote list:

[$ conan remote list J

You can easily add any remote. To run a remote on your machine:

[$ conan remote add my_local_server http://localhost:9300 ]

You can search any remote in the same way you search your computer. Actually, many Conan commands can specify
a specific remote.

[$ conan search -r=my_local_server ]

Now, upload the package recipe and all the packages to your remote. In this example, we are using our
my_local_server remote, but you could use any other.

[$ conan upload hello/®.l@demo/testing --all -r=my_local_server J

You might be prompted for a username and password. The default Conan server remote has a demo/demo account we
can use for testing.

The --all option will upload the package recipe plus all the binary packages. Omitting the --all option will upload
the package recipe only. For fine-grained control over which binary packages are upload to the server, consider using
the --packages/-p or --query/-q flags. --packages allows you to explicitly declare which package gets uploaded
to the server by specifying the package ID. --query accepts a query parameter, e.g. arch=armv8 and os=Linux,
and only uploads binary packages which match this query. When using the --query flag, ensure that your query
string is enclosed in quotes to make the parameter explicit to your shell. For example, conan upload <package>
-q 'arch=x86_64 and os=Linux' ... is appropriate use of the --query flag.

Now try again to read the information from the remote. We refer to it as remote, even if it is running on your local
machine, as it could be running on another server in your LAN:

[$ conan search hello/®.l@demo/testing -r=my_local_server ]

Note: If package upload fails, you can try to upload it again. Conan keeps track of the upload integrity and will only
upload missing files.

Now we can check if we can download and use them in a project. For that purpose, we first have to remove the local
copies, otherwise the remote packages will not be downloaded. Since we have just uploaded them, they are identical
to the local ones.

$ conan search

$ conan remove "hello*" ’

Since we have our test setup from the previous section, we can just use it for our test. Go to your package folder and
run the tests again, now saying that we don’t want to build the sources again. We just want to check if we can download
the binaries and use them:

[$ conan create . demo/testing --not-export --build=never J

You will see that the test is built, but the packages are not. The binaries are simply downloaded from your local server.
You can check their existence on your local computer again with:

102 Chapter 8. Uploading Packages



Conan Documentation, Release 1.60.2

[$ conan search }

8.3 Using Artifactory

With Artifatory CE, you can create and manage as many free, personal Conan repositories as you like.

8.3.1 Artifactory Community Edition for C/C++

Artifactory Community Edition (CE) for C/C++ is the recommended server for development and hosting private pack-
ages for a team or company. It is completely free, and it features a WebUI, advanced authentication and permissions,
great performance and scalability, a REST API, a generic CLI tool and generic repositories to host any kind of source
or binary artifact.

This is a very brief introduction to Artifactory CE. For the complete Artifactory CE documentation, visit Artifactory
docs.

Running Artifactory CE

There are several ways to download and run Artifactory CE. The simplest one might be to download and unzip the
designated zip file, though other installers, including also installing from a Docker image. The Download Page has a
link for you to follow. When the file is unzipped, launch Artifactory by double clicking the artifactory.bat(Windows) or
artifactory.sh script in the app/bin subfolder, depending on the OS. Artifactory comes with JDK bundled, please read
Artifactory requirements.

O JFrog Artifactory CE for C\C++ Q Welcome, admin v Help
Artifact Repository Browser & SetMeUp 1 Deploy
il Tree Simple Q 4 7 conan 7 Actions
v @ conan-local
General Effective Permissions Properties W Watchers ¢
& conan
‘u’ & boost Info
£ OpenssL
& 102 Name: conan (@)
@ stble Repository Path: conan-local/conan/ (@)
oA & export Deployed By: admin
€1 conanfilepy Artifact Count / Size: Show
(] conanmanifest.txt Created 26-03-18 22:04:50 -07:00 (0d Oh 10m 50s ago)
& package
7 227fb0ea22f4797212e72bad4ea89c
[@ conan_package.tgz
& include
& lib
{7 LICENSE
conaninfo.txt
fz conanmanifest.txt
£ pocoproject
& Poco
& 1.7.8p3

Once Artifactory has started, navigate to the default URL http.://localhost:8081, where the Web Ul should be running.
The default user and password are admin:password.

8.3. Using Artifactory 103


https://www.jfrog.com/confluence/
https://www.jfrog.com/confluence/
https://conan.io/downloads.html
https://www.jfrog.com/confluence/display/JFROG/System+Requirements
https://www.jfrog.com/confluence/display/JFROG/System+Requirements

Conan Documentation, Release 1.60.2

Creating and Using a Conan Repo

Navigate to Admin -> Repositories -> Local, then click on the “New” button. A dialog for selecting the package type
will appear, select Conan, then type a “Repository Key” (the name of the repository you are about to create), for example
“conan-local”. You can create multiple repositories to serve different flows, teams, or projects.

Now, it is necessary to configure the client. Go to Artifacts, and click on the created repository. The “Set Me Up”
button in the top right corner provides instructions on how to configure the remote in the Conan client:

[$ conan remote add artifactory http://localhost:8081/artifactory/api/conan/conan-local

From now, you can upload, download, search, etc. the remote repos similarly to the other repo types.

$ conan upload "*" --all -r=artifactory
$ conan search "*" -r=artifactory

Migrating from Other Servers

If you are already running another server, for example, the open source conan_server, it is easy to migrate your packages,
using the Conan client to download the packages and re-upload them to the new server.

This Python script might be helpful, given that it already defines the respective local and artifactory remotes:

import os
import subprocess

def run(emd):
ret = os.system(cmd)
if ret != 0:
raise Exception("Command failed: " % cmd)

# Assuming local = conan_server and artifactory remotes
output = subprocess.check_output('conan search -r=local --raw")

packages = output.splitlines()

for package in packages:

print ("Downloading " % package)
run("conan download -r=local" % package)
run("conan upload \"*\" --all --confirm -r=artifactory")

8.3.2 Contributing Packages to ConanCenter

Contribution of packages to ConanCenter is done via pull requests to the Github repository in https://github.com/
conan-io/conan-center-index. The C3I (ConanCenter Continuous Integration) service will build binaries automatically
from those pull requests, and once merged, will upload them to ConanCenter package repository.

Read more about how to submit a pull request to conan-center-index source repository.

104 Chapter 8. Uploading Packages


https://github.com/conan-io/conan-center-index
https://github.com/conan-io/conan-center-index
https://github.com/conan-io/conan-center-index/

Conan Documentation, Release 1.60.2

8.4 Running conan_server

The conan_server is a free and open source server that implements Conan remote repositories. It is a very simple appli-
cation, bundled with the regular Conan client installation. In most cases, it is recommended to use the free Artifactory
Community Edition for C/C++ server, check Artifactory Community Edition for C/C++ for more information.

conan_server needs Python>=3.6 for running.

Running the simple open source conan_server that comes with the Conan installers (or pip packages) is simple. Just
open a terminal and type:

[$ conan_server

Note: On Windows, you may experience problems with the server if you run it under bash/msys. It is better to launch
it in a regular cmd window.

This server is mainly used for testing (though it might work fine for small teams). If you need a more stable, responsive
and robust server, you should run it from source:

8.4.1 Running from Source (linux)

The Conan installer includes a simple executable conan_server for a server quick start. But you can use the conan
server through the WSGI application, which means that you can use gunicorn to run the app, for example.

First, clone the Conan repository from source and install the requirements:

$ git clone https://github.com/conan-io/conan.git
$ cd conan

$ pip install -r conans/requirements.txt

$ pip install -r conans/requirements_server.txt

$ pip install gunicorn

Run the server application with gunicorn. In the following example, we run the server on port 9300 with four workers
and a timeout of 5 minutes (300 seconds, for large uploads/downloads, you can also decrease it if you don’t have very
large binaries):

[$ gunicorn -b 0.0.0.0:9300 -w 4 -t 300 conans.server.server_launcher:app ]

Note: Please note the timeout of -t 300 seconds, resulting in a 5 minute parameter. If your transfers are very large
or on a slow network, you might need to increase that value.

You can also bind to an IPv6 address or specify both IPv4 and IPv6 addresses:

[$ gunicorn -b 0.0.0.0:9300 -b [::1]:9300 -w 4 -t 300 conans.server.server_launcher:app J

8.4. Running conan_server 105



Conan Documentation, Release 1.60.2

8.4.2 Server Configuration

By default your server configuration is saved under ~/.conan_server/server.conf, however you can modify
this behaviour by either setting the CONAN_SERVER_HOME environment variable or launching the server with -d or
--server_dir command line argument followed by desired path. In case you use one of the options your configuration
file will be stored under server_directory/server.conf Please note that command line argument will override
the environment variable. You can change configuration values in server.conf, prior to launching the server. Note
that the server does not support hot-reload, and thus in order to see configuration changes you will have to manually
relaunch the server.

The server configuration file is by default:

[server]
jwt_secret: MnpuzsExftskYGOMgaTYDKfw
jwt_expire_minutes: 120

ssl_enabled: False
port: 9300
public_port:
host_name: localhost

store_adapter: disk
authorize_timeout: 1800

# Just for disk storage adapter
disk_storage_path: ~/.conan_server/data
disk_authorize_timeout: 1800

updown_secret: NyiSWNWnwumTVpGpoANuyyhR

[write_permissions]
# "opencv/2.3.4@lasote/testing": default_user,default_user2

[read_permissions]

# opencv/1.2.3@lasote/testing: default_user default_user2
# By default all users can read all blocks

*/*@*/*: £

[users]
demo: demo

Server Parameters

e port: Port where conan_server will run.

 The client server authorization is done with JWT. jwt_secret is a random string used to generate authentication
tokens. You can change it safely anytime (in fact it is a good practice). The change will just force users to log in
again. jwt_expire_minutes is the amount of time that users remain logged-in within the client without having
to introduce their credentials again.

Other parameters (not recommended from Conan 1.1, but necessary for previous versions):

* host_name: If you set host_name, you must use the machine’s IP where you are running your server (or domain
name), something like host_name: 192.168.1.100. This IP (or domain name) has to be visible (and resolved)

106 Chapter 8. Uploading Packages




Conan Documentation, Release 1.60.2

by the Conan client, so take it into account if your server has multiple network interfaces.

* public_port: Might be needed when running virtualized, Docker or any other kind of port redirection. File
uploads/downloads are served with their own URLSs, generated by the system, so the file storage backend is
independent. Those URLs need the public port they have to communicate from the outside. If you leave it blank,
the port value is used.

Example: Use conan_server in a Docker container that internally runs in the 9300 port but exposes the 9999
port (where the clients will connect to):

[docker run ... -p9300:9999 ... # Check Docker docs for that }

server.conf

[server]

ssl_enabled: False
port: 9300
public_port: 9999
host_name: localhost

* ssl_enabled Conan doesn’t handle the SSL traffic by itself, but you can use a proxy like Nginx to redirect the
SSL traffic to your Conan server. If your Conan clients are connecting with “https”, set ssl_enabled to True. This
way the conan_server will generate the upload/download urls with “https” instead of “http”.

Note: Important: The Conan client, by default, will validate the server SSL certificates and won’t connect if it’s
invalid. If you have self signed certificates you have two options:

1. Usethe conan remote command to disable the SSL certificate checks. E.g., conan remote add/update myremote
https://somedir False

2. Append the server .crt file contents to ~/.conan/cacert.pem file.

To learn more, see How to manage SSL (TLS) certificates.

Conan has implemented an extensible storage backend based on the abstract class StorageAdapter. Currently, the
server only supports storage on disk. The folder in which the uploaded packages are stored (i.e., the folder you would
want to backup) is defined in the disk_storage_path.

The storage backend might use a different channel, and uploads/downloads are authorized up to a maximum of
authorize_timeout seconds. The value should sufficient so that large downloads/uploads are not rejected, but not
too big to prevent hanging up the file transfers. The value disk_authorize_timeout is not currently used. File trans-
fers are authorized with their own tokens, generated with the secret updown_secret. This value should be different
from the above jwt_secret.

Running the Conan Server with SSL using Nginx

server.conf

[server]
port: 9300

nginx conf file

8.4. Running conan_server 107



Conan Documentation, Release 1.60.2

g
server {

listen 443;

server_name myservername.mydomain.com;

location / {
proxy_pass http://0.0.0.0:9300;
}
ssl on;
ssl_certificate /etc/nginx/ssl/server.crt;
ssl_certificate_key /etc/nginx/ssl/server.key;

remote configuration in Conan client

$ conan remote add myremote https://myservername.mydomain.com

Running the Conan Server with SSL using Nginx in a Subdirectory

server.conf

[server]
port: 9300

nginx conf file

server {

listen 443;

ssl on;

ssl_certificate /usr/local/etc/nginx/ssl/server.crt;
ssl_certificate_key /usr/local/etc/nginx/ssl/server.key;
server_name myservername.mydomain.com;

location /subdir/ {
proxy_pass http://0.0.0.0:9300/;
}

L J

remote configuration in Conan client

[$ conan remote add myremote https://myservername.mydomain.com/subdir/ J

Running Conan Server using Apache

You need to install mod_wsgi. If you want to use Conan installed from pip, the conf file should be similar
to the following example:

Apache conf file (e.g., /etc/apache2/sites-available/0_conan.conf)

<VirtualHost *:80>
WSGIScriptAlias / /usr/local/lib/python3.6/dist-packages/conans/server/
—.server_launcher.py

(continues on next page)

108 Chapter 8. Uploading Packages



Conan Documentation, Release 1.60.2

(continued from previous page)

WSGICallableObject app
WSGIPassAuthorization On

<Directory /usr/local/lib/python3.6/dist-packages/conans>
Require all granted
</Directory>
</VirtualHost>

If you want to use Conan checked out from source in, for example in /srv/conan, the conf file should be as
follows:

Apache conf file (e.g., /etc/apache2/sites-available/0_conan.conf)

<VirtualHost *:80>
WSGIScriptAlias / /srv/conan/conans/server/server_launcher.py
WSGICallableObject app
WSGIPassAuthorization On

<Directory /srv/conan/conans>
Require all granted
</Directory>
</VirtualHost>

The directive WSGIPassAuthorization On is needed to pass the HTTP basic authentication to Conan.

Also take into account that the server config files are located in the home of the configured Apache user,
e.g., var/www/.conan_server, so remember to use that directory to configure your Conan server.

Permissions Parameters

By default, the server configuration when set to Read can be done anonymous, but uploading requires you to be regis-
tered users. Users can easily be registered in the [users] section, by defining a pair of login: password for each
one. Plain text passwords are used at the moment, but as the server is on-premises (behind firewall), you just need to
trust your sysadmin :)

If you want to restrict read/write access to specific packages, configure the [read_permissions] and
[write_permissions] sections. These sections specify the sequence of patterns and authorized users, in the form:

# use a comma-separated, no-spaces list of users
package/version@user/channel: allowed_userl,allowed_user2

E.g.:

*/*@*/*: * # allow all users to all packages
PackageA/*@*/*: john,peter # allow john and peter access to any PackageA
*/*@project/*: john # Allow john to access any package from the "project" user

The rules are evaluated in order. If the left side of the pattern matches, the rule is applied and it will not continue
searching for matches.

8.4. Running conan_server 109




Conan Documentation, Release 1.60.2

Authentication

By default, Conan provides a simple user: password users list in the server. conf file.

There is also a plugin mechanism for setting other authentication methods. The process to install any of them is a
simple two-step process:

1. Copy the authenticator source file into the .conan_server/plugins/authenticator folder.
2. Add custom_authenticator: authenticator_name tothe server.conf [server] section.
This is a list of available authenticators, visit their URLSs to retrieve them, but also to report issues and collaborate:

 htpasswd: Use your server Apache htpasswd file to authenticate users. Get it: https://github.com/d-schiffner/
conan-htpasswd

« LDAP: Use your LDAP server to authenticate users. Get it:  https://github.com/uilianries/
conan-ldap-authentication

Create Your Own Custom Authenticator

If you want to create your own Authenticator, create a Python module in ~/.conan_server/plugins/
authenticator/my_authenticator.py

Example:

def get_class(Q):
return MyAuthenticator()

class MyAuthenticator(object):
def valid_user(self, username, plain_password):
return username == "foo" and plain_password == "bar"

The module has to implement:
» A factory function get_class() that returns a class with a valid_user () method instance.

e The class containing the valid_user() that has to return True if the user and password are valid or False
otherwise.

Authorizations
By default, Conan uses the contents of the [read_permissions] and [write_permissions] sections to authorize
or reject a request.

A plugin system is also available to customize the authorization mechanism. The installation of such a plugin is a
simple two-step process:

1. Copy the authorizer’s source file into the . conan_server/plugins/authorizer folder.

2. Add custom_authorizer: authorizer_name to the server.conf [server] section.

110 Chapter 8. Uploading Packages



https://github.com/d-schiffner/conan-htpasswd
https://github.com/d-schiffner/conan-htpasswd
https://github.com/uilianries/conan-ldap-authentication
https://github.com/uilianries/conan-ldap-authentication

Conan Documentation, Release 1.60.2

Create Your Own Custom Authorizer

If you want to create your own Authorizer, create a Python module in ~/.conan_server/plugins/authorizer/
my_authorizer.py

Example:

from conans.errors import AuthenticationException, ForbiddenException

def get_class(Q):
return MyAuthorizer()

class MyAuthorizer(object):
def _check_conan(self, username, ref):
if ref.user == username:
return

if username:

raise ForbiddenException("Permission denied")
else:

raise AuthenticationException()

def _check_package(self, username, pref):
self._check(username, pref.ref)

check_read_conan = _check_conan
check_write_conan = _check_conan
check_delete_conan = _check_conan
check_read_package = _check_package
check_write_package = _check_package

check_delete_package = _check_package

The module has to implement:
A factory function get_class() that returns an instance of a class conforming to the Authorizer’s interface.

¢ A class that implements all the methods defined in the Authorizer interface:

check_read_conan() is used to decide whether to allow read access to a recipe.

check_write_conan() is used to decide whether to allow write access to a recipe.

check_delete_conan() is used to decide whether to allow a recipe’s deletion.

check_read_package() is used to decide whether to allow read access to a package.
— check_write_package() is used to decide whether to allow write access to a package.
— check_delete_package() is used to decide whether to allow a package’s deletion.

The check_*_conan() methods are called with a username and conans.model.ref.ConanFileReference in-
stance as their arguments. Meanwhile the check_*_package () methods are passed a username and conans .model.
ref.PackageReference instance as their arguments. These methods should raise an exception, unless the user is
allowed to perform the requested action.

Got any doubts? Please check out our FAQ section or .

8.4. Running conan_server 111




Conan Documentation, Release 1.60.2

112 Chapter 8. Uploading Packages



CHAPTER
NINE

DEVELOPING PACKAGES

This section shows how to work on packages with source code continuously being modified.

9.1 Package development flow

In the previous examples, we used the conan create command to create a package of our library. Every time it is
run, Conan performs the following costly operations:

1. Copy the sources to a new and clean build folder.

2. Build the entire library from scratch.

3. Package the library once it is built.

4. Build the test_package example and test if it works.

But sometimes, especially with big libraries, while we are developing the recipe, we cannot afford to perform these
operations every time.

The following section describes the local development flow, based on the Bincrafters community blog.

The local workflow encourages users to perform trial-and-error in a local sub-directory relative to their recipe, much
like how developers typically test building their projects with other build tools. The strategy is to test the conanfile.py
methods individually during this phase.

We will use this conan flow example to follow the steps in the order below.

9.1.1 conan source

You will generally want to start off with the conan source command. The strategy here is that you’re testing your
source method in isolation, and downloading the files to a temporary sub-folder relative to the conanfile.py. This just
makes it easier to get to the sources and validate them.

This method outputs the source files into the source-folder.

Input folders  Output folders

- source-folder

113


https://bincrafters.github.io
https://github.com/memsharded/example_conan_flow

Conan Documentation, Release 1.60.2

$ cd example_conan_flow
$ conan source . --source-folder=tmp/source

PROJECT: Configuring sources in C:\Users\conan\example_conan_flow\tmp\source
Cloning into 'hello'...

Once you’ve got your source method right and it contains the files you expect, you can move on to testing the various
attributes and methods related to downloading dependencies.

9.1.2 conan install

Conan has multiple methods and attributes which relate to dependencies (all the ones with the word “require” in the
name). The command conan install activates all them.

Input folders  Output folders

- install-folder

$ conan install . --install-folder=tmp/build [--profile XXXX]

PROJECT: Installing C:\Users\conan\example_conan_flow\conanfile.py
Requirements
Packages

This also generates the conaninfo.txt and conanbuildinfo.xyz files (extensions depends on the generator you’ve used) in
the temp folder (install-folder), which will be needed for the next step. Once you’ve got this command working
with no errors, you can move on to testing the build() method.

9.1.3 conan build

The build method takes a path to a folder that has sources and also to the install folder to get the information of the
settings and dependencies. It uses a path to a folder where it will perform the build. In this case, as we are including
the conanbuildinfo.cmake file, we will use the folder from the install step.

Input folders Output folders

source-folder build-folder
install-folder

$ conan build . --source-folder=tmp/source --build-folder=tmp/build
Project: Running build()
Build succeeded.

0 Warning(s)

0 Error(s)

Time Elapsed 00:00:03.34

114 Chapter 9. Developing packages




Conan Documentation, Release 1.60.2

Here we can avoid the repetition of --install-folder=tmp/build and it will be defaulted to the --build-folder
value.

This is pretty straightforward, but it does add a very helpful new shortcut for people who are packaging their own library.
Now, developers can make changes in their normal source directory and just pass that path as the --source-folder.

9.1.4 conan package

Just as it sounds, this command now simply runs the package () method of a recipe. It needs all the information of the
other folders in order to collect the needed information for the package: header files from source folder, settings and
dependency information from the install folder and built artifacts from the build folder.

Input folders Output folders

source-folder package-folder
install-folder
build-folder

$ conan package . --source-folder=tmp/source --build-folder=tmp/build --package-
—folder=tmp/package

PROJECT: Generating the package

PROJECT: Package folder C:\Users\conan\example_conan_flow\tmp\package
PROJECT: Calling package()

PROJECT package(): Copied 1 '.h' files: hello.h

PROJECT package(): Copied 2 '.lib' files: greet.lib, hello.lib
PROJECT: Package 'package' created

9.1.5 conan export-pkg

When you have checked that the package is done correctly, you can generate the package in the local cache. Note that
the package is generated again to make sure this step is always reproducible.

This parameters takes the same parameters as package().

Input folders Output folders

source-folder -
install-folder

build-folder

package-folder

There are 2 modes of operation:

» Using source-folder and build-folder will use the package () method to extract the artifacts from those
folders and create the package, directly in the Conan local cache. Strictly speaking, it doesn’t require executing
a conan package before, as it packages directly from these source and build folders, though conan package
is still recommended in the dev-flow to debug the package () method.

* Using the package-folder argument (incompatible with the above 2), will not use the package () method,
it will create an exact copy of the provided folder. It assumes the package has already been created by a previ-
ous conan package command or with a conan build command with a build() method running a cmake.
install().

9.1. Package development flow 115



Conan Documentation, Release 1.60.2

$ conan export-pkg . user/channel --source-folder=tmp/source --build-folder=tmp/build --
—profile=myprofile

Packaging to 6cc50b139b9c3d27b3e9042d5£5372d327b3a9£f7

hello/1.1@user/channel: Generating the package

hello/1.1@user/channel: Package folder C:\Users\conan\.conan\data\hello\1l.1\user\channel\
—.package\6cc50b139b9c3d27b3e9042d5£5372d327b3a9£7

hello/1.1@user/channel: Calling package()

hello/1.1@user/channel package(): Copied 2 '.lib' files: greet.lib, hello.lib
hello/1.1@user/channel package(): Copied 2 '.lib' files: greet.lib, hello.lib
hello/1.1@user/channel: Package '6cc50b139b9c3d27b3e9042d5£5372d327b3a9f7" created

9.1.6 conan test

The final step to test the package for consumers is the test command. This step is quite straight-forward:

$ conan test test_package hello/1.1@user/channel

hello/1.1@user/channel (test package): Installing C:\Users\conan\repos\example_conan_
—flow\test_package\conanfile.py
Requirements
hello/1.1@user/channel from local
Packages
hello/1.1@user/channel:6cc50b139b9c3d27b3e9042d5£5372d327b3a9£7

hello/1.1@user/channel: Already installed!

hello/1.1@user/channel (test package): Generator cmake created conanbuildinfo.cmake
hello/1.1@user/channel (test package): Generator txt created conanbuildinfo.txt
hello/1.1@user/channel (test package): Generated conaninfo.txt
hello/1.1@user/channel (test package): Running build()

There is often a need to repeatedly re-run the test to check the package is well generated for consumers.

As a summary, you could use the default folders and the flow would be as simple as:

git clone https://github.com/conan-io/examples.git

cd features/package_development_flow

conan source .

conan install . -pr=default

conan build .

conan package .

So far, this is local. Now put the local binaries in cache
conan export-pkg . hello/1.1@user/testing -pr=default

And test it, to check it is working in the local cache
conan test test_package hello/1.1@user/testing

A 3 A T A A A A A a

hello/1.1@user/testing (test package): Running test()
Hello World Release!

116 Chapter 9. Developing packages




Conan Documentation, Release 1.60.2

9.1.7 conan create
Now we know we have all the steps of a recipe working. Thus, now is an appropriate time to try to run the recipe all
the way through, and put it completely in the local cache.

The usual command for this is conan create and it basically performs the previous commands with conan test for
the test_package folder:

[$ conan create . user/channel }

Even with this command, the package creator can iterate over the local cache if something does not work. This could
be done with --keep-source and --keep-build flags.

If you see in the traces that the source () method has been properly executed but the package creation finally failed,
you can skip the source () method the next time issue conan create using --keep-source:

$ conan create . user/channel --keep-source

hello/1.1@user/channel: A new conanfile.py version was exported
hello/1.1@user/channel: Folder: C:\Users\conan\.conan\data\hello\1.1\user\channel\export
hello/1.1@user/channel (test package): Installing C:\Users\conan\repos\features\package_
—.development_flow\test_package\conanfile.py
Requirements

hello/1.1@user/channel from local
Packages

hello/1.1@user/channel:6cc50b139b9c3d27b3e9042d5£5372d327b3a9£7

hello/1.1@user/channel: WARN: Forced build from source

hello/1.1@user/channel: Building your package in C:\Users\conan\.conan\data\hello\1.1\
—user\channel\build\6cc50b139b9c3d27b3e9042d5f5372d327b3a9f7

hello/1.1@user/channel: Configuring sources in C:\Users\conan\.conan\data\hello\1l.1\user\
—.channel\source

Cloning into 'hello'...

remote: Counting objects: 17, done.

remote: Total 17 (delta 0), reused 0 (delta 0), pack-reused 17

Unpacking objects: 100% (17/17), done.

Switched to a new branch 'static_shared'’

Branch 'static_shared' set up to track remote branch 'static_shared' from 'origin'.
hello/1.1@user/channel: Copying sources to build folder

hello/1.1@user/channel: Generator cmake created conanbuildinfo.cmake
hello/1.1@user/channel: Calling build()

If you see that the library is also built correctly, you can also skip the build() step with the --keep-build flag:

[$ conan create . user/channel --keep-build J

9.1. Package development flow 117



Conan Documentation, Release 1.60.2

9.2 Package layout

Important: Some of the features used in this section are still under development, while they are recommended and
usable and we will try not to break them in future releases, some breaking changes might still happen if necessary to
prepare for the Conan 2.0 release.

Tip: The layout() feature will be fully functional only in the new build system integrations (in the conan.tools
space). If you are using other integrations, they might not fully support this feature.

Available since: 1.37.0

9.2.1 Before starting

To understand correctly how the 1ayout () method can help us we need to recall first how Conan works.

Let’s say we are working in a project, using, for example, CMake:

<my_project_folder>
|: conanfile.py
src

CMakeLists.txt
hello.cpp
my_tool.cpp
include
L— hello.h

When we call conan create, this is a simplified description of what happens:

1. Conan exports the recipe (conanfile.py) and the declared sources (exports_sources) to the cache. The folders in
the cache would be something like:

Listing 1: .conan/data/<some_cache_folder>

export

L conanfile.py

export_source

L src
CMakeLists.txt
hello.cpp
my_tool.cpp
include
L— hello.h

L

2. If the method source () exists, it might retrieve sources from the internet. Also, the export_source folder is
copied to the source folder.

Listing 2: .conan/data/<some_cache_folder>

export
L— conanfile.py
export_source
(continues on next page)

118 Chapter 9. Developing packages


https://github.com/conan-io/conan/releases/tag/1.37.0

Conan Documentation, Release 1.60.2

CMakeLists.txt
hello.cpp
my_tool.cpp
include

L— hello.h

CMakeLists.txt
hello.cpp
my_tool.cpp
include

L— hello.h

L

(continued from previous page)

3. Before calling the build () method, a build folder is created and the sources are copied there. Later, we call the

build () method so the libraries and executables are built:

Listing 3: .conan/data/<some_cache_folder>

— export
L— conanfile.py
— export_source
L— src
CMakeLists.txt
hello.cpp
my_tool.cpp
include
L— hello.h
— source
L src
CMakeLists.txt
hello.cpp
my_tool.cpp
include
L— hello.h
L— build
L— <build_id>
t:: say.a
bin
L— my_app

L

4. At last, Conan calls the package () method to copy the built artifacts from the source (typically includes) and
build folders (libraries and executables) to a package folder.

Listing 4: .conan/data/<some_cache_folder>

| — export
L— conanfile.py

L export_source
L— src

hello.cpp
my_tool.cpp

CMakeLists.txt

(continues on next page)

9.2. Package layout

119




Conan Documentation, Release 1.60.2

(continued from previous page)

L— include
L— hello.h

CMakeLists.txt
hello.cpp
my_tool.cpp
include

L— hello.h

— build
L— <build_id>

|: say.a
bin

L— my_app

L— package
L <package_id>

1ib

L say.a
bin

L— my_app
include

L— hello.h

5. The package_info(self) method will describe with the self.cpp_info object the contents of the package

-

folder, that is the one the consumers use to link against it. If we call conan create with different configurations
the base folder in the cache is different and nothing gets messed.

Listing 5: conanfile.py

L

import os
from conan import ConanFile
from conan.tools.cmake import CMake

class SayConan(ConanFile):
name
version = "0.1"
exports_sources = "src/*"

def package_info(self):

- "say"

# These are default values and doesn't need to be adjusted
self.cpp_info.includedirs = ["include"]
self.cpp_info.libdirs = ["1ib"]

self.cpp_info.bindirs = ["bin"]

# The library name
self.cpp_info.libs = ["say"]

So, this workflow in the cache works flawlessly but:

¢ What if I’'m developing the recipe in my local project and want to use the local methods (conan source, conan
build) and later call export-pkg to create the package?

If you call conan build in your working directory, without specifying a --build-folder argument, you will

120

Chapter 9. Developing packages




Conan Documentation, Release 1.60.2

end up with a bunch of files polluting your project. Moreover, if you want to build more configurations you will
need to create several build folders by hand, this is inconvenient, error-prone, and wouldn’t be easy for Conan to
locate the correct artifacts if you want to call export-pkg later.

e What if I don’t even want to call conan build but use my CLion IDE to build the project?

By default, the CLion IDE will create the folders cmake-build-release and cmake-build-debug to put the build
files there, so maybe your package () method is not able to locate the files in there and the export-pkg might
fail.

* What if I want to use my project as an editable package?

If you want to keep developing your package but let the consumers link with the artifacts in your project instead
of the files in the Conan cache, this will not work, because it only declares the location of headers and libraries
in the final packaged layout, but during development the files are typically in other locations.

So, just as we describe the package folder in the package_info() method, we can use layout() to describe the
source and build folders (both in a local project and in the cache):

* We can run the conan local commands (conan source, conan build, conan export-pkg) without taking care of
specifying directories, always with the same syntax.

* If you are using an IDE, you can describe the build folder naming in the layout, so the libraries and executables
are always in a known place.

¢ In the cache, the layout (like a build subfolder) is kept, so we can always know where the artifacts are before
packaging them.

* It enables tools like the AutoPackager to automate the package() method.

* It out-of-the-box enables to use editable packages, because the recipe describes where the contents will be, even
for different configurations, so the consumers can link with the correct built artifacts.

9.2.2 Declaring the layout

In the layout () method, you can set:

« self.folders

self.folders.source: To specify a folder where your sources are.
— self.folders.build: To specify a subfolder where the files from the build are (or will be).

— self.folders.generators: To specify a subfolder where to write the files from the generators and
the toolchains (e.g. the xx-config.cmake files from the CMakeDeps generator).

— self.folders.imports: To specify a subfolder where to write the files copied when using the
imports(self) method in a conanfile.py.

— self.folders.root: To specify the relative path from the conanfile.py to the root of the project,
in case the conanfile.py is in a subfolder and not in the project root. If defined, all the other
paths will be relative to the project root, not to the location of the conanfile.py.

Check the complete reference of the self.folders attribute.

* self.cpp.source and self.cpp.build: The same you set the self.cpp.package to describe the package folder
after calling the package () method, you can also describe the source and build folders.

« self.cpp.package: You can use it as you use the self.cpp_info at the package_info(self) method. The
self.cpp_info object will be populated with the information declared in the self.cpp.package object, so you
can complete it or modify it later in the package_info(self) method.

9.2. Package layout 121



Conan Documentation, Release 1.60.2

* self.layouts.source, self.layouts.build and self.layouts.package, each one containing one instance of
buildenv_info, runenv_info and conf_info. If the environment or configuration needs to define values
that depend on the current folders, it is necessary to define them in the layout () method.

9.2.3 Example: Everything together

Let’s say we are working in the project introduced in the section above:

<my_project_folder>
I: conanfile.py
src

CMakeLists.txt
hello.cpp
my_tool.cpp
include
L— hello.h

We are using the following CMakeLists.txt:

cmake_minimum_required(VERSION 3.15)
project(say CXX)

add_library(say hello.cpp)
target_include_directories(say PUBLIC "include")

add_executable(my_tool my_tool.cpp)
target_link libraries(my_tool say)

# The executables are generated at the "bin" folder
set_target_properties(my_tool PROPERTIES RUNTIME_OUTPUT_DIRECTORY "${CMAKE_BINARY_DIR}/
—bin™)

Let’s see how we describe our project in the 1ayout () method:

Listing 6: conanfile.py

import os
from conan import ConanFile
from conan.tools.cmake import CMake

class SayConan(ConanFile):
name = "say"
version = "0.1"
exports_sources = ''src/*"

def layout(self):

self.folders.source = "src"
build_type = str(self.settings.build_type).lower()
self.folders.build = "cmake-build-{}".format(build_type)

self.folders.generators = os.path.join(self.folders.build, "conan")

self.cpp.package.libs = ["say"]

(continues on next page)

122 Chapter 9. Developing packages




Conan Documentation, Release 1.60.2

(continued from previous page)

self.cpp.package.includedirs = ["include"] # includedirs is already set to this.

—value by

# default, but declared for completion

# this information is relative to the source folder
self.cpp.source.includedirs = ["include"] # maps to ./src/include

# this information is relative to the build folder

self.cpp.build.libdirs = ["."] # maps to ./cmake-build-<build_type>
self.cpp.build.bindirs = ["bin"] # maps to ./cmake-build-<build_type>/

—bin

def build(self):
cmake = CMake(self)
cmake.configure()
cmake.build()
# we can also know where the executable we are building is

self.run(os.path. join(self.build_folder, self.cpp.build.bindirs[0], "my_tool"))

Let’s review the layout () method changes:
« self.folders
— As we have our sources in the src folder, self. folders. source is set to “src”.

— We set self.folders.build to be cmake-build-release or cmake-build-debug depending
on the build_type.

— The self. folders.generators folder is where all files generated by Conan will be stored so
they don’t pollute the other folders.

Please, note that the values above are for a single-configuration CMake generator. To support multi-
configuration generators, such as Visual Studio, you should make some changes to this layout. For a
complete layout that supports both single-config and multi-config, please check the cmake_layout()
in the Conan documentation.

* self.cpp

We can set the information about the package that the consumers need to use by setting the conanfile’s
cpp . package attributes values:

— Declaring self.cpp.package.libs inside the layout () method is equivalent to the “classic”
self.cpp_info.libs declaration in the package_info() method.

— Also, as you may know, self.cpp.package.includedirs is set to ["include"] by default,
so there’s no need in declaring it but we are leaving it here for completeness.

We can also describe the source and build folders with the cpp. source and cpp.build objects:

— We are setting self.cpp.source.includedirs = ["include"]. The self.folders.
source information will be automatically prepended to that path for consumers so, for exam-
ple, when working with an editable package, Conan will try to get the include files from the
J/my_project_folder/src/include folder.

— Wesetthe self.cpp.build.libdirs to[*“.”’], so we are declaring that, if we make the package
editable, the libraries will be at the ./cmake-build-<build_type> folder.

— We set the self.cpp.build.bindirs to [“bin”’], because the CMakeLists. txt file is chang-
ing the RUNTIME_OUTPUT_DIRECTORY to that directory.

9.2. Package layout

123




Conan Documentation, Release 1.60.2

There is also an interesting line in the build(self) method:

Listing 7: conanfile.py

def build(self):

# we can also know where is the executable we are building
self.run(os.path. join(self.build_folder, self.cpp.build.bindirs[0], "my_tool™))

We are using the self.cpp.build.bindirs[0] folder to locate the my_tool. This is a very recommended practice,
especially when our layout depends on the build system. For example, when using CMake with Visual Studio, the
binaries are typically built at Release/ or Debug/ (multiconfiguration) but on Linux or macOS, the output folder will
typically be ¢.”, so it is better to declare the layout self.cpp.build.bindirs following that logic and then just
access the correct path if we need to know where the resulting files of our build are. If you check the cmake_layout(),
you can see that the predefined cmake_layout is doing exactly that when using a multiconfiguration build system.

So, now we can run the conan local methods without taking much care of the directories where the files are or the build
files should be, because everything is declared in the layout:

# This will write the toolchains and generator files from the dependencies to cmake-
—build-debug/generators
$ conan install . -if=my_install -s build_type=Debug

# In case we needed it (not the case as we don't have a source() method), this would.
—fetch the sources to the ./src folder
$ conan source . -if=my_install

# This will build the project using the declared source folder and cmake-build-debug as.
< the build folder
$ conan build . -if=my_install

Note: Maybe you are wondering why the install folder is not parametrized and has to be specified with the -if
argument. Currently, Conan generates several files like the graph_info. json and the conanbuildinfo.txt that are
read to restore the configuration saved (settings, options, etc) to be applied in the local commands. That configuration
is needed before running the layout () method because the folders might depend on the settings like in the previous
example. It is a kind of a chicken-egg issue. In Conan 2.0, likely, the configuration won’t be stored, and the local
methods like conan build . will compute the graph from arguments (—profile, -s, -0...) and won’t need the --if
argument anymore, being always trivial to run.

Our current folder now looks like this:

<my_project_folder>
—— conanfile.py
— src
CMakeLists.txt
hello.cpp
my_tool.cpp
include
L— hello.h
L— cmake-build-debug
libsay.a
bin
L— my_tool

124 Chapter 9. Developing packages




Conan Documentation, Release 1.60.2

We could put the package in editable mode and other packages that require it would consume it in a completely trans-
parent way, even locating the correct Release/Debug artifacts.

[$ conan editable add . say/0.1

Note: When working with editable packages, the information set in self.cpp.source and self.cpp.build will
be merged with the information set in self. cpp.package so that we don’t have to declare again something like self.
cpp.build.libs = ["say"] thatis the same for the consumers, independently of whether the package is in editable
mode or not.

And of course, we can run also a conan create command. When the build(self) method is run in the conan
cache, it is also able to locate the my_tool correctly, because it is using the same folders.build:

Listing 8: .conan/data/<some_cache_folder>

— source
L— src

CMakeLists.txt
hello.cpp
my_tool.cpp
include
L— hello.h

— build

L— cmake-build-debug
|: say.a
bin

L— my_app

L package

lib

L say.a
bin

L— my_app
include

L— hello.h

Warning: The conan package local command has been disabled (will raise an exception) when the layout ()
method is declared. If the package can be consumed “locally” in a handy way, the use case for the conan package
method is only testing that the method is correctly coded, but that can also be done with the conan export-pkg
method. Thus, as part of the migration to Conan 2.0, the conan package method will disappear.

9.2.4 Example: export_sources_folder

If we have this project, intended to create a package for a third-party library which code is located externally:

conanfile.py
patches

L— mypatch
CMakeLists.txt

The conanfile.py would look like this:

9.2. Package layout 125




Conan Documentation, Release 1.60.2

import os
from conan import ConanFile

class Pkg(ConanFile):

name = "pkg"
version = "0.1"
exports_sources = "CMakeLists.txt", "patches*"
def layout(self):

self.folders.source = "src"
def source(self):

def

" "

# we are inside a "src" subfolder, as defined by layout

# download something, that will be inside the "src" subfolder

# access to patches and CMakelLists, to apply them, replace files is done with:
mypatch_path = os.path.join(self.export_sources_folder, "patches/mypatch™)
cmake_path = os.path.join(self.export_sources_folder, "CMakeLists.txt")

# patching, replacing, happens here

build(self):

# If necessary, the build() method also has access to the export_sources_folder
# for example if patching happens in build() instead of source()

cmake_path = os.path.join(self.export_sources_folder, "CMakeLists.txt")

We can see that the ConanFile. export_sources_folder can provide access to the root folder of the sources:

* Locally it will be the folder where the conanfile.py lives

¢ In the cache it will be the “source” folder, that will contain a copy of CMakeLists.txt and patches, while the
“source/src” folder will contain the actual downloaded sources.

9.2.5 Example: conanfile in subfolder

If we have this project, intended to package the code that is in the same repo as the conanfile.py, but the conanfile.
py is not in the root of the project:

CMakeLists.txt
conan

L

conanfile.py

The conanfile.py would look like this:

import os
from conan import ConanFile
from conan.tools.files import load, copy

class Pkg(ConanFile):
name = "pkg"
version = "0.1"

def

layout(self):

(continues on next page)

126

Chapter 9. Developing packages




Conan Documentation, Release 1.60.2

(continued from previous page)

# The root of the project is one level above

self.folders.root = ".."

# The source of the project (the root CMakelists.txt) is the source folder
self.folders.source = "."

self.folders.build = "build"

def export_sources(self):
# The path of the CMakelLists.txt we want to export is one level above
folder = os.path.join(self.recipe_folder, "..")
copy(self, "*.txt", folder, self.export_sources_folder)

def source(self):
# we can see that the CMakeLists.txt is inside the source folder
cmake = load(self, "CMakeLists.txt")

def build(self):
# The build() method can also access the CMakelLists.txt in the source folder
path = os.path.join(self.source_folder, "CMakeLists.txt")
cmake = load(self, path)

9.2.6 Example: Multiple subprojects

Lets say that we have a project that contains multiple subprojects, and some of these subprojects need to access some
information that is at their same level (sibling folders). Each subproject would be a Conan package.

So we have the following folders and files:

— pkg

conanfile.py
E app.cpp # contains an #include "../common/myheader.h"
CMakeLists.txt # contains include(../common/myutils.cmake)
—— common
|: myutils.cmake
myheader.h
L— othersubproject

The pkg subproject needs to use some of the files located inside the common folder (that might be used and shared by
other subprojects too), and it references them by their relative location. Note that common is not intended to be a Conan
package. It is just some common code that will be copied into the different subproject packages.

We can use the self.folders.root = ".." layout specifier to locate the root of the project, then use the self.
folders.subproject = "subprojectfolder" to relocate back most of the layout to the current subproject folder,
as it would be the one containing the build scripts, sources code, etc., so other helpers like cmake_layout () keep
working.

import os

from conan import ConanFile

from conan.tools.cmake import cmake_layout, CMake
from conan.tools.files import load, copy, save

class Pkg(ConanFile):
name = "pkg"
(continues on next page)

9.2. Package layout 127




Conan Documentation, Release 1.60.2

(continued from previous page)

version = "0.1"
settings = "os", "compiler", "build_type", "arch"
generators = "CMakeToolchain"

def layout(self):
self.folders.root =
self.folders.subproject = "pkg"
cmake_layout (self)

def export_sources(self):
source_folder = os.path.join(self.recipe_folder, "..")
copy(self, "*", source_folder, self.export_sources_folder)

def build(self):
cmake = CMake(self)
cmake.configure()
cmake.build()
self.run(os.path. join(self.cpp.build.bindirs[0], "myapp"))

Note it is very important the export_sources () method, that is able to maintain the same relative layout of the pkg
and common folders, both in the local developer flow in the current folder, but also when those sources are copied to
the Conan cache, to be built there with conan create or conan install --build=pkg. This is one of the design
principles of the layout (), the relative location of things must be consistent in the user folder and in the cache.

9.2.7 Environment variables and configuration

There are some packages that might define some environment variables in their package_info() method via self.
buildenv_info, self.runenv_info. Other packages can also use self.conf_info to pass configuration to their
consumers.

This is not an issue as long as the value of those environment variables or configuration do not require using the self.
package_folder. If they do, then their values will not be correct for the “source” and “build” layouts. Something
like this will be broken when used in editable mode:

import os
from conan import ConanFile

class SayConan(ConanFile):

def package_info(self):
# This is BROKEN if we put this package in editable mode
self.runenv_info.define_path("MYDATA_PATH",
os.path.join(self.package_folder, "my/data/path™))

When the package is in editable mode, for example, self.package_folder is None, as obviously there is no package
yet. The solution is to define it in the layout () method, in the same way the cpp_info can be defined there:

from conan import ConanFile
class SayConan(ConanFile):

def layout(self):

(continues on next page)

128 Chapter 9. Developing packages




Conan Documentation, Release 1.60.2

(continued from previous page)

# The final path will be relative to the self.source_folder

self.layouts.source.buildenv_info.define_path("MYDATA_PATH", "my/source/data/path
-

# The final path will be relative to the self.build_folder

self.layouts.build.buildenv_info.define_path("MYDATA_PATH2", "my/build/data/path
-

# The final path will be relative to the self.build_folder

self.layouts.build.conf_info.define_path("MYCONF", "my_conf_ folder")

The layouts object contains source, build and package scopes, and each one contains one instance of
buildenv_info, runenv_info and conf_info.

9.3 Packages in editable mode

Important: This is a tutorial section. You are encouraged to execute these commands.

Some of the features used in this section are still under development, like 1ayout () or CMakeToolchain, while they
are recommended and usable and we will try not to break them in future releases, some breaking changes might still
happen if necessary to prepare for the Conan 2.0 release.

When working in big projects with several functionalities interconnected it is recommended to avoid the one-and-only
huge project approach in favor of several libraries, each one specialized in a set of common tasks, even maintained by
dedicated teams. This approach helps to isolate and reusing code helps with compiling times and reduces the likelihood
of including files that not correspond to the API of the required library.

Nevertheless, in some case, it is useful to work in several libraries at the same time and see how the changes in one of
them are propagated to the others. With the normal flow, for every source change, it is necessary to do conan create
or conan export-pkg to put the package in the cache and make it available to consumers.

With the editable packages, you can tell Conan where to find the headers and the artifacts ready for consumption in
your local working directory. There is no need to package.

Let’s see this feature over a practical example, the code can be found in the examples repository:

$ git clone https://github.com/conan-io/examples.git
$ cd examples/features/editable/cmake

There are 2 folders inside this project:
» A “say” folder containing a fully fledge package, with its conanfile.py, its source code.

* A “hello” folder containing a simple consumer project with a conanfile. txt and its source code, which de-
pends on the say/0. 1@user/testing requirement.

The goal is to be able to build the “hello” project, without actually having the say/0.1@user/testing package in
the cache, but directly in this project folder.

9.3. Packages in editable mode 129




Conan Documentation, Release 1.60.2

9.3.1 Put a package in editable mode

To avoid creating the package say/0. 1l@user/channel in the cache for every change, we are going to put that package
in editable mode, creating a link from the reference in the cache to the local working directory:

$ conan editable add say say/®.1l@user/channel
$ conan editable list
say/0. l@user/channel

Path:

That is it. Now, every usage of say/0.1l@user/channel, by any other Conan package or project, will be redirected
to the examples/features/editable/cmake/say user folder instead of using the package from the conan cache.

Note that the key of editable packages is a correct definition of the 1ayout () of the package. Read the package layout()
section to learn more about this method.

In this example, the say conanfile.py recipe is using the predefined cmake_layout () which defines the typical
CMake project layout, which can be different in the different platforms. Take also into account that only using the new
build system integrations like CMakeDeps and CMakeToolchain will correctly follow the layout definition.

Now the say/0. 1@user/channel package is in editable mode, lets build it locally:

$ cd say

# windows, we will build 2 configurations to show multi-config

$ conan install . -s build_type=Release

$ conan install . -s build_type=Debug

$ cd build

$ cmake .. -DCMAKE_TOOLCHAIN_FILE=generators/conan_toolchain.cmake
$ cmake --build . --config Release

$ cmake --build . --config Debug

# Linux, we will only build 1 configuration

$ conan install .

$ cd build/Release

$ cmake ../.. -DCMAKE_BUILD_TYPE=Release -DCMAKE_TOOLCHAIN_FILE=generators/conan_

—toolchain.cmake
$ cmake --build .

9.3.2 Using a package in editable mode

Consuming a package in editable mode is transparent from the consumer perspective. In this case we can build the
hello application as usual:

$ cd ../../hello

# windows, we will build 2 configurations to show multi-config

$ conan install . -s build_type=Release

$ conan install . -s build_type=Debug

$ cd build

$ cmake .. -DCMAKE_TOOLCHAIN_FILE=generators/conan_toolchain.cmake
$ cmake --build . --config Release

$ cmake --build . --config Debug

$ Release\hello.exe

(continues on next page)

130 Chapter 9. Developing packages




Conan Documentation, Release 1.60.2

(continued from previous page)

say/0.1: Hello World Release!
$ Debug\hello.exe
say/0.1: Hello World Debug!

# Linux, we will only build 1 configuration

$ conan install .

$ cd build/Release

$ cmake ../.. -DCMAKE_BUILD_TYPE=Release -DCMAKE_TOOLCHAIN_FILE=generators/conan_
—»toolchain.cmake

$ cmake --build .

$ ./hello

say/0.1: Hello World Release!

9.3.3 Working with editable packages

Once the above steps have been done, we can basically work with our build system or IDE, no Conan involved, and do
changes in the editable packages and have those changes used by the consumers directly. Lets see it, lets start by doing
a change in the say source code:

R2]

cd ../../say
# Edit src/say.cpp and change the error message from "Hello" to "Bye"

# windows, we will build 2 configurations to show multi-config
$ cd build

$ cmake --build . --config Release

$ cmake --build . --config Debug

# Linux, we will only build 1 configuration
$ cd build/Release
$ cmake --build .

And build and run the “hello” project:

$ cd ../../hello

# windows,

$ cd build

$ cmake --build . --config Release
$ cmake --build . --config Debug

$ Release\hello.exe

say/0.1: Bye World Release!
$ Debug\hello.exe
say/0.1: Bye World Debug!

# Linux

$ cd build/Release

$ cmake --build .

$ ./hello

say/0.1: Bye World Release!

In that way, it is possible to be developing both the say library and the hello application, at the same time, without
any Conan command. If you had both open in the IDE, it would be just building one after the other.

9.3. Packages in editable mode 131



Conan Documentation, Release 1.60.2

Note: When a package is in editable mode, most of the commands will not work. It is not possible to conan upload,
conan export or conan create when a package is in editable mode.

9.3.4 Revert the editable mode

In order to revert the editable mode just remove the link using:

[$ conan editable remove say/0.l@user/channel ]

It will remove the link (the local directory won’t be affected) and all the packages consuming this requirement will get
it from the cache again.

Warning: Packages that are built consuming an editable package in its graph upstreams can generate binaries and
packages incompatible with the released version of the editable package. Avoid uploading these packages without
re-creating them with the in-cache version of all the libraries.

9.4 Workspaces

Warning: This is an experimental feature. This is actually a preview of the feature, with the main goal of receiving
feedbacks and improving it. Consider the file formats, commands and flows to be unstable and subject to changes
in the next releases.

Sometimes, it is necessary to work simultaneously on more than one package. In theory, each package should be
a “work unit”, and developers should be able to work on them in isolation. But sometimes, some changes require
modifications in more than one package at the same time. The local development flow can help, but it still requires
using export-pkg to put the artifacts in the local cache, where other packages under development will consume them.

The Conan workspaces allow to have more than one package in user folders, and have them directly use other packages
from user folders without needing to put them in the local cache. Furthermore, they enable incremental builds on large
projects containing multiple packages.

Lets introduce them with a practical example; the code can be found in the conan examples repository:

$ git clone https://github.com/conan-io/examples.git
$ cd features/workspace/cmake

Note that this folder contains two files conanws_gcc.yml and conanws_vs.yml, for gcc (Makefiles, single-configuration
build environments) and for Visual Studio (MSBuild, multi-configuration build environment), respectively.

132 Chapter 9. Developing packages



Conan Documentation, Release 1.60.2

9.4.1 Conan workspace definition

Workspaces are defined in a yaml file, with any user defined name. Its structure is:

editables:
say/0.1l@user/testing:
path: say
hello/0.1@user/testing:
path: hello
chat/0.1l@user/testing:
path: chat

layout: layout_gcc
workspace_generator: cmake
root: chat/0.l@user/testing

The first section editables defines the mapping between package references and relative paths. Each one is equivalent
to a conan editable add command (Do NOT do this — it is not necessary. It will be automatically done later. Just to
understand the behavior):

$ conan editable add say say/®.l@user/testing --layout=layout_gcc
$ conan editable add hello hello/0.l@user/testing --layout=layout_gcc
$ conan editable add chat chat/®.l@user/testing --layout=layout_gcc

The main difference is that this Editable state is only temporary for this workspace. It doesn’t affect other projects or
packages, which can still consume these say, hello, chat packages from the local cache.

Note that the layout: layout_gcc declaration in the workspace affects all the packages. It is also possible to define
a different layout per package, as:

editables:
say/0.l@user/testing:
path: say

layout: custom_say_layout

Layout files are explained in Editable layout files and in the Packages in editable mode sections.

The workspace_generator defines the file that will be generated for the top project. The only supported value so far
is cmake and it will generate a conanworkspace.cmake file that looks like:

set (PACKAGE_say_SRC "<path>/examples/workspace/cmake/say/src')

set (PACKAGE_say_BUILD '"<path>/examples/workspace/cmake/say/build/Debug")

set (PACKAGE_hello_SRC "<path>/examples/workspace/cmake/hello/src")

set (PACKAGE_hello_BUILD "<path>/examples/workspace/cmake/hello/build/Debug")
set (PACKAGE_chat_SRC "<path>/examples/workspace/cmake/chat/src")

set (PACKAGE_chat_BUILD '<path>/examples/workspace/cmake/chat/build/Debug")

macro (conan_workspace_subdirectories)
add_subdirectory(${PACKAGE_say_SRC} ${PACKAGE_say_BUILD})
add_subdirectory (${PACKAGE_hello_SRC} ${PACKAGE_hello_BUILD})
add_subdirectory(${PACKAGE_chat_SRC} ${PACKAGE_chat_BUILD})
endmacro()

This file can be included in your user-defined CMakeLists.txt (this file is not generated). Here you can see the CMake-
Lists.txt used in this project:

9.4. Workspaces 133




Conan Documentation, Release 1.60.2

cmake_minimum_required(VERSION 3.0)
project(WorkspaceProject)

include (${CMAKE_BINARY_DIR}/conanworkspace.cmake)
conan_workspace_subdirectories()

The root: chat/0.1@user/testing defines which is the consumer node of the graph, typically some kind of
executable. You can provide a comma separated list of references, as a string, or a yaml list (abbreviated or full as
yaml items). All the root nodes will be in the same dependency graph, leading to conflicts if they depend on different
versions of the same library, as in any other Conan command.

editables:
say/0.l@user/testing:
path: say
hello/0.1@user/testing:
path: hello
chat/0.1l@user/testing:
path: chat

root: chat/0.l@user/testing, say/0.lGuser/testing
# or
root: ["helloa/0.1@lasote/stable", "hellob/0.1l@lasote/stable"]
# or
root:
- helloa/0.1@lasote/stable
- hellob/0.1@lasote/stable

9.4.2 Single configuration build environments

There are some build systems, like Make, that require the developer to manage different configurations in different
build folders, and switch between folders to change configuration. The file described above is conan_gcc.yml file,
which defines a Conan workspace that works for a CMake based project for MinGW/Unix Makefiles gcc environments
(working for apple-clang or clang would be very similar, if not identical).

Lets use it to install this workspace:

$ mkdir build_release && cd build_release
$ conan workspace install ../conanws_gcc.yml --profile-=my_profile

Here we assume that you have amy_profile profile defined which would use a single-configuration build system (like
Makefiles). The example is tested with gcc in Linux, but working with apple-clang with Makefiles would be the same).
You should see something like:

Configuration:
[settings]

build_type=Release
compiler=gcc
compiler.libcxx=1libstdc++
compiler.version=4.9

(continues on next page)

134 Chapter 9. Developing packages




Conan Documentation, Release 1.60.2

(continued from previous page)

Requirements
chat/0.1l@user/testing from user folder - Editable
hello/0.1l@user/testing from user folder - Editable
say/0.1l@user/testing from user folder - Editable

Packages
chat/0.1l@user/testing:df2c4£4725219597d44b7eab2ea5c8680abd57f9 - Editable
hello/0.1@user/testing:b0e473ad8697d6069797Hb921517d628bba8b5901 - Editable
say/0.1l@user/testing:80faec7955dcba29246085ff8d64a765db3b414f - Editable

say/0.1l@user/testing: Generator cmake created conanbuildinfo.cmake
hello/0.1@user/testing: Generator cmake created conanbuildinfo.cmake

chat/0.1l@user/testing: Generator cmake created conanbuildinfo.cmake

These conanbuildinfo.cmake files have been created in each package build/Release folder, as defined by the layout _gcc
file:

# This helps to define the location of CMakeLists.txt within package
[source_folder]
src

# This defines where the conanbuildinfo.cmake will be written to
[build_folder]
build/{{settings.build_type}}

Now we can configure and build our project as usual:

$ cmake .. -G "Unix Makefiles" -DCMAKE_BUILD_TYPE=Release
$ cmake --build . # or just $ make

$ ../chat/build/Release/app

Release: Hello World!

Release: Hello World!

Release: Hello World!

Now, go do a change in some of the packages, for example the “say” one, and rebuild. See how it does an incremental
build (fast).

Note that nothing will really be installed in the local cache, all the dependencies are resolved locally:

There are no packages matching the 'say' pattern

$ conan search say ’

Note: The package conanfile.py recipes do not contain anything special, they are standard recipes. But the packages
CMakeLists.txt have defined the following:

[conan_basic_setup(NO_OUTPUT_DIRS) ]

This is because the default conan_basic_setup() does define output directories for artifacts such as bin, lib, etc,
which is not what the local project layout expects. You need to check and make sure that your build scripts and recipe

9.4. Workspaces 135



Conan Documentation, Release 1.60.2

matches both the expected local layout (as defined in layout files), and the recipe package () method logic.

Building for debug mode is done in its own folder:

cd .. &% mkdir build_debug && cd build_debug

conan workspace install ../conanws_gcc.yml --profile=my_gcc_profile -s build_type=Debug
cmake .. -G "Unix Makefiles" -DCMAKE_BUILD_TYPE=Debug

cmake --build . # or just $ make

$ ../chat/build/Debug/app

Debug: Bye World!

Debug: Bye World!

Debug: Bye World!

© A A o

9.4.3 Multi configuration build environments

Some build systems, like Visual Studio (MSBuild), use “multi-configuration” environments. That is, even if the project
is configured just once you can switch between different configurations (like Debug/Release) directly in the IDE and
build there.

The above example uses the Conan cmake generator, that creates a single conanbuildinfo.cmake file. This is not a prob-
lem if we have our configurations built in different folders. Each one will contain its own conanbuildinfo.cmake. For
Visual Studio that means that if we wanted to switch from Debug<->Release, we should issue a new conan workspace
install command with the right -s build_type and do a clean build, in order to get the right dependencies.

Conan has the cmake_multi generator generator, that allows this direct switch of Debug/Release configuration in the
IDE. The conanfile.py recipes they have defined the cmake generator, so the first step is to override that in our co-
nanws_vs.yml file:

editables:
say/0.l@user/testing:
path: say
hello/0.1@user/testing:
path: hello
chat/0.1l@user/testing:
path: chat
layout: layout_vs
generators: cmake_multi
workspace_generator: cmake
root: chat/0.l@user/testing

Note the generators: cmake_multi line, that will define the generators to be used by our workspace packages.
Also, our CMakelLists.txt should take into account that now we won’t have a conanbuildinfo.cmake file, but a conan-
buildinfo_multi.cmake file. See for example the hello/src/CMakeLists.txt file:

project(Hello)

if(EXISTS ${CMAKE_CURRENT_BINARY_DIR}/conanbuildinfo_multi.cmake)
include (${CMAKE_CURRENT_BINARY_DIR}/conanbuildinfo_multi.cmake)
else()
include (${CMAKE_CURRENT_BINARY_DIR}/conanbuildinfo.cmake)
endif()

conan_basic_setup(NO_OUTPUT_DIRS)

(continues on next page)

136 Chapter 9. Developing packages




Conan Documentation, Release 1.60.2

(continued from previous page)

add_library(hello hello.cpp)
conan_target_link_libraries(hello)

The last conan_target_link_libraries(hello) is a helper that does the right linking with Debug/Release li-
braries (also works when using cmake targets).

Make sure to install both Debug and Release configurations straight ahead, if we want to later switch between them in
the IDE:

$ mkdir build && cd build

$ conan workspace install ../conanws_vs.yml

$ conan workspace install ../conanws_vs.yml -s build_type=Debug
$ cmake .. -G "Visual Studio 15 Win64"

With those commands you will get a Visual Studio solution, that you can open, select the app executable as StartUp
project, and start building, executing, debugging, switching from Debug and Release configurations freely from the
IDE, without needing to issue further Conan commands.

You can check in the project folders, how the following files have been generated:

hello
|- build
| - conanbuildinfo_multi.cmake
| - conanbuildinfo_release.cmake
| - conanbuildinfo_debug.cmake

Note that they are not located in build/Release and build/Debug subfolders; that is because of the multi-config envi-
ronment. To account for that the layout_vs define the [build_folder] not as build/{settings.build_type} but
just as:

[build_folder]
build

9.4.4 Out of source builds

The above examples are using a build folder in-source of the packages in editable mode. It is possible to define out-
of-source builds layouts, using relative paths and the reference argument. The following layout definition could be
used to locate the build artifacts of an editable package in a sibling build/<package-name> folder:

[build_folder]
../build/{{reference.name}}/{{settings.build_type}}

[includedirs]
src

[libdirs]
../build/{{reference.name}}/{{settings.build_type}}/lib

9.4. Workspaces 137




Conan Documentation, Release 1.60.2

9.4.5 Notes
Note that this way of developing packages shouldn’t be used to create the final packages (you could try to use conan
export-pkg), but instead, a full package creation with conan create (best in CI) is recommended.

So far, only the CMake super-project generator is implemented. A Visual Studio one is being considered, and seems
feasible, but not yet available.

Important: We really want your feedback. Please submit any issues to https://github.com/conan-io/conan/issues with
any suggestion, problem, idea, and using [workspaces] prefix in the issue title.

138 Chapter 9. Developing packages


https://github.com/conan-io/conan/issues

CHAPTER
TEN

PACKAGE APPS AND DEVTOOLS

With conan it is possible to package and deploy applications. It is also possible that these applications are also dev-tools,
like compilers (e.g. MinGW), or build systems (e.g. CMake).

This section describes how to package and run executables, and also how to package dev-tools. Also, how to apply
applications like dev-tools or even libraries (like testing frameworks) to other packages to build them from sources:
Tool requirements

10.1 Running and deploying packages

Caution: We are actively working to finalize the Conan 2.0 Release. Some of the information on this page
references deprecated features which will not be carried forward with the new release. It’s important to check the
Migration Guidelines to ensure you are using the most up to date features.

Executables and applications including shared libraries can also be distributed, deployed and run with Conan. This
might have some advantages compared to deploying with other systems:

* A unified development and distribution tool, for all systems and platforms.
¢ Manage any number of different deployment configurations in the same way you manage them for development.

* Use a Conan server remote to store all your applications and runtimes for all Operating Systems, platforms and
targets.

There are different approaches:

10.1.1 Using virtual environments

We can create a package that contains an executable, for example from the default package template created by conan
new:

[$ conan new hello/®.1 J

The source code used contains an executable called greet, but it is not packaged by default. Let’s modify the recipe
package () method to also package the executable:

def package(self):
self.copy("*greet*", src="bin", dst="bin", keep_path=False)

Now we create the package as usual, but if we try to run the executable it won’t be found:

139



Conan Documentation, Release 1.60.2

$ conan create . user/testing

hello/0.1@user/testing package(): Copied 1 '.h' files: hello.h
hello/0.1@user/testing package(): Copied 1 '.exe' files: greet.exe
hello/0.1l@user/testing package(): Copied 1 '.lib' files: hello.lib

$ greet
> ... not found...

By default, Conan does not modify the environment, it will just create the package in the local cache, and that is not in
the system PATH, so the greet executable is not found.

The virtualrunenv generator generates files that add the package’s default binary locations to the necessary paths:

* It adds the dependencies 1ib subfolder to the DYLD_LIBRARY_PATH environment variable (for OSX shared
libraries)

e It adds the dependencies 1ib subfolder to the LD_LIBRARY_PATH environment variable (for Linux shared li-
braries)

* It adds the dependencies bin subfolder to the PATH environment variable (for executables)

So if we install the package, specifying such virtualrunenv like:

[$ conan install hello/®.l@user/testing -g virtualrunenv ]

This will generate a few files that can be called to activate and deactivate the required environment variables

$ activate_run.sh # § source activate_run.sh in Unix/Linux

$ greet

> Hello World Release!

$ deactivate_run.sh # $ source deactivate_run.sh in Unix/Linux

10.1.2 Imports

It is possible to define a custom conanfile (either .£xt or .py), with an imports() section, that can retrieve from local
cache the desired files. This approach requires a user conanfile.

For more details see the example below runtime packages.

10.1.3 Deployable packages

With the deploy () method, a package can specify which files and artifacts to copy to user space or to other locations
in the system. Let’s modify the example recipe adding the deploy () method:

, dst="bin", src="bin")

def deploy(self):
self.copy("*"

And run conan create

[$ conan create . user/testing

With that method in our package recipe, it will copy the executable when installed directly:

140 Chapter 10. Package apps and devtools



Conan Documentation, Release 1.60.2

$ conan install hello/0.1@user/testing

> hello/0.1l@user/testing deploy(): Copied 1 '.exe' files: greet.exe
$ bin\greet.exe
> Hello World Release!

The deploy will create a deploy_manifest.txt file with the files that have been deployed.

Sometimes it is useful to adjust the package ID of the deployable package in order to deploy it regardless of the compiler
it was compiled with:

def package_id(self):
del self.info.settings.compiler

See also:

Read more about the deploy() method.

10.1.4 Using the deploy generator
The deploy generator is used to have all the dependencies of an application copied into a single place. Then all the
files can be repackaged into the distribution format of choice.

For instance, if the application depends on boost, we may not know that it also requires many other 3rt-party libraries,
such as zlib, bzip2, lzma, zstd, iconv, etc.

[$ conan install . -g deploy ]

This helps to collect all the dependencies into a single place, moving them out of the Conan cache.

10.1.5 Using the json generator

A more advanced approach is to use the json generator. This generator works in a similar fashion as the deploy one,
although it doesn’t copy the files to a directory. Instead, it generates a JSON file with all the information about the
dependencies including the location of the files in the Conan cache.

[$ conan install . -g json ]

The conanbuildinfo.json file produced, is fully machine-readable and could be used by scripts to prepare the files and
recreate the appropriate format for distribution. The following code shows how to read the library and binary directories
from the conanbuildinfo.json:

import os
import json

data = json.load(open("'conanbuildinfo.json"))

dictQ
dictQ

dep_lib_dirs
dep_bin_dirs

for dep in data["dependencies"]:
root = dep["rootpath"]
lib_paths = dep["lib_paths"]

(continues on next page)

10.1. Running and deploying packages 141


https://zlib.net/
https://sourceware.org/bzip2/
https://tukaani.org/xz/
https://facebook.github.io/zstd/
https://www.gnu.org/software/libiconv/

Conan Documentation, Release 1.60.2

(continued from previous page)

bin_paths = dep["bin_paths"]

for lib_path in lib_paths:
if os.listdir(lib_path):
lib_dir = os.path.relpath(lib_path, root)
dep_lib_dirs[lib_path] = lib_dir
for bin_path in bin_paths:
if os.listdir(bin_path):
bin_dir = os.path.relpath(bin_path, root)
dep_bin_dirs[bin_path] = bin_dir

While with the deploy generator, all the files were copied into a folder. The advantage with the json one is that you
have fine-grained control over the files and those can be directly copied to the desired layout.

In that sense, the script above could be easily modified to apply some sort of filtering (e.g. to copy only shared libraries,
and omit any static libraries or auxiliary files such as pkg-config .pc files).

Additionally, you could also write a simple startup script for your application with the extracted information like this:

executable = "MyApp" # just an example
varname = "$APPDIR"

def _format_dirs(dirs):
return ":".join(["%s/%s" % (varname, d) for d in dirs])

path = _format_dirs(set(dep_bin_dirs.values()))
1d_library_path = _format_dirs(set(dep_lib_dirs.values()))
exe = varname + "/" + executable

content = """#!/usr/bin/env bash

set -ex

export PATH=$PATH:

export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:

pushd $(dirname )

$ (basename )

popd

""" format(path=path,
1d_library_path=1d_library_path,
exe=exe)

10.1.6 Running from packages

If a dependency has an executable that we want to run in the conanfile, it can be done directly in code using the
run_environment=True argument. It internally uses a RunEnvironment () helper. For example, if we want to
execute the greet app while building the consumer package:

from conans import ConanFile, tools, RunEnvironment

class ConsumerConan(ConanFile):

name = "consumer"
version = "0.1"
settings = "os", "compiler", "build_type", "arch"

(continues on next page)

142 Chapter 10. Package apps and devtools




Conan Documentation, Release 1.60.2

(continued from previous page)

requires = "hello/0.1G@user/testing"

def build(self):
self.run("greet", run_environment=True)

Now run conan install and conan build for this consumer recipe:

$ conan install . && conan build .

Project: Running build()
Hello World Release!

Instead of using the environment, it is also possible to explicitly access the path of the dependencies:

def build(self):
path = os.path.join(self.deps_cpp_info["hello"].rootpath, "bin")
self.run(["%s/greet" % path])

Note that this might not be enough if shared libraries exist. Using the run_environment=True helper above is a more
complete solution.

This example also demonstrates using a list to specify the command to run. This bypasses the system shell and works
correctly even when path contains special characters like whitespace or quotes that would otherwise be interpreted by
the shell. However, it also means that substituting environment variables or the output from other commands which are
normally done by the shell won’t work when using this method. Specify your command using a plain string as shown
above when you require this functionality.

Finally, there is another approach: the package containing the executable can add its bin folder directly to the PATH. In
this case the Hello package conanfile would contain:

def package_info(self):
self.cpp_info.libs = ["hello"]
self.env_info.PATH = os.path.join(self.package_folder, "bin")

We may also define DYLD_LIBRARY_PATH and LD_LIBRARY_PATH if they are required for the executable.

The consumer package is simple, as the PATH environment variable contains the greet executable:

def build(self):
self.run("greet")

Read the next section for a more comprenhensive explanation about using packaged executables in your recipe methods.

10.1.7 Runtime packages and re-packaging

It is possible to create packages that contain only runtime binaries, getting rid of all build-time dependencies. If we
want to create a package from the above “hello” one, but only containing the executable (remember that the above
package also contains a library, and the headers), we could do:

from conans import ConanFile

class HellorunConan(ConanFile):
name = "hello_run"
version = "0.1"

(continues on next page)

10.1. Running and deploying packages 143




Conan Documentation, Release 1.60.2

(continued from previous page)

tool_requires = "hello/0.1@user/testing"
keep_imports = True

def imports(self):
self.copy('greet*", src="bin", dst="bin")

def package(self):
self.copy("*")

This recipe has the following characteristics:

e Itincludes thehello/0. l@user/testing package as tool_requires. That means that it will be used to build
this hello_run package, but once the hello_run package is built, it will not be necessary to retrieve it.

e Itis using imports() to copy from the dependencies, in this case, the executable

* It is using the keep_imports attribute to define that imported artifacts during the build () step (which is not
define, then using the default empty one), are kept and not removed after build

* The package () method packages the imported artifacts that will be created in the build folder.

To create and upload this package to a remote:

$ conan create . user/testing
$ conan upload hello_run* --all -r=my-remote

Installing and running this package can be done using any of the methods presented above. For example:

$ conan install hello_run/0.1l@user/testing -g virtualrunenv

# You can specify the remote with -r=my-remote

# It will not install hello/0.1a@...

$ activate_run.sh # $§ source activate_run.sh in Unix/Linux

$ greet

> Hello World Release!

$ deactivate_run.sh # $ source deactivate_run.sh in Unix/Linux

Deployment challenges

When deploying a C/C++ application there are some specific challenges that have to be solved when distributing your
application. Here you will find the most usual ones and some recommendations to overcome them.

The C standard library

A common challenge for all the applications no matter if they are written in pure C or in C++ is the dependency on C
standard library. The most wide-spread variant of this library is GNU C library or just glibc.

Glibc is not a just C standard library, as it provides:
* C functions (like malloc(), sin(), etc.) for various language standards, including C99.
* POSIX functions (like posix threads in the pthread library).
¢ BSD functions (like BSD sockets).
* Wrappers for OS-specific APIs (like Linux system calls)

144 Chapter 10. Package apps and devtools


https://www.gnu.org/software/libc/

Conan Documentation, Release 1.60.2

Even if your application doesn’t use directly any of these functions, they are often used by other libraries, so, in practice,
it’s almost always in actual use.

There are other implementations of the C standard library that present the same challenge, such as newlib or musl, used
for embedded development.

To illustrate the problem, a simple hello-world application compiled in a modern Ubuntu distribution will give the
following error when it is run in a Centos 6 one:

$ /hello
/hello: /1ib64/1libc.so.6: version 'GLIBC_2.14' not found (required by /hello)

This is because the versions of the glibc are different between those Linux distributions.
There are several solutions to this problem:

* LibcWrapGenerator

* glibc_version_header

* bingcc

Some people also advice to use static of glibc, but it’s strongly discouraged. One of the reasons is that newer glibc
might be using syscalls that are not available in the previous versions, so it will randomly fail in runtime, which is much
harder to debug (the situation about system calls is described below).

It’s possible to model either glibc version or Linux distribution name in Conan by defining custom Conan sub-setting
in the sertings.yml file (check out sections Adding new settings and Adding new sub-settings). The process will be
similar to:

* Define new sub-setting, for instance os.distro, as explained in the section Adding new sub-settings.

* Define compatibility mode, as explained by sections package_id() and build_id() (e.g. you may consider some
Ubuntu and Debian packages to be compatible with each other)

» Generate different packages for each distribution.

* Generate deployable artifacts for each distribution.

C++ standard library

Usually, the default C++ standard library is libstdc++, but libc++ and stlport are other well-known implementations.

Similarly to the standard C library glibc, running the application linked with libstdc++ in the older system may result
in an error:

$ /hello
/hello: /usr/1lib64/libstdc++.s0.6: version 'GLIBCXX_3.4.21' not found (required by /
—hello)
/hello: /usr/1lib64/libstdc++.s0.6: version 'GLIBCXX_3.4.26' not found (required by /
—hello)

Fortunately, this is much easier to address by just adding -static-libstdc++ compiler flag. Unlike C runtime, C++
runtime can be linked statically safely, because it doesn’t use system calls directly, but instead relies on 1ibc to provide
required wrappers.

10.1. Running and deploying packages 145


https://sourceware.org/newlib/
https://www.musl-libc.org
https://github.com/AppImage/AppImageKit/tree/stable/v1.0/LibcWrapGenerator
https://github.com/wheybags/glibc_version_header
https://github.com/sulix/bingcc
https://gcc.gnu.org/onlinedocs/libstdc++/
https://libcxx.llvm.org
http://www.stlport.org

Conan Documentation, Release 1.60.2

Compiler runtime

Besides C and C++ runtime libraries, the compiler runtime libraries are also used by applications. Those libraries
usually provide lower-level functions, such as compiler intrinsics or support for exception handling. Functions from
these runtime libraries are rarely referenced directly in code and are mostly implicitly inserted by the compiler itself.

$ 1dd ./a.out
libgcc_s.so.1 => /1lib/x86_64-1linux-gnu/libgcc_s.so.1 (0x00007f6626aee000)

you can avoid this kind of dependency by the using of the -static-1libgcc compiler flag. However, it’s not always
sane thing to do, as there are certain situations when applications should use shared runtime. The most common is
when the application wishes to throw and catch exceptions across different shared libraries. Check out the GCC manual
for the detailed information.

System API (system calls)

New system calls are often introduced with new releases of Linux kernel. If the application, or 3rd-party libraries, want
to take advantage of these new features, they sometimes directly refer to such system calls (instead of using wrappers
provided by glibc).

As a result, if the application was compiled on a machine with a newer kernel and build system used to auto-detect
available system calls, it may fail to execute properly on machines with older kernels.

The solution is to either use a build machine with lowest supported kernel, or model supported operation system (just
like in case of glibc). Check out sections Adding new settings and Adding new sub-settings to get a piece of information
on how to model distribution in conan settings.

10.2 Creating conan packages to install dev tools

Caution: We are actively working to finalize the Conan 2.0 Release. Some of the information on this page
references deprecated features which will not be carried forward with the new release. It’s important to check the
Migration Guidelines to ensure you are using the most up to date features.

One of the most useful features of Conan is to package executables like compilers or build tools and distribute them
in a controlled way to the team of developers. This way Conan helps not only with the graph of dependencies of
the application itself, but also with all the ecosystem needed to generate the project, making it really easy to control
everything involved in the deployed application.

Those tools need to run in the working machine (the build machine) regardless of the host platform where the
generated binaries will run. If those platforms are different, we are cross building software.

In this section we cope with the general scenario where a library requires other tools to compile that are also packaged
with Conan. Read this section first, and get more information specific to cross compiling in the dedicated section of
the docs: Cross building.

Note: Conan v1.24 introduced a new feature to declare a full profile for the build and the host machine, it is
the preferred way to deal with this scenario. Older versions should rely on the deprecated settings os_build and
arch_build. There is a small section below about those settings, for a full explanation read the docs matching your
Conan client.

146 Chapter 10. Package apps and devtools


https://gcc.gnu.org/onlinedocs/gcc/Link-Options.html
https://www.kernel.org

Conan Documentation, Release 1.60.2

A Conan package for a tool is like any other package with an executable. Here it is a recipe for packaging the nasm
tool for building assembler:

import os
from conans import ConanFile, tools
from conans.errors import ConanInvalidConfiguration

class NasmConan(ConanFile):
name = "nasm"
version = "2.13.02"
license = "BSD-2-Clause"
url = "https://github.com/conan-io/conan-center-index"
settings = "os", "arch"
description="Nasm for windows. Useful as a build_require."

def validate(self):
if self.settings.os != "Windows":
raise ConanInvalidConfiguration('Only windows supported for nasm")

@property
def nasm_folder_name(self):
return "nasm-%s" % self.version

def build(self):

suffix = "win32" if self.settings.arch == "x86" else "win64"
nasm_zip_name = "%s-%s.zip" % (self.nasm_folder_name, suffix)
tools.download("http://www.nasm.us/pub/nasm/releasebuilds/"

"%s/%s/%s" % (self.version, suffix, nasm_zip_name), nasm_zip_name)

self.output.info("Downloading nasm:
"http://www.nasm.us/pub/nasm/releasebuilds"”
“/%s/%s/%s" % (self.version, suffix, nasm_zip_name))

tools.unzip(nasm_zip_name)

os.unlink(nasm_zip_name)

def package(self):
self.copy("*", src=self.nasm_folder_name, dst="bin", keep_path=True)
self.copy("'license*", dst="", src=self.nasm_folder_name, keep_path=False, ignore_
—.case=True)

def package_info(self):
self.env_info.PATH. append(os.path. join(self.package_folder, "bin"))

This recipe has nothing special: it doesn’t declare the compiler and build_type settings because it is downloading
already available binaries, and it is declaring the information for their consumers as usual in the package_info() method:

e The cpp_info is not declared, so it will take its default values: the bindirs will point to the bin folder where
the nasm. exe executable is packaged.

* In the env_info attribute, it is adding the bin folder to the PATH environment variable.

This two simple declarations are enough to reuse this tool in the scenarios we are detailing below.

10.2. Creating conan packages to install dev tools 147




Conan Documentation, Release 1.60.2

10.2.1 Using the tool packages in other recipes

Note: This section refers to the feature that is activated when using --profile:build and --profile:host in the
command-line.

These kind of tools are not usually part of the application graph itself, they are needed only to build the library, so you
should usually declare them as tool requirements, in the recipe itself or in a profile.

For example, there are many recipes that can take advantage of the nasm package we’ve seen above, like flac or libx264
that are already available in ConanCenter. Those recipes will take advantage of nasm being in the PATH to run some
assembly optimizations.

class LibX264Conan(ConanFile):
name = "libx264"

tool_requires = "nasm/2.13.02"

def build(self):
. # “nasm.exe” will be in the PATH here

def package_info(self):
self.cpp_info.libs = [...]

Build context nasm

build_requires

Host context libx264

The consumer recipe needs only to declare the corresponding build_require and Conan will take care of adding the
required paths to the corresponding environment variables:

[conan create path/to/1libx264 --profile:build=windows --profile:host=profile_host

Here we are telling Conan to create the package for the 1ibx264 for the host platform defined in the profile
profile_host file and to use the profile windows for all the tool requirements that are in the build context. In
other words: in this example we are running a Windows machine and we need a version of nasm compatible with this
machine, so we are providing a windows profile for the build context, and we are generating the library for the host
platform which is declared in the profile_host profile (read more about rool requires context).

Using two profiles forces Conan to make this distinction between recipes in the build context and those in the host
context. It has several advantages:

148 Chapter 10. Package apps and devtools


https://conan.io/center/flac?tab=recipe
https://conan.io/center/libx264?tab=recipe
https://conan.io/center/

Conan Documentation, Release 1.60.2

* Recipes for these tools are regular recipes, no need to adapt them (before 1.24 they require special settings and
some package ID customization).

* We provide a full profile for the build machine, so Conan is able to compile those tool requirements from sources
if they are not already available.

e Conan will add to the environment not only the path to the bin folder, but also it will populate the
DYLD_LIBRARY_PATH and LD_LIBRARY_PATH variables that are needed to find the shared libraries that tool
could need during runtime.

10.2.2 Using the tool packages in your system

A different scenario is when you want to use in your system the binaries generated by Conan, to achieve this objective
you can use the virtualrunenv generator to get your environment populated with the required variables.

For example: Working in Windows with the nasm package we’ve already defined:

1. Create a separate folder from your project, this folder will handle our global development environment.

$ mkdir my_cpp_environ
$ cd my_cpp_environ

2. Create a conanfile.txt file:

[requires]
nasm/2.13.02
# You can add more tools here

[generators]
virtualrunenv

L

3. Install them. Here it doesn’t matter if you use only the host profile or the build one too because the environ-
ment that is going to be populated includes only the root of the graph and its dependencies, without any tool
requirement. In any case, the profile:host needed is the one corresponding to the Windows machine where
we are running these tests.

$ conan install . --profile:host=windows [--profile:build=windows]

4. Activate the virtual environment in your shell:

$ activate_run
(my_cpp_environ)$

5. Check that the tools are in the path:

(my_cpp_environ)$ nasm --version

> NASM version 2.13.02 compiled on Dec 18 2019

6. You can deactivate the virtual environment with the deactivate.bat script

[ (my_cpp_environ)$ deactivate_run

10.2. Creating conan packages to install dev tools 149



Conan Documentation, Release 1.60.2

10.3 Tool requirements

Important: The tool requirement was formerly named “build requirement” and has been renamed to highlight that
the usage of this kind of requirement must be for “tools” exclusively, not being valid for libraries to express a “private”
require or other meanings.

There are some requirements that don’t feel natural to add to a package recipe. For example, imagine that you had a
cmake/3.4 package in Conan. Would you add it as a requirement to the z1ib package, so it will install cmake first in
order to build z1ib?

In short:

* There are requirements that are only needed when you need to build a package from sources, but if the binary
package already exists, you don’t want to install or retrieve them.

* These could be dev tools, compilers, build systems, code analyzers, testing libraries, etc.

* They can be very orthogonal to the creation of the package. It doesn’t matter whether you build zlib with CMake
3.4,3.5or 3.6. As long as the CMakeLists.txt is compatible, it will produce the same final package.

* You don’t want to add a lot of different versions (like those of CMake) to be able to use them to build the package.
You want to easily change the requirements, without needing to edit the zlib package recipe.

* Some of them might not even be taken into account when a package like zlib is created, such as cross-compiling
it to Android (in which the Android toolchain would be a tool requirement too).

Important: tool_requires are designed for packaging tools, utilities that only run at build-time, but are not part
of the final binary code. Anything that is linked into consumer packages like all type of libraries (header only, static,
shared) most likely are not tool_requires but regular requires. The only exception would be testing libraries and
frameworks, as long as the tests are not included in the final package.

To address these needs Conan implements tool_requires.

10.3.1 Declaring tool requirements
Tool requirements can be declared in profiles, like:

Listing 1: my_profile

[tool_requires]

t00l11/0. 1@user/channel

t00l12/0. 1@user/channel, tool3/0.1@user/channel
*: too0l4/0.1@user/channel

my_pkg*: tool5/0.1@user/channel

&: tool6/0.1@user/channel

&!: too0l7/0.1l@user/channel

Tool requirements are specified by a pattern:. If such pattern is not specified, it will be assumed to be *, i.e. to
apply to all packages. Packages can be declared in different lines or by a comma separated list. In this example, tooll,
to0l2, tool3 and tool4 will be used for all packages in the dependency graph (while running conan install or
conan create).

If a pattern like my_pkg* is specified, the declared tool requirements will only be applied to packages matching that
pattern: tool5 will not be applied to Zlib for example, but it will be applied to my_pkg_z1ib.

150 Chapter 10. Package apps and devtools



Conan Documentation, Release 1.60.2

The special case of a consumer conanfile (without name or version) it is impossible to match with a pattern, so it is
handled with the special character &:

* & means apply these tool requirements to the consumer conanfile
* &! means apply the tool requirements to all packages except the consumer one.

Remember that the consumer conanfile is the one inside the fest_package folder or the one referenced in the conan
install command.

Tool requirements can also be specified in a package recipe, with the tool_requires attribute and the
build_requirements () method:

class MyPkg(ConanFile):
tool_requires = "tool_a/0.2@user/testing", "tool_b/0.2@user/testing"

def build_requirements(self):
# useful for example for conditional tool_requires
# This means, if we are running on a Windows machine, require Toollin
if platform.system() == "Windows":
self.tool_requires("tool_win/0.1l@user/stable")

The above tool_a and tool_b will always be retrieved and used for building this recipe, while the tool_win one will
only be used only in Windows.

If any tool requirement defined inside build_requirements() has the same package name as the one defined in the
tool_requires attribute, the one inside the build_requirements () method will prevail.

As arule of thumb, downstream defined values always override upstream dependency values. If some tool requirement
is defined in the profile, it will overwrite the tool requirements defined in package recipes that have the same package
name.

10.3.2 Build and Host contexts

Note: This section refers to the feature that is activated when using --profile:build and --profile:host in the
command-line.

Conan v1.24 differentiates between the build context and the host context in the dependency graph (read more about
the meaning of host and build platforms in the cross building section) when the user supplies two profiles to the
command line using the --profile:build and --profile:host arguments:

* The host context is populated with the root package (the one specified in the conan install or conan create
command), all its requirements and the tool requirements forced to be in the host context.

* The build context contains the rest of tool requirements and all of them in the profiles. This category typically
includes all the dev rools like CMake, compilers, linkers,. ..

Tool requirements declared in the recipes can be forced to stay in the host context, this is needed for testing libraries
that will be linked to the generated library or other executable we want to deploy to the host platform, for example:

class MyPkg(ConanFile):
tool_requires = "nasm/2.14" # 'build' context (nasm.exe will be available)

def build_requirements(self):
self.tool_requires("protobuf/3.6.1") # 'build' context (protoc.exe will be_

(continues on next page)

10.3. Tool requirements 151




Conan Documentation, Release 1.60.2

(continued from previous page)
—available)
self.test_requires('gtest/0.1")

Note: The test_requires(), available from Conan 1.43, is equivalent to the previous self.build_requires(,

force_host_context=True) syntax. As the later is going to disappear in Conan 2.0, the former test_requires()
form is recommended.

Build context Host context
settings profile_build settings profile_host
settings_build profile_build settings_build profile_build
settings_target profile_host settings_target null
zlib
A
nasm protobuf gtest zlib
A A 4 A
build_requires requires
build_requires build_requires
my_pkg

Take into account that the same package (executable or library) can appear two times in the graph, in the host and in
the build context, with different package IDs. Conan will propagate the proper information to the consumers:

¢ Tool requirements in the host context will propagate like any other requirement:
— cpp_info: all information will be available in the deps_cpp_info["xxx"] object.
— env_info: won’t be propagated.
— user_info: will be available using the deps_user_info["xxx"] object.

* Tool requirements in the build context will propagate all the env_info and Conan will also populate the en-
vironment variables DYLD_LIBRARY_PATH, LD_LIBRARY_PATH and PATH with the corresponding information
from the cpp_info object. All this information will be available in the deps_env_info object.

Custom information declared in the user_info attribute will be available in the user_info_build["xxx"]
object in the consumer conanfile.

Important: If no --profile:build is provided, all tool requirements will belong to the one and only context and
they will share their dependencies with the libraries we are building. In this scenario all the tool requirements propagate
user_info, cpp_info and env_info to the consumer’s deps_user_info, deps_cpp_info and deps_env_info.

152 Chapter 10. Package apps and devtools



Conan Documentation, Release 1.60.2

10.3.3 Properties of tool requirements

The behavior of tool_requires is the same irrespective of whether they are defined in the profile or in the package
recipe.

They will only be retrieved and installed if there is some package that has to be built from sources and matches
the declared pattern. Otherwise, they will not even be checked for existence.

Options and environment variables declared in the profile as well as in the command line will affect the tool
requirements for packages. In that way, you can define, for example, for the cmake/3.16.3 package which
CMake version will be installed.

Tool requirements will be activated for matching packages, see the section above about ool requires context to
know the information that this package will propagate to its consumers.

Tool requirements can also be transitive. They can declare their own requirements, both normal requirements and
their own build requirements. Normal logic for dependency graph resolution applies, such as conflict resolution
and dependency overriding.

Each matching pattern will produce a different dependency graph of tool requirements. These graphs are cached
so that they are only computed once. If a tool requirement applies to different packages with the same configu-
ration it will only be installed once (same behavior as normal dependencies - once they are cached locally, there
is no need to retrieve or build them again).

Tool requirements do not affect the binary package ID. If using a different tool requirement produces a different
binary, you should consider adding an option or a setting to model that (if not already modeled).

Can also use version-ranges, like Tool/[>0.3]@user/channel.

Tool requirements are not listed in conan info nor are represented in the graph (with conan info --graph).

10.3.4 Example: testing framework and build tool

One example of a tool requirement is a testing framework implemented as a library, another good example is a build
tool used in the compile process. Let’s call them mytest_framework and cmake_turbo, and imagine we already
have a package available for both of them.

Tool requirements can be checked for existence (whether they’ve been applied) in the recipes, which can be useful for
conditional logic in the recipes. In this example, we could have one recipe with the following build () method:

def build_requirements(self):

def

if self.options.enable_testing:
self.tool_requires("mytest_framework/0.l@user/channel"”, force_host_context=True)

build(self):

# Use our own 'cmake_turbo' if it is available

use_cmake_turbo = "cmake_turbo" in self.deps_env_info.deps
cmake_executable = "cmake_turbo" if use_cmake_turbo else None

cmake = CMake(self, cmake_program=cmake_executable)
cmake.configure(defs={"ENABLE_TESTING": self.options.enable_testing})
cmake.build ()
if enable_testing:

cmake.test()

And the package CMakeLists.txt:

10.3. Tool requirements 153




Conan Documentation, Release 1.60.2

project(PackageTest CXX)
cmake_minimum_required(VERSION 2.8.12)

include (${CMAKE_BINARY_DIR}/conanbuildinfo.cmake)
conan_basic_setup()
if(ENABLE_TESTING)
add_executable(example test.cpp)
target_link_libraries(example ${CONAN_LIBS})

enable_testing()
add_test (NAME example
WORKING_DIRECTORY ${CMAKE_BINARY_DIR}/bin
COMMAND example)
endif()

This package recipe won’t retrieve the cmake_turbo package for normal installation:

[$ conan install .

But if the following profile is defined:

Listing 2: use_cmake_turbo_profile

[tool_requires]
cmake_turbo/0. 1l@user/channel

then the install command will retrieve the cmake_turbo and use it:

[$ conan install . --profile=use_cmake_turbo_profile

]

Although the previous line would work it is preferred to use the feature from Conan v1.24 and provide two profiles

to the command line, that way the tool requirements in the build context won’t interfere with the host graph if they
share common requirements (see section about dev tools). It can also be needed if cross compiling (see section about

cross compiling).

[$ conan install . --profile:host=use_cmake_turbo_profile --profile:build=build_machine

10.3.5 Making tool_requires affect the consumers package-ID

that will not be fixed as this is not recommended production code.

Warning: This subsection should be considered a workaround, not a feature, and it might have other side effects,

As discussed above, the tool_requires do not affect at all the package ID. As they will not be present at all when the
package_id is computed, it cannot be part of it. It is possible that this might change in the future in Conan 2.0, but at
the moment it is not. In the meantime, there is a possible workaround that might be used if this is very needed: using

python_requires to point to the same tool_requires package. Something like:

from conan import ConanFile

class Pkg(ConanFile):

(continues on next page)

154 Chapter 10. Package apps and devtools



Conan Documentation, Release 1.60.2

(continued from previous page)

python_requires ="tool/[>=0.0]"
tool_requires ="tool/[>=0.0]"

By using this mechanism, tool dependency will always be used (the recipe will be fetched from servers), and the
version of tool will be used to compute the package_id following the default_python_requires_id_mode in
conan.conf, or the specific self.info.python_requires.xxxx_mode() in recipes.

10.3.6 Testing tool_requires

Important: This feature is still under development, while it is recommended and usable and we will try not to break
them in future releases, some breaking changes might still happen if necessary to prepare for the Conan 2.0 release.

Available since: 1.44.0

From Conan 1.44, it is possible to test tool_requires with the test_package functionality. In the test_package/
conanfile.py, specify the test_type = "explicit" and use the variable self.tested_reference_str in
build_requirements() method to explicitly require the reference as a tool_requires or test_requires:

from conan import ConanFile

class Pkg(ConanFile):
test_type = "explicit"

def build_requirements(self):
self.test_requires(self.tested_reference_str)

If for some reason, it is necessary to test the same package both as a regular require and a tool_require, then it is
possible to specify:

from conan import ConanFile

class Pkg(ConanFile):
test_type = "explicit"

def requirements(self):
self.requires(self.tested_reference_str)

def build_requirements(self):
self.test_requires(self.tested_reference_str)

10.3. Tool requirements 155



https://github.com/conan-io/conan/releases/tag/1.44.0

Conan Documentation, Release 1.60.2

156 Chapter 10. Package apps and devtools



CHAPTER
ELEVEN

VERSIONING

11.1 Introduction to versioning

11.1.1 Versioning approaches

Fixed versions

This is the standard, direct way to specify dependencies versions, with their exact version, for example in a conanfile.py
recipe:

[requires = "zlib/1.2.11" ]

When doing a conan install, it will try to fetch from the remotes exactly that /.2.11 version.

This method is nicely explicit and deterministic, and is probably the most used one. As a possible disadvantage, it
requires the consumers to explicitly modify the recipes to use updated versions, which could be tedious or difficult to
scale for large projects with many dependencies, in which those dependencies are frequently modified, and it is desired
to move the whole project forward to those updated dependencies.

To mitigate that issue, especially while developing the packages, you can use fixed versions with package revisions (see
below) to resolve automatically the latest revision for a given fixed version.

Version ranges

A conanfile can specify a range of valid versions that could be consumed, using brackets:

[requires = "pkg/[>1.0 <1.8]@user/stable" ]

When a conan install is executed, it will check in the local cache first and if not in the remotes what pkg versions
are available and will select the latest one that satisfies the defined range.

By default, it is less deterministic, one conan install can resolve to pkg/1.1 and then pkg/1.2 is published, and
anew conan install (by users, or CI), will automatically pick the newer 1.2 version, with different results. On the
other hand it doesn’t require changes to consumer recipes to upgrade to use new versions of dependencies.

It is also true that the semver definition that comes from other programming languages doesn’t fit that well to C and
C++ packages, because of different reasons, because of open source libraries that don’t closely follow the semver
specification, but also because of the ABI compatibility issues and compilation model that is so characteristic of C and
C++ binaries.

Read more about it in Version ranges section.

157



Conan Documentation, Release 1.60.2

Package alias

It is possible to define a “proxy” package that references another one, using the syntax:

from conans import ConanFile

class AliasConanfile(ConanFile):
alias = "pkg/0.1l@user/testing"

This package creation can be automatically created with the conan alias command, that can for example create a pkg/
latest@user/testing alias that will be pointing to that pkg/0 . 1@user/testing. Consumers can define requires
= "pkg/latest@user/testing" and when the graph is evaluated, it will be directly replaced by the pkg/®.1 one.
That is, the pkg/latest package will not appear in the dependency graph at all.

This is also less deterministic, and puts the control on the package creator side, instead of the consumer (version ranges
are controlled by the consumer). Package creators can control which real versions will their consumers be using. This
is probably not the recommended way for normal dependencies versions management.

Note: From Conan 1.39, a new syntax for requiring alias packages has been introduced, to make explicit its usage and
solve several issues with alias:

from conan import ConanFile

class Pkg(ConanFile):
# Previous syntax, implicit, nothing in the reference tells it is an alias
# requires = "pkg/latest@user/testing"
# New experimental syntax, explicit:
requires = "pkg/(latest)@user/testing"

The new requires = "pkg/(latest)@user/testing" comes from https://github.com/conan-io/tribe/pull/25, and
is introduced in Conan 1.39 to allow getting feedback, stabilizing it, previously to make it the default in Conan 2.0 while
removing the previous one.

Tracking host versions

New since Conan 1.60.

Warning: This is an experimental feature, added as a backport from Conan 2.0, subject to breaking changes in
future releases.

When there are packages that are required both in the “host” context and in the “build” context with tool_requires,
sometimes it is necessary to align the versions of both. This is possible with the <host_version> version specification:

from conan import ConanFile

class ProtoBuf(ConanFile):
name = "pkg"
version = "0.1"

def requirements(self):
self.requires("protobuf/1.0")

(continues on next page)

158 Chapter 11. Versioning



https://github.com/conan-io/tribe/pull/25

Conan Documentation, Release 1.60.2

(continued from previous page)

def build_requirements(self):
self.tool_requires("protobuf/<host_version>")

The <host_version> will take the version from the regular requires, so in this case, this recipe will tool_requires
protobuf/1.0. Note this can be useful if for some reason the “host” requirement changes, like when it is overridden
from downstream, or if it defined a version range and resolved to another version.

Package revisions

Revisions are automatic internal versions to both recipes and binary packages. When revisions are enabled, when a
recipe changes and it is used to create a package, a new recipe revision is generated, with the hash of the contents of
the recipe. The revisioned reference of the recipe is:

pkg/version@user/channel#recipe_revisionl
# after the change of the recipe
pkg/version@user/channel#recipe_revision2

A conanfile can reference a specific revision of its dependencies, but in the general case that they are not specified, it
will fetch the latest revision available in the remote server:

[requires]

# Use the latest revision of pkgl
pkgl/version@user/channel

# use the specific revision RREV1 of pkg?2
pkg2/version@user/channel#RREV1

Each binary package will also be revisioned. The good practice is to build each binary just once. But if for some reason,
like a change in the environment, a new build of exactly the same recipe with the same code (and the same recipe
revision) is fired again, a new package revision can be created. The package revision is the hash of the contents of the
package (headers, libraries. .. ), so unless deterministic builds are achieved, new package revisions will be generated.

In general revisions are not intended to be defined explicitly in conanfiles, although they can for specific purposes like
debugging.

Read more about Package Revisions

11.1.2 Version and configuration conflicts

When two different branches of the same dependency graph require the same package, this is known as “diamonds” in
the graph. If the two branches of a diamond require the same package but different versions, this is known as a conflict
(a version conflict).

Lets say that we are building an executable in pkgd/1.0, that depends on pkgb/1.0 and pkgc/1.0, which contain static
libraries. In turn, pkghb/1.0 depends on pkga/1.0 and finally pkgc/1.0 depends on pkga/2.0, which is also another static
library.

The executable in pkgd/1.0, cannot link with 2 different versions of the same static library in pkge, and the dependency
resolution algorithm raises an error to let the user decide which one.

11.1. Introduction to versioning 159



Conan Documentation, Release 1.60.2

PkgA/1.0 PkgA/1.0
(static lib) (shared lib)
A T
PkgB/1.0 PkgC/1.0

PkgA/1.0 PKgA/1.0 PkgA/2.0
/\ /) )
PkgB/1.0 PkgC/1.0 PkgB/1.0 PkgC/1.0
PkgD/1.0 PkgD/1.0

“Diamond” in the dependency graph.

The same situation happens if the different packages require different configurations of the same upstream package,
even if the same version is used. In the example above, both PkgB and PkgC can be requiring the same version
pkga/1.0, but one of them will try to use it as a static library and the other one will try to use it as shared library. The

Error: Version conflict.

dependency resolution algorithm will also raise an error.

11.1.3 Dependencies overriding

The downstream consumer packages always have higher priority, so the versions they request, will be overridden up-
stream as the dependency graph is built, re-defining the possible requires that the packages could have. For example,
pkgb/1.0 could define in its recipe a dependency to pkga/1.0. But if a downstream consumer defines a requirement to

pkga/2.0, then that version will be used in the upstream graph:

~._

PkgD/1.0

Error: Configuration conflict

160

Chapter 11. Versioning




Conan Documentation, Release 1.60.2

PkgA/1.0 PkgA/2.0

PkgB/1.0
requires = PkgA/1.0

PkgD/1.0
requires = PkgA/2.0

PkgD/1.0 defines a requirement to PkgA/2.0,
overriding PkB definition pointing to PkgA/1.0

This is what enables the users to have control. Even when a package recipe upstream defines an older version, the
downstream consumers can force to use an updated version. Note that this is not a diamond structure in the graph,
so it is not a conflict by default. This behavior can be also restricted defining the CONAN_ERROR_ON_OVERRIDE
environment variable to raise an error when these overrides happen, and then the user can go and explicitly modify the
upstream pkgb/1.0 recipe to match the version of PkgA and avoid the override.

In some scenarios, the downstream consumer pkgd/1.0 might not want to force a dependency on pkga. There are
several possibilities, for example that PkgA is a conditional requirement that only happens in some operating systems.
If pkgd defines a normal requirement to pkga, then, it will be introducing that edge in the graph, forcing pkga to be
used always, in all operating systems. For this purpose the override qualifier can be defined in requirement, see
requirements().

11.1. Introduction to versioning 161



Conan Documentation, Release 1.60.2

11.1.4 Versioning and binary compatibility
It is important to note and this point that versioning approaches and strategies should also be consistent with the binary
management.

By default, Conan assumes semver compatibility, so it will not require to build a new binary for a package when its
dependencies change their minor or patch versions. This might not be enough for C or C++ libraries which version-
ing scheme doesn’t strictly follow semver. It is strongly suggested to read more about this in Defining Package ABI
Compatibility

11.2 Version ranges

Version range expressions are supported, both in conanfile.txt and in conanfile.py requirements.

The syntax uses brackets. The square brackets are the way to inform Conan that is a version range. Otherwise, versions
are plain strings. They can be whatever you want them to be (up to limitations of length and allowed characters).

class HelloConan(ConanFile):
requires = "pkg/[>1.0 <1.8]@user/stable"

So when specifying pkg/[expression]@user/stable, it means that expression will be evaluated as a version
range. Otherwise, it will be understood as plain text, so requires = "pkg/version@user/stable" always means
to use the version version literally.

There are some packages that do not follow semver. A popular one would be the OpenSSL package with versions as
1.0.2n. They cannot be used with version-ranges. To require such packages you always have to use explicit versions
(without brackets).

The process to manage plain versions vs version-ranges is also different. The second one requires a “search” in the
remote, which is orders of magnitude slower than direct retrieval of the reference (plain versions). Take it into account
if you plan to use it for very large projects.

Expressions are those defined and implemented by https://pypi.org/project/node-semver/. Accepted expressions would
be:

[>1.1 <2.1] # In such range

[2.8] # equivalent to =2.8

[~3.1.5] # compatible (patch version), according to semver (see https:/
—/jubianchi.github.io/semver-check/#/~3.1.5/3.2)

[~3.1.5] # compatible (minor version), according to semver (see https:/
—/jubianchi.github.io/semver-check/#/43.1.5/3.2)

[>1.1 || 0.8] # conditions can be OR'ed

[1.2.7 || >=1.2.9 <2.0.0] # This range would match the versions 1.2.7, 1.2.9, and 1.4.6,
< but not the versions 1.2.8 or 2.0.0.

There are two options for the version range:

* loose=True|False (default True): When using loose=False only valid Semantic Versioning strings are
accepted.

e include_prerelease=True|False (default False): If set to include_prerelease=True, Conan will in-
clude prerelease versions in the search range. Take into account that prerelease versions have lower precedence
than the associated normal one (e.g.: 1.0.0 > 1.0.0-beta).

162 Chapter 11. Versioning



https://pypi.org/project/node-semver/

Conan Documentation, Release 1.60.2

[>1.1 <2.1, include_prerelease=True] # Would e.g. accept "2.0.0-pre.1" as.
—match
[~1.2.3, loose=False] # Would only accept correct Semantic.

—Versioning strings.

# E.g. version "1.2.3.4" would not be.
—,accepted.
[~1.2.3, loose=False, include_prerelease=True] # Both options can be used for the same.
—,version range.

Version range expressions are evaluated at the time of building the dependency graph, from downstream to upstream
dependencies. No joint-compatibility of the full graph is computed. Instead, version ranges are evaluated when depen-
dencies are first retrieved.

This means, that if a package A depends on another package B (A->B), and A has a requirement for C/[>1.2 <1.8],
this requirement is evaluated first and it can lead to get the version C/1.7. If package B has the requirement to C/[>1.
3 <1.6], this one will be overwritten by the downstream one, it will output a version incompatibility error. But the
“joint” compatibility of the graph will not be obtained. Downstream packages or consumer projects can impose their
own requirements to comply with upstream constraints. In this case a override dependency to C/[>1.3 <1.6] canbe
easily defined in the downstream package or project.

The order of search for matching versions is as follows:

* First, the local conan storage is searched for matching versions, unless the --update flag is provided to conan
install.

* If a matching version is found, it is used in the dependency graph as a solution.

* If no matching version is locally found, it starts to search in the remotes, in order. If some remote is specified
with -r=remote, then only that remote will be used.

« If the -—update parameter is used, then the existing packages in the local conan cache will not be used, and the
same search of the previous steps is carried out in the remotes. If new matching versions are found, they will be
retrieved, so subsequent calls to install will find them locally and use them.

Note: Version ranges are not used in generating package_id those are always determined by the resolved graph.

11.3 Package Revisions

The goal of the revisions feature is to achieve package immutability, the packages in a server are never overwritten.

Note: Revisions achieve immutability. For achieving reproducible builds and reproducible dependencies, lockfiles
are used. Lockfiles can capture an exact state of a dependency graph, down to exact versions and revisions, and use it
later to force their usage, even if new versions or revisions were uploaded to the servers.

Learn more about lockfiles here.

11.3. Package Revisions 163




Conan Documentation, Release 1.60.2

11.3.1 How it works

In the client

* When a recipe is exported, Conan calculates a unique ID (revision). For every change, a new recipe revision
(RREV) will be calculated. By default it will use the checksum hash of the recipe manifest.

Nevertheless, the recipe creator can explicitly declare the revision mode, it can be either scm (uses version control
system or raises) or hash (use manifest hash).

* When a package is created (by running conan create or conan export-pkg) a new package revision (PREV) will
be calculated always using the hash of the package contents. The packages and their revisions (PREVs) belongs
to a concrete recipe revision (RREV). The same package ID (for example for Linux/GCC5/Debug), can have
multiple revisions (PREVs) that belong to a concrete RREV.

If a client requests a reference like 1ib/1.0@conan/stable, Conan will automatically retrieve the latest revision in
case the local cache doesn’t contain any revisions already. If a client needs to update an existing revision, they have
to ask for updates explicitly with -u, --update argument to conan install command. In the client cache there is
only one revision installed simultaneously.

The revisions can be pinned when you write a reference (in the recipe requires, a reference in a conan install
command,...) but if you don’t specify a revision, the server will retrieve the latest revision.

If you specify a pinned revision in your references, and that revision is not the one present in the Co-
nan cache, and --update is not provided, it will fail with an error. This behavior can be change with
core:allow_explicit_revision_update=True [conf] configuration. It can result in later errors (that won’t be
possible to fix, use it at your own risk), for example as the cache can only host 1 revision, it might happen that multiple
pinned references are competing for it, and kicking each others revisions out of the cache while the dependency graph
is computed.

You can specify the references in the following formats:

Reference Meaning

lib/1.0@conan/stable Latest RREV for 1ib/1.0@conan/stable
lib/1.0@conan/stable#RREV Specific RREV for 1ib/1.0@conan/stable
lib/1.0@conan/stable#RREV:PACKAGE_ID A binary package belonging to the specific RREV
lib/1.0@conan/ A binary package revision PREV belonging to the specific
stable#RREV:PACKAGE_ID#PREV RREV

In the server

By using a new folder layout and protocol it is able to store multiple revisions, both for recipes and binary packages.

11.3.2 How to activate the revisions

You have to explicitly activate the feature by either:
* Adding revisions_enabled=1 in the [general] section of your conan.conf file (preferred)
¢ Setting the CONAN_REVISIONS_ENABLED=1 environment variable.

Take into account that it changes the default Conan behavior. e.g:

* A client with revisions enabled will only find binary packages that belong to the installed recipe revision. For
example, If you create a recipe and run conan create . user/channel and then you modify the recipe and
export it (conan export . user/channel), the binary package generated in the conan create command
doesn’t belong to the new exported recipe. So it won’t be located unless the previous recipe is recovered.

164 Chapter 11. Versioning



Conan Documentation, Release 1.60.2

* If you generate and upload N binary packages for a recipe with a given revision, then if you modify the recipe,
and thus the recipe revision, you need to build and upload N new binaries matching that new recipe revision.

11.3.3 GIT and Line Endings on Windows

Warning: Problem

Git will (by default) checkout files in Windows systems using CRLF line endings, effectively producing different
files. As files are different, the Conan revisions will be different from the revisions computed in other platforms
such as Linux, resulting in missing the respective binaries in the other revision.

Solution

It is necessary to instruct Git to do the checkout with the same line endings. This can be done several ways, for example,
by adding a .gitattributes file:

[auto]
crlf = false

11.3.4 Server support

e conan_server >=1.13.
e Artifactory >=6.9.

¢ ConanCenter.

11.4 Lockfiles

Warning: This is an experimental feature subject to breaking changes in future releases.

Lockfiles are files that store the information of a dependency graph, including the exact versions, revisions, options,
and configuration of that dependency graph. These files allow for later achieving reproducible results, and installing
or using the exact same dependencies even when the requirements are not fully reproducible, for example when using
version ranges or using package revisions.

11.4.1 Introduction

Warning: This is an experimental feature subject to breaking changes in future releases.

Let’s introduce lockfiles by example, with 2 packages, package pkgb that depends on package pkga.

Note: The code used in this section, including a build.py script to reproduce it, is in the examples repository:
https://github.com/conan-io/examples. You can go step by step reproducing this example while reading the below
documentation.

11.4. Lockfiles 165


https://github.com/conan-io/examples

Conan Documentation, Release 1.60.2

$ git clone https://github.com/conan-io/examples.git
$ cd features/lockfiles/intro
# $ python build.py only to run the full example, but better go step by step

Locking dependencies

This example uses full_version_mode, that is, if a package changes any part of its version, its consumers will need
to build a new binary because a new package_id will be computed. This example will use version ranges, and it is
not necessary to have revisions enabled. It also does not require a server, everything can be reproduced locally.

[$ conan config set general.default_package_id_mode=full_version_mode ]

Let’s start by creating from the recipe and source in the pkga folder, a first pkg/0. 1@user/testing package in our
local cache:

[$ conan create pkga pkga/0.l@user/testing }

Now we want to start developing and testing the code for pkgb, but we want to create a “snapshot” of the dependency
graph, to isolate our development from possible changes (note that the recipe in pkgb/conanfile.py contains a require
like requires = "pkga/[>0.0]@user/testing").

$ cd pkgb
$ conan lock create conanfile.py --user=user --channel=testing --lockfile-out=locks/pkgb_
—deps.lock

This will create a pkgb_deps.lock file in the locks folder. Note that we have passed the user and channel of the future
package that we will create as --user=user --channel=testing.

Let’s have a look at the lockfile:

{
"graph_lock": {
"nodes": {
"o {
"ref": "pkgb/0.l@Quser/testing",
"options": "shared=False",
"requires": ["1"],
"path": "..\\conanfile.py",
"context": "host"
B
"
"ref": "pkga/0.l@user/testing",
"options": "",
"package_id": "4024617540c4f240a6a5e8911b0de9ef38allaz2",
"prev": "0",
"context": "host"
}
Fo
"revisions_enabled": false
1,
"version": "0.4",

"profile_host": "[settings]\narch=x86_64\narch_build=x86_64\nbuild_type=Release\

(continues on next page)

166 Chapter 11. Versioning



Conan Documentation, Release 1.60.2

(continued from previous page)
—ncompiler=Visual Studio\ncompiler.runtime=MD\ncompiler.version=15\nos=Windows\nos_
—build=Windows\n[options]\n[tool_requires]\n[env]\n"

}

We can see the pkga/0. l@user/testing dependency in the lockfile, together with its package_id. This depen-
dency is fully locked. The pkgb/®. 1@user/testing doesn’t have a package_id yet, because so far it is just a local
conanfile.py as a consumer, not a package. But the user/testing user and channel are already defined.

It is important to note that the pkgb_deps.lock lockfile contains the current profile for the current configuration.

At this moment we have captured the dependency graph for pkgb. Now, it would be possible that a new version of
pkga is created:

$ cd ..
# The recipe generates different package code depending on the version, automatically
$ conan create pkga pkga/0.2@user/testing

If now we install and build our code in pkgb we would get:

$ mkdir pkgb/build

$ cd pkgb/build

$ conan install ..

> . pkga/0.2@user/testing from local cache - Cache
# Example for VS, use your compiler here

$ cmake ../src -G "Visual Studio 15 Win64"
$ cmake --build . --config Release

$ ./bin/greet

HelloA 0.2 Release

HelloB Release!

Greetings Release!

But as explained above, the purpose of the lockfile is to capture the dependencies and use them later. Let’s pass the
lockfile as an argument to guarantee the usage of the locked pkga/0.1l@user/testing dependency:

$ conan install .. --lockfile=../locks/pkgb_deps.lock
> ... pkga/0.l@user/testing from local cache - Cache
$ cmake ../src -G "Visual Studio 15 Win64"

$ cmake --build . --config Release

$ ./bin/greet
HelloA 0.1 Release
HelloB Release!
Greetings Release!

That’s it. We managed to depend on pkga/0.1l@user/testing instead of the pkga/®.2@user/testing although
the later satisfies the version range and is available in the cache. Using the same dependency was possible because we
used the information stored in the lockfile.

11.4. Lockfiles 167




Conan Documentation, Release 1.60.2

Immutability

A core concept of lockfiles is their immutability and the integrity of its data:

Important: The information stored in a lockfile cannot be changed. Any attempt to modify locked data will result in
an error.

For example, if now we try to do a conan install that also builds pkga from source:

$ conan install .. --lockfile=../locks/pkgb_deps.lock --build=pkga
ERROR: Cannot build 'pkga/0.l@user/testing' because it is already locked in the input.
—lockfile

It is an error, because the pkga/0. 1@user/testing dependency was fully locked. When the lockfile was created, the
pkga/0. 1l@user/testing was found, including a binary, and that information was stored. Every time this lockfile is
used, it assumes this package and binary exist and it will try to get them, but it will never allow to re-build, because
that can violate the integrity of the lockfile. For example, if we were using package_revision_mode, a new binary
of pkga would produce new package-ids of all its consumers, that will not match the package-ids stored in the lockfile.

It is possible though to control what is being locked with the --build argument provided to the conan lock create
command.

The same principle applies if we try to create a package for pkgb and it tries to alter the user and channel user/testing
that were provided at the time of the conan lock create command used above.

$ cd ..
$ conan create . user/stable --lockfile=locks/pkgb_deps.locked
ERROR: Attempt to modify locked pkgb/0®.l@user/testing to pkgb/0.1l@user/stable

Again, it is important to keep the integrity. Package recipes can have conditional or parameterized dependencies, based
on user and channel for example. If we try to create the pkgb package with different user and channel, it could result in
a different dependency graph, totally incompatible with the one captured in the lockfile. If pkgb/0. 1l@user/testing
was stored in the lockfile, any command using this lockfile must respect and keep it without changes.

Note: A package in alockfile is fully locked if it contains a prev (package revision) field defined. Fully locked packages
cannot be built from sources. Partially locked packages do not contain a prev defined. They lock the reference and the
package-id, and they can be built from sources.

Reproducibility

That doesn’t mean that a lockfile cannot evolve at all. Using the --lockfile argument, we are able to create pkgb/0.
l@user/testing guaranteeing it is being created depending on pkga/0.1@user/testing. Additionally, if we use
the --lockfile-out argument, we can obtain an updated version of the lockfile:

$ conan create . user/testing --lockfile=locks/pkgb_deps.lock --lockfile-out=locks/pkgb.
—lock

And if we inspect the new locks/pkgb.lock file:

{

o

(continues on next page)

168 Chapter 11. Versioning



Conan Documentation, Release 1.60.2

(continued from previous page)

"ref": "pkgb/0.l@user/testing",

"options": "shared=False",
"package_id": "2418b211603cafa3858d9dd1fc1108d54a4cab99",
llprevll: Il@ll’

"modified": true,
"requires": ["1"],
"context": "host"

}

Note that some fields of the lockfile are now completed, as the modified flag, that indicates that pkgb was built in the
conan create command. That information can be useful in the CI environment to know which packages were built by
different jobs. Those modified flags can be reset using the conan lock clean-modified. Also, it can be appreciated
in locks/pkgb.lock that now pkgb/0.1l@user/testing is fully locked, as a package (not a local conanfile.py), and
contains a package_id. So if we try to use this new file for creating the package again, it will error, as a package that
is fully locked cannot be rebuilt:

$ conan create . user/testing --lockfile=locks/pkgb.lock
ERROR: Attempt to modify locked pkgb/0.l@user/testing to pkgb/0.l@user/testing

But we can reproduce the same set of dependencies and the creation of pkgb, using the pkgb_deps.lock lockfile:

[$ conan create . user/testing --lockfile=locks/pkgb_deps.lock # OK J

The pkgb.lock can be used later in time to install the pkgb application (the pkgb conanfile.py contains a deploy ()
method for convenience for this example), and get the same package and dependencies:

$ cd ..

$ mkdir consume

$ cd consume

$ conan install pkgb/0.l@user/testing --lockfile=../pkgb/locks/pkgb.lock
$ ./bin/greet

HelloA 0.1 Release

HelloB Release!

Greetings Release!

As long as we have the pkgb.lock lockfile, we will be able to robustly reproduce this install, even if the packages were
uploaded to a server, if there are new versions that satisfy the version ranges, etc.

Important: All the examples and documentation of this section is done with version ranges and revisions disabled.
Lockfiles also work and can lock both recipe and package revisions, with the same behavior as version-ranges. All is
necessary is to enable revisions. The only current limitation is that the local cache cannot store more than one revision
at a time, but that is a limitation of the cache and unrelated to lockfiles.

11.4. Lockfiles 169



Conan Documentation, Release 1.60.2

11.4.2 Multiple configurations

Warning: This is an experimental feature subject to breaking changes in future releases.

In the previous section we managed just 1 configuration, for the default profile. In many applications, packages need
to be built with several different configurations, typically managed by different profile files.

Note: This section continues with the previous example with the Introduction. The code used in this section, including
a build.py script to reproduce it, is in the examples repository: https://github.com/conan-io/examples. You can go step
by step reproducing this example while reading the below documentation.

$ git clone https://github.com/conan-io/examples.git
$ cd features/lockfiles/intro
# $ python build.py only to run the full example, but better go step by step

Lets start in the features/lockfiles/intro of the examples repository, remove the previous packages, and create both
release and debug pkga packages:

$ conan remove "pkg*" -f
$ conan create pkga pkga/0.l@user/testing
$ conan create pkga pkga/0.l@user/testing -s build_type=Debug

Now, we could (don’t do it) create 2 different lockfiles, one for each configuration:

# DO NOT type these commands, we'll do it better below

$ cd pkgb

$ conan lock create conanfile.py --user=user --channel=testing --lockfile-out=locks/pkgb_
—release.lock

$ conan lock create conanfile.py --user=user --channel=testing --lockfile-out=locks/pkgb_
—debug.lock -s build_type=Debug

Important: The dependency graph is different for each different configuration/profile. Not only the package-ids, but
also because of conditional requirements, the dependencies can be different. Then, it is necessary to create a lockfile
for every different configuration/profile.

But, what if a new pkga/0.2@user/testing version was created in the time between both commands? Although this
is unlikely to happen in this example, because everything is local. However, it could happen that pkga was in a server
and the CI uploads a new pkga/0.2@user/testing version while we are running the above commands.

Base lockfiles

Conan proposes a “base” lockfile, with the --base argument, that will capture only the versions and topology of the
graph, but not the package-ids:

$ cd pkgb
$ conan lock create conanfile.py --user=user --channel=testing --lockfile-out=1locks/pkgb_
—base.lock --base

Let’s inspect the locks/pkgb_base.lock lockfile:

170 Chapter 11. Versioning



https://github.com/conan-io/examples

Conan Documentation, Release 1.60.2

{
"graph_lock": {
"nodes": {
"o": {
"ref": "pkgb/0.l@Quser/testing",
"requires": ["1"],
"path": "..\\conanfile.py",
"context": "host"
Fg
" g
"ref": "pkga/0.l@Quser/testing",
"context": "host"
}
Bo
"revisions_enabled": false
Fo
"version": "0.4"
}

This lockfile is different to the ones in the previous section. It does not store the profile, and it does not capture the
package-ids or the options of the nodes. It captures the topology of the graph, and the package references and versions.

At this point, the new pkga/0.2@user/testing version packages could be created:

$ cd ..

# The recipe generates different package code depending on the version, automatically
$ conan create pkga pkga/®.2@user/testing

$ conan create pkga pkga/0.2@user/testing -s build_type=Debug

Using the “base” locks/pkgb_base.lock lockfile, now we can obtain a new lockfile for both debug and release configu-
rations, and it is guaranteed that both will use the pkga/0. 1@Quser/testing dependency, and not the new one:

$ cd pkgb

$ conan lock create conanfile.py --user=user --channel=testing --lockfile=locks/pkgb_
—base.lock --lockfile-out=1ocks/pkgb_deps_debug.lock -s build_type=Debug

$ conan lock create conanfile.py --user=user --channel=testing --lockfile=locks/pkgb_
—.base.lock --lockfile-out=locks/pkgb_deps_release.lock

Now, we will have 2 lockfiles, locks/pkgb_deps_debug.lock and locks/pkgb_deps_release.lock. Each one will lock
different profiles and different package-id of pkga/0.1l@user/testing.

Note: In Conan 1.X, if you are generating lockfiles with separate build and host profiles, your base lockfiles must also
use separate build and host profiles. For example, here we are generating a base lockfile that will be used to generate
lockfiles for a Linux and Windows build:

# The build and host profiles you choose for the base lockfile should

# include all dependencies needed by all lockfiles you will generate

# from the base lockfile.

$ conan lock create conanfile.py -pr:b release -pr:h debug --lockfile-out=base.lock --
—base

# Use the base lockfile to generate lockfiles for a Linux and Windows
# build.

(continues on next page)

11.4. Lockfiles 171




Conan Documentation, Release 1.60.2

(continued from previous page)
$ conan lock create conanfile.py -pr:b linux-rel -pr:h linux-dbg --lockfile=base.lock --
—.lockfile-out=1inux.lock
$ conan lock create conanfile.py -pr:b windows-rel -pr:h windows-dbg --lockfile=base.
—lock --lockfile-out=windows.lock

For more information, please see GitHub issue #9446.

Locked configuration

The lockfiles store the effective configuration, settings, options, resulting from the used profiles and command line
arguments. That configuration arguments can be passed to the conan lock create command, but not when using
lockfiles. For example:

$ mkdir build && cd build
$ conan install .. --lockfile=../locks/pkgb_deps_debug.lock -s build_type=Debug
ERROR: Cannot use profile, settings, options or env 'host' when using lockfile

results in an error, because the locks/pkgb_deps_debug.lock already stores the settings.build_type and passing it
in the command line could only result in inconsistencies and errors.

Important: Lockfiles store the full effective profile configuration. It is not possible to pass configuration, settings,
options or profile arguments when using lockfiles (only when creating the lockfiles)

With the two captured lockfiles, now we can locally build and run our pkgb application for both configurations, guar-
anteeing the dependency to pkga/0.1l@user/testing:

$ conan install .. --lockfile=../locks/pkgb_deps_release.lock
$ cmake ../src -G "Visual Studio 15 Win64"
$ cmake --build . --config Release

$ ./bin/greet

HelloA 0.1 Release

HelloB Release!

Greetings Release!

$ conan install .. --lockfile=../locks/pkgb_deps_debug.lock
$ cmake --build . --config Debug

$ ./bin/greet

HelloA 0.1 Debug

HelloB Debug!

Greetings Debug!

We can create pkgb package again for both configurations:

$ cd ..

$ conan create . user/testing --lockfile=locks/pkgb_deps_release.lock --lockfile-
—out=locks/pkgb_release.lock

$ conan create . user/testing --lockfile=locks/pkgb_deps_debug.lock --lockfile-out=locks/
—pkgb_debug. lock

And we could still use the lockfiles later in time to install the pkgb package with the same dependencies and configu-
ration that were used to create that package:

172 Chapter 11. Versioning



https://github.com/conan-io/conan/issues/9446#issuecomment-904846681

Conan Documentation, Release 1.60.2

$ cd ..

$ mkdir consume

$ cd consume

$ conan install pkgb/0.1l@user/testing --lockfile=../pkgb/locks/pkgb_release.lock
$ ./bin/greet

HelloA 0.1 Release

HelloB Release!

Greetings Release!

$ conan install pkgb/0.1l@user/testing --lockfile=../pkgb/locks/pkgb_debug.lock
$ ./bin/greet

HelloA 0.1 Debug

HelloB Debug!

Greetings Debug!

As you can see, the immutability principle remains. If we try to use pkgb_release.lock to create the pkgb package again
instead of the pkgb_deps_release.lock lockfile, it will error, as pkgb would be already fully locked in the former.

11.4.3 Evolving lockfiles

Warning: This is an experimental feature subject to breaking changes in future releases.

As described before, lockfiles are immutable, they cannot change the information they contain. If some install or create
command tries to change some data in a lockfile, it will error. This doesn’t mean that operations on lockfiles cannot be
done, as it is possible to create a new lockfile from an existing one. We have already done this, obtaining a full lockfile
for a specific configuration from an initial “base” lockfile.

There are several scenarios you might want to create a new lockfile from an existing one.
Deriving a partial lockfile

Lets say that we have an application app/1. 0 that depends on 1ibc/1. 0 that depends on 1ibb/1. 0 that finally depends
on liba/1.0. We could capture a “base” lockfile from it, and then several full lockfiles, one per configuration:

$ conan lock create --reference=app/1.0@ --base --lockfile-out=app_base.lock

$ conan lock create --reference=app/1.0@ --lockfile=app_base.lock -s build_type=Release -
—.-lockfile-out=app_release.lock

$ conan lock create --reference=app/1.0@ --lockfile=app_base.lock -s build_type=Debug --
—lockfile-out=app_debug.lock

Now a developer wants to start testing some changes in 1ibb, using the same dependencies versions defined in the
lockfile. As 1ibb is locked, it will not be possible to create a new version 1ibb/1.1 or build a new binary for it with
the existing lockfiles. But we can create a new lockfile for it in different ways. For example, we could derive directly
from the app_release.lock and app_debug.lock lockfiles:

$ git clone <libb-repo> && cd libb

$ conan lock create conanfile.py --lockfile=app_release.lock --lockfile-out=1ibb_deps_
—release.lock

$ conan lock create conanfile.py --lockfile=app_debug.lock --lockfile-out=1libb_deps_
—.debug.lock

11.4. Lockfiles 173




Conan Documentation, Release 1.60.2

This will create partial lockfiles, only for 1ibb dependencies, i.e. locking 1iba/1.®, that can be used while installing,
building and testing 1ibb.

But it is also possible to derive a new “base” profile from app_base.lock only for libb dependencies, and then compute
from it the configuration specific profiles.

These partial lockfiles will be smaller than the original app lockfiles, not containing information at all about app and
libc.

Unlocking packages with —build

It is also possible to derive a partial lockfile for 1ibb/1.0 without cloning the 1ibb repository, directly with:

$ conan lock create --reference=1ibb/1.0 --lockfile=app_release.lock --lockfile-out=1ibb_
—release.lock

$ conan lock create --reference=1ibb/1.0 --lockfile=app_debug.lock --lockfile-out=1ibb_
—debug.lock

These new lockfiles could be used to install the 1ibb/1.0 package, without building it, but if we tried to build it from
sources, it will fail:

$ conan install 1ibb/1.0@ --lockfile=1ibb_release.lock # lWorks
$ conan install 1ibb/1.0@ --build=1ibb --lockfile=1ibb_release.lock # Fails, libb is.
—locked

The second scenario fails. This is because when the app_release.lock lockfile was captured, it completely locked all
the information (including 1ibb/1.0’s package revision). If we try to build a new binary, the lock protection will raise.
If we want to “unlock” the binary package revision, we need to tell the lockfile when we are capturing such lockfile,
that we plan to build it, with the --build argument:

# Note the --build=1ibb argument

$ conan lock create --reference=1ibb/1.0 --build=1ibb --lockfile=app_release.lock --
—lockfile-out=1ibb_release.lock

# This will work, building a new binary

$ conan install 1libb/1.0@ --build=libb --lockfile=1ibb_release.lock --lockfile-out=1ibb_
—.release2.lock

As usual, if you are building a new binary, it is desired to provide a --lockfile-out=1ibb_release2.lock to
capture such a new binary package revision in the new lockfile.

Integrating a partial lockfile

This would be the opposite flow. Lets take the previous libb_deps_release.lock and libb_deps_debug.lock lockfiles and
create new 1ibb/1.1 packages with it, and obtaining new lockfiles:

# in the 1ibb source folder
$ conan create . --lockfile=libb_deps_release.lock --lockfile-out=1libb_release.lock
$ conan create . --lockfile=libb_deps_debug.lock --lockfile-out=1ibb_debug.lock

These lockfiles will be containing locked information to 1iba/1.0 and a new 1ibb/1.1 version. Now we would like
to check if app/1.0 will pick this new version, and in case it is used, we would like to rebuild whatever is necessary
(that is part of the next CI section).

174 Chapter 11. Versioning




Conan Documentation, Release 1.60.2

Important: Itisnot possible to pick the old app_base.lock, app_release.lock or app_debug.lock lockfiles and inject the
new libb/1.1 version, as this would be violating the integrity of the lockfile. Nothing guarantees that the downstream
packages will effectively use the new version, as it might fall outside the valid range defined in 1ibc/1.0, for example.
Also, downstream consumers app/1.0 and 1ibc/1.0 could result in different package-ids as a result of having a new
dependency, and this goes against the immutability of the lockfile data, as the package-ids for them would be already
locked.

Let’s create new lockfiles that will use the existing 1ibb_debug.lock and 1ibb_release.lock information if pos-
sible:

$ conan lock create --reference=app/1.0@ --lockfile=1libb_release.lock --lockfile-out=app_
—release.lock

$ conan lock create --reference=app/1.0@ --lockfile=1ibb_debug.lock --lockfile-out=app_
—.debug.lock

This will create new app_release.lock and app_debug.lock that will have both 1ibb/1.1 and 1iba/1.0 locked. If
for some reason, 1libc/1.0 had fixed a requires = "libb/1.0", then the resulting lockfile would resolve and lock
libb/1.0 instead. The build-order command (see next section) will tell us that there is nothing to build, as it is
effectively computing the same lockfile that existed before. It is also possible, and a CI pipeline could do it, to directly
check that 1ibb/1.1 is defined inside the new lockfiles. If it is not there, it means that it didn’t integrate, and nothing
needs to be done downstream.

11.4.4 Build order in lockfiles

Warning: This is an experimental feature subject to breaking changes in future releases.

In this section we are going to use the following packages, defining this dependency graph.

liba/0O.1
libb/O.1 libc/O.1
libd/O.1 app2/0.1

:

appl/0.1

Note: The code used in this section, including a build.py script to reproduce it, is in the examples repository:
https://github.com/conan-io/examples. You can go step by step reproducing this example while reading the below
documentation.

$ git clone https://github.com/conan-io/examples.git
$ cd features/lockfiles/build_order
# $ python build.py only to run the full example, but better go step by step

11.4. Lockfiles 175


https://github.com/conan-io/examples

Conan Documentation, Release 1.60.2

The example in this section uses full_version_mode, that is, if a package changes any part of its version, its con-
sumers will need to build a new binary because a new package_id will be computed. This example will use version
ranges, and it is not necessary to have revisions enabled. It also does not require a server, everything can be reproduced
locally.

[$ conan config set general.default_package_id_mode=full_version_mode J

Let’s start by creating the initial dependency graph, without binaries (just the exported recipes), in our local cache:

conan export liba liba/®.1@user/testing
conan export libb 1libb/®.l@user/testing
conan export libc libc/0.1@user/testing
conan export libd 1libd/®.1@user/testing
conan export appl appl/®.l@user/testing
conan export app2 app2/0.lGuser/testing

A A A B A

Now we will create a lockfile that captures the dependency graph for app1/0. 1@user/testing. In the same way we
created lockfiles for a local conanfile.py in a user folder, we can also create a lockfile for a recipe in the Conan cache,
with the --reference argument:

[$ conan lock create --reference=appl/0.l@user/testing --lockfile-out=appl.lock J

The resulting app!.lock lockfile will not be able to completely lock the binaries because such binaries do not exist at
all. This can be checked in the app1.lock file, the packages do not contain a package revision (prev) field at all:

{
ll4ll: {
"ref": "liba/®.l@user/testing",
lloptionsll : mn ,
"package_id": "5ab84d6acfelf23c4fae®ab88f26e3a396351ac9",
"context": "host"
}
}

We can now compute the “build-order” of the dependency graph. The “build-order” lists in order all the packages that
needs to be built from sources. The logic is the following:

* If a package is fully locked (it contains a package revision field prev in the lockfile), it will not be built from
sources and will never appear in the build-order list.

« If a package is not fully locked (it does not contain a package revision prev in the lockfile), it will appear in the
build-order list. This situation happens both when the package binary doesn’t exist yet, or when the --build
argument was used while creating the lockfile.

[$ conan lock build-order appl.lock --json=build_order.json ]

The resulting build_order.json file is a list of lists, structured by levels of possible parallel builds:

[
# First level liba
[["liba/0.1l@user/testing", "5ab8...1lac9", "host", "4"]],
# Second level libb and libc

(continues on next page)

176 Chapter 11. Versioning



Conan Documentation, Release 1.60.2

(continued from previous page)

[["1ibb/0.1@user/testing", "cfdl...ec23", "host", "3"],
["1libc/0.1@user/testing"”, "cfdl...ec23", "host", "5"]],
# Third level libd
[["1ibd/0®.1@user/testing", "d®75...5b9d", "host", "2"]],
# Fourth level libd
[["appl/0.l@user/testing", "3bf2...5188", "host"™, "1"]]
]

Every item in the outer list is a “level” in the graph, a set of packages that needs to be built, and are independent of
every other package in the level, so they can be built in parallel. Levels in the build order must be respected, as the
second level cannot be built until all the packages in the first level are built and so on. In this example, once the build
of 1iba/0. 1@user/testing finishes, as it is the only item in the first level, the second level can start, and it can build
both 1ibb/0. l@user/testing and libc/0.1@user/testing in parallel. It is necessary that both of them finish
their build to be able to continue to the third level, that contains 1ibd/0.1@user/testing, because this package
depends on them.

Every item in each level has 4 elements: [ref, package_id, context, node-id]. Atthe moment the only nec-
essary one is the first one. The ref value is the one that can be used for example in a conan install command
like:

[$ conan install <ref> --build=<ref> --lockfile=mylock.lock ]

The last value, the node-id could be used in cases where the ref is not enough to address a given package in the
graph, for example when the same package can be found in the graph multiple times. In this case, explicitly adding
the --lockfile-node-id argument can resolve the ambiguity (this is an experimental feature, subject to breaking
changes):

[$ conan install <ref> --build=<ref> --lockfile=mylock.lock --lockfile-node-id=<node-id> J

Defining builds

The definition of what needs to be built comes from the existing binaries plus the --build argument in the conan
lock create.

Let’s build all the binaries for the exported packages first:

# Build appl and dependencies
$ conan install appl/0.l@user/testing --build=missing

Now that there are binaries for all packages in the cache, let’s capture them in a new lockfile and compute the build
order:

# Create a new lockfile now with all the package binaries

$ conan lock create --reference=appl/0.l@user/testing --lockfile-out=appl.lock
# And check which one needs to be built

$ conan lock build-order appl.lock --json=build_order.json

# The build order is empty, nothing to build

[]

The result of this build order is empty. As the conan lock create found existing binaries, everything is fully locked,
nothing needs to be built.

If we specify the --build flag, then the behavior is different:

11.4. Lockfiles 177



Conan Documentation, Release 1.60.2

$ conan lock create --reference=appl/0.l@user/testing --lockfile-out=appl.lock --build
# the lockfile will not lock the binaries

# And check which one needs to be built

$ conan lock build-order appl.lock --json=build_order.json

[[["liba/0.l@user/testing", "5ab8...lac9", "host", "4"]],

This feature is powerful when combined with package_id_modes, because it can automatically define the minimum
set of packages that needs to be built for any change in the dependency graph.

Let’s say that a new version 1ibb/1. 1@user/testing is created. But if we check the 1ibd conanfile.py requirement
libb/[>0.0 <1.0]@user/testing, we can see that this 1.1 version falls outside of the valid version range. Then,
it does not affect 1ibd or appl and nothing needs to be built:

$ conan create libb libb/1.1@user/testing

$ conan lock create --reference=appl/0.1l@user/testing --lockfile-out=appl.lock
$ conan lock build-order appl.lock --json=build_order.json

[1 # Empty, nothing to build, 1libb/1.1 does not become part of appl

If on the contrary, a new 1ibb/0.2@user/testing is created, and we capture a new lockfile, it will contain such
new version. Other packages, like 1iba and 1ibc are not affected by this new version, and will be fully locked in the
lockfile, but the dependents of 1ibb now won’t be locked and it will be necessary to build them:

$ conan create libb 1ibb/0.2@user/testing

$ conan lock create --reference=appl/0.1l@user/testing --lockfile-out=appl.lock
$ conan lock build-order appl.lock --json=build_order.json
[[['libd/0.1l@user/testing', '97e9...b7£f4"', 'host', '2']],
[['appl/0.1l@user/testing', '2bfl...e405', 'host', '1']]]

So in this case the appl.lock is doing these things:
* Fully locking the non-affected packages (1iba/0.1, 1ibc/0.1)

* Fully locking the 1ibb/0. 2, as the binary that was just created is valid for our appl (Note that this might not
always be true, and app1 build could require a different 1ibb/0. 2 binary).

* Partial locking (the version and package-id) of the affected packages that need to be built (1ibd/0.1 and appl/
0.1).

¢ Retrieving via build-order the right order in which the affected packages need to be built.

Recall that a package in a lockfile is fully locked if it contains a prev (package revision) field defined. Fully locked
packages cannot be built from sources. Partially locked packages do not contain a prev defined. They lock the reference
and the package-id, and they can be built from sources.

If we want to check if the new 1ibb/0.2 version affects to the app2 and something needs to be rebuilt, the process is
identical:

$ conan lock create --reference=app2/0.1@user/testing --lockfile-out=app2.lock
$ conan lock build-order app2.lock --json=build_order2.json

(]

As expected, nothing to build, as app2 does not depend on 1ibb at all.

178 Chapter 11. Versioning



Conan Documentation, Release 1.60.2

11.4.5 Lockfile bundles

Warning: This is an experimental feature subject to breaking changes in future releases.

Every package build using lockfiles requires a given configuration-specific lockfile, and after the build, that lockfile
is updated to include the built package revision. If we have different configurations for different variants as different
architectures, compiler versions or Debug/Release, a build will be typically necessary for each one.

In real life, it is also likely that we might want to build together different applications or products, that could be even
disconnected, and we want to do it as efficiently and fast (in parallel) as possible. We could have the following situation:

pkga/0.1

app2/2.3

app1_windows.lock app2_windows.lock
app1_linux.lock I app2_linux.lock

lock.bundle

In this diagram we see that we are building and releasing 2 different products in our team: appl/1.1 and app2/2.3.
app1 depends on pkgb/0. 1 (omitting user/channel for brevity, but please use it) and app2 depends on pkgb/0. 2.
In turn, both versions of pkgb depend on the same pkga/0.1 version.

If we are building both products for 2 different configurations each (lets say Windows and Linux), we could capture 4
different lockfiles:

$ conan lock create --ref=appl/1.1 --base --lockfile-out=appl_base.lock
$ conan lock create --ref=app2/2.3 --base --lockfile-out=app2_base.lock

$ conan lock create --ref=appl/1.1 -s os=Windows --lockfile=appl_base.lock --lockfile-
—out=appl_windows.lock

$ conan lock create --ref=appl/1.1 -s os=Linux --lockfile=appl_base.lock --lockfile-
—out=appl_linux.lock

$ conan lock create --ref=app2/2.3 -s os=Windows --lockfile=app2_base.lock --lockfile-
—out=app2_windows.lock

$ conan lock create --ref=app2/2.3 -s os=Linux --lockfile=app2_base.lock --lockfile-
—.out=app2_linux.lock

If we launched these 4 lockfiles builds in parallel, we can see that pkga/0. 1 will be built 4 times, 2 times in Windows
and 2 times in Linux. The extra build in each OS is redundant and can be avoided. But we need a way to orchestrate it,
that is what a lockfile bundle is for.

11.4. Lockfiles 179




Conan Documentation, Release 1.60.2

Creating a lockfile bundle

Creating a lockfile bundle can be done with the conan lock bundle create command, passing the list of all lock-
files for all configurations and products, and obtaining one single output bundle:

$ conan lock bundle create appl_windows.lock appl_linux.lock app2_windows.lock app2_
—linux.lock --bundle-out=lock.bundle

Inspecting the resulting lockfile bundle file, we can see it is a json file with the following structure:

"lock_bundle": {
"appl/1.1@#584778£f98bald0®eb7c80a5aelfel2fe2": {
"packages": [{
"package_id": "3bcd6800847f779e0883ee91b411laad9ddd8e83c" ,
"lockfiles": {
"appl_windows.lock": [
wyn
]
Ko
"prev": null,
"modified": null
Fo 4
"package_id": "60fbb0a22359b4888f7ecad69bcdfcd6e70e2784",
"lockfiles": {
"appl_linux.lock": [
wyn
]
B
"prev": null,
"modified": null
}
i
"requires": [
"pkgb/0.10#cd8£22d6£264£65398d8c534046e8e20"
]

The bundle groups items per ‘“recipe reference”, included the recipe revision, like appl/1.
1@#584778198bald0eb7c80a5aelfel2fe2. For each one, it will list all different binaries, identified by their
package_id that are involved in the different lockfiles, listing all lockfiles for each package_id. In this case, as app1
only belongs to appl lockfiles, only one lockfile appl_windows.lock, appl_linux.lock is in each package_id.
Also, the package revision prev is listed, in this case being null, because there is no locked binary in the lockfiles,
but is going to be built.

Note: The relative path between the bundle file and the lockfile files need to be maintained. In the example
appl_linux.lock means that the lockfile is located in the same folder as the bundle file itself. If moving the bundle
to a different machine, the lockfiles should be moved too, maintaining the same relative layout.

The interesting part is in the pkga/0. 1 information in the bundle:

"pkga/0.1@#£096d7d54098b7ad7012£9435d9c33£3": {
"packages": [{

(continues on next page)

180 Chapter 11. Versioning




Conan Documentation, Release 1.60.2

(continued from previous page)

"package_id": "3475bd55b91ae904ac96fde®f106a136ab951a5e",
"lockfiles": {
"appl_windows.lock": [
g
1
"app2_windows.lock": [
g
1
e
"prev": null,
"modified": null

}

Now we can see that for one package_id there are actually 2 different lockfiles that require it. Both appl and app2
depend in this case on pkga/0. 1. This is the information that can be used to avoid duplicated builds.

Using a lockfile bundle to build

The lockfile bundles also can compute a “build order” over the bundle, that will give an ordered list of lists of the
package references that need to be built. In our case we could do:

$ conan lock bundle build-order lock.bundle --json=build_order.json
[
["pkga/0.1@#£096d7d54098b7ad7012£9435d9c33£3"],
["pkgb/0.10@#cd8£22d6£264£65398d8c534046e8e20", "pkgh/0.2@
< #cd8£22d6f264£65398d8c534046e8e20"],
["appl/0.10@#584778f98bald0eb7c80a5aelfel2fe2", "app2/0.1@
—#3850895cleac8223c43¢c71d525348019"]
]

The result is a list of lists. Every inner list is a “level”, it is formed by mutually independent references that can be built
in parallel, because they don’t depend on each other. But every level will have dependencies to the previous levels, so
it is necessary to build those levels in order.

The build order list can be iterated, building the packages in order. The necessary information is in the bundle file
itself, so we can read it and use it, something like:

# Get the build order
build_order = json.loads(open("build_order.json").read())

# Read the bundle
bundle = json.loads(open("lock.bundle™).read())
bundle = bundle["lock_bundle"]
for level in build_order: # iterate the build_order
for ref in level: # All refs in this level could be built in parallel
# Now get the package_ids and lockfile information
package_ids = bundle[ref]["package_id"]
for pkg_id, info in package_ids.items():
lockfiles = info["lockfiles"]
lockfile = next(iter(sorted(lockfiles))) # Get the first one, all should be.

(continues on next page)

11.4. Lockfiles 181




Conan Documentation, Release 1.60.2

(continued from previous page)

—valid to build same package_id

os.system(''conan install --build= --lockfile= "
"--lockfile-out= " format(ref=ref, lockfile=lockfile))

os.system("conan lock bundle update lock.bundle")

This works under the hypothesis that the same binary, identified by the same package_id will be obtained irrespective
of which lockfile or final product is used to build it. If this doesn’t hold true, then the package_id policies should be
revised until this condition is met.

Important: Recall that this is an orchestration mechanism, that can be used to distribute the actual conan install
tasks to different agents, based on the lockfile itself, we might need some logic to send that build to one or another
build server. If we didn’t want to orchestrate and everything can be built in this machine a conan install appl/1.
1@ --lockfile={lockfile} --build=missing would build all the necessary dependencies in the graph, in the
current agent.

Note that the builds themselves are using regular lockfiles. The bundle does not contain the necessary information to
reproduce the dependency graph that is needed to create packages.

The command conan lock bundle update lock.bundle manages to update all the connected lockfiles after a
reference has been built. When the build is fired, it is done using 1 of the lockfiles, for a given configuration. That
lockfile will get the updated package revision and status. The conan lock bundle update does this process in 2
steps:

* Scan all connected lockfiles for every ref recipe reference and package_id, and collect those that have been
modified.

* Propagate the modified information to all the other connected lockfiles.

After conan lock bundle update, all packages sharing the same reference and package_id should have the same
status (marked “modified” and same package revision). The “modified” state for the lockfile bundles can be cleaned
using the command conan lock bundle clean-modified that will clean that flag from both the .bundle file and
the individual .lock files.

11.4.6 Lockfiles in Continuous Integration

Warning: This is an experimental feature subject to breaking changes in future releases.

This section provides an example of application of the lockfiles in a Continuous Integration case. It doesn’t aim to
present a complete solution or the only possible one, depending on the project, the team, the requirements, the con-
straints, etc., other approaches might be recommended.

In this section we are going to use the same packages than in the previous one, defining this dependency graph.

182 Chapter 11. Versioning



Conan Documentation, Release 1.60.2

liba/0.1
libb/O.1 libc/O.1
libd/0.1 app2/0.1

:

appl/0.1

The example scenario is a developer doing some changes in 1ibb, that include bumping the version to 1ibb/0.2. We
will structure the CI in two parts:

* Building 1ibb/0.2@user/testing to check that it is working fine.

* Building the downstream applications appl/0.1l@user/testing and app2/0.2@user/testing to check if
they build correctly, or if they are broken by those changes.

Note: The code used in this section, including a build.py script to reproduce it, is in the examples repository:
https://github.com/conan-io/examples. You can go step by step reproducing this example while reading the below
documentation.

$ git clone https://github.com/conan-io/examples.git
$ cd features/lockfiles/ci
# $ python build.py only to run the full example, but better go step by step

The example in this section uses full_version_mode, that is, if a package changes any part of its version, its con-
sumers will need to build a new binary because a new package_id will be computed.

[$ conan config set general.default_package_id_mode=full_version_mode J

This sets the default package ID mode. Be aware, however, that if any of your packages provide their own package_id()
implementation, for example explicitly setting a different mode for a dependency, full_version_mode might not be used
for that package.

This example will use version ranges, and it is not necessary to have revisions enabled. It also does not require a server,
everything can be reproduced locally, although the usage of different repositories will be introduced.

Repositories

When a developer does some changes, the CI wants to build those changes, create packages, and check if everything is
ok. But while checking it, it is better to not pollute the main Conan remote repository with temporary packages until
we are fully sure that it is not breaking anything. So we could use 2 repositories:

» conan-develop: this would be the team/project reference repository. Developers and CI will use this by default
to retrieve Conan packages with precompiled binaries. Similarly to a git “develop” branch, it could be assumed
that the packages in this repository work correctly, have been tested before being put there. It could also be
expected that the repository contains pre-compiled binaries, so building from sources shouldn’t be necessary.

e conan-build: a repository mainly for CI purposes. When CI is creating packages in a pipeline, it can put
those packages in this repository, so they can still be used in the CI pipelines, be fetched by some build agents to

11.4. Lockfiles 183


https://github.com/conan-io/examples

Conan Documentation, Release 1.60.2

build other packages. These temporary packages will not disrupt the operations and usage of conan-develop
repository used by other CI jobs and developers.

Let’s create the first version of the packages, for both Debug and Release configurations:

conan create liba liba/®.l@user/testing -s build_type=Release
conan create libb 1libb/®.l@user/testing -s build_type=Release
conan create libc libc/0.1G@user/testing -s build_type=Release
conan create libd 1libd/®.1Guser/testing -s build_type=Release
conan create appl appl/®.lGuser/testing -s build_type=Release
conan create app2 app2/0.l@Guser/testing -s build_type=Release
conan create liba liba/®.l@user/testing -s build_type=Debug

L - A A AR A

Now let’s say that one developer does some change to 1ibb:

$ vim libb/conanfile.py
# do some changes and save

These changes are local in this example, in reality they will be typically in the form of a Pull Request, wanting to merge
those changes in the main “develop” branch.

Package pipeline

The first thing the CI will do is to build 1ibb/0.2@user/testing package, containing the developer changes, for
different configurations. As we want to make sure that all different configurations are built with the same versions of
the dependencies, the first thing is to capture a “base” lockfile of the dependencies of 1ibb:

$ cd 1ibb
$ conan lock create conanfile.py --name=1ibb --version=0.2 --user=user --channel=testing
--lockfile-out=../locks/1libb_deps_base.lock --base

This will capture the libb_deps_base.lock file with the versions of 1ibb dependencies, in this case 1iba/®. l@user/
testing. Now that we have this file, new versions of 1iba could be created, but they will not be used:

$ cd ..
$ conan create liba liba/0.2@user/testing

We want to test the changes for several different configurations, so the first step would be to derive a new lockfile for
each configuration/profile from the libb_deps_base.lock:

$ cd 1libb

# Derive one lockfile per profile/configuration

$ conan lock create conanfile.py --name=1ibb --version=0.2
--user=user --channel=testing --lockfile=../locks/libb_deps_base.lock
--lockfile-out=../locks/libb_deps_debug.lock -s build_type=Debug

$ conan lock create conanfile.py --name=libb --version=0.2
--user=user --channel=testing --lockfile=../locks/libb_deps_base.lock
--lockfile-out=../locks/libb_deps_release.lock

# Create the package binaries, one with each lockfile
conan create . libb/0®.2@user/testing --lockfile=../locks/libb_deps_release.lock
$ conan create . libb/0.2@user/testing --lockfile=../locks/libb_deps_debug.lock

©

184 Chapter 11. Versioning




Conan Documentation, Release 1.60.2

Note: Itisimportant to note that it is not necessary to build all configurations in this build agent. One of the advantages
of using lockfiles is that the build can be delegated to other agents, as long as they get the right commit of 1ibb repo
and the lockfile, they can build the desired package with the right dependencies.

Once everything is building ok, and 1ibb/0.2@user/testing package is created correctly for all profiles, we want
to check if this new version can be integrated safely in its consumers. When using revisions (not this example), it is
important to capture the recipe revision, and lock it too. We can capture the recipe revision doing an export, creating
anew libb_base.lock lockfile:

$ conan export . libb/0.2@user/testing --lockfile=../locks/libb_deps_base.lock
--lockfile-out=../locks/1libb_base.lock

Products pipeline

There is an important question to be addressed: when a package changes, what other packages consuming it should
be rebuilt to account for this change?. The problem might be harder than it seems at first sight, or from the observation
of the graph above. It shows that 1ibd/®. 1 has a dependency to 1ibb/0. 1, does it mean that a new 1ibb/0.2 should
produce a re-build of 1ibd/®. 1 to link with the new version? Not always, if 1ibd had a pinned dependency and not a
version range, it will never resolve to the new version, and then it doesn’t and it cannot be rebuilt unless some developer
makes some changes to 1ibd and bumps the requirement.

In this example, 1ibd contains a version range, and if we evaluate it, we will see that the new 1ibb/0.2 version lies
within the range, and then yes, it needs a new binary to be built, otherwise our repository of packages will have missing
binaries.

One important problem is the combinatoric explosion that happens downstream. Projects evolve and packages will
eventually have many versions and even many revisions. In our example, we could have in our repository many 1ibd/
0.0.1,1ibd/0.0.2,...,1ibd/0.0. 34 versions, all of them with a requirement to 1ibb. Each one could be in turn
consumed by multiple app1l versions.

We could think to consider as consumer only the latest version of 1ibd. But it is also totally possible that some
developer has already uploaded a 1ibd/2.0 version, with a breaking new API, aimed for the next major version of

appl.

So the only alternative to be both efficient and have a robust Continuous Integration of changes in our core “products”
is to explicitly define those “products”. In our case we will define that our products are appl/0.1l@user/testing
and app2/0. 1l@user/testing. This product definition could change as we keep doing releases of our products to our
customers.

The first step in the products pipeline would be to capture the lockfiles for the different configurations we want to build
for our products. As explained above, we can first capture a “base” lockfile of app1/0.1l@user/testing, using the
previous libb_base.lock, to make sure that we are using the locked versions for both 1ibb/0.2@user/testing and
liba/0.1@user/testing, as this was the snapshot of existing versions when the CI pipeline started, even if later a
liba/0.2@user/testing was created.

$ conan lock create --reference=appl/0.l@user/testing --lockfile=locks/libb_base.lock
--lockfile-out=1ocks/appl_base.lock --base

The app1_base.lock lockfile will capture and lock 1ibd/®. 1@user/testing and 1ibc/0. 1@user/testing. Now,
even if those packages also got new versions, they will not be used, even if they fit in the version range. The
appl_base.lock lockfile can be in turn used to capture complete lockfiles, one per profile/configuration:

$ conan lock create --reference=appl/0.l@user/testing --lockfile=locks/appl_base.lock
--lockfile-out=1ocks/appl_release.lock
(continues on next page)

11.4. Lockfiles 185



Conan Documentation, Release 1.60.2

(continued from previous page)

$ conan lock create --reference=appl/0.l@user/testing --lockfile=locks/appl_base.lock
--lockfile-out=1locks/appl_debug.lock -s build_type=Debug

The build-order can now be computed, also for each configuration:

$ conan lock build-order locks/appl_release.lock --json=bo_release.json
[[['1libd/0®.1l@user/testing', 'bO3c813b34cfab7a®095£fd903f7e8df2114e2b858"', 'host', '4']],
[['appl/0.1l@user/testing', '15d2c695ed8d421c0®d8932501fc654c8083e6582"', 'host', '3']]]

$ conan lock build-order locks/appl_debug.lock --json=bo_debug.json
[[['libd/0.1l@user/testing', '67a26cfbef78ad4905bec085664768c209d14fda’', 'host', '4']],
[['appl/0.1l@user/testing', '680239a70c97f93d4d3dbaddeclb148d45ed®87a', 'host', '3']]1]

The build order tells that we need to build 1ibd/0. 1@user/testing and appl/0.1@user/testing in that order,
for both Release and Debug configurations (again this can also be delegated to other build agents)

That build can be done with command:

$ conan install 1ibd/0.1l@user/testing --build=1ibd/®.1l@user/testing --lockfile=locks/
—appl_release.lock
--lockfile-out=1ocks/appl_release_updated.lock

Note that we are creating a new temporary appl_release_updated.lock lockfile, that will contain and lock the binary
produced by the build of 1ibd. If this was implemented in CI, the app_release.lock would be sent to the build agent,
and it would return a modified appl_release_updated.lock. The way to integrate this information into the existing
lockfile, necessary to keep building other downstream packages is:

[$ conan lock update locks/appl_release.lock locks/appl_release_updated.lock

Now that locks/app1_release.lock is updated we could launch in exactly the same way the build of app1:

$ conan install appl/0.l@user/testing --build=appl/®.l@user/testing --lockfile=locks/
—appl_release.lock
--lockfile-out=1ocks/appl_release_updated.lock

The process will be repeated (or it could also run in parallel) for the Debug configuration.

After the appl/0. 1@user/testing product pipeline finishes, then the app2/0 . 2@Quser/testing one will be started.
With this setup and example, it is very important that the products pipelines are ran sequentially, otherwise it is possible
that the same binaries are unnecessarily built more than once.

When the products pipeline finishes it means that the changes proposed by the developer in their Pull Request that
would result in a new 1ibb/0.2@user/testing package are safe to be merged and will be integrated in our product
packages without problems. When the Pull Request is merged there might be two alternatives:

* The merge is a merge commit, with a different revision and possible different source as the result of a real merge,
than the source used in this CI job. Then it is necessary to fire again a new job that will build these packages.

« If the merge is a clean fast-forward, then the packages that were built in this job would be valid, and could be
copied from the repository conan-build to the conan-develop.

After the appl lockfile is created it could be possible to install all the binaries referenced in that lockfile using the
conan lock install:

[$ conan lock install appl_release_updated.lock -g deploy

186 Chapter 11. Versioning



Conan Documentation, Release 1.60.2

It is also possible to use this command for just installing the recipes but not the binaries adding the --recipes argu-
ment:

[$ conan lock install appl_release_updated.lock --recipes

11.4. Lockfiles 187



Conan Documentation, Release 1.60.2

188 Chapter 11. Versioning



CHAPTER
TWELVE

MASTERING CONAN

This section provides an introduction to important productivity and useful features of Conan:

12.1 Use conanfile.py for consumers

Caution: We are actively working to finalize the Conan 2.0 Release. Some of the information on this page
references deprecated features which will not be carried forward with the new release. It’s important to check the
Migration Guidelines to ensure you are using the most up to date features.

You can use a conanfile.py for installing/consuming packages, even if you are not creating a package with it. You
can also use the existing conanfile.py in a given package while developing it to install dependencies. There’s no
need to have a separate conanfile.txt.

Let’s take a look at the complete conanfile. txt from the previous timer example with POCO library, in which we
have added a couple of extra generators

[requires]
poco/1.9.4

[generators]
gcc

cmake

txt

[options]
poco:shared=True
openssl:shared=True

[imports]

bin, *.dll -> ./bin # Copies all dll1 files from the package "bin" folder to my project
—"bin" folder

lib, *.dylib* -> ./bin # Copies all dylib files from the package "lib" folder to my..
—project "bin" folder

The equivalent conanfile.py file is:

from conans import ConanFile, CMake

class PocoTimerConan(ConanFile):

(continues on next page)

189




Conan Documentation, Release 1.60.2

(continued from previous page)

settings = "os", "compiler", "build_type", "arch"
requires = "poco/1.9.4" # comma-separated list of requirements
generators = "cmake", "gcc", "txt"

default_options = {"poco:shared": True, "openssl:shared": True}

def imports(self):
self.copy("*.dl1l", dst="bin", src="bin") # From bin to bin
self.copy("*.dylib*", dst="bin", src="1lib") # From lib to bin

Note that this conanfile.py doesn’t have a name, version, or build() or package () method, as it is not creating a
package. They are not required.

With this conanfile.py you can just work as usual. Nothing changes from the user’s perspective. You can install the
requirements with (from mytimer/build folder):

[$ conan install .. J

12.1.1 conan build

One advantage of using conanfile.py is that the project build can be further simplified, using the conanfile.py
build () method.

If you are building your project with CMake, edit your conanfile.py and add the following build() method:

from conans import ConanFile, CMake

class PocoTimerConan(ConanFile):

settings = "os", "compiler", "build_type", "arch"
requires = "poco/1.9.4"
generators = '"cmake", "gcc", "txt"

default_options = {"poco:shared": True, "openssl:shared": True}

def imports(self):
self.copy("*.dll", dst="bin", src="bin") # From bin to bin
self.copy("*.dylib*", dst="bin", src="1ib") # From 1ib to bin

def build(self):
cmake = CMake(self)
cmake.configure()
cmake.build ()

Then execute, from your project root:

$ conan install . --install-folder build
$ conan build . --build-folder build

The conan install command downloads and prepares the requirements of your project (for the specified settings)
and the conan build command uses all that information to invoke your build() method to build your project, which
in turn calls cmake.

This conan build will use the settings used in the conan install which have been cached in the local conaninfo.txt
and file in your build folder. This simplifies the process and reduces the errors of mismatches between the installed
packages and the current project configuration. Also, the conanbuildinfo.txt file contains all the needed information
obtained from the requirements: deps_cpp_info, deps_env_info, deps_user_info objects.

190 Chapter 12. Mastering Conan




Conan Documentation, Release 1.60.2

If you want to build your project for x86 or another setting just change the parameters passed to conan install:

$ conan install . --install-folder build_x86 -s arch=x86
$ conan build . --build-folder build_x86

Implementing and using the conanfile.py build () method ensures that we always use the same settings both in the
installation of requirements and the build of the project, and simplifies calling the build system.

12.1.2 Other local commands
Conan implements other commands that can be executed locally over a consumer conanfile.py which is in user
space, not in the local cache:

e conan source <path>: Execute locally the conanfile.py source () method.

e conan package <path>: Execute locally the conanfile.py package () method.

These commands are mostly used for testing and debugging while developing a new package, before exporting such
package recipe into the local cache.

See also:

Check the section Reference/Commands to find out more.

12.2 Conditional settings, options and requirements

Remember, in your conanfile.py you can use the value of your options to:
* Add requirements dynamically
» Change values of other options
» Assign values to options of your requirements

The configure () method might be used to hardcoded values for options of the requirements. It is strongly discouraged
to use it to change the settings values. Please remember that settings are a configuration input, so it doesn’t make
sense to modify it in the recipes.

Also, for options, a more flexible solution is to define dependencies options values in the default_options, notin the
configure() method. Setting the values in configure() won’t allow to override them and it will make really hard
(even impossible) to resolve some conflicts. Use it only when it is absolutely necessary that the package dependencies
use those options.

Here is an example of what we could do in our configure method:

class Recipe(ConanFile):

requires = "poco/1.9.4" # We will add OpenSSL dynamically "openssl/1.0.2t"

def configure(self):
# We can control the options of our dependencies based on current options
self.options["openssl"].shared = self.options.shared

# Maybe in windows we know that OpenSSL works better as shared (false)
if self.settings.os == "Windows":

(continues on next page)

12.2. Conditional settings, options and requirements 191




Conan Documentation, Release 1.60.2

(continued from previous page)

self.options["openssl"].shared = True

# Or adjust any other available option
self.options["poco"].other_option = "foo"
# We could check the presence of an option
if "shared" in self.options:

pass

def requirements(self):

# Or add a new requirement!
if self.options.testing:

self.requires("OpenSSL/2. 1@memsharded/testing")
else:

self.requires("openssl/1.0.2u")

def build(self):

# We can check the final values of options of our requirements
if self.options['poco'].that_option != "bar":
raise ConanInvalidConfiguration("Who modified this option?!")

12.2.1 Constrain settings and options

Sometimes there are libraries that are not compatible with specific settings like libraries that are not compatible with
an architecture, or options that only make sense for an operating system. It can also be useful when there are settings
under development.

There are two approaches for this situation:

* Use validate() to raise an error for non-supported configurations:

This approach is the first one evaluated when Conan loads the recipe so it is quite handy to perform checks of the
input settings. It relies on the set of possible settings inside your settings.yml file, so it can be used to constrain
any recipe.

from conans.errors import ConanInvalidConfiguration

def validate(self):
if self.settings.os == "Windows":
raise ConanInvalidConfiguration('This library is not compatible with Windows")

Tip: Use the Invalid configuration exception to make Conan return with a special error code. This will indicate
that the configuration used for settings or options is not supported.

This same method is also valid for options and config_options () method and it is commonly used to remove
options for one setting:

def config_options(self):
if self.settings.os == "Windows":
del self.options.fPIC

192

Chapter 12. Mastering Conan




Conan Documentation, Release 1.60.2

Note: For managing invalid configurations, please check the new validate () method (validate()).

* Constrain settings inside a recipe:

This approach constrains the settings inside a recipe to a subset of them, and it is normally used in recipes that
are never supposed to work out of the restricted settings.

p
from conans import ConanFile

class MyConan(ConanFile):

name = "myconanlibrary"

version = "1.0.0"

settings = {"os": None, "build_type": None, "compiler": None, "arch": ["x86_64
<"1}

L

The disadvantage of this is that possible settings are hardcoded in the recipe, and in case new values are used in
the future, it will require the recipe to be modified explicitly.

Important: Note: the use of the None value in the os, compiler and build_type settings described above
will allow them to take the values from settings.yml file

We strongly recommend the use of the first approach whenever it is possible, and use the second one only for those
cases where a stronger constrain is needed for a particular recipe.

See also:

Check the reference section configure(), config_options() to find out more.

12.3 Build policies

By default, conan install command will search for a binary package (corresponding to our settings and defined
options) in a remote. If it’s not present the install command will fail.

As previously demonstrated, we can use the —-build option to change the default conan install behavior:
¢ —-build some_package will build only “some_package”.
e --build missing will build only the missing requires.
¢ —-build will build all requirements from sources.

e —-build outdated will try to build from code if the binary is not built with the current recipe or when missing
binary package.

¢ —-build cascade will build from code all the nodes with some dependency being built (for any reason). Can be
used together with any other build policy. Useful to make sure that any new change introduced in a dependency
is incorporated by building again the package.

e —-build pattern* will build only the packages with the reference starting with “pattern”.

¢ —--build=* --build=!some_packagel --build=!some_package2 will build all requirements from
sources, except for some_packagel and some_package?2.

With the build_policy attribute in the conanfile.py the package creator can change the default Conan’s build behavior.
The allowed build_policy values are:

12.3. Build policies 193




Conan Documentation, Release 1.60.2

e missing: If no binary package is found, Conan will build it without the need to invoke Conan install with
--build missing option.

* always: The package will be built always, retrieving each time the source code executing the “source” method.

* never: (experimental, available from Conan 1.37) Never builds this package from source, this package can only
be created with a conan export-pkg command.

class PocoTimerConan(ConanFile):

settings = "os", "compiler", "build_type", "arch"
requires = "poco/1.9.4" # comma-separated list of requirements
generators = "cmake", "gcc", "txt"

default_options = {"poco:shared": True, "poco:shared": True}
build_policy = "always" # "missing"

These build policies are especially useful if the package creator doesn’t want to provide binary package; for example,
with header only libraries.

The always policy will retrieve the sources each time the package is installed, so it can be useful for providing a “latest”
mechanism or ignoring the uploaded binary packages.

The package pattern can be referred as a case-sensitive fnmatch pattern of the package name or the full package ref-
erence. e.g --build poco, --build poc*, --build zlib/*, --build *@conan/stable or --build zlib/1.
2.11.

12.4 Environment variables

Caution: We are actively working to finalize the Conan 2.0 Release. Some of the information on this page
references deprecated features which will not be carried forward with the new release. It’s important to check the
Migration Guidelines to ensure you are using the most up to date features.

There are several use cases for environment variables:

* Conan global configuration environment variables (e.g. CONAN_COMPRESSION_LEVEL). They can be configured
in conan.conf or as system environment variables, and control Conan behavior.

» Package recipes can access environment variables to determine their behavior. A typical example would be when
launching CMake. It will check for CC and CXX environment variables to define the compiler to use. These
variables are mostly transparent for Conan, and just used by the package recipes.

¢ Environment variables can be set in different ways:

global, at the OS level, with export VAR=Value or in Windows SET VAR=Value.

In the Conan command line: conan install -e VAR=Value.

In profile files.

In package recipes in the self.env_info field, so they are activated for dependent recipes.

194 Chapter 12. Mastering Conan




Conan Documentation, Release 1.60.2

12.4.1 Defining environment variables

You can use profiles to define environment variables that will apply to your recipes. You can also use -e parameter in
conan install, conan info and conan create commands.

[env]
CC=/usr/bin/clang
CXX=/usr/bin/clang++

If you want to override an environment variable that a package has inherited from its requirements, you can use either
profiles or -e to do it:

[conan install . -e mypkg:PATH=/other/path }

If you want to define an environment variable, but you want to append the variables declared in your requirements, you
can use the [] syntax:

[$ conan install . -e PATH=[/other/path] J

This way the first entry in the PATH variable will be /other/path, but the PATH values declared in the requirements of
the project will be appended at the end using the system path separator.

12.4.2 Automatic environment variables inheritance

If your dependencies define some env_info variables in the package_info() method, they will be automatically
applied before calling the consumer conanfile.py methods source (), build(), package () and imports(). You can
read more about env_info object here.

For example, if you are creating a package for a tool, you can define the variable PATH:

class ToolExampleConan(ConanFile):
name = "my_tool_installer"

def package_info(self):
self.env_info.path.append(os.path. join(self.package_folder, "bin"))

If another Conan recipe requires the my_tool_installer in the source(), build(), package() and imports(),
the bin folder of the my_tool_installer package will be automatically appended to the system PATH. If
my_tool_installer packages an executable called my_tool_executable in the bin of the package folder, we can
directly call the tool because it will be available in the path:

class MyLibExample(ConanFile):
name = "my_lib_example"

def build(self):
self.run(["my_tool_executable", "some_arguments"])

You could also set CC, CXX variables if we are packing a compiler to define what compiler to use or any other environ-
ment variable. Read more about tool packages /ere.

12.4. Environment variables 195



Conan Documentation, Release 1.60.2

12.5 Virtual Environments

Caution: We are actively working to finalize the Conan 2.0 Release. Some of the information on this page
references deprecated features which will not be carried forward with the new release. It’s important to check the
Migration Guidelines to ensure you are using the most up to date features.

Conan offers three special Conan generators to create virtual environments:
e virtualenv: Declares the self.env_info variables of the requirements.
» virtualbuildenv: Special build environment variables for autotools/visual studio.
e virtualrunenv: Special environment variables to locate executables and shared libraries in the requirements.

These virtual environment generators create two executable script files (.sh or .bat depending on the current operating
system), one to activate the virtual environment (set the environment variables) and one to deactivate it.

You can aggregate two or more virtual environments, that means that you can activate a virtualenv and then acti-
vate a virtualrunenv so you will have available the environment variables declared in the env_info object of the
requirements plus the special environment variables to locate executables and shared libraries.

12.5.1 Virtualenv generator

Conan provides a virtualenv generator, able to read from each dependency the self.env_info variables declared in the
package_info() method and generate two scripts “activate” and “deactivate”. These scripts set/unset all env variables
in the current shell.

Example:
The recipe of cmake/3.16.3 appends to the PATH variable the package folder/bin.

You can check existing CMake Conan package versions in conancenter with:

[$ conan search cmake* -r=conancenter

In the bin folder there is a cmake executable:

def package_info(self):
self.env_info.path.append(os.path.join(self.package_folder, "bin"))

Let’s prepare a virtual environment to have cmake available in the path. Open conanfile. txt and change (or add)
virtualenv generator:

[requires]
cmake/3.16.3

[generators]
virtualenv

Run conan install:

[$ conan install

You can also avoid the creation of the conanfile.txt completely and directly do:

196 Chapter 12. Mastering Conan



Conan Documentation, Release 1.60.2

[$ conan install cmake/3.16.3 -g=virtualenv J

Activate the virtual environment, and now you can run cmake --version to check that you have the installed CMake
in path.

$ cmake --version

$ source activate.sh # Windows: activate.bat without the source ’

Two sets of scripts are available on all platforms - activate.sh/deactivate.shand activate.psl/deactivate.
psl if you are using powershell. In addition Windows has activate.bat/deactivate.bat Deactivate the virtual
environment (or close the console) to restore the environment variables:

[$ source deactivate.sh # Windows: deactivate.bat or deactivate.psl without the source ]

See also:

Read the Howto Create installer packages to learn more about the virtual environment feature. Check the section
Reference/virtualenv to see the generator reference.

12.5.2 Virtualbuildenv environment

Use the generator virtualbuildenv to activate an environment that will set the environment variables for Autotools
and Visual Studio.

The generator will create activate_build and deactivate_build files.

See also:

Read More about the building environment variables defined in the sections Building with autotools and Build with
Visual Studio.

Check the section Reference/virtualbuildenv to see the generator reference.

12.5.3 Virtualrunenv generator

Use the generator virtualrunenv to activate an environment that will:
¢ Append to PATH environment variable every bin folder of your requirements.

e Append to LD_LIBRARY_PATH and DYLD_LIBRARY_PATH environment variables each 1ib folder of your re-
quirements.

The generator will create activate_run and deactivate_run files. This generator is especially useful:
* If you are requiring packages with shared libraries and you are running some executable that needs those libraries.
* If you have a requirement with some tool (executable) and you need it in the path.

In the previous example of the cmake recipe, even if the cmake package doesn’t declare the self.env_info.path
variable, using the virtualrunenv generator, the bin folder of the package will be available in the PATH. So after
activating the virtual environment we could just run cmake in order to execute the package’s cmake.

See also:

* Reference/Tools/environment_append

12.5. Virtual Environments 197



Conan Documentation, Release 1.60.2

12.6 Logging

12.6.1 How to log and debug a conan execution

You can use the CONAN_TRACE_FILE environment variable to log and debug several Conan command execution.
Set the CONAN_TRACE_FILE environment variable pointing to a log file.

Example:

export CONAN_TRACE_FILE=/tmp/conan_trace.log # Or SET in windows
conan install zlib/1.2.8@lasote/stable

The /tmp/conan_trace.log file:

{"_action": "COMMAND", "name": "install", "parameters": {"all": false, "build": null,
~"env": null, "file": null, "generator": null, "manifests": null, "manifests_interactive
~": null, "no_imports": false, "options": null, "package": null, "profile": null,
—"reference": "zlib/1.2.8@lasote/stable", "remote": null, "scope": null, "settings":.
—null, "update": false, "verify": null, "werror": false}, "time": 1485345289.250117}
{"_action": "REST_API_CALL", "duration": 1.8255090713500977, "headers": {"Authorization
SNy ekt Y Client-Anonymous-Id": st oMY Client-Id": "lasote2", "X-
—,Conan-Client-Version": "0.19.0-dev"}, "method": "GET", "time": 1485345291.092218, "url
~": "https://server.conan.io/vl/conans/zlib/1.2.8/lasote/stable/download_urls"}
{"_action": "DOWNLOAD", "duration": 0.4136989116668701, "time": 1485345291.506399, "url
~": "https://conanio-production.s3.amazonaws.com/storage/zlib/1.2.8/lasote/stable/
—,export/conanmanifest.txt"}

{"_action": "DOWNLOAD", "duration": 0.10367798805236816, "time": 1485345291.610335, "url
<": "https://conanio-production.s3.amazonaws.com/storage/zlib/1.2.8/lasote/stable/
—export/conanfile.py"}

{"_action": "DOWNLOAD", "duration": 0.059114933013916016, "time": 1485345291.669744, "url

—": "https://conanio-production.s3.amazonaws.com/storage/zlib/1.2.8/lasote/stable/
—,export/conan_export.tgz"}
{"_action": "DOWNLOADED_RECIPE", "_id": "zlib/1.2.8@lasote/stable", "duration": 2.

—40762996673584, "files": {"conan_export.tgz": "/home/laso/.conan/data/zlib/1.2.8/
—lasote/stable/export/conan_export.tgz", "conanfile.py": "/home/laso/.conan/data/zlib/1.

—2.8/lasote/stable/export/conanfile.py", "conanmanifest.txt": "/home/laso/.conan/data/
—»z1lib/1.2.8/lasote/stable/export/conanmanifest.txt"}, "remote": "conan.io", "time":.
<»1485345291.670017}

{"_action": "REST_API_CALL", "duration": 0.4844989776611328, "headers": {"Authorization

T
W, Mededededddk

wxtt - "Y-Client-Anonymous-Id": "##ssssskext - ¥ _Client-Id": "lasote2", "X-
—.Conan-Client-Version": "0.19.0-dev"}, "method": "GET", "time": 1485345292.160912, "url
—": "https://server.conan.io/vl/conans/zlib/1.2.8/lasote/stable/packages/
—c6d75a933080cal7eb7f076813e7fb21aaa740f2/download_urls"}
{"_action": "DOWNLOAD", "duration": 0.06388187408447266, "time": 1485345292.225308, "url
—": "https://conanio-production.s3.amazonaws.com/storage/zlib/1.2.8/lasote/stable/
—package/c6d75a933080cal7eb7f076813e7fb21aaa740f2/conaninfo.txt?
—Signature=c1KAOqvxtCUnnQOeYizZ9bgcwwY%3D&Expires=1485352492&
—+AWSAccessKeyId=AKIAJXMWDMVCDMAZQK5Q"}
{"_action": "REST_API_CALL", "duration": 0.8182470798492432, "headers": {"Authorization
Wy Mot - UYL Client-Anonymous-Id": Ewmsssst MY _Client-Id": "lasote2", "X-
—.Conan-Client-Version": "0.19.0-dev"}, "method": "GET", "time": 1485345293.044904, "url

—": "https://server.conan.io/vl/conans/zlib/1.2.8/lasote/stable/packages/
—c6d75a933080cal7eb7f076813e7fb21aaa740f2/download_urls"}

(continues on next page)

198 Chapter 12. Mastering Conan




Conan Documentation, Release 1.60.2

(continued from previous page)

{"_action": "DOWNLOAD", "duration": 0.07849907875061035, "time": 1485345293.123831, "url
<": "https://conanio-production.s3.amazonaws.com/storage/zlib/1.2.8/lasote/stable/
—package/c6d75a933080cal7eb7f076813e7fb21aaa740f2/conanmanifest.txt"}
{"_action": "DOWNLOAD", "duration": 0.06638002395629883, "time": 1485345293.190465, "url

": "https://conanio-production.s3.amazonaws.com/storage/zlib/1.2.8/lasote/stable/
—package/c6d75a933080cal7eb7£f076813e7fb21aaa740f2/conaninfo.txt"}
{"_action": "DOWNLOAD", "duration": 0.3634459972381592, "time": 1485345293.554206, "url
<": "https://conanio-production.s3.amazonaws.com/storage/zlib/1.2.8/lasote/stable/
—package/c6d75a933080cal7eb7f076813e7fb21aaa740f2/conan_package.tgz"}
{"_action": "DOWNLOADED_PACKAGE", "_id": "zlib/1.2.8@lasote/
—stable:c6d75a933080cal7eb7f076813e7fb21aaa740f2", "duration": 1.3279249668121338,
—"files": {"conan_package.tgz": "/home/laso/.conan/data/zlib/1.2.8/lasote/stable/
—package/c6d75a933080cal7eb7f076813e7fb21aaa740f2/conan_package.tgz", "conaninfo.txt":
—"/home/laso/.conan/data/zlib/1.2.8/lasote/stable/package/
—c6d75a933080cal7eb7f076813e7fb21aaa740f2/conaninfo.txt", "conanmanifest.txt": "/home/
—laso/.conan/data/zlib/1.2.8/lasote/stable/package/
—c6d75a933080cal7eb7f076813e7fb21aaa740f2/conanmanifest.txt"}, "remote": "conan.io",
~"time": 1485345293.554466}

In the traces we can see:
1. A command install execution.
2. A REST API call to get some download_urls.
3. Three files downloaded (corresponding to the previously retrieved urls).
4

. DOWNLOADED_RECTIPE tells us that the recipe retrieving is finished. We can see that the whole retrieve process
took 2.4 seconds.

5. Conan client has computed the SHA for the needed binary package and will now retrieve it. So it will request
and download the package package_id file to perform some checks like outdated binaries.

6. Another REST API call to get some more download_urls, for the package files and download them.

7. Finally we get a DOWNLOADED_PACKAGE telling us that the package has been downloaded. The download took
1.3 seconds.

If we execute conan install again:

export CONAN_TRACE_FILE=/tmp/conan_trace.log # Or SET in windows
conan install zlib/1.2.8@lasote/stable

The /tmp/conan_trace.log file only three lines will be appended:

{"_action": "COMMAND", "name": "install", "parameters": {"all": false, "build": null,
~"env": null, "file": null, "generator": null, "manifests": null, "manifests_interactive
~": null, "no_imports": false, "options": null, "package": null, "profile": null,
—"reference": "zlib/1.2.8@lasote/stable", "remote": null, "scope": null, "settings":.

—null, "update": false, "verify": null, "werror": false}, "time": 1485346039.817543}

{"_action": "GOT_RECIPE_FROM_LOCAL_CACHE", "_id": "zlib/1.2.8@lasote/stable", "time":.
—.1485346039.824949}
{"_action": "GOT_PACKAGE_FROM_LOCAL_CACHE", "_id": "zlib/1.2.8@lasote/

—stable:c6d75a933080cal7eb7f076813e7fb21aaa740£f2", "time": 1485346039.827915}

1. A command install execution.

2. A GOT_RECIPE_FROM_LOCAL_CACHE because it’s already stored in local cache.

12.6. Logging 199




Conan Documentation, Release 1.60.2

3. A GOT_PACKAGE_FROM_LOCAL_CACHE because the package is cached too.

12.6.2 How to log the build process

You can log your command executions self.run in a file named conan_run.log using the environment variable CO-
NAN_LOG_RUN_TO_FILE.

You can also use the variable CONAN_PRINT_RUN_COMMANDS to log extra information about the commands being
executed.

Package the log files

The conan_run.log file will be created in your build folder so you can package it the same way you package a library
file:

def package(self):
self.copy(pattern="conan_run.log", dst="", keep_path=False)

12.7 Sharing the settings and other configuration

If you are using Conan in a company or in an organization, sometimes you need to share the settings.yml file, the
profiles, or even the remotes or any other Conan local configuration with the team.

You can use the conan config install.

If you want to try this feature without affecting your current configuration, you can declare the CONAN_USER_HOME
environment variable and point to a different directory.

Read more in the section conan config install.

12.8 Conan local cache: concurrency, Continuous Integration, isola-
tion

Conan needs access to some per user configuration files, such as the conan.conf file that defines the basic client app
configuration. By convention, this file will be located in the user home folder ~/.conan/. This folder will also typically
store the package cache in ~/.conan/data. Even though the latter is configurable in conan.conf, Conan needs some
place to look for this initial configuration file.

There are some scenarios in which you might want to use different initial locations for the Conan client application:

* Continuous Integration (CI) environments, in which multiple jobs can also work concurrently. Moreover, these
environments would typically want to run with different user credentials, different remote configurations, etc.
Note that using Continuous Integration with the same user, with isolated machine instances (virtual machines),
or with sequential jobs is perfectly possible. For example, we use a lot CI cloud services of travis-ci and appveyor.

 Independent per project management and storage. If as a single developer you want to manage different projects
with different user credentials and/or different remotes, you might find that having multiple independent caches
makes it easier.

Using different caches is very simple. You can just define the environment variable CONAN_USER_HOME. By
setting this variable to different paths, you have multiple conan caches, something like python “virtualenvs”. Just

200 Chapter 12. Mastering Conan



Conan Documentation, Release 1.60.2

changing the value of CONAN_USER_HOME, you can switch among isolated Conan instances that will have inde-
pendent package storage caches, and also different user credentials, different user default settings, and different remotes
configuration.

Note: Use an absolute path or a path starting with ~/ (relative to user home). In Windows do not use quotes.

Windows users:

$ SET CONAN_USER_HOME=c:\data
$ conan install . # call conan normally, config & data will be in c:\data\.conan

Linux/macOS users:

$ export CONAN_USER_HOME=/tmp/conan
$ conan install . # call conan normally, config & data will be in /tmp/conan/.conan

You can now:

* Build concurrent jobs, parallel builds in Continuous Integration or locally, by just setting the variable before
launching Conan commands.

* You can test locally different user credentials, default configurations, or different remotes, just by switching from
one cache to another.

$ export CONAN_USER_HOME=/tmp/conan
$ conan search # using that /tmp/conan cache
$ conan user # using that /tmp/conan cache

$ export CONAN_USER_HOME=/tmp/conan2
$ conan search # different packages

$ conan user # can be different users

$ export CONAN_USER_HOME=/tmp/conan # just go back to use the other cache

12.8.1 Concurrency

Conan local cache support some degree of concurrency, allowing simultaneous creation or installation of different
packages, or building different binaries for the same package. However, concurrent operations like removal of packages
while creating them will fail. If you need different environments that operate totally independently, you probably want
to use different Conan caches for that.

The concurrency is implemented with a Readers-Writers lock mechanism, which in turn uses fasteners library file
locks to achieve multi-platform portability. As this “mutex” resource is by definition not enough to implement a
Readers-Writers solution, some active-wait with time sleeps in a loop is necessary. However, this time sleeps will
be rare, only sleeping when there is actually a collision and waiting on a lock.

The lock files will be stored inside each Pkg/version/user/channel folder in the local cache, in a rw file for locking
the entire package, or in a set of locks (one per each different binary package, under a subfolder called locks, with
each lock named with the binary ID of the package).

It is possible to disable the locking mechanism in conan.conf:

[general]
cache_no_locks = True

12.8. Conan local cache: concurrency, Continuous Integration, isolation 201




Conan Documentation, Release 1.60.2

12.8.2 System Requirements

When system_requirements () runs, Conan creates the system_reqs folder. This folder could be created individ-
ually by package id or globally when global_system_requirements is True.

However, sometimes you want to run system_requirements() again for a specific package, so you could either
remove the system_reqs. txt file for the specific package id, or you could remove system_reqs globally for the package
name referred.

202 Chapter 12. Mastering Conan



CHAPTER
THIRTEEN

SYSTEMS AND CROSS BUILDING

This section explains how to approach a cross building scenario with Conan and how to use the Windows subsystems
(Cygwin, MSYS2).

Todo: Maybe we should divide this section, create one for the general cross building problem and a different one to
talk about Windows subsystems.

13.1 Cross building

Cross building (or cross compilation) is the process of generating binaries for a platform that is not the one where the
compiling process is running.

Cross compilation is mostly used to build software for an alien device, such as an embedded device where you don’t
have an operating system nor a compiler available. It’s also used to build software for slower devices, like an Android
machine or a Raspberry Pi where running the native compilation will take too much time.

In order to cross build a codebase the right toolchain is needed, with a proper compiler (cross compiler), a linker and
the set of libraries matching the host platform.

13.1.1 GNU triplet convention

According to the GNU convention, there are three platforms involved in the software building:

¢ Build platform: The platform on which the compilation tools are being executed.

* Host platform: The platform on which the generated binaries will run.

* Target platform: Only when building a cross compiler, it is the platform it will generate binaries for.
Depending on the values of these platforms, there are different scenarios:

* Native building: when the build and the host platforms are the same, it means that the platform where the
compiler is running is the same one where the generated binaries will run. This is the most common scenario.

¢ Cross building: when the build and the host platform are different, it requires a cross compiler running in the
build platform that generates binaries for the host platform.

The target platform plays an important role when compiling a cross compiler, in that scenario the target is the
platform the compiler will generate binaries for: in order to be a cross compiler the host platform (where the cross
compiler will run) has to be different from the target platform. If the build platform is also different, it is called
Canadian Cross.

Let’s illustrate these scenarios with some examples:

203



Conan Documentation, Release 1.60.2

* The Android NDK is a cross compiler to Android: it can be executed in Linux (the build platform) to generate
binaries for Android (the host platform).

* The Android NDK was once compiled, during that compilation a different compiler was used running in a build
platform (maybe Windows) to generate the actual Android NDK that will run in the host platform Linux, and as
we saw before, that Android NDK cross compiler will generate binaries for a target platform which is Android.

The values of the build , host and target platforms are not absolute, and they depend on the process we are
talking about: the host when compiling a cross compiler turns into the build when using that same cross compiler,
or the target of the cross compiler is the host platform when we are using it to build binaries.

See also:

One way to avoid this complexity is to run the compilation in the host platform, so both build and host will take the
same value and it will be a native compilation.

13.1.2 Cross building with Conan

Caution: We are actively working to finalize the Conan 2.0 Release. Some of the information on this page
references deprecated features which will not be carried forward with the new release. It’s important to check the
Migration Guidelines to ensure you are using the most up to date features.

If you want to cross build a Conan package (for example using your Linux machine) to build the z1ib Conan package
for Windows, you need to tell Conan where to find your toolchain/cross compiler.

There are two approaches:

 Using a profile: install the toolchain in your computer and use a profile to declare the settings and point to the
needed tools/libraries in the toolchain using the [env] section to declare, at least, the CC and CXX environment
variables.

» Using tool requires: package the toolchain as a Conan package and include it as a tool_requires.

Using a profile

Using a Conan profile we can declare not only the settings that will identify our binary (host settings), but also all
the environment variables needed to use a toolchain or cross compiler. The profile needs the following sections:

* A [settings] section containing the regular settings: os, arch, compiler and build_type depending on your
library. These settings will identify your binary.

* An [env] section with a PATH variable pointing to your installed toolchain. Also any other variable that the
toolchain expects (read the docs of your compiler). Some build systems need a variable SYSROOT to locate
where the host system libraries and tools are.

For example, in the following profile we declare the host platform to be Windows x86_64 with the compiler, version
and other settings we are using. And we add the [env] section with all the variables needed to use an installed toolchain:

toolchain=/usr/x86_64-w64-mingw32 # Adjust this path
target_host=x86_64-w64-mingw32

cc_compiler=gcc

cxx_compiler=g++

[env]
CONAN_CMAKE_FIND_ROOT_PATH=$toolchain # Optional, for CMake to find things in that.

(continues on next page)

204 Chapter 13. Systems and cross building




Conan Documentation, Release 1.60.2

(continued from previous page)
—folder
CONAN_CMAKE_SYSROOT=$toolchain # Optional, if we want to define sysroot
CHOST=$target_host
AR=$target_host-ar
AS=$target_host-as
RANLIB=$target_host-ranlib
CC=$target_host-$cc_compiler
CXX=$target_host-$cxx_compiler
STRIP=$target_host-strip
RC=$target_host-windres

[settings]

# We are cross-building to Windows
os=Windows

arch=x86_64

compiler=gcc

# Adjust to the gcc version of your MinGW package
compiler.version=7.3

compiler.libcxx=1libstdc++11

build_type=Release

You can find working examples at the bottom of this section.

Using tool requires

Important: The tool requirement was formerly named “build requirement” and has been renamed to highlight that
the usage of this kind of requirement must be for “tools” exclusively, not being valid for libraries to express a “private”
require or other meanings.

Warning: This section refers to the feature that is activated when using --profile:build and --profile:host
in the command-line.

Instead of manually downloading the toolchain and creating a profile, you can create a Conan package with it. Starting
with Conan v1.24 and the command line arguments --profile:host and --profile:build this should be a regular
recipe, for older versions some more work is needed.

Conan v1.24 and newer

Caution: We are actively working to finalize the Conan 2.0 Release. Some of the information on this page
references deprecated features which will not be carried forward with the new release. It’s important to check the
Migration Guidelines to ensure you are using the most up to date features.

A recipe with a toolchain is like any other recipe with a binary executable:

13.1. Cross building 205




Conan Documentation, Release 1.60.2

import os
from conans import ConanFile

class MyToolchainXXXConan(ConanFile):

name = "my_toolchain"
version = "0.1"
settings = "os", "arch", "compiler", "build_type"

# Implement source() and build() as usual

def package(self):
# Copy all the required files for your toolchain
self.copy("*", dst="", src="toolchain")

def package_info(self):
bin_folder = os.path.join(self.package_folder, "bin")
self.env_info.CC = os.path.join(bin_folder, "mycompiler-cc")
self.env_info.CXX = os.path.join(bin_folder, "mycompiler-cxx")
self.env_info.SYSROOT = self.package_folder

The Conan package with the toolchain needs to fill the env_info object in the package_info() method with the same
variables we’ve specified in the examples above in the [env] section of profiles.

Then you will need to consume this recipe as any regular tool requires that belongs to the build context: you need to
use the --profile:build argument in the command line while creating your library:

conan create path/to/conanfile.py --profile:build=profile_build --profile:host=profile_
—host

Build context | my_toolchain
A

build_requires

Host context conanfile.py

The profile profile_build will contain just the settings related to your build platform, where you are running the
command, and the profile_host will list the settings for the host platform (and eventually the my_toolchain/0.1
as tool_requires if it is not listed in the recipe itself).

Conan will apply the appropriate profile to each recipe, and will inject the environment of all the tool requirements
that belong to the build context before running the build() method of the libraries being compiled. That way,

206 Chapter 13. Systems and cross building



Conan Documentation, Release 1.60.2

the environment variables CC, CXX and SYSROOT from my_toolchain/®.1 will be available and also the path to the
bindirs directory from that package.

The above means that Conan is able to compile the full graph in a single execution, it will compile the tool re-
quires using the profile_build and then it will compile the libraries using the host_profile settings applying the
environment of the former ones.

Starting with Conan v1.25 (if the user provides the --profile:build) it is possible to get the relative context where a
recipe is running during a Conan invocation. The object instantiated from the recipe contains the following attributes:

* self.settings will always contain the settings corresponding to the binary to build/retrieve. It will contain
the settings from the profile profile_host when this recipe appears in the host context and the settings from
the profile profile:build if this object belongs to the build context.

* self.settings_build will always contain the settings provided in the profile profile_build, even if the
recipe appears in the build context, the tool requirements of the tool requirements are expected to run in the
build machine too.

* self.settings_target: for recipes in the host context this attribute will be equal to None, for those in the
build context, if will depend on the level of validation:

— for recipes that are tool requirements of packages in the host context, this attribute will contain the settings
from the profile profile_host, while

— for recipes that are tool requirements of other tool requirements the self.settings_target will contain
the values of the profile_build.

With previous attributes, a draft for a recipe that packages a cross compiler could follow this pattern:

class CrossCompiler(ConanFile):
name = "my_compiler"
settings = "os", "arch", "compiler", "build_type"
options = {"target": [None, "ANY"]}
default_options = {"shared": False, "target": None}

def validate(self):
settings_target = getattr(self, 'settings_target', None)
if settings_target is None:
# It is running in 'host', so Conan is compiling this package
if not self.options.target:
raise ConanInvalidConfiguration("A value for option 'target' has to be.
<provided™)
else:
# It is running in 'build' and it is being used as a BR, 'target' can be_
—inferred from settings
if self.options.target:
raise ConanInvalidConfiguration("Value for the option 'target' will be.
—computed from settings_target")
self.options.target = "<target-value>" # Use 'self.settings_target' to get.
—this value

13.1. Cross building 207




Conan Documentation, Release 1.60.2

Conan older than v1.24

Warning: We ask you to use the previous approach for Conan 1.24 and newer, and avoid any specific modification
of your recipes to make them work as tool requirements in a cross building scenario.

With this approach, only one profile is provided in the command line (the --profile:host or just --profile) and
it has to define the os_build and arch_build settings too. The recipe of this tool requires has to be modified to take
into account these settings and the compiler and build_type settings have to be removed because their values for
the build platform are not defined in the profile:

from conans import ConanFile
import os

class MyToolchainXXXConan(ConanFile):
name = "my_toolchain"
version = "0.1"
settings = "os_build", "arch_build"

# As typically, this recipe doesn't declare 'compiler' and 'build_type’,
# the source() and build() methods need a custom implementation
def build(self):
# Typically download the toolchain for the 'build' platform
url = "http://fake_url.com/installers/%s/%s/toolchain.tgz" % (os_build, os_arch)
tools.download(url, "toolchain.tgz")
tools.unzip("toolchain.tgz")

def package(self):
# Copy all the required files for your toolchain
self.copy("*", dst="", src="toolchain")

def package_info(self):
bin_folder = os.path.join(self.package_folder, "bin")
self.env_info.PATH.append(bin_folder)
self.env_info.CC = os.path.join(bin_folder, "mycompiler-cc")
self.env_info.CXX = os.path.join(bin_folder, "mycompiler-cxx")
self.env_info.SYSROOT = self.package_folder

With this approach we also need to add the path to the binaries to the PATH environment variable. The one and only
profile has to include a [tool_requires] section with the reference to our new packaged toolchain and it will also
contain a [settings] section with the regular settings plus the os_build and arch_build ones.

This approach requires a special profile, and it needs a modified recipe without the compiler and build_type settings,
Conan can still compile it from sources but it won’t be able to identify the binary properly and it can be really to tackle
if the tool requirements has other Conan dependencies.

208 Chapter 13. Systems and cross building




Conan Documentation, Release 1.60.2

Host settings os_build, arch_build, os_target and arch_target

Caution: We are actively working to finalize the Conan 2.0 Release. Some of the information on this page
references deprecated features which will not be carried forward with the new release. It’s important to check the
Migration Guidelines to ensure you are using the most up to date features.

Before Conan v1.24 the recommended way to deal with cross building was to use some extra settings like os_build,
arch_buildand os_target and arch_target. These settings have a special meaning for some Conan tools and build
helpers, but they also need to be listed in the recipes themselves creating a dedicated set of recipes for installers and fools
in general. This approach should be superseded with the introduction in Conan 1.24 of the command line arguments
--profile:host and --profile:build that allow to declare two different profiles with all the information needed
for the corresponding platforms (see section above this one).

The meaning of those settings is the following:

* The settings os_build and arch_build identify the build platform according to the GNU convention triplet.
These settings are detected the first time you run Conan with the same values than the host settings, so by
default, we are doing native building. You will probably never need to change the value of this setting because
they describe where are you running Conan.

* The settings os_target and arch_target identify the target platform. If you are building a cross compiler,
these settings specify where the compiled code will run.

The rest of settings, as we already know, identify the host platform.

13.1.3 ARM architecture reference
Remember that the Conan settings are intended to unify the different names for operating systems, compilers, architec-
tures etc.

Conan has different architecture settings for ARM: armv6, armv7, armv7hf, armv8. The “problem” with ARM archi-
tecture is that it’s frequently named in different ways, so maybe you are wondering what setting do you need to specify
in your case.

Here is a table with some typical ARM platforms:

Platform Conan setting

Raspberry PI 1 armvé6

Raspberry PI 2 armv7 or armv7hf if we want to use the float point hard support

Raspberry PI 3 armv8 also known as armv64-v8a

Visual Studio armv?7 currently Visual Studio builds armv7 binaries when you select ARM.

Android armbeabi-v7a armv7
Android armv64-v8a armv8
Android armeabi armv6 (as a minimal compatible, will be compatible with v7 too)

13.1. Cross building 209



Conan Documentation, Release 1.60.2

13.1.4 Examples

Examples using profiles

Linux to Windows

¢ Install the needed toolchain, in Ubuntu:

[sudo apt-get install g++-mingw-w64 gcc-mingw-w64

¢ Create a file named linux_to_win64 with the contents:

toolchain=/usr/x86_64-w64-mingw32 # Adjust this path
target_host=x86_64-w64-mingw32

cc_compiler=gcc

cxx_compiler=g++

[env]

CONAN_CMAKE_FIND_ROOT_PATH=$toolchain # Optional, for CMake to find things in that.
—folder

CONAN_CMAKE_SYSROOT=$toolchain # Optional, if we want to define sysroot
CHOST=$target_host

AR=$target_host-ar

AS=$target_host-as

RANLIB=$target_host-ranlib

CC=$target_host-$cc_compiler

CXX=$target_host-$cxx_compiler

STRIP=$target_host-strip

RC=$target_host-windres

[settings]

# We are cross-building to Windows
os=Windows

arch=x86_64

compiler=gcc

# Adjust to the gcc version of your MinGW package
compiler.version=7.3

compiler.libcxx=libstdc++11

build_type=Release

* Clone an example recipe or use your own recipe:

git clone https://github.com/memsharded/conan-hello.git

¢ Call conan create using the created linux_to_win64

$ cd conan-hello &% conan create . conan/testing --profile ../linux_to_win64

[ 50%] Building CXX object CMakeFiles/example.dir/example.cpp.obj
[100%] Linking CXX executable bin/example.exe
[100%] Built target example

A bin/example.exe for Win64 platform has been built.

210 Chapter 13. Systems and cross building



Conan Documentation, Release 1.60.2

Windows to Raspberry Pi (Linux/ARM)

¢ Install the toolchain: https://gnutoolchains.com/raspberry/ You can choose different versions of the GCC cross
compiler. Choose one and adjust the following settings in the profile accordingly.

* Create a file named win_to_rpi with the contents:

rtarget_host:arm—1inux—gnueabihf
standalone_toolchain=C:/sysgcc/raspberry
cc_compiler=gcc

cxx_compiler=g++

[settings]

os=Linux

arch=armv7 # Change to armv6 if you are using Raspberry 1
compiler=gcc

compiler.version=6

compiler.libcxx=libstdc++11

build_type=Release

[env]
CONAN_CMAKE_FIND_ROOT_PATH=$standalone_toolchain/$target_host
CONAN_CMAKE_SYSROOT=$standalone_toolchain/$target_host/sysroot
PATH=[$standalone_toolchain/bin]

CHOST=$target_host

AR=$target_host-ar

AS=$target_host-as

RANLIB=$target_host-ranlib

LD=$target_host-1d

STRIP=$target_host-strip

CC=$target_host-$cc_compiler

CXX=$target_host-$cxx_compiler
CXXFLAGS=-I"$standalone_toolchain/$target_host/lib/include"

The profiles to target Linux are all very similar. You probably just need to adjust the variables declared at the top of
the profile:

* target_host: All the executables in the toolchain starts with this prefix.
¢ standalone_toolchain: Path to the toolchain installation.
¢ cc_compiler/cxx_compiler: In this case gcc/g++, but could be clang/clang++.

* Clone an example recipe or use your own recipe:

[git clone https://github.com/memsharded/conan-hello.git }

 Call conan create using the created profile.

$ cd conan-hello && conan create . conan/testing --profile=../win_to_rpi

[ 50%] Building CXX object CMakeFiles/example.dir/example.cpp.obj
[100%] Linking CXX executable bin/example
[100%] Built target example

A bin/example for Raspberry PI (Linux/armv7hf) platform has been built.

13.1. Cross building 211


https://gnutoolchains.com/raspberry/

Conan Documentation, Release 1.60.2

Windows to Windows CE

The Windows CE (WinCE) operating system is supported for CMake and MSBuild. Since WinCE depends on the
MSVC compiler, Visual Studio and the according Windows CE platform SDK for the WinCE device have to be installed
on the build host.

The os.platform defines the WinCE Platform SDK and is equal to the Platform in Visual Studio.
Some examples for Windows CE platforms:
e SDK_AM335X_SK_WEC2013_V310
e STANDARDSDK_500 (ARMV4I)
e Windows Mobile 5.0 Pocket PC SDK (ARMV4I)
e Toradex_CE800 (ARMV7)
The os.version defines the WinCE version and must be "5.0", "6.0" or "7.0".
CMake supports Visual Studio 2008 (compiler.version=9) and Visual Studio 2012 (compiler.version=11).

Example of an Windows CE conan profile:

[settings]

os=WindowsCE

os.version=8.0
os.platform=Toradex_CE800 (ARMV?7)
arch=armv7

compiler=Visual Studio
compiler.version=11

# Release configuration
build_type=Release
compiler.runtime=MD

Note: Further information about CMake and WinCE can be found in the CMake documentation:

CMake - Cross Compiling for Windows CE

Linux/Windows/macOS to Android

Caution: We are actively working to finalize the Conan 2.0 Release. Some of the information on this page
references deprecated features which will not be carried forward with the new release. It’s important to check the
Migration Guidelines to ensure you are using the most up to date features.

Cross-building a library for Android is very similar to the previous examples, except the complexity of managing
different architectures (armeabi, armeabi-v7a, x86, arm64-v8a) and the Android API levels.

Download the Android NDK here and unzip it.

Note: If you are in Windows the process will be almost the same, but unzip the file in the root folder of your hard disk
(C:\) to avoid issues with path lengths.

212 Chapter 13. Systems and cross building



https://cmake.org/cmake/help/latest/manual/cmake-toolchains.7.html#cross-compiling-for-windows-ce
https://developer.android.com/ndk/downloads

Conan Documentation, Release 1.60.2

Note: If you are using Android Studio, you may use already available Android NDK

To use the clang compiler, create a profile android_21_arm_clang. Once again, the profile is very similar to the
RPI one:

include(default)

target_host=aarch64-linux-android
android_ndk=/Users/sse4/Library/Android/sdk/ndk-bundle # Adjust this path
api_level=21

[settings]

arch=armv8

build_type=Release

compiler=clang

compiler.libcxx=libc++

compiler.version=9

os=Android

os.api_level=$api_level

[tool_requires]

[options]

[env]

PATH=[$android_ndk/toolchains/l1lvm/prebuilt/darwin-x86_64/bin] # Adjust this path
CHOST=$target_host

AR=$target_host-ar

AS=$target_host-as

RANLIB=$target_host-ranlib

CC=$target_host$api_level-clang

CXX=$target_host$api_level-clang++

LD=$target_host-1d

STRIP=$target_host-strip
CONAN_CMAKE_TOOLCHAIN_FILE=$android_ndk/build/cmake/android.toolchain.cmake

* Clone, for example, the zlib library to try to build it to Android

[git clone https://github.com/conan-io/conan-center-index.git

» Call conan create using the created profile.

$ cd conan-center-index/recipes/zlib/1.2.11 & conan create . 1.2.11@ -pr:h ../android_
—.21_arm_clang -pr:b default

-- Build files have been written to: /tmp/conan-zlib/test_package/build/
—ba®b9dbae0®576b9a23ce7005180b00e4fdef1198

Scanning dependencies of target enough

[ 50%] Building C object CMakeFiles/enough.dir/enough.c.o

[100%] Linking C executable bin/enough

[100%] Built target enough

z1ib/1.2.11 (test package): Running test()

A bin/enough for Android ARM platform has been built.

13.1. Cross building 213


https://developer.android.com/studio

Conan Documentation, Release 1.60.2

Examples using tool requires

You can find one example on how to use tool requires for cross-compiling to iOS in the iOS integration section in the
documentation.

See also:

* Check the Creating conan packages to install dev tools to learn more about how to create Conan packages for
tools.

¢ Check the msys?2 tool require recipe as an example of packaging a compiler.
See also:
Reference links
ARM

¢ https://developer.arm.com/documentation/dui0773/j/compiling-c-and-c—code/specifying-a-target-
architecture—processor—and-instruction-set

* https://developer.arm.com/documentation/dui0472/latest/compiler-command-line-options
ANDROID

* https://developer.android.com/ndk/guides/standalone_toolchain
VISUAL STUDIO

¢ https://docs.microsoft.com/en-us/visualstudio/msbuild/msbuild-command-line-reference ?view=vs-2017
See also:

» See conan.conf file and Environment variables sections to know more.

» See AutoToolsBuildEnvironment build helper reference.

e See CMake build helper reference.

* See CMake cross-building wiki to know more about cross-building with CMake.

13.2 Windows Subsystems

On Windows, you can run different subsystems that enhance the operating system with UNIX capabilities.
Conan supports MSYS2, CYGWIN, WSL and in general any subsystem that is able to run a bash shell.
Many libraries use these subsystems in order to use the Unix tools like the Autoconf suite that generates Makefiles.

The difference between MSYS2 and CYGWIN is that MSYS?2 is oriented to the development of native Windows pack-
ages, while CYGWIN tries to provide a complete POSIX-like system to run any Unix application on it.

For that reason, we recommend the use of MSYS2 as a subsystem to be used with Conan.

214 Chapter 13. Systems and cross building


https://github.com/conan-io/conan-center-index/blob/master/recipes/msys2/all/conanfile.py
https://developer.arm.com/documentation/dui0773/j/compiling-c-and-c---code/specifying-a-target-architecture--processor--and-instruction-set
https://developer.arm.com/documentation/dui0773/j/compiling-c-and-c---code/specifying-a-target-architecture--processor--and-instruction-set
https://developer.arm.com/documentation/dui0472/latest/compiler-command-line-options
https://developer.android.com/ndk/guides/standalone_toolchain
https://docs.microsoft.com/en-us/visualstudio/msbuild/msbuild-command-line-reference?view=vs-2017
https://vtk.org/Wiki/CMake_Cross_Compiling

Conan Documentation, Release 1.60.2

13.2.1 Operation Modes

The MSYS2 and CYGWIN can be used with different operation modes:
* You can use them together with MinGW to build Windows-native software.
* You can use them together with any other compiler to build Windows-native software, even with Visual Studio.

* You can use them with MinGW to build specific software for the subsystem, with a dependency to a runtime
DLL (msys-2.0.d11 and cygwinl.dll)

If you are building specific software for the subsystem, you have to specify a value for the setting os.subsystem, if
you are only using the subsystem for taking benefit of the UNIX tools but generating native Windows software, you
shouldn’t specify it.

13.2.2 Running commands inside the subsystem

self.win_bash

Available since: 1.39.0

Important: This feature is still under development, while it is recommended and usable and we will try not to break
them in future releases, some breaking changes might still happen if necessary to prepare for the Conan 2.0 release.

This is a feature that supersedes the run(..., win_bash=True) argument but if the run(..., win_bash=True)
is used, it will have priority so the compatibility with the previous behavior is guaranteed.

The self.win_bash is an attribute of the conanfile, when set to True and only when running in Windows (you don’t
need to check if you are in Windows), it will run the self.run() commands inside a bash shell.

Note: The bash.exe that will run is not auto-detected or read from the CONAN_BASH_PATH anymore, neither the
subsystem to be used. These are the config variables used:

¢ tools.microsoft.bash:subsystem: Values can be msys2, cygwin, msys and wsl.
e tools.microsoft.bash:path: Path to the bash.exe

* tools.microsoft.bash:active: Define if Conan is already running inside the specific subsystem.

The new Autotools, AutotoolsToolchain, AutotoolsDeps and PkgConfigDeps will work automatically when self.
win_bash is set.

self.win_bash_run

This is identical to the above self.win_bash, but applies to execution of commands in the “run” scope, so self.
run(cmd, scope="run") will run such <cmd> inside a bash shell if win_bash_run==True.

13.2. Windows Subsystems 215


https://github.com/conan-io/conan/releases/tag/1.39.0

Conan Documentation, Release 1.60.2

self.run()

In a Conan recipe, you can use the self.run method specifying the parameter win_bash=True that will call auto-
matically to the tool rools.run_in_windows_bash.

It will use the bash in the path or the bash specified for the environment variable CONAN_BASH_PATH to run the
specified command.

Conan will automatically escape the command to match the detected subsystem. If you also specify the msys_mingw
parameter to False, and the subsystem is MSYS2 it will run in Windows-native mode, the compiler won’t link against
the msys-2.0.d11.

AutoToolsBuildEnvironment

Note: From Conan 1.39 the new Aufotools build helper will use the self.win_bash conanfile attribute (see above)
to adjust automatically all the paths to the subsystem.

In the constructor of the build helper, you have the win_bash parameter. Set it to True to run the configure and
make commands inside a bash.

13.2.3 Controlling the build environment

Warning: Some parts of this section are deprecated. Please refer to the Migration Guidelines to find the feature
that will carry over.

Building software in a Windows subsystem for a different compiler than MinGW can sometimes be painful. The reason
is how the subsystem finds your compiler/tools in your system.

For example, the icu library requires Visual Studio to be built in Windows, but also a subsystem able to build the
Makefile. A very common problem and example of the pain is the 1ink.exe program. In the Visual Studio suite,
link.exe is the linker, but in the MSYS2 environment the 1ink.exe is a tool to manage symbolic links.

Conan is able to prioritize the tools when you use tool_requires, and put the tools in the PATH in the right order.
There are some packages you can use as tool_requires:
* From ConanCenter:
— mingw-w64/8.1: MinGW compiler installer as a Conan package.
— msys2/20190524@: MSYS2 subsystem as a Conan package (Conan Center Index).
— cygwin_installer/2.9.0 @bincrafters/stable: Cygwin subsystem as a Conan package.

For example, create a profile and name it msys2_mingw with the following contents:

[tool_requires]
mingw_installer/1.0@conan/stable
msys2/20190524

[settings]
os_build=Windows
os=Windows

(continues on next page)

216 Chapter 13. Systems and cross building



http://site.icu-project.org

Conan Documentation, Release 1.60.2

(continued from previous page)

arch=x86_64
arch_build=x86_64
compiler=gcc
compiler.version=4.9
compiler.exception=seh
compiler.libcxx=1libstdc++11
compiler.threads=posix
build_type=Release

Then you can have a conanfile.py that can use self.run() with win_bash=True to run any command in a bash
terminal or use the AutoToolsBuildEnvironment to invoke configure/make in the subsystem:

from conans import ConanFile
import os

class MyToolchainXXXConan(ConanFile):
name = "mylib"
version = "0.1"

def build(self):
self.run("some_command", win_bash=True)

env_build = AutoToolsBuildEnvironment(self, win_bash=True)
env_build.configure()
env_build.make()

Apply the profile in your recipe to create a package using the MSYS2 and MINGW:

[$ conan create . user/testing --profile msys2_mingw

As we included in the profile the MinGW and then the MSYS2 build_require, when we run a command, the PATH will
contain first the MinGW tools and finally the MSYS2.

What could we do with the Visual Studio issue with link.exe? You can pass an additional parameter to
run_in_windows_bash with a dictionary of environment variables to have more priority than the others:

def build(self):

# ...

vs_path = tools.vcvars_dict(self) ["PATH"] # Extract the path from the vcvars_dict.
—tool

tools.run_in_windows_bash(self, command, env={"PATH": vs_path})

So you will get first the 1ink.exe from the Visual Studio.

Also, Conan has a tool tools.remove_£from_path that you can use in a recipe to temporarily remove a tool from the
path if you know that it can interfere with your build script:

class MyToolchainXXXConan(ConanFile):
name = "mylib"
version = "0.1"
(continues on next page)

13.2. Windows Subsystems 217



Conan Documentation, Release 1.60.2

(continued from previous page)

def build(self):
with tools.remove_from_path("link"):
# Call something
self.run("some_command", win_bash=True)

218 Chapter 13. Systems and cross building




CHAPTER
FOURTEEN

EXTENDING CONAN

This section provides an introduction to extension capabilities of Conan:

14.1 Customizing settings

There is a file in <userhome>/.conan/settings.yml that contains a default definition of the allowed settings values
for Conan package recipes. It looks like:

0s:
Windows:
subsystem: [None, cygwin, msys, msys2, wsl]
Linux:
Macos:
version: [None, "10.6", "10.7", "10.8", "10.9", "10.10", "10.11", "10.12", "10.13
<", "10.14"]
Android:
api_level: ANY
i0S:
version: ["7.0", "7.1", "8.0", "8.1", "8.2", "8.3", "9.0", "9.1", "9.2", "9.3",
-"10.0", "10.1", "10.2", "10.3", "11.0", "11.1", "11.2", "11.3", "11.4", "12.0", "12.1"]
watchOS:
version: ["4.0", "4.1", "4.2", "4.3", "5.0", "5.1"]
FreeBSD:
SunOS:
Emscripten:
arch: [x86, x86_64, ppc32, ppc6d4le, ppcb4, armv4, armv4i, armv5el, armvShf, armve, armv?,
<« armv7hf, armv7s, armv7k, armv8, armv8_32, armv8.3, sparc, sparcv9, mips, mips64, avr,.
-s390, s390x, asm.js, wasm]
compiler:
gcc:
version: ["4.1", "4.4", "4.5", "4.6", "4.7", "4.8", "4.9",
"s", "5.1", "5.2", "5.3", "5.4", "5.5",
"6", "6.1", "6.2", "6.3", "6.4",
“7v, "7.1", "r7.2", "7.3",
"8", "8.1", "8.2",
"g"]
libcxx: [libstdc++, libstdc++11]
threads: [None, posix, win32] # Windows MinGW
exception: [None, dwarf2, sjlj, seh] # Windows MinGW
cppstd: [None, 98, gnu98, 11, gnull, 14, gnul4, 17, gnul7, 20, gnu20]

(continues on next page)

219




Conan Documentation, Release 1.60.2

(continued from previous page)
Visual Studio:
runtime: [MD, MT, MTd, MDd]
version: ["8", "9", "10", "11", "12", "14", "15", "16"]
toolset: [None, v90, v100, v110, v110_xp, v120, v120_xp,
v140, v140_xp, v140_clang_c2, LLVM-vs2012, LLVM-vs2012_xp,
LLVM-vs2013, LLVM-vs2013_xp, LLVM-vs2014, LLVM-vs2014_xp,
LLVM-vs2017, LLVM-vs2017_xp, v141, v141_xp, v141l_clang_c2, vl14z,
11lvm, ClangCL]
cppstd: [None, 14, 17, 20]

This are the default settings and values. They are a common syntax and notation for having package binary IDs that
are common to all developers. They are also used for validation, for example if you write in a profile [settings]
something like os=Windos (note the typo), then it will raise an error, telling you it is not a recognized os and offering
a list of available os. Also, note how the sub-settings are different for different platforms, for example the standard
C++ library (compiler.libcxx) exists for the gcc compiler, but not for Visual Studio compiler. And in the same
way, Visual Studio has a runtime sub-setting that is missing in gcc. Trying to incorrectly use or define these
sub-settings in the wrong compiler will also raise an error.

These settings are good for defining a base for Open Source packages, and for a large number of mainstream configu-
rations. But it is likely that you might need finer detail of definition of the binaries that are being created.

For example, it is possible that you are managing binaries for older Linux distros, like RHEL 6, or old Centos, besides
other modern distributions. The problem is that the binaries compiled for modern distributions will not work (will not
be binary compatible, or ABI incompatible) in those older distributions, mainly because of different versions of glibc.
We would need a way to model the differences of the binaries for those platforms. Check out the section Deployment
challenges which explains mentioned situation in detail.

14.1.1 Adding new settings

It is possible to add new settings at the root of the settings.yml file, something like:

0Ss:
Windows:
subsystem: [None, cygwin, msys, msys2, wsl]
distro: [None, RHEL6, CentOS, Debian]

If we want to create different binaries from our recipes defining this new setting, we would need to add to our recipes
that:

class Pkg(ConanFile):

settings = "os", "compiler", "build_type", "arch", "distro"

The value None allows for not defining it (which would be a default value, valid for all other distros). It is possible to
define values for it in the profiles:

[settings]

os = "Linux"
distro = "CentOS"
compiler = "gcc"

And use their values to affect our build if desired:

220 Chapter 14. Extending Conan




Conan Documentation, Release 1.60.2

class Pkg(ConanFile):
settings = "os", "compiler", "build_type", "arch", "distro"
def build(self):
cmake = CMake(self)
if self.settings.distro == "Cent0S":
cmake.definitions["SOME_CENTOS_FLAG"] = "Some CentOS Value"

14.1.2 Adding new sub-settings

The above approach requires modification to all recipes to take it into account. It is also possible to define kind of
incompatible settings, like os=Windows and distro=Cent0S. While adding new settings is totally possible, it might
make more sense for other cases, but for this example it is more adequate to add it as above subsetting of the Linux
0OS:

0s:
Windows:
subsystem: [None, cygwin, msys, msys2, wsl]
Linux:
distro: [None, RHEL6, CentOS, Debian]

With this definition we could define our profiles as:

[settings]

os = "Linux"
os.distro = "CentOS"
compiler = "gcc"

And any attempt to define os.distro for another os value rather than Linux will raise an error.

As this is a subsetting, it will be automatically taken into account in all recipes that declare an os setting. Note that
having a value of distro=None possible is important if you want to keep previously created binaries, otherwise you
would be forcing to always define a specific distro value, and binaries created without this subsetting, won’t be usable
anymore.

The sub-setting can also be accessed from recipes:

class Pkg(ConanFile):
settings = "os", "compiler", "build_type", "arch" # Note, no "distro" defined here
def build(self):
cmake = CMake(self)
if self.settings.os == "Linux" and self.settings.os.distro == "Cent0S":
cmake.definitions["SOME_CENTOS_FLAG"] = "Some CentOS Value"

14.1. Customizing settings 221




Conan Documentation, Release 1.60.2

14.1.3 Add new values

In the same way we have added a new distro subsetting, it is possible to add new values to existing settings and
subsettings. For example, if some compiler version is not present in the range of accepted values, you can add those
new values.

You can also add a completely new compiler:

0s:
Windows:
subsystem: [None, cygwin, msys, msys2, wsl]
compiler:
gcc:
mycompiler:

version: [1.1, 1.2]
Visual Studio:

This works as the above regarding profiles, and the way they can be accessed from recipes. The main issue with
custom compilers is that the builtin build helpers, like CMake, MSBuild, etc, internally contains code that will check
for those values. For example, the MSBuild build helper will only know how to manage the Visual Studio setting
and sub-settings, but not the new compiler. For those cases, custom logic can be implemented in the recipes:

class Pkg(ConanFile):

settings = "os", "compiler", "build_type", "arch"

def build(self):
if self.settings.compiler == "mycompiler":
my_custom_compile = ["some", "--flags", "for", "--my=compiler"]

self.run(["mycompiler", "."] + my_custom_compile)

Note: You can also remove items from settings.yml file. You can remove compilers, OS, architectures, etc. Do that
only in the case you really want to protect against creation of binaries for other platforms other than your main supported
ones. In the general case, you can leave them, the binary configurations are managed in profiles, and you want to define
your supported configurations in profiles, not by restricting the settings.yml

Note: If you customize your settings.yml, you can share, distribute and sync this configuration with your team and CI
machines with the conan config install command.

14.2 Python requires

Important: This feature is still under development, while it is recommended and usable and we will try not to break
them in future releases, some breaking changes might still happen if necessary to prepare for the Conan 2.0 release.

Note: This syntax supersedes the legacy python_requires() syntax. The most important changes are:

222 Chapter 14. Extending Conan




Conan Documentation, Release 1.60.2

* These new python_requires affect the consumers package_id. So different binaries can be managed, and CI
systems can re-build affected packages according to package ID modes and versioning policies.

* The syntax defines a class attribute instead of a module function call, so recipes are cleaner and more aligned
with other types of requirements.

* The new python_requires will play better with lockfiles and deterministic dependency graphs.

* They are able to extend base classes more naturally without conflicts of ConanFile classes.

14.2.1 Introduction

The python_requires feature is a very convenient way to share files and code between different recipes. A python
requires is similar to any other recipe, it is the way it is required from the consumer what makes the difference.

A very simple recipe that we want to reuse could be:

from conans import ConanFile
myvar = 123

def myfunct():
return 234

class Pkg(ConanFile):
pass

And then we will make it available to other packages with conan export. Note that we are not calling conan create,
because this recipe doesn’t have binaries. It is just the python code that we want to reuse.

[$ conan export . pyreq/0.1@user/channel

We can reuse the above recipe functionality declaring the dependency in the python_requires attribute and we can
access its members using self.python_requires["<name>"].module:

from conans import ConanFile

class Pkg(ConanFile):
python_requires = "pyreq/0.1l@user/channel"

def build(self):
v = self.python_requires["pyreq"].module.myvar # v will be 123
f = self.python_requires["pyreq"].module.myfunct() # f will be 234
self.output.info("%s, "% (v, £))

$ conan create . pkg/0.1@user/channel

pkg/0.1@user/channel: 123, 234

It is also possible to require more than one python-require, and use the package name to address the functionality:

from conans import ConanFile

class Pkg(ConanFile):

(continues on next page)

14.2. Python requires 223



Conan Documentation, Release 1.60.2

(continued from previous page)

python_requires = "pyreq/0.l@user/channel", "other/l.2@user/channel"

def build(self):
v = self.python_requires["pyreq"].module.myvar # v will be 123
f = self.python_requires["other"].module.otherfunc("some-args")

14.2.2 Extending base classes

A common use case would be to declare a base class with methods we want to reuse in several recipes via inheritance.
We’d write this base class in a python-requires package:

from conans import ConanFile

class MyBase(object):
def source(self):
self.output.info("My cool source!")
def build(self):
self.output.info("My cool build!"™)
def package(self):
self.output.info("My cool package!")
def package_info(self):
self.output.info("My cool package_info!")

class PyReq(ConanFile):
name = "pyreq"
version = "0.1"

And make it available for reuse with:

[$ conan export . pyreq/0.l@user/channel

Note that there are two classes in the recipe file:
¢ MyBase is the one intended for inheritance and doesn’t extend ConanFile.

* PyReq is the one that defines the current package being exported, it is the recipe for the reference pyreq/0.
l@user/channel.

Once the package with the base class we want to reuse is available we can use it in other recipes to inherit the function-
ality from that base class. We’d need to declare the python_requires as we did before and we’d need to tell Conan
the base classes to use in the attribute python_requires_extend. Here our recipe will inherit from the class MyBase:

from conans import ConanFile

class Pkg(ConanFile):
python_requires = "pyreq/0.1l@user/channel"
python_requires_extend = "pyreq.MyBase"

The resulting inheritance is equivalent to declare our Pkg class as class Pkg(pyreq.MyBase, ConanFile). So
creating the package we can see how the methods from the base class are reused:

$ conan create . pkg/0.1l@user/channel

(continues on next page)

224 Chapter 14. Extending Conan



Conan Documentation, Release 1.60.2

(continued from previous page)
pkg/0.1@user/channel: My cool source!
pkg/0.1@user/channel: My cool build!
pkg/0.1@user/channel: My cool package!
pkg/0.1@user/channel: My cool package_info!

If there is extra logic needed to extend from a base class, like composing the base class settings with the current recipe,
the init () method can be used for it:

class PkgTest(ConanFile):

license = "MIT"

settings = "arch", # tuple!

python_requires = "base/1.1l@user/testing"
python_requires_extend = "base.MyConanfileBase"

def init(self):
base = self.python_requires["base"].module.MyConanfileBase
self.settings = base.settings + self.settings # Note, adding 2 tuples = tuple
self.license = base.license # License is overwritten

For more information about the init () method visit init()

Limitations

There are a few limitations that should be taken into account:
* name and version fields shouldn’t be inherited. set_name() and set_version() might be used.

e short_paths cannot be inherited from a python_requires. Make sure to specify it directly in the recipes that
need the paths shortened in Windows.

* exports, exports_sources shouldn’t be inherited from a base class, but explicitly defined directly in the
recipes. A reusable alternative might be using the SCM component.

e build_policy shouldn’t be inherited from a base class, but explicitly defined directly in the recipes.

* Mixing Python inheritance with python_requires_extend should be avoided, because the inheritance order
can be different than the expected one. Multiple level python_requires_extend might be possible, but don’t
mix both approaches (also in general try to avoid multiple inheritance and multiple level hierarchies, try to keep
it simple).

14.2.3 Reusing files

It is possible to access the files exported by a recipe that is used with python_requires. We could have this recipe,
together with a myfile.txt file containing the “Hello” text.

from conans import ConanFile

class PyReq(ConanFile):
exports = "*"

$ echo "Hello" > myfile.txt
$ conan export . pyreq/0.l@user/channel

14.2. Python requires 225



Conan Documentation, Release 1.60.2

Now the recipe has been exported, we can access its path (the place where myfile.txt is) with the path attribute:

import os
from conans import ConanFile, load

class Pkg(ConanFile):
python_requires = "pyreq/0.l@user/channel”

def build(self):
pyreq_path = self.python_requires["pyreq"].path
myfile_path = os.path.join(pyreq_path, "myfile.txt")
content = load(myfile_path) # content = "Hello"
self.output.info(content)
# we could also copy the file, instead of reading it

Note that only exports work for this case, but not exports_sources.

14.2.4 PackagelD

The python_requires will affect the package_id of the packages using those dependencies. By default, the policy
is minor_mode, which means:

* Changes to the patch version of a python-require will not affect the package ID. So depending on "pyreq/1.
2.3" or "pyreq/1.2.4" will result in identical package ID (both will be mapped to "pyreq/1.2.Z" in the
hash computation). Bump the patch version if you want to change your common code, but you don’t want the
consumers to be affected or to fire a re-build of the dependants.

 Changes to the minor or major version will produce a different package ID. So if you depend on "pyreq/1.
2.3", and you bump the version to "pyreq/1.3.0", then, you will need to build new binaries that are using
that new python-require. Bump the minor or major version if you want to make sure that packages requiring this
python-require will be built using these changes in the code.

* Both changing the minor and major requires a new package ID, and then a build from source. You could use
changes in the minor to indicate that it should be source compatible, and consumers wouldn’t need to do changes,
and changes in the major for source incompatible changes.

As with the regular requires, this default can be customized. First you can customize it at attribute global
level, modifying the conan.conf [general] variable default_python_requires_id_mode, which can take
the values unrelated_mode, semver_mode, patch_mode, minor_mode, major_mode, full_version_mode,
full_recipe_mode and recipe_revision_mode.

For example, if you want to make the package IDs never be affected by any change in the versions of python_requires,
you could do:

Listing 1: conan.conf configuration file

[general]
default_python_requires_id_mode=unrelated_mode

Read more about these modes in Using package_id() for Package Dependencies.

It is also possible to customize the effect of python_requires per package, using the package_id() method:

from conans import ConanFile

class Pkg(ConanFile):

(continues on next page)

226 Chapter 14. Extending Conan



Conan Documentation, Release 1.60.2

(continued from previous page)
python_requires ="pyreq/[>=1.0]"
def package_id(self):
self.info.python_requires.patch_mode()

14.2.5 Resolution of python_requires

There are few things that should be taken into account when using python_requires:

* Python requires recipes are loaded by the interpreter just once, and they are common to all consumers. Do not
use any global state in the python_requires recipes.

* Python requires are private to the consumers. They are not transitive. Different consumers can require different
versions of the same python-require.

* python_requires can use version ranges expressions.

e python_requires can python_requires other recipes too, but this should probably be limited to very few
cases, we recommend to use the simplest possible structure.

* python_requires can conflict if they require other recipes and create conflicts in different versions.
* python_requires cannot use regular requires or tool_requires.
e Itis possible to use python_requires without user and channel.

* python_requires can use native python import to other python files, as long as these are exported together
with the recipe.

* python_requires should not create packages, but use export only.
* python_requires can be used as editable packages too.

¢ python_requires are locked in lockfiles.

14.3 Python requires (legacy)

Warning: This is a deprecated feature by the new Python requires. Please refer to the Migration Guidelines to
find the feature that replaced this one.

The new, under development While they are recommended and usable and we will try not to break them in future
releases, some breaking changes might still happen if necessary to prepare for the Conan 2.0 release.

The python_requires() feature is a very convenient way to share files and code between different recipes. A Python
Requires is just like any other recipe, it is the way it is required from the consumer what makes the difference.

The Python Requires recipe file, besides exporting its own required sources, can export files to be used by the consumer
recipes and also python code in the recipe file itself.

Let’s have a look at an example showing all its capabilities (you can find all the sources in Conan examples repository):

* Python requires recipe:

import os
import shutil
from conans import ConanFile, CMake, tools
(continues on next page)

14.3. Python requires (legacy) 227


https://github.com/conan-io/examples/tree/master/features/

Conan Documentation, Release 1.60.2

from scm_utils import get_version

class PythonRequires(ConanFile):
name = "pyreq"
version = "version"

exports = "scm_utils.py"

def get_conanfile():

generators = "cmake"
exports_sources = 'src/*"

def source(self):

exports_sources = "CMakelLists.txt"

class BaseConanFile(ConanFile):

settings = "os", "compiler", "build_type", "arch"
options = {"shared": [True, False]}
default_options = {"shared": False}

(continued from previous page)

# Copy the CMakeLists.txt file exported with the python requires
pyreq = self.python_requires['"pyreq"]
shutil.copy(src=os.path. join(pyreq.exports_sources_folder,

—"CMakeLists.txt"),

dst=self.source_folder)

# Rename the project to match the consumer name
tools.replace_in_file(os.path.join(self.source_folder,

—"CMakeLists.txt"),

"add_library(mylibrary ${sources})",
"add_library({} ${{sources}})".

—format(self.name))

def build(self):
cmake = CMake(self)
cmake.configure()
cmake.build()

def package(self):
self.copy("*.h", dst="include", src="src")
self.copy("*.1ib", dst="1ib", keep_path=False)
self.copy("*.dll", dst="bin", keep_path=False)
self.copy("*.dylib*", dst="1ib", keep_path=False)
self.copy("*.s0o", dst="1ib", keep_path=False)
self.copy("*.a", dst="1ib", keep_path=False)

def package_info(self):
self.cpp_info.libs = [self.name]

(continues on next page)

228

Chapter 14. Extending Conan




Conan Documentation, Release 1.60.2

(continued from previous page)

{ return BaseConanFile

Consumer recipe

from conans import ConanFile, python_requires

base = python_requires("pyreq/version@user/channel™)
class ConsumerConan(base.get_conanfile()):
name = "consumer"

version = base.get_version()

# Everything else is inherited

We must make available for other to use the recipe with the Python Requires, this recipe won’t have any associated
binaries, only the sources will be needed, so we only need to execute the export and upload commands:

$ conan export . pyreq/version@user/channel
$ conan upload pyreq/version@user/channel -r=myremote

Now any consumer will be able to reuse the business logic and files available in the recipe, let’s have a look at the most
common use cases.

14.3.1 Import a python requires

To import a recipe as a Python requires it is needed to call the python_requires () function with the reference as the
only parameter:

[base = python_requires("pyreq/version@user/channel")

]

All the code available in the conanfile.py file of the imported recipe will be available in the consumer through the base
variable.

Important: There are several important considerations regarding python_requires():

They are required at every step of the conan commands. If you are creating a package that
python_requires("MyBase/..."), the MyBase package should be already available in the local cache or
to be downloaded from the remotes. Otherwise, conan will raise a “missing package” error.

They do not affect the package binary ID (hash). Depending on different version, or different channel of such
python_requires() do not change the package IDs as the normal dependencies do.

They are imported only once. The python code that is reused is imported only once, the first time it is required.
Subsequent requirements of that conan recipe will reuse the previously imported module. Global initialization
at parsing time and global state are discouraged.

They are transitive. One recipe using python_requires() can be also consumed with a python_requires()
from another package recipe.

They are not automatically updated with the --update argument from remotes.

Different packages can require different versions in their python_requires(). They are private to each recipe,
so they do not conflict with each other, but it is the responsibility of the user to keep consistency.

14.3.

Python requires (legacy) 229



Conan Documentation, Release 1.60.2

* They are not overridden from downstream consumers. Again, as they are private, they are not affected by other
packages, even consumers

14.3.2 Reuse python sources

In the example proposed we are using two functions through the base variable: base.get_conanfile() and base.
get_version(). The first one is defined directly in the conanfile.py file, but the second one is in a different source
file that was exported together with the pyreq/version@user/channel recipe using the exports attribute.

This works without any Conan magic, it is just plain Python and you can even return a class from a function and inherit
from it. That’s just what we are proposing in this example: all the business logic in contained in the Python Requires
so every recipe will reuse it automatically. The consumer only needs to define the name and version:

from conans import ConanFile, python_requires

base = python_requires('pyreq/version@user/channel')
class ConsumerConan(base.get_conanfile()):
name = "consumer"

version = "version"

# Everything else is inherited

while all the functional code is defined in the python requires recipe file:

from conans import ConanFile, python_requires
[...]
def get_conanfile():

class BaseConanFile(ConanFile):
def source(self):

[...]

def build(self):
[...]

14.3.3 Reuse source files

Up to now, we have been reusing python code, but we can also package files within the python requires recipe and
consume them afterward, that’s what we are doing with a CMakeList.txt file, it will allow us to share the CMake code
and ensure that all the libraries using the same python requires will have the same build script. These are the relevant
code snippets from the example files:

» The python requires exports the needed sources (the file exists next to this conanfile.py):

class PythonRequires(ConanFile):
name = "pyreq"
version = "version"

(continues on next page)

230 Chapter 14. Extending Conan




Conan Documentation, Release 1.60.2

(continued from previous page)

exports_sources = "CMakeLists.txt"

[...]

The file will be exported together with the recipe pyreq/version@user/channel during the call to conan
export . pyreq/version@user/channel as it is expected for any Conan package.

* The consumer recipe will copy the file from the python requires folder, we need to make this copy ourselves,
there is nothing run automatically during the python_requires() call:

class BaseConanFile(ConanFile):

[...]

def source(self):
# Copy the CMakeLists.txt file exported with the python requires
pyreq = self.python_requires["pyreq"]
shutil.copy(src=os.path. join(pyreq.exports_sources_folder,
—"CMakeLists.txt"),
dst=self.source_folder)

# Rename the project to match the consumer name
tools.replace_in_file(os.path. join(self.source_folder, "CMakelLists.
—txt"),
"add_library(mylibrary $ )",
"add_library( ${{sources}})". format(self.

—.name))

As you can see, in the inherited source() method, we are copying the CMakeLists.txt file from the ex-
ports_sources folder of the python requires (take a look at the python_requires attribute), and modifying a line
to name the library with the current recipe name.

In the example, our ConsumerConan class will also inherit the build(), package() and package_info()
method, turning the actual conanfile.py of the library into a mere declaration of the name and version.

You can find the full example in the Conan examples repository.

14.4 Creating a custom build helper for Conan

If Conan doesn’t have a build helper for the build tool you are using, you can create a custom build helper with the
Python requires. You can create a package defining the build helper for that build tool and reuse it later in the consumers
importing the build helper as a Python requires.

As you probably know, build helpers are wrappers of the build tool that help with the conversion of the Conan settings
to the build tool’s ones. They assist users with the compilation of libraries and applications in the build() method of a
recipe.

As an example, we are going to create a minimal implementation of a build helper for the Waf build system . First, we
need to create a recipe for the python_requires that will export waf_environment.py, where all the implementation
of the build helper is.

from conans import ConanFile
from waf_environment import WafBuildEnvironment

(continues on next page)

14.4. Creating a custom build helper for Conan 231


https://github.com/conan-io/examples/tree/master/features/
https://waf.io/

Conan Documentation, Release 1.60.2

(continued from previous page)

class PythonRequires(ConanFile):

name = "waf-build-helper"
version = "0.1"
exports = "waf_environment.py"

As we said, the build helper is responsible for translating Conan settings to something that the build tool understands.
That can be passing arguments through the command line when invoking the tool or creating files that will take as an
input. In this case, the build helper for Waf will create one file named waf _toolchain.py that will contain linker and
compiler flags based on the Conan settings.

To pass that information to Waf in the file, you have to modify its configuration environment through the conf.env
variable setting all the relevant flags. We will also define a configure and a build method. Let’s see how the most
important parts of waf_environment.py file that defines the build helper could look. In this case, for simplification, the
build helper will only add flags depending on the conan setting value for the build_type.

class WafBuildEnvironment (object):
def __init__(self, conanfile):
self._conanfile = conanfile
self._settings = self._conanfile.settings

def build_type_flags(self, settings):
if "Visual Studio" in self._compiler:

if self._build_type == "Debug":
return ['/Zi', '/FS']

elif self. _build_type == "Release":
return ['/02']

else:

if self._build_type == "Debug":
return ['-g']

elif self. _build_type == "Release":

return ['-03']

def _toolchain_content(self):
sections = []
sections.append("def configure(conf):")

sections.append(" conf.env.CXXFLAGS = conf.env.CXXFLAGS or []")
_build_type_flags = build_type_flags(self._settings)
sections.append (" conf.env.CXXFLAGS.extend({})".format(_build_type_flags))

return "\n".join(sections)

def _save_toolchain_file(self):
filename = "waf_conan_toolchain.py"
content = self._toolchain_content()
output_path = self._conanfile.build_folder
save(os.path. join(output_path, filename), content)

def configure(self, args=None):
self._save_toolchain_file()
args = args or []
command = "waf configure " + " ".join(arg for arg in args)
self._conanfile.run(command)

(continues on next page)

232 Chapter 14. Extending Conan




Conan Documentation, Release 1.60.2

(continued from previous page)
def build(self, args=None):
args = args or []
command = "waf build " +
self._conanfile.run(command)

.join(arg for arg in args)

Now you can export your custom build helper to the local cache, or upload to a remote:

[$ conan export . ]

After exporting this package to the local cache you can use this custom build helper to compile our packages using
the Waf build system. Just add the necessary configuration files for Waf and import the python_requires. The
conanfile.py of that package could look similar to this:

from conans import ConanFile

class TestWafConan(ConanFile):
python_requires = "waf-build-helper/0.1"

settings = "os", "compiler", "build_type", "arch"
name = "waf-consumer"
generators = "Waf"

requires = "mylib-waf/1.0"
tool_requires = "WafGen/0.1", "waf/2.0.19"
exports_sources = "wscript", "main.cpp"

def build(self):
waf = self.python_requires["waf-build-helper"].module.WafBuildEnvironment(self)
waf.configure()
waf.buildQ)

As you can see in the conanfile.py we also are requiring the build tool and a generator for that build tool. If you want
more detailed information on how to integrate your own build system in Conan, please check this blog-post about that
topic.

14.5 Hooks

Warning: This is an experimental feature subject to breaking changes in future releases.

The Conan hooks is a feature intended to extend the Conan functionalities and let users customize the client behavior
at determined points.

14.5. Hooks 233


https://blog.conan.io/2019/07/24/C++-build-systems-new-integrations-in-Conan-package-manager.html
https://blog.conan.io/2019/07/24/C++-build-systems-new-integrations-in-Conan-package-manager.html

Conan Documentation, Release 1.60.2

14.5.1 Hook structure

A hook is a Python function that will be executed at certain points of Conan workflow to customize the client behavior
without modifying the client sources or the recipe ones. In the hooks reference you can find the full list of hook functions
and exhaustive documentation about their arguments.

Hooks can implement any functionality: it could be Conan commands, recipe interactions such as exporting or pack-
aging, or interactions with the remotes.

Here is an example of a simple hook:

Listing 2: example_hook.py

from conans import tools

def pre_export(output, conanfile, conanfile_path, reference, **kwargs):
test = "%s/%s" % (reference.name, reference.version)
for field in ["url", "license", "description"]:
field_value = getattr(conanfile, field, None)
if not field_value:
output.error(" Conanfile doesn't have

—as attribute: "

It is recommended to add it.
% (test, field, conanfile_path))

def pre_source(output, conanfile, conanfile_path, **kwargs):
conanfile_content = tools.load(conanfile_path)
if "def source(self):" in conanfile_content:
test = "[IMMUTABLE SOURCES]"

valid_content = [".zip", ".tar", ".tgz", ".tbz2", ".txz"]
invalid_content = ["git checkout master", "git checkout devel", "git checkout.,
—develop"]

if "git clone" in conanfile_content and "git checkout" in conanfile_content:
fixed_sources = True
for invalid in invalid_content:
if invalid in conanfile_content:
fixed_sources = False
else:
fixed_sources = False
for valid in valid_content:
if valid in conanfile_content:
fixed_sources = True

if not fixed_sources:
output.error(" Source files does not come from and immutable place..
—Checkout to a "
"commit/tag or download a compressed source file for " %,
— (test, str(reference)))

This hook checks the recipe content prior to it being exported and prior to downloading the sources. Basically the
pre_export () function checks the attributes of the conanfile object to see if there is an URL, a license and a
description and if missing, warns the user with a message through the output. This is done before the recipe is
exported to the local cache.

The pre_source () function checks if the recipe contains a source () method (this time it is using the conanfile.py
content instead of the conanfile object) and in that case it checks if the download of the sources are likely coming

234 Chapter 14. Extending Conan




Conan Documentation, Release 1.60.2

from immutable places (a compressed file or a determined git checkout). This is done before the source() method
of the recipe is called.

Any kind of Python script can be executed. You can create global functions and call them from different hook functions,
import from a relative module and warn, error or even raise to abort the Conan client execution.

Other useful task where a hook may come handy are the upload and download actions. There are pre and post functions
for every download/upload as a whole and for fine download tasks such as recipe and package downloads/uploads.

For example they can be used to sign the packages (including a file with the signature) when the package is created and
check that signature every time they are downloaded.

Listing 3: signing_hook.py

import os
from conans import tools

SIGNATURE = "this is my signature"

def post_package(output, conanfile, conanfile_path, **kwargs):
sign_path = os.path.join(conanfile.package_folder, ".sign')
tools.save(sign_path, SIGNATURE)
output.success("Package signed successfully™)

def post_download_package(output, conanfile_path, reference, package_id, remote_name,..
—**kwargs) :

package_path = os.path.abspath(os.path.join(os.path.dirname(conanfile_path), "..",
- "package", package_id))

sign_path = os.path.join(package_path, ".sign")

content = tools.load(sign_path)

if content != SIGNATURE:

raise Exception("Wrong signature')

14.5.2 Importing from a module
The hook interface should always be placed inside a Python file with the name of the hook and stored in the ~/.co-
nan/hooks folder. However, you can use functionalities from imported modules if you have them installed in your

system or if they are installed with Conan:

Listing 4: example_hook.py

import requests
from conans import tools

def post_export(output, conanfile, conanfile_path, reference, **kwargs):
cmakelists_path = os.path.join(os.path.dirname(conanfile_path), "ClMakeLists.txt")
tools.replace_in_file(cmakelists_path, "PROJECT(MyProject)", "PROJECT(MyProject CPP)
K‘)H)
r = requests.get('https://api.github.com/events"')

You can also import functionalities from a relative module:

hooks
— custom_module
(continues on next page)

14.5. Hooks 235




Conan Documentation, Release 1.60.2

(continued from previous page)

|: custom.py
__init__.py

my_hook.py

Inside the custom.py from my custom_module there is:

def my_printer(output):
output.info("my_printer(): CUSTOM MODULE")

And it can be used in the hook importing the module, just like regular Python:

from custom_module.custom import my_printer

def pre_export(output, conanfile, conanfile_path, reference, **kwargs):
my_printer (output)

14.5.3 Storage, activation and sharing

Hooks are Python files stored under ~/.conan/hooks folder and their file name should be the same used for activation
(the .py extension could be indicated or not).

The activation of the hooks is done in the conan.conf section named [hooks]. The hook names or paths listed under
this section will be considered activated.

Listing 5: conan.conf

[hooks]
attribute_checker.py
conan-center.py
my_custom_hook/hook.py

They can be easily activated and deactivated from the command line using the conan config set command:

$ conan config set hooks.my_custom_hook/hook # Activates 'my_custom_hook'

$ conan config rm hooks.my_custom_hook/hook # Deactivates 'my_custom_hook'

There is also an environment variable CONAN_HOOKS that you can use to declare which hooks should be activated.

Hooks are considered part of the Conan client configuration and can be shared as usual with the conan config install
command. However, they can also be managed in isolated Git repositories cloned into the ~/.conan/hooks folder:

$ cd ~/.conan/hooks
$ git clone https://github.com/conan-io/hooks.git conan_hooks
$ conan config set hooks.conan_hooks/hooks/conan-center.py

This way you can easily change from one version to another.

236 Chapter 14. Extending Conan




Conan Documentation, Release 1.60.2

14.5.4 Official Hooks

There are some officially maintained hooks in its own repository in GitHub, including the attribute_checker that
has been packaged with Conan sources for several versions (although it is distributed with Conan still, it is no longer
maintained and we may remove it in the future, so we encourage you to install the one in the hooks repository and
activate it).

Using the hooks in the official repository is as easy as installing them and activating the ones of interest:

conan config install https://github.com/conan-io/hooks.git -sf hooks -tf hooks
conan config set hooks.attribute_checker

14.6 Template system

The user can provide their own templates to override some of the files that Conan generates in runtime. This can help
to provide custom visualization for some outputs that satisfies specific use-cases or more detailed inputs for companies
that want some standarization when creating new recipes for packages.

User provided templates to override Conan default ones, must be stored in the Conan cache under a templates directory
(<conan_cache>/templates). Use conan config command to distribute them among your developer team.

14.6.1 HTML output for conan search table

Warning: This has to be an considered as an experimental feature, we might change the context provided to this
templates once we have more examples from the community.

The conan search command can generate an HTML table with the results of the query when looking for binaries

14.6. Template system 237


https://github.com/conan-io/hooks

Conan Documentation, Release 1.60.2

Depending on your package_id_mode, any combination of settings, options and requirements can give you a different packagelD. Take into account that your configuration might be different from the one used to generate the packages.

Show 10 v eniries

compiler options

remote package_id outdated 08 arch  compiler  libexx runtime ~ version  build_type = shared  fPIC

conan-center  009b8eb6blcdbB3edat7346cdeB869209e09cd  False Linux  x86.64 clang libstdc++ 50 Release False True  boost/1.72.0,bzip2/1.0., ex
conan-center  0128c068edcid/7eefddcdd10157391c713dabt4  True Linux  x86.64 clang libc++ 39 Debug False True  boost/1.72.0,bzip2/1.0., ex
conan-center  028997d85ac2178df225412911d172273471487b  False Windows x86_64  Visual Studio MD 16 Release True boost/1.72.0, bzip2/1.0.8, ex
conan-center  03cb324315486a5ebeB048bc2f4ecd22ic21787c  True Linux 8664 gcc libstdc++11 8 Release True boost/1.72.0, bzip2/1.0.8, ex
conan-center ~ 091e3719c49f72a80aatbeal2dd3903014163cd  False Macos  x86_64 apple-clang  libc++ 100 Debug False True  boost/1.72.0, bzip2/1.0.8, ex
conan-center  0d53f429ac341310e877ef78aeb6Bat0f0486f  True Linux ~ x86_64 clang libc++ 70 Release True boost/1.72.0, bzip2/1.0.8, ex
conan-center  1117e4dcfbdedb6719290006d5b409d18aa5557  False Linux 8664 gcc libstdc++ 5 Release True boost/1.72.0, bzip2/1.0.8, ex
conan-center  11bf8319fceacd461395f0c6dfAcfcBarbbiced  True Linux 86 64 clang libstdc++ 6.0 Debug True boost/1.72.0, bzip2/1.0.8, ex
conan-center  146f394fde87c4f232ebbd6298131asecicdf8bd  True Linux 86 64 clang libc++ 39 Debug True boost/1.72.0, bzip2/1.0.8, ex
conan-center  181d458ef6c45f5fc31732d7f0b22cTc664bfcOf True Linux  x86 64 gec libstdc++ 6 Debug True boost/1.72.0, bzip2/1.0.8, ex

Showing 1 to 10 of 130 entries

Prewousn2 3 45

Conan v1.28.0 2020 JFrog LTD. hitps://canan.io

This is the default Conan provides, but you can use your own Jinja2 documentation template to customize this output
to your needs:

* <cache>/templates/output/search_table.html.

Context

Conan feeds this template with the information about the packages found, this information is called context and it
contains these objects:

* base_template_path: absolute path to the directory where the chosen template file is located. It is needed if
your output file needs to link assets distributed together with the template file.

» search: it contains the pattern used in the command line to search packages.

e results: this object contains all the information retrieved from the remotes, it is used to get the headers and the
TOWS.

When the output is a table, the first thing needed are the headers, these can be a single row or two rows like the image
above. In order to get the headers you should use results.get_headers(keys) with a list of extra keys you want
to include (see example below). Conan will always return a header for all the different settings and options values, with
this keys list variable you can retrieve other information that might be useful in your table like remote, reference,
outdated or package_id.

238 Chapter 14. Extending Conan


https://palletsprojects.com/p/jinja/

Conan Documentation, Release 1.60.2

Then you can use the returned object to get the actual headers:

* single row headers: it just returns a list with all the headers, it is straightforward to use:

r<thead>
<tr>
{%- set headers = results.get_headers(keys=['remote', 'package_id',
— 'outdated']) %}
{%- for header in headers.row(n_rows=1) %}
<th>{{ header }}</th>
{%- endfor %}
</tr>
</thead>

 two-rows headers: it returns a list of tuples like the following one:

[[('os', ['']D, (arch', ['']), ('compiler', ['', 'version', 'libcxx']),] J

The first element for this tuple is intended for the top row, while the second element lists all the sub-settings in
the top header category. An empty string means there is no category, like compiler=Visual Studio.

Composing the table headers in HTML requires some more code in the template:

<thead>

{%- set headers = results.get_headers(keys=['remote', 'package_id', 'outdated
~'1) %}

{%- set headers2rows = headers.row(n_rows=2) %}

<tr>

{%- for category, subheaders in headers2rows %}
<th rowspan="{% if subheaders|length == 1 and not subheaders[0] %}2{%.
—else %}1{% endif %}" colspan="{{ subheaders|length }}">
{{ category }}

</th>
{%- endfor %}
</tr>
<tr>
{%- for category, subheaders in headers2rows %}
{%- if subheaders|length != 1 or subheaders[0] != "' %}

{%- for subheader in subheaders %}
<th>{{ subheader|default(category, true) }}</th>
{%- endfor %}
{%- endif %}
{%- endfor %}
</tr>
</thead>

Once the headers are done, iterating the rows is easy. You should use results.packages() to get an iterable with
the list of results and then, for each of the rows, the fields. You need to provide the headers to retrieve the fields you
need in the proper order according to the table headers:

<tbody>

{%- for package in results.packages() %}
<tr>
{%- for item in package.row(headers) %}
<td>{{ item if item != None else ''}}</td>

(continues on next page)

14.6. Template system 239




Conan Documentation, Release 1.60.2

(continued from previous page)
{%- endfor %}
</tr>
{%- endfor %}
</tbody>

Additionally, the package object in the snippet above that represents one of the query results contain some fields that
can be useful to compose the text for an alt field in the HTML:

e remote
e reference or recipe
e package_id

e outdated

14.6.2 Graph output for conan info command

Warning: This is a migrated feature. Please refer to conan graph info learn about the changes. Most of the
functionality remains intact and the main changes are to the command line.

The conan info command can generate a visualization of the dependency graph, it comes in two flavors: hfml and dot
(GraphViz), but both take the same template parameters. Conan will use the following input files, if found, inside the
Conan cache folder:

* HTML output: <cache>/templates/output/info_graph.html.
* DOT output: <cache>/templates/output/info_graph.dot.

Context

These files should be valid Jinja2 documentation templates and they will be feed with the following context:

* base_template_path: absolute path to the directory where the chosen template file is located. It is needed if
your output file needs to link assets distributed together with the template file (see HTML example linking CSS
and JS files).

e graph: this object contains all the information from the graph of dependencies. It offers the following API:

— graph.nodes: list of Node objects with the information for each Conan package included in the graph
(see below API for this Node object).

— graph.edges: list of tuples with all the connections in the dependency graph. First item in the tuple is the
consumer Node and second item the required Node.

— graph.binary_color(node): function that retrieves the Conan default color based on the node .binary
value.

The Node objects in the context provide all the required information about each package:
* node.label: display name for the conanfile.
* node.short_label: name/version parts of the Conan reference.
* node.package_id: the package identifier.

* node.is_build_requires:

240 Chapter 14. Extending Conan


https://palletsprojects.com/p/jinja/

Conan Documentation, Release 1.60.2

¢ node.binary: it identifies where the binary comes from (cache, download, build,
missing, update).

* node.data(): returns a dictionary that contains data from the recipe, members are url, homepage, license,
author and topics.

Examples

These are two examples of templates that Conan is currently using for the basic functionality. You can refer to the
Jinja2 documentation for more information about the logic and filters you can use in these templates.

Let us know if you have a cool template you want to share with the Conan community.

Dot files:

Default template for the DOT output contains just the node names and the edges:

digraph {
{%- for src, dst in graph.edges %}
"{{ src.label }}" -> "{{ dst.label }}"
{%- endfor %}
}

The output will compose a valid dot file:

[conan info poco/1.10.0@ --graph=poco.dot

digraph {
"poco/1.10.0" -> "openssl/1.1.1g"
"virtual" -> "poco/1.10.0"

}

Use dot to render the default view of the generated graph:

[dot -Tpng poco.dot > poco.png

14.6. Template system 241


https://palletsprojects.com/p/jinja/

Conan Documentation, Release 1.60.2

HTML files:

HTML templates are more complicated than dot ones, but the HTML can provide a nicer view of the graph and easily
include JavaScript to create an interactive view of the graph.

In this example we assume you have distributed the following files to your cache folder:

<cache>/templates/output/css/vis.min.css
<cache>/templates/output/js/vis.min. js
<cache>/templates/output/info_graph.html

Our template will be the info_graph.html file, and it will use the assets from the local files provided in the cache (most
use cases will use files from the internet using the full URL).

These are some snippets from the info_graph.html template, it uses the vis.js library:

<html lang="en">
<head>
{# ... #}
<script type="text/javascript" src="{{ base_template_path }}/js/vis.min.js"></
-.script>
<link href="{{ base_template_path }}/css/vis.min.css" rel="stylesheet" type=
—"text/css" />
</head>

<body>
{# ... #}

<div style="width: 100%;">
<div id="mynetwork"></div>
</div>

(continues on next page)

242 Chapter 14. Extending Conan



https://visjs.org/

Conan Documentation, Release 1.60.2

(continued from previous page)
{# ... #}

<script type="text/javascript">
var nodes = new vis.DataSet([
{%- for node in graph.nodes %}
{
id: {{ node.id }},
label: '{{ node.short_label }}',
shape: '{% if node.is_build_requires %}ellipse{% else %}box{%.
—endif %}',
color: { background: '{{ graph.binary_color(node) }}'},
fulllabel: '<h3>{{ node.label }}</h3>' +
'<ul>' +
! <li><b>id</b>: {{ node.package_id }}</1i>' +
{%- for key, value in node.data().items() %}
{%- 1f value %}
! <li><b>{{ key }}</b>: {{ value }}</1i>"' +
{%- endif %}
{%- endfor %}
'</ul>"'
}{%- if not loop.last %},{% endif %}
{%- endfor %}
D
var edges = new vis.DataSet([
{%- for src, dst in graph.edges %}
{ from: {{ src.id }}, to: {{ dst.id 3}} }{%- if not loop.last %}, {%.
—endif %}
{%- endfor %}
D;

var container = document.getElementById('mynetwork');
var data = {
nodes: nodes,
edges: edges
it
var network = new vis.Network(container, data, options);
</script>
</body>
</html>

14.6.3 Package scaffolding for conan new command

Warning: This functionality has to be considered as an experimental feature. We might change the context
provided for these templates once we have more examples from the community.

Using the Conan command conan new is a very convenient way to start a new project with an example conanfile.py.
This command has a --template argument that you can use to provide a path to a template file for the conanfile.py
itself or even a path to a folder containing files for a C++ project using Conan recipes.

14.6. Template system 243




Conan Documentation, Release 1.60.2

The argument --template can take an absolute path or a relative path. If relative, Conan will look for the files starting
in the Conan cache folder templates/command/new/. This is very useful in combination with conan config install
because you can easily share these templates with all your team.

Note: For backwards compatibility reasons, if the --template argument takes the path to a single file Conan will
look for it in the cache at the path templates/<filename> first. This will likely be removed in Conan v2.0.

This mechanism lets you have the Conan cache templates containing not only a conanfile.py, but the full C++ project
scaffolding. Thus just a single command can get you started:

$ conan new mypackage/version --template=header_only
$ conan new mypackage/version --template=conan-center

Conan will process all the files found in that folder using Jinja2 engine and also the paths to those files. Thus the
following template directory (that does match the conventions for conan-center-index recipes):

conan-center/{{name}}/config.yml
/{{name}}/all/conanfile.py
/{{name}}/all/conandata.yml
/{{name}}/all/test_package/conanfile.py
/{{name}}/all/test_package/CMakeLists.txt
/{{name}}/all/test_package/main.cpp

will be translated to:

conan-center/mypackage/config.yml
/mypackage/all/conanfile.py
/mypackage/all/conandata.yml
/mypackage/all/test_package/conanfile.py
/mypackage/all/test_package/CMakeLists.txt
/mypackage/all/test_package/main.cpp

Then the contents of all the files will be rendered using Jinja2 syntax as well, thus substituting content values with
context values - as we will see in the next section.

Context

All the files should be valid Jinja2 templates. They will be feed with the following context:
* name and version: defined from the command line.

* package_name: a CamelCase variant of the name. Any valid Conan package name like package_name,
package+name, package.name or package-name will be converted into a suitable name for a Python class,
PackageName.

* conan_version: an object that renders as the current Conan version, e.g. 1.24.0.

244 Chapter 14. Extending Conan



https://palletsprojects.com/p/jinja/
https://github.com/conan-io/conan-center-index/tree/master/recipes

Conan Documentation, Release 1.60.2

Example

This is a very simple example for a header only library:

—template’ command

from conans import ConanFile

class {{package_name}}Conan(ConanFile):

def package(self):
self.copy("*.hpp", dst="include")
self.copy("LICENSE.txt", dst="licenses")

def package_id(self):
self.info.clear()

# Recipe autogenerated with Conan {{ conan_version }} using "conan new --

name = "{{ name }}"

version = "{{ version }}"

settings = "os", "arch", "compiler", "build_type"
exports_sources = "include/*"

Custom definitions

Sometimes it’s needed to provide additional variables for the custom templates. For instance, if it’s desired to have
description and homepage to be templated as well:

With

-

—template’ command

from conans import ConanFile

class {{package_name}}Conan(ConanFile):
name = "{{ name }}"
version = "{{ version }}"
description = "{{ description }}"
homepage = "{{ homepage }}"

exports_sources = "include/*"

def package(self):
self.copy("*.hpp", dst="include")
self.copy("LICENSE.txt", dst="licenses")

def package_id(self):
self.info.clear()

L

# Recipe autogenerated with Conan {{ conan_version }} using " conan new --

settings = "os", "arch", "compiler", "build_type"

the above template it’s now easy to overwrite such extra keywords with values from the command line:

—example.com -d description="the best package"

$ conan new mypackage/version --template=header_only -d homepage=https://www.

14.6.

Template system

245



Conan Documentation, Release 1.60.2

Predefined templates

Available since: 1.40.0

The Conan client has some predefined templates that can be used with the command new. These two templates are
related to Layouts and offer a simple Hello World example:

cmake_lib: Generates a hello world c++ library based on modern Conan recipe (layout + generate) using CMake
as the build system.

cmake_exe: Generates a hello world executable based on modern Conan recipe (layout + generate) using CMake
as the build system.

msbuild_lib: Generates a hello world c++ library based on modern Conan recipe (layout + generate) using MS-
Build as the build system.

msbuild_exe: Generates a hello world executable based on modern Conan recipe (layout + generate) using MS-
Build as the build system.

meson_lib: Generates a hello world c++ library based on modern Conan recipe (layout + generate) using Meson
as the build system (since Conan 1.45).

meson_exe: Generates a hello world executable based on modern Conan recipe (layout + generate) using Meson
as the build system (since Conan 1.45).

bazel_lib: Generates a hello world c++ library based on modern Conan recipe (layout + generate) using Bazel
as the build system (since Conan 1.47).

bazel_exe: Generates a hello world executable based on modern Conan recipe (layout + generate) using Bazel
as the build system (since Conan 1.47).

autotools_lib: Generates a hello world c++ library based on modern Conan recipe (layout + generate) using
Autotools as the build system (since Conan 1.48).

autotools_exe: Generates a hello world executable based on modern Conan recipe (layout + generate) using
Autotools as the build system (since Conan 1.48).

A full example can be found in Creating Packages section.

246

Chapter 14. Extending Conan


https://github.com/conan-io/conan/releases/tag/1.40.0

CHAPTER
FIFTEEN

INTEGRATIONS

This topical list of build systems, IDEs, and CI platforms provides information on how conan packages can be con-
sumed, created, and continuously deployed/tested with each, as applicable.

15.1 Compilers

Conan can work with any compiler, the most common ones are already declared in the default sertings.yml:
* sun-cc
* gcc
* Visual Studio
* clang
* apple-clang
* gcc
* intel

e intel-cc

Note: Remember that you can customize Conan to extend the supported compilers, build systems, etc.

Important: If you work with a compiler like intel that uses Visual Studio in Windows environments and gcc
in Linux environments and you are wondering how to manage the compatibility between the packages generated with
intel and the generated with the pure base compiler (gcc or Visual Studio) check the Compatible Packages and
Compatible Compilers sections.

Important: If you are working with the new Intel oneAPI compilers, then you should use intel-cc one and have a
look at Working with Intel compilers section.

247



Conan Documentation, Release 1.60.2

15.2 Build systems

Conan can be integrated with any build system. This can be done with:

e Generators: Conan can write file/s in different formats gathering all the information from the dependency tree,
like include directories, library names, library dirs. ..

* Build Helpers: Conan provides some classes to help calling your build system, translating the settings and options
to the arguments, flags or environment variables that your build system expect.

15.2.1 CMake

Conan can be integrated with CMake using different generators, build helpers and custom findXXX.cmake files:

Warning: This is a deprecated feature. Please refer to the Migration Guidelines to find the feature that replaced
this one.

The new, under development integration with CMake can be found in conan.tools.cmake. This is the integration
that will become the standard one in Conan 2.0, and the below generators and integrations will be deprecated and
removed. While they are recommended and usable and we will try not to break them in future releases, some
breaking changes might still happen if necessary to prepare for the Conan 2.0 release.

cmake generator

If you are using CMake to build your project, you can use the cmake generator to define all your requirements in CMake
syntax. It creates a file named conanbuildinfo.cmake that can be imported from your CMakeLists. txt.

248 Chapter 15. Integrations



Conan Documentation, Release 1.60.2

Listing 1: conanfile.txt

[generators]
cmake

When conan install is executed, a file named conanbuildinfo.cmake is created.

You can include conanbuildinfo.cmake in your project’s CMakeLists.txt to manage your requirements. The inclusion
of conanbuildinfo.cmake doesn’t alter the CMake environment at all. It simply provides CONAN_ variables and some
useful macros.

Global variables approach

The simplest way to consume it would be to invoke the conan_basic_setup() macro, which will basically set global
include directories, libraries directories, definitions, etc. so typically it is enough to call:

include (${CMAKE_BINARY_DIR}/conanbuildinfo.cmake)
conan_basic_setup()

add_executable(timer timer.cpp)
target_link_libraries(timer ${CONAN_LIBS})

The conan_basic_setup() is divided into smaller macros that should be self explanatory. If you need to do something
different, you can just call them individually.

Note: This approach makes all dependencies visible to all CMake targets and may also increase the build times due to
unneeded include and library path components. This is particularly relevant if you have multiple targets with different
dependencies. In that case, you should consider using the Targets approach.

Targets approach

For modern cmake (>=3.1.2), you can use the following approach:

include (${CMAKE_BINARY_DIR}/conanbuildinfo.cmake)
conan_basic_setup(TARGETS)

add_executable(timer timer.cpp)
target_link libraries(timer CONAN_PKG: :poco)

Using TARGETS as argument, conan_basic_setup() will internally call the macro conan_define_targets()
which defines cmake INTERFACE IMPORTED targets, one per package. These targets, named
CONAN_PKG: : PackageName can be used to link against, instead of using global cmake setup.

See also:

Check the CMake generator section to read more.

Note: The CMAKE_MODULE_PATH and CMAKE_PREFIX_PATH contain the paths to the self.info.builddirs of
every required package. By default, the root package folder is the only one declared in builddirs. Check cpp_info

15.2. Build systems 249



Conan Documentation, Release 1.60.2

for more information.

cmake_multi generator

Caution: We are actively working to finalize the Conan 2.0 Release. Some of the information on this page
references deprecated features which will not be carried forward with the new release. It’s important to check the
Migration Guidelines to ensure you are using the most up to date features.

cmake_multi generator is intended for CMake multi-configuration environments, like Visual Studio and Xcode IDEs
that do not configure for a specific build_type, like Debug or Release, but rather can be used for both and switch
among Debug and Release configurations with a combo box or similar control. The project configuration for cmake is
different, in multi-configuration environments, the flow would be:

$ cmake .. -G "Visual Studio 14 Win64"
# Now open the IDE (.sln file) or
$ cmake --build . --config Release

While in single-configuration environments (Unix Makefiles, etc):

$ cmake .. -G "Unix Makefiles" -DCMAKE_BUILD_TYPE=Release
# Build from your IDE, launching make, or
$ cmake --build .

The CMAKE_BUILD_TYPE default, if not specified is Debug.

With the regular conan cmake generator, only 1 configuration at a time can be managed. Then, it is a universal,
homogeneous solution for all environments. This is the recommended way, using the regular cmake generator, and just
go to the command line and switch among configurations:

$ conan install . -s build type=Release ...
# Work in release, then, to switch to Debug dependencies
$ conan install . -s build_type=Debug ...

However, end consumers with heavy usage of the IDE, might want a multi-configuration build. The cmake_multi
generator is able to do that. First, both Debug and Release dependencies have to be installed:

$ conan install . -g cmake_multi -s build_type=Release ...
$ conan install . -g cmake_multi -s build_type=Debug

These commands will generate 3 files: conanbuildinfo_release.cmake, conanbuildinfo_debug.cmake, and
conanbuildinfo_multi.cmake, which includes the other two, and enables its use.

Warning: The cmake_multi generator is designed as a helper for consumers, but not for creating packages. If
you also want to create a package, see Creating packages section.

250 Chapter 15. Integrations



Conan Documentation, Release 1.60.2

Global variables approach

The consumer project might write a CMakeLists.txt like:

project(MyHello)
cmake_minimum_required(VERSION 2.8.12)

include (${CMAKE_BINARY_DIR}/conanbuildinfo_multi.cmake)
conan_basic_setup()

add_executable(say_hello main.cpp)

foreach(_LIB ${CONAN_LIBS_RELEASE})
target_link_libraries(say_hello optimized ${_LIB})

endforeach()

foreach(_LIB ${CONAN_LIBS_DEBUG})
target_link_libraries(say_hello debug ${_LIB})

endforeach()

Targets approach

Or, if using the modern cmake syntax with targets (where Hellol is an example package name that the executable
say_hello depends on):

project(MyHello)
cmake_minimum_required(VERSION 2.8.12)

include (${CMAKE_BINARY_DIR}/conanbuildinfo_multi.cmake)
conan_basic_setup(TARGETS)

add_executable(say_hello main.cpp)
target_link libraries(say_hello CONAN_PKG: :Hellol)

There’s also a convenient macro for linking to all libraries:

project(MyHello)
cmake_minimum_required(VERSION 2.8.12)

include (${CMAKE_BINARY_DIR}/conanbuildinfo_multi.cmake)
conan_basic_setup()

add_executable(say_hello main.cpp)
conan_target_link_libraries(say_hello)

With this approach, the end user can open the generated IDE project and switch among both configurations, building
the project, or from the command line:

$ cmake --build . --config Release
# And without having to conan install again, or do anything else
$ cmake --build . --config Debug

15.2. Build systems 251




Conan Documentation, Release 1.60.2

Creating packages

The cmake_multi generator is just for consumption. It cannot be used to create packages. If you want to be able
to both use the cmake_multi generator to install dependencies and build your project but also to create packages
from that code, you need to specify the regular cmake generator for package creation, and prepare the CMakeLists.txt
accordingly, something like:

project(MyHello)
cmake_minimum_required (VERSION 2.8.12)

if(EXISTS ${CMAKE_BINARY_DIR}/conanbuildinfo_multi.cmake)
include (${CMAKE_BINARY_DIR}/conanbuildinfo_multi.cmake)
else()
include (${CMAKE_BINARY_DIR}/conanbuildinfo.cmake)
endif()

conan_basic_setup()

add_executable(say_hello main.cpp)
conan_target_link_libraries(say_hello)

Then, make sure that the generator cmake_multi is not specified in the conanfiles, but the users specify it in the
command line while installing dependencies:

[$ conan install . -g cmake_multi ]

See also:

Check the section Reference/Generators/cmake to read more about this generator.

cmake_paths generator

This generator is especially useful if you are using CMake based only on the find_package feature to locate the
dependencies.

The cmake_paths generator creates a file named conan_paths. cmake declaring:

e CMAKE_MODULE_PATH with the folders of the required packages, to allow CMake to locate the included cmake
scripts and FindXXX. cmake files. The folder containing the conan_paths.cmake (self.install_folder when used in
arecipe) is also included, so any custom file will be located too. Check cmake_find_package generator generator.

e CMAKE_PREFIX_PATH used by find_library() to locate library files (.a, .lib, .so, .dll) in your packages and
find_dependency () to locate the transitive dependencies.

Listing 2: conanfile.txt

[requires]
zlib/1.2.11

[generators]
cmake_paths

252 Chapter 15. Integrations



Conan Documentation, Release 1.60.2

Listing 3: CMakeList.txt

cmake_minimum_required (VERSION 3.0)

project(helloworld)

add_executable(helloworld hello.c)

find_package(Z1lib)

if(ZLIB_FOUND)
include_directories(${ZLIB_INCLUDE_DIRS})
target_link_libraries (helloworld ${ZLIB_LIBRARIES})

endif()

In the example above, the z1ib/1.2. 11 package is not packaging a custom FindZLIB. cmake file, but the FindZLIB.
cmake included in the CMake installation directory (/Modules) will locate the zlib library from the Conan package
because of the CMAKE_PREFIX_PATH used by the find_library().

If the z1ib/1.2.11 would have included a custom FindZLIB.cmake in the package root folder or any declared
self.cpp_info.builddirs, it would have been located because of the CMAKE_MODULE_PATH variable.

Included as a toolchain

You can use the conan_paths.cmake as a toolchain without modifying your CMakeLists.txt file:

$ mkdir build && cd build

$ conan install ..

$ cmake .. -DCMAKE_TOOLCHAIN_FILE=conan_paths.cmake -G "Unix Makefiles" -DCMAKE_BUILD_
—TYPE=Release

$ cmake --build .

Included using the CMAKE_PROJECT_<PROJECT-NAME>_INCLUDE

With CMAKE_PROJECT_<PROJECT-NAME>_INCLUDE you can specify a file to be included by the project () command.
If you already have a toolchain file you can use this variable to include the conan_paths.cmake and insert your
toolchain with the CMAKE_TOOLCHAIN_FILE.

$ mkdir build && cd build

$ conan install ..

$ cmake .. -G "Unix Makefiles" -DCMAKE_BUILD_TYPE=Release -DCMAKE_PROJECT_helloworld_
. INCLUDE=build/conan_paths.cmake

$ cmake --build .

Included in your CMakeLists.txt

Listing 4: CMakeList.txt

cmake_minimum_required(VERSION 3.0)
project(helloworld)

include(${CMAKE_BINARY_DIR}/conan_paths.cmake)

(continues on next page)

15.2. Build systems 253



Conan Documentation, Release 1.60.2

(continued from previous page)

add_executable(helloworld hello.c)
find_package(zlib)

if(ZLIB_FOUND)
include_directories(${ZLIB_INCLUDE_DIRS})
target_link libraries (helloworld ${ZLIB_LIBRARIES})
endif()

$ mkdir build && cd build

$ conan install ..

$ cmake .. -G "Unix Makefiles" -DCMAKE_BUILD_TYPE=Release
$ cmake --build .

See also:

Check the section cmake_paths to read more about this generator.

Note: The CMAKE_MODULE_PATH and CMAKE_PREFIX_PATH contain the paths to the builddirs of every required
package. By default the root package folder is the only declared builddirs directory. Check cpp_info.

cmake_find_package generator

This generator is especially useful if you are using CMake using the find_package feature to locate the dependencies.
The cmake_find_package generator creates a file for each requirement specified in a conanfile.

The name of the files follows the pattern Find<package_name>.cmake. So for the z1ib/1.2.11 package, a
FindZLIB.cmake file will be generated.

In a conanfile.py

Listing 5: conanfile.py

from conans import ConanFile, CMake, tools

class LibConan(ConanFile):

requires = "zlib/1.2.11"
generators = "cmake_find_package"

def build(self):
cmake = CMake(self) # it will find the packages by using our auto-generated.
—FindXXX.cmake files
cmake.configure()
cmake.build()

In the previous example, the CMake build helper will automatically adjust the CMAKE_MODULE_PATH to the conanfile.
install_folder, where the generated Find<package_name>.cmake is.

254 Chapter 15. Integrations



Conan Documentation, Release 1.60.2

In the CMakeList.txt you do not need to specify or include anything related with Conan at all; just rely on the
find_package feature:

Listing 6: CMakeList.txt

cmake_minimum_required (VERSION 3.0)
project(helloworld)
add_executable(helloworld hello.c)
find_package(ZLIB)

# Global approach

if(ZLIB_FOUND)
include_directories(${ZLIB_INCLUDE_DIRS})
target_link_libraries (helloworld ${ZLIB_LIBRARIES})

endif()

# Modern CMake targets approach

if(TARGET ZLIB::ZLIB)
target_link_libraries(helloworld ZLIB::ZLIB)

endif()

$ conan create . user/channel

lib/1.0@user/channel: Calling build()
-- The C compiler identification is AppleClang 9.1.0.9020039

-- Conan: Using autogenerated FindZLIB.cmake

-- Found: /Users/user/.conan/data/zlib/1.2.11/_/_/package/
—0eaf3bfbc94fb6d2c8£230d052d75c6cla57a4ce/1lib/1ibz.a

lib/1.0@user/channel: Package '72bce3af445a371b892525bc8701d96c568ead8bh' created

In a conanfile.txt

If you are using a conanfile. txt file in your project, instead of a conanfile. py, this generator can be used together
with the cmake_paths generator to adjust the CHAKE_MODULE_PATH and CMAKE_PREFIX_PATH variables automatically
and let CMake locate the generated Find<package_name>. cmake files.

With cmake_paths:

Listing 7: conanfile.txt

[requires]
zlib/1.2.11

[generators]
cmake_find_package
cmake_paths

Listing 8: CMakeList.txt

cmake_minimum_required (VERSION 3.0)
project(helloworld)

(continues on next page)

15.2. Build systems 255




Conan Documentation, Release 1.60.2

include (${CMAKE_BINARY_DIR}/conan_paths.cmake)
add_executable(helloworld hello.c)
find_package (ZLIB)

# Global approach

if(ZLIB_FOUND)
include_directories(${ZLIB_INCLUDE_DIRS})
target_link_libraries (helloworld ${ZLIB_LIBRARIES})

endif()

# Modern CMake targets approach
if(TARGET ZLIB::ZLIB)

target_link libraries(helloworld ZLIB::ZLIB)
endif()

(continued from previous page)

$ mkdir build && cd build
conan install ..

“

$ cmake .. -G "Unix Makefiles" -DCMAKE_BUILD_TYPE=Release

-- Conan: Using autogenerated FindZLIB.cmake

-- Found: /Users/user/.conan/data/zlib/1.2.11/_/_/package/

—0eaf3bfbc94fb6d2c8£230d052d75c6¢cla57adce/1ib/1ibz.a

$ cmake --build .

Or you can also adjust CMAKE_MODULE_PATH and CMAKE_PREFIX_PATH manually.

Without cmake_paths, adjusting the variables manually:

Listing 9: conanfile.txt

[requires]
zlib/1.2.11

[generators]
cmake_find_package

Listing 10: CMakeList.txt

cmake_minimum_required(VERSION 3.0)
project(helloworld)

list (APPEND CMAKE_MODULE_PATH ${CMAKE_BINARY_DIR})
1list (APPEND CMAKE_PREFIX_PATH ${CMAKE_BINARY_DIR})

add_executable(helloworld hello.c)
find_package (ZLIB)

# Global approach

if(ZLIB_FOUND)
include_directories(${ZLIB_INCLUDE_DIRS})
target_link libraries (helloworld ${ZLIB_LIBRARIES})

(continues on next page)

256

Chapter 15. Integrations




Conan Documentation, Release 1.60.2

(continued from previous page)

endif()

# Modern CMake targets approach
if(TARGET ZLIB::ZLIB)

target_link libraries(helloworld ZLIB::ZLIB)
endif()

See also:

Check the section cmake_find_package to read more about this generator and the adjusted CMake variables/targets.

cmake_find_package_multi

Warning: This is a deprecated feature. Please refer to the Migration Guidelines to find the feature that replaced
this one.

This generator is similar to the cmake_find_package generator but it allows working with multi-configuration projects
like Visual Studio with both Debug and Release. But there are some differences:

¢ Only works with CMake > 3.0

e It doesn’t generate Find<package_name>.cmake modules but <package_name>Config.
cmake/<package_name>-config.cmake files.

» The “global” approach is not supported, only “modern” CMake by using targets.

Usage

$ conan install . -g cmake_find_package_multi -s build_type=Debug
$ conan install . -g cmake_find_package_multi -s build_type=Release

These commands will generate several files for each dependency in your graph, including a <package_name>Config.
cmake or <package_name>-config.cmake that can be located by the CMake find_package(<package name> CON-
FIG) command.

Important: Add the CONFIG option to £ind_package so that module mode is explicitly skipped by CMake. This
helps to solve issues when there is for example a FindXXXX. cmake file in CMake’s default modules directory that could
be loaded instead of the <package_name>Config.cmake/<package_name>-config.cmake generated by Conan.

The name of the files follows the pattern <package_name>Config.cmake, and <package_name>-config.cmake
for lower case names. So for the z1ib/1.2.11 package, a zZ1ib-config. cmake file will be generated.

See also:

Check the section cmake_find_package_multi to read more about this generator and the adjusted CMake vari-
ables/targets.

15.2. Build systems 257



https://cmake.org/cmake/help/v3.0/command/find_package.html
https://cmake.org/cmake/help/v3.0/command/find_package.html

Conan Documentation, Release 1.60.2

Build automation

You can invoke CMake from your conanfile.py file and automate the build of your library/project. Conan provides a
CMake () helper. This helper is useful in calling the cmake command both for creating Conan packages or automating
your project build with the conan build . command. The CMake () helper will take into account your settings in
order to automatically set definitions and a generator according to your compiler, build_type, etc.

See also:

Check the section Building with CMake.

Find Packages

If a FindXXX.cmake file for the library you are packaging is already available, it should work automatically.

Variables CMAKE_INCLUDE_PATH and CMAKE_LIBRARY_PATH are set with the requirements paths. The
CMake find_library function will be able to locate the libraries in the package’s folders.

So, you can use find_package normally:

project(MyHello)
cmake_minimum_required (VERSION 2.8.12)

include(conanbuildinfo.cmake)
conan_basic_setup()

find_package("ZLIB")

if(ZLIB_FOUND)
add_executable(enough enough.c)
include_directories(${ZLIB_INCLUDE_DIRS})
target_link_libraries(enough ${ZLIB_LIBRARIES})
else()
message (FATAL_ERROR "Zlib not found™)
endif()

In addition to automatic find_package support, CMAKE_MODULE_PATH variable is set with the requirements
root package paths. You can override the default behavior of any find_package() by creating a £indXXX. cmake file in
your package.

Creating a custom FindXXX.cmake file

Sometimes the “official” CMake FindXXX.cmake scripts are not ready to find our libraries (unsupported library names
for specific settings, fixed installation directories like C:\OpenSSL, etc.) Or maybe there is no “official” CMake script
for our library.

In these cases we can provide a custom FindXXX.cmake file in our Conan packages.

1. Create a file named FindXXX.cmake and save it in your Conan package root folder, where XXX is the name of
the library that we will use in the find_package CMake function. For example, we create a FindZLIB. cmake and
use find_package(ZLIB). We recommend copying the original FindXXX.cmake file from Kitware (folder Mod-
ules/FindXXX.cmake), if available, and modifying it to help find our library files, but it depends a lot; maybe you are
interested in creating a new one.

If it’s not provided, you can create a basic one. Take a look at this example with the ZLIB library:

FindZLIB.cmake

258 Chapter 15. Integrations




Conan Documentation, Release 1.60.2

find_path(ZLIB_INCLUDE_DIR NAMES zlib.h PATHS ${CONAN_INCLUDE_DIRS_ZLIB})
find_library(ZLIB_LIBRARY NAMES ${CONAN_LIBS_ZLIB} PATHS ${CONAN_LIB_DIRS_ZLIB})

set (ZLIB_FOUND TRUE)

set(ZLIB_INCLUDE_DIRS ${ZLIB_INCLUDE_DIR})

set (ZLIB_LIBRARIES ${ZLIB_LIBRARY})
mark_as_advanced(ZLIB_LIBRARY ZLIB_INCLUDE_DIR)

In the first line we find the path where the headers should be found. We suggest the CONAN_INCLUDE_DIRS_XXX.
Then repeat for the library names with CONAN_LIBS_XXX and the paths where the libs are CO-
NAN_LIB_DIRS_XXX.

2. In your conanfile.py file add the FindXXX. cmake to the exports_sources field:

class HelloConan(ConanFile):
name = "hello"
version = "0.1"

exports_sources = ["FindXXX.cmake"]

3. In the package method, copy the FindXXX. cmake file to the root:

class HelloConan(ConanFile):
name = "hello"
version = "0.1"

exports_sources = ["FindXXX.cmake"]

def package(self):

self.copy("FindXXX.cmake", ".", ".")

Other resources:

* If you want to use the Visual Studio 2017 + CMake integration, check this how-to

15.2.2 MSBuild (Visual Studio)

Warning: This is a deprecated feature. Please refer to the Migration Guidelines to find the feature that replaced
this one.

The new, under development Using the conan.tools.microsoft tools: MSBuildDeps, MSBuildToolchain
and MSBuild helpers to generate properties files for your project, containing information about the project depen-
dencies and toolchain. Go to conan.tools.microsoft for more information. While they are recommended and usable
and we will try not to break them in future releases, some breaking changes might still happen if necessary to
prepare for the Conan 2.0 release.

15.2. Build systems 259




Conan Documentation, Release 1.60.2

If you are using CMake to generate your Visual Studio projects, this is not the right section, go to CMake instead. This
section is about native integration with Microsoft MSBuild, using properties files.

Conan can be integrated with MSBuild natively, the build system of Visual Studio by:

 Using the visual_studio or visual_studio_multi generators to create a MSBuild properties conanbuild-
info.props file.

With visual_studio generator

Use the visual_studio generator, or visual_studio_multi, if you are maintaining your Visual Studio projects, and want
to use Conan to to tell Visual Studio how to find your third-party dependencies.

You can use the visual_studio generator to manage your requirements via your Visual Studio project.

This generator creates a Visual Studio project properties file, with all the include paths, lib paths, libs, flags etc., that
can be imported in your project.

Open conanfile.txt and change (or add) the visual_studio generator:

[requires]
poco/1.9.4

[generators]
visual_studio

Install the requirements:

[$ conan install . ]

Go to your Visual Studio project, and open the Property Manager (usually in View -> Other Windows -> Property
Manager).

260 Chapter 15. Integrations


https://docs.microsoft.com/en-us/visualstudio/ide/managing-project-and-solution-properties?view=vs-2017

Conan Documentation, Release 1.60.2

W Project] - Microsoft Wisual Studia

File  Edit | View | Project  Build  Debug  Tearn  Tools  Test  Analyze  Window — Help
o - < Code F? - P Local Windows Debugger -.| (i _
: & Open
3. main.cp o Witk
:'ff_‘ EPVDJE pen .. ape) = @ main{int arge, ct
"':'_ k] Solution Explarer Ctrl+Alt+L the usual "hpx/hpx init.hpp' enables
= ve  Team Explaorer Chrl +2, Crl + ect main HPX entry point.
P E Server Explarer Ctrl +48t+5
r;_" 19 Bookmark Window Crl +k, Sl i B Command Window Ctrl+ Al +A,
oy B Webb Ctrl+lt+R
= Call Hierarchy Cirl+ It +K ) W B At
»
3 Class Yiew CHel+Shift+0 & Load Test Runs
[© Code Definition Window Cirl+9, D source Control Explorer
m Object Browser Ctrl + 80t +] B Package Manager Consale
[& ErrorList CHrl+® F ‘= Document Outline Ctrl+2lt+T
o .
[ Output Crl+Alt+0 D History
@ Start Page © Pending Changes
B Task List Ctrl+® T & Property Manage
= Toolbox Chpl -t 43 ] Resource Wiew Ctrl+Zhift+E
Y lotifications Chel+4i 1 E  Python Environments Crl+K, Chrl +f
Find Results Pythion 2.7 Interactive Alt+l
Other Windawrs &1  Code Metrics Results
100 % Tanlhars
Full Screen Shift+4lt+Enter

oo

Click the + icon and select the generated conanbuildinfo.props file:

m Prajectl - Microsoft Wisual Studio Y4 & | Quick Launch (Ctrl+0) - B x
File  Edit  ‘iew  Project  Build  Debug  Team  Tools  Test  Analyze  Window  Help pe = E
Q- | fE R - T | - = | Release - w84 = P Local Windows Debugger v| A | | | -

main.cpp B X

%] Project1 - {Global Scope)
51// Including 'hpx/hpx_main.hpp' instead of the (&
// to use the plain C-main below as the direct na
clude <hpx/hpx_init.hpp>
#include <hpx/include/iostreams.hpp>

=~ @ mainfint arge, cha =

-lint hpx_main(boost::program_options::ivariables n
{
// say hello to the world!
hox: rcout << "Hello World!\n" << hox::flush:

Build your project as usual.

Property Manager - conanbuildinfo

& | it V| W

3 Debug | Win32
Debug | x64
Release | Wind2
Release | x4

- v v

Note: Remember to set your project’s architecture and

build type accordingly, explicitly or implicitly, when issuing

the conan install command. If these values don’t match, your build will probably fail.

e.g. Release/x64

See also:

Check visual_studio for the complete reference.

15.2. Build systems

261



Conan Documentation, Release 1.60.2

Build an existing Visual Studio project

You can build an existing Visual Studio from your build() method using the MSBuild() build helper.

from conans import ConanFile, MSBuild
class ExampleConan(ConanFile):
def build(self):

msbuild = MSBuild(self)
msbuild.build("MyProject.sln")

Toolsets

You can use the sub-setting toolset of the Visual Studio compiler to specify a custom toolset. It will be automatically
applied when using the CMake () and MSBuild() build helpers. The toolset can also be specified manually in these
build helpers with the toolset parameter.

By default, Conan will not generate a new binary package if the specified compiler.toolset matches an already
generated package for the corresponding compiler.version. Check the package_id() reference to learn more.

See also:

Check the CMake() reference section for more info.

15.2.3 Autotools: configure/make

Warning: This is a deprecated feature. Please refer to the Migration Guidelines to find the feature that replaced
this one.

If you are using configure/make you can use the AutoToolsBuildEnvironment helper. This helper sets LIBS,
LDFLAGS, CFLAGS, CXXFLAGS and CPPFLAGS environment variables based on your requirements.

Check Building with Autotools for more info.

15.2.4 Ninja, NMake, Borland

These build systems still don’t have a Conan generator for using them natively. However, if you are using CMake, you
can instruct Conan to use them instead of the default generator (typically Unix Makefiles).

Set it globally in your conan.conf file:

[$ conan config set general.cmake_generator=Ninja

or use the environment variable CONAN_CMAKE_GENERATOR.

262 Chapter 15. Integrations



Conan Documentation, Release 1.60.2

15.2.5 pkg-config and .pc files

Warning: This is a deprecated feature. Please refer to the Migration Guidelines to find the feature that replaced
this one.

If you are creating a Conan package for a library (A) and the build system uses .pc files to locate its dependencies (B
and C) that are Conan packages too, you can follow different approaches.

The main issue to address is the absolute paths. When a user installs a package in the local cache, the directory will
probably be different from the directory where the package was created. This could be because of the different computer,
the change in Conan home directory or even a different user or channel:

For example, in the machine where the packages were created:

[/home/user/lasote/ .data/storage/zlib/1.2.11/conan/stable

In the machine where the library is being reused:

[/custom/dir/ .data/storage/zlib/1.2.11/conan/testing

You can see that .pc files containing absolute paths won’t work with locating the dependencies.

Example of a .pc file with an absolute path:

prefix=/Users/lasote/.conan/data/z1lib/1.2.11/lasote/stable/package/
—.b5d68b3533204ad67e01fa587ad28fb8ce®10527

exec_prefix=${prefix}

libdir=${exec_prefix}/lib

sharedlibdir=${libdir}

includedir=${prefix}/include

Name: zlib
Description: zlib compression library
Version: 1.2.11

Requires:
Libs: -L${libdir} -L${sharedlibdir} -1z
Cflags: -I${includedir}

To solve this problem there are different approaches that can be followed.

Approach 1: Import and patch the prefix in the .pc files
In this approach your library A will import to a local directory the .pc files from B and C, then, as they will contain
absolute paths, the recipe for A will patch the paths to match the current installation directory.

You will need to package the .pc files from your dependencies. You can adjust the PKG_CONFIG_PATH to let
pkg-config tool locate them.

import os
from conans import ConanFile, tools

class LibAConan(ConanFile):
name = "libA"
(continues on next page)

15.2. Build systems 263



Conan Documentation, Release 1.60.2

(continued from previous page)

version = "1.0"
settings = "os", "compiler", "build_type", "arch"
exports_sources = "*.cpp"

requires = "1libB/1.0@conan/stable"

def build(self):
lib_b_path = self.deps_cpp_info["1ibB"].rootpath
copyfile(os.path.join(lib_b_path, "1ibB.pc"), "1ibB.pc")
# Patch copied file with the 1ibB path
tools.replace_prefix_in_pc_file("1libB.pc", lib_b_path)

with tools.environment_append({"PKG_CONFIG_PATH": os.getcwd()}):
# CALL YOUR BUILD SYSTEM (configure, make etc)
# E.g., self.run('g++ main.cpp $(pkg-config 1ibB --libs --cflags) -o main')

Approach 2: Prepare and package .pc files before packaging them

With this approach you will patch the .pc files from B and C before packaging them. The goal is to replace the absolute
path (the variable part of the path) with a variable placeholder. Then in the consumer package A, declare the variable
using --define-variable when calling the pkg-config command.

This approach is cleaner than approach 1, because the packaged files are already prepared to be reused with or without
Conan by declaring the needed variable. And it’s unneeded to import the .pc files to the consumer package. However,
you need B and C libraries to package the .pc files correctly.

Library B recipe (preparing the .pc file):

from conans import ConanFile, tools

class LibBConan(ConanFile):

def build(self):
tools.replace_prefix_in_pc_file("mypcfile.pc", "$ ")

def package(self):
self.copy(pattern="*.pc", dst="", keep_path=False)

Library A recipe (importing and consuming .pc file):

class LibAConan(ConanFile):

requires = "1ibB/1.0@conan/stable, 1ibC/1.0@conan/stable"

def build(self):

args = '--define-variable package_root_path_lib_b=%s' % self.deps_cpp_info["1ibB
"] .rootpath
args += ' --define-variable package_root_path_lib_c=%s' % self.deps_cpp_infol[

—"1ibC"] .rootpath

(continues on next page)

264 Chapter 15. Integrations




Conan Documentation, Release 1.60.2

(continued from previous page)

pkgconfig_exec = 'pkg-config ' + args

vars = {'PKG_CONFIG': pkgconfig_exec, # Used by autotools
'"PKG_CONFIG_PATH': "%s:%s" % (self.deps_cpp_info["1ibB"].rootpath,
self.deps_cpp_info["1ibC"].rootpath)}

with tools.environment_append(vars):
# Call autotools (./configure ./make, will read PKG_CONFIG)
# Or directly declare the variables:
self.run('g++ main.cpp $(pkg-config %s 1libB --1libs --cflags) -o main' % args)

Approach 3: Use --define-prefix
If you have available pkg-config >= 0.29 and you have only one dependency, you can directly use the

--define-prefix option to declare a custom prefix variable. With this approach you won’t need to patch any-
thing, just declare the correct variable.

Approach 4: Use PKG_CONFIG_$PACKAGE_$VARIABLE

If you have pkg-config >= 0.29.1 available, you can manage multiple dependencies declaring N variables with the
prefixes:

class LibAConan(ConanFile):

requires = "1libB/1.0@conan/stable, 1ibC/1.0@conan/stable"
def build(self):

vars = {'PKG_CONFIG_libB_PREFIX': self.deps_cpp_info["1ibB"].rootpath,
'"PKG_CONFIG_1ibC_PREFIX': self.deps_cpp_info["1ibC"].rootpath,
"PKG_CONFIG_PATH': "%s:%s" % (self.deps_cpp_info["1ibB"].rootpath,
self.deps_cpp_info["1ibC"].rootpath)}

with tools.environment_append(vars):
# Call the build system

Approach 5: Use the pkg_config generator

If you use package_info() in library B and library C, and specify all the library names and any other needed flag, you
can use the pkg_config generator for library A. Those files doesn’t need to be patched, because they are dynamically
generated with the correct path.

So it can be a good solution in case you are building library A with a build system that manages .pc files like Meson
Build or AutoTools:

Meson Build

from conans import ConanFile, tools, Meson
import os

(continues on next page)

15.2. Build systems 265




Conan Documentation, Release 1.60.2

(continued from previous page)

class ConanFileToolsTest(ConanFile):

generators = "pkg_config"
requires = "lib_a/0.1@conan/stable"
settings = "os", "compiler", "build_type"

def build(self):
meson = Meson(self)
meson.configure()
meson.build()

Autotools

from conans import ConanFile, tools, AutoToolsBuildEnvironment
import os

class ConanFileToolsTest(ConanFile):
generators = "pkg_config"
requires = "lib_a/0.1@conan/stable"

settings "os", "compiler", "build_type"

def build(self):

autotools = AutoToolsBuildEnvironment(self)

# When using the pkg_config generator, self.build_folder will be added to PKG_
—CONFIG_PATH

# so pkg_config will be able to locate the generated pc files from the requires.
—(LIB_A)

autotools.configure()

autotools.make()

See also:

Check the tools.PkgConfig(), a wrapper of the pkg-config tool that allows to extract flags, library paths, etc. for any

m:boost.builda

Boost Build

15.2.6

Caution: This generator is deprecated in favor of the b2 generator. See generator b2.

With this generator boost-build you can generate a project-root. jamfile to be used with your Boost Build system.

Check the generator boost-build

266 Chapter 15. Integrations




Conan Documentation, Release 1.60.2

‘boost.builda

(Boost Build)

15.2.7 B2

With this generator b2 you can generate a conanbuildinfo. jam file to be used with your B2 system.

Check the generator b2

15.2.8 QMake

Warning: This is a deprecated feature. Please refer to the Migration Guidelines to find the feature that replaced
this one.

The gmake generator will generate a conanbuildinfo.pri file that can be used for your gmake builds.

[$ conan install . -g gmake ]

Add conan_basic_setup to CONFIG and include the file in your existing project .pro file:

Listing 11: yourproject.pro

CONFIG += conan_basic_setup
include(conanbuildinfo.pri)

This will include all the statements in conanbuildinfo.pri in your project. Include paths, libraries, defines, etc. will be
set up for all requirements you have defined as dependencies in a conanfile.txt.

If you’d prefer to manually add the variables for each dependency, you can do so by skipping the CONFIG statement and
only including conanbuildinfo.pri:

15.2. Build systems 267



Conan Documentation, Release 1.60.2

Listing 12: yourproject.pro

# ...
include(conanbuildinfo.pri)

# you may now modify your variables manually for each library, such as
# INCLUDEPATH += CONAN_INCLUDEPATH_POCO

The gmake generator allows multi-configuration packages, i.e. packages that contains both Debug and Release artifacts.

Example

Tip: This complete example is stored in https://github.com/memsharded/qmake_example

This example project will depend on a multi-configuration (Debug/Release) “Hello World” package. It should be
installed first:

$ git clone https://github.com/memsharded/hello_multi_config

$ cd hello_multi_config

$ conan create . memsharded/testing

hello/0.1@memsharded/testing export: Copied 1 '.txt' file: CMakeLists.txt
hello/0. l@memsharded/testing export: Copied 1 '.cpp' file: hello.cpp
hello/0.1@memsharded/testing export: Copied 1 '.h' file: hello.h
hello/0.1@memsharded/testing: A new conanfile.py version was exported

This hello package is created with CMake, but that doesn’t matter for this example, as it can be consumed from a qmake
project with the configuration showed before.

Now let’s get the qmake project and install its hello/0.1 @memsharded/testing dependency:

$ git clone https://github.com/memsharded/gmake_example
$ cd gmake_example
$ conan install .
PROJECT: Installing C:\Users\memsharded\gmake_example\conanfile.txt
Requirements
hello/0.1l@memsharded/testing from local cache - Cache
Packages
hello/0. 1@Gmemsharded/testing:15af85373a5688417675aa1e5065700263bf257e - Cache

hello/0. l@memsharded/testing: Already installed!
PROJECT: Generator gmake created conanbuildinfo.pri
PROJECT: Generator txt created conanbuildinfo.txt
PROJECT: Generated conaninfo.txt

As you can see, we got the dependency information in the conanbuildinfo.pri file. You can inspect the file to see the
variables generated. Now let’s build the project for Release and then for Debug:

$ gmake
$ make
$ ./helloworld

(continues on next page)

268 Chapter 15. Integrations



https://github.com/memsharded/qmake_example

Conan Documentation, Release 1.60.2

> Hello World Release!

# now let's build the Debug one
$ make clean

$ gmake CONFIG+=debug

$ make

$ ./helloworld

> Hello World Debug!

(continued from previous page)

See also:

Check the complete reference of the gmake generator.

e

15.2.9 j Premake

this one.

Warning: This is a deprecated feature. Please refer to the Migration Guidelines to find the feature that replaced

Since Conan 1.9.0 the premake generator is built-in and works with premake5, so the following should be enough to

use it:

[generators]
premake

Example

We are going to use the same example from Getting Started, a MDS5 hash calculator app.

This is the main source file for it:

Listing 13: main.cpp

#include "Poco/MD5Engine.h"
#include "Poco/DigestStream.h"

#include <iostream>

int main(int argc, char** argv)

{
Poco: :MD5Engine md5;
Poco: :DigestOutputStream ds(md5);
ds << "abcdefghijklmnopgrstuvwxyz";
ds.close();

std::cout << Poco::DigestEngine::digestToHex(md5.digest()) << std::endl;

(continues on next page)

15.2. Build systems

269




Conan Documentation, Release 1.60.2

(continued from previous page)

return 0;

As this project relies on the Poco Libraries, we are going to create a conanfile.txt with our requirement and also declare
the Premake generator:

Listing 14: conanfile.txt

[requires]
poco/1.9.4

[generators]
premake

In order to use the new generator within your project, use the following Premake script as a reference:

Listing 15: premake5.lua

-- premake5.lua
include("conanbuildinfo.premake.lua")

workspace (" ConanPremakeDemo")
conan_basic_setup()

project "ConanPremakeDemo"
kind "ConsoleApp"
language "C++"
targetdir "bin/%{cfg.buildcfg}"

linkoptions { conan_exelinkflags }
files { "**.h", "**.cpp" }

filter "configurations:Debug"
defines { "DEBUG" }

symbols "On"

filter "configurations:Release"

defines { "NDEBUG" }
optimize "On"

Now we are going to let Conan retrieve the dependencies and generate the dependency information in a conanbuild-
info.lua:

[$ conan install .

Then let’s call premake to generate our project:

¢ Use this command for Windows Visual Studio:

£$ premake5 vs2017 # Generates a .sln

¢ Use this command for Linux or macOS:

270 Chapter 15. Integrations




Conan Documentation, Release 1.60.2

[$ premake5 gmake # Generates a makefile

Now you can build your project with Visual Studio or Make.
See also:

Check the complete reference of the premake generator.

15.2.10 XMake

Warning: This is a deprecated feature. Please refer to the Migration Guidelines to find the feature that replaced
this one.

Install third-party packages:
After version 2.2.5, xmake supports installing for dependency libraries of conan package manager.

Listing 16: xmake.lua

-- xmake. lua

add_requires("conan::zlib/1.2.11@conan/stable", {alias = "zlib", debug = true})
add_requires("conan: :openssl/1.1.1g", {alias = "openssl",
configs = {options = "OpenSSL:shared=True"}})

target("test")
set_kind("binary")
add_files("src/*.c")
add_packages("openssl", "zlib")

After executing xmake to compile:

$ xmake

checking for the architecture ... x86_64

checking for the Xcode directory ... /Applications/Xcode.app
checking for the SDK version of Xcode ... 10.14

note: try installing these packages (pass -y to skip confirm)?
-> conan::zlib/1.2.11@conan/stable (debug)
-> conan::openssl/1.1.1g

please input: y (y/n)

=> installing conan::zlib/1.2.11@conan/stable .. ok
=> installing conan::openssl/1.1.1g .. ok

[ 0%]: ccache compiling.release src/main.c
[100%]: linking.release test

15.2. Build systems 271




Conan Documentation, Release 1.60.2

Find a conan package
XMake v2.2.6 and later versions also support finding the specified package in the Conan cache:

Listing 17: xmake.lua

‘ find_packages("conan: :openssl/1.1.1g") ’

Test command for finding package

We can also add a third-party package manager prefix to test:

[xmake 1 find_packages conan::openssl/1.1.1g }

Note: It should be noted that if the find_package command is executed in the project directory with xmake.lua, there
will be a cache. If the search fails, the next lookup will also use the cached result. If you want to force a retest every
time, Please switch to the non-project directory to execute the above command.

15.2.11 Make

Warning: This integration is to be deprecated in Conan 2.0. Check the conan.tools.gnu Autotools integration.

Conan provides the Make generator to integrate with plain Makefiles

The make generator outputs all the variables related to package dependencies into a file which is named conanbuild-
info.mak. The make toolchain outputs all the variables related to settings, options, and platform into a file which is
named conan_toolchain.mak.

To use the generator, indicate it in your conanfile like this:

Listing 18: conanfile.txt

[generators]
make

272 Chapter 15. Integrations



Conan Documentation, Release 1.60.2

Listing 19: conanfile.py

class MyConan(ConanFile):

generators = "make"

Example

We are going to use the same example from Getting Started, a MD3 hash calculator app.

This is the main source file for it:

Listing 20: main.cpp

#include "Poco/MD5Engine.h"
#include "Poco/DigestStream.h"

#include <iostream>

int main(int argc, char** argv)
{
Poco: :MD5Engine md5;
Poco: :DigestOutputStream ds(md5);
ds << "abcdefghijklmnopgrstuvwxyz";
ds.close();
std::cout << Poco::DigestEngine::digestToHex(md5.digest()) << std::endl;
return 0;

In order to use this generator within your project, use the following Makefile as a reference:

Listing 21: Makefile

include conanbuildinfo.mak

CFLAGS += $(CONAN_CFLAGS)

CXXFLAGS += $(CONAN_CXXFLAGS)

CPPFLAGS += $(addprefix -I, $(CONAN_INCLUDE_DIRS))
CPPFLAGS += $(addprefix -D, $(CONAN_DEFINES))
LDFLAGS += $(addprefix -L, $(CONAN_LIB_DIRS))
LDLIBS += $(addprefix -1, $(CONAN_LIBS))
EXELINKFLAGS += $(CONAN_EXELINKFLAGS)

# ________________________________________

# Make variables for a sample App

o

(continues on next page)

15.2. Build systems 273




Conan Documentation, Release 1.60.2

(continued from previous page)

SRCS = main.cpp
OBJS = main.o
EXE_FILENAME = main
# ________________________________________
# Make Rules
# ________________________________________
.PHONY : exe
exe E $ (EXE_FILENAME)
$ (EXE_FILENAME) 2 $(OBJIS)
g++ $(0BJS) $(CXXFLAGS) $(LDFLAGS) $(LDLIBS) -o $(EXE_FILENAME)
%.0 : $(SRCS)
g++ -c $(CPPFLAGS) $(CXXFLAGS) $< -o $@

Now we are going to let Conan retrieve the dependencies, generate the dependency information in the file
conanbuildinfo.mak, and generate the options and settings information in the file conan_toolchain.mak:

[$ conan install .

Then let’s call make to generate our project:

[$ make exe

Now you can run your application with . /main.

See also:

Complete reference for Make generator

15.2.12 qbs

Warning: This is a deprecated feature. Please refer to the Migration Guidelines to find the feature that replaced
this one.

Conan provides a gbs generator, which will generate a conanbuildinfo. gbs file that can be used for your gbs builds.
Add conanbuildinfo.qgbs as a reference on the project level and a Depends item with the name conanbuildinfo:

yourproject.qbs

import gbs

Project {
references: ["conanbuildinfo.gbs"]
Product {
type: "application"
consoleApplication: true

(continues on next page)

274 Chapter 15. Integrations




Conan Documentation, Release 1.60.2

(continued from previous page)

files: [
"conanfile.txt",
"main.cpp",

]

Depends { name: "cpp" }
Depends { name: "ConanBasicSetup" }

}

This will include the product called ConanBasicSetup which holds all the necessary settings for all your dependencies.

If you’d prefer to manually add each dependency, just replace ConanBasicSetup with the dependency you would like
to include. You may also specify multiple dependencies:

yourproject.qbs

import gbs

Project {
references: ["conanbuildinfo.qgbs"]
Product {
type: "application"
consoleApplication: true

files: [
"conanfile.txt",
"main.cpp",

]

Depends { name: "cpp" }
Depends { name: "catch" }
Depends { name: "Poco" }

}

See also:

Check the Reference/Generators/qbs section for get more details.

15.2.13 Meson Build

Warning: This is a deprecated feature. Please refer to the Migration Guidelines to find the feature that replaced
this one.

If you are using Meson Build as your library build system, you can use the Meson build helper. This helper has .
configure() and .build() methods available to ease the call to Meson build system. It also will automatically take
the pc files of your dependencies when using the pkg_config generator.

Check Building with Meson Build for more info.

15.2. Build systems 275




Conan Documentation, Release 1.60.2

ay

= =
15.2.14 EmEE SCons

Warning: This is a deprecated feature. Please refer to the Migration Guidelines to find the feature that replaced
this one.

SCons can be used both to generate and consume Conan packages via the scons generator. The package recipe build ()
method could be similar to:

class PkgConan(ConanFile):

settings = 'os', 'compiler', 'build_type', 'arch'
requires = 'hello/1.0@user/stable’
generators = '"scons"

def build(self):
debug_opts = ['--debug-build'] if self.settings.build_type == 'Debug' else []
os.makedirs("build")
# FIXME: Compiler, version, arch are hardcoded, not parametrized
with tools.chdir("build"):
self.run(['scons', '-C', '"{}/src'.format(self.source_folder)] + debug_opts)

The SConscript build script can load the generated SConscript_conan file that contains the information of the
dependencies, and use it to build

conan = SConscript('{}/SConscript_conan'.format(build_path_relative_to_sconstruct))
if not conan:

print("File "SConscript_conan is missing.")

print ("It should be generated by running " conan install’.")

sys.exit(l)

flags = conan["conan"]

version = flags.pop("VERSION")
env.MergeFlags(flags)
env.Library("hello", "hello.cpp")

A complete example with a test_package that uses SCons too is available in the following GitHub repository. Give it a
try!

$ git clone https://github.com/memsharded/conan-scons-template
$ cd conan-scons-template

$ conan create . demo/testing

> Hello World Release!

$ conan create . demo/testing -s build_type=Debug

> Hello World Debug!

276 Chapter 15. Integrations




Conan Documentation, Release 1.60.2

15.2.15 Compilers on command line

Warning: This is a deprecated feature. Please refer to the Migration Guidelines to find the feature that replaced
this one.

The compiler_args generator creates a file named conanbuildinfo.args containing command line arguments to
invoke gcc, clang or cl (Visual Studio) compiler.

Now we are going to compile the getting started example using compiler_args instead of the cmake generator.

Open conanfile. txt and change (or add) compiler_args generator:

[requires]
poco/1.9.4

[generators]
compiler_args

Install the requirements (from the mytimer/build folder):

[$ conan install ..

Note: Remember, if you don’t specify settings in the install command with -s, Conan will use the detected defaults.

[Taps T}

You can always change them by editing the ~/.conan/profiles/default or override them with “-s” parameters.

The generated conanbuildinfo.args show:

-DPOCO_STATIC=ON -DPOCO_NO_AUTOMATIC_LIBS
-I/home/user/.conan/data/poco/1.9.4/_/_/package/58080bcelcc38259eb7c282aa95c25aecde8efes/
—include

-I/home/user/.conan/data/openssl/1.0.2t/_/_/package/
—f99afdbf2al1cc98ba2029817b35103455b6a9b77/include
-I/home/user/.conan/data/z1lib/1.2.11/_/_/package/
—6af9cc7cb931c5ad942174£d7838eb655717¢c709/include

-m64 -03 -s -DNDEBUG

-Wl,-rpath="/home/user/.conan/data/poco/1.9.4/_/_/package/
—58080bcelcc38259eb7c282aa95c25aecde8efe4/1ib"
-W1,-rpath="/home/user/.conan/data/openssl/1.0.2t/_/_/package/
—f99afdbf2a1cc98ba2029817b35103455b6a9b77/1ib"
-Wl,-rpath="/home/user/.conan/data/zlib/1.2.11/_/_/package/
—»6af9cc7cb931c5ad942174£d7838eb655717¢c709/1ib"
-L/home/user/.conan/data/poco/1.9.4/_/_/package/58080bcelcc38259eb7c282aa95c25aecde8efed/
~1lib

-L/home/user/.conan/data/openssl/1.0.2t/_/_/package/
—.f99afdbf2a1cc98ba2029817b35103455b6a9b77/1ib
-L/home/user/.conan/data/zlib/1.2.11/_/_/package/
—6af9cc7cb931c5ad942174£d7838eb655717¢c709/1ib

-1PocoMongoDB -1PocoNetSSL -1PocoNet -1PocoCrypto -1PocoDataSQLite -1PocoData -1PocoZip -
—1PocoUtil

-1PocoXML -1Poco]SON -1PocoRedis -1PocoFoundation

-1rt -1ssl -lcrypto -1dl -lpthread -1z

-D_GLIBCXX_USE_CXX11_ABI=1

15.2. Build systems 277



Conan Documentation, Release 1.60.2

This is hard to read, but those are just the compiler_args parameters needed to compile our program:
* -I options with headers directories
e -L for libraries directories
e -] for library names
e and so on... see the complete reference here
It’s almost the same information we can see in conanbuildinfo.cmake and many other generators’ files.

Run:

$ mkdir bin
$ g++ ../timer.cpp @conanbuildinfo.args -std=c++14 -o bin/timer

Note: “@conanbuildinfo.args” appends all the file contents to g++ command parameters

$ ./bin/timer
Callback called after 250 milliseconds.

To invoke c1 (Visual Studio compiler):

[$ cl /EHsc timer.cpp @conanbuildinfo.args

You can also use the generator within your build () method of your conanfile.py.

Check the Reference, generators, compiler_args section for more info.

15.2.16 Bazel

If you are using Bazel as your library build system, you can use the Bazel build helper. This helper has a .build()
method available to ease the call to Bazel build system.

If you want to declare Conan dependencies in your project, you must do it, as usual, in the conanfile.py file. For
example:

class BazelExampleConan(ConanFile):
name = "bazel-example"

requires = "boost/1.76.0"

Then, tell Bazel to use that dependencies by adding this to the WORKSPACE file:

load("@//conandeps:dependencies.bzl", "load_conan_dependencies")
load_conan_dependencies()

After that, just update the BUILD files where you need to use the new dependency:

278 Chapter 15. Integrations



Conan Documentation, Release 1.60.2

cc_binary(

name = "hello-world",
srcs = ["hello-world.cc"],
deps = [

"@boost//:boost",
g

15.3 IDEs

You can develop both the recipes and your libraries using you IDE.

15.3.1 Visual Studio

Conan Extension for Visual Studio

Thanks to the invaluable help of our community we manage to develop and maintain a free extension for Visual Studio
in the Microsoft Marketplace, it is called Conan Extension for Visual Studio and it provides integration with Conan
using the Visual Studio generators.

b Visual Studio | Marketplace

Visual Studio > Toeols > Conan Extension for Visual Studio

Conan Extension for Visual Studio | @ reports | # Manage
C\| Conan | 2installs | & 2 downloads | Y v d e (0) | Free

Conan Extension for Visual Studio automates the use of the Conan C/C++ package manager for
retrieving dependencies within Visual Studio projects.

You can install it into your IDE using the Extensions manager and start using it right away. This extension will look
for a conanfile.py (or conanfile.txt) and retrieve the requirements declared in it that match your build configuration (it
will build them from sources if no binaries are available).

Note: Location of the conanfile

In version 1.0 of the extension, the algorithm to look for the conanfile.py (preferred) or conanfile.txt is very naive: It
will start looking for those files in the directory where the Visual Studio project file is located and then it will walk
recursively into parent directories to look for them.

15.3. IDEs 279


https://marketplace.visualstudio.com/items?itemName=conan-io.conan-vs-extension

Conan Documentation, Release 1.60.2

The extension creates a property sheet file and adds it to the project, so all the information from the dependencies
handled by Conan should be added (as inherited properties) to those already available in your projects.

At this moment (release v1.0.x) the extension is under heavy development, some behaviors may change and new
features will be added. You can subscribe to its repository to stay updated and, of course, any feedback about it will be
more than welcome.

General Integration

Check the MSBuild() integration, that contains information about Build Helpers and generators to be used with Visual
Studio.

15.3.2 CLion

There is an official Jetbrains plugin Conan plugin for CLion.

Conan 9 default

. ] (Make profile Release

g SUsers/yahavi/CLionProje nle-poco-timer/conanftile

n U] ldinfo
inbuildinfo.txt

% 6: TODD CMake &' O: Version Control "?I Conan »_| Terminal

You can read how to use it in the following blog post

280 Chapter 15. Integrations


https://github.com/conan-io/conan-vs-extension
https://plugins.jetbrains.com/plugin/11956-conan
https://blog.jetbrains.com/clion/2019/05/getting-started-with-the-conan-clion-plugin/

Conan Documentation, Release 1.60.2

General Integration

CLion uses CMake as the build system of projects, so you can use the CMake generator to manage your requirements
in your CLion project.

Just include the conanbuildinfo.cmake this way:

if(EXISTS ${CMAKE_BINARY_DIR}/conanbuildinfo.cmake)
include (${CMAKE_BINARY_DIR}/conanbuildinfo.cmake)
conan_basic_setup()
else()
message (WARNING "The file conanbuildinfo.cmake doesn't exist, you have to run conan.,
—install first")
endif()

If the conanbuildinfo.cmake file is not found, it will print a warning message in the Messages console of your
CLion IDE.

Using packages in a CLion project

Let see an example of how to consume Conan packages in a CLion project. We are going to require and use the z1ib
conan package.

1. Create a new CLion project

C++

A C++ Executable
C++ Library Language standard: | C++11 ﬁ

C
Library type: static
A C Executable e ﬁ

A C Library

Location: | /Users/luism/workspace/mylibrary

2. Edit the CMakeLists. txt file and add the following lines:

if(EXISTS ${CMAKE_BINARY_DIR}/conanbuildinfo.cmake)
include (${CMAKE_BINARY_DIR}/conanbuildinfo.cmake)

(continues on next page)

15.3. IDEs 281




Conan Documentation, Release 1.60.2

(continued from previous page)
conan_basic_setup()

else()

message (WARNING "The file conanbuildinfo.cmake doesn't exist, you have to run conan.
—install first")

endif()
[ Project 0 = | £~ 1= A CMakelists.txt
clion_createl ~/workspace/clion_createl cmake_minimum_required(VERSION 3.7)
cmake-build-debug project(clion_createl)
ke-build-rel
cmare-bulid-release a Af(EXISTS ${CHAKE_BINARY_DIR}/conanbuildinfo. crake)
lssi_package 5 include (${CMAKE_BINARY_DIR}/conanbuildinfo.cmake)
CMakelLists.txt 6 conan_basic_setup()
conanfile.py else()
. 8 message (WARNING "The file conanbuildinfo.cmake doesn't exist, you have to run conan install first")
o library.cpp = endif()
i library.h

|l External Libraries set{CMAKE_CXX_STANDARD 11)

set({SOURCE_FILES library.cpp library.h)
add_library(clion_createl ${SOURCE_FILES})

3. CLion will reload your CMake project and you will be able to see a Warning in the console, because the
conanbuildinfo. cmake file still doesn’t exist:

CMake: Release

o + /Applications/CLion.app/Contents/bin/cmake/bin/cmake —DCMAKE_BUILD_TYPE=Debug -G "CodeBlocks - Unix Makefiles" /fUsers/luism/workspace/clion_createl
(Make Warning at CMakelists.txt:8 (message):

2 + The file conanbuildinfo.cmake doesn't exist, you have to run conan install

_ first

# =

? B == Configuring done
5 == Generating done
- | == Build files have been written to: /Users/luism/workspace/clion_createl/cmake-build-debug
m

4. Create a conanfile. txt with all your requirements and use the cmake generator. In this case we only require the
zlib library from a Conan package:

[requires]
z1lib/1.2.11

[generators]
cmake

| conanfile.txt - mylibrary
mylibrary } = conanfile.txt )
B Project @ &= | 8- 1+ A CMakeLists.txt = conanfile.txt w library.h o+t library.cpp
mylibrary ~/workspace/mylibrary 1 [requires]

cmake-build-debug 2 zlib/1.2.B8@lasote/stable
A CMakeLists.txt -

: 4 [generators]
= conanfile.txt 5 cmake

o library.cpp 6

w library.h

|lll External Libraries

5. Now you can run conan install for debug in the cmake-build-debug folder to install your requirements and
generate the conanbuildinfo. cmake file there:

[$ conan install . -s build_type=Debug --install-folder=cmake-build-debug ]

6. Repeat the last step if you have the release build types configured in your CLion IDE, but change the build_type
setting accordingly:

282 Chapter 15. Integrations



Conan Documentation, Release 1.60.2

[$ conan install . -s build type=Release --install-folder=cmake-build-release

7. Now reconfigure your CLion project. The Warning message is not shown anymore:

CMake /) Debug

(4] /sApplications/CLien.app/Contents/bin/cmake/bin/cmake -DCMAKE_BUILD_TYPE=Debug -G "CodeBlocks - Unix Makefiles” /Users/luism/workspace/mylibrary
== Current conanbuildinfe.cmake directory: /Users/luism/workspace/mylibrary/cmake-build-debug
== Cenan: Using cmake glebal cenfiguration

o = — Configuring done
-3 %3 | —= Generating done
- I—— Build files have been written to: /Users/luism/workspace/mylibrary/cmake—build-debug
?
=
.
i1

8. Open the library. cpp file and include z1ib.h. If you follow the link, you can see that CLion automatically detects
the z1ib.h header file from the local Conan cache.

mylibrary ) ., library.cpp

B Project @ = | ¥ 1= A CMakelists.txt & conanfile.txt

4 library.h o library.cpp
mylibrary ~/workspace/mylibrary #include "Llibrary.h"
cmake-build-debug #include “"zlib.h"
A CMakelists.txt #include <iostream>
conanfile.txt
o« library.cpp S wvoid hello() {
w library.h tiendl; . . . .
Il External Libraries . << ZLIB VERSION << " using zlib " << zlib_version << std::endl;
9. Build your project normally using your CLion IDE:
Messages Build
/Applications/CLion.app/Contents/bin/cmake/bin/cmake —build /Users/luism/workspace/mylibrary/cmake-build-debug —target mylibrary — -] 8
Scanning dependencies of target mylibrary

[ 50%] Building CXX object CMakeFiles/mylibrary.dir/1ib
= [100%] Linking CXX static library lib/libmylibrary.a
=0 [18@%] Built target mylibrary

rary.cpp.o

il

el | [

You can check a complete example of a CLion project reusing conan packages in this github repository: lasote/clion-
conan-consumer.

Creating Conan packages in a CLion project

Now we are going to see how to create a Conan package from the previous library.

1. Create a new CLion project

15.3. IDEs 283


https://github.com/lasote/clion-conan-consumer
https://github.com/lasote/clion-conan-consumer

Conan Documentation, Release 1.60.2

C++

A C++ Executable
C++ Library Language standard: | C++11 ﬁ

C
Library type: static
A C Executable e ﬁ

A C Library

Location: | /Users/luism/workspace/mylibrary

2. Edit the CMakeLists. txt file and add the following lines:

if(EXISTS ${CMAKE_BINARY_DIR}/conanbuildinfo.cmake)

include (${CMAKE_BINARY_DIR}/conanbuildinfo.cmake)

conan_basic_setup()
else(Q)

message (WARNING "The file conanbuildinfo.cmake doesn't exist, you have to run conan.
—install first")

endif()
B Project 0 = | #- 1= A CMakelists.txt
clion_createl ~/workspace/clion_createl 1 cmake_minimum_required(VERSION 3.7)
cmake-build-debug 2 project(clion_createl)

ke-build-rel 2 . s
cmaxe-ulid-release a if(EXISTS ${CMAKE_BINARY_DIR}/conanbuildinfo.cmake)

test_package 5 include(${CMAKE_BINARY_DIR}/conanbuildinfo.cmake)

CMakelLlists.txt conan_basic_setup()

6
conantfile.py 7 else() . — : i i
library.cpp 8 message(WARNING "The file conanbuildinfo.cmake doesn't exist, you have to run conan install first")
e i - 9 endif(}
w library.h 10
|lli External Libraries 11 set{CMAKE_CXX_STANDARD 11)

13 set(SOURCE_FILES library.cpp library.h)
4 add_library({clion_createl ${SOURCE_FILES})

3. Create a conanfile.py file. It’s recommended to use the conan new command.

[$ conan new mylibrary/1.0@myuser/channel

Edit the conanfile.py:

* We are removing the source method because we have the sources in the same project; so we can use the
exports_sources.

* Inthe package_info method, adjust the library name. In this case our CMakeLists. txt creates a target library
called mylibrary.

284 Chapter 15. Integrations



Conan Documentation, Release 1.60.2

¢ Adjust the CMake helper in the build() method. The cmake.configure() doesn’t need to specify the
source_folder, because we have the 1ibrary. * files in the root directory.

* Adjust the copy function calls in the package method to ensure that all your headers and libraries are copied to
the Conan package.

from conans import ConanFile, CMake, tools

class MylibraryConan(ConanFile):

name = "mylibrary"

version = "1.0"

license = "<Put the package license here>"

url = "<Package recipe repository url here, for issues about the package>"
description = "<Description of Mylibrary here>"

settings = "os", "compiler", "build_type", "arch"

options = {"shared": [True, False]}
default_options = {"shared": False}
generators = "cmake"

requires = "zlib/1.2.11"

def build(self):
cmake = CMake(self)
cmake.configure()
cmake.build()

# Explicit way:
# self.run('cmake "%s" %s' % (self.source_folder, cmake.command_line))
# self.run("cmake --build . %s" % cmake.build _config)

def package(self):
self.copy("*.h", dst="include", src="hello")
self.copy("*.1ib", dst="1ib", keep_path=False)
self.copy("*.dl1l", dst="bin", keep_path=False)
self.copy("*.s0o", dst="1ib", keep_path=False)
self.copy("*.dylib", dst="1ib", keep_path=False)
self.copy("*.a", dst="1ib", keep_path=False)

def package_info(self):
self.cpp_info.libs = ["mylibrary"]

4. To build your library with CLion, follow the guide of Using packages from step 5.

5. To package your library, use the conan export-pkg command passing the used build-folder. It will call your
package () method to extract the artifacts and push the Conan package to the local cache:

$ conan export-pkg . mylibrary/1.0@myuser/channel --build-folder cmake-build-debug -
—pr=myprofile

7. Now you can upload it to a Conan server if needed:

$ conan upload mylibrary/1.0@myuser/channel # This will upload only the recipe, use --
—all to upload all the generated binary packages.

8. If you would like to see how the package looks like before exporting it to the local cache (conan export-pkg) you
can use the conan package command to create the package in a local directory:

15.3. IDEs 285




Conan Documentation, Release 1.60.2

[$ conan package . --build-folder cmake-build-debug --package-folder=mypackage

If we list the mypackage folder we can see:
* A 1ib folder containing our library
¢ A include folder containing our header files
e A conaninfo.txt and conanmanifest.txt conan files, always present in all packages.

You can check a full example of a CLion project for creating a Conan package in this github repository: lasote/clion-
conan-package.

15.3.3 Apple/Xcode

Conan can be integrated with Apple’s XCode in two different ways:
 Using the cmake generator to create a conanbuildinfo.cmake file.

 Using the xcode generator to create a conanbuildinfo.xcconfig file.

With CMake

Check the Integrations/cmake section to read about the cmake generator. Check the official CMake docs to find out
more about generating Xcode projects with CMake.

With the xcode generator

You can use the xcode generator to integrate your requirements with your Xcode project. This generator creates an
xcconfig file, with all the include paths, lib paths, libs, flags etc, that can be imported in your project.

Open conanfile. txt and change (or add) the xcode generator:

[requires]
poco/1.9.4

[generators]
xcode

Install the requirements:

[$ conan install .

Go to your Xcode project, click on the project and select Add files to...

286 Chapter 15. Integrations


https://github.com/lasote/clion-conan-package
https://github.com/lasote/clion-conan-package
https://cmake.org/cmake/help/v3.0/manual/cmake-generators.7.html

Conan Documentation, Release 1.60.2

@ Xcode File Edit View Find Mavigate Editor Product Debug Source Control Window Helf

®C® [ 2 B B Example? ; B My Mac Finished running Example2 : Example2

BEAMo=c B || < @Examplez

v [ Example2 Show in Finder Info Buil
¥ | | Example2 Open with External Editor
¢ main.c Open As >
 conanbuildi  Show File Inspector
|| conaninfo.t nt Target | 10.11

New File...

| conanfile. e i - .
¥ [ | Products Flesto Example2™..

I Example2 Based on Configuration File
New Group . Mo Configurations Set
New Group from Selection No Configurations Set
Sort by Name F
Sort by Type

for command-line builds
Find in Selected Groups...

Source Control >

) ) Resources
Project Navigator Help L
~— oot LANguUage 0 Files Localized

Choose conanbuildinfo.xcconfig generated.

@ Xcode File Edit View Find Navigate Editor Product Debug Source Control Window Help ’ a = o) 10
[N ] p [ ] B Example2 ;) B My Mac Finished running Example2 : Example2 1 Qs
OBEQ Ao = B 5L | B SEE P9 Example2 = Q L
JE] Examre2 MO B D‘“mp_ Name ~  Date Modified Size  Kind

¥ | 7| Example2

Today 23:50 == Folder
Today 18:33 2KB Plain Text
Today 23:46 Xco...ings

| main.c

|| conanbuildinfo.txt

RS

conaninfe.txt 0s
=S Plain Text
conanfile.txt .
wn " Plain Text
¥ | | Products ¥ Configur
Ij=xamale2 Name Example2.xcodeproj
¥ Debug I
v E
b Release
+
Use F_!
¥ Localizal
MNew Folder Options Cancel Add
Language

Ennlich — Maualammant | anmoasa N Cilas | amalizard

Click on the project again. In the info/configurations section, choose conanbuildinfo for release and debug.

15.3. IDEs 287



Conan Documentation, Release 1.60.2

@ Xcode File Edit View Find Navigate Editor Product Debug Source Control Window Help . a = o) 100%

[ ] [ ] ’ M Example2 ; EH My Mac Finished running Example2 : Example2 N | K

B M&=c=B 88|« [E Example2

¥ |5 Example2 M [0 B Example2$ Info Build Settings
[ conanbuil...to.xcconfig 2
w | 7| Example2 ¥ Deployment Target
| main.c ?
conanbuildinfo.txt 2 0§ X Deployment Target | 10.11
conaninfo.txt ?
conanfile.txt A ¥ Configurations

¥ | | Products

Name Based on Cenfiguration File

W Example2
v Debug Mo Configurations Set
v E’ Example2 v None
@ Example2 =
¥ Release conanbuildinfo
v g Example2 None 2
@ Example2 Mone &

Build your project as usual.

See also:

Check the Reference/Generators/xcode for the complete reference.
See also:

Check the Tools section about Apple tools to ease the integration with the Apple development tools in your recipes
using the toolchain as a rool require.

See also:

Check the Darwin Toolchain package section to learn how to cross build for 10S, watchOS and tvOS.

J

v

15.3.4 Android Studio

You can use Conan to cross-build your libraries for Android with different architectures. If you are using Android
Studio for your Android application development, you can integrate Conan to automate the library building for the
different architectures that you want to support in your project.

Here is an example of how to integrate the 1ibpng Conan package library in an Android application, but any library
that can be cross-compiled to Android could be used using the same procedure.

We are going to start from the “Hello World” wizard application and then will add it the 1ibpng C library:

1. Follow the cross-build your libraries for Android guide to create a standalone toolchain and create a profile
named android_21_arm_clang for Android. You can also use the NDK that the Android Studio installs.

2. Create a new Android Studio project and include C++ support.

288 Chapter 15. Integrations



Conan Documentation, Release 1.60.2

L. O]

7:( New Project

Create New Project

Andreid Studio

Configure your new project

Application name: ‘ MyConanAndroidCppApp

Company demain: []frug.cum| ]
Package name: com.jfrog.myconanandroidcppapp Edit
Include C++ support

Project location:

(home/laso/AndroidStudioProjects/MyConanAndroidCppApp

| Previous

Next Cancel ‘ Finish

3. Select your API level and target. The arch and api level have to match with the standalone toolchain created in step
1.

L J O]

Create New Project

7.,( Target Android Devices

Select the form factors your app will run on

Different platforms may require separate SDKs

Phone and Tablet

Minimum SDK IAPI 21: Android 5.0 (Lollipop)

Lower AP| levels target more devices, but have fewer features available.

By targeting API 21 and later, your app will run on approximately 40.5% of the devices
that are active on the Google Play Store,
Help me choose

[:] Wear

Minimum SDK |API 21: Android 5.0 (Lollipop) n
(Y

Minimum SDK |API 21: Android 5.0 (Lollipop)
[] Android Auto

Previous Next Cancel ‘ Finish
4. Add an empty Activity and name it.

15.3. IDEs

289



Conan Documentation, Release 1.60.2

(. O] Create New Project (.

Add No Activity

Basic Activity Empty Activity

Previous Cancel ‘ Finish

[ N®)] Create New Project W e &

A Customize the Activity

Creates a new empty activity

Activity Name: [ MamActivityi ]

Generate Layout File

Layout Name: | activity_main ‘

Backwards Compatibility (AppCompat)

Empty Activity

The name of the activity class to create

Previous Cancel ‘ Finish

5. Select the C++ standard

290 Chapter 15. Integrations



Conan Documentation, Release 1.60.2

O

H Customize C++ Support

Create New Project

C++ Standard | Toolchain Default 5.2

) Exceptions Support (fexceptions)

] Runtime Type Information Suppert (-frtti)

I Previous I | MNext I [ Cancel }

6. Change to the project view and in the app folder create a conanfile. txt with the following contents:

conanfile.txt

[requires]
libpng/1.6.23@lasote/stable

[generators]
cmake

7. Open the CMakeLists. txt file from the app folder and replace the contents with:

cmake_minimum_required (VERSION 3.4.1)

include ($ {CMAKE_CURRENT_SOURCE_DIR}/conan_build/conanbuildinfo.cmake)
set (CMAKE_CXX_COMPILER_VERSION "5.0") # Unknown miss-detection of the compiler by CMake
conan_basic_setup(TARGETS)

add_library(native-1ib SHARED src/main/cpp/native-1lib.cpp)
target_link_libraries(native-1ib CONAN_PKG: :1ibpng)

8. Open the app/build.gradle file. We are configuring the architectures we want to build, specifying adding a new task
conanInstall that will call conan install to install the requirements:

¢ In the defaultConfig section, append:

ndk {
// Specifies the ABI configurations of your native
// libraries Gradle should build and package with your APK.
abiFilters 'armeabi-v7a'

15.3. IDEs 291




Conan Documentation, Release 1.60.2

¢ After the android block:

task conanInstall(type: Exec) {
executable "conan" // on MacOSX may need to specify the absolute path, i.e. “/usr/
—local/bin/conan’
args = ["install", "conanfile.txt",
"--profile=android_21_arm_clang",
"--install-folder=${new File("conan_build").tap { mkdirs() }}",
"--build=missing"]
standardInput = System.in

9. Make your Android build depend on the NDK build, so Conan install is called each time you’re building the
Android app. In the same . gradle file:

[preBuild.dependsOn conanInstall ]

10. Finally open the default example cpp library in app/src/main/cpp/native-1ib. cpp and include some lines
using your library.

Be careful with the JNICALL name if you used another app name in the wizard:

#include <jni.h>
#include <string>
#include "png.h"
#include "zlib.h"
#include <sstream>
#include <iostream>

extern "C"
JNIEXPORT jstring JNICALL
Java_com_jfrog_myconanandroidcppapp_MainActivity_stringFrom]JNI
IJNIEnv *env,
jobject /* this */) {
std: :ostringstream oss;
0ss << "Compiled with libpng: " << PNG_LIBPNG_VER_STRING << std::endl;
0ss << "Running with libpng: " << png_libpng_ver << std::endl;
0ss << "Compiled with zlib: " << ZLIB_VERSION << std::endl;
0ss << "Running with zlib: " << zlib_version << std::endl;

return env->NewStringUTF(oss.str().c_str());

Build your project normally. Conan will create a conan folder with a folder for each different architecture you have
specified in the abiFilters with a conanbuildinfo.cmake file.

Then run the app using an x86 emulator for best performance:

292 Chapter 15. Integrations



Conan Documentation, Release 1.60.2

IO ) Android Emulator - Nexus_5X_API_25:... ) (&)

MyConanAndroidCppApp

See also:

Check the section Linux/Windows/macOS to Android to read more about cross-building for Android.

15.3.5 YouCompleteMe (vim)

If you are a vim user, you may also be a user of YouCompleteMe.

With this generator, you can create the necessary files for your project dependencies, so YouCompleteMe will show
symbols from your Conan installed dependencies for your project. You only have to add the ycm generator to your
conanfile:

Listing 22: conanfile.txt

[generators]
ycm

It will generate a conan_ycm_extra_conf.py and a conan_ycm_flags.json file in your folder. Those files will be over-
written each time you run conan install.

In order to make YouCompleteMe work, copy/move conan_ycm_extra_conf.py to your project base folder (usually the
one containing your conanfile) and rename it to .ycm_extra_conf.py.

You can (and probably should) edit this file to add your project specific configuration. If your base folder is different
from your build folder, link the conan_ycm_flags.json from your build folder to your base folder.

# from your base folder
$ cp build/conan_ycm_extra_conf.py .ycm_extra_conf.py
$ 1In -s build/conan_ycm_flags.json conan_ycm_flags.json

15.3. IDEs 293


https://github.com/ycm-core/YouCompleteMe/

Conan Documentation, Release 1.60.2

15.4 CI Platforms

You can use any CI platform to build your libraries and generate your Conan packages.

15.4.1 Jenkins

You can use Jenkins CI both for:
* Building and testing your project, which manages dependencies with Conan, and probably a conanfile.txt file

* Building and testing conan binary packages for a given Conan package recipe (with a conanfile.py) and uploading
to a Conan remote (Artifactory or conan_server)

There is no need for any special setup for it, just install Conan and your build tools in the Jenkins machine and call the
needed Conan commands.

Note: As reported in https://github.com/conan-io/conan/issues/6400, running Conan under Jenkins could have some
unexpected issues running git clone of repositories requiring authentication. If that is the case, consider to use ssh
protocol instead of https.

Artifactory and Jenkins integration

If you are using Artifactory you can take advantage of the Jenkins Artifactory Plugin. Check here how to install the
plugin and here you can check the full documentation about the DSL, search for “Conan Builds with Artifactory” in
the page.

The Artifactory Jenkins plugin provides a powerful DSL (Domain Specific Language) to call Conan, connect with your
Artifactory instance, upload and download your packages from Artifactory and manage your build information.

Example: Test your project getting requirements from Artifactory

This is a template to use Jenkins with an Artifactory plugin and Conan to retrieve your package from Artifactory server
and publish the build information about the downloaded packages to Artifactory.

In this script we assume that we already have all our dependencies in the Artifactory server, and we are building our
project that uses Boost and Poco libraries.

Create a new Jenkins Pipeline task using this script:

//Adjust your artifactory instance name/repository and your source code repository
def artifactory_name = "artifactory"

def artifactory_repo = "conan-local"

def repo_url = 'https://github.com/memsharded/example-boost-poco.git"

def repo_branch = 'master’

node {
(continues on next page)

294 Chapter 15. Integrations



https://github.com/conan-io/conan/issues/6400
https://jfrog.com/artifactory/
https://www.jfrog.com/confluence/display/JFROG/Jenkins+Artifactory+Plug-in
https://www.jfrog.com/confluence/display/JFROG/Jenkins+Artifactory+Plug-in
https://www.jfrog.com/confluence/display/JFROG/Jenkins+Artifactory+Plug-in
https://www.jfrog.com/confluence/display/JFROG/Scripted+Pipeline+Syntax
https://www.jfrog.com/confluence/display/JFROG/Build+Integration
https://www.jfrog.com/confluence/display/JFROG/Build+Integration

Conan Documentation, Release 1.60.2

(continued from previous page)
def server = Artifactory.server artifactory_name
def client = Artifactory.newConanClient()

stage("Get project"){
git branch: repo_branch, url: repo_url

}

stage("Get dependencies and publish build info"){
sh "mkdir -p build"
dir ('build') {
def b = client.run(command: "install ..")
server.publishBuildInfo b
3
}

stage("Build/Test project"){
dir ('build') {
sh "cmake ../ & cmake --build ."
}

15.4. CI Platforms 295




Conan Documentation, Release 1.60.2

Stage View
Get
dependencies Build/Test
Get project and publish project
build info
766ms smin 9s 45
May 18 N
d i |-.;.{:_:,:~;-. 840ms 21s 2s
12:36
May 18 N
™ | changes 649ms 13min 9s 6s
12:01
[ 10 :
May 18 Mo
Changes
12:00
mﬁ.ﬂ 18 Mo
= Changes 81 'U'ms 1 m | n 575

11:58
failed

Example: Build a Conan package and upload it to Artifactory

In this example we will call Conan create command to create a binary packages and then upload it to Artifactory. We
also upload the build information:

def artifactory_name = "artifactory"

def artifactory_repo = "conan-local"

def repo_url = 'https://github.com/conan-io/conan-center-index.git'
def repo_branch = "master"

def recipe_folder = "recipes/zlib/1.2.11"

def recipe_version = "1.2.11"

node {

def server = Artifactory.server artifactory_name
def client = Artifactory.newConanClient()
def serverName = client.remote.add server: server, repo: artifactory_repo

stage("Get recipe"){
(continues on next page)

296 Chapter 15. Integrations



https://www.jfrog.com/confluence/display/JFROG/Build+Integration

Conan Documentation, Release 1.60.2

(continued from previous page)

git branch: repo_branch, url: repo_url

}

stage("Test recipe"){
dir (recipe_folder) {
client.run(command: "create . ${recipe_version}@")
}
}

stage("Upload packages"){
String command = "upload \"*\" --all -r ${serverName} --confirm"
def b = client.run(command: command)
server.publishBuildInfo b

}
}
Stage View
Upload
Get recipe Test recipe packages
797ms 47s 15
May 05 ;
Changes 587ms 1min 25s 1s
13:55
15.4.2 Travis CI

You can use the Travis CI cloud service to automatically build and test your project in Linux/MacOS environments in
the cloud. It is free for OSS projects, and offers an easy integration with GitHub, so builds can be automatically fired
in Travis-CI after a git push to GitHub.

You can use Travis-CI both for:

* Building and testing your project, which manages dependencies with Conan, and probably a conanfile.txt file.

* Building and testing Conan binary packages for a given Conan package recipe (with a conanfile.py).

15.4. CI Platforms 297


https://travis-ci.org/

Conan Documentation, Release 1.60.2

Installing dependencies and building your project

A very common use case is to build your project after Conan takes care of installing your dependencies. Doing this
process in Travis CI is quite convenient as you can do it with conan install.

To enable Travis CI support, you need to create a .travis.yml file and paste this code in it:

os: linux
language: python
python: "3.7"
dist: xenial
compiler:

- gcc
install:

# Install conan
- pip install conan

# Automatic detection of your arch, compiler, etc.
- conan user

script:

# Download dependencies and build project
- conan install .

# Call your build system
- cmake . -G "Unix Makefiles"
- cmake --build .

# Run your tests
- ctest .

Travis will install the gcc compiler and the conan client and will execute the conan install command using the
requirements and generators indicated in your conanfile.py or conanfile.txt. Then, the script section installs the re-
quirements and then you can use your build system to compile the project (using make in this example).

Creating, testing and uploading Conan binary packages
You can also use Travis CI to automate building new Conan binary packages with every change you push to GitHub.
You can probably set up your own way, but Conan has some utilities to help in the process.

The command conan new has arguments to create a default working .fravis.yml file. Other setups might be possi-
ble, but for this example we are assuming that you are using GitHub and also uploading your final packages to your
Artifactory CE server.

You could follow these steps:

1. First, create an empty GitHub repository. Let’s call it “hello”, for creating a “hello world” package. GitHub
allows creating it with a Readme and .gitignore.

2. Create a Conan repository in your Artifactory CE, and get its URL (“Set me up”’). We will call it UPLOAD_URL
3. Activate the repo in your Travis account, so it is built when we push changes to it.

4. Under Travis More Options -> Settings->Environment Variables, add the CONAN_LOGIN_USERNAME and
CONAN_PASSWORD environment variables with the Artifactory CE user and password.

5. Clone the repo: git clone <your_repo/hello> && cd hello.
6. Create the package: conan new hello/0.1@myteam/testing -t -s -cilg -cis -ciu=UPLOAD_URL

298 Chapter 15. Integrations




Conan Documentation, Release 1.60.2

7. You can inspect the created files: both .travis.yml, .travis/run.sh, and .travis/install.sh and the build.py
script, that is used by conan-package-tools utility to split different builds with different configurations in different
Travis CI jobs.

8. You can test locally, before pushing, with conan test.
9. Add the changes, commit and push: git add . & git commit -m "first commit" && git push.
10. Go to Travis and see the build, with the different jobs.

11. When it has finished, go to your Artifactory CE repository, you should see there the uploaded packages for
different configurations.

12. Check locally, searching in Artifactory CE: conan search hello/0.1@myteam/testing -r=myremote.

If something fails, please report an issue in the conan-package-tools GitHub repository: https://github.com/
conan-io/conan-package-tools

15.4.3 Appveyor

You can use the AppVeyor cloud service to automatically build and test your project in a Windows environment in the
cloud. It is free for OSS projects, and offers an easy integration with Github, so builds can be automatically fired in
Appveyor after a git push to Github.

You can use Appveyor both for:
* Building and testing your project, which manages dependencies with Conan, and probably a conanfile.txt file

* Building and testing Conan binary packages for a given Conan package recipe (with a conanfile.py)

Building and testing your project

We are going to use an example with GTest package, with AppVeyor support to run the tests.

Clone the project from github:

[$ git clone https://github.com/lasote/conan-gtest-example ]

Create an appveyor.yml file and paste this code in it:

version: 1.0.{build}
platform:
- x64

install:
- cmd: echo "Downloading conan..."
- cmd: set PATH=%PATHY%;%PYTHON%/Scripts/
- cmd: pip.exe install conan
- cmd: conan user # Create the conan data directory
- cmd: conan --version

(continues on next page)

15.4. CI Platforms 299



https://github.com/conan-io/conan-package-tools
https://github.com/conan-io/conan-package-tools
https://ci.appveyor.com

Conan Documentation, Release 1.60.2

(continued from previous page)
build_script:
- cmd: mkdir build
- cmd: conan install . -o gtest:shared=True
- cmd: cd build
- cmd: cmake ../ -DBUILD_TEST=TRUE -G "Visual Studio 14 2015 Win64"
- cmd: cmake --build . --config Release

test_script:
- cmd: cd bin
- cmd: encryption_test.exe

Appveyor will install the Conan tool and will execute the conan install command. Then, the build_script section
creates the build folder, compiles the project with cmake and the section test_script runs the tests.

Creating, testing and uploading Conan binary packages
You can use Appveyor to automate the building of binary packages, which will be created in the cloud after pushing to
Github. You can probably set up your own way, but Conan has some utilities to help in the process.

The command conan new has arguments to create a default working appveyor.yml file. Other setups might be possible,
but for this example we are assuming that you are using GitHub and also uploading your final packages to your own
free Artifactory CE repository. You could follow these steps:

1. First, create an empty github repository. Let’s call it “hello”, for creating a “hello world” package. Github allows
to create it with a Readme and .gitignore.

2. Create a Conan repository in your Artifactory CE, and get its URL (“Set me up”’). We will call it UPLOAD_URL
3. Activate the repo in your Appveyor account, so it is built when we push changes to it.

4. Under Appveyor Settings->Environment, add the CONAN_LOGIN_USERNAME and CONAN_PASSWORD environment
variables with the Artifactory CE user and password.

5. Clone the repo: $ git clone <your_repo/hello> && cd hello
6. Create the package: conan new hello/0.1@myteam/testing -t -s -ciw -cis -ciu=UPLOAD_URL

7. You can inspect the created files: both appveyor.yml and the build.py script, that is used by conan-package-tools
utility to split different builds with different configurations in different appveyor jobs.

8. You can test locally, before pushing, with conan create
9. Add the changes, commit and push: git add . &% git commit -m "first commit" && git push
10. Go to Appveyor and see the build, with the different jobs.

11. When it finish, go to your Artifactory CE repository, you should see there the uploaded packages for different
configurations

12. Check locally, searching in Artifactory CE: conan search hello/0.1@myteam/testing -r=myrepo

If something fails, please report an issue in the conan-package-tools github repository: https://github.com/
conan-io/conan-package-tools

300 Chapter 15. Integrations



https://github.com/conan-io/conan-package-tools
https://github.com/conan-io/conan-package-tools

Conan Documentation, Release 1.60.2

15.4.4 Gitlab

You can use the Gitlab CI cloud or local service to automatically build and test your project in Linux/MacOS/Windows
environments. It is free for OSS projects, and offers an easy integration with Gitlab, so builds can be automatically
fired in Gitlab CI after a git push to Gitlab.

You can use Gitlab CI both for:
* Building and testing your project, which manages dependencies with Conan, and probably a conanfile.txt file

* Building and testing Conan binary packages for a given Conan package recipe (with a conanfile.py)

Building and testing your project

We are going to use an example with GTest package, with Gitlab CI support to run the tests.

Clone the project from github:

[$ git clone https://github.com/lasote/conan-gtest-example

Create a .gitlab-ci.yml file and paste this code in it:

image: conanio/gcc63

build:
before_script:
# Upgrade Conan version
- sudo pip install --upgrade conan
# Automatic detection of your arch, compiler, etc.
- conan user

script:
# Download dependencies, build, test and create package
- conan create . user/channel

Gitlab CI will install the conan tool and will execute the conan install command. Then, the script section creates the
build folder, compiles the project with cmake and runs the tests.

On Windows the Gitlab runner may be running as a service and not have a home directory, in which case you need to
set a custom value for CONAN_USER_HOME.

15.4. CI Platforms 301



https://about.gitlab.com/

Conan Documentation, Release 1.60.2

Creating, testing and uploading Conan binary packages

You can use Gitlab CI to automate the building of binary packages, which will be created in the cloud after pushing
to Gitlab. You can probably setup your own way, but Conan has some utilities to help in the process. The command
conan new has arguments to create a default working .gitlab-ci.yml file. Other setups might be possible, but for
this example we are assuming that you are using github and also uploading your final packages to your own Artifactory
CE server. You could follow these steps:

1.

10.

11.

First, create an empty gitlab repository, let’s call it “hello”, for creating a “hello world” package. Gitlab allows
to create it with a Readme, license and .gitignore.

Create a Conan repository in Artifactory CE, and get its URL (“Set me up””). We will call it UPLOAD_URL

Under your project page, Settings -> Pipelines -> Add a variable, add the CONAN_LOGIN_USERNAME and
CONAN_PASSWORD environment variables with the Artifactory CE user and password.

Clone the repo: git clone <your_repo/hello> && cd hello.

Create  the  package: conan new hello/0®.1l@myteam/testing -t -s -ciglg -ciglc -cis
-ciu=UPLOAD_URL
You can inspect the created files: both . gitlab-ci.yml and the build.py script, that is used by conan-package-tools

utility to split different builds with different configurations in different GitLab CI jobs.

You can test locally, before pushing, with conan create or by GitLab Runner.

Add the changes, commit and push: git add . & git commit -m "first commit" && git push.
Go to Pipelines page and see the pipeline, with the different jobs.

When it has finished, go to your Artifactory CE repository, you should see there the uploaded packages for
different configurations.

Check locally, searching in Artifactory CE: conan search hello/0.1@myteam/testing -r=myremote.

If something fails, please report an issue in the conan-package-tools github repository: https://github.com/conan-io/
conan-package-tools

15.4.5

Circle CI

You can use the Circle CI cloud to automatically build and test your project in Linux/MacOS environments. It is free
for OSS projects, and offers an easy integration with Github, so builds can be automatically fired in CircleCI after a
git push to Github.

You can use CircleCI both for:

* Building and testing your project, which manages dependencies with Conan, and probably a conanfile.txt file

* Building and testing Conan binary packages for a given Conan package recipe (with a conanfile.py)

302

Chapter 15. Integrations


https://github.com/conan-io/conan-package-tools
https://github.com/conan-io/conan-package-tools
https://circleci.com/

Conan Documentation, Release 1.60.2

Building and testing your project

We are going to use an example with GTest package, with CircleCI support to run the tests.

Clone the project from github:

[$ git clone https://github.com/lasote/conan-gtest-example

Create a .circleci/config.yml file and paste this code in it:

version: 2
gcc-6:
docker:
- image: conanio/gcc6b
steps:
- checkout
- run:
name: Build Conan package
command: |
sudo pip install --upgrade conan
conan user
conan create . user/channel
workflows:
version: 2
build_and_test:
jobs:
- gcc-6

CircleCI will install the Conan tool and will execute the conan create command. Then, the script section creates the
build folder, compiles the project with cmake and runs the tests.

Creating, testing and uploading Conan package binaries
You can use CircleCl to automate the building of binary packages, which will be created in the cloud after pushing to
Github. You can probably set up your own way, but Conan has some utilities to help in the process.

The command conan new has arguments to create a default working .circleci/config.yml file. Other setups
might be possible, but for this example we are assuming that you are using github and also uploading your final packages
to your own Artifactory CE server. You could follow these steps:

1. First, create an empty Github repository (let’s call it “hello”) for creating a “hello world” package. Github allows
to create it with a Readme, license and .gitignore.

2. Create a Conan repository in your Artifactory CE and get its URL (“‘Set me up”’). We will call it UPLOAD_URL

3. Under your project page, Settings -> Pipelines -> Add a variable, add the CONAN_LOGIN_USERNAME and
CONAN_PASSWORD environment variables with the Artifactory CE user and password.

4. Clone the repo: $ git clone <your_repo/hello> && cd hello

5. Create the package: $ conan new hello/0.1@myteam/testing -t -s -ciccg -ciccc -cicco -cis
-ciu=UPLOAD_URL

6. You can inspect the created files: both .circleci/config.yml and the build.py script, that is used by
conan-package-tools utility to split different builds with different configurations in different GitLab CI jobs.

7. You can test locally, before pushing, with $§ conan create

8. Add the changes, commit and push: $ git add . & git commit -m "first commit" && git push

15.4. CI Platforms 303



Conan Documentation, Release 1.60.2

9. Go to Pipelines page and see the pipeline, with the different jobs.

10. When it has finished, go to your Artifactory CE repository, you should see there the uploaded packages for
different configurations

11. Check locally, searching in Artifactory CE: $ conan search hello/0.1@myteam/testing -r=myremote

If something fails, please report an issue in the conan-package-tools github repository: https://github.com/
conan-io/conan-package-tools

15.4.6 A Microsoft’s Azure DevOps (TFS, VSTS)

Thanks to the JFrog Artifactory Extension for Azure DevOps and TES it is possible to support Conan tasks and integrate
it with the CI development platform provided by Microsoft’s Azure DevOps and the Artifactory binary repository
manager.

The support for Conan now in the JFrog Artifactory Extension helps you perform the following tasks in Azure DevOps
or TFS:

* Run Conan commands

* Resolve Conan dependencies from remote Artifactory servers
* Push Conan packages to Artifactory

* Publish BuildInfo metadata

¢ Import a Conan configuration

In this section we will show you how to add Conan tasks to your pipelines using the Artifactory/Conan Extension and
push the generated buildinfo metadata to Artifactory where it can be used to track and automate your builds.

Configuring DevOps Azure to use Artifactory with Conan

To use the Conan support provided by the JFrog Artifactory Extension you must configure a self-hosted agent that will
enable Conan builds for your Azure Pipelines environment. Afterwards you can install the JFrog Artifactory Extension
from the Visual Studio Marketplace and follow the installation instructions in the Overview.

304 Chapter 15. Integrations


https://github.com/conan-io/conan-package-tools
https://github.com/conan-io/conan-package-tools
https://marketplace.visualstudio.com/items?itemName=JFrog.jfrog-artifactory-vsts-extension
https://azure.microsoft.com/en-us/products/devops/
https://jfrog.com/artifactory/
https://jfrog.com/artifactory/
https://docs.microsoft.com/en-us/azure/devops/pipelines/agents/agents?view=azure-devops

Conan Documentation, Release 1.60.2

o Visual Studio | Marketplace

Azure DevOps > Pipelines > JFrog Artifactory

JFrog Artifactory
JFrog | & 323installs | J A Ak k (4) | Free

Integrate your JFrog Artifactory with Visual Studic Team Services.

Overview Q&A Rating & Review

Overview

JFrog Artifactory is a Universal Repository Manager supporting all major packaging formats and build tools.
Learn more

Artifactory provides tight integration with TFS and VSTS through the JFrog Artifactory Extension. In addition
to managing efficient deployment of your artifacts to Artifactory, the extension lets you capture information
about deployed artifacts, and resolved dependencies Gain full traceability for your builds as the environment

data associated with your build is automatically collected.

When completed, proceed to create builds and access buildinfo from within Azure DevOps or TFS.

Steps to follow

In these steps, you will set up Azure DevOps to use Artifactory and add Conan tasks to your build pipeline. Then you
can set up to push the buildinfo from the Conan task to Artifactory.

STEP 1: Configure the Artifactory instance

Once the Artifactory Extension is installed, you must configure Azure DevOps to access the Artifactory instance.

To add Artifactory to Azure DevOps:

1. In Azure DevOps, go to Project Settings > Service connections.

2. Click + New service connection to display the list control, and select Artifactory.

15.4. CI Platforms 305



Conan Documentation, Release 1.60.2

‘:j Azure DevOps

o o ~ General
Overview

Overview
B soards

Services
Repos Teams

Security

W Pivelines

Project Settings

Service connections

Service connections

+ New service connection ~

-‘* Artitactory )

Azure Classie
Azure Repos/Team Foundation ..

Azure Rescurce Manager

Notifications

& Testpians
! Artifacts

Service hool

Dashboards

~ Boards

Azure Service Bus
ks

Bitbucket Cloud

Chef

Docker Host

Docker Registry

Project configuration

External Git

Team configuration

information, and click OK.

I:J Azure DevOps

. [_B= B Proje¢
v
& Overview i
Overvie
B Boaras
Service;
Repos Teams
- Securit
f Pipelines 1
Natifica
A Testians
Service

Dashbo

! Artifacts

~ Board

Project

Update Authentication for Artifactory

Connection name Artifactory
Server URL

Username

Connection: Mot verified

Search o)

Service connection: Artifactory

Details  Ro Request history

INFORMATION

Type: Artifactory

Created by eliom

Cennecting to service using credentials

ACTIONS

List of actions that can be performed on this service:

Update service connection
Disconnect

Search 2

Artifactory

o

credentials

Verify connection

serformed on this service:

Close

Team configuration

@& Project settings

STEP 2: Add a Conan task

a @

In the resulting Update Authentication for Artifactory dialog, enter the required server and credential

= a @

Once your Artifactory connection is configured, you may add Conan tasks to your Build or Release pipelines.

To add a Conan task:

1. Go to the Pipeline Tasks setup screen.

2. In the Add tasks section, search for “Conan” in the task selection list.

3. Select the Artifactory Conan task to add it to your pipeline.

306

Chapter 15. Integrations



Conan Documentation, Release 1.60.2

) Azure DevOps

Ee == m
B overview

E Boards

B repos

o pipelines

s Builds
& Releases
I Library

&  Task groups

4. In the new task, select which Conan command to run.

Cl Azure DevOps

(s
& overview
B soards
Repos

* Pipelines

& Builds

5 Releases
I Library
B Task groups

" Deployment groups

A Test Plans
. Artifacts

Pipelines

& - > CreateUploadAndPublishBu...

Tasks Variables Triggers Options Retention History

Pipeline
Build pipeline

z= Get sources

© elicengcomp/conan-app ¥ master

Create and Upload

Run an agent

e Conan Config Install

ctory Conan

lﬁ Conan Add Remote

Astifactory Canan

Pipelines

& - » CreateUploadAndPublishBu...

(@Tasks Variables Triggers Options Retention History

Pipeline

Buld pipeline

- Get sources
Q elice:

mpjconan-apg B master

Create and Upload
B Run on agent

Conan Config Install
artitactory Conan

Conan Add Remote
Artifactory Conan
Artifactory Conan

Conan Upload

Artifactory Canan

Artifactory Publish Build Info

Artifactory Publish Build Info

LU
LU
g Conan Create
N
S,

5. Configure the Conan command for the task.

0 Azure DevOps

& overview
B Boards

Repos

Pipelines
Builds
Releases

Library

¢
i
&
n
L

e
T

Task groups

Deployment groups

A Test Plans
. Artifacts

Pipelines

- » CreateUploadAndPublishBu...

Tasks Variables Triggers Options Retention History

== Get sources
© elicengcompfconan-app ¥ maste

Create and Upload
B funo

O Artifactory Generic Download
saa

Artitactory Generic Down

Conan Config Install
Art

¥ Conan

Conan Add Remote
Artifactory Conan

Conan Create
Artifactory Conan

Conan Upload

Artifactory Canan

Artifactory Publish Build Info

Artitactory Publish Build Info

o6& e €& €

Continue to add Conan tasks as you need for each pipeline.

__* |

Search Lo = 06 @

B Save & queue “) Discard = Summary

Add tasks ) Refresh Con X
Artifactory Conan
This task runs a Conan command.
Search e = h
) Discard ‘= Summary

Artifactory Conan Build ©®
@ Link settings

P Version 1»
Display name *
Conan

Conan Command * @

Add Remote
Config Install
Install
Upload
Create

Custom

Search pel

it
=]

= Summary [> Queue

Artifactory Conan @ @ Link settings [ View YAML

Version v

Display name *
Conan Create

Conan Command * @

Create hd

Path* @

hello

Reference * (@

userjtesting

Conan arguments and options @

B coliect build info @
Advanced
Control Options

Output Variables

15.4. CI Platforms

307



Conan Documentation, Release 1.60.2

STEP 3: Configure the Push task buildinfo to Artifactory

When the pipeline containing the Conan task executes, the task log shows all the information about the executed Conan
command.

Conan Create

You can configure your Conan task to collect the buildinfo by selecting the Collect buildinfo checkbox when you create
the task.

) Azure DevOps Search jel = ] e
B & - > CreateUploadAndPublishBu...
n Overview Tasks Variables Triggers Options Retention History = Summary > Queue e
B soards Pi
. peline X . _ -
Artifactory Conan @ & Link settings [0 View YAML
sl Repos == Get sources Version >
o )
q Pipelines
Display name *
Create and Upload
ety Builds z Conan Create
& Releases Artifactory Generic Download Conan Command *  ©
Create ~
Wt Library )
Conan Config Install Path* @
= Task groups
hello
" Deployment groups Conan Add Remote )
Reference * (@
& TestPlans Conan Create i userftesting
R Conan arguments and optiens &
F_ Artifacts

Conan Upload

—+ Collect build info @

Artifactory Publish Build Info
i " Advanced -

Control Options -

Qutput Variables -

Once collected, the buildinfo can then be pushed as metadata to Artifactory.

To perform this, create an Artifactory Publish Build Info task to push the metadata to your Artifactory instance.

308 Chapter 15. Integrations



Conan Documentation, Release 1.60.2

Azure DevOps

E I el o +

Overview

Boards

Repos

Pipelines

Builds

Releases

Library

8 = =2 ¢ 4 D ED WO

Task groups

=1

Deployment groups

Test Plans

o b

Artifacts

Pipelines

& - » CreateUploadAndPublishBu...

Tasks \Variables Triggers Options Retention History

Pipeline

Build pipeline

= Get sources

© slicongcomp/conan-app

B master

Create and Upload
B Run on agent

Artifactory Generic Download

Conan Config Install

Conan Add Remote

Conan Create

Artifactory Conan

Conan Upload

Artitactory Conan

Artifactory Publish Build Info

Artitactory Publish Build Info

O @& € © © O

Search el = 0 @

= Summary [> Queue - Va

Artifactory Publish Build Info ®

@ Li iew Y.
Version| 1+ © Link settings [ View YAML X

Display name *
Artifactory Publish Build Info

Artifactory service * (D | Manage 12

my-artifactory v O 4 New

Exclude environment variables @
*password*;*secret*;*key*;*token®
Control Options -

Output Variables -

After you run the pipeline, you will be able to see the build information for the Conan task in Artifactory.

O JFrog Artifactory

Welcome, admin

Builds - CreateUploadAndPublishBuildinfo-CI

Build ID

102

See also:

jfrog-cli-go/1.19.1 GENERIC/1.19.1 24 September, 2... 0.0 seconds - admin
Published Modules Environment Issues Licenses »
4 Modules
outof 1

Module ID - Mumber Of Artifac.. Number Of Depen...
CreateUploadAndPublishBuildinfe-C1 o 1

DownloadOnly vl 17

Hello/0. 1@user/testing 3 1}
Hello/0.1@user/testing:fe303c3b64d0dfcbbb200905e428e5930bc7... 3 0

The documentation for this integration is taken from the JFrog blog.

15.4. CI Platforms

309


https://jfrog.com/blog/accelerate-azure-devops-or-tfs-with-jfrog-artifactory-and-conan/

Conan Documentation, Release 1.60.2

15.5 Other Systems

You can run Conan on any platform supporting Python and also cross-build Conan packages for different platforms.

Bu | Qb@ﬁ

Making ‘Embedded Linux Easy
15.5.1 Buildroot

The Buildroot Project is a tool for automating the creation of Embedded Linux distributions. It builds the code for the

architecture of the board so it was set up, all through an overview of Makefiles. In addition to being open-source, it is
licensed under GPL-2.0-or-later.

Integration with Conan

Let’s create a new file called pkg-conan.mk in the package/ directory. At the same time, we need to add it in pack-
age/Makefile.in file in order to Buildroot be able to list it.

[echo 'include package/pkg-conan.mk' >> package/Makefile.in ]

For this development we will break it down into a few steps. Because it is a large file, we will only portray parts of it
in this post, but the full version can be found in pkg-conan.mk.

Buildroot defines its settings, including processor, compiler version, and build type through variables. However, these
variables do not have directly valid values for Conan, so we need to parse most of them. Let’s start with the compiler
version, by default Buildroot uses a GCC-based toolchain, so we will only filter on its possible versions:

CONAN_SETTING_COMPILER_VERSION 7=
ifeq ($(BR2_GCC_VERSION_8_X),y)
CONAN_SETTING_COMPILER_VERSION = 8
else ifeq ($(BR2_GCC_VERSION_7_X),y)
CONAN_SETTING_COMPILER_VERSION = 7
else ifeq ($(BR2_GCC_VERSION_6_X),y)
CONAN_SETTING_COMPILER_VERSION = 6
else ifeq ($(BR2_GCC_VERSION_5_X),y)
CONAN_SETTING_COMPILER_VERSION = 5
else ifeq ($(BR2_GCC_VERSION_4_9_X),y)
CONAN_SETTING_COMPILER_VERSION = 4.9
endif

This same process should be repeated for build_type, arch, and so on. For the Conan package installation step we will
have the following routine:

define $(2)_BUILD_CHMDS
$$ (TARGET_MAKE_ENV) $$(CONAN_ENV) $$($$(PKG)_CONAN_ENV) \
CC=$$(TARGET_CC) CXX=$$(TARGET_CXX) \
$$(CONAN) install $$(CONAN_OPTS) $$($$(PKG)_CONAN_OPTS) \
$$($$ (PKG) _REFERENCE) \
-s build_type=$$(CONAN_SETTING_BUILD_TYPE) \
-s arch=$% (CONAN_SETTING_ARCH) \

(continues on next page)

310 Chapter 15. Integrations


https://buildroot.org/
https://spdx.org/licenses/GPL-2.0-or-later.html
https://github.com/conan-community/buildroot/blob/feature/conan/package/pkg-conan.mk

Conan Documentation, Release 1.60.2

(continued from previous page)

-s compiler=%$%$(CONAN_SETTING_COMPILER) \
-s compiler.version=%$%(CONAN_SETTING_COMPILER_VERSION) \
-g deploy \
--build $$(CONAN_BUILD_POLICY)
endef

The conan install command will be executed as usual, but the settings and options are configured through what
was previously collected from Buildroot, and accept new ones through the Buildroot package recipe. Because it was a
scenario where previously all sources were compiled in the first moment, we will set Conan build policy to missing,
so any package will be built if not available.

Also, note that we are using the generator deploy, as we will need to copy all the artifacts into the Buildroot internal
structure. Once built, we will copy the libraries, binaries and headers through the following routine:

define $(2)_INSTALL_CMDS

cp -f -a $$($$(PKG)_BUILDDIR) /bin/. /usr/bin 2>/dev/null ||

cp -f -a $$($$(PKG)_BUILDDIR)/1ib/. /usr/lib 2>/dev/null ||

cp -f -a $$($$(PKG)_BUILDDIR)/include/. /usr/include 2>/dev/null ||
endef

With this script we will be able to install the vast majority of Conan packages, using only simpler information for each
Buildroot recipe.

Creating Conan packages with Buildroot
Installing Conan Zlib

Once we have our script for installing Conan packages, now let’s install a fairly simple and well-known project: zlib.
For this case we will create a new recipe in the package directory. Let’s start with the package configuration file:

mkdir package/conan-zlib
touch package/conan-zlib/Config.in
touch package/conan-zlib/conan-zlib.mk

The contents of the file Config.in should be as follows:

config BR2_PACKAGE_CONAN_ZLIB

bool "conan-zlib"

help
Standard (de)compression library. Used by things like
gzip and libpng.

http://www.zlib.net

Now let’s go to the conan-zlib.mk that contains the Zlib data:

# conan-zlib.mk

CONAN_ZLIB_VERSION 1.2.11

CONAN_ZLIB_LICENSE = Zlib

CONAN_ZLIB_LICENSE_FILES = licenses/LICENSE

CONAN_ZLIB_SITE = $(call github,conan-io,conan-center-index,
-»134dd3b84d629d27ba3474e01b688e9c®f25b9c8)

(continues on next page)

15.5. Other Systems 311



https://www.zlib.net

Conan Documentation, Release 1.60.2

(continued from previous page)

CONAN_ZLIB_REFERENCE = z1ib/$(CONAN_ZLIB_VERSION)@
CONAN_ZLIB_SUBDIR = recipes/zlib/1.2.11

$(Ceval $(conan-package))

An important note here is the fact that CONAN_ZLIB_SITE is required even if not used for our purpose. If it is not
present, Buildroot will raise an error during its execution. The other variables are simple, just expressing the package
reference, name, version and license. Note that in the end we are calling our script which should execute Conan.

Once created, we still need to add it to the Buildroot configuration list. To do so, let’s update the list with a new menu
named Conan. In package/Config.in file, let’s add the following section:

menu "Conan"
source "package/conan-zlib/Config.in"
endmenu

Now just select the package through menuconfig: Target Packages -> Conan -> conan-zlib

Conan
Arrow keys navigate the menu. <Enter> selects submenus ---> (or
empty submenus ----). Highlighted letters are hotkeys. Pressing <¥>»
selects a feature, while <N> excludes a feature. Press <Esc»<Esc> to
exit, <?> for Help, </> for Search. Legend: [+#] feature is selected

E*] conan-zlib

Once configured and saved, simply run make again to install the package.

As you can see, Conan is following the same profile used by Buildroot, which gives us the advantage of not having to
create a profile manually.

At the end of the installation it will be copied to the output directory.

312 Chapter 15. Integrations



Conan Documentation, Release 1.60.2

Customizing Conan remote

Let’s say we have an Artifactory instance where all packages are available for download. How could we customize the
remote used by Buildroot? We need to introduce a new option, where we can write the remote name and Conan will be
able to consume such variable. First we need to create a new configuration file to insert new options in Conan’s menu:

mkdir package/conan
touch package/conan/Config.in

The file Config.in should contain:

config CONAN_REMOTE_NAME
string "Conan remote name"
help
Look in the specified remote server.

Also, we need to parse the option CONAN_REMOTE_NAME in pkg-conan.mk and add it to Conan command line:

ifneq ($(CONAN_REMOTE_NAME),"")
CONAN_REMOTE = -r $$(CONAN_REMOTE_NAME)
endif

define $(2)_BUILD_CMDS
$$ (TARGET_MAKE_ENV) $$(CONAN_ENV) $$($$(PKG)_CONAN_ENV) \
CC=$$(TARGET_CC) CXX=$$(TARGET_CXX) \
$$(CONAN) install $$(CONAN_OPTS) $$($$(PKG)_CONAN_OPTS) \
$$($$ (PKG) _REFERENCE) \
-s build_type=$$(CONAN_SETTING_BUILD_TYPE) \
-s arch=$$(CONAN_SETTING_ARCH) \
-s compiler=$$(CONAN_SETTING_COMPILER) \
-s compiler.version=%$%(CONAN_SETTING_COMPILER_VERSION) \
-g deploy \
--build $$(CONAN_BUILD_POLICY) \
$$ (CONAN_REMOTE)
endef

Now we are ready to set our specific remote name. We only need to run make menuconfig and follow the path: Target
Packages -> Libraries -> Conan -> Conan remote name

And we will see:
Conan remote name

Please enter a string value. Use the <TAB> key to move from the input
field to the buttons below it.

artifactoryl

Now Conan is configured to search for packages in the remote named artifactory. But we need to run make again. Note
that it will cost less time to build, since now we are using pre-built packages provided by Conan.

15.5. Other Systems 313



Conan Documentation, Release 1.60.2

If no errors have occurred during the process we will have the following output folder:

1s output/images/
bcm2710-rpi-3-b.dtb bcm2710-rpi-3-b-plus.dtb bcm2710-rpi-cm3.dtb boot.vfat rootfs.
—.ext2 rootfs.ext4 rpi-firmware sdcard.img zImage

1ls -1h output/images/sdcard.img
-rw-r--r-- 1 conan conan 153M ago 6 11:43 output/images/sdcard.img

These artifacts are the final compilation of everything that was generated during the build process, here we will be
interested in the sdcard.img file. This is the final image that we will use on our RaspberryPi3 and it is only 153MB.
Compared to other embedded distributions like Raspbian, it is much smaller.

If you are interested in knowing more, we have a complete blog post about Buildroot integration.

15.5.2 | Docker

You can easily run Conan in a Docker container to build and cross-build conan packages.

Check the ‘How to use docker to create and cross build C and C++ conan packages’ section to know more.

| emscripten

15.5.3 Emscripten

It should be possible to build packages for Emscripten (asm.js) via the following conan profile:

include(default)
[settings]
os=Emscripten
arch=asm. js
compiler=clang
compiler.version=6.0
compiler.libcxx=libc++
[options]
[tool_requires]
emsdk_installer/1.38.29@incrafters/stable
[env]

And the following conan profile is required for the WASM (Web Assembly):

include(default)
[settings]
os=Emscripten
arch=wasm
(continues on next page)

314 Chapter 15. Integrations



https://blog.conan.io/2019/08/27/Creating-small-Linux-images-with-Buildroot.html
https://emscripten.org
http://asmjs.org
https://webassembly.org

Conan Documentation, Release 1.60.2

(continued from previous page)
compiler=clang
compiler.version=6.0
compiler.libcxx=1libc++
[options]
[tool_requires]
emsdk_installer/1.38.29@bincrafters/stable
[env]

These profile above are using the emsdk_installer/1.38.29 @bincrafters/stable conan package. It will automatically
download the Emscripten SDK and set up required environment variables (like CC, CXX, etc.).

Note: In order to use emsdk_installer package, you need to add it to the remotes:

$ conan remote add bincrafters https://bincrafters.jfrog.io/artifactory/api/conan/public-
—,conan

Note: Alternatively, it’s always possible to use an existing emsdk installation and manually specify required environ-
ment variables within the [env] section of the conan profile.

Note: In addition to the above, Windows users may need to specify CONAN_MAKE_PROGRAUN, for instance from the
existing MinGW installation (e.g. C:\MinGW\bin\mingw32-make.exe), or use make from the mingw_installer/
1.0@conan/stable.

Note: In addition to the above, Windows users may need to specify CONAN_CMAKE_GENERATOR, e.g. to MinGW
Makefiles, because default one is Visual Studio. Other options (e.g. Ninja) work as well.

As specified, os has been set to the Emscripten, and arch has been set to either asm. js or wasm (only these two
are currently supported). And compiler setting has been set to match the one used by Emscripten - Clang 6.0 with
libc++ standard library.

Running the code inside the browser

Note: Emscripten requires Python 2.7.12 or above, make sure that you have an up-to-date Python version installed.

Note: Running demo on Windows may require pywin32 module. Install it by running pip install pywin32.

In order to demonstrate how to use conan with Emscripten, let’s check out the example project:

[$ git clone --depth 1 git@github.com:conan-io/examples.git

Change the directory to the Emscripten demo:

15.5. Other Systems 315


https://github.com/bincrafters/conan-emsdk_installer
https://github.com/emscripten-core/emsdk

Conan Documentation, Release 1.60.2

$ cd features
$ cd emscripten

This is an extremely simple demo, which just imports the famous zlIib library and outputs its version into the browser.

In order to build it for the Emscripten run:

[$ ./build.sh J

or (on Windows):

[s ./build.cmd ]

Please note that running the above command may take a while to download and tool required dependencies. This script
will execute several conan commands:

$ conan remove conan-hello-emscripten/* -f
$ conan create . conan/testing -k -p emscripten.profile --build missing
$ conan install conanfile.txt -pr emscripten.profile

First one removes any traces of previous demo installations, just to ensure that environment is clean. Then, it builds the
simple demo (it uses CMakeLists.txt and main. cpp files from the current directory). The following local profile is
used (file emscripten.profile within the current directory):

include(default)
[settings]
os=Emscripten
arch=wasm
compiler=clang
compiler.version=6.0
compiler.libcxx=libc++
[options]
[tool_requires]
emsdk_installer/1.38.29@bincrafters/stable
ninja/1.9.0

[env]

Finally, it installs the demo importing ithe required files (.html, . js and .wasm) into the bin subdirectory.

Then we can run the code inside the browser via emrun helper:

[$ ./run.sh ]

or (on Windows):

[$ ./run.cmd J

The command above uses virtualenv generator generator in order to get emrun command available in the PATH. And
as the result, Web Browser should be opened (or new tab in Web Browser will be opened, if it was already run), and
the following output should be displayed:

[$ Using zlib version: 1.2.11 ]

It confirms the fact we have just built z11ib into JavaScript and run it inside the Web Browser.

316 Chapter 15. Integrations


https://www.zlib.net/
https://emscripten.org/docs/compiling/Running-html-files-with-emrun.html

Conan Documentation, Release 1.60.2

15.5.4 QNX SOFTWARE SYSTEMS QNX Neutrino

It’s possible to cross-compile packages for QNX Neutrino operating with Conan.
Conan has support for QNX Neutrino 6.x and 7.x. The following architectures are supported:
e armv7
e armv8§
* shdle
* ppc32be
The following C++ standard library implementations are supported for QCC:
e cxx (LLVM C++)
* gpp (GNU C++)
e cpp (Dinkum C++)
* cpp-ne (Dinkum C++ without exceptions)
* acpp (Dinkum Abridged C++)
* acpp-ne (Dinkum Abridged C++ without exceptions)
* ecpp (Dinkum Embedded C++)
 ecpp-ne (Dinkum Embedded C++ without exceptions)

Conan automatically sets up corresponding compiler flags for the given standard library (e.g. -Y cxx for the LLVM
C++).

With QNX SDK set up on the machine, the following conan profile might be used for the cross-compiling (assuming
gcc in the PATH):

include(default)
[settings]
os=Neutrino
os.version=6.5
arch=sh4le
compiler=qgcc
compiler.version=4.4
compiler.libcxx=cxx
[options]
[tool_requires]
[env]

CC=qcc

CXX=QCC

15.5. Other Systems 317



https://blackberry.qnx.com/en/software-solutions/embedded-software/qnx-neutrino-rtos
http://www.qnx.com/download/

Conan Documentation, Release 1.60.2

yocto -

15.5.5 PROJECT Yocto

The Yocto Project is an open-source project that delivers a set of tools that create operating system images for embedded
Linux systems. The Yocto Project tools are based on the OpenEmbedded project, which uses the BitBake build tool,
to construct complete Linux images.

Yocto supports several Linux host distributions and it also provides a way to install the correct version of these tools
by either downloading a buildtools-tarball or building one on a supported machine. This allows virtually any Linux
distribution to be able to run Yocto, and also makes sure that it will be possible to replicate your Yocto build system
in the future. The Yocto Project build system also isolates itself from the host distribution’s C library, which makes it
possible to share build caches between different distributions and also helps in future-proofing the build system.

Integration with Conan

You can create Conan packages building with the Yocto SDK as any other package for other configuration. Those
packages can be integrated into a Yocto build installing them from a remote and without compiling them again.
Three stages can be differentiated in the proposed flow:

1. Developers can create an application with the native tools in their desktop platform of choice using their usual IDE,
compiler or debugger and test the application.

318 Chapter 15. Integrations


https://www.yoctoproject.org/
http://www.openembedded.org/wiki/Main_Page

Conan Documentation, Release 1.60.2

g oo g | lﬂog Afmﬂdﬂw

i




Conan Documentation, Release 1.60.2

(ot O
' ..

onen et
. WYY o i rhfcl

st

¥

Yoo SO

Chapter 15. Integrations



Conan Documentation, Release 1.60.2

JFrog Artifactory

Deploy armv8 App

/yocto:

PROJECT

\i
\i

application layer

app.bb Linux Image
meta-conan layer - Alpps
conan.bb - Libs
- Config

meta-openembedded

Qayer /

Creating Conan packages with Yocto’s SDK

Prepare your recipes

First of all, the recipe of the application to be deployed to the final image should have a deploy() method. There you can
specify the files of the application needed in the image as well as any other from its dependencies (like shared libraries
or assets):

conan install
:caption: *conanfile.py*
:emphasize-lines: 28-31

from conans import ConanFile

class FoobarConan(ConanFile):
name = "foobar"

def package(self):
self.copy("*.h", dst="include", src="hello")
self.copy("*.so", dst="1ib", keep_path=False)
self.copy("*.a", dst="1lib", keep_path=False)

(continues on next page)

15.5. Other Systems 321



https://docs.conan.io/en/latest/devtools/running_packages.html

Conan Documentation, Release 1.60.2

(continued from previous page)

self.copy("foobar", dst="bin", keep_path=False)

def deploy(self):
# Deploy the executables from this eclipse/mosquitto package
self.copy("*", src="bin", dst="bin")
# Deploy the shared libs from this eclipse/mosquitto package
self.copy("*.so*", src="1lib", dst="bin")
# Deploy all the shared libs from the transitive deps
self.copy_deps("*.so*", src="1lib", dst="bin")

Another option is using the deploy generator generator,
which will copy all artifacts, including package dependencies to your installation folder.

Setting up a Yocto SDK

Yocto SDKs are completely self-contained, there is no dependency on libraries of the build machine or tools installed in
it. The SDK is a cross-building toolchain matching the target and it is generated from that specific configuration. This
means that you will have to use a different SDK toolchain to build for a different target architecture or that some SDK’s
may have specific settings to enable some system dependency of the final target and those libraries will be available in
the SDK.

You can create your own Yocto SDKs or download and use the prebuilt ones.

In the case that you are using CMake to create the Conan packages, Yocto injects a toolchain that configures CMake
to only search for libraries in the rootpath of the SDK with CMAKE_FIND_ROOT_PATH. This is something that has
to be patched to allow CMake to find libraries in the Conan cache as well:

Listing 23: sdk/sysroots/x86_64-pokysdk-
linux/usr/share/cmake/OEToolchainConfig.cmake

set( CMAKE_FIND_ROOT_PATH $ENV{OECORE_TARGET_SYSROOT} $ENV{OECORE_NATIVE_SYSROOT} )
set( CMAKE_FIND_ROOT_PATH_MODE_PROGRAM NEVER )

# COMMENT THIS: set( CMAKE_FIND_ROOT_PATH_MODE_LIBRARY ONLY )

# COMMENT THIS: set( CMAKE_FIND_ROOT_PATH_MODE_INCLUDE ONLY )

# COMMENT THIS: set( CMAKE_FIND_ROOT_PATH_MODE_PACKAGE ONLY )

You can read more about those variables here:
* CMAKE_FIND_ROOT_PATH_MODE_LIBRARY
* CMAKE_FIND_ROOT_PATH_MODE_INCLUDE
¢ CMAKE_FIND_ROOT_PATH_MODE_PACKAGE

Cross-building Conan packages with the SDK toolchain

After setting up your desired SDK, you can start creating Conan packages setting up the environment of the Yocto SDK
and running a conan create command with a suitable profile with the specific architecture of the toolchain.

For example, creating packages for arch=armv8:

The profile will be:

322 Chapter 15. Integrations



https://docs.conan.io/en/latest/reference/generators/deploy.html
https://www.yoctoproject.org/docs/2.6/sdk-manual/sdk-manual.html#sdk-building-an-sdk-installer
http://downloads.yoctoproject.org/releases/yocto/yocto-2.6.2/toolchain/x86_64/
https://cmake.org/cmake/help/v3.0/variable/CMAKE_FIND_ROOT_PATH.html#variable:CMAKE_FIND_ROOT_PATH
https://cmake.org/cmake/help/v3.0/variable/CMAKE_FIND_ROOT_PATH_MODE_LIBRARY.html
https://cmake.org/cmake/help/v3.0/variable/CMAKE_FIND_ROOT_PATH_MODE_INCLUDE.html
https://cmake.org/cmake/help/v3.0/variable/CMAKE_FIND_ROOT_PATH_MODE_PACKAGE.html

Conan Documentation, Release 1.60.2

Listing 24: armv8

[settings]

os_build=Linux
arch_build=x86_64

os=Linux

arch=armv8

compiler=gcc
compiler.version=8
compiler.libcxx=libstdc++11
build_type=Release

Activate the SDK environment and execute the create command if you have a specific recipe:

$ source oe-environment-setup-aarch64-poky-linux
$ conan create . user/channel --profile armv8

However, if you wish an official Conan package from Conan Center, you can install it directly:

$ source oe-environment-setup-aarch64-poky-linux
$ conan install mosquitto/2.0.14@ -g deploy --profile:build=default --profile:host=armv8

This will generate the packages using the Yocto toolchain from the environment variables such as CC, CXX, LD... Now
you can upload the binaries to an Artifactory server to share and reuse in your Yocto builds.

[$ conan upload mosquitto/2.0.14@ --all --remote my_repo

Important: We strongly recommend using the Yocto’s SDK toolchain to create packages as they will be built with
the optimization flags suitable to be deployed later to an image generated in a Yocto build.

Deploying an application to a Yocto image
Now that you have your cross-built Conan packages in Artifactory, you can deploy them in a Yocto build.
Set up the Conan layer

We have created a meta-conan layer that includes all the configuration, the Conan client and a generic BitBake recipe.
To add the layer you will have to clone the repository and the dependency layers of meta-openembedded:

$ cd poky
$ git clone https://github.com/conan-io/meta-conan.git
$ git clone --branch thud https://github.com/openembedded/meta-openembedded.git

You would also have to activate the layers in the bblayers.conf file of your build folder:

Listing 25: conf/bblayers.conf

POKY_BBLAYERS_CONF_VERSION = "2"

BBPATH = "${TOPDIR}"

(continues on next page)

15.5. Other Systems 323


https://github.com/conan-io/meta-conan

Conan Documentation, Release 1.60.2

(continued from previous page)

BBFILES 7= ""

BBLAYERS 7= " \

/home/username/poky/meta \
/home/username/poky/meta-poky \
/home/username/poky/meta-yocto-bsp \

/home /username/poky/meta-openembedded/meta-oe \
/home/username/poky/meta-openembedded/meta-python \
/home/username/poky/meta-conan \

Or, if you are not confident editing the configuration file or just to automate all process, you can use bitbake commands:

$ cd build/

$ bitbake-layers add-layer ${PWD}/../poky/meta-openembedded/meta-oe

$ bitbake-layers add-layer ${PWD}/../poky/meta-openembedded/meta-python
$ bitbake-layers add-layer ${PWD}/../poky/meta-conan

Note: Please report any question, feature request or issue related to the meta-conan layer in its GitHub issue tracker.

Write the Bitbake recipe for the Conan package

With the meta-conan layer, a Conan recipe to deploy a Conan package should look as easy as this recipe:

Listing 26: conan-mosquitto_2.0.14.bb

inherit conan

DESCRIPTION = "An open source MQTT broker"
LICENSE = "EPL-1.0"

CONAN_PKG = "mosquitto/2.0.14@"

This recipe will be placed inside your application layer that should be also added to the conf/bblayers.conf file.

Configure Conan variables for the build

Additionally to the recipe, you will need to provide the information about the credentials for Artifactory or the profile
to be used to retrieve the packages in the local.conf file of your build folder.

Listing 27: poky_build_folder/conf/local.conf

IMAGE_INSTALL_append = " conan-mosquitto"

# Profile for installation

CONAN_PROFILE_PATH = "${TOPDIR}/conf/armv8"

# Artifactory repository

CONAN_REMOTE_URL = "https://localhost:8081/artifactory/api/conan/<repository>"
# Artifactory Credentials

(continues on next page)

324 Chapter 15. Integrations



https://github.com/conan-io/meta-conan/issues

Conan Documentation, Release 1.60.2

(continued from previous page)

CONAN_USER = "REPO_USER"
CONAN_PASSWORD = "REPO_PASSWORD"

Notice the armv8 profile to indicate your configuration next to the local.conf. That way you will be able to match the
Conan configuration with the specific architecture or board of your Yocto build.

Listing 28: poky_build_folder/conf/armv8

[settings]

os_build=Linux
arch_build=x86_64

os=Linux

arch=armv8

compiler=gcc
compiler.version=8
compiler.libcxx=1ibstdc++11
build_type=Release

It is recommended to set up the specific profile to use in your build with CONAN_PROFILE_PATH pointing to profile
stored in the configuration folder of your build (next to the conf/local.conf file), for example: CONAN_PROFILE_PATH
= "${TOPDIR}/conf/armv8".

Finally, the Artifactory repository URL where you want to retrieve the packages from and its credentials.

You can also use CONAN_CONFIG_URL with a custom Conan configuration to be used with conan config install
and the name of the profile to use in CONAN_PROFILE_PATH and just the name of the remote in CONAN_REMOTE_NAME.
For example:

Listing 29: poky_build_folder/conf/local.conf

IMAGE_INSTALL_append = " conan-mosquitto"

CONAN_CONFIG_URL = "https://github.com/<your-organization>/conan-config.git"
CONAN_PROFILE_PATH = "armv8"

CONAN_REMOTE_NAME = "my_repo"

CONAN_USER = "REPO_USER"

CONAN_PASSWORD = "REPO_PASSWORD"

In this case the armv8 profile and the my_repo remote will be taken from the ones installed with the conan config
install command.

15.5. Other Systems 325




Conan Documentation, Release 1.60.2

Architecture conversion table

If no specific profile is indicated in CONAN_PROFILE_PATH, Conan will map the most common Yocto architectures and
machines to the existing ones in Conan. This is the current mapping from Conan architectures to the Yocto ones:

Yocto SDK Yocto Machine Conan arch setting

aarch64 gemuarm64 armv8
armvSe gemuarmv5 armv5el
core2-64 gemux86_64 x86_64
cortexa8hf quemuarm armv7hf
i586 gemux86 x86
mips32r2 gemumips mips
mips64 gemumips64 mips64
ppc7400 gemuppc ppc32

This mapping may not be complete and some of the binaries generated with the Yocto toolchains will have specific
optimization flags for the specific architectures.

Tip: For heavy Yocto users, having a custom setting for this may be very useful. For example, including the specific
architecture names in your settings.yml

[arch: [..., "aarch64", "armv5e", "core2-64", ...] ]

Or using a machine subsetting under the Linux operating system:

0s:
Linux:
machine: [None, "gemuarm64", "qemuarm64", "qemux86_64", ...]

Note that the None value is important here to be able to build other packages without value for this subsetting to target
a non-yocto Linux distro.

See also:
* Yocto Machine configurations: https://git.yoctoproject.org/cgit.cgi/poky/tree/meta/conf/machine

* Conan Architectures in settings.yml.

Deploy the application and its dependencies to the final image

You can build the recipe to test that the packages are correctly deployed:

[$ bitbake -c install conan-mosquitto J

Packages will be installed with the profile indicated and installed with its dependencies only from the remote specified.

Finally, you can build your image with the Conan packages:

[$ bitbake core-image-minimal ]

The binaries of the Conan packages will be deployed to the /bin folder of the image once it is created.

326 Chapter 15. Integrations


https://git.yoctoproject.org/cgit.cgi/poky/tree/meta/conf/machine

Conan Documentation, Release 1.60.2

15.5.6 Android

There are several ways to cross-compile packages for Android platform via conan.

Warning: Always use build context when cross building.

Using android-ndk package (tool require)

The easiest way so far is to use android-ndk conan package (which is in conancenter repository).
Using the android-ndk package as a tool requirement will do the following steps:
* Download the appropriate Android NDK archive.

* Set up required environment variables, such as CC, CXX, RANLIB and so on to the appropriate tools from the
NDK.

¢ In case of using CMake, it will inject the appropriate toolchain file and set up the necessary CMake variables.

For instance, in order to cross-compile for ARMv8, the following conan profile might be used:

include(default)
[settings]
arch=armv8
build_type=Release
compiler=clang
compiler.libcxx=1libc++
compiler.version=14
os=Android
o0s.api_level=21
[tool_requires]
android-ndk/r25
[options]

[env]

Note: In addition to the above, Windows users may need to specify CONAN_MAKE_PROGRAY, for instance from the
existing MinGW installation (e.g. C:\MinGW\bin\mingw32-make.exe), or use make from the mingw_installer/
1.0@conan/stable

Similar profile might be used to cross-compile for ARMv7 (notice the arch change):

15.5. Other Systems 327



https://www.android.com
https://conan.io/center/android-ndk
https://developer.android.com/ndk
https://developer.android.com/ndk/guides/cmake#file
https://developer.android.com/ndk/guides/cmake#variables

Conan Documentation, Release 1.60.2

include(default)
[settings]
arch=armv7
build_type=Release
compiler=clang
compiler.libcxx=1libc++
compiler.version=14
os=Android
os.api_level=21
[tool_requires]
android-ndk/r25
[options]

[env]

By adjusting arch setting, you may cross-compile for x86 and x86_64 Android as well (e.g. if you need to run code

in a simulator).

Note: os.api_level is an important setting which affects compatibility - it defines the minimum Android version

supported. In other words, it is the same meaning as minSdkVersion.

Also, do not forget to use build context when cross building to Android:

[Conan install conanfile.txt -pr:b=default -pr:h=android

Where android is one of the profiles listed above.

Use built-in Conan toolchain

Warning: This is an experimental feature subject to breaking changes in future releases.

Conan will generate a toolchain for Android if the recipe is using a CMakeToolchain. In that case all you need is to
provide the path to the Android NDK and working profiles. This approach can also use the Android NDK package

referenced in the previous section.

Use a regular profile for the host context:

Listing 30: profile_host

[settings]

os=Android

os.api_level=23
arch=x86_64

compiler=clang
compiler.version=14
compiler.libcxx=c++_shared
build_type=Release

[conf]

tools.android:ndk_path=<path/to/myandroid/ndk>

328

Chapter 15. Integrations



https://developer.android.com/guide/topics/manifest/uses-sdk-element

Conan Documentation, Release 1.60.2

Together with the files created by the generators that make it possible to find and link the requirements, conan install
command will generate a toolchain file like the following one:

Listing 31: conan_toolchain.cmake (some parts are stripped)

set (CMAKE_BUILD_TYPE "Release" CACHE STRING "Choose the type of build." FORCE)

set (CMAKE_SYSTEM_NAME Android)

set (CMAKE_SYSTEM_VERSION 23)

set (CMAKE_ANDROID_ARCH_ABI x86_64)

set (CMAKE_ANDROID_STL_TYPE c++_shared)

set (CMAKE_ANDROID_NDK <path/to/myandroid/ndk>)

With this toolchain file you can execute CMake’s command to generate the binaries:

conan install <conanfile> --profile:host=profile_host --profile:build=default

cd build/Release

cmake ../.. -DCMAKE_TOOLCHAIN_FILE=generators/conan_toolchain.cmake -DCMAKE_BUILD_
. TYPE=Release

cmake --build .

Using Docker images

If you’re using Docker for builds, you may consider using docker images from the Conan Docker Tools repository.
Currently, Conan Docker Tools provide the following Android images:

* conanio/android-clang14

* conanio/android-clang14-x86

* conanio/android-clang14-armv7

 conanio/android-clang14-armv8

All above mentioned images have corresponding Android NDK installed as Conan package. For more information how
to build Android docker images, visit Docker build section. Once you have a docker image installed property, you can
run directly on your machine and cross-compile to Android:

% docker run --rm -ti -v${PUWD}:/home/conan/project conanio/android-clangl4-armv8
# running into docker container
$ conan install project/conanfile.txt -pr:b=default -pr:h=android --build

Note: If you are running on Mac M1, you need to pass --platform=1inux/amd64 as command argument to docker
run.

15.5. Other Systems 329



https://www.docker.com
https://github.com/conan-io/conan-docker-tools
https://developer.android.com/ndk
https://github.com/conan-io/conan-docker-tools#build-test-and-deploy

Conan Documentation, Release 1.60.2

Using existing NDK

It’s also possible to use an existing Android NDK installation with conan. For instance, if you’re using Android Studio
IDE, you may already have an NDK at ~/Library/Android/sdk/ndk.

You have to specify different environment variables in the Conan profile for make-based projects. For instance:

include(default)
target_host=aarch64-linux-android
android_ndk=/home/conan/Library/Android/sdk/ndk/20.0.5594570
api_level=21

[settings]

arch=armv8

build_type=Release

compiler=clang
compiler.libcxx=libc++
compiler.version=8

os=Android

os.api_level=$api_level
[tool_requires]

[options]

[env]
PATH=[$android_ndk/toolchains/llvm/prebuilt/darwin-x86_64/bin]
CHOST=$target_host
AR=$target_host-ar
AS=$target_host-as
RANLIB=$target_host-ranlib
CC=$target_host$api_level-clang
CXX=$target_host$api_level-clang++
LD=$target_host-1d
STRIP=$target_host-strip

However, when building CMake projects, there are several approaches available, and it’s not always clear which one to
follow.

Using toolchain from Android NDK

Warning: This method is deprecated. =~ Use the one above using CMakeToolchain, the generated
conan_toolchain.cmake and the conf tools.android:ndk_path=<path/to/myandroid/ndk>

For this, you will need a small CMake toolchain file:

set (ANDROID_PLATFORM 21)

set (ANDROID_ABI arm64-v8a)

include ($ENV{HOME}/Library/Android/sdk/ndk/20.0.5594570/build/cmake/android. toolchain.
—cmake)

This toolchain file only sets up the required CMake variables, and then includes the default toolchain file supplied with
Android NDK.

And then, you may use the following profile:

330 Chapter 15. Integrations



https://developer.android.com/ndk
https://developer.android.com/studio/
https://developer.android.com/ndk/guides/cmake#variables
https://developer.android.com/ndk/guides/cmake#file

Conan Documentation, Release 1.60.2

include(default)
[settings]

arch=armv8
build_type=Release
compiler=clang
compiler.libcxx=libc++
compiler.version=8
os=Android
os.api_level=21
[tool_requires]
[options]

[env]
CONAN_CMAKE_TOOLCHAIN_FILE=/home/conan/my_android_toolchain.cmake

In the profile, CONAN_CMAKE_TOOLCHAIN_FILE points to the CMake toolchain file listed above.

15.5.7 iOS, tvOS, watchOS

Using Darwin toolchain package (tool require)

Warning: This is an experimental feature subject to breaking changes in future releases.

One example of a tool requires implementing a toolchain to cross-compile to iOS, tvOS or watchOS, is the Darwin
Toolchain package. Although this package is not in Conan Center Index you can check it to see an example of how to
use a toolchain for cross-compilation by using a tool requires. You can use a profile like the following to cross-build
your packages for 10S, watchOS and tvOS:

15.5. Other Systems 331



https://github.com/theodelrieu/conan-darwin-toolchain
https://github.com/theodelrieu/conan-darwin-toolchain

Conan Documentation, Release 1.60.2

Listing 32: ios_profile

include(default)

[settings]
0s=1i0S
os.version=9.0
arch=armv7

[tool_requires]
darwin-toolchain/1.0@theodelrieu/stable

[$ conan install . --profile ios_profile

Use built-in Conan toolchain

Warning: This is an experimental feature subject to breaking changes in future releases.

Conan will generate a toolchain for iOS if the recipe is using a CMakeToolchain. This toolchain provides a minimal
implementation supporting only the CMake XCode generator. It will be extended in the future but at the current version
(1.31.0) is just for testing purposes.

For using it, create a regular profile for the host context:

Listing 33: profile_host_ios

[settings]
0s=1i0S
os.version=12.0
arch=armv8
compiler=apple-clang
compiler.version=12.0
compiler.libcxx=1libc++
build_type=Release

Together with the files created by the generators that make it possible to find and link the requirements, conan install
command will generate a toolchain file like the following one:

Listing 34: conan_toolchain.cmake (some parts are stripped)

set (CMAKE_BUILD_TYPE "Release" CACHE STRING "Choose the type of build." FORCE)

# set cmake vars

set (CMAKE_SYSTEM_NAME iOS)

set (CMAKE_SYSTEM_VERSION 12.0)

set (DEPLOYMENT_TARGET ${CONAN_SETTINGS_HOST_MIN_OS_VERSION})

# Set the architectures for which to build.

set (CMAKE_OSX_ARCHITECTURES arm64)

# Setting CMAKE_OSX_SYSROOT SDK, when using Xcode generator the name is enough
# but full path is necessary for others

set (CMAKE_OSX_SYSROOT iphoneos)

332 Chapter 15. Integrations




Conan Documentation, Release 1.60.2

With this toolchain file you can execute CMake’s command to generate the binaries:

conan install <conanfile> --profile:host=profile_host_ios --profile:build=default
cmake . -GXcode -DCMAKE_TOOLCHAIN_FILE=conan_toolchain.cmake
cmake --build . --config Release

W
15.5.8 VxWorks

It’s possible to cross-compile packages for VxWorks operating with Conan.

Conan has support for VxWorks 7. The following architectures are supported:
e armv7

The following C++ standard library implementations are supported for QCC:
* clang++ (LLVM C++)
e g++ (GNU C++)

With a proper build VxWorks Source Build (VSB) set up on the machine, the following conan profile might be used
for the cross-compiling (assuming clang in the PATH):

include(default)
[settings]
os=Vxllorks
os.version=7
arch=armv7
compiler=clang
compiler.version=12
compiler.libcxx=1libstdc++11
[options]
[tool_requires]
[env]

15.6 Version Control System

Conan uses plain text files for the recipes and configuration files and they can be managed nicely with any version
control system. Also, with the scm feature, your recipe can capture automatically the commit/revision of the source
code of your library so the recipe will clone the correct sources automatically.

15.6. Version Control System 333



https://www.windriver.com/products/vxworks

Conan Documentation, Release 1.60.2

15.6.1 © Git

Conan uses plain text files, conanfile. txt or conanfile.py, so it’s perfectly suitable for the use of any version
control system. We use and highly recommend git.

Check workflows section to learn more about project layouts that naturally fit version control systems.

Temporary files
Conan generates some files that should not be committed, as conanbuildinfo.* and conaninfo.txt. These files can
change in different computers and are re-generated with the conan install command.

However, these files are typically generated in the build tree not in the source tree, so they will be naturally disregarded.
Just take care in case you have created the build folder inside your project (we do this in several examples in the
documentation). In this case, you should add it to your .gitignore file:

Listing 35: .gitignore

build/

Package creators

Check scm feature to learn more about managing the libraries source code with Git.
If you are creating a Conan package:

* You can use the url field to indicate the origin of your package recipe. If you are using an external package recipe,
this url should point to the package recipe repository not to the external source origin. If a github repository is
detected, the Conan website will link your github issues page from your Conan’s package page.

* You can use git to obtain your source (requires the git client in the path) when creating external package recipes.

15.6.2 SVN

Conan uses plain text files, conanfile. txt or conanfile.py, so it’s perfectly suitable for the use of any version
control system.

Check workflows section to learn more about project layouts that naturally fit version control systems.

Check scm feature to learn more about managing the libraries source code with SVN.

334 Chapter 15. Integrations



Conan Documentation, Release 1.60.2

15.7 Custom integrations

If you intend to use a build system that does not have a built-in generator, you may still be able to do so. There are
several options:

First, search in ConanCenter for generator packages. Generators can be created and contributed by users as
regular packages, so you can depend on them as a normal requirement, use versioning and evolve faster without
depending on the Conan releases.

You can use the 7xt or json generators. They will generate a text file, simple to read that you can easily parse with
your tools to extract the required information.

Use the conanfile data model (deps_cpp_info, deps_env_info) in your recipe to access its properties and values,
so you can directly call your build system with that information, without requiring to generate a file.

Write and create your own generator. So you can upload it, version and reuse it, as well as share it with your
team or community. Check How to create and share a custom generator with generator packages.

Note:

Need help integrating your build system? Tell us what you need: info@conan.io

15.7.1 Use the JSON generator

Specify the json generator in your recipe:

Listing 36: conanfile.txt

[requires]
fmt/6.1.2
poco/1.9.4

[generators]
json

A file named conanbuildinfo.json will be generated. It will contain the information about every dependency:

Listing 37: conanbuildinfo.json

{

"dependencies":

L

{
llnamell: Ilfmtll’
"version": "6.1.2",
"include_paths": [
"/path/to/.conan/data/fmt/6.1.2/_/_/package/<id>/include"
i
"lib_paths": [
"/path/to/.conan/data/fmt/6.1.2/_/_/package/<id>/1ib"
] 3
"libs": [
"fmt"

(continues on next page)

15.7.

Custom integrations 335



mailto:info@conan.io

Conan Documentation, Release 1.60.2

(continued from previous page)

3,
{
"name": "poco",
"version": "1.9.4",
}
]
}

15.7.2 Use the text generator
Just specify the txt generator in your recipe:

Listing 38: conanfile.txt

[requires]
poco/1.9.4

[generators]
Xt

A file is generated with the same information in a generic text format

Listing 39: conanbuildinfo.txt

[includedirs]
/home/user/.conan/data/poco/1.9.4/_/_/package/58080bcelcc38259eb7c282aa95c25aecde8efed/
—include

/home/user/.conan/data/openssl/1.0.2t/_/_/package/
—.f99afdbf2alcc98ba2029817b35103455b6a9b77/include
/home/user/.conan/data/z1ib/1.2.11/_/_/package/6af9cc7ch931c5ad942174£d7838eb655717c709/

—include

[1ibdirs]
/home/user/.conan/data/poco/1.9.4/_/_/package/58080bcelcc38259eb7c282aa95c25aecde8efed/
~1ib

/home/user/.conan/data/openssl/1.0.2t/_/_/package/
—f99afdb£f2al1cc98ba2029817b35103455b6a9b77/1ib
/home/user/.conan/data/z1ib/1.2.11/_/_/package/6af9cc7cb931c5ad942174£d7838eb655717c709/

—1ib

[bindirs]
/home/user/.conan/data/openssl/1.0.2t/_/_/package/
—.f99afdbf2a1cc98ba2029817b35103455b6a9b77/bin

[resdirs]
/home/user/.conan/data/openssl/1.0.2t/_/_/package/
—f99afdbf2alcc98ba2029817b35103455b6a9b77/res

[builddirs]
/home/user/.conan/data/poco/1.9.4/_/_/package/58080bcelcc38259eb7c282aa95c25aecde8efed/

(continues on next page)

336 Chapter 15. Integrations




Conan Documentation, Release 1.60.2

(continued from previous page)

/home/user/.conan/data/openssl/1.0.2t/_/_/package/
—f99afdbf2alcc98ba2029817b35103455b6a9b77/
/home/user/.conan/data/z1lib/1.2.11/_/_/package/6af9cc7cb931c5ad942174£d7838eb655717c709/

[1ibs]
PocoMongoDB
PocoNetSSL
PocoNet
PocoCrypto
PocoDataSQLite
PocoData
PocoZip
PocoUtil
PocoXML
PocoJSON
PocoRedis
PocoFoundation
rt

ssl

crypto

dl

pthread

z

[system_libs]
[defines]

POCO_STATIC=ON
POCO_NO_AUTOMATIC_LIBS

15.7.3 Use the Conan data model (in a conanfile.py)
If you are using any other build system you can use Conan too. In the build() method you can access your settings
and build information from your requirements and pass it to your build system. Note, however, that probably is simpler

and much more reusable to create a generator to simplify the task for your build system.

Listing 40: conanfile.py

from conans import ConanFile

class MyProjectWithConan(ConanFile):

settings = "os", "compiler", "build_type", "arch"

requires = "poco/1.9.4"

#i#n####### IT'S IMPORTANT TO DECLARE THE TXT GENERATOR TO DEAL WITH A GENERIC BUILD.
- SYSTEM

generators = "txt

default_options = {"poco:shared": False, "openssl:shared": False}

def imports(self):

(continues on next page)

15.7. Custom integrations 337




Conan Documentation, Release 1.60.2

def

self.copy("*.dll", dst="bin", src="bin") # From bin to bin

self.copy("*.dylib*", dst="bin", src="1lib") # From 1ib to
build(self):

##n####AAAH Without any helper ###########

# Settings

print(self.settings.os)
print(self.settings.arch)
print(self.settings.compiler)

# Options
#print(self.options.my_option)
print(self.options["openssl"].shared)
print(self.options["poco"].shared)

# Paths and libraries, all
print("-------- ALL —————————————- )
print(self.deps_cpp_info.include_paths)
print(self.deps_cpp_info.lib_paths)
print(self.deps_cpp_info.bin_paths)
print(self.deps_cpp_info.libs)
print(self.deps_cpp_info.defines)
print(self.deps_cpp_info.cflags)
print(self.deps_cpp_info.cxxflags)
print(self.deps_cpp_info.sharedlinkflags)
print(self.deps_cpp_info.exelinkflags)

# Just from OpenSSL

print("--------- FROM OPENSSL ----—--——--—-—-—- )
print(self.deps_cpp_info["openssl"”].include_paths)
print(self.deps_cpp_info["openssl"].lib_paths)
print(self.deps_cpp_info["openssl"].bin_paths)
print(self.deps_cpp_info["openssl"].libs)
print(self.deps_cpp_info["openssl"].defines)
print(self.deps_cpp_info["openssl"].cflags)
print(self.deps_cpp_info["openssl"].cxxflags)
print(self.deps_cpp_info["openssl"].sharedlinkflags)
print(self.deps_cpp_info["openssl"].exelinkflags)

# Just from POCO

print("--------- FROM POCO ------------—- "
print(self.deps_cpp_info["poco"].include_paths)
print(self.deps_cpp_info["poco"].lib_paths)
print(self.deps_cpp_info["poco"].bin_paths)
print(self.deps_cpp_info["poco"].1libs)
print(self.deps_cpp_info["poco"].defines)
print(self.deps_cpp_info["poco"].cflags)
print(self.deps_cpp_info["poco"].cxxflags)
print(self.deps_cpp_info["poco"].sharedlinkflags)
print(self.deps_cpp_info["poco"].exelinkflags)

# self.run("invoke here your configure, make, or others'")

(continued from previous page)

bin

(continues on next page)

338

Chapter 15. Integrations




Conan Documentation, Release 1.60.2

(continued from previous page)

# self.run("basically you can do what you want with your requirements build.,
—1info)

# Environment variables (from requirements self.env_info objects)

# are automatically applied in the python os.environ' but can be accessible.
—as well:

print("-------—-—- Globally -----————--—-—- )

print(self.env)

print("--------- FROM MyLib ----—--—---—--—- ")
print(self.deps_env_info["mylib"].some_env_var)

# User declared variables (from requirements self.user_info objects)
# are available in the self.deps_user_info object

print("--------- FROM MyLib ------------- )
print(self.deps_user_info["mylib"].some_user_var)

15.7.4 Create your own generator

There are two ways in which generators can be contributed:

* Forking and adding the new generator in the Conan codebase. This will be a built-in generator. It might have a
much slower release and update cycle, it needs to pass some tests before being accepted, but it has the advantage
than no extra things are needed to use that generator (once next Conan version is released).

 Creating a custom generator package. You can write a conanfile.py and add the custom logic for a generator
inside that file, then upload, refer and depend on it as any other package. These generators will be another node
in the dependency graph but they have many advantages: much faster release cycles, independent from the Conan
codebase and can be versioned. So backwards compatibility and upgrades are much easier.

15.7.5 Extending Conan

There are other powerful mechanisms to integrate other tools with Conan. Check the Extending Conan section for
further information.

15.8 Linting

You can develop your recipe and binary packages getting feedback of potential issues.

15.8.1 Linting the recipe

IDE
If you have an IDE that supports Python and may do linting automatically, there are false warnings caused by the fact
that Conan dynamically populates some fields of the recipe based on context.

Conan provides a plugin which makes pylint aware of these dynamic fields and their types. To use it when running
pylint outside Conan, just add the following to your .pylintrc file:

15.8. Linting 339




Conan Documentation, Release 1.60.2

[MASTER]
load-plugins=conans.pylint_plugin

Hook

There is also a recipe_linter hook in the official hooks repository that can be activated to run automatic linter
checks on the recipes when they are exported to the conan cache (export, create and export-pkg commands).
Since Conan 1.47, it has also being added a checker for Conan 2.x deprecated imports like from conans import
xxxxx (you should use from conan import xxxxx instead) as part of the recipe_linter hook.

Read the hook documentation for details. You could also write your own custom linter hook to provide your own recipe
quality checks.

15.8.2 Linting binary packages
Using the Conan hooks feature you can scan your binaries to ensure that you are generating the correct binary files and
even checking the binary contents.

Take a look at the official hooks repository to see several examples of how to implement a binary linter system.

15.9 Deployment

If you have a project with all the dependencies managed by Conan and you want to deploy into a specific format, the
process is the following:

» Extract the needed artifacts to a local directory either using the deploy generator or the json generator.

» Convert the artifacts (typically executables, shared libraries and assets) to a different deploy format. You will
find the specific steps for some of the most common deploy technologies below.

15.9.1 System package manager

The Conan packages can be deployed using a system package manager. Usually this process is done by creating a folder
structure with the needed files and bundling all of them into the file format specific to the system package manager of
choice, like .rpm or .deb. This method is very convenient for deployment and distribution as it is natively integrated in
the system. However, there are some limitations:

* It might require to create a specific package for each of supported distro, or at least use the lowest version (see
concerns about glibc below), see the section Customizing settings, which explains how to customize Conan
settings to model different Linux distributions in order to create different packages for them.

« If you want to target different distros, then you need to create one package per supported distro (likely one for
Ubuntu, one for Arch Linux, etc.), and formats or guidelines for each distro might differ significantly

Check out the sections makeself , Applmage, Flatpak and Snap for information on how to create distribution-agnostic
packages.

340 Chapter 15. Integrations


https://github.com/conan-io/hooks
https://github.com/conan-io/hooks
https://ubuntu.com
https://www.archlinux.org

Conan Documentation, Release 1.60.2

15.9.2 Makeself

Makeself is a small command-line utility to generate self-extracting archives for Unix. It is pretty popular and it is used
by VirtualBox and CMake projects.

Makeself creates archives that are just small startup scripts (.run, .bin or .sh) concatenated with tarballs.
When you run such self-extracting archive:

* A small script (shim) extracts the embedded archive into the temporary directory

* Script passes the execution to the entry point within the unpacked archive

* application is being run

* The temporary directory removed
Therefore, it transparently appears just like a normal application execution.

With help of deploy generator, it’s only needed to invoke makeself. sh in order to generate self-extracting archive for
the further deployment:

TMPDIR="dirname $(mktemp -u -t tmp.XXXXXXXXXX)"

curl "https://github.com/megastep/makeself/releases/download/release-2.4.0/makeself-2.4.
—0.run" --output $TMPDIR/makeself.run -L

chmod +x $TMPDIR/makeself.run

$TMPDIR/makeself.run --target $TMPDIR/makeself

$TMPDIR/makesel f/makeself.sh $PREFIX md5.run "conan-generated makeself.sh" "./conan-
—entrypoint.sh"

The PREFIX variable in the example points to the directory where binary artifacts are situated. The md5.run is an
output SFX archive:

$ file md5.run
md5.run: POSIX shell script executable (binary data)

The conan-entry-point.sh is a simple script which sets requires variables (like PATH or LD_LIBRARY_PATH):

#!/usr/bin/env bash

set -ex

export PATH=$PATH:$PWD/bin

export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:$PWD/1lib
pushd $(dirname $PWD/md5)

$(basename $PWD/md5)

popd

Check out the complete example on GitHub.

15.9.3 Applmage

Applmage (former k1ik, PortableLinuxApps) is a format for Linux portable applications. Its major advantages are:
* It does not require root permissions.
« It does not require to install any application (it uses chmod +x).

* It does not require the installation of runtime or a daemon into the system.

15.9. Deployment 341



https://makeself.io
https://en.wikipedia.org/wiki/VirtualBox
https://cmake.org/download/
https://github.com/conan-io/examples/tree/master/features
https://appimage.org

Conan Documentation, Release 1.60.2

AppImage might be used to distribute desktop applications, command-line tools and system services (daemons).
ApplImage uses filesystem in user-space (FUSE). It allows to easily mount the images and inspect their contents.
The main steps of the packaging process are pretty straightforward and could be easily automated:

¢ Create a directory like MyApp . AppDir

* Download the Applmage runtime (AppRun file) and put it into the directory.

» Copy all dependency files, like libraries (.s0), resources (e.g. images) inside the directory.

* Fill the myapp.desktop configuration file with some brief metadata of your application: name, category. ..

¢ Run appimagetool.

The copy step can be automatically done with Conan using the json generator and a custom script or just using the
deploy generator.

The result of the previous steps will give you a MyApp-x86_64.Applmage file, which is a regular Linux ELF file:

$ file MyApp-x86_64.AppImage
MyApp-x86_64.AppImage: ELF 64-bit LSB executable, x86-64, version 1 (SYSV), dynamically..
—linked, interpreter /l1ib64/1, for GNU/Linux 2.6.18, stripped

Finally, that file file could be easily distributed just by copying and uploading it to a Web or a FTP server, moving it to
the flash drive, etc..

15.9.4 Snap

Snap is the package management system available for the wide range of Linux distributions. Unlike Applmage, Snap
requires a daemon (snapd) installed in the system in order to operate. Under the hood, Snap is based on SquashFS.
Snap is Canonical initiative. Usually, applications are distributed via snapcraft store, but it’s not mandatory. Snap
provides fine-grained control to system resources (e.g. camera, removable media, network, etc.). The major advantage
is plug-in system, which allows to easily integrate Snap with different languages and build systems (e.g. CMake,
autotools, etc.).

The packaging process could be summed up in the following steps:
e Install the snapcraft
¢ Run snapcraft init
¢ Edit the snap/snapcraft.yml manifest
* Run snapcraft in order to produce the snap
* Publish and upload snap, so it could be installed on other systems.
In order to integrate with build process managed with help of the conan, the following steps could be used:
» Use deploy generator (or json generator with custom script) to prepare the assets

* Use the dump plug-in of snapcraft to simply copy the files deployed on previous step into the snap

342 Chapter 15. Integrations


https://github.com/libfuse/libfuse
https://docs.appimage.org/packaging-guide/manual.html
https://github.com/AppImage/AppImageKit/releases
https://snapcraft.io/
https://github.com/plougher/squashfs-tools
https://canonical.com
https://snapcraft.io/store
https://snapcraft.io/docs/supported-plugins
https://snapcraft.io/docs/creating-a-snap
https://snapcraft.io/docs/snapcraft-overview
https://snapcraft.io/docs/snapcraft-format
https://forum.snapcraft.io/t/releasing-your-app/6795
https://snapcraft.io/docs/dump-plugin

Conan Documentation, Release 1.60.2

15.9.5 Flatpak
Flatpak (former xdg-app) is a package management system to distribute desktop applications for Linux. It is based on
OSTree. Flatpak is RedHat initiative.

Unlike Applmage, usually applications are distributed via flathub store, and require a special runtime to install appli-
cations on target machines.

The major advantage of Flatpak is sandboxing: each application runs in its own isolated environment. Flatpak
provides fine-grained control to system resources (e.g. network, bluetooth, host filesystem, etc.). Flatpak also offers
a set of runtimes for various Linux desktop applications, e.g. Freedesktop, GNOME and KDE.

The packaging process is:
* Install the flatpak runtime, flatpak-builder and SDK.
¢ Create a manifest <app-id>. json
* Run the flatpak-builder in order to produce the application
e Publish the application for further distribution

With help of conan’s json generator, the manifest creation could be easily automated. For example, the custom script
could generate build-commands and sources entries within the manifest file:

app_id = "org.flatpak. % self._name
manifest = {

"app-id": app_id,

"runtime": "org.freedesktop.Platform",
"runtime-version": "18.08",
"sdk": "org.freedesktop.Sdk",
"command": "conan-entrypoint.sh",
"modules": [

{

"name": self._name,
"buildsystem": "simple",
"build-commands": ["install -D conan-entrypoint.sh /app/bin/conan-entrypoint.

—sh"],
"sources": [
{
"type": "file",
"path": "conan-entrypoint.sh"
}
1
3
]
}

sources = []
build_commands = []
for root, _, filenames in os.walk(temp_folder):
for filename in filenames:
filepath = os.path.join(root, filename)
unique_name = str(uuid.uuid4())
source = {
"type": "file",
"path": filepath,
"dest-filename": unique_name
(continues on next page)

15.9. Deployment 343



https://flatpak.org
https://en.wikipedia.org/wiki/OSTree
https://www.redhat.com/en
https://flathub.org
https://www.freedesktop.org/wiki/
https://www.gnome.org
https://kde.org
https://docs.flatpak.org/en/latest/first-build.html
https://docs.flatpak.org/en/latest/publishing.html
https://docs.flatpak.org/en/latest/manifests.html

Conan Documentation, Release 1.60.2

(continued from previous page)

}

build_command = "install -D /app/%s" % (unique_name, os.path.relpath(filepath,
< temp_folder))

sources.append(source)

build_commands. append (build_command)

manifest["modules"][0] ["sources"].extend(sources)
manifest["modules"][0] ["build-commands"].extend(build_commands)

Alternatively, flatpak allows distributing the single-file package. Such package, however, cannot be run or installed
on its own, it’s needed to be imported to the local repository on another machine.

344 Chapter 15. Integrations



https://docs.flatpak.org/en/latest/single-file-bundles.html

CHAPTER
SIXTEEN

CONFIGURATION

The Conan client can be configured to behave differently. Most of the configuration can be found in the conan.conf
reference, but this section aims to be an introduction to the configuration based on different use cases.

16.1 Download cache

Warning: This is an experimental feature subject to breaking changes in future releases.

Conan implements a shared download cache that can be used to reduce the time needed to populate the Conan package
cache with commands like install, create.

This cache is purely an optimization mechanism. It is completely different to the Conan package cache, (typically the
<userhome>/.conan folder). It is not related to the short_paths mechanism for long path in Windows, nor to the
short_paths cache folder. The cache will contain a copy of the artifacts, it is not a new location of files. Those files
will still be copied to the Conan package cache, which will not change anything, its behavior, layout or location of any
file.

This cache (whose path can be configured in the conan.conf file) will store the following items:

¢ All files that are downloaded from a Conan server (conan_server, Artifactory), both in the api V1 (without
revisions) and V2 (with revisions). This includes files like conanfile.py, but also the zipped artifacts like co-
nan_package.tgz or conan_sources.1gz.

* The downloads done by users with the tools.download() or tools.get() helpers, as long as they provide a
checksum (mdS, shal, etc.). If a checksum is not provided, even if the download cache is enabled, the download
will be always executed and the files will not be cached.

Warning: The cache computes a sha256 checksum of the download URL and the file checksum whenever is
available. As not always the file checksums are available, the download cache will not be able to correctly cache
artifacts with revisions enabled if a proxy suddenly and transparently changes a existing server and moves it to a
new location, without the clients changing the URL too.

345



Conan Documentation, Release 1.60.2

16.1.1 Activating/deactivating the download cache

The download cache is activated and configured in the conan.conf like this:

[storagel
download_cache=/path/to/my/cache

It can be defined from the command line:

$ conan config set storage.download_cache="/path/to/my/cache"
# Display it
$ conan config get storage.download_cache

And, as the conan.conf is part of the configuration, you can also put a common conan.conf file in a git repo or zip file
and use the conan config install command to automatically install it in Conan clients.

To deactivate the download cache, you can remove the entry download_cache from the conan.conf with the command:

[$ conan config rm storage.download_cache J

16.1.2 Concurrency, multiple caches and Cl

The downloads cache implements exclusive locks for concurrency, so it can be shared among different concurrent
Conan instances. This is a typical scenario in CI servers, in which each job uses a different Conan package cache
(defined by CONAN_USER_HOME environment variable). Every different Conan instance could configure its download
cache to share the same storage. The download cache implements inter-process exclusive locks, so only 1 process will
access at a time to a given cached artifact. If other processes needs the same artifact, they will wait until it is released,
avoiding multiple downloads of the same file, even if they were requested almost simultaneously.

For Continuous Integration processes, it is recommended to have a different Conan package cache (CONAN_USER_HOME)
for each job, in most of the cases, because the Conan package cache is not concurrent, and it might also have old
dependencies, stale packages, etc. It is better to run CI jobs in a clean environment.

16.1.3 Removing cached files

The download cache will store a lot of artifacts, for all recipes, packages, versions and configurations that are used. This
can grow and consume a lot of storage. If you are using this feature, provide for a sufficiently large and fast download
cache folder.

At the moment, it is only a folder. You can clean the cached artifacts just by removing that folder and its contents. You
might also be able to run scripts and jobs that remove old artifacts only. If you do such operations, please make sure
that there are not other Conan processes using it simultaneously, or they might fail.

Note: Installation of binaries can be accelerated setting up parallel downloads with the general.
parallel_download experimental configuration in conan.conf. You might want to try combining both the parallel
download and the download cache for extra speed.

346 Chapter 16. Configuration



CHAPTER
SEVENTEEN

HOWTOS

This section shows common solutions and different approaches to typical problems.

17.

1 How to package header-only libraries

17.1.1 Without unit tests

Packaging a header only library, without requiring to build and run unit tests for it within Conan, can be done with a
very simple recipe. Assuming you have the recipe in the source repo root folder, and the headers in a subfolder called
include, you could do:

from conans import ConanFile

class HelloConan(ConanFile):

name = "Hello"

version = "0.1"

# No settings/options are necessary, this is header only
exports_sources = "include/*"

no_copy_source = True

def package(self):
self.copy("*.h")

If you want to package an external repository, you can use the source () method to do a clone or download instead of
the exports_sources fields.

There is no need for settings, as changing them will not affect the final package artifacts
There is no need for build () method, as header-only are not built

There is no need for a custom package_info() method. The default one already adds an “include” subfolder
to the include path

no_copy_source = True will disable the copy of the source folder to the build directory as there is no need
to do so because source code is not modified at all by the configure() or build() methods.

Note that this recipe has no other dependencies, settings or options. If it had any of those, it would be very
convenient to add the package_id() method, to ensure that only one package with always the same ID is
created, irrespective of the configurations and dependencies:

def

package_id(self):
self.info.clear()

347




Conan Documentation, Release 1.60.2

Package is created with:

[$ conan create . user/channel

17.1.2 With unit tests

If you want to run the library unit test while packaging, you would need this recipe:

from conans import ConanFile, CMake

class HelloConan(ConanFile):

name = "Hello"

version = "0.1"

settings = "os", "compiler", "arch", "build_type"
exports_sources = "include/*", "CMakeLists.txt", "example.cpp"

no_copy_source = True

def build(self): # this is not building a library, just tests
cmake = CMake(self)
cmake.configure()
cmake.build()
cmake.test()

def package(self):
self.copy("*.h")

def package_id(self):
self.info.clear()

Tip: If you are cross-building your library or app you’ll probably need to skip the unit tests because your target
binary cannot be executed in current building host. To do it you can use CONAN_RUN_TESTS environment variable,
defined as False in profile for cross-building in the call to cmake. test() this variable will be evaluated and the tests
will not run.

Which will use a CMakeLists. txt file in the root folder:

project(Package CXX)
cmake_minimum_required(VERSION 2.8.12)

include_directories("include")
add_executable(example example.cpp)

enable_testing()

add_test (NAME example
WORKING_DIRECTORY ${CMAKE_BINARY_DIR}/bin
COMMAND example)

and some example. cpp file, which will be our “unit test” of the library:

#include <iostream>
#include "hello.h"

(continues on next page)

348 Chapter 17. Howtos




Conan Documentation, Release 1.60.2

(continued from previous page)

int main(Q) {
hello();
}

» This will use different compilers and versions, as configured by Conan settings (in command line or profiles),
but will always generate just 1 output package, always with the same ID.

* The necessary files for the unit tests, must be exports_sources too (or retrieved from source () method)

* If the package had dependencies, via requires, it would be necessary to add the generators = "cmake" to
the package recipe and adding the conanbuildinfo. cmake file to the testing CMakeLists.txt:

include (${CMAKE_BINARY_DIR}/conanbuildinfo.cmake)
conan_basic_setup()

add_executable(example example.cpp)
target_link libraries(example ${CONAN_LIBS}) # not necessary if dependencies are also.
—.header-only

Package is created with:

[$ conan create . user/channel

Note: This with/without tests is referring to running full unitary tests over the library, which is different to the test
functionality that checks the integrity of the package. The above examples are describing the approaches for unit-testing
the library within the recipe. In either case, it is recommended to have a fest_package folder, so the conan create
command checks the package once it is created. Check the packaging getting started guide

17.2 How to launch conan install from cmake

It is possible to launch conan install from cmake, which can be convenient for end users, package consumers, that
are not creating packages themselves.

This is work under testing. Please try it and give feedback or contribute. The CMake code to do this task is here:
https://github.com/conan-io/cmake-conan

To be able to use it, you can directly download the code from your CMake script:

Listing 1: CMakeLists.txt

cmake_minimum_required (VERSION 2.8)
project(myproject CXX)

# Download automatically, you can also just copy the conan.cmake file
if(NOT EXISTS "${CMAKE_BINARY_DIR}/conan.cmake")
message (STATUS "Downloading conan.cmake from https://github.com/conan-io/cmake-conan")
file (DOWNLOAD "https://raw.githubusercontent.com/conan-io/cmake-conan/master/conan.
—,cmake"
"${CMAKE_BINARY_DIR}/conan.cmake")
endif()

(continues on next page)

17.2. How to launch conan install from cmake 349



https://github.com/conan-io/cmake-conan

Conan Documentation, Release 1.60.2

include (${CMAKE_BINARY_DIR}/conan.cmake)

conan_cmake_run(REQUIRES Catch2/2.6.0@catchorg/stable
BASIC_SETUP)

add_executable(main main.cpp)
target_link_libraries(main ${CONAN_LIBS})

(continued from previous page)

If you want to use targets, you could do:

include(conan. cmake)
conan_cmake_run(REQUIRES Catch2/2.6.0@catchorg/stable
BASIC_SETUP CMAKE_TARGETS)

add_executable(main main.cpp)
target_link libraries(main CONAN_PKG: :hello)

17.3 How to create and reuse packages based on Visual Studio

Conan has different helpers to manage Visual Studio and MSBuild based projects. This how-to illustrates how to put
them together to create and consume packages that are purely based on Visual Studio. This how-to is using VS2015,

but other versions can be used too.

17.3.1 Creating packages

Start cloning the existing example repository, containing a simple “Hello World” library, and application:

$ git clone https://github.com/memsharded/hello_vs
$ cd hello_vs

It contains a src folder with the source code and a build folder with a Visual Studio 2015 solution, containing 2

projects: the HelloLib static library, and the Greet application. Open it:

[$ build\HelloLib\HelloLib.sln

)

You should be able to select the Greet subproject -> Set as Startup Project. Then build and run the app with

Ctrl+F5. (Debug -> Start Without Debugging)

$ Hello World Debug!
# Switch IDE to Release mode, repeat
$ Hello World Release!

Because the hello. cpp file contains an #ifdef _DEBUG to switch between debug and release message.

In the repository, there is already a conanfile.py recipe:

from conans import ConanFile, MSBuild

class HelloConan(ConanFile):

(continues on next page)

350

Chapter 17. Howtos



Conan Documentation, Release 1.60.2

(continued from previous page)

name = "hello"

version = "0.1"

license = "MIT"

url = "https://github.com/memsharded/hello_vs"
settings = "os", "compiler", "build_type", "arch"
exports_sources = "src/*", "build/*"

def build(self):
msbuild = MSBuild(self)
msbuild.build("build/HelloLib/HelloLib.sln")

def package(self):
self.copy("*.h", dst="include", src="src")
self.copy("*.1ib", dst="1ib", keep_path=False)

def package_info(self):
self.cpp_info.libs = ["HelloLib"]

This recipe is using the MSBuild() build helper to build the sln project. If our recipe has requires, the MSBUILD
helper will also take care of inject all the needed information from the requirements, as include directories, library
names, definitions, flags etc to allow our project to locate the declared dependencies.

The recipe contains also a test_package folder with a simple example consuming application. In this example, the
consuming application is using CMake to build, but it could also use Visual Studio too. We have left the CMake one
because it is the default generated with conan new, and also to show that packages created from Visual Studio projects
can also be consumed with other build systems like CMake.

Once we want to create a package, it is advised to close VS IDE, clean the temporary build files from VS to avoid
problems, then create and test the package. Here it is using system defaults, assuming they are Visual Studio 14,
Release, x86_64:

# close VS
$ git clean -xdf
$ conan create . memsharded/testing

> Hello World Release!

Instead of closing the IDE and running the command:git clean we could also configure a smarter filter in
exports_sources field, so temporary build files are not exported into the recipe.

This process can be repeated to create and test packages for different configurations:

$ conan create . memsharded/testing -s arch=x86

$ conan create . memsharded/testing -s compiler="Visual Studio" -s compiler.runtime=MDd -
—s build_type=Debug

$ conan create . memsharded/testing -s compiler="Visual Studio" -s compiler.runtime=MDd -
—s build_type=Debug -s arch=x86

Note: It is not mandatory to specify the compiler.runtime setting. If it is not explicitly defined, Conan will
automatically use runtime=MDd for build_type==Debug and runtime=MD for build_type==Release.

You can list the different created binary packages:

17.3. How to create and reuse packages based on Visual Studio 351




Conan Documentation, Release 1.60.2

[$ conan search hello/0.l@memsharded/testing J

17.3.2 Uploading binaries

Your locally created packages can already be uploaded to a Conan remote. If you created them with the original
username ‘“memsharded”, as from the git clone, you might want to do a conan copy to put them on your own username.
Of course, you can also directly use your user name in conan create.

Another alternative is to configure the permissions in the remote, to allow uploading packages with different usernames.
By default, Artifactory will do it but Conan server won’t: Permissions must be given in the [write_permissions]
section of server.conf file.

17.3.3 Reusing packages

To use existing packages directly from Visual Studio, Conan provides the visual_studio generator. Let’s clone an
existing “Chat” project, consisting of a ChatLib static library that makes use of the previous “Hello World” package,
and a MyChat application, calling the ChatLib library function.

$ git clone https://github.com/memsharded/chat_vs
$ cd chat_vs

As above, the repository contains a Visual Studio solution in the build folder. But if you try to open it, it will fail to
load. This is because it is expecting to find a file with the required information about dependencies, so it is necessary
to obtain that file first. Just run:

[$ conan install . ]

You will see that it created two files, a conaninfo. txt file, containing the current configuration of dependencies, and a
conanbuildinfo.props file, containing the Visual Studio properties (like <AdditionalIncludeDirectories>),
so it is able to find the installed dependencies.

Now you can open the IDE and build and run the app (by the way, the chat function is just calling the hello() function
two or three times, depending on the build type):

$ build\ChatLib\ChatLib.sln

# Switch to Release

# MyChat -> Set as Startup Project

# Ctrl + F5 (Debug -> Run without debugging)
> Hello World Release!

> Hello World Release!

If you wish to link with the debug version of Hello package, just install it and change IDE build type:

$ conan install . -s build_type=Debug -s compiler="Visual Studio" -s compiler.runtime=MDd
# Switch to Debug

# Ctrl + F5 (Debug -> Run without debugging)

> Hello World Debug!

> Hello World Debug!

> Hello World Debug!

Now you can close the IDE and clean the temporary files:

352 Chapter 17. Howtos



Conan Documentation, Release 1.60.2

# close VS IDE
$ git clean -xdf

Again, there is a conanfile. py package recipe in the repository, together with a test_package. The recipe is almost
identical to the above one, just with two minor differences:

requires = "hello/0.1@memsharded/testing"

generators = "visual_studio"

This will allow us to create and test the package of the ChatLib library:

$ conan create . memsharded/testing
> Hello World Release!
> Hello World Release!

You can also repeat the process for different build types and architectures.

17.3.4 Other configurations

The above example works as-is for VS2017, because VS supports upgrading from previous versions. The MSBuild ()
already implements such functionality, so building and testing packages with VS2017 can be done.

[$ conan create . demo/testing -s compiler="Visual Studio" -s compiler.version=15 J

If you have to build for older versions of Visual Studio, it is also possible. In that case, you would probably have
different solution projects inside your build folder. Then the recipe only has to select the correct one, something like:

def build(self):
# assuming HelloLibVS12, HelloLibVS14 subfolders
sln_file = "build/HelloLibVS%s/HelloLib.sln" % self.settings.compiler.version
msbuild = MSBuild(self)
msbuild.build(sln_file)

Finally, we used just one conanbuildinfo.props file, which the solution loaded at a global level. You could also
define multiple conanbuildinfo.props files, one per configuration (Release/Debug, x86/x86_64), and load them
accordingly.

Note: So far, the visual_studio generator is single-configuration (packages containing debug or release artifacts,
the generally recommended approach). It does not support multi-config packages (packages containing both debug and
release artifacts). Please report and provide feedback (submit an issue in github) to request this feature if necessary.

17.3. How to create and reuse packages based on Visual Studio 353



Conan Documentation, Release 1.60.2

17.4 Creating and reusing packages based on Makefiles

Conan can create packages and reuse them with Makefiles. The AutoToolsBuildEnvironment build helper helps
with most of the necessary tasks.

This how-to has been tested in Windows with MinGW and Linux with gcc. It uses static libraries but could be extended
to shared libraries too. The Makefiles surely can be improved. They are just an example.

17.4.1 Creating packages

Sources for this example can be found in our examples repository in the features/makefiles folder:

$ git clone https://github.com/conan-io/examples.git
$ cd examples/features/makefiles
$ cd hellolib

It contains a src folder with the source code and a conanfile.py file for creating a package.

Inside the src folder, there is Makefile to build the static library. This Makefile uses standard variables like $ (CPPFLAGS)
or $(CXX) to build it:

SRC = hello.cpp

OBJ = $(SRC:.cpp=.0)
OUT = libhello.a
INCLUDES = -I.

.SUFFIXES: .cpp
default: $(OUT)

.Cpp.o:
$(CXX) $(INCLUDES) $(CPPFLAGS) $(CXXFLAGS) -c $< -o $@

$(ouT): $(OBI)
ar rcs $(OUT) $(OBJ1)

The conanfile.py file uses the AutoToolsBuildEnvironment build helper. This helper defines the necessary envi-
ronment variables with information from dependencies, as well as other variables to match the current Conan settings
(like -m32 or -m64 based on the Conan arch setting)

from conans import ConanFile, AutoToolsBuildEnvironment
from conans import tools

class HelloConan(ConanFile):

name = "hello"

version = "0.1"

settings = "os", "compiler", "build_type", "arch"
generators = "cmake"

exports_sources = ''src/*"

def build(self):
with tools.chdir('src"):
atools = AutoToolsBuildEnvironment (self)

(continues on next page)

354 Chapter 17. Howtos



https://github.com/conan-io/examples

Conan Documentation, Release 1.60.2

(continued from previous page)

# atools.configure() # use it to run "./configure" if using autotools
atools.make()

def package(self):
self.copy("*.h", dst="include", src="src")
self.copy("*.1ib", dst="1ib", keep_path=False)
self.copy("*.a", dst="1ib", keep_path=False)

def package_info(self):
self.cpp_info.libs = ["hello"]

With this conanfile.py you can create the package:

$ conan create . user/testing -s compiler=gcc -s compiler.version=4.9 -s compiler.
—libcxx=1ibstdc++

17.4.2 Using packages

Now let’s move to the application folder:

[$ cd ../helloapp

There you can also see a src folder with a Makefile creating an executable:

SRC = app.cpp
0OBJ = $(SRC:.cpp=.0)
OUT = app

INCLUDES = -I.
.SUFFIXES: .cpp
default: $(OUT)

.Cpp.o:
$(CXX) $(CPPFLAGS) $(CXXFLAGS) -c $< -o $@

$(OUT): $(OBJ1)
$(CXX) -o $(COUT) $(OBJ) $(LDFLAGS) $(LIBS)

And also a conanfile.py very similar to the previous one. In this case adding a requires and a deploy () method:

from conans import ConanFile, AutoToolsBuildEnvironment
from conans import tools

class AppConan(ConanFile):

name = "app"

version = "0.1"

settings = "os", "compiler", "build_type", "arch"
exports_sources = "src/*"

requires = "hello/0.1@user/testing"

(continues on next page)

17.4. Creating and reusing packages based on Makefiles 355




Conan Documentation, Release 1.60.2

(continued from previous page)
def build(self):
with tools.chdir('src"):
atools = AutoToolsBuildEnvironment(self)
atools.make()

def package(self):
self.copy("*app", dst="bin", keep_path=False)
self.copy("*app.exe", dst="bin", keep_path=False)

def deploy(self):

self.copy("*", src="bin", dst="bin'")

Note that in this case, the AutoToolsBuildEnvironment will automatically set values to CPPFLAGS, LDFLAGS, LIBS,
etc. existing in the Makefile with the correct include directories, library names, etc. to properly build and link with the
hello library contained in the “hello” package.

As above, we can create the package with:

$ conan create . user/testing -s compiler=gcc -s compiler.version=4.9 -s compiler.
—libcxx=1libstdc++

There are different ways to run executables contained in packages, like using virtualrunenv generators. In this case,
since the package has a deploy () method, we can use it:

$ conan install app/0.lGuser/testing -s compiler=gcc -s compiler.version=4.9 -s compiler.
—libcxx=libstdc++

$ ./bin/app

$ Hello World Release!

17.5 How to manage the GCC >=5 ABI

In version 5.1, GCC released libstdc++, which introduced a new library ABI that includes new implementations of
std::string and std::1ist. These changes were necessary to conform to the 2011 C++ standard which forbids
Copy-On-Write strings and requires lists to keep track of their size.

You can choose which ABI to use in your Conan packages by adjusting the compiler.libcxx:
* libstdc++: Old ABIL
* libstdc++11: New ABI.

When Conan creates the default profile the first time it runs, it adjusts the compiler.libcxx setting to libstdc++
for backwards compatibility. However, if you are using GCC >= 5 your compiler is likely to be using the new CXX11
ABI by default (libstdc++11). This can be checked with the following command:

$ gcc -v 2>&1 | sed -n 's/.*\(--with-default-libstdcxx-abi=new\).*/\1/p"
--with-default-libstdcxx-abi=new

If you want Conan to use the new ABI, edit the default profile at ~/ . conan/profiles/default adjusting compiler.
libcxx=1ibstdc++11 or override this setting in the profile you are using.

If you are using the CMake build helper or the AutotoolsBuildEnvironment build helper Conan will automatically
adjust the _GLIBCXX_USE_CXX11_ABI flag to manage the ABL

356 Chapter 17. Howtos



https://gcc.gnu.org/onlinedocs/libstdc++/manual/using_dual_abi.html

Conan Documentation, Release 1.60.2

17.6 Using Visual Studio 2017 - CMake integration

Visual Studio 2017 comes with a CMake integration that allows one to just open a folder that contains a CMakeLists. txt
and Visual will use it to define the project build.

Conan can also be used in this setup to install dependencies. Let's say that we are going to build an application that

depends on an existing Conan package called hello/0.1l@user/testing. For the purpose of this example, you can
quickly create this package by typing in your terminal:

$ conan new hello/0.1 -s

$ conan create . user/testing # Default conan profile is Release
$ conan create . user/testing -s build_type=Debug

The project we want to develop will be a simple application with these 3 files in the same folder:

Listing 2: example.cpp

#include <iostream>
#include "hello.h"

int main(Q) {
hello();
std::cin.ignore();

Listing 3: conanfile.txt

[requires]
hello/0.1l@user/testing

[generators]
cmake

Listing 4: CMakeLists.txt

project(Example CXX)
cmake_minimum_required(VERSION 2.8.12)

include (${CMAKE_BINARY_DIR}/conanbuildinfo.cmake)
conan_basic_setup()

add_executable(example example.cpp)
target_link_libraries(example ${CONAN_LIBS})

If we open Visual Studio 2017 (with CMake support installed), and select “Open Folder” from the menu, and select
the above folder, we will see something like the following error:

1> Command line: C:\PROGRAM FILES (X86)\MICROSOFT VISUAL STUDIO\2017\COMMUNITY\COMMON7\
— IDE\COMMONEXTENSIONS\MICROSOFT\CMAKE\CMake\bin\cmake.exe -G "Ninja" -DCMAKE_INSTALL_
—PREFIX:PATH="C:\Users\user\CMakeBuilds\df6639d2-3ef2-bc32-abb3-2cdlbdb3clab\install\
—»x64-Debug" -DCMAKE_CXX_COMPILER="C:/Program Files (x86)/Microsoft Visual Studio/2017/
—Community/VC/Tools/MSVC/14.12.25827/bin/HostX64/x64/cl.exe" -DCMAKE_C_COMPILER="C:/
—Program Files (x86)/Microsoft Visual Studio/2017/Community/VC/Tools/MSVC/14.12.25827/
—bin/HostX64/x64/cl.exe" -DCMAKE_BUILD_TYPE="Debug" -DCMAKE_MAKE_PROGRAM="C:\PROGRAM,

(continues on next page)

17.6. Using Visual Studio 2017 - CMake integration 357



Conan Documentation, Release 1.60.2

(continued from previous page)

—FILES (X86)\MICROSOFT VISUAL STUDIO\2017\COMMUNITY\COMMON7\IDE\COMMONEXTENSIONS\
—MICROSOFT\CMAKE\Ninja\ninja.exe" "C:\Users\user\conanws\visual-cmake"

1> Working directory: C:\Users\user\CMakeBuilds\df6639d2-3ef2-bc32-abb3-2cdlbdb3clab\
—build\x64-Debug

1> -- The CXX compiler identification is MSVC 19.12.25831.0

1> -- Check for working CXX compiler: C:/Program Files (x86)/Microsoft Visual Studio/
2017 /Community/VC/Tools/MSVC/14.12.25827/bin/HostX64/x64/cl.exe

1> -- Check for working CXX compiler: C:/Program Files (x86)/Microsoft Visual Studio/
2017 /Community/VC/Tools/MSVC/14.12.25827/bin/HostX64/x64/cl.exe -- works

1> -- Detecting CXX compiler ABI info

1> -- Detecting CXX compiler ABI info - done

1> -- Detecting CXX compile features

1> -- Detecting CXX compile features - done

1> CMake Error at CMakeLists.txt:4 (include):

1> include could not find load file:

1>

1> C:/Users/user/CMakeBuilds/df6639d2-3ef2-bc32-abb3-2cdlbdb3clab/build/x64-Debug/
—~conanbuildinfo.cmake

As expected, our CMakeLists.txt is using an include (${CMAKE_BINARY_DIR}/conanbuildinfo.cmake), and that
file doesn’t exist yet, because Conan has not yet installed the dependencies of this project. Visual Studio 2017 uses
different build folders for each configuration. In this case, the default configuration at startup is x64-Debug. This
means that we need to install the dependencies that match this configuration. Assuming that our default profile is using
Visual Studio 2017 for x64 (it should typically be the default one created by Conan if VS2017 is present), then all we
need to specify is the -s build_type=Debug setting:

$ conan install . -s build_type=Debug -if=C:\Users\user\CMakeBuilds\df6639d2-3ef2-bc32-
—~abb3-2cd1lbdb3clab\build\x64-Debug

Now, you should be able to regenerate the CMake project from the IDE, Menu->CMake, build it, select the “example”
executable to run, and run it.

Now, let’s say that you want to build the Release application. You switch configuration from the IDE, and then the
above error happens again. The dependencies for Release mode need to be installed too:

$ conan install . -if=C:\Users\user\CMakeBuilds\df6639d2-3ef2-bc32-abb3-2cdlbdb3clab\
—build\x64-Release

The process can be extended to x86 (passing -s arch=x86 in the command line), or to other configurations. For
production usage, Conan profiles are highly recommended.

17.6.1 Using cmake-conan

The cmake-conan project in https:/github.com/conan-io/cmake-conan is a CMake script that runs an
execute_process that automatically launches conan install to install dependencies. The settings passed
in the command line will be derived from the current CMake configuration, that will match the Visual Studio one.
This script can be used to further automate the installation task:

project(Example CXX)
cmake_minimum_required(VERSION 2.8.12)

# Download automatically, you can also just copy the conan.cmake file
(continues on next page)

358 Chapter 17. Howtos


https://github.com/conan-io/cmake-conan

Conan Documentation, Release 1.60.2

(continued from previous page)

if(NOT EXISTS "${CMAKE_BINARY_DIR}/conan.cmake")
message (STATUS "Downloading conan.cmake from https://github.com/conan-io/cmake-conan")
file(DOWNLOAD "https://raw.githubusercontent.com/conan-io/cmake-conan/v®.9/conan.
—cmake"
"${CMAKE_BINARY_DIR}/conan.cmake")
endif()

include (${CMAKE_BINARY_DIR}/conan.cmake)

conan_cmake_run(CONANFILE conanfile.txt
BASIC_SETUP)

add_executable(example example.cpp)
target_link_libraries(example ${CONAN_LIBS})

This code will manage to download the cmake-conan CMake script, and use it automatically, calling a conan install
automatically.

There could be an issue, though, for the Release configuration. Internally, the Visual Studio 2017 defines the
configurationType AsRelWithDebInfo for Release builds. But Conan default settings (in the Conan settings.yml
file), only have Debug and Release defined. It is possible to modify the settings.yml file, and add those extra build
types. Then you should create the hello package for those settings. And most existing packages, specially in central
repositories, are built only for Debug and Release modes.

An easier approach is to change the CMake configuration in Visual: go to the Menu -> CMake -> Change CMake
Configuration. That should open the CMakeSettings.json file, and there you can change the configurationType to
Release:

{
"name": "x64-Release",
"generator": "Ninja",
"configurationType": "Release",
"inheritEnvironments": [ "msvc_x64_x64" ],
"buildRoot": "${env.USERPROFILE}\\CMakeBuilds\\${workspaceHash}\\build\\${name}",
"installRoot": "${env.USERPROFILE}\\CMakeBuilds\\${workspaceHash}\\install\\${name}
"cmakeCommandArgs": "",
"buildCommandArgs": "-v",
"ctestCommandArgs":

Note that the above CMake code is only valid for consuming existing packages. If you are also creating a package, you
would need to make sure the right CMake code is executed, please check https://github.com/conan-io/cmake-conan/
blob/master/README.md

17.6. Using Visual Studio 2017 - CMake integration 359



https://github.com/conan-io/cmake-conan/blob/master/README.md
https://github.com/conan-io/cmake-conan/blob/master/README.md

Conan Documentation, Release 1.60.2

17.6.2 Using tasks with tasks.vs.json
Another alternative is using file tasks feature of Visual Studio 2017. This way you can install dependencies by running
conan install as task directly in the IDE.

All you need is to right click on your conanfile.py -> Configure Tasks (see the link above) and add the following to your
tasks.vs.json.

Warning: The file fasks.vs.json is added to your local .vs folder so it is not supposed to be added to your version
control system.

{
"tasks": [
{
"taskName": "conan install debug",
"appliesTo": "conanfile.py",

"type": "launch",
"command": "${env.COMSPEC}",
"args": [
"conan install ${file} -s build_type=Debug -if C:/Users/user/CMakeBuilds/
—4c2d87b9-ec5a-9a30-a47a-32ccbbeccal72/build/x64-Debug/"

]

b

{

"taskName": "conan install release",
"appliesTo": "conanfile.py",

"type": "launch",
"command": "${env.COMSPEC}",
"args": [
"conan install ${file} -s build_type=Release -if C:/Users/user/CMakeBuilds/
—4c2d87b9-ec5a-9a30-a47a-32ccbbecal72/build/x64-Release/"
]
}
1,
"version": "0.2.1"

}

Then just right click on your conanfile.py and launch your conan install and regenerate your CMakeLists.txt.

17.7 Working with Intel compilers

17.7.1 intel

Note: This compiler is aimed to manage legacy Intel Parallel Studio XE compiler versions. For new Intel oneAPI,
check the information about the intel-cc compiler below.

The Intel compiler is a particular case, as it uses Visual Studio compiler in Windows environments and gcc in
Linux environments. If you are wondering how to manage the compatibility between the packages generated with

360 Chapter 17. Howtos



https://docs.microsoft.com/en-us/visualstudio/ide/customize-build-and-debug-tasks-in-visual-studio?view=vs-2017
https://docs.microsoft.com/en-us/visualstudio/ide/customize-build-and-debug-tasks-in-visual-studio?view=vs-2017

Conan Documentation, Release 1.60.2

intel and the generated with the pure base compiler (gcc or Visual Studio) check the Compatible Packages and
Compatible Compilers sections.

17.7.2 intel-cc

Warning: The support for this compiler is experimental and subject to breaking changes.

Available since: 1.41.0

This new compiler is defined to manage the different Intel oneAPI DPC++/C++ and Classic ones.

Warning: macOS is not supported for the Intel oneAPI DPC++/C++ (icx/icpx or dpcpp) compilers. For macOS
or Xcode support, you’ll have to use the Intel C++ Classic Compiler.

It can be declared into your local profile like any other compiler as follows:

Listing 5: intelprofile

[settings]

compiler=intel-cc
compiler.mode=dpcpp
compiler.version=2021.3
compiler.libcxx=1libstdc++
build_type=Release
[options]

[tool_requires]
[env]

CC=dpcpp
CXX=dpcpp

[conf]
tools.intel:installation_path=/opt/intel/oneapi

Important: Remember to put this [conf] entry to find out the root path of your Intel oneAPI folder. Normally, it’ll
be installed by default in either /opt/intel/oneapi (Linux and macOS) or C:\Program Files (x86)\Intel\
oneAPI (Windows).

We’re specifying the CC and CXX compilers and the compiler.mode subsetting. The possible values for compiler.
mode are:

* icx for Intel oneAPI C++ (icx/icpx compilers).
* dpcpp for Intel oneAPI DPC++ (dpcpp compiler and dpcpp-cl for Windows only).
e classic for Intel C++ Classic (icc for Linux and icl for Windows).

To set up the compiler without Conan you need to run an Intel official script to set all the proper variables to use those
compilers called setvars.sh|bat script.

17.7. Working with Intel compilers 361


https://github.com/conan-io/conan/releases
https://software.intel.com/content/www/us/en/develop/documentation/oneapi-dpcpp-cpp-compiler-dev-guide-and-reference/top.html
https://software.intel.com/content/www/us/en/develop/documentation/cpp-compiler-developer-guide-and-reference/top.html

Conan Documentation, Release 1.60.2

If you are using either the CMakeToolChain or the MSBuildToolchain, when using the intel-cc compiler, Conan
automatically calls the setvars script. Otherwise, you can use the Intel/CC generator.

This is an example of a Conan package called hello/1.0 using the CMakeToolchain. Remember you can use the
command conan new hello/1.0 -m cmake_lib to create a simple project like this one:

Listing 6: conanfile.py

from conans import ConanFile
from conan.tools.cmake import CMakeToolchain

class HelloConan(ConanFile):
name = "hello"
version = "1.0"

# more code here...
def generate(self):

= (CMakeToolchain(self)
tc.generate()

Running conan create . -pr intelprofile -pr:b intelprofile, you’ll see something like this output:

Listing 7: output

hello/1.0: Generating the package
hello/1.0: Package folder /home/franchuti/.conan/data/hello/1.0/_/_/package/
—»7d9c7d5fa3c48c9705¢c2cb864656c00fa8672524
hello/1.0: Calling package()
hello/1.0: CMake command: cmake --build '/home/franchuti/.conan/data/hello/1.0/_/_/build/
H7d9c7d5fa3c48c97®5c2cb864656c®®fa8672524/cmake build-release' '--target' 'install'
: initializing oneAPI environment ...
dash: SH_VERSION = unknown
:: advisor -- latest
i ccl -- latest
: clck -- latest
:: compiler -- latest
:: dal -- latest
:: debugger -- latest
:: dev-utilities -- latest
:: dnnl -- latest
:: dpcpp-ct -- latest
:: dpl -- latest
:: inspector -- latest
: intelpython -- latest
:: ipp -- latest
:: ippcp -- latest
;1 ipp -- latest

;1 itac -- latest
:: mkl -- latest
:: mpi -- latest

:: tbhb -- latest
i vpl -- latest

(continues on next page)

362 Chapter 17. Howtos




Conan Documentation, Release 1.60.2

(continued from previous page)

;1 vtune -- latest

:: oneAPI environment initialized ::

Using Conan toolchain through /home/franchuti/.conan/data/hello/1.0/_/_/build/
—7d9c7d5fa3c48c9705¢c2cb864656c00£fa8672524/cmake-build-release/conan/conan_toolchain.
—,cmake.

-- Conan toolchain: Setting CMAKE_POSITION_INDEPENDENT_CODE=ON (options.fPIC)

-- Conan toolchain: Setting BUILD_SHARED_LIBS= OFF

-- The CXX compiler identification is Clang 13.0.0

-- Check for working CXX compiler: /opt/intel/oneapi/compiler/2021.3.0/linux/bin/dpcpp
Using Conan toolchain through .

-- Check for working CXX compiler: /opt/intel/oneapi/compiler/2021.3.0/linux/bin/dpcpp --
- works

-- Detecting CXX compiler ABI info

Using Conan toolchain through .

-- Detecting CXX compiler ABI info - done

-- Detecting CXX compile features

-- Detecting CXX compile features - done

-- Configuring done

-- Generating done

As you can observe, you have used one of these Intel compilers, the DPC++ one and successfully generated the
libhello.a file.

intel-cc and Microsoft Visual Studio

Note: Ensure you have installed the Intel plugins for Microsoft Visual Studio before reading this section.

If you’re working on a Microsoft Visual Studio project, you can add the Intel Toolset as a new .props file. Let’s suppose
you have defined these files into your current project folder:

Listing 8: intelprofile

[settings]

os=Windows
os_build=Windows
arch=x86_64
arch_build=x86_64
compiler=intel-cc
compiler.mode=classic
compiler.version=2021.3
compiler.runtime=dynamic
build_type=Release
[options]
[tool_requires]

[env]

[conf]
tools.intel:installation_path="C:\Program Files (x86)\Intel\oneAPI"

17.7. Working with Intel compilers 363



Conan Documentation, Release 1.60.2

Listing 9: conanfile.py

from conans import ConanFile
from conan.tools.microsoft import MSBuildToolchain

class App(ConanFile):

settings = "os", "arch", "compiler", "build_type"

def generate(self):
tc = MSBuildToolchain(self)
tc.generate()

Running a conan install . -pr intelprofile, a file conantoolchain_release_x64.props is generated in your
current folder:

Listing 10: conantoolchain_release_x64.props

<?xml version="1.0" encoding="utf-8"7?>
<Project xmlns="http://schemas.microsoft.com/developer/msbuild/2003">
<ItemDefinitionGroup>
<ClCompile>
<PreprocessorDefinitions>
;%(PreprocessorDefinitions)
</PreprocessorDefinitions>
<RuntimeLibrary>MultiThreadedDLL</RuntimeLibrary>
<LanguageStandard></LanguageStandard>
</ClCompile>
</ItemDefinitionGroup>
<PropertyGroup Label="Configuration">
<PlatformToolset>Intel C++ Compiler 19.2</PlatformToolset>
</PropertyGroup>
</Project>

Note that a PlatformToolset is set to Intel C++ Compiler 19.2. You can import that file to your project or
solution of Visual Studio. Read more about the MSBuildToolchain here.

Note: See the complete IntelCC reference for more information about that tool.

17.8 How to manage C++ standard

Caution: We are actively working to finalize the Conan 2.0 Release. Some of the information on this page
references deprecated features which will not be carried forward with the new release. It’s important to check the
Migration Guidelines to ensure you are using the most up to date features.

Tip: We encourage you to adopt the new subsetting and update your recipes if they were including the deprecated one
in its settings attribute.

364 Chapter 17. Howtos




Conan Documentation, Release 1.60.2

The setting representing the C++ standard is compiler.cppstd. The detected default profile doesn’t set any value for
the compiler.cppstd setting,

The consumer can specify it in a profile or with the -s parameter:

[conan install . -s compiler.cppstd=gnul4d

As it is a subsetting, it can have different values for each compiler (also, take into account that depending on the version
of the compiler the standard could have only partial support and may change the ABI).

Valid values for compiler=Visual Studio:

VALUE DESCRIPTION

14 C++ 14
17 C++ 17
20 C++ 20 (Still C++20 Working Draft)

Valid values for other compilers:

VALUE DESCRIPTION

98 C++ 98

gnu98 C++ 98 with GNU extensions
11 C++ 11

gnull C++ 11 with GNU extensions
14 C++ 14

gnul4 C++ 14 with GNU extensions
17 C++ 17

gnul7 C++ 17 with GNU extensions
20 C++ 20 (Partial support)

gnu20 C++ 20 with GNU extensions (Partial support)

17.8.1 Build helpers

The value of compiler.cppstd provided by the consumer is used by the build helpers:

e The CMake build helper will set the CONAN_CMAKE_CXX_STANDARD and CONAN_CMAKE_CXX_EXTENSIONS def-
initions that will be converted to the corresponding CMake variables to activate the standard automatically with
the conan_basic_setup() macro.

» The AutotoolsBuildEnvironment build helper will adjust the needed flag to CXXFLAGS automatically.

e The MSBuild/VisualStudioBuildEnvironment build helper will adjust the needed flag to CL env var automatically.

17.8. How to manage C++ standard 365



Conan Documentation, Release 1.60.2

17.8.2 Package compatibility

By default Conan will detect the default standard of your compiler to not generate different binary packages. For
example, you already built some gcc 6.1 packages, where the default C++ standard is gnul4. If you introduce the
compiler.cppstd setting in your profile with the gnu14 value, Conan won’t generate new packages, because it was
already the default of your compiler.

Note: Check the package_id() reference to know more.

Note: Conan 1.x will also generate the same packages as the ones generated with the deprecated setting cppstd for
the default value of the standard.

17.8.3 Required version
When the package to be built requires a minimal C++ standard support (e.g. 17), it can be done by comparing the

cppstd. For such condition, there is the helper check_min_cppstd.

17.9 How to use Docker to create C and C++ Conan packages

With Docker, you can run different virtual Linux operating systems in a Linux, Mac OSX or Windows machine. It is
useful to reproduce build environments, for example to automate CI processes. You can have different images with
different compilers or toolchains and run containers every time is needed.

In this section you will find a list of pre-built images with common build tools and compilers as well as Conan installed.

17.9.1 Using Conan inside a container

[$ docker run -it --rm --name conangccll conanio/gccll-ubuntul6.04 /bin/bash

Note: Use sudo when needed to run docker.

The previous code will run a shell in container. We have specified:

e -it: Keep STDIN open and allocate a pseudo-tty, in other words, we want to type in the container because we
are opening a bash.

e —-rm: Once the container exits, remove the container. Helps to keep clean or hard drive.
e --name conangccll’: The Docker container name

* conanio/gccll-ubuntul6.0®4: Image name, check the available Docker images.

¢ /bin/bash: The command to run

Now we are running on the conangcc11 container we can use Conan normally. In the following example we are creating
a package from the recipe by cloning the repository, for OpenSSL. It is always recommended to upgrade Conan from
pip first:

366 Chapter 17. Howtos



Conan Documentation, Release 1.60.2

$ pip install conan --upgrade # We make sure we are running the latest Conan version
$ git clone https://github.com/conan-io/conan-center-index

$ cd conan-center-index/recipes/openssl/1.x.x

$ conan create . 1.1.1n@

17.9.2 Sharing a local folder with a Docker container

You can share a local folder with your container, for example a project:

$ git clone https://github.com/conan-io/conan-center-index
$ cd conan-center-index/recipes/openssl/1.x.x
$ docker run -it -v$(pwd):/home/conan/project --rm conanio/gccll-ubuntul6.04 /bin/bash

* v§(pwd) : /home/conan/project: We are mapping the current directory (conan-openssl) to the container /
home/conan/project directory, so anything we change in this shared folder, will be reflected in our host ma-
chine.

Now we are running on the conangccll container

pip install conan --upgrade # We make sure we are running the latest Conan version
cd project

conan create . user/channel --build missing

conan remote add myremote http://some.remote.url

conan upload "*" -r myremote --all

Y R I

17.9.3 Available Docker images

We provide a set of images with the most common compilers installed that can be used to generate Conan packages for
different profiles. Their dockerfiles can be found in the Conan Docker Tools repository.

Warning: The images listed below are intended for generating open-source library packages and we cannot guar-
antee any kind of stability. We strongly recommend using your own generated images for production environments
taking these dockerfiles as a reference.

GCC images

Version Target Arch
conanio/gcc5-ubuntul6.04 (GCC 5) x86_64
conanio/gcc6-ubuntul6.04 (GCC 6) x86_64
conanio/gcc7-ubuntul6.04 (GCC 7) x86_64
conanio/gcc8-ubuntul6.04 (GCC 8) x86_64
conanio/gcc9-ubuntul6.04 (GCC 9) x86_64
conanio/gcc10-ubuntul6.04 (GCC 10) x86_64
conanio/gccl1-ubuntul6.04 (GCC 11) x86_64

Clang images

17.9. How to use Docker to create C and C++ Conan packages 367



https://github.com/conan-io/conan-docker-tools
https://hub.docker.com/r/conanio/gcc5-ubuntu16.04/
https://hub.docker.com/r/conanio/gcc6-ubuntu16.04/
https://hub.docker.com/r/conanio/gcc7-ubuntu16.04/
https://hub.docker.com/r/conanio/gcc8-ubuntu16.04/
https://hub.docker.com/r/conanio/gcc9-ubuntu16.04/
https://hub.docker.com/r/conanio/gcc10-ubuntu16.04/
https://hub.docker.com/r/conanio/gcc11-ubuntu16.04/

Conan Documentation, Release 1.60.2

Version Target Arch
conanio/clang10-ubuntul16.04 (Clang 10) x86_64
conanio/clangl 1-ubuntul6.04 (Clang 11) x86_64
conanio/clang12-ubuntul6.04 (Clang 12) x86_64
conanio/clang13-ubuntul6.04 (Clang 13) x86_64
conanio/clang14-ubuntul6.04 (Clang 14) x86_64

17.10 How to reuse Python code in recipes

Warning: To reuse Python code, from Conan 1.7 there is a new python_requires() feature. See: Python
requires: reusing Python code in recipes This “how to” might be deprecated and removed in the future. It is left
here for reference only.

First, if you feel that you are repeating a lot of Python code, and that repeated code could be useful for other Conan
users, please propose it in a github issue.

There are several ways to handle Python code reuse in package recipes:
* To put common code in files, as explained below. This code has to be exported into the recipe itself.
* To create a Conan package with the common Python code, and then require it from the recipe.

This howto explains the latter.

17.10.1 A basic Python package

Let’s begin with a simple Python package, a “hello world” functionality that we want to package and reuse:

def hello(Q):
print("Hello World from Python!")

To create a package, all we need to do is create the following layout:

-| hello.py
| __init__.py
| conanfile.py

The __init__.py is blank. It is not necessary to compile code, so the package recipe conanfile.py is quite simple:

from conans import ConanFile

class HelloPythonConan(ConanFile):
name = "hello_py"

version = "0.1"
exports = '*'
build_policy = "missing"

def package(self):
self.copy('*.py")

(continues on next page)

368 Chapter 17. Howtos



https://hub.docker.com/r/conanio/clang10-ubuntu16.04/
https://hub.docker.com/r/conanio/clang11-ubuntu16.04/
https://hub.docker.com/r/conanio/clang12-ubuntu16.04/
https://hub.docker.com/r/conanio/clang13-ubuntu16.04/
https://hub.docker.com/r/conanio/clang14-ubuntu16.04/

Conan Documentation, Release 1.60.2

(continued from previous page)

def package_info(self):
self.env_info.PYTHONPATH. append(self.package_folder)

The exports will copy both the hello.py and the __init__.py into the recipe. The package() method is also
obvious: to construct the package just copy the Python sources.

The package_info() adds the current package folder to the PYTHONPATH Conan environment variable. It will not
affect the real environment variable unless the end user desires it.

It can be seen that this recipe would be practically the same for most Python packages, so it could be factored in a
PythonConanFile base class to further simplify it. (Open a feature request, or better a pull request. :) )

With this recipe, all we have to do is:

[$ conan export . memsharded/testing ]

Of course if you want to share the package with your team, you can conan upload it to a remote server. But to create
and test the package, we can do everything locally.

Now the package is ready for consumption. In another folder, we can create a conanfile.txt (or a conanfile.py if we
prefer):

[requires]
hello_py/0. l@memsharded/testing

And install it with the following command:

[$ conan install . -g virtualenv }

Creating the above conanfile.txt might be unnecessary for this simple example, as you can directly run conan
install hello_py/0.1l@memsharded/testing -g virtualenv, however, using the file is the canonical way.

The specified virtualenv generator will create an activate script (in Windows activate.bat), that basically contains
the environment, in this case, the PYTHONPATH. Once we activate it, we are able to find the package in the path and use
it:

$ activate

$ python

Python 3.6.1 (3.6.1:d33e0cf91556, Jun 27 2016, 15:19:22) [MSC v.1500 32 bit (Intel)] on.
—win32

>>> import hello

>>> hello.hello()

Hello World from Python!
>>>

The above shows an interactive session, but you can import also the functionality in a regular Python script.

17.10. How to reuse Python code in recipes 369



Conan Documentation, Release 1.60.2

17.10.2 Reusing Python code in your recipes

Requiring a Python Conan package

As the Conan recipes are Python code itself, it is easy to reuse Python packages in them. A basic recipe using the
created package would be:

from conans import ConanFile

class HelloPythonReuseConan(ConanFile):
requires = "hello_py/0.1l@memsharded/testing"

def build(self):
from hello import hello
hello(Q)

The requires section is just referencing the previously created package. The functionality of that package can be used
in several methods of the recipe: source(), build(), package () and package_info(),i.e. all of the methods used
for creating the package itself. Note that in other places it is not possible, as it would require the dependencies of the
recipe to be already retrieved, and such dependencies cannot be retrieved until the basic evaluation of the recipe has
been executed.

$ conan install .

$ conan build .
Hello World from Python!

Sharing a Python module

Another approach is sharing a Python module and exporting within the recipe.

Let’s write for example a msgs . py file and put it besides the conanfile.py:

def build_msg(output):
output.info("Building!")

And then the main conanfile.py would be:

from conans import ConanFile
from msgs import build_msg

class ConanFileToolsTest(ConanFile):

name = "test"
version = "1.9"
exports = "msgs.py" # Important to remember!

def build(self):
build_msg(self.output)

It is important to note that such msgs.py file must be exported too when exporting the package, because package
recipes must be self-contained.

The code reuse can also be done in the form of a base class, something like a file base_conan. py

370 Chapter 17. Howtos




Conan Documentation, Release 1.60.2

from conans import ConanFile

class ConanBase(ConanFile):
# common code here

And then:

from conans import ConanFile
from base_conan import ConanBase

class ConanFileToolsTest(ConanBase):

name = "test"
version = "1.9"
exports = "base_conan.py"

17.11 How to create and share a custom generator with generator
packages

Warning: This is a deprecated feature. Please refer to the Migration Guidelines to find the feature that replaced
this one.

There are several built-in generators, like cmake, visual_studio, xcode... But what if your build system is not
included or the existing built-in ones doesn’t satisfy your needs? This how to will show you how to create a generator
for Premake build system.

Important: Check the reference of the custom_generator section to know the syntax and attributes available.

17.11.1 Creating a Premake generator

Create a folder with a new conanfile.py with the following contents:

[$ mkdir conan-premake && cd conan-premake

Listing 11: conanfile.py

from conans.model import Generator
from conans import ConanFile

class PremakeDeps(object):
def __init__(self, deps_cpp_info):

self.include_paths = ",\n".join("'"%s""' % p.replace("\\", "/™)
for p in deps_cpp_info.include_paths)
self.lib_paths = ",\n".join('"%s""' % p.replace("\\", "/")
for p in deps_cpp_info.lib_paths)

self.bin_paths ",\n".join('"%s"" % p.replace("\\", "/™)

(continues on next page)

17.11. How to create and share a custom generator with generator packages 371



https://premake.github.io/

Conan Documentation, Release 1.60.2

(continued from previous page)

for p in deps_cpp_info.bin_paths)

self.libs = ", ".join('"%s""' % p for p in deps_cpp_info.libs)

self.defines = ", ".join('"%s"' % p for p in deps_cpp_info.defines)

self.cppflags = ", ".join('"%s"' % p for p in deps_cpp_info.cppflags)

self.cflags = ", ".join('"%s""' % p for p in deps_cpp_info.cflags)

self.sharedlinkflags = ", ".join('"%s"' % p for p in deps_cpp_info.
-.sharedlinkflags)

self.exelinkflags = ", ".join('"%s"' % p for p in deps_cpp_info.exelinkflags)

self.rootpath = "%s" % deps_cpp_info.rootpath.replace("\\", "/™)

class premake(Generator):

@property
def filename(self):
return "conanpremake.lua"

@property
def content(self):
deps = PremakeDeps(self.deps_build_info)

template = ('conan_includedirs{dep} = {{{deps.include_paths}}}\n'
'conan_libdirs{dep} = {{{deps.lib_paths}}}\n'
'conan_bindirs{dep} = {{{deps.bin_paths}}}\n'
'conan_libs{dep} = {{{deps.libs}}}\n'
'conan_cppdefines{dep} = {{{deps.defines}}}\n'
'conan_cppflags{dep} = {{{deps.cppflags}}}\n'
'conan_cflags{dep} = {{{deps.cflags}}}\n'
'conan_sharedlinkflags{dep} = {{{deps.sharedlinkflags}}}\n'
'conan_exelinkflags{dep} = {{{deps.exelinkflags}}}\n')

sections = ["#!1lua"]

all_flags = template.format(dep=
sections.append(all_flags)
template_deps = template + 'conan_rootpath{dep} = "{deps.rootpath}"\n'

, deps=deps)

for dep_name, dep_cpp_info in self.deps_build_info.dependencies:
deps = PremakeDeps(dep_cpp_info)

dep_name = dep_name.replace("-", "_")

dep_flags = template_deps.format(dep="_" + dep_name, deps=deps)
sections.append(dep_flags)

return "\n".join(sections)

class MyPremakeGeneratorPackage(ConanFile):
name = "premakegen"
version = "0.1"
url = "https://github.com/memsharded/conan-premake"
license = "MIT"

This is a full working example. Note the PremakeDeps class as a helper. The generator is creating Premake information

372 Chapter 17. Howtos




Conan Documentation, Release 1.60.2

for each individual library separately, then also an aggregated information for all dependencies. This PremakeDeps
wraps a single item of such information.

Note the name of the package will be premakegen/0.1 @ <user>/<channel> as that is the name given to it, while the
generator name is premake (the name of the class that inherits from Generator). You can give the package any name
you want, even the same as the generator’s name if desired.

You export the package recipe to the local cache, so it can be used by other projects as usual:

[$ conan export . myuser/testing }

17.11.2 Using the generator

Let’s create a test project that uses this generator. We will use a simple application that will use a “Hello World” library
package as a requirement.

First, let’s create the “Hello World” library package:

$ mkdir conan-hello && cd conan-hello
$ conan new hello/0.1
$ conan create . myuser/testing

Now, let’s create a folder for the application that will use Premake as build system:

$ cd ..
$ mkdir premake-project && cd premake-project

Put the following files inside. Note the premakegen@0. 1@myuser/testing package reference in your conanfile.txt.

Listing 12: conanfile.txt

[requires]
hello/0. 1@Gmyuser/testing
premakegen@0. 1@myuser/testing

[generators]
premake

Listing 13: main.cpp

#include "hello.h"

int main (void) {
hello();
}

Listing 14: premake4.lua

-- premake4.lua
require 'conanpremake'’

-- A solution contains projects, and defines the available configurations solution
— "MyApplication"

(continues on next page)

17.11. How to create and share a custom generator with generator packages 373




Conan Documentation, Release 1.60.2

(continued from previous page)

configurations { "Debug", "Release" }
includedirs { conan_includedirs }
libdirs { conan_libdirs }

links { conan_libs }

-- A project defines one build target

project "MyApplication"
kind "ConsoleApp"
language "C++"
files { "**.h", "**.cpp" }

configuration "Debug"
defines { "DEBUG" }
flags { "Symbols" }

configuration "Release"
defines { "NDEBUG" }
flags { "Optimize" }

Let’s install the requirements:

$ conan install . -s compiler=gcc -s compiler.version=4.9 -s compiler.libcxx=libstdc++ --
—build

This generates the premake4.lua file with the requirements information for building.

Now we are ready to build the project:

$ premake4 gmake

$ make (or mingw32-make if in windows-mingw)
$ ./MyApplication

Hello World Release!

Now everything works, so you might want to share your generator:

[$ conan upload premakegen/0.l@myuser/testing }

Tip: This is a regular Conan package, so you could create a test_package folder with a conanfile.py to test the generator
as done in the example above (invoke the Premake build in the build () method).

374 Chapter 17. Howtos




Conan Documentation, Release 1.60.2

17.11.3 Using template files for custom generators

If your generator has a lot of common, non-parameterized text, you might want to use files that contain the template.
It is possible to do this as long as the template file is exported in the recipe. The following example uses a simple text
file, but you could use other templating formats:

import os
from conans import ConanFile, load
from conans.model import Generator

class MyCustomGenerator (Generator):

@property
def filename(self):
return "customfile.gen"

@property

def content(self):
template = load(os.path.join(os.path.dirname(__file ), "mytemplate.txt"))
return template % "Hello"

class MyCustomGeneratorPackage(ConanFile):

name = "custom_generator"
version = "0.1"
exports = "mytemplate.txt"

17.11.4 Storing generators in the Conan local cache

Warning: This is a deprecated feature. Please refer to the Migration Guidelines to find the feature that replaced
this one.

In addition to distributing them using Conan packages, custom generators can be stored in the generators folder in the
Conan local cache (by default ~/.conan/generators).

Generators stored in the local cache can be used in the same ways as the built-in generators, i.e. they can be referenced
on the command line with conan install when using the --generator option, and do not require installing a
package to use. Instead, these generators can be distributed using conan config install.

Listing 15: A custom generator which saves all environment variables
defined in a package to a json file

import json
from conans.model import Generator

# The generator name will be the literal class name (not the filename)
class custom_generator(Generator):
@property
def filename(self):
return "custom_generator_output.json"
(continues on next page)

17.11. How to create and share a custom generator with generator packages 375




Conan Documentation, Release 1.60.2

(continued from previous page)

@property
def content(self):
return json.dumps(self.deps_env_info.vars)

Listing 16: Using the custom generator at install time

[$ conan install <path_or_reference> --generator custom_generator ]

Note: Generators loaded from the local cache do not need to be accompanied by a recipe class. Additionally, more
than one generator can be loaded from the same python module when loaded from the local cache.

17.12 How to manage shared libraries

Shared libraries, .DLL in windows, .dylib in OSX and .so in Linux, are loaded at runtime. That means that the appli-
cation executable needs to know where are the required shared libraries when it runs.

On Windows, the dynamic linker, will search in the same directory then in the PATH directories. On OSX, it will
search in the directories declared in DYLD LIBRARY PATH as on Linux will use the LD _LIBRARY PATH.

Furthermore in OSX and Linux there is another mechanism to locate the shared libraries: The RPATHs.

17.12.1 Manage Shared Libraries with Environment Variables
Shared libraries are loaded at runtime. The application executable needs to know where to find the required shared
libraries when it runs.

Depending on the operating system, we can use environment variables to help the dynamic linker to find the shared
libraries:

OPERATING SYSTEM ENVIRONMENT VARIABLE

WINDOWS PATH
LINUX LD_LIBRARY_PATH
OSX DYLD_LIBRARY_PATH

If your package recipe (A) is generating shared libraries you can declare the needed environment variables pointing to
the package directory. This way, any other package depending on (A) will automatically have the right environment
variable set, so they will be able to locate the (A) shared library.

Similarly if you use the virtualenv generator and you activate it, you will get the paths needed to locate the shared
libraries in your terminal.

376 Chapter 17. Howtos



Conan Documentation, Release 1.60.2

Example

We are packaging a tool called toolA with a library and an executable that will, for example, compress data.

The package offers two flavors, shared library or static library (embedded in the executable of the tool and available
to link with). You can use the toolA package library to develop another executable or library or you can just use the
executable provided by the package. In both cases, if you choose to install the shared package of toolA you will need
to have the shared library available.

import os
from conans import tools, ConanFile

class ToolA(ConanFile):

name = "tool_a"
version = "1.0"
options = {"shared": [True, False]}
default_options = {"shared": False}

def build(self):
# build your shared library

def package(self):
# Copy the executable
self.copy(pattern="tool_a*", dst="bin", keep_path=False)

# Copy the libraries

if self.options.shared:
self.copy(pattern="*.d11", dst="bin", keep_path=False)
self.copy(pattern="*.dylib", dst="1ib", keep_path=False)
self.copy(pattern="*.so*", dst="1ib", keep_path=False)

else:

Using the tool from a different package

If we are now creating a package that uses the tool_a executable to compress some data, we can execute directly
tool_a using RunEnvironment build helper to set the environment variables accordingly:

import os
from conans import tools, ConanFile

class PackageB(ConanFile):

name = "package_b"
version = "1.0"
requires = "tool_a/1.0@myuser/stable"

def build(self):
exe_name = "tool_a.exe" if self.settings.os == "Windows" else "tool_a"
self.run([exe_name, "--someparams"], run_environment=True)

17.12. How to manage shared libraries 377




Conan Documentation, Release 1.60.2

Building an application using the shared library from tool_a

As we are building a final application, we will probably want to distribute it together with the shared library from the
tool_a, so we can use the /mports to import the required shared libraries to our user space.

Listing 17: conanfile.txt

[requires]
tool_a/1.0@myuser/stable

[generators]
cmake

[options]
tool_a:shared=True

[imports]

bin, *.dll -> ./bin # Copies all dll files from packages bin folder to my "bin" folder
lib, *.dylib* -> ./bin # Copies all dylib files from packages 1lib folder to my "bin".
—folder

lib, *.so* -> ./bin # Copies all so files from packages 1lib folder to my "bin" folder

Now you can build the project:

$ mkdir build && cd build

$ conan install ..

$ cmake .. -G "Visual Studio 14 Win64"
$ cmake --build . --config Release

$ cd bin && mytool

The previous example will work only in Windows and OSX (changing the CMake generator), because the dynamic
linker will look in the current directory (the binary directory) where we copied the shared libraries too.

In Linux you still need to set the LD_LIBRARY_PATH, or in OSX, the DYLD_LIBRARY_PATH:

[$ cd bin && LD_LIBRARY_PATH=$(pwd) && ./mytool ]

Using shared libraries from dependencies

If you are executing something that depends on shared libraries belonging to your dependencies, those shared libraries
have to be found at runtime. In Windows, it is enough if the package added its binary folder to the system PATH. In
Linux and OSX, it is necessary that the LD_LTBRARY_PATH and DYLD_LIBRARY_PATH environment variables are used.

Security restrictions might apply in OSX (read this thread), so the DYLD_LIBRARY_PATH and DYLD_FRAMEWORK_PATH
environment variables are not directly transferred to the child process. In that case, you have to use it explicitly in your
conanfile.py:

def build(self):
env_build = RunEnvironment(self)
with tools.environment_append(env_build.vars):
# self.run("./myexetool") # won't work, even if 'DYLD_LIBRARY_PATH' and 'DYLD_
- FRAMEWORK_PATH' are in the env
self.run("DYLD_LIBRARY_PATH= DYLD_FRAMEWORK_PATH= ./myexetool" % (os.environ[
— "DYLD_LIBRARY_PATH'], os.environ['DYLD_FRAMEWORK_PATH']))

378 Chapter 17. Howtos



https://stackoverflow.com/questions/35568122/why-isnt-dyld-library-path-being-propagated-here

Conan Documentation, Release 1.60.2

Or you could use RunEnvironment helper described above.

Using virtualrunenv generator

virtualrunenv generator will set the environment variables PATH, LD_LIBRARY_PATH, DYLD_LIBRARY_PATH pointing
to lib and bin folders automatically.

Listing 18: conanfile.txt

[requires]
tool_a/1.0@myuser/stable

[options]
tool_a:shared=True

[generators]
virtualrunenv

In the terminal window:

$ conan install .

$ source activate_run

$ tool_a --someparams

# Only For Mac OS users to avoid restrictions:

$ DYLD_LIBRARY_PATH=$DYLD_LIBRARY_PATH toolA --someparams

17.12.2 Manage RPATHs

The rpath is encoded inside dynamic libraries and executables and helps the linker to find its required shared libraries.

If we have an executable, my_exe, that requires a shared library, shared_lib_1, and shared_lib_1, in turn, requires
another shared_lib_2.

So the rpaths values are:

File rpath

my_exe /path/to/shared_lib_1
shared_lib_1 /path/to/shared_lib_2
shared_lib_2

In Linux if the linker doesn’t find the library in rpath, it will continue the search in system defaults paths
(LD_LIBRARY_PATH... etc) In OSX, if the linker detects an invalid rpath (the file does not exist there), it will
fail.

17.12. How to manage shared libraries 379




Conan Documentation, Release 1.60.2

Default Conan approach

The consumer project of dependencies with shared libraries needs to import them to the executable directory to be able
to run it:

conanfile.txt

[requires]
poco/1.9.4

[imports]
bin, *.dll -> ./bin # Copies all dll files from packages bin folder to my "bin" folder
lib, *.dylib* -> ./bin # Copies all dylib files from packages lib folder to my "bin".
—folder

On Windows this approach works well, importing the shared library to the directory containing your executable is a
very common procedure.

On Linux there is an additional problem, the dynamic linker doesn’t look by default in the executable directory, and
you will need to adjust the LD_LIBRARY_PATH environment variable like this:

[LD,LIBRARY,PATH:$(de) && ./mybin J

On OSX if absolute rpaths are hardcoded in an executable or shared library and they don’t exist the executable will fail
to run. This is the most common problem when we reuse packages in a different environment from where the artifacts
have been generated.

So for OSX, Conan, by default, when you build your library with CMake, the rpaths will be generated without any
path:

File rpath

my_exe shared_lib_1.dylib
shared_lib_1.dylib  shared_lib_2.dylib
shared_lib_2.dylib

The conan_basic_setup () macro will set the set (CMAKE_SKIP_RPATH 1) in OSX.

You can skip this default behavior by passing the KEEP_RPATHS parameter to the conan_basic_setup macro:

include (${CMAKE_BINARY_DIR}/conanbuildinfo.cmake)
conan_basic_setup (KEEP_RPATHS)

add_executable(timer timer.cpp)
target_link_libraries(timer ${CONAN_LIBS})

If you are using autotools Conan won’t auto-adjust the rpaths behavior. if you want to follow this default behavior
you will probably need to replace the install_name in the configure or MakeFile generated files in your recipe to
not use $rpath:

[replace_in_file("./configure", r"-install_name \$rpath/", "-install_name ") ]

380 Chapter 17. Howtos



Conan Documentation, Release 1.60.2

Different approaches

You can adjust the rpaths in the way that adapts better to your needs.
If you are using CMake take a look to the CMake RPATH handling guide.

Remember to pass the KEEP_RPATHS variable to the conan_basic_setup:

include (${CMAKE_BINARY_DIR}/conanbuildinfo.cmake)
conan_basic_setup (KEEP_RPATHS)

Then, you could, for example, use the @executable_path in OSX and $ORIGIN in Linux to adjust a relative path
from the executable. Also, enabling CMAKE_BUILD_WITH_INSTALL_RPATH will build the application with the
RPATH value of CMAKE_INSTALL_RPATH and avoid the need to be relinked when installed.

if (APPLE)

set (CMAKE_INSTALL_RPATH "@executable_path/../1lib™)
else()

set (CMAKE_INSTALL_RPATH "$ORIGIN/../lib")
endif()

set (CMAKE_BUILD_WITH_INSTALL_RPATH ON)

You can use this imports statements in the consumer project:

[requires]
poco/1.9.4

[imports]
bin, *.dll -> ./bin # Copies all dll files from packages bin folder to my "bin" folder
lib, *.dylib* -> ./lib # Copies all dylib files from packages 1lib folder to my "lib".
—folder
lib, *.so* -> ./lib # Copies all so files from packages lib folder to my "lib" folder

And your final application can follow this layout:

bin
my_executable
mylib.dll

|
lib
libmylib.so
libmylib.dylib

You could move the entire application folder to any location and the shared libraries will be located correctly.

17.12. How to manage shared libraries 381



https://gitlab.kitware.com/cmake/community/-/wikis/doc/cmake/RPATH-handling
https://cmake.org/cmake/help/v3.0/variable/CMAKE_BUILD_WITH_INSTALL_RPATH.html

Conan Documentation, Release 1.60.2

17.13 How to reuse cmake install for package() method

It is possible that your project’s CMakeLists.txt has already defined some functionality that extracts the artifacts (head-
ers, libraries, binaries) from the build and source folder to a predetermined place and does the post-processing (e.g.,
strips rpaths). For example, one common practice is to use CMake install directive to that end.

When using Conan, the install phase of CMake is wrapped in the package () method. That way the flags like conan
create --keep-build or the commands for the Package development flow are consistent with every step of the
packaging process.

The following excerpt shows how to build and package with CMake within Conan. Mind that you need to configure
CMake both in build () and in package(), since these methods are called independently.

def _configure_cmake(self):
cmake = CMake(self)
cmake.definitions["SOME_DEFINITION"] = "VALUE"
cmake.configure()
return cmake

def build(self):
cmake = self._configure_cmake()
cmake.build()

def package(self):
cmake = self._configure_cmake()
cmake.install ()

def package_info(self):
self.cpp_info.libs = ["libname"]

The package_info() method specifies the list of the necessary libraries, defines and flags for different build configu-
rations for the consumers of the package. This is necessary as there is no possible way to extract this information from
the CMake install automatically.

17.14 How to collaborate with other users’ packages

If a certain existing package does not work for you, or you need to store pre-compiled binaries for a platform not
provided by the original package creator, you might still be able to do so:

17.14.1 Collaborate from source repository

If the original package creator has the package recipe in a repository, this would be the simplest approach. Just clone
the package recipe on your machine, change something if you want, and then export the package recipe under your own
user name. Point your project’s [requires] to the new package name, and use it as usual:

$ git clone <repository>

$ cd <repository>

//make changes if desired

$ conan export . <youruser/yourchannel>

You can just directly run:

382 Chapter 17. Howtos



https://cmake.org/cmake/help/latest/command/install.html

Conan Documentation, Release 1.60.2

[$ conan create . demo/testing J

Once you have generated the desired binaries, you can store your pre-compiled binaries in your own free Artifactory
CE repository:

[$ conan upload package/0.1@myuser/stable -r=myremote --all ]

Finally, if you made useful changes, you might want to create a pull request to the original repository of the package
creator.

17.14.2 Copy a package

If you don’t need to modify the original package creator recipe, it is fine to just copy the package to your local storage.
You can copy the recipes and existing binary packages. This could be enough for caching existing binary packages
from the original remote into your own remote, under your own username:

$ conan copy poco/1.9.4@ myuser/testing
$ conan upload poco/1.9.4@myuser/testing -r=myremote --all

17.15 How to link with Apple Frameworks

It is common in MacOS that your Conan package needs to link with a complete Apple framework, and, of course, you
want to propagate this information to all projects/libraries that use your package.

With regular libraries, use self.cpp_info.libs object to append to it all the libraries:

def package_info(self):

self.cpp_info.libs = ["SDL2"]
self.cpp_info.libs.append("'OpenGL32")

With frameworks we need to use self.cpp_info. frameworks in a similar manner:

def package_info(self):

self.cpp_info.libs = ["SDL2"]

self.cpp_info. frameworks.extend(["Carbon", "CoreAudio", "Security", "IOKit"])

17.16 How to package Apple Frameworks

To package a MyFramework Apple framework, copy/create a folder MyFramework. framework to your package
folder, where you should put all the subdirectories (Headers, Modules, etc).

def package(self):
# If you have the framework folder built in your build_folder:
self.copy("MyFramework. framework/*", symlinks=True)
# Or build the destination folder:
tools.mkdir ("MyFramework . framework/Headers")
(continues on next page)

17.15. How to link with Apple Frameworks 383



Conan Documentation, Release 1.60.2

(continued from previous page)

self.copy("*.h", dst="MyFramework.framework/Headers")
# ...

Declare the framework in the cpp_info object, the directory of the framework folder (self.package_folder) into the
cpp_info. frameworkdirs and the framework name into the cpp_info. frameworks.

def package_info(self):

self.cpp_info. frameworkdirs.append(self.package_folder)
self.cpp_info. frameworks.append("MyFramework")

17.17 How to collect licenses of dependencies

With the imports feature it is possible to collect the License files from all packages in the dependency graph. Please
note that the licenses are artifacts that must exist in the binary packages to be collected, as different binary packages
might have different licenses. E.g., A package creator might provide a different license for static or shared linkage with
different “License” files if they want to.

Also, we will assume the convention that the package authors will provide a “License” (case not important) file at the
root of their packages.

In conanfile.txt we would use the following syntax:

[imports]
., license* -> ./licenses @ folder=True, ignore_case=True

And in conanfile.py we will use the imports () method:

def imports(self):
self.copy("license*", dst="licenses", folder=True, ignore_case=True)

In both cases, after conan install, it will store all the found License files inside the local licenses folder, which will
contain one subfolder per dependency with the license file inside.

17.18 How to extract licenses from headers

Sometimes there is no license file, and you will need to extract the license from a header file, as in the following
example:

def package(Q):

# Extract the License/s from the header to a file

tmp = tools.load("header.h")

license_contents = tmp[2:tmp.find("*/", 1)] # The license begins with a C.
—comment /* and ends with */

tools.save("LICENSE", license_contents)

# Package it
self.copy("license*", dst="licenses", ignore_case=True, keep_path=False)

384 Chapter 17. Howtos




Conan Documentation, Release 1.60.2

17.19 How to dynamically define the name and version of a package

The name and version fields are used to define constant values. The set_name () and set_version() methods can
be used to dynamically define those values, for example if we want to extract the version from a text file or from the git
repository.

The version of a recipe is stored in the package metadata when it is exported (or created) and always taken from the
metadata later on. This means that the set_name() and set_version() methods will not be executed once the
recipe is in the cache, or when it is installed from a server. Both methods will use the current folder as the current
working directory to resolve relative paths. To define paths relative to the location of the conanfile.py use the self.
recipe_folder attribute.

17.20 How to capture package version from SCM: git

The Git () helper from tools can be used to capture data from the Git repo in which the conanfile.py recipe resides,
and use it to define the version of the Conan package.

from conans import ConanFile, tools

class HelloConan(ConanFile):
name = "hello"

def set_version(self):
git = tools.Git(folder=self.recipe_folder)

self.version = _%s" % (git.get_branch(), git.get_revision())

def build(self):

In this example, the package created with conan create will be called hello/branch_commit@user/channel.

17.21 How to capture package version from SCM: svn

The SVNQ) helper from tools can be used to capture data from the subversion repo in which the conanfile.py recipe
resides, and use it to define the version of the Conan package.

from conans import ConanFile, tools

class HelloLibrary(ConanFile):
name = "hello"
def set_version(self):
scm = tools.SVN(folder=self.recipe_folder)
revision = scm.get_revision()
branch = scm.get_branch() # Delivers e.g trunk, tags/v1.0.0, branches/my_branch

branch = branch.replace("/","_")
if scm.is_pristine():
dirty = ""
else:
dirty = ".dirty"
self.version = "%s-%s+ " % (version, revision, branch, dirty) # e.g. 1.2.0-

(continues on next page)

17.19. How to dynamically define the name and version of a package 385




Conan Documentation, Release 1.60.2

(continued from previous page)

—1234+trunk.dirty

def build(self):

In this example, the package created with conan create will be called hello/generated_version@user/
channel. Note: this function should never raise, see the section about when the version is computed and saved above.

17.22 How to capture package version from text or build files

It is common that a library version number would be already encoded in a text file, build scripts, etc. As an example,
let’s assume we have the following library layout, and that we want to create a package from it:

conanfile.py
CMakeLists.txt
src

hello.cpp

The CMakeLists.txt will have some variables to define the library version number. For simplicity, let’s also assume that
it includes a line such as the following:

cmake_minimum_required (VERSION 2.8)
set (MY_LIBRARY_VERSION 1.2.3) # This is the version we want
add_libraryChello src/hello.cpp)

You can extract the version dynamically using:

from conans import ConanFile
from conans.tools import load
import re, os

class HelloConan(ConanFile):
name = "hello"
def set_version(self):
content = load(os.path.join(self.recipe_folder, "ClMakeLists.txt"))
version = re.search(r"set\ (MY_LIBRARY_VERSION (.*)\)", content).group(l)
self.version = version.strip()

17.23 How to use Conan as other language package manager

Conan is a generic package manager. In the getting started section we saw how to use Conan and manage a C/C++
library, like POCO.

But Conan just provided some tools, related to C/C++ (like some generators and the cpp_info), to offer a better user
experience. The general basis of Conan can be used with other programming languages.

Obviously, this does not try to compete with other package managers. Conan is a C and C++ package manager, focused
on C and C++ developers. But when we realized that this was possible, we thought it was a good way to showcase its
power, simplicity and versatility.

386 Chapter 17. Howtos




Conan Documentation, Release 1.60.2

And of course, if you are doing C/C++ and occasionally you need some package from other language in your workflow,
as in the Conan package recipes themselves, or for some other tooling, you might find this functionality useful.

17.23.1 Conan: A Go package manager
The source code

You can just clone the following example repository:

[$ git clone https://github.com/conan-io/examples/tree/master/features/goserver

Or, alternatively, manually create the folder and copy the following files inside:

$ mkdir conan-goserver-example
$ cd conan-goserver-example

$ mkdir src

$ mkdir src/server

The files are:

src/server/main.go is a small http server that will answer “Hello world!” if we connect to it.

package main
import "github.com/go-martini/martini"

func main() {

m := martini.Classic()
m.Get("/", func() string {
return "Hello world!"

b
m.Run()
}

Declaring and installing dependencies
Create a conanfile.txt, with the following content:

Listing 19: conanfile.txt

[requires]
go-martini/1.0@

[imports]
src, * -> ./deps/src

Our project requires a package, go-martini/1.0@, and we indicate that all src contents from all our requirements have
to be copied to ./deps/src.

The package go-martini depends on go-inject, so Conan will handle automatically the go-inject dependency.

[$ conan install .

This command will download our packages and will copy the contents in the ./deps/src folder.

17.23. How to use Conan as other language package manager 387



Conan Documentation, Release 1.60.2

Running our server

Just add the deps folder to GOPATH:

# Linux / Macos
$ export GOPATH=${GOPATH}: ${PWD}/deps

# Windows
$ SET GOPATH=%GOPATH%;%CD%/deps

And run the server:

$ cd src/server
$ go run main.go

Open your browser and go to localhost: 9300

[Hello World! J

Generating Go packages
Creating a Conan package for a Go library is very simple. In a Go project, you compile all the code from sources in
the project itself, including all of its dependencies.

So we don’t need to take care of settings at all. Architecture, compiler, operating system, etc. are only relevant for
pre-compiled binaries. Source code packages are settings agnostic.

Let’s take a look at the conanfile.py of the go inject library:

Listing 20: conanfile.py

import os
from conans import ConanFile, tools

class GoInjectConan(ConanFile):

name = "go-inject"
version = "1.0"
license = "MIT"

homepage = "https://github.com/codegangsta/inject"
no_copy_source = True

def source(self):
tools.get("https://github.com/codegangsta/inject/archive/v1.0-rcl.tar.gz",
sha256="22b265ea391a19de6961aaa8811lecfcc5bbe7979594e30663c610821cdad6c7b

")

def package(self):
self.copy(pattern="*",
dst=os.path.join("src", "github.com", "codegangsta", "inject"),
src="inject-1.0-rcl", keep_path=True)

If you have read the Building a hello world package, the previous code may look quite simple to you.

388 Chapter 17. Howtos




Conan Documentation, Release 1.60.2

We want to pack version 1.0 of the go inject library, so the version variable is ¢“1.0”. In the source () method, we
declare how to obtain the source code of the library, in this case just by downloading v1.0-rcl tag. In the package()
method, we are just copying all the sources to a folder named “‘src/github.com/codegangsta/inject”.

This way, we can keep importing the library in the same way:

[import "github.com/codegangsta/inject" ]

We can export and upload the package to a remote and we are done:

$ conan create . # Or any other user/channel
$ conan upload go-inject/1.0@ --all

Now look at the go martini conanfile:

Listing 21: conanfile.py

import os
from conans import ConanFile, tools

class GoMartiniConan(ConanFile):

name = "go-martini"
version = "1.0"

requires = "go-inject/1.0@"
license = "MIT"

homepage = "https://github.com/go-martini/martini"
no_copy_source = True

def source(self):
tools.get("https://github.com/go-martini/martini/archive/v1.0.tar.gz",

sha256="3db135845d076d611£4420e0500e91625543a6b00dc9431cbe45d3571741281b
o™

def package(self):

self.copy(pattern="*", dst=os.path.join("src", "github.com", "go-martini",
<"martini"),

src="martini-1.0", keep_path=True)

It is very similar. The only difference is the requires variable. It defines the go-inject/1.0@ library, as a requirement.

$ conan create . # Or any other user/channel
$ conan upload go-martini/1.0@ --all

Now we are able to use them easily and without the problems of versioning with github checkouts.

17.23. How to use Conan as other language package manager 389



Conan Documentation, Release 1.60.2

17.23.2 Conan: A Python package manager

Conan is a C and C++ package manager, and to deal with the vast variability of C and C++ build systems, compilers,
configurations, etc., it was designed to be extremely flexible, to allow users the freedom to configure builds in virtually
any manner required. This is one of the reasons to use Python as the scripting language for Conan package recipes.

With this flexibility, Conan is able to do very different tasks: package Visual Studio modules, package Go code, build
packages from sources or from binaries retrieved from elsewhere, etc.

Python code can be reused and packaged with Conan to share functionalities or tools among conanfile.py files. Here
we can see a full example of Conan as a Python package manager.

A full Python and C/C++ package manager

The real utility of this is that Conan is a C and C++ package manager. So, for example, you are able to create a Python
package that wraps the functionality of the Poco C++ library. Poco itself has transitive (C/C++) dependencies, but they
are already handled by Conan. Furthermore, a very interesting thing is that nothing has to be done in advance for that
library, thanks to useful tools such as pybind11, that lets you easily create Python bindings.

So let’s build a package with the following files:
* conanfile.py: The package recipe.
e __init__.py: A required file which should remain blank.

* pypoco.cpp: The C++ code with the pybind11 wrapper for Poco that generates a Python extension (a shared
library that can be imported from Python).

e CMakeLists.txt: The CMake build file that is able to compile pypoco.cpp into a Python extension (pypoco.pyd
in Windows, pypoco.so in Linux)

* poco.py: A Python file that makes use of the pypoco Python binary extension built with pypoco.cpp.
* test_package/conanfile.py: A test consumer “convenience” recipe to create and test the package.

The pypoco.cpp file can be coded easily thanks to the elegant pybind11 library:

Listing 22: pypoco.cpp

#include <pybindll/pybindl11.h>
#include "Poco/Random.h"

using Poco: :Random;
namespace py = pybindll;

PYBIND11_PLUGIN(pypoco) {
py::module m("pypoco"”, "pybindll example plugin");
py: :class_<Random>(m, "Random")
.def(py::init<>(Q))
.def("nextFloat", &Random::nextFloat);
return m.ptrQ;

}

And the poco.py file is straightforward:

390 Chapter 17. Howtos


https://blog.conan.io/2016/06/01/Building-and-packaging-C++-modules-in-VS2015.html

Conan Documentation, Release 1.60.2

Listing 23: poco.py

import sys
import pypoco

def random_float():
r = pypoco.Random()
return r.nextFloat()

The conanfile.py is a bit longer, but is still quite easy to understand:

Listing 24: conanfile.py

from conans import ConanFile, tools, CMake

class PocoPyReuseConan(ConanFile):

name = "PocoPy"

version = "0.1"

requires = "poco/1.9.4", "pybindl1l/2.3.0@conan/stable"
settings = "os", "compiler", "arch", "build_type"
exports = "*"

generators = "cmake"

build_policy = "missing"

def build(self):
cmake = CMake(self)

pythonpaths = "-DPYTHON_INCLUDE_DIR=C:/Python27/include -DPYTHON_LIBRARY=C:/
—Python27/1ibs/python27.1ib"

self.run('cmake -DEXAMPLE_PYTHON_VERSION=2.7" % (cmake.command_line,..
—pythonpaths))

self.run("cmake --build . " % cmake.build_config)

def package(self):
self.copy('*.py*")
self.copy("*.s0")

def package_info(self):
self.env_info.PYTHONPATH. append(self.package_folder)

The recipe now declares 2 requires that will be used to create the binary extension: the Poco library and the pybind11
library.

As we are actually building C++ code, there are a few important things that we need:

¢ Input settings that define the OS, compiler, version and architecture we are using to build our extension. This
is necessary because the binary we are building must match the architecture of the Python interpreter that we
will be using.

e The build() method is actually used to invoke CMake. You may see that we had to hardcode the Python path
in the example, as the CMakeLists.txt call to £ind_package (PythonLibs) didn’t find my Python installation
in C:/Python27, even though that is a standard path. I have also added the cmake generator to be able to easily
use the declared requires build information inside my CMakeLists.txt.

» The CMakeLists.txt is not posted here, but is basically the one used in the pybind11 example with just 2 lines to
include the cmake file generated by Conan for dependencies. It can be inspected in the GitHub repo.

17.23. How to use Conan as other language package manager 391




Conan Documentation, Release 1.60.2

* Note that we are using Python 2.7 as an input option. If necessary, more options for other inter-
preters/architectures could be easily provided, as well as avoiding the hardcoded paths. Even the Python in-
terpreter itself could be packaged in a Conan package.

The above recipe will generate a different binary for different compilers or versions. As the binary is being wrapped
by Python, we could avoid this and use the same binary for different setups, modifying this behavior with the
conan_info() method.

$ conan export . memsharded/testing

$ conan install pocopy/0.1l@memsharded/testing -s arch=x86 -g virtualenv
$ activate

$ python

>>> import poco

>>> poco.random_float()

0.697845458984375

Now, the first invocation of conan install will retrieve the dependencies and build the package. The next invocation
will use the cached binaries and be much faster. Note how we have to specify -s arch=x86 to match the architecture
of the Python interpreter to be used, in our case, 32 bits.

The output of the conan install command also shows us the dependencies that are being pulled:

Requirements
openssl/1.0.2t from conan.io
poco/1.9.4 from conan.io
pocopy/0. l@memsharded/testing from local
pybindl11/2.3.0@conan/stable from conan.io
z1lib/1.2.11 from conan.io

This is one of the great advantages of using Conan for this task, because by depending on Poco, other C and C++
transitive dependencies are retrieved and used in the application.

For a deeper look into the code of these examples, please refer to this github repo. The above examples and code have
only been tested on Winl10, VS14u2, but may work on other configurations with little or no extra work.

17.24 How to manage SSL (TLS) certificates

17.24.1 Server certificate validation
By default, when a remote is added, if the URL schema is https, the Conan client will verify the certificate using a
list of authorities declared in the cacert.pem file located in the Conan home (~/.conan).
If you have a self signed certificate (not signed by any authority) you have two options:
e Use the conan remote command to disable the SSL verification.

* Append your server crt file to the cacert.pen file.

392 Chapter 17. Howtos



https://github.com/memsharded/python-conan-packages

Conan Documentation, Release 1.60.2

17.24.2 Client certificates
If your server is requiring client certificates to validate a connection from a Conan client, you need to create two files
in the Conan home directory (default ~/.conan):

* Afile client.crt with the client certificate.

* A file client.key with the private key.

Note: You can create only the client.crt file containing both the certificate and the private key concatenated and
not create the client.key

If you are a familiar with the curl tool, this mechanism is similar to specify the --cert / --key parameters.

17.25 How to check the version of the Conan client inside a conanfile

Sometimes it might be useful to check the Conan version that is running in that moment your recipe. Although we
consider ConanCenter recipes only forward compatible, this kind of check makes sense to update them so they can
maintain compatibility with old versions of Conan.

Let’s have a look at a basic example of this:

Listing 25: conanfile.py

from conans import ConanFile, CMake, __version__ as conan_version
from conans.tools import Version

class MyLibraryConan(ConanFile):
name = "mylibrary"
version = "1.0"

def build(self):
if conan_version < Version("0.29"):
cmake = CMake(self.settings)
else:
cmake = CMake(self)

Here it checks the Conan version to maintain compatibility of the CMake build helper for versions lower than Conan
0.29. It also uses the internal Version() class to perform the semver comparison in the if-clause.

You can also use it to take advantage of new features when the client is new enough, for example:

from conans import ConanFile, tools, __version__ as conan_version
from conans.tools import Version

class MyPackage(ConanFile):
name = "package"

def package_id(self):
if conan_version >= Version("1.20"):

(continues on next page)

17.25. How to check the version of the Conan client inside a conanfile 393



https://curl.haxx.se/docs/manpage.html

Conan Documentation, Release 1.60.2

(continued from previous page)

if self.settings.compiler == "gcc" and self.settings.compiler.version == "4.9

compatible_pkg = self.info.clone()
compatible_pkg.settings.compiler.version = "4.8"
self.compatible_packages.append(compatible_pkg)

It can be useful to introduce new features in your recipes while all the consumers update their client version. Together
with our stability commitment for Conan I.x it should be easy to adopt new Conan versions while evolving your recipes.

17.26 Use a generic Cl with Conan and Artifactory

Warning: Some problems regarding the use of BuildInfo with Conan packages have been reported. If the BuildInfo
contains artifacts that have the same checksum as other artifacts, this may result in losing the path of the artifact in
the BuildInfo in Artifactory and also fail in the promotion process.

We are currently working along with the Artifactory team to solve those problems. Until this issue gets fixed, we
do not recommend using BuildInfo’s for Conan.

17.26.1 Uploading the Buildinfo

If you are using Jenkins with Conan and Artifactory, along with the Jenkins Artifactory Plugin, any Conan package
downloaded or uploaded during your build will be automatically recorded in the BuildInfo json file, that will be auto-
matically uploaded to the specified Artifactory instance.

However, using the conan_build_info command, you can gather and upload that information using other CI infrastruc-
ture. There are two possible ways of using this command:

Extracting build-info from the Conan trace log
1. Before calling Conan the first time in your build, set the environment variable CONAN_TRACE_FILE to a file
path. The generated file will contain the BuildInfo json.

2. You also need to create the artifacts.properties file in your Conan home containing the build information. All
this properties will be automatically associated to all the published artifacts.

artifact_property_build.name=MyBuild
artifact_property_build.number=23
artifact_property_build.timestamp=1487676992

3. Call Conan as many times as you need. For example, if you are testing a Conan package and uploading it at the
end, you will run something similar to:

$ conan create . user/stable # Will retrieve the dependencies and create the package
$ conan upload mypackage/1.0@user/stable -r artifactory

4. Call the command conan_build_info passing the path to the generated Conan traces file and a parameter
--output to indicate the output file. You can also, delete the traces.log™ file® otherwise while the CO-
NAN_TRACE_FILE is present, any Conan command will keep appending actions.

394 Chapter 17. Howtos


https://www.jfrog.com/jira/browse/RTFACT-9343
https://www.jfrog.com/confluence/display/JFROG/Jenkins+Artifactory+Plug-in
https://www.jfrog.com/confluence/display/JFROG/Build+Integration#BuildIntegration-BuildInfoJSON

Conan Documentation, Release 1.60.2

$ conan_build_info /tmp/traces.log --output /tmp/build_info.json
$ rm /tmp/traces.log

5. Edit the build_info.json file to append name (build name), number (build number) and the started (started date)
and any other field that you need according to the Build Info json format.

The started field has to be in the format: yyyy-MM-dd'T"'HH:mm:ss.SSSZ

To edit the file you can import the json file using the programming language you are using in your framework,
groovy, java, python...

6. Push the json file to Artifactory, using the REST-API:

curl -X PUT -u<username>:<password> -H "Content-type: application/json" -T /tmp/build_
—info.json "http://host:8081/artifactory/api/build"

Generating build info from lockfiles information

Warning: This is an experimental feature subject to breaking changes in future releases.

To maintain compatibility with the current implementation of the conan_build_info command, this version must be
invoked using the argument --v2 before any subcommand.

1. To begin associating the build information to the uploaded packages the first thing is calling to the start sub-
command of conan_build_info. This will set the artifact_property_build.name and artifact_property_build.name
properties in the artifacts.properties.

[$ conan_build_info --v2 start MyBuildName 42 J

2. Call Conan using lockfiles to create information for the Build Info json format.

$ cd mypackage

$ conan create . mypackage/l1.0@user/stable # e create one package

$ cd .. & cd consumer

$ conan install . # Consumes mypackage, generates a lockfile

$ conan create . consumer/1l.0@user/stable --lockfile conan.lock

$ conan upload "*" -c -r local # Upload all packages to local remotes

3. Create build information based on the contents of the generated conan.lock lockfile and the information retrieved
from the remote (the authentication is for the remote where you uploaded the packages).

—.password password

$ conan_build_info --v2 create buildinfo.json --lockfile conan.lock --user admin -- ’

4. Publish the build information to Artifactory with the publish subcommand:

Using user and password

$ conan_build_info --v2 publish buildinfo.json --url http://localhost:8081/artifactory --
—user admin --password password

or an API key:

17.26. Use a generic Cl with Conan and Artifactory 395


https://github.com/jfrog/build-info
https://github.com/jfrog/build-info

Conan Documentation, Release 1.60.2

—.apikey apikey

$ conan_build_info --v2 publish buildinfo.json --url http://localhost:8081/artifactory -- ’

5. If the whole process has finished and you don’t want to continue associating the build number and build name to the
files uploaded to Artifactory then you can use the stop subcommand:

[$ conan_build_info --v2 stop ]

It is also possible to merge different build info files using the update subcommand. This is useful in CI when many
slaves are generating different build info files.

—mergedbuildinfo. json

$ conan_build_info --v2 update buildinfol.json buildinfo2.json --output-file. ’

You can check the complete conan_build_info reference.

17.27 Using recipe revisions and lockfiles

If you don’t want to deploy and maintain your own Artifactory instance, you can isolate your project from changes in
upstream remotes, for example ConanCenter, using recipe revisions and lockfiles (please, read linked Conan documen-
tation for more detailed explanation).

Recipe revisions and lockfiles can be used to define exactly the binary you want to use in your project. Even if the
recipe is modified and new binaries are generated for the same configurations, existing binaries will exist, you just need
to instruct Conan to use them even if new ones are available.

17.27.1 Recipe Revisions

Recipe Revisions are the way to tell Conan to use a specific snapshot of the recipe. It is a hash added to the reference
and can be used in Conan at the same place as regular revisions:

¢ In the command line:

[conan install openssl/3.0.10@#1955937e88f13a02aa4fdae98c3£f9fb8 ]

* In a conanfile.txt file:

[requires]
openssl/3.0.10#1955937e88f13a02aa4fdae98c3£9fb8

* In a conanfile.py file:

def requirements(self):
self.requires("openssl/3.0.1@#1955937e88f13a02aa4fdae98c3£9fb8")

If you use explicit recipe revisions in your project you can be sure that Conan will always use the same recipe revision
of those references. You might get new binaries if the same configuration (same packagelD) is built again for the same
recipe revision, but that is not going to be a compatibility problem.

This might not be enough for some projects, where you want to be sure nothing is modified, not just the revisions you
are listing explicitly but also any other transitive dependency, this is what lockfiles are for.

396 Chapter 17. Howtos


https://github.com/conan-io/examples/tree/master/features/lockfiles/ci
https://github.com/conan-io/examples/tree/master/features/lockfiles/ci

Conan Documentation, Release 1.60.2

17.27.2 Lockfiles

Lockfiles are files where all the information about requirements is written: recipe revisions, package IDs and package
revisions. You can create a lockfile with all the dependencies for your project once you are happy with them, and use
that same lockfile with every Conan command. Conan will always build the same graph (the locked one) and will
always retrieve the same recipes and binaries.

Warning: Lockfiles have a few known limitation that can not be fixed in Conan 1.x, there are exciting improvements
coming with Conan 2.0. Please read the documentation linked below for more details.

Then, it would be up to you to generate a new lockfile if you want to introduce new revisions for existing references.
The two basic commands you need to know (full docs here):

* Create lockfile from conanfile.txt file:

[conan lock create conanfile.txt --lockfile-out=locks/project.lock J

¢ Consume a lockfile:

[conan install conanfile.txt --lockfile=locks/project.lock }

If your project is managing several configurations, you would probably like to have a look to base lockfiles and lockfile
bundles in the documentation.

17.28 Compiler sanitizers

Sanitizers are tools that can detect bugs such as buffer overflows or accesses, dangling pointer or different types of
undefined behavior.

The two compilers that mainly support sanitizing options are gcc and clang. These options are passed to the compiler
as flags and, depending on if you are using clang or gcc, different sanitizers are supported.

Here we explain different options on how to model and use sanitizers with your Conan packages.

17.28.1 Adding custom settings
If you want to model the sanitizer options so that the package id is affected by them, you have to introduce new settings
in the settings.yml file (see Customizing settings section for more information).

Sanitizer options should be modeled as sub-settings of the compiler. Depending on how you want to combine the
sanitizers you have two choices.

17.28. Compiler sanitizers 397


https://clang.llvm.org/docs/UsersManual.html#controlling-code-generation
https://gcc.gnu.org/onlinedocs/gcc/Instrumentation-Options.html

Conan Documentation, Release 1.60.2

Adding a list of commonly used values

If you have a fixed set of sanitizers or combinations of them that are the ones you usually set for your builds you can
add the sanitizers as a list of values. An example for apple-clang would be like this:

Listing 26: settings.yml

apple-clang:
version: ["5.0", "5.1", "6.0", "6.1", "7.0", "7.3", "8.0", "8.1",
"9.0", "9.1", "10.0", "11.0"]
libcxx: [libstdc++, libc++]
cppstd: [None, 98, gnu98, 11, gnull, 14, gnul4, 17, gnul7, 20, gnu20]
sanitizer: [None, Address, Thread, Memory, UndefinedBehavior,.,
—AddressUndefinedBehavior]

Here you have modeled the use of -fsanitize=address, -fsanitize=thread, -fsanitize=memory,
-fsanitize=undefined and the combination of -fsanitize=address and -fsanitize=undefined. Note that
for example, for clang it is not possible to combine more than one of the -fsanitize=address, -fsanitize=thread,
and -fsanitize=memory checkers in the same program.

Adding thread sanitizer for a conan install, in this case, could be done by calling conan install .. -s
compiler.sanitizer=Thread

Adding different values to combine

Another option would be to add the sanitizer values as multiple True or None fields so that they can be freely combined
later. An example of that for the previous sanitizer options would be as follows:

398 Chapter 17. Howtos




Conan Documentation, Release 1.60.2

Listing 27: settings.yml

apple-clang:
version: ["5.0", "5.1", "6.0", "6.1", "7.0", "7.3", "8.0",
"g.1", "9.0", "9.1", "10.0", "11.0"]
libcxx: [libstdc++, libc++]
cppstd: [None, 98, gnu98, 11, gnull, 14, gnul4, 17, gnul7, 20, gnu20]
address_sanitizer: [None, True]
thread_sanitizer: [None, True]
undefined_sanitizer: [None, True]

Then, you can add different sanitizers calling, for example, to conan install ..

address_sanitizer=True -s compiler.undefined_sanitizer=True

-s compiler.

A drawback of this approach is that not all the combinations will be valid or will make sense, but it is up to the consumer

to use it correctly.

17.28.2 Passing the information to the compiler or build system

Here again, we have multiple choices to pass sanitizers information to the compiler or build system.

Using from custom profiles

It is possible to have different custom profiles defining the compiler sanitizer setting and environment variables to inject
that information to the compiler, and then passing those profiles to Conan commands. An example of this would be a

profile like:

Listing 28: address_sanitizer_profile

[settings]

os=Macos

os_build=Macos

arch=x86_64
arch_build=x86_64
compiler=apple-clang
compiler.version=10.0
compiler.libcxx=1libc++
build_type=Release
compiler.sanitizer=Address
[env]
CFLAGS=-fsanitize=address
CXXFLAGS=-fsanitize=address
LDFLAGS=-fsanitize=address

Then calling conan create . -pr address_sanitizer_profile would inject -fsanitize=address to the

build through the CFLAGS, CXXFLAGS, and LDFLAGS environment variables.

17.28. Compiler sanitizers

399




Conan Documentation, Release 1.60.2

Managing sanitizer settings with the build system

Another option is to make use of the information that is propagated to the conan generator. For example, if we are
using CMake we could use the information from the CMakeLists.txt to append the flags to the compiler settings like
this:

Listing 29: CMakeLists.txt

cmake_minimum_required (VERSION 3.2)
project(SanitizerExample)
set (CMAKE_CXX_STANDARD 11)
include (${CMAKE_BINARY_DIR}/conanbuildinfo.cmake)
conan_basic_setup()
set (SANITIZER ${CONAN_SETTINGS_COMPILER_SANITIZER})
if(SANITIZER)
if(SANITIZER MATCHES " (Address)'")
set (CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -fsanitize=address" )
endif(Q)
endif()
add_executable(sanit_example src/main.cpp)

The sanitizer setting is propagated to CMake as the CONAN_SETTINGS_COMPILER_SANITIZER variable with a value
equals to "Address" and we can set the behavior in CMake depending on the value of the variable.

Using conan Hooks to set compiler environment variables

Warning: This way of adding sanitizers is recommended just for testing purposes. In general, it’s not a good
practice to inject this in the environment using a Conan hook. It’s much better explicitly defining this in the profiles.

Important: Take into account that the package ID doesn’t encode information about the environment, so different
binaries due to different CXX_FLAGS would be considered by Conan as the same package.

If you are not interested in modelling the settings in the Conan package you can use a Hook to modify the environment
variable and apply the sanitizer flags to the build. It could be something like:

Listing 30: sanitizer_hook.py

import os

class SanitizerHook(object):
def __init__(self):
self._old_cxx_flags = None

def set_sanitize_address_flag(self):
self._old_cxx_flags = os.environ.get("CXXFLAGS")
flags_str = self._old_cxx_flags or ""
os.environ["CXXFLAGS"] = flags_str + " -fsanitize=address"

def reset_sanitize_address_flag(self):
(continues on next page)

400 Chapter 17. Howtos




Conan Documentation, Release 1.60.2

(continued from previous page)
if self._old_cxx_flags is None:
del os.environ["CXXFLAGS"]
else:
os.environ["CXXFLAGS"] = self._old_cxx_flags

sanitizer = SanitizerHook()

def pre_build(output, conanfile, **kwargs):
sanitizer.set_sanitize_address_£flag()

def post_build(output, conanfile, **kwargs):
sanitizer.reset_sanitize_address_flag()

17.28. Compiler sanitizers 401




Conan Documentation, Release 1.60.2

402 Chapter 17. Howtos



CHAPTER
EIGHTEEN

REFERENCE

General information about the commands, configuration files, etc.

Contents:

18.1 Commands

18.1.1 Consumer commands

Commands related with the installation and usage of Conan packages:

conan install

$ conan install [-h] [-g GENERATOR] [-if INSTALL_FOLDER] [-of OUTPUT_FOLDER] [-m.
— [MANIFESTS]] [-mi [MANIFESTS_INTERACTIVE]]

[-v [VERIFY]] [--no-imports] [--build-require] [-j JSON] [-b [BUILD]] [-
—r REMOTE] [-u] [-1 LOCKFILE] [--lockfile-out LOCKFILE_OUT]

[-e ENV_HOST] [-e:b ENV_BUILD] [-e:h ENV_HOST] [-o OPTIONS_HOST] [-o0:b.
<-OPTIONS_BUILD] [-o0:h OPTIONS_HOST] [-pr PROFILE_HOST]

[-pr:b PROFILE_BUILD] [-pr:h PROFILE_HOST] [-s SETTINGS_HOST] [-s:b.
< SETTINGS_BUILD] [-s:h SETTINGS_HOST] [-c CONF_HOST]

[-c:b CONF_BUILD] [-c:h CONF_HOST] [--lockfile-node-id LOCKFILE_NODE_ID]..
< [--require-override REQUIRE_OVERRIDE]

path_or_reference [reference]

Installs the requirements specified in a recipe (conanfile.py or conanfile.txt).

It can also be used to install a concrete package specifying a reference. If any requirement is not found in the local
cache, it will retrieve the recipe from a remote, looking for it sequentially in the configured remotes. When the recipes
have been downloaded it will try to download a binary package matching the specified settings, only from the remote
from which the recipe was retrieved. If no binary package is found, it can be built from sources using the ‘—build’
option. When the package is installed, Conan will write the files for the specified generators.

positional arguments:
path_or_reference Path to a folder containing a recipe (conanfile.py or
conanfile.txt) or to a recipe file. e.g.,
./my_project/conanfile.txt. It could also be a
reference
reference Reference for the conanfile path of the first
(continues on next page)

403




Conan Documentation, Release 1.60.2

(continued from previous page)

argument: user/channel, version@user/channel or
pkg/version@user/channel (if name or version declared
in conanfile.py, they should match)

optional arguments:

-h, --help show this help message and exit

-g GENERATOR, --generator GENERATOR
Generators to use

-if INSTALL_FOLDER, --install-folder INSTALL_FOLDER
Use this directory as the directory where to put the
generatorfiles. e.g., conaninfo/conanbuildinfo.txt

-of OUTPUT_FOLDER, --output-folder OUTPUT_FOLDER
The root output folder for generated and build files

-m [MANIFESTS], --manifests [MANIFESTS]
Install dependencies manifests in folder for later
verify. Default folder is .conan_manifests, but can be
changed

-mi [MANIFESTS_INTERACTIVE], --manifests-interactive [MANIFESTS_INTERACTIVE]
Install dependencies manifests in folder for later
verify, asking user for confirmation. Default folder
is .conan_manifests, but can be changed

-v [VERIFY], --verify [VERIFY]
Verify dependencies manifests against stored ones

--no-imports Install specified packages but avoid running imports

--build-require The provided reference is a build-require

-j JSON, --json JSON Path to a json file where the install information will
be written

-b [BUILD], --build [BUILD]
Optional, specify which packages to build from source.
Combining multiple '--build' options on one command
line is allowed. For dependencies, the optional
'build_policy' attribute in their conanfile.py takes
precedence over the command line parameter. Possible
parameters: --build Force build for all packages, do
not use binary packages. --build=never Disallow build
for all packages, use binary packages or fail if a
binary package is not found. Cannot be combined with
other '--build' options. --build=missing Build
packages from source whose binary package is not
found. --build=outdated Build packages from source
whose binary package was not generated from the latest
recipe or is not found. --build=cascade Build packages
from source that have at least one dependency being
built from source. --build=[pattern] Build packages
from source whose package reference matches the
pattern. The pattern uses 'fnmatch' style wildcards.
--build=![pattern] Excluded packages, which will not
be built from the source, whose package reference
matches the pattern. The pattern uses 'fnmatch' style
wildcards. Default behavior: If you omit the '--build'
option, the 'build_policy' attribute in conanfile.py
will be used if it exists, otherwise the behavior is

(continues on next page)

404 Chapter 18. Reference




Conan Documentation, Release 1.60.2

(continued from previous page)
like '--build=never'.
-r REMOTE, --remote REMOTE
Look in the specified remote server
-u, --update Will check the remote and in case a newer version
and/or revision of the dependencies exists there, it
will install those in the local cache. When using
version ranges, it will install the latest version
that satisfies the range. Also, if using revisions, it
will update to the latest revision for the resolved
version range.
-1 LOCKFILE, --lockfile LOCKFILE
Path to a lockfile
--lockfile-out LOCKFILE_OUT
Filename of the updated lockfile
-e ENV_HOST, --env ENV_HOST
Environment variables that will be set during the
package build Chost machine). e.g.: -e
CXX=/usr/bin/clang++
-e:b ENV_BUILD, --env:build ENV_BUILD
Environment variables that will be set during the
package build (build machine). e.g.: -e:b
CXX=/usr/bin/clang++
-e:h ENV_HOST, --env:host ENV_HOST
Environment variables that will be set during the
package build (host machine). e.g.: -e:h
CXX=/usr/bin/clang++
-0 OPTIONS_HOST, --options OPTIONS_HOST
Define options values (host machine), e.g.: -o
Pkg:with_qgt=true
-0:b OPTIONS_BUILD, --options:build OPTIONS_BUILD
Define options values (build machine), e.g.: -o:b
Pkg:with_qgt=true
-0:h OPTIONS_HOST, --options:host OPTIONS_HOST
Define options values (host machine), e.g.: -o:h
Pkg:with_qgt=true
-pr PROFILE_HOST, --profile PROFILE_HOST
Apply the specified profile to the host machine
-pr:b PROFILE_BUILD, --profile:build PROFILE_BUILD
Apply the specified profile to the build machine
-pr:h PROFILE_HOST, --profile:host PROFILE_HOST
Apply the specified profile to the host machine
-s SETTINGS_HOST, --settings SETTINGS_HOST
Settings to build the package, overwriting the
defaults (host machine). e.g.: -s compiler=gcc
-s:b SETTINGS_BUILD, --settings:build SETTINGS_BUILD
Settings to build the package, overwriting the
defaults (build machine). e.g.: -s:b compiler=gcc
-s:h SETTINGS_HOST, --settings:host SETTINGS_HOST
Settings to build the package, overwriting the
defaults (host machine). e.g.: -s:h compiler=gcc
-c CONF_HOST, --conf CONF_HOST
Configuration to build the package, overwriting the defaults.

(continues on next page)

18.1. Commands 405




Conan Documentation, Release 1.60.2

(continued from previous page)

< (host machine). e.g.: -c
tools.cmake.cmaketoolchain:generator=Xcode
-c:b CONF_BUILD, --conf:build CONF_BUILD
Configuration to build the package, overwriting the defaults.
< (build machine). e.g.: -c:b
tools.cmake.cmaketoolchain:generator=Xcode
-c:h CONF_HOST, --conf:host CONF_HOST
Configuration to build the package, overwriting the defaults.
— (host machine). e.g.: -c:h
tools.cmake.cmaketoolchain:generator=Xcode
--lockfile-node-id LOCKFILE_NODE_ID
NodeID of the referenced package in the lockfile
--require-override REQUIRE_OVERRIDE
Define a requirement override

conan install executes methods of a conanfile.py in the following order:
1. config_options()

configure()

layout ()

requirements()

package_id()

validate(Q)

validate_build()

® =Nk wN

package_info()
9. deploy()

Note this describes the process of installing a pre-built binary package. If the package has to be built, conan install
--build executes the following:

1. config_options()
configure()

layout )
requirements()
package_id()
validate()
validate_build(Q)
build_requirements()

build_id(Q

© Y ® 2Nk w D

—_

system_requirements()

[
—

. source()

_.
o

generate()

—_
w

. imports()

build ()

_‘
»

406 Chapter 18. Reference




Conan Documentation, Release 1.60.2

15. package()

16. package_info()

17. deploy()
Examples

* Install a package requirement from a conanfile. txt, saved in your current directory with one option and setting
(other settings will be defaulted as defined in <userhome>/.conan/profiles/default):

[$ conan install . -o pkg_name:use_debug_mode=on -s compiler=clang }

* Install the requirements defined in a conanfile.py file in your current directory, with the default settings in
default profile <userhome>/.conan/profiles/default, and specifying the version, user and channel (as
they might be used in the recipe):

(class Pkg(ConanFile):

name = "mypkg"

# see, no version defined!

def requirements(self):
# this trick allow to depend on packages on your same user/channel
self.requires('"dep/0.30@%s/%s" % (self.user, self.channel))

def build(self):
if self.version == "myversion":
# something specific for this version of the package.

L

[$ conan install . myversion@someuser/somechannel ]

Those values are cached in a file, so later calls to local commands like conan build can find and use this version,
user and channel data.

* Install the opencv/4.1.1@conan/stable reference with its default options and default settings from <userhome>/
.conan/profiles/default:

[$ conan install opencv/4.1.1@conan/stable ]

* Install the opencv/4.1.1@conan/stable reference updating the recipe and the binary package if new upstream
versions are available:

[$ conan install opencv/4.1.1@conan/stable --update ]

build options

Both the conan install and create commands accept --build options to specify which packages to build from source.
Combining multiple --build options on one command line is allowed, where a package is built from source if at least
one of the given build options selects it for the build. For dependencies, the optional build_policy attribute in their
conanfile.py can override the behavior of the given command line parameters. Possible values are:

e —-build: Always build everything from source. Produces a clean re-build of all packages. and transitively
dependent packages

¢ —-build=never: Conan will not try to build packages when the requested configuration does not match, in
which case it will throw an error. This option can not be combined with other --build options.

18.1. Commands 407



Conan Documentation, Release 1.60.2

¢ —--build=missing: Conan will try to build packages from source whose binary package was not found in the
requested configuration on any of the active remotes or the cache.

e --build=outdated: Conan will try to build packages from source whose binary package was not built with
the current recipe or when missing the binary package.

¢ --build=cascade: Conan selects packages for the build where at least one of its dependencies is selected for
the build. This is useful to rebuild packages that, directly or indirectly, depend on changed packages.

¢ —-build=[pattern]: A fnmatch case-sensitive pattern of a package reference or only the package name. Conan
will force the build of the packages whose reference matches the given pattern. Several patterns can be specified,
chaining multiple options:

- e.g., --build=patternl --build=pattern2 can be used to specify more than one pattern.
- e.g., --build=z1ib will match any package named z1ib (same as z1ib/¥*).

- e.g., --build=z*@conan/stable will match any package starting with z with conan/stable as
user/channel.

e —-build=![pattern]: A fnmatch case-sensitive pattern of a package reference or only the package name.
Conan will exclude the build of the packages whose reference matches the given pattern. Several patterns can
be specified, chaining multiple options:

- e.g., --build=!z1ib --build Build all packages from source, except for zlib.
- e.g., --build=!z* --build Build all packages from source, except for those starting with z

If you omit the —-build option, the build_policy attribute in conanfile.py will be looked up. If it is set to missing
or always, this build option will be used, otherwise the command will behave like --build=never was set.

env variables

With the -e parameters you can define:

¢ Global environment variables (-e SOME_VAR="SOME_VALUE"). These variables will be defined before the build
step in all the packages and will be cleaned after the build execution.

¢ Specific package environment variables (-e zlib:SOME_VAR="SOME_VALUE"). These variables will be defined
only in the specified packages (e.g., zlib).

You can specify this variables not only for your direct requires but for any package in the dependency graph.

If you want to define an environment variable but you want to append the variables declared in your requirements you
can use the [] syntax:

[$ conan install . -e PATH=[/other/path] }

This way the first entry in the PATH variable will be /other/path but the PATH values declared in the requirements of the
project will be appended at the end using the system path separator.

408 Chapter 18. Reference



Conan Documentation, Release 1.60.2

settings

With the -s parameters you can define:
* Global settings (-s compiler="Visual Studio"). Will apply to all the requires.

* Specific package settings (-s zlib:compiler="MinGW"). Those settings will be applied only to the specified
packages. They accept patterns too, like -s *@myuser/*:compiler=MinGW, which means that packages that
have the username “myuser” will use MinGW as compiler.

* Experimental: Settings only for the consumer package. (-s &:compiler="MinGW"). If & is specified as
the package name it will apply only to the consumer conanfile (.py or .txt). This is a special case because the
consumer conanfile might not declare a name so it would be impossible to reference it.

You can specify custom settings not only for your direct requires but for any package in the dependency graph.

options

With the -0 parameters you can only define specific package options.

$ conan install . -o zlib:shared=True

$ conan install . -o zlib:shared=True -o bzip2:option=132

# you can also apply the same options to many packages with wildcards:
$ conan install . -o *:shared=True

Experimental: To define an option just for the consumer conanfile.py use -o &:shared=True syntax. If & is specified
as the package name it will apply only to the consumer conanfile.py. This is a special case because the consumer
conanfile might not declare a name so it would be impossible to reference it.

Note: You can use profiles files to create predefined sets of settings, options and environment variables.

folders

Important: This feature is still under development, while it is recommended and usable and we will try not to break
them in future releases, some breaking changes might still happen if necessary to prepare for the Conan 2.0 release.

The --output-folder define together with the layout () recipe method the location of the output files. For ex-
ample, the files created by build system integrations such as CMakeToolchain or PkgConfigDeps will be created
in the folder defined by the layout () generators folder, inside the defined --output-folder. By default, the
--output-folder is the folder containing the conanfile.py.

18.1. Commands 409



Conan Documentation, Release 1.60.2

conf

Important: This feature is still under development, while it is recommended and usable and we will try not to break
them in future releases, some breaking changes might still happen if necessary to prepare for the Conan 2.0 release.

With the -c parameters you can define specific tool configurations.

$ conan install . -c tools.microsoft.msbuild:verbosity=Diagnostic
$ conan install . -c tools.microsoft.msbuild:verbosity=Detailed -c tools.
—build:processes=10

Note: To list all possible configurations available, run conan config list.

See

You

also:

can see more information about configurations in global.conf section.

reference

An optional positional argument, if used the first argument should be a path. If the reference specifies name and/or

vers

ion, and they are also declared in the conanfile.py, they should match, otherwise, an error will be raised.

A A o A

conan install . # OK, user and channel will be None

conan install . user/testing # OK

conan install . version@user/testing # OK

conan install . pkg/version@user/testing # OK

conan install pkg/versmn@user/testlng user/channel # Error, first arg is not a path

lockfiles

The

install command accepts several arguments related to lockfiles:

e —-lockfile=<path-to-lockfile>: The conan install ... --lockfile=path/to/file.lock com-
mand will provide an input lockfile to the command. Versions, revisions, and other data contained in that lock-
file will be respected. If something has changed locally that diverges with respect the locked information in the
lockfile, the command will fail.

e —-lockfile-out=<path-to-lockfile>: This argument will define the filename of the resulting install
operation. If the input lockfile has not completely locked something, and the install command can, for example,
build some dependency from source with the --build=<dep-name> argument, this will provide new data, like
a new package revision. This new data can be captured and locked in the output lockfile.

e --lockfile-node-id=<node-id>: Experimental, subject to breaking changes. In some cases, it is im-
possible to reference a package in the dependency graph by name or reference, because there might be several
instances of it with the same one. This could happen with some special type of requirements, like build-requires
or private requires. Providing the node-id, as defined in the lockfile file, can define without any ambiguity the
package in the graph that the command is referencing.

410

Chapter 18. Reference



Conan Documentation, Release 1.60.2

Note: Installation of binaries can be accelerated setting up parallel downloads with the general.
parallel_download under development configuration in conan.conf.

—build-require

Available since: 1.37.0

The --build-require allows to install the package using the configuration and settings of the “build” context, as it
was a build_require. Lets see it with an example:

We have a mycmake/1.0 package, which bundles cmake executable, and we are cross-compiling from Windows to
Linux, so all the usual install commands will use something like -pr:b=Windows -pr:h=Linux. At some point we
might want to install the build-require to test it, executing it directly in the terminal, with -build-require it is
possible:

$ conan install mycmake/1.0@ --build-require -g virtualenv -pr:b=Windows -pr:h=Linux
# Installs Windows package binary, not the Linux one.

$ source ./activate.sh && mycmake

# This will execute the "mycmake" from the Windows package.

This also works when building a dependency graph, including build-requires, in CI. As the conan lock build-order
command will return a list including the build/host context, it is possible to use that to add the --build-require to
the command, and build build-requires as necessary without needing to change the profiles at all.

—require-override

Available since: 1.39.0

The --require-override argument allows to inject an override requirement to the consumer conanfile being called
by this command, that would be equivalent to:

class Pkg(ConanFile):

def requirements(self):
self.requires('zlib/1.3", override=True)

This allows to dynamically test specific versions upstream without requiring editions to conanfiles. Note however this
would not be a generally recommended practice for production, it would be better to actually update the conanfiles to
explicitly reflect in code which specific versions upstream are being used.

If the consumer conanfile already contains a direct requirement to that dependency, then such version will be directly
overwritten, but no override=True will be added (note that override=True means that the current package does
not depend on that other package).

This feature affects only to regular requires, not to tool_requires or python_requires, as those don’t have such
an overriding mechanism, and they are private to their consumer, not propagating downstream nor upstream.

18.1. Commands 411


https://github.com/conan-io/conan/releases/tag/1.37.0
https://github.com/conan-io/conan/releases/tag/1.39.0

Conan Documentation, Release 1.60.2

conan config

[$ conan config [-h] {get,home,install,rm,set,init,list}

Manages Conan configuration.

Used to edit conan.conf, or install config files.

positional arguments:
{get,home,install,rm,set,init,list}
sub-command help

get Get the value of configuration item

home Retrieve the Conan home directory

install Install a full configuration from a local or remote
zip file

rm Remove an existing config element

set Set a value for a configuration item

init Initializes Conan configuration files

list List Conan configuration properties

optional arguments:
-h, --help show this help message and exit

Examples

* Change the logging level to 10:

[$ conan config set log.level=10

* Get the logging level:

$ conan config get log.level
$> 10

R

* Get the Conan home directory:

$ conan config home
$> /home/user/.conan

* Create all missing configuration files:

[$ conan config init

* Delete the existing configuration files and create all configuration files:

[$ conan config init --force

« List all possible properties allowed for global.conf

{$ conan config list

* Set config install scheduler for every 1 week:

£$ conan config set general.config_install_interval=1w

412 Chapter 18. Reference



Conan Documentation, Release 1.60.2

conan config install

usage: conan config install [-h] [--verify-ssl [VERIFY_SSL]] [--type {git}]
[--args ARGS] [-sf SOURCE_FOLDER] [-tf TARGET_FOLDER]
[-1] [-r REMOVE]
[item]

positional arguments:
item git repository, local file or folder or zip file (local or
http) where the configuration is stored

optional arguments:
-h, --help show this help message and exit
--verify-ssl [VERIFY_SSL]
Verify SSL connection when downloading file
--type {git,dir,file,url}, -t {git,dir,file,url}
Type of remote config
--args ARGS, -a ARGS String with extra arguments for "git clone"
-sf SOURCE_FOLDER, --source-folder SOURCE_FOLDER
Install files only from a source subfolder from the
specified origin
-tf TARGET_FOLDER, --target-folder TARGET_FOLDER
Install to that path in the conan cache
-1, --list List stored configuration origins
-r REMOVE, --remove REMOVE
Remove configuration origin by index in list (index provided by -
—-list argument)

The config install is intended to share the Conan client configuration. For example, in a company or organization,
is important to have common settings.yml, profiles, etc.

It can install one specific file or get its configuration files from a local or remote zip file, from a local directory or from
a git repository. It then installs the files in the local Conan configuration.

The configuration may contain all or a subset of the allowed configuration files. Only the files that are present will be
replaced. The only exception is the conan.conf file for which only the variables declared will be installed, leaving the
other variables unchanged.

This means for example that profiles and hooks files will be overwritten if already present, but no profile or hook file
that the user has in the local machine will be deleted.

All the configuration files will be copied to the Conan home directory. These are the special files and the rules applied
to merge them:

18.1. Commands 413




Conan Documentation, Release 1.60.2

File

How it is applied

profiles/MyProfile

settings.yml
remotes.txt

remotes.json (Since 1.52)

config/conan.conf

hooks/my_hook.py

Overrides the local ~/.conan/profiles/MyProfile if al-
ready exists

Overrides the local ~/.conan/settings.yml

Overrides remotes. Will remove remotes that are not
present in file

Overrides remotes. Will remove remotes that are not
present in file.

Please, note that only one of remotes.json or
remotes.txt should be

installed. If you have both .txt and .json in the folder,
repo, etc.

that you are installing from, it can lead to undefined
behaviour as the

order of the install is not deterministic

Merges the variables, overriding only the declared vari-
ables

Overrides the local ~/.conan/hooks/my_hook.py if al-
ready exists

The file remotes.txt is the only file listed above which does not have a direct counterpart in the ~/.conan folder. Its

format is a list of entries, one on each line, with the form of

[[remote name] [remote url] [bool]

where [bool] (either True or False) indicates whether SSL should be used to verify that remote. The remote defi-
nitions can be found in the remotes.json file and it provides a helpful starting point when writing the remotes.txt to be

packaged in a Conan client configuration.

Note: During the installation, Conan skips any file with the name README.md or LICENSE.txt.

The conan config install <item> calls are stored in

a config_install.json file in the Conan local cache. That

allows to issue a conan config install command, without arguments, to iterate over the cached configurations,

executing them again (updating).

The conan config install can be periodically executed, before any command, when config_install_interval is
configured in conan.conf. Conan runs it based on config_install.json, including the timestamp of the last change.

Examples:

¢ Install the configuration from a URL:

[$ conan config install http://url/to/some/config.zip

)

¢ Install the configuration from a URL, but only getting the files inside a origin folder inside the zip file, and putting

them inside a target folder in the local cache:

[$ conan config install http://url/to/some/config.zip -sf=origin -tf=target

414

Chapter 18. Reference



Conan Documentation, Release 1.60.2

* Install configuration from 2 different zip files from 2 different urls, using different source and target folders for
each one, then update all:

$ conan config install http://url/to/some/config.zip -sf=origin -tf=target
$ conan config install http://url/to/some/config.zip -sf=origin2 -tf=target2
$ conan config install http://other/url/to/other.zip -sf=hooks -tf=hooks

# Later on, execute again the previous configurations cached:

$ conan config install

It’s not needed to specify any argument, it will iterate previously stored configurations in config_install.json,
executing them again.

* Install the configuration from a Git repository with submodules:

[$ conan config install http://github.com/user/conan_config/.git --args "--recursive" J

You can also force the git download by using --type git (in case it is not deduced from the URL automatically):

[$ conan config install http://github.com/user/conan_config/.git --type git J

* Install from a URL skipping SSL verification:

[$ conan config install http://url/to/some/config.zip --verify-ssl=False 